Distance and Similarity

Andre Salvaro Furtado

Department of Informatics and Statistics (INE) Universidade Federal de Santa Catarina (UFSC) Florianópolis, Santa Catarina, Brazil

September 15, 2015

Topics

Introduction

Distance Measures

Similarity Measures

Similarity Queries

Evaluation

Final Remarks

Introduction

Topics

Introduction

Distance Measures

Similarity Measures

Similarity Queries

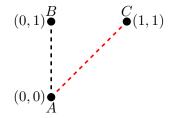
Evaluation

Final Remarks

Introduction - Distance and Similarity

- Distance / Dissimilarity
 - Quantify the difference of two objects
 - The value is usually in the interval $[0,\infty]$
 - · Lower values mean that the objects are more similar
- Similarity
 - Quantify the alikeness of two objects
 - The value is usually in the interval [0,1]
 - · Lower values mean that the objects are less similar

Motivation


- Distance and Similarity measures are useful for several applications:
 - Calculate the distance between two points in a plane
 - Calculate the distance between two locations
 - Find the restaurants that are near a location
 - Search systems (e.g., a search in Google)
 - Given an image return the most similar images (e.g., Google Images)
 - Identify similar customers in a company database
 - ...

Example: Distance between two points in a plane

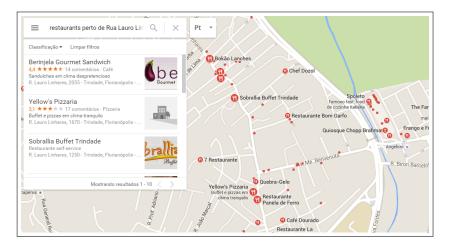
- Distance between two points in a plane
- Euclidean Distance:

•
$$d(A,B) = 1$$

•
$$d(A,C) = \sqrt{2}$$

Similarity Queries

Evaluation

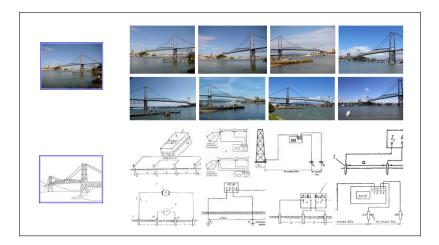

Final Remarks

Example: Distance between two locations

≡	<u> </u>	×	Pt -
•	Universidade Federal de Santa Catarina - Shopping Iguatemi - Avenida Madre Ben	- †↓	Vellow's Pizzaria W
+	Sair agora 👻	Ξ <u>ŀ</u>	🚔 5 min 💋 🖓
➡ via R. Profa. Maria Flora Pausewang e Av. 5 min Prof. Henrique da Silva Fontes			1.6 km 1.6 km 1.6 km 1.6 km 1.6 km 1.6 km 1.6 km 1.6 km 1.2 km H H H H H H H H H H H H H
4 min sem trânsito · Mostrar trânsito 1,6 km		1,6 km	
Detalhe	es		Universidade Federal
📄 via	Av. Prof. Henrique da Silva Fontes	7 min	de Santa Catarina
🕈 via	R. Profa. Maria Flora Pausewang	15 min	
	Escola de Samba	estros CA	RVOEIRA

Example: Restaurants near a Location

• Similarity between sentences in keyword search


Example: Textual Similarity

• Similarity between sentences in keyword search

Estádio do Havaí	्				
Web Maps Images News Videos More - Search tools					
About 191,000 results (0.59 seconds)					
Did you mean: Estádio do <i>Avaí</i>	Re Dep Diamicio Freita				
Ressacada – Wikipédia, a enciclopédia livre https://pt.wikipedia.org//Ressa Translate this page Portuguese Wikipedia O Estádio Aderbal Ramos da Silva, popularmente conhecido como Estádio da	Aderbal Ramos da				
Ressacada, de propriedade do Avai Futebol Clube, é um estádio de futebol História - Localização - Arquitetura - Setorização	See photos				
Images for Estádio do Havaí Report images	Ressacada stadium				
	3.7 ★★★★ 58 Google reviews Stadium				
	Address: Av. Dep. Diomício Freitas, 1000 - Carianos, Flo 88047-400. Brazil				
	Phone: +55 48 3216-7300				

Similarity Queries

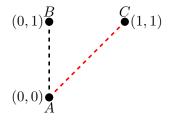
Example: Image Similarity

Topics

Introduction

Distance Measures

Similarity Measures

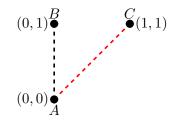

Similarity Queries

Evaluation

Final Remarks

Euclidean Distance

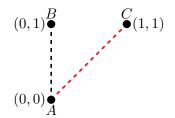
· Length of the straight line between two points



• Given two points p and q:

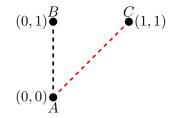
$$d(p,q) = \sqrt{(p.x - q.x)^2 + (p.y - q.y)^2}$$
(1)

Example: Euclidean Distance (A,B)


$$d(p,q) = \sqrt{(p.x - q.x)^2 + (p.y - q.y)^2}$$

$$d(A,B) = \sqrt{(A.x - B.x)^2 + (A.y - B.y)^2}$$
(ED1)

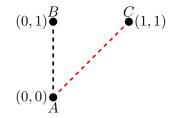
Example: Euclidean Distance (A,B)


$$d(p,q) = \sqrt{(p.x - q.x)^2 + (p.y - q.y)^2}$$

$$d(A,B) = \sqrt{(A.x - B.x)^2 + (A.y - B.y)^2}$$
(ED1)
$$d(A,B) = \sqrt{(0-0)^2 + (0-1)^2}$$
(ED2)

Example: Euclidean Distance (A,B)

$$d(p,q) = \sqrt{(p.x - q.x)^2 + (p.y - q.y)^2}$$

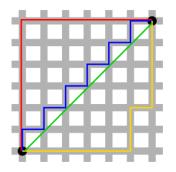

$$d(A,B) = \sqrt{(A.x - B.x)^2 + (A.y - B.y)^2}$$
(ED1)

$$d(A,B) = \sqrt{(0-0)^2 + (0-1)^2}$$
(ED2)

$$d(A,B) = \sqrt{(0)^2 + (1)^2} = 1$$
 (ED3)

Example: Euclidean Distance (A,C)

$$d(p,q) = \sqrt{(p.x - q.x)^2 + (p.y - q.y)^2}$$

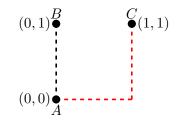

$$d(A,C) = \sqrt{(A.x - C.x)^2 + (A.y - C.y)^2}$$
(ED4)

$$d(A,C) = \sqrt{(0-1)^2 + (0-1)^2}$$
(ED5)

$$d(A,C) = \sqrt{(-1)^2 + (-1)^2} = \sqrt{2}$$
 (ED6)

Manhattan Distance

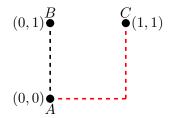
- Absolute distance of the coordinates
- Also known as Taxicab Distance, City Block Distance...



• Given two points p and q:

$$d(p,q) = |p.x - q.x| + |p.y - q.y|$$
(2)

Example: Manhattan Distance (A,B)


$$d(p,q) = |p.x - q.x| + |p.y - q.y|$$

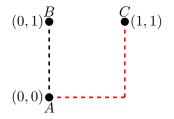
$$d(A,B) = |A.x - B.x| + |A.y - B.y|$$
 (MD1)

Example: Manhattan Distance (A,B)

$$d(p,q) = |p.x - q.x| + |p.y - q.y|$$

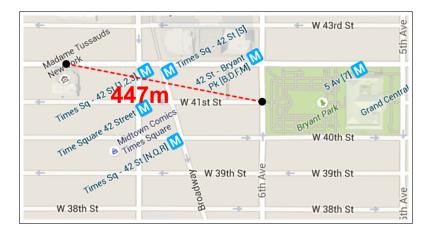
$$d(A, B) = |A.x - B.x| + |A.y - B.y|$$
(MD1)
$$d(A, B) = |0 - 0| + |0 - 1|$$
(MD2)

Example: Manhattan Distance (A,B)


$$d(p,q) = |p.x - q.x| + |p.y - q.y|$$

$$d(A, B) = |A.x - B.x| + |A.y - B.y|$$
(MD1)
$$d(A, B) = |0 - 0| + |0 - 1|$$
(MD2)
$$d(A, B) = 0 + 1 = 1$$
(MD3)

Example: Manhattan Distance (A,C)


$$d(p,q) = |p.x - q.x| + |p.y - q.y|$$

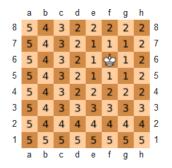
$$d(A, C) = |A.x - C.x| + |A.y - C.y|$$
(MD4)
$$d(A, C) = |0 - 1| + |0 - 1|$$
(MD5)
$$d(A, C) = 1 + 1 = 2$$
(MD6)


Example: Euclidean Distance in Manhattan

• Euclidean: d(BryantPark, MadameTussaud) = 447m

Example: Manhattan Distance in Manhattan

- Euclidean: d(BryantPark, MadameTussaud) = 447m
- Manhattan: d(BryantPark, MadameTussaud) = 434m + 87m = 521m



Similarity Queries

Final Remarks

Chebyshev Distance

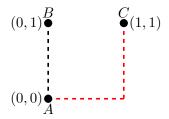
- Maximum difference in any coordinate
- Also know as Chessboard Distance

• Given two points p and q:

$$d(p,q) = max(|p.x - q.x|, |p.y - q.y|)$$
(3)

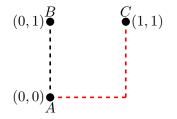
Final Remarks

Example: Chebyshev Distance (A,C)


$$d(p,q) = max(|p.x - q.x|, |p.y - q.y|)$$

$$d(A, C) = max(|A.x - C.x|, |A.y - C.y|)$$
 (CD1)

Example: Chebyshev Distance (A,C)


$$d(p,q) = max(|p.x - q.x|, |p.y - q.y|)$$

$$d(A,C) = max(|A.x - C.x|, |A.y - C.y|)$$
(CD1)
$$d(A,C) = max(|0 - 1|, |0 - 1|)$$
(CD2)

Example: Chebyshev Distance (A,C)

$$d(p,q) = max(|p.x - q.x|, |p.y - q.y|)$$

$$d(A, C) = max(|A.x - C.x|, |A.y - C.y|)$$
 (CD1)

$$d(A,C) = max(|0-1|, |0-1|)$$
(CD2)

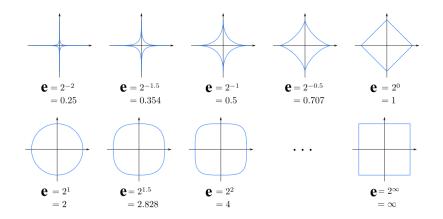
$$d(A,C) = max(1,1) = 1$$
 (CD3)

Minkowski Distance

• Generalization for Euclidean/Manhattan/Chebyshev Distances

$$d(p,q) = \left(\sum_{i=1}^{n} |p_i - q_i|^e\right)^{1/e}$$
(4)

• Manhattan (e=1)


$$d(p,q) = \left(\sum_{i=1}^{n} |p_i - q_i|^1\right)^{1/1} = \sum_{i=1}^{n} |p_i - q_i|$$
(5)

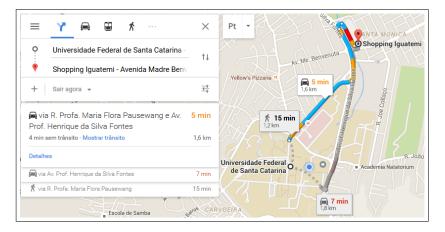
• Euclidean (e=2)

$$d(p,q) = \left(\sum_{i=1}^{n} |p_i - q_i|^2\right)^{1/2} = \sqrt{\sum_{i=1}^{n} |p_i - q_i|^2} \qquad (6)$$

Similarity Queries

Example: Minkowski Distance

Levenshtein Distance


- Distance between two sequences is given by the number of insert, delete and replace operations to transform one in another
- Also known as Edit Distance
- Example d(Avai,?):
 - Avaí
 - Havaí
 - Hawaii
- Results for d(Avai, ?):
 - d(Avaí, Avaí) = 0
 - d(Avaí, Havaí) = 2
 - d(Avai, Hawaii) = 5

Example: Levenshtein Distance

- Levenshtein Distance Avaí to Hawaii
- Transform Avaí into Hawaii:
 - 1 Add H in the beggining (**H**Avaí)
 - 2 Replace A for a (Havaí)
 - 3 Replace v for w (Hawaí)
 - 4 Replace *i* for *i* (Hawai)
 - 5 Add *i* in the end (Hawaii)
- Result for d(Avai, Hawaii) = 5

More Distance Measures

- There are several other distances:
 - Road Network, Great Circle, Distance Time Warping, Mahalanobis, Jaro-Winckler, Canberra...

Final Remarks

Topics

Introduction

Distance Measures

Similarity Measures

Similarity Queries

Evaluation

Final Remarks

Initial Remarks - Distance \rightarrow Similarity

- A key difference between Distance and Similarity is the score interval:
 - Distance: $[0,\infty]$
 - Similarity: [0,1]
- In Similarity Measures when two objects are equivalent the score is equal to 1
- It is possible to infer similarity scores from distance measures by normalizing it when the maximum distance is known

Levenshtein - Distance \rightarrow Similarity

- Maximum Levenshtein distance is the size of the longer string
 - d(A, B) can be normalized by: max(length(A), length(B))
- Therefore, similarity score is given by: $sim(A,B) = 1 - \frac{d(A,B)}{max(length(A), length(B))}$
- Example sim(Avai,?):
 - Avaí
 - Havaí
 - Hawaii

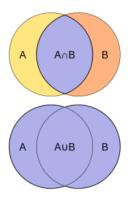
Example: Levenshtein - Distance \rightarrow Similarity

$$sim(A,B) = 1 - \frac{d(A,B)}{max(length(A), length(B))}$$

• Similarity Avaí to Hawaii:

$$sim(Avaí, Hawaii) = 1 - \frac{d(Avaí, Hawaii)}{max(length(Avaí), length(Hawaii))}$$
$$= 1 - \frac{d(Avaí, Hawaii)}{max(4, 6)}$$
$$= 1 - \frac{d(Avaí, Hawaii)}{6}$$
$$= 1 - \frac{5}{6}$$
$$= 1 - 0.86 = 0.17$$

(7)


Levenshtein - Distance \rightarrow Similarity

- Maximum Levenshtein distance is the size of the longer string
 - d(A,B) can be normalized by: max(length(A), length(B))
- Therefore, similarity score is given by: $sim(A,B) = 1 \frac{d(A,B)}{max(length(A),length(B))}$
- Example sim(Avai, ?):
 - Avaí
 - Havaí
 - Hawaii
- Results for sim(Avai, ?):
 - $sim(Avai, Avai) = 1 \frac{0}{4} = 1$
 - $sim(Avai, Havai) = 1 \frac{2}{5} = 0.6$
 - $sim(Avai, Hawaii) = 1 \frac{5}{6} = 0.17$

Jaccard Similarity

• Similarity between two finite sets

•
$$sim(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

Example: Jaccard Similarity

•
$$sim(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

- Example Sets
 - $A = \{Giraffe, Monkey, Elephant, Bird\}$
 - $B = \{Monkey, Crocodile\}$
 - $C = \{Horse, Dog, Parrot\}$
 - $D = \{Monkey\}$
- Results for sim(A,?):

•
$$sim(A, A) = \frac{4}{4} = 1$$

•
$$sim(A,B) = \frac{1}{5} = 0.2$$

•
$$sim(A, C) = \frac{0}{7} = 0$$

•
$$sim(A, D) = \frac{1}{4} = 0.25$$

More Similarity Measures

- There are several other similarity measures:
 - Cosine Similarity, Longest Common Subsequence, Location In-Between Polylines, SimRank, Overlap Coefficient, Sorensen-Dice Coefficient...
- The applicability range is wide:
 - Sets, Sequences, Strings, Time-Series, Trajectories, WebPages, Documents, Images...

Topics

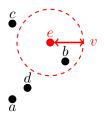
Introduction

Distance Measures

Similarity Measures

Similarity Queries

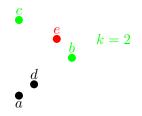
Evaluation


Similarity Queries

Similarity Queries

- Range
 - Given an element e and a minimum similarity score v return all elements $e\prime$ such that $sim(e,e\prime) < v$
- k-Nn (k-Nearest Neighbors)
 - Given an element e return the k most similar elements

Range Query


- Range
 - Given an element e and a minimum similarity score v return all elements $e\prime$ such that $sim(e,e\prime) < v$

k-Nn Query

• k-Nn

• Given an element e return the k most similar elements

Topics

Introduction

Distance Measures

Similarity Measures

Similarity Queries

Evaluation

Precision @ Recall

- Wide-used evaluation technique
- Input:
 - A query object q
 - A set of objects O
 - Let q = São Francisco do Sul be the query object.
 - The other objects:

Object				
São Francisco do Sul				
São Franc S				
San Francisco				
Sao Francisco Sul				
São Bento do Sul				
São José				
São Chico do Sul				
São Caetano do Sul				
São Paulo do Oeste				
S Chico do Sul				

Precision @ Recall - Relevant Objects

- Step 1: Given a query object q and a set of objects O, mark which objects are relevant (similar to q).
 - Let q = São Francisco do Sul be the query object.
 - Which objects are relevant?

Object	Relevant
São Francisco do Sul	\checkmark
São Franc S	\checkmark
San Francisco	
Sao Francisco Sul	\checkmark
São Bento do Sul	
São José	
São Chico do Sul	\checkmark
São Caetano do Sul	
São Paulo do Oeste	
S Chico do Sul	\checkmark

Example: Precision @ Recall - Calculate Similarity

- Step 2: Calculate the similarity of q to all objects in O
- Levenshtein (Lev.) Similarity Calculated:

Object	Relevant	Levenshtein (Lev.)
São Francisco do Sul	\checkmark	1
São Franc S	\checkmark	0.55
San Francisco		0.55
Sao Francisco Sul	\checkmark	0.8
São Bento do Sul		0.65
São José		0.25
São Chico do Sul	\checkmark	0.7
São Caetano do Sul		0.65
São Paulo do Oeste		0.4
S Chico do Sul	\checkmark	0.6

Example: Precision @ Recall - Similarity Ranking

- Step 3: Rank the objects according to the similarity score
- Objects ranked:

Rank	Object	Relevant	Lev.
1	São Francisco do Sul	\checkmark	1
2	Sao Francisco Sul	\checkmark	0.8
3	São Chico do Sul	\checkmark	0.7
4	São Bento do Sul		0.65
5	Sao Caetano do Sul		0.65
6	S Chico do Sul	\checkmark	0.6
7	San Francisco		0.55
8	São Franc S	\checkmark	0.55
9	São Paulo do Oeste		0.4
10	São José		0.25

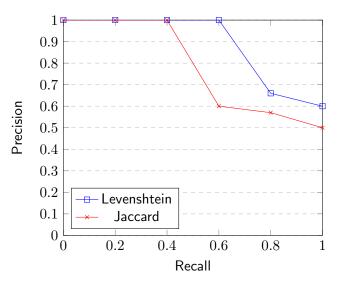
Example: Precision @ Recall - Mark Recall Levels

- Step 4: Mark the recall levels
 - Example: recall level 0.2 means that $\frac{1}{5}$ of the relevant object were retrieved until that position in the ranking
 - Recall levels $\rightarrow \{0, 0.2, 0.4, 0.6, 0.8, 1\}$

Rank	Object	Relevant	Lev.	Recall
1	São Francisco do Sul	\checkmark	1	0.2
2	Sao Francisco Sul	\checkmark	0.8	0.4
3	São Chico do Sul	\checkmark	0.7	0.6
4	São Bento do Sul		0.65	-
5	Sao Caetano do Sul		0.65	-
6	S Chico do Sul	\checkmark	0.6	0.8
7	San Francisco		0.55	-
8	São Franc S	\checkmark	0.55	1
9	São Paulo do Oeste		0.4	-
10	São José		0.25	-

Example: Precision @ Recall - Levenshtein

- Step 5: Calculate the precision for each level of recall
 - Precision at recall: $\frac{|R_l|}{|O_l|}$ where R_l is the number of relevant objects and O_l is the total number of objects up to recall l
 - Example: for l = 0.8 there are 6 objects and 4 are relevant. Therefore precision at recall level 0.8 is $\frac{4}{6} = 0.66...$


Rank	Object	Relevant	Lev.	Recall	Precision
1	São Francisco do Sul	\checkmark	1	0.2	1
2	Sao Francisco Sul	\checkmark	0.8	0.4	1
3	São Chico do Sul	\checkmark	0.7	0.6	1
4	São Bento do Sul		0.65	-	-
5	Sao Caetano do Sul		0.65	-	-
6	S Chico do Sul	\checkmark	0.6	0.8	0.66
7	San Francisco		0.55	-	-
8	São Franc S	\checkmark	0.55	1	0.62
9	São Paulo do Oeste		0.4	-	-
10	São José		0.25	-	-

Example: Precision @ Recall - Jaccard

- Repeat Steps 2, 3, 4 and 5 for Jaccard
- Results for Jaccard:

Rank	Object	Relevant	Jac.	Recall	Precision
1	São Francisco do Sul	\checkmark	1	0.2	1
2	S Chico do Sul	\checkmark	0.6	0.4	1
3	São Bento do Sul		0.6	0.4	-
4	Sao Caetano do Sul		0.6	0.4	-
5	Sao Francisco Sul	\checkmark	0.4	0.6	0.6
6	São Paulo do Oeste		0.33	0.6	-
7	São Franc S	\checkmark	0.33	0.8	0.57
8	San Francisco		0.2	0.8	-
9	São José		0.2	0.8	-
10	São Franc do S	\checkmark	0.16	1	0.5

Example: Precision @ Recall - Graph

Topics

Introduction

Distance Measures

Similarity Measures

Similarity Queries

Evaluation

- There are several distance/similarity measures for different purpouses
- The choice of an adequate similarity measure is crucial to the results of classification or clustering algorithms
- Precision @ Recall is the most used evaluation technique, but there are several others to be applied in different contexts
- Most of these measures are implemented in the Java Library Simmetrics: http://sourceforge.net/projects/simmetrics/

Introduction Distance Measures Similarity Measures Similarity Queries Evaluation Final Remarks
Exercises

- 1) Dados os pontos A = (4, 2), B = (5, 4) e C = (3, 5) calcule as distâncias Euclidiana, Manhattan e Chebyshev entre os elementos.
- 2) Dado o conjunto A = {Preto, Azul, Branco, Cinza} calcule a similaridade Jaccard para os conjuntos B = {Azul}, C = {Verde}, D = {Laranja, Cinza, Preto} e E = {Preto, Azul}.