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Abstract. For many years trajectory data have been treated as sequences of
space-time points or stops and moves. However, with the explosion of the In-
ternet of Things (IoT) and the flood of Big Data generated on the Internet, like
weather channels and social network interactions that can be used to enrich
mobility data, trajectories become more and more complex, with multiple and
heterogeneous data dimensions. The main challenge is how to integrate all these
information with trajectories. In this paper we introduce a new concept of tra-
jectory, called multiple aspect trajectory, propose a robust conceptual and logi-
cal data model that supports a vaste range of applications, and differently from
state-of-the-art methods we propose an efficient storage solution for efficient
multiple aspect trajectory queries. The main strength of the model is the com-
bination of simplicity and expressive power to represent heterogeneous aspects,
ranging from simple labels to complex objects. We evaluate the proposed model
in a tourism scenario and compare its query performance against SECONDO
extension for symbolic trajectories.

1. Introduction

For many years, moving object database research has focused on how to represent,
store, and query the physical movement of objects, limiting movement data to the spatial
position of an object along time. The physical movement is well known as raw trajectory,
and is generally represented as a sequence of points T =< p1, p2, ...pn >, with pi =
(xi, yi, ti), pi ∈ T , where x, y is the position of the object in space at time instant t.

With the explosion of the Internet of Things (IoT) and the flood of Big Data gen-
erated on the Internet, like weather channels and social network interactions (e.g., Flickr,
Facebook, Twitter, Foursquare), it is now possible to collect huge volumes of movement
data about people, animals, and objects as cars, buses, drones, etc. Sensors installed either



Figure 1. An example of a multiple aspect trajectory

indoor (e.g. smart homes) or outdoor allow the collection of data about the place, as tem-
perature, air pollution, noise, luminosity, etc, or about the object that is moving around
or inside this place, as the heart rate (with a smart watch), the emotional status (with a
microphone that analyses the voice intonation), blood pressure, sleeping stages, etc. By
collecting all these information we have a new type of movement data, i.e., a trajectory
enriched with different semantic aspects. As an example, let us consider the trajectory of
Peter, shown in Figure 1.

Peter stays at Home from 11pm to 8am, when he goes to Work from 8:30am to
6pm, and finally he goes for dinner at a Japanese Restaurant. Peter has a smart watch
that constantly collects his heart rate, and his sleeping stages at home during the night.
Peter goes to work on foot when the weather is sunny, and he tweets a message that char-
acterizes his humor. His working place is a smart office equipped with numerous sensors
that collect information about the place as noise, temperature, air pollution, and humid-
ity, as well the emotional status of the staff using microphones. After work, the weather
changes to rainy, and Peter decides to take a taxi to move to a Japanese Restaurant. The
restaurant has its own attributes, as open and close hours, average price, spatial location,
and reviews.

We can observe from Figure 1 that a trajectory became a complex object with nu-
merous complex data dimensions that are contextual to the movement and heterogeneous
in the form, which we define in this paper as aspects. The more aspects we have, the
more complete is the representation of the real movement of an object, and more useful
and interesting information we can infer about objects and places. The challenge is how
to integrate all these heterogeneous information in a single trajectory representation, and
the main questions we want to answer in this paper are: (i) Is it possible to define a data
model that is simple in structure, but generic enough to represent any aspect related to
the movement, and that covers a large number of applications? (ii) Is there a way to
efficiently query and extract patterns from data represented in this model?

A few data models were proposed to consider some limited semantic information
about movement, as the well known model of stops and moves [Spaccapietra et al. 2008]
and the generalized CONSTANT model [Bogorny et al. 2014]. Based on these data mod-
els, works as [Fileto et al. 2015] and [Nogueira et al. 2017] propose frameworks and on-
tologies to enrich trajectories with Linked Open Data. Existing trajectory data models



essentially add semantic labels to trajectories, as the means of transportation, the goal
of the trip, and the category of the visited places [Bogorny et al. 2014]. However, these
models have some limitations. First, they focused on the conceptual representation only,
and do not go deeper in the logical level and storage technologies. Furthermore, they do
not consider dynamic and complex aspects that involve movement, not being flexible to
represent heterogeneous aspects.

We claim that multiple aspects represent a new view over trajectories, and a new
paradigm concerning mobility data. These aspects are not simple semantic labels, but
may be complex objects and/or heterogeneous information intrinsically associated to the
physical traces of the moving objects.

In this paper we introduce the concept of multiple aspect trajectory and propose
a novel approach for modeling this kind of trajectories called MASTER. MASTER com-
prises a conceptual and a logical data model for multiple aspect trajectories, as well as a
storage solution that is very appropriate for multiple aspect trajectory queries.

The main contributions of this paper are summarized as follows: (i) we introduce
the concept of multiple aspect trajectory that generalizes the state-of-the-art semantic tra-
jectory definition into a more complex but realistic trajectory based on the notion of as-
pect. We define different kinds of aspects and we also discuss the semantic meaning of
an aspect to distinguish between different possible meanings for an aspect name. We
provide a conceptual data model for multiple aspect trajectories with a large expressive
power, that combines simplicity with a powerful representation of different types of mov-
ing objects and a variety of spatial, temporal and semantic aspects that are relevant to
a vast range of applications; (ii) a conversion of the conceptual data model to a logical
schema in the Resource Description Framework (RDF) standard to be adherent to the Se-
mantic Web standards [Berners-Lee et al. 2001]; (iii) the usage of a triplestore based on
NoSQL databases for maintaining RDF data, since these databases represent a new and
efficient technology to maintain and query trajectory data (iv) a twofold evaluation, where
we first analyze the expressive power of MASTER for representing multiple aspect trajec-
tories in a tourism application and discuss different kinds of queries over multiple aspect
trajectories with increasing complexity, as well as a query performance comparison with
the well know spatio-temporal database SECONDO extended for symbolic trajectories
[Güting et al. 2015].

The rest of this paper is organized as follows. Section 2 introduces multiple aspect
trajectories and details the MASTER approach. Section 3 is dedicated to the MASTER
evaluations. Section 4 presents the related work and Section 5 concludes the paper.

2. The MASTER Approach

This section presents our approach for modeling multiple aspect trajectory data called
MASTER. We define a conceptual and a logical model for multiple aspect trajectories,
and we also detail the adopted storage solution.

The main strength of our conceptual model is the combination of simplicity and
the expressive power for representing aspects. An aspect may be related to a moving
object, to the entire trajectory or a trajectory part, and may hold any type of data, ranging
from simple labels to complex objects. It is important to emphasize that the focus of



this paper is not on how to obtain these heterogeneous aspects, which may be provided by
specific extraction and transformation tools, but on how trajectory data are related to these
aspects. Our focus is on how to represent any aspect data, independent of the application
domain, in a single and simple model.

For the logical model, we consider a graph-based representation (the RDF stan-
dard [Pan 2009]) that is generic enough to model trajectories and aspects extracted from
heterogeneous data sources, like geolocated structured record files and geolocated social
media posts (e.g., tweets). Finally, we consider NoSQL databases for efficient storage and
retrieval of large amounts of trajectory data. Our inspiration comes from the polyglot per-
sistence approach [Sadalage and Fowler 2013], which states that a conceptual data model
can be split and mapped to several database models for maximizing query performance.

The following subsections detail the MASTER approach.

2.1. The Conceptual Model

In this section we introduce a conceptual data model for multiple aspect trajectories,
which is shown in Figure 2. We start the description of the model with the new con-
cept introduced in this paper: an aspect.

An aspect is a real world fact that is relevant for trajectory data analysis, and it
is characterized by an aspect type. For instance, the aspect train belongs to an aspect
type transportation mode, and an aspect rain belongs to an aspect type weather con-
dition. An aspect type has a set of attributes and it may also be a subtype of a more
general aspect type, allowing the modeling of an aspect type subtypeOf hierarchy, like
POI←accommodation←hotel. More formally, an aspect type is defined as follows.

Definition 1 An Aspect Type asptype = (desc, ATT, aspsupertype) is a categorization of a
real-world fact with a description desc, a set of attributes ATT = {a1, a2, . . . , ak} that
hold its properties, and a (possibly empty) supertype aspect aspsupertype.

An aspect type and its attributes act as a metadata definition for an aspect. As a
consequence, an aspect is always related to an aspect type and its attributes. For example,
given an aspect type weather condition, some of its attributes could be temperature, wind
speed and climate. In the following, we define an aspect.

Definition 2 An Aspect asp = (desc, SAT) is a relevant real-world fact, where desc is the
aspect description, and SAT = {sat} is a set of aspect types that the aspect may hold,
being sati = (asptype k, ATVk), sati ∈ SAT , a tuple with an aspect type asptype k and a
non-empty set ATVk = {a1 : v1, a2 : v2, . . . , an : vn} of attribute-value pairs so that each
pair (ai : vi) ∈ ATVk is an instantiation of a property ai of asptype k with a (atomic or
multivalued) value vi.

An aspect definition supports numbers, ranges, text, geometries (when an aspect
describes, for example, the shape of a hurricane at a specific time instant), or any type
of complex object. For sake of understanding, we give some examples of aspects, as-
pect types and their attributes. An aspect type hotel may have the following attributes:
geographic coordinates, address, stars, types of rooms (multivalued), and facilities (mul-
tivalued). An aspect related to this type could be Il Campanario Resort with the following
attribute-values: geographic coordinates: -27.439771, -48.500802; address: Buzios Ave.,



Figure 2. The Conceptual Model for Multiple Aspect Trajectories

Florianopolis; stars: 5; types of rooms: {suite, suite junior}; facilities: {gym, swimming
pool, restaurant, bar, beach service}. Another aspect type mood may have the attributes
emoticon and intensity. An aspect of this type could be happy with the attribute-values:
emoticon: :-D; intensity: high.

One aspect may hold several meanings in the real world. For instance, an aspect
Sao Paulo may have the meanings of town, state, soccer team or the holy Sao Paulo.
These meanings are categorized by a specific aspect type. As the same aspect may hold
different meanings, if we relate the aspect directly to a trajectory or a trajectory point, we
loose this meaning. In order to solve this problem, we introduce the concept of semantic
meaning. The semantic meaning represents the relationship between an aspect and an
aspect type, as shown in Figure 2. It provides the exact meaning of the aspect related to
a trajectory or some of its points. In the following we define a semantic meaning more
formally, which could hold (Sao Paulo, Town) as an instance example.

Definition 3 A Semantic Meaning SM = (asp, asptype) is an association between an
aspect asp and an aspect type asptype that gives the context of the aspect, so that asptype
belongs to the aspect types of the aspect asp.

An aspect with its semantic meaning can be associated to a multiple aspect tra-
jectory, a trajectory point, a moving object, or a relationship between moving objects in
the conceptual model (see Figure 2). When an aspect varies frequently during the object
movement, the aspect with its semantic meaning is associated to each trajectory point and
it is called volatile aspect (VA). Some examples are the visited places (or stops) and the
heart rate. An aspect is also associated to a point when it represents a sparse and instant
happening, like a social media post or check-in. When an aspect does not change during
an entire trajectory, it is called a long term aspect (LTA), and is associated to the multiple
aspect trajectory. Examples of this kind of aspect are the town on which the trajectory oc-
curs or the person occupation. When an aspect holds during the entire life of an object, it
is called a permanent aspect (PA) and is associated to the object and not to the trajectory.
One example is the person birthplace. These aspect categories are directly related to the
query performance. Queries on volatile aspects, i.e., queries related to trajectory points,



will be more time consuming, while long term and permanent aspects will be retrieved
more quickly.

Based on these foundations, we now define a multiple aspect trajectory.

Definition 4 A Multiple Aspect Trajectory mat = (P, S LTA, mo, desc) is a sequence of
points P = 〈p1, p2, . . . , pn〉 of a moving object mo, a (possible empty) set of long-term
aspects S LTA, being S LTA = {SMlta} a set of semantic meanings, and a description
desc, with pi = (xi, yi, ti, S VA), pi ∈ P, being x and y the spatial position of mo at the
time instant t, and S VA the set of volatile aspects related to pi, where S VA = {SMva} is
a set of (possible empty) semantic meanings.

A multiple aspect trajectory belongs to a moving object. A moving object is any
entity that moves along space and time. This object is always associated to a type, which
can be a person, a drone, an animal, a car, or even a natural phenomenon, like a hurricane.
We formally define it in the following.

Definition 5 A Moving Object mo = (motype, desc, S PA) is an entity that can physically
move in space and time, having a description desc, a set of (possible empty) permanent
aspects S PA, being S PA = {SMpa} a set of semantic meanings, and a type motype that
categorizes it.

A new feature in MASTER when compared to state-of-the-art data models for
trajectories is the moving object relationship. A moving object may hold any type of rela-
tionship with other objects, and these relationships may also be characterized by different
aspects such as the type of relationship (e.g. friendship, professional, family). We define
a moving object relationship in Definition 6.

Definition 6 A Moving Object Relationship mor = (mo1, mo2, S RA) is a relevant as-
sociation between two moving objects mo1 and mo2 that holds a (possible empty) set of
relationship aspects S RA, being S RA = {SMra} a set of semantic meanings.

Finally, we model spatial features and events. The first one denotes any relevant
POI that is not spatially related to trajectory points, so it is not an aspect. Instead, it means
any POI located in the trajectory neighborhood, like a nearby restaurant. In Figure 1, an
example of spatial feature is the church located between the POIs work and restaurant.
So, when a trajectory point intersects a relevant POI, it is modeled as an aspect, and as
spatial feature otherwise. Spatial features are useful for answering spatial queries like
which are the restaurants located at a distance less than α from the trajectory of object
A? or which trajectories are located inside a town B? Similarly, an event denotes a
happening that does not have a relationship with trajectories, but it is relevant for queries
that investigate events in the trajectory neighborhood. An event occurs at a spatial feature
and is valid for the period that it happened.

It is worth mentioning that in MASTER we do not define the concept of subtra-
jectory, as in other data models like CONSTANT [Bogorny et al. 2014]. Instead, our pur-
pose is to model multiple aspect trajectories at the lowest granularity level for all aspects,
allowing any possible generalization later during an analysis phase, i.e., we consider the
segmentation process as an analytical step. Another important point is that our model is
expressive enough to describe both sparse and dense trajectories.



The idea behind MASTER is to represent trajectories for any type of application,
not being limited to a subset of semantic information as stops, i.e, the POIS, or informa-
tion inferred from the raw trajectory as speed, acceleration or transportation mode. The
variety and the amount of aspects will depend on what is important for the application.
In tourism applications, for instance, one can model all aspects related to the tourists
such as: the visited POIS, their categories, prices, and reviews, the transportation means,
the social status of the tourist (that can be inferred from the types of visited POIS), the
weather conditions in order to find POI visits influenced by weather conditions, the gen-
eral mood or opinions of the tourist in relation to the town or local services, etc. In a smart
city application one may want to add the aspects of home and work, working hours, trans-
portation mode, social status, weather condition, etc. In recommendation applications one
may want to represent the moving objects and their physical relationships (when objects
have encounters detected in GPS trajectories), or virtual relationships in social media, the
opinions about things and places, etc. In a bird migration application one can model the
bird trajectories with aspects being the regions where they fly, regions where they eat,
relationships with other species where they eat or rest, the temperature of the place, the
types of vegetation where they eat or rest, etc.

2.2. The Logical Model

In this section we present the MASTER logical model for the conceptual model intro-
duced in the previous section. As stated before, we adopt the Resource Description
Framework (RDF) [W3C 2018a] as our logical data model because RDF data can be
modeled as a graph, which is a flexible data structure to represent the high heterogeneity
of possible aspects, as well as the great number of aspect relationships with trajectories,
points and moving objects. Besides, on using RDF we are consonant with the Seman-
tic Web standards of WWW Consortium (W3C) for publishing and manipulating data on
the Web [W3C 2018b]. Our intention is to further let publicly available trajectory data
as Linked Open Data (LOD) in RDF format to be accessed through the Semantic Web
existing tools.

RDF is expressed by triples that define a relationship between two resources,
where the resources, called subject and object, are nodes, and the relationship, called
predicate, is a directed edge from the subject to the object. For instance, we can define a
predicate :has between two resources: :aspectType (subject) and :attribute (object).

Figure 3 shows the proposed logical model, where dotted arrows represent an
entity-attribute relationship, continuous arrows represent relationships between entities,
and the ellipsis represent entities or attributes. A predicate label followed by a cardinality
pair denotes a multivalued relationship. One example is a point that may be enriched with
zero to several semantic meanings. An RDF triple schema in such a modeling is repre-
sented by two ellipsis connected by an arrow. One example is a moving object (subject)
that is the owner (predicate) of a multiple aspect trajectory (object).

The conversion of the conceptual model to a logical schema in RDF was inspired
by the works of [Choi et al. 2013, Bagui and Bouressa 2014, Daniel et al. 2016], which
propose the following mapping rules:

• an entity is converted to a node;



Figure 3. The Logical Model for Multiple Aspect Trajectories

• an attribute of an entity (or relationship)ER is converted to a nodeA, and an edge
is defined from ER to A in order to connect them1;
• a relationship between entities is converted to an edge that connects the entities,

or an intermediate node between the entities.

There is only one rule for the mapping of entities and attributes, so their conversion
is straightforward. Even entities without attributes, like MovingObjectRelationship (see
Figure 2)), became nodes in the logical model because they have relationships with other
entities.

Different from the mapping of entities and attributes, there is no consensus for the
mapping of relationships. In this case, we decided to consider the conversion to an edge
if the relationship has no properties related to it, and the conversion to a node otherwise.
On doing so, we avoid the generation of too many nodes in the RDF schema, and only the
relationships that hold semantic meaning and hasValue as properties (see Figure 2) were
mapped to nodes, and the second one was renamed to Value for sake of understanding.
We also decide to maintain only the connections of Aspect and Attribute with the Value
node to avoid a redundant edge between Aspect and Attribute.

Another logical design decision is related to the edge direction in the mapping
of binary relationships. As a relationship is not directed at the conceptual level, we may
think of two mapping alternatives: (i) the definition of two predicates; or (ii) the definition
of one predicate to represent one of the two possible relationship directions. Alternative
(i) provides a better understanding of the relationship semantics in both directions, but
the logical modeling becomes more complex and requires an integrity constraint control
to maintain cross references consistent. On the other hand, alternative (ii) may reduce the
readability, but provides a more simple logical modeling and avoids consistency check-
ing. We adopt alternative (ii) giving preference to the relationship direction that is more

1We define a label hasValue for this predicate to identify it as an entity-attribute or relationship-attribute
connection.



probable to be traversed according to the expected workload for queries over multiple as-
pect trajectories besides reducing the size of the logical schema. Nevertheless, SPARQL
queries are able to traverse RDF graphs in both edge directions, being not limited to the
predicate direction.

2.3. The Storage Solution

In this section we present the adopted storage solution for maintaining data represented in
the MASTER logical model. This solution is called Rendezvous [Santana and dos Santos Mello 2017].
Rendezvous is a triplestore based on NoSQL databases for querying large RDF datasets.
NoSQL databases have been proposed for managing big data efficiently [Sadalage and Fowler 2013].
Therefore, as multiple aspect trajectories are highly heterogeneous and multidimensional,
NoSQL databases are a suitable storage resource for this new type of trajectory. Com-
pared to related work, Rendezvous was chosen due to its multimodel NoSQL support for
storing RDF data and its efficient processing of typical SPARQL queries.

Rendezvous manages RDF data in a distributed database architecture that is flexi-
ble enough to store RDF data on multiple NoSQL databases, with different data models,
according to the application workload. Rendezvous adopts SPARQL and its extension to
query geographic data called GeoSPARQL [OGC 2018]. SPARQL queries can be catego-
rized into star, chain and complex queries. These query categories depend on the location
of the variables in a query condition. The star category is characterized by queries that
retrieve a node based on filters over nodes very close to it (we consider a traversal of at
most two predicates). Chain queries are composed by a long chain of joins (distance of
three predicates or more) between nodes. Complex queries are combinations of the two
previous types with (optional) additional conditions with simple filters.

As a workload-aware triplestore, Rendezvous stores RDF triples that occur typi-
cally in star-shaped queries in NoSQL document databases. This kind of NoSQL database
model is suitable to store and retrieve complex data with all related properties, like a tra-
jectory and its related aspects. Indeed, RDF triples occurring typically in chain-shaped
queries are stored in NoSQL graph databases, which benefits from keeping the subgraph
that composes this chain besides the high performance for graph traversal operations.

On considering multiple aspect trajectories, Rendezvous is able to store the moving
object, the trajectory and the aspect data together in one or more NoSQL databases if they
are frequently filtered and/or retrieved in SPARQL queries. For example, Figure 4 (a)
shows part of an RDF graph that maintains data about a person trajectory (MATx) and its
related semantic meanings (the mean of transportation, city of location and person mood
aspects). This RDF graph is in accordance to our logical model defined in the previous
subsection, and it has a star-shape whose center is MATx. Supposing that this shape is
commonly requested in queries that intend to retrieve city trajectories made by bus where
the person is happy, this star-shaped RDF fragment is stored in a NoSQL document as a
typical JSON document (see Figure 4 (b)). The document stores together the trajectory
data as well as the data that are relevant to the semantic meanings, providing a fast retrieval
for this kind of query as only one document must be accessed.

Another example is shown in Figure 5 (a). It presents a chain-shaped RDF frag-
ment denoting that John has a trajectory that passed by the Eiffel tower. Supposing again
that this shape is frequently requested in queries that need to retrieve people that visit this



Figure 4. A star-shaped RDF instance (a) and its storage in a NoSQL document
database (b)

touristic point, this chain-shaped RDF fragment is stored in a NoSQL graph document as
a summarized graph composed by the first and the last RDF fragment nodes and an edge
with a property that holds the ordered list of covered nodes and edges in the chain (see
Figure ??. This summarized stored graph also provides a fast data access and retrieval for
this kind of query.

Figure 5. A chain-shaped RDF instance (a) and its storage in a NoSQL graph
database (b)

For both previous examples, Rendezvous manages in-memory indexes that main-
tain the identification of the nodes present in star-shaped RDF fragments, as well as the
identification of the nodes and edges occurring in chain-shaped RDF fragments. These
indexes, as well as indexes that indicate the RDF partitions in one or more NoSQL doc-
ument or graph databases where these RDF fragments are stored, allowing an efficient
processing of the queries that compose the typical application workload.

After detailing our strategy for storing trajectories modeled according to the MAS-
TER data model, in the next section we present a MASTER evaluation.

3. A MASTER Evaluation
The MASTER objective is to propose an expressive data model for multiple aspect trajec-
tories, as well as an efficient solution for storing and querying multiple aspect trajectories.
With this objective in mind, we evaluate MASTER over two perspectives: (i) a qualita-
tive analysis at the conceptual level by modeling a tourism application, similarly to the



approach used in [Bogorny et al. 2014] to evaluate the CONSTANT model, as well as an
evaluation at the logical level to attest that an RDF-based storage strategy is suitable to
answer the main types of multiple aspect trajectory queries; and (ii) a quantitative evalua-
tion at the storage level by comparing the query running time performance of our storage
solution with a baseline. With this experiment we show the feasibility of MASTER as a
data model that can be efficiently stored and accessed.These evaluations are presented in
the following section.

3.1. Qualitative Evaluation

In this section we model a tourism application with MASTER and present the main cate-
gories of queries related to multiple aspect trajectories.

3.1.1. Instantiating MASTER in a Tourism Application Scenario

In order to show how to use MASTER for modeling a tourism application, let us assume
that tourists track their visiting experience in Paris with smartphones, and that these data
are later enriched with different information collected from many data sources including
social media interactions like Foursquare, Facebook, Flickr, and Twitter. These trajecto-
ries have details about the visited POIs (obtained from Foursquare checkins as the hotel
name, stars and price; restaurant name, price, and if accept credit cards; museum name
and type; etc.), photos and comments posted on Flickr and Facebook, and the messages
posted on Twitter by the tourists.

Figure 6 shows an example of part of a trajectory generated by John Smith, who
starts his tour in Paris at Ritz Paris hotel. From the hotel he goes to the Louvre museum
where he tweets and posts a photo on Flickr, just before entering the museum, where
he turns his smartphone off. After leaving the museum, he took a picture of the Arc de
Triomphe du Carrousel, that was posted on Facebook, and crossed the Jardin des Tuileries
going to the Le Baudelaire restaurant, where he had lunch.

Figure 7 shows an example of the MASTER instantiation in RDF, presenting a
very small part of two trajectories, John and his sister Mary. We consider two trajectories
just for an example, because different from state-of-the-art, MASTER supports the defini-
tion of relationships between moving objects. In this Figure, colors highlight permanent
aspects (gray nodes), long term aspects (pink nodes) and volatile aspects (blue nodes),
respectively. The model shows trajectories of two moving objects, (John and Mary), of
type person, which have a relationship that is enriched with an aspect brother of type
kinship. This is represented by the semantic meaning SM4. Mary has a multiple aspect
trajectory MAT1 with two volatile aspect types connected to its points p11 and p12 (Mood
and Transportation). They denote that part of Mary movement was performed by train
and that she was happy at point p11. MAT1 also holds a long term aspect type occupation,
which means that Mary was retired for the entire trajectory.

On the other hand, John was born in Florianopolis (SM5) and his gender is male
(SM6). His trajectory MAT2 has two volatile aspects: SM7 indicating that at points p121
and p122 he was at the Ritz Paris hotel, that is a 5 stars and expensive hotel, and SM3
indicates that he was happy at point p923 when he posted on Facebook a photo and the
message ”I love Paris!”. Besides, it is important to notice that the aspect Florianopolis has



Figure 6. Example of a tourist trajectory in Paris

two semantic meanings: town and birthplace. For the context of John, Florianopolis is
his birthplace. This example highlights the relevance of the semantic meaning modeling
in MASTER.

3.1.2. Querying Multiple Aspect Trajectories

We claim that three main types of queries can be posed to multiple aspect trajectories:
(i) queries that return moving objects (e.g., which are the moving objects that were born
in Florianopolis and are male?); (ii) queries that return trajectories (e.g., which are the
trajectories that stayed at an accommodation place?); and (iii) queries that return aspects
(e.g., which accommodations were visited in Paris by persons that were born in Floria-
nopolis and are male?). These three queries are examples of star-shaped, chain-shaped
and complex queries, respectively. Table 1 shows these queries written in SPARQL or
GeoSPARQL with an arbitrary complexity depending on the number of entities that must
be considered to generate the query result, which allows an efficient processing by our
RDF storage solution (see section 2.3).

The query examples shown in Table 1 are formulated over the MASTER instanti-
ation presented in Figure 7. The first query (Table 1(a)) exemplifies a star-shaped query.
In this case, the star center is a moving object entity and the related filters refer to aspects
and the moving object type entities. As stated before, this kind of query can be efficiently
processed by NoSQL document databases that may maintain moving object documents
where the related entities are the document attributes that can be filtered. This query
returns John.



Figure 7. Example of MASTER Instantiation of the tourist scenario in RDF

The second query (Table 1(b)) exemplifies a chain-shaped query, where the chain
is defined by a traversal that starts at a trajectory node and follows through a point of
it that is enriched with a semantic meaning whose aspect type is, in turn, a subtype of
an Accommodation aspect type node. This kind of query can be efficiently processed by
NoSQL graph databases through a depth-first traversal. This query returns the trajectory
MAT2.

The third query (Table 1(c)) exemplifies a complex query. In this case, the star
component is represented by the filters over a moving object node mo, and the chain
component is represented by the traversal from an aspect node a to a moving object node
mo. Additionally, we have a simple GeoSPARQL filter (geof:sfIntersects) that limits the
search to trajectories that visited the city of Paris. This kind of query can be processed
through a join of data retrieved from NoSQL graph and document databases. It returns
Ritz Paris if this aspect belongs to a trajectory that visited Paris.

These examples show the feasibility of the logical model in RDF proposed by
MASTER to support the main types of queries over multiple aspect trajectories by using
SPARQL and an efficient triplestore like Rendezvous.



Table 1. Typical SPARQL Queries over Multiple Aspect Trajectories

SELECT mo?
WHERE {
mo? is-a ’Person’
mo? enrichedWith sm?
sm? aspect ’Florianopolis’
sm? aspectType ’birthplace’
mo? enrichedWith sm2?
sm2? aspect ’Male’
sm2? aspectType ’Gender’}

(a) Star

SELECT t?
WHERE {
t? composedOf p?
p? enrichedWith sm?
sm? aspectType at?
at? subtypeOf
’Accommodation’}

(b) Chain

SELECT a?
WHERE {
a? rdfs:type ’Aspect’
a? is-a at?
at? subtypeOf ’Accommodation’
sm? aspectType a?
p? enrichedWith sm?
FILTER(
geof:sfIntersects(?p, Paris))
t? composedOf p?
mo? owner t?
mo? is-a ’Person’
mo? enrichedWith sm?
sm? aspect ’Florianopolis’
sm? aspectType ’birthplace’
mo? enrichedWith sm2?
sm2? aspect ’Male’
sm2? aspectType ’Gender’}

(c) Complex

3.2. Quantitative Evaluation

This section presents a quantitative evaluation in terms of query performance by com-
paring the adopted MASTER storage solution (Rendezvous) with a state-of-art spatio-
temporal database system for symbolic trajectories proposed by Güting et al. in [Güting et al. 2015],
called Secondo [Valdés et al. 2013]. The intention here is to compare two databases that
are able to maintain semantic trajectories as there is no other solution for multiple aspect
trajectory storage and querying apart from Rendezvous.

Secondo was initially developed for raw trajectories, and the definition of sym-
bolic trajectory intends to associate different semantic labels to trajectory segments, which
could be used to represent a limited set of aspects. Formally, a symbolic trajectory st is
a sequence of tuples with the form (stbegin, stend, label), where stbegin and stend are the
points that delimit a subtrajectory subt ∈ st, and label is a semantic information (e.g.,
a POI name, a transportation mean name). This tuple denotes a maximal subtrajectory
where the label holds.

A first limitation of a symbolic trajectory and, as a consequence, of the Secondo
storage strategy is the representation of the semantic information as a label. Instead,
we model semantic information in terms of aspects that may have an arbitrary schema
defined by an aspect type and its attributes. Another limitation is that a symbolic trajectory
associates only one semantic information at a time for a trajectory or subtrajectory. For
example, if we consider transportation and streets as semantic information, two symbolic
trajectories must be created, one for the transportation and another one for the streets,
each one represented as a relational table indexed by time. For a query that involves
multiple aspects in Secondo, all time intervals must be searched to check where all aspects



hold together, while Rendezvous is able to directly access any aspect node stored in an
RDF graph. These limitations of the Secondo data model had generated, as expected,
worse performance results than Rendezvous for querying a large volume of trajectory
data enriched with semantic information, as detailed in the following.

In order to compare the query performance and scalability of Rendezvous against
Secondo, we consider a dataset called BerlinMOD2. BerlinMOD is a benchmark for spa-
tiotemporal relational database management systems, created by the Secondo team, which
is able to generate semantic trajectories of vehicles. The benchmark provides more than
25 types of spatial and/or temporal and/or semantic queries. Some examples of Berlin-
MOD query types are: (i) What are the pairs of vehicles of type ”truck” whose trajectories
have ever been as close as ”10m” or less to each other? (a spatio-semantic query); (ii)
What vehicle of type ”passenger” has a trajectory that reached a point ”(X,Y)” before all
the trajectories of vehicles of the same type during the time interval ”[ts, te]”? (a spatio-
temporal semantic query). On using the BerlinMOD generator, we created a 19.45 GB
dataset with around 53 million trajectories.

We ran experiments considering both Rendezvous and Secondo as distributed in-
frastructures in the cloud in order to obtain better performance for large data volumes.
Rendezvous uses MongoDB 3.4.3 and Neo4J 3.2.5 as the document and graph NoSQL
databases, respectively, giving their maturity as representatives of these families of NoSQL
data models. All the distributed data nodes are Amazon m3.xlarge spot instances3 with
7.5 GB of memory and 1 x 32 SSD capacity. For all the experiments, we define nodes
that represent MongoDB + Neo4J servers, and the Rendezvous servers were also installed
on each node. In order to provide an equivalent test environment, we installed Secondo,
following its tutorial4, in a cluster with the same size of the Rendezvous installation (the
same number of nodes of Amazon m3.xlarge spot instances). In both cases, all the queries
were issued from a server in the same network, so the latency between the client and the
clusters was inexpressive.

We divide the experiments into several rounds (Round 1 to Round 4). We first
insert 10% of the dataset and ran all the queries in order to initiate the workload awareness
(we call it Rendezvous warm up). Then, in the following, now with an existing workload
awareness, we ran again all the queries four times over increasing fractions of the dataset
(40%, 70% and 100%) and get the average processing times. The results are shown in
Figure 8.

As can be seen in this Figure, we obtained an average query processing time that
outperforms Secondo from Round 2 on. We present a worse performance only at Round 1
because Rendezvous is not aware of the typical query workload at this time and it spends
an extra time to analyse the query shapes as well as to store and index trajectory data
usually accessed by these queries in an efficient way for further retrieval. Once aware of
the typical workload, Rendezvous ran two times faster than Secondo in average.

This first set of experiments was carried out over four Amazon nodes. In or-
der to evaluate if the performance is positively affected by an increase in the number of

2http://dna.fernuni-hagen.de/secondo/BerlinMOD/BerlinMOD.html
3https://aws.amazon.com/ec2/instance-types/
4http://dna.fernuni-hagen.de/secondo/DSecondo/DSECONDO/Website/index.html



Figure 8. Comparison of Query Performance over BerlinMOD between Secondo
and Rendezvous

nodes, we duplicate them (eight nodes) maintaining the same setup (memory, storage and
servers) on each of them. After that, we executed again all the queries four times and got
the average processing time on each round. The results are shown in Figure 9.

Figure 9. Comparison of Query Performance between Secondo and Rendezvous
over a Larger Number of Nodes

Figure 9 reveals that our storage solution takes more advantage of the increase in
the distributed infrastructure than Secondo. Both approaches spent less time to process
the queries, but Rendezvous processing time is faster and does not increase so much with
the increase of the dataset if compared to Secondo. This is justified mainly by the efficient
query execution strategy followed by Rendezvous, which benefits from the increase in the
number of nodes to parallelize the processing of the parts of a query. The efficient storage
into NoSQL databases and workload-aware indexing scheme also contribute to this better
performance.

This quantitative evaluation highlights that our solution for storing and query-
ing trajectories with multiple semantic aspects is promising since it demonstrates a good
performance for processing queries over increasing fractions of the dataset, and a better
scalability when compared to the baseline. In fact, Rendezvous is suitable to applica-
tions whose data grows exponentially, which may be the case of applications that deal



with multiple aspect trajectories, since the add of new machines to process an increasing
number of trajectories improves its query processing time performance.

4. Related Work
In this section we discuss existing initiatives for trajectory data modeling. In 2007,
Hornsby in [Hornsby and Cole 2007] proposed to model trajectories as sequences of events.
Although this approach gives the notion that movement is based on a sequence of happen-
ings, the main drawback is that events are all homogeneous elements, so not being able
to represent the diverse heterogenous information extracted from different data sources as
social media, sensor networks, weather channels, etc, that characterize different aspects
related to movement.

In 2008, Spaccapietra in [Spaccapietra et al. 2008] introduced the new concept
of semantic trajectories represented as a sequence of stops and moves. The work of Al-
vares [Alvares et al. 2007] was the first instantiation of the model of stops and moves, and
originated several works where stops have been labeled as episodes, POIs, hot spots, etc.
The work of [Bogorny et al. 2011] proposed an architecture to store and analyze semantic
trajectories, but it is also limited to trajectories represented as stops and moves.

In 2011, Yan [Yan et al. 2011] proposed the SEMITRI framework for labeling
stops and moves. Later, Bogorny in [Bogorny et al. 2014] proposed a semantically richer
conceptual model, called CONSTANT, where a trajectory can be associated to a limited
set of predefined aspects: the activities performed by the object, the means of transporta-
tion, the visited POIs, the goal of the trip and some behavior specific patterns. This model
is limited to a subset of aspects that are related to subtrajectories or to the entire trajectory,
are also presented as labels and only the weather conditions and the POIs can be associ-
ated to trajectory points. Additionally, CONSTANT does not support social media data as
relationships between moving objects, opinions, and feelings, as well as any aspect type
or concept of permanent or temporary aspect.

In 2015, Fileto in [Fileto et al. 2015] proposed Baquara to instantiate the CON-
STANT model. The idea is to annotate semantic trajectories with Linked Open Data. It
is based on a predefined ontological model of semantic trajectory, where we can find a
preliminary notion of ”aspect”: here an aspect is a semantic label associated to the tra-
jectory points. However, Baquara does not support relationships between moving objects
and does not propose a solution for storing and querying huge volumes of trajectories,
aspects or moving objects.

More recently, Ruback [Ruback et al. 2016] proposed an alternative framework
for enriching movement data with Linked Open Data. While Baquara is based on a pre-
defined ontology representing, in a monolithic way, the enriched trajectory, in the work
of Ruback the enrichment is dynamically created through the use of ontology mash-ups.
Despite of these innovations, this approach suffers from the same Baquara limitations
presented before.

Ferrero in [Ferrero et al. 2016] presented the need for considering multiple and
heterogeneous aspects that characterize movement, and the need for integrating all this
data together for a more complete and realistic trajectory data analysis. This work, how-
ever, only shows the need for integrating multiple aspects, and does neither present a con-
ceptual data model nor a physical strategy for efficient multiple aspect trajectory querying.



In terms of spatio-temporal database systems, HERMES [Pelekis et al. 2006] and
Secondo [Güting et al. 2005] are two well known software prototypes, but they were de-
veloped for raw trajectories. As a trajectory in Secondo is represented as a single data type
moving object, it does not support the semantic enrichment of individual trajectory points.
To overcome this limitation, another representation of trajectories is used to store semantic
trajectories in Secondo, which is called symbolic trajectories [Valdés et al. 2013]. These
trajectories are represented as subtrajectories annotated with single flat labels indexed by
time intervals. To represent for instance the visited POIS and the transportation mode, the
same trajectory must be segmented by POIS and by transportation mode.

In summary, apart from the work of Pelekis and Guting that focused on the phys-
ical level for representing and querying mobility data, the other previous works have
focused on the conceptual representation only.

5. Conclusion
This paper presents an innovative perspective about movement data introducing the con-
cept of multiple aspect trajectories. An aspect is any kind of semantic information that is
related to the movement and should be managed in a jointly way with the spatio-temporal
facet. We distinguish volatile, long term and permanent aspects, as well as the semantic
meaning of an aspect. We provide a complete solution, called MASTER, for data model-
ing these new type of rich data, from the conceptual model to data storage and querying.
The conceptual model combines intuitive formulation with very robust expressiveness of
different types of trajectory aspects when compared to related work. A peculiar charac-
teristic of this model is that it supports trajectories with any type of aspect annotation,
from sets of attributes characterizing a POI to complex texts from social media posts, to
name a few. Moreover, we show that the representation of multiple aspect trajectories is
feasible in the RDF format, which can be efficiently processed by multimodel NoSQL
databases. As the model represents fine-grained trajectories, i.e., trajectories at a very low
granularity level, queries may roll up and down over multiple aspect trajectories. We per-
formed a twofold evaluation of MASTER: a qualitative one, with a tourism application
domain, and a quantitative one, where MASTER outperforms, in terms of efficiency in
query processing, a state-of-the-art competitor.

Future works include a performance evaluation over larger data sets of enriched
trajectories, as well as the evaluation of other Big Data storage technologies, such as
NewSQL databases, for maintaining multiple aspect trajectories. We also intend to extend
MASTER to model data analytics information over multiple aspect trajectories, consider-
ing, for instance, dependencies among aspects.

Although out of the scope of this paper, it is also very important to consider privacy
issues that these kinds of enriched trajectories might pose. When combining the different
semantic aspects to the location information, privacy breach might happen. It is therefore
crucial to develop privacy preserving methods to guarantee privacy when multiple aspects
are involved.
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Güting, R. H., de Almeida, V. T., Ansorge, D., Behr, T., Ding, Z., Höse, T., Hoffmann, F., Spiek-
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