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Pseudo-random Graphs

M. KRIVELEVICH∗ and B. SUDAKOV†

1. Introduction

Random graphs have proven to be one of the most important and fruit-
ful concepts in modern Combinatorics and Theoretical Computer Science.
Besides being a fascinating study subject for their own sake, they serve
as essential instruments in proving an enormous number of combinatorial
statements, making their role quite hard to overestimate. Their tremen-
dous success serves as a natural motivation for the following very general
and deep informal questions: what are the essential properties of random
graphs? How can one tell when a given graph behaves like a random graph?
How to create deterministically graphs that look random-like? This leads
us to a concept of pseudo-random graphs.

Speaking very informally, a pseudo-random graph G = (V,E) is a graph
that behaves like a truly random graph G

(

|V |, p
)

of the same edge density

p = |E|/
(|V |

2

)

. Although the last sentence gives some initial idea about
this concept, it is not very informative, as first of all it does not say
in which aspect the pseudo-random graph behavior is similar to that of
the corresponding random graph, and secondly it does not supply any
quantitative measure of this similarity. There are quite a few possible graph
parameters that can potentially serve for comparing pseudo-random and
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random graphs (and in fact quite a few of them are equivalent in certain,
very natural sense, as we will see later), but probably the most important
characteristics of a truly random graph is its edge distribution. We can
thus make a significant step forward and say that a pseudo-random graph
is a graph with edge distribution resembling the one of a truly random
graph with the same edge density. Still, the quantitative measure of this
resemblance remains to be introduced.

Although first examples and applications of pseudo-random graphs ap-
peared very long time ago, it was Andrew Thomason who launched system-
atic research on this subject with his two papers [79], [80] in the mid-eighties.
Thomason introduced the notion of jumbled graphs, enabling to measure in
quantitative terms the similarity between the edge distributions of pseudo-
random and truly random graphs. He also supplied several examples of
pseudo-random graphs and discussed many of their properties. Thomason’s
papers undoubtedly defined directions of future research for many years.

Another cornerstone contribution belongs to Chung, Graham and Wil-
son [26] who in 1989 showed that many properties of different nature are in
certain sense equivalent to the notion of pseudo-randomness, defined using
the edge distribution. This fundamental result opened many new horizons
by showing additional facets of pseudo-randomness.

Last years brought many new and striking results on pseudo-randomness
by various researchers. There are two clear trends in recent research on
pseudo-random graphs. The first is to apply very diverse methods from
different fields (algebraic, linear algebraic, combinatorial, probabilistic etc.)
to construct and study pseudo-random graphs. The second and equally en-
couraging is to find applications, in many cases quite surprising, of pseudo-
random graphs to problems in Graph Theory, Computer Science and other
disciplines. This mutually enriching interplay has greatly contributed to
significant progress in research on pseudo-randomness achieved lately.

The aim of this survey is to provide a systematic treatment of the
concept of pseudo-random graphs, probably the first since the two seminal
contributions of Thomason [79], [80]. Research in pseudo-random graphs
has developed tremendously since then, making it impossible to provide full
coverage of this subject in a single paper. We are thus forced to omit
quite a few directions, approaches, theorem proofs from our discussion.
Nevertheless we will attempt to provide the reader with a rather detailed
and illustrative account of the current state of research in pseudo-random
graphs.
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Although, as we will discuss later, there are several possible formal ap-
proaches to pseudo-randomness, we will mostly emphasize the approach
based on graph eigenvalues. We find this approach, combining linear al-
gebraic and combinatorial tools in a very elegant way, probably the most
appealing, convenient and yet quite powerful.

This survey is structured as follows. In the next section we will discuss
various formal definitions of the notion of pseudo-randomness, from the
so called jumbled graphs of Thomason to the (n, d, λ)-graphs defined by
Alon, where pseudo-randomness is connected to the eigenvalue gap. We
then describe several known constructions of pseudo-random graphs, serving
both as illustrative examples for the notion of pseudo-randomness, and also
as test cases for many of the theorems to be presented afterwards. The
strength of every abstract concept is best tested by properties it enables to
derive. Pseudo-random graphs are certainly not an exception here, so in
Section 4 we discuss various properties of pseudo-random graphs. Section
5, the final section of the paper, is devoted to concluding remarks.

2. Definitions of pseudo-random graphs

Pseudo-random graphs are much more of a general concept describing some
graph theoretic phenomenon than of a rigid well defined notion – the fact
reflected already in the plural form of the title of this section! Here we
describe various formal approaches to the concept of pseudo-randomness.
We start with stating known facts on the edge distribution of random
graphs, that will serve later as a benchmark for all other definitions. Then
we discuss the notion of jumbled graphs introduced by Thomason in the mid-
eighties. Then we pass on to the discussion of graph properties, equivalent
in a weak (qualitative) sense to the pseudo-random edge distribution, as
revealed by Chung, Graham and Wilson in [26]. Our next item in this
section is the definition of pseudo-randomness based on graph eigenvalues
– the approach most frequently used in this survey. Finally, we discuss the
related notion of strongly regular graphs, their eigenvalues and their relation
to pseudo-randomness.

2.1. Random graphs
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As we have already indicated in the Introduction, pseudo-random graphs
are modeled after truly random graphs, and therefore mastering the edge
distribution in random graphs can provide the most useful insight on what
can be expected from pseudo-random graphs. The aim of this subsection is
to state all necessary definitions and results on random graphs. We certainly
do not intend to be comprehensive here, instead referring the reader to two
monographs on random graphs [20], [49], devoted entirely to the subject
and presenting a very detailed picture of the current research in this area.

A random graph G(n, p) is a probability space of all labeled graphs on
n vertices {1, . . . , n}, where for each pair 1 ≤ i < j ≤ n, (i, j) is an edge
of G(n, p) with probability p = p(n), independently of any other edges.
Equivalently, the probability of a graph G = (V,E) with V = {1, . . . , n} in

G(n, p) is Pr[G] = p|E(G)|(1 − p)(
n
2)−|E(G)|. We will occasionally mention

also the probability space Gn,d, this is the probability space of all d-regular
graphs on n vertices endowed with the uniform measure, see the survey of
Wormald [83] for more background. We also say that a graph property A
holds almost surely, or a.s. for brevity, in G(n, p) (Gn,d) if the probability
that G(n, p) (Gn,d) has A tends to one as the number of vertices n tends to
infinity.

From our point of view the most important parameter of random graph
G(n, p) is its edge distribution. This characteristics can be easily handled
due to the fact that G(n, p) is a product probability space with independent
appearances of different edges. Below we cite known results on the edge
distribution in G(n, p).

Theorem 2.1. Let p = p(n) ≤ 0.99. Then almost surely G ∈ G(n, p) is
such that if U is any set of u vertices, then

∣

∣

∣

∣

e(U) − p

(

u

2

)∣

∣

∣

∣

= O
(

u3/2p1/2 log1/2(2n/u)
)

.

Theorem 2.2. Let p = p(n) ≤ 0.99. Then almost surely G ∈ G(n, p) is
such that if U , W are disjoint sets of vertices satisfying u = |U | ≤ w = |W |,
then

∣

∣e(U,W ) − puw
∣

∣ = O
(

u1/2wp1/2 log1/2(2n/w)
)

.

The proof of the above two statements is rather straightforward. Notice
that both quantities e(U) and e(U,W ) are binomially distributed random
variables with parameters

(

u
2

)

and p, and uw and p, respectively. Applying
standard Chernoff-type estimates on the tails of the binomial distribution
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(see, e.g., Appendix A of [18]) and then the union bound, one gets the
desired inequalities.

It is very instructive to notice that we get less and less control over
the edge distribution as the set size becomes smaller. For example, in the
probability space G(n, 1/2) every subset is expected to contain half of its
potential edges. While this is what happens almost surely for large enough
sets due to Theorem 2.1, there will be almost surely sets of size about 2 log2 n
containing all possible edges (i.e. cliques), and there will be almost surely
sets of about the same size, containing no edges at all (i.e. independent
sets).

For future comparison we formulate the above two theorems in the
following unified form:

Corollary 2.3. Let p = p(n) ≤ 0.99. Then almost surely in G(n, p)
for every two (not necessarily) disjoint subsets of vertices U,W ⊂ V of
cardinalities |U | = u, |W | = w, the number e(U,W ) of edges of G with one
endpoint in U and the other one in W satisfies:

∣

∣e(U,W ) − puw
∣

∣ = O(
√
uwnp ).(1)

(A notational agreement here and later in the paper: if an edge e belongs
to the intersection U ∩W , then e is counted twice in e(U,W ).)

Similar bounds for edge distribution hold also in the space Gn,d of d-
regular graphs, although they are significantly harder to derive there.

Inequality (1) provides us with a quantitative benchmark, according to
which we will later measure the uniformity of edge distribution in pseudo-
random graphs on n vertices with edge density p =

∣

∣E(G)
∣

∣/
(

n
2

)

.

It is interesting to draw comparisons between research in random graphs
and in pseudo-random graphs. In general, many properties of random
graphs are much easier to study than the corresponding properties of
pseudo-random graphs, mainly due to the fact that along with the almost
uniform edge distribution described in Corollary 2.3, random graphs possess
as well many other nice features, first and foremost of them being that they
are in fact very simply defined product probability spaces. Certain graph
properties can be easily shown to hold almost surely in G(n, p) while they
are not necessarily valid in pseudo-random graphs of the same edge density.
We will see quite a few such examples in the next section. A general line
of research appears to be not to use pseudo-random methods to get new
results for random graphs, but rather to try to adapt techniques developed
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for random graphs to the case of pseudo-random graphs, or alternatively to
develop original techniques and methods.

2.2. Thomason’s jumbled graphs

In two fundamental papers [79], [80] published in 1987 Andrew Thomason
introduced the first formal quantitative definition of pseudo-random graphs.
It appears quite safe to attribute the launch of the systematic study of
pseudo-randomness to Thomason’s papers.

Thomason used the term “jumbled” graphs in his papers. A graph
G = (V,E) is said to be (p, α)-jumbled if p, α are real numbers satisfying
0 < p < 1 ≤ α if every subset of vertices U ⊂ V satisfies:

∣

∣

∣

∣

e(U) − p

(|U |
2

)∣

∣

∣

∣

≤ α|U |.(2)

The parameter p can be thought of as the density of G, while α controls the
deviation from the ideal distribution. According to Thomason, the word
“jumbled” is intended to convey the fact that the edges are evenly spread
throughout the graph.

The motivation for the above definition can be clearly traced to the
attempt to compare the edge distribution in a graph G to that of a truly
random graph G(n, p). Applying it indeed to G(n, p) and recalling (1) we
conclude that the random graph G(n, p) is almost surely O(

√
np )-jumbled.

Thomason’s definition has several trivial yet very nice features. Observe
for example that if G is (p, α)-jumbled then the complement Ḡ is (1−p, α)-
jumbled. Also, the definition is hereditary – if G is (p, α)-jumbled, then so
is every induced subgraph H of G.

Note that being
(

p,Θ(np)
)

-jumbled for a graph G on n vertices and
(

n
2

)

p
edges does not say too much about the edge distribution of G as the number
of edges in linear sized sets can deviate by a percentage from their expected
value. However as we shall see very soon if G is known to be

(

p, o(np)
)

-
jumbled, quite a lot can be said about its properties. Of course, the smaller
is the value of α, the more uniform or jumbled is the edge distribution of
G. A natural question is then how small can be the parameter α = α(n, p)
for a graph G = (V,E) on |V | = n vertices with edge density p = |E|/

(

n
2

)

?

Erdős and Spencer proved in [35] that α satisfies α = Ω(
√
n ) for a constant

p; their method can be extended to show α = Ω(
√
np ) for all values of
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p = p(n). We thus may think about (p,O(
√
np ))-jumbled graphs on n

vertices as in a sense best possible pseudo-random graphs.

Although the fact that G is (p, α)-jumbled carries in it a lot of diverse
information on the graph, it says almost nothing (directly at least) about
small subgraphs, i.e. those spanned by subsets U of size |U | = o(α/p).
Therefore in principle a (p, α)-jumbled graph can have subsets of size |U | =
O(α/p) spanning by a constant factor less or more edges then predicted by
the uniform distribution. In many cases however quite a meaningful local
information (such as the presence of subgraphs of fixed size) can still be
salvaged from global considerations as we will see later.

Condition (2) has obviously a global nature as it applies to all subsets
of G, and there are exponentially many of them. Therefore the following
result of Thomason, providing a sufficient condition for pseudo-randomness
based on degrees and co-degrees only, carries a certain element of surprise
in it.

Theorem 2.4 [79]. Let G be a graph on n vertices with minimum degree
np. If no pair of vertices of G has more than np2 + l common neighbors,
then G is (p,

√

(p+ l)n)-jumbled.

The above theorem shows how the pseudo-randomness condition of (2)
can be ensured/checked by testing only a polynomial number of easily
accessible conditions. It is very useful for showing that specific constructions
are jumbled. Also, it can find algorithmic applications, for example, a very
similar approach has been used by Alon, Duke, Lefmann, Rödl and Yuster
in their Algorithmic Regularity Lemma [9].

As observed by Thomason, the minimum degree condition of Theorem
2.4 can be dropped if we require that every pair of vertices has

(

1+o(1)
)

np2

common neighbors. One cannot however weaken the conditions of the
theorem so as to only require that every edge is in at most np2 + l triangles.

Another sufficient condition for pseudo-randomness, this time of global
nature, has also been provided in [79], [80]:

Theorem 2.5 [79]. Let G be a graph of order n, let ηn be an integer
between 2 and n − 2, and let ω > 1 be a real number. Suppose that each
induced subgraph H of order ηn satisfies |e(H)− p

(

ηn
2

)| ≤ ηnα. Then G is

(p, 7
√

nα/η/(1 − η))-jumbled. Moreover G contains a subset U ⊆ V (G) of

size |U | ≥ (1− 380
n(1−η)2w

)n such that the induced subgraph G[U ] is (p, ωα)-

jumbled.
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Thomason also describes in [79], [80] several properties of jumbled
graphs. We will not discuss these results in details here as we will mostly
adopt a different approach to pseudo-randomness. Occasionally however we
will compare some of later results to those obtained by Thomason.

2.3. Equivalent definitions of weak pseudo-randomness

Let us go back to the jumbledness condition (2) of Thomason. As we have
already noted it becomes non-trivial only when the error term in (2) is
o(n2p). Thus the latter condition can be considered as the weakest possible
condition for pseudo-randomness.

Guided by the above observation we now define the notion of weak
pseudo-randomness as follows. Let (Gn) be a sequence of graphs, where
Gn has n vertices. Let also p = p(n) is a parameter (p(n) is a typical
density of graphs in the sequence). We say that the sequence (Gn) is weakly

pseudo-random if the following condition holds:

For all subsets U ⊆ V (Gn),

∣

∣

∣

∣

e(U) − p

(|U |
2

)∣

∣

∣

∣

= o(n2p).(3)

For notational convenience we will frequently write G = Gn, tacitly assum-
ing that (G) is in fact a sequence of graphs.

Notice that the error term in the above condition of weak pseudo-
randomness does not depend on the size of the subset U . Therefore it
applies essentially only to subsets U of linear size, ignoring subsets U of size
o(n). Hence (3) is potentially much weaker than Thomason’s jumbledness
condition (2).

Corollary 2.3 supplies us with the first example of weakly pseudo-random
graphs – a random graph G(n, p) is weakly pseudo-random as long as p(n)
satisfies np→ ∞. We can thus say that if a graph G on n vertices is weakly
pseudo-random for a parameter p, then the edge distribution of G is close
to that of G(n, p).

In the previous subsection we have already seen examples of conditions
implying pseudo-randomness. In general one can expect that conditions of
various kinds that hold almost surely in G(n, p) may imply or be equivalent
to weak pseudo-randomness of graphs with edge density p.

Let us first consider the case of the constant edge density p. This case
has been treated extensively in the celebrated paper of Chung, Graham and
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Wilson from 1989 [26], where they formulated several equivalent conditions
for weak pseudo-randomness. In order to state their important result we
need to introduce some notation.

Let G = (V,E) be a graph on n vertices. For a graph L we denote by
N∗

G(L) the number of labeled induced copies of L in G, and by NG(L) the
number of labeled not necessarily induced copies of L in G. For a pair of
vertices x, y ∈ V (G), we set s(x, y) to be the number of vertices of G joined
to x and y the same way: either to both or to none. Also, codeg(x, y) is
the number of common neighbors of x and y in G. Finally, we order the
eigenvalues λi of the adjacency matrix A(G) so that |λ1| ≥ |λ2| ≥ . . . ≥ |λn|.

Theorem 2.6 [26]. Let p ∈ (0, 1) be fixed. For any graph sequence (Gn)
the following properties are equivalent:

P1(l): For a fixed l ≥ 4 for all graphs L on l vertices,

N∗
G(L) =

(

1 + o(1)
)

nlp|E(L)|(1 − p)(
l
2)−|E(L)|.

P2(t): Let Ct denote the cycle of length t. Let t ≥ 4 be even,

e(Gn) =
n2p

2
+ o(n2) and NG(Ct) ≤ (np)t + o(nt).

P3: e(Gn) ≥ n2p
2 + o(n2) and λ1 =

(

1 + o(1)
)

np, λ2 = o(n).

P4: For each subset U ⊂ V (G), e(U) = p
2 |U |2 + o(n2).

P5: For each subset U ⊂ V (G) with |U | = bn
2c, we have

e(U) = (p
8 + o(1))n2.

P6:
∑

x,y∈V |s(x, y) −
(

p2 + (1 − p)2
)

n| = o(n3).

P7:
∑

x,y∈V

∣

∣codeg(x, y) − p2n
∣

∣ = o(n3).

Note that condition P4 of this remarkable theorem is in fact identical
to our condition (3) of weak pseudo-randomness. Thus according to the
theorem all conditions P1–P3, P5−P7 are in fact equivalent to weak pseudo-
randomness!

As noted by Chung et al. probably the most surprising fact (although
possibly less surprising for the reader in view of Theorem 2.4) is that
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apparently the weak condition P2(4) is strong enough to imply weak pseudo-
randomness.

It is quite easy to add another condition to the equivalence list of the
above theorem: for all U,W ⊂ V , e(U,W ) = p|U | |W | + o(n2).

A condition of a very different type, related to the celebrated Szemerédi
Regularity Lemma has been added to the above list by Simonovits and Sós
in [73]. They showed that if a graph G possesses a Szemerédi partition in
which almost all pairs have density p, then G is weakly pseudo-random,
and conversely if G is weakly pseudo-random then in every Szemerédi par-
tition all pairs are regular with density p. An extensive background on
the Szemerédi Regularity Lemma, containing in particular the definitions
of the above used notions, can be found in a survey paper of Komlós and
Simonovits [55].

The reader may have gotten the feeling that basically every property
of random graphs G(n, p) ensures weak pseudo-randomness. This feeling
is quite misleading, and one should be careful while formulating properties
equivalent to pseudo-randomness. Here is an example provided by Chung
et al. Let G be a graph with vertex set {1, . . . , 4n} defined as follows: the
subgraph of G spanned by the first 2n vertices is a complete bipartite graph
Kn,n, the subgraph spanned by the last 2n vertices is the complement of
Kn,n, and for every pair (i, j), 1 ≤ i ≤ 2n, 2n+ 1 ≤ j ≤ 4n, the edge (i, j) is
present in G independently with probability 0.5. Then G is almost surely
a graph on 4n vertices with edge density 0.5. One can verify that G has
properties P1(3) and P2(2t + 1) for every t ≥ 1, but is obviously very far
from being pseudo-random (contains a clique and an independent set of one
quarter of its size). Hence P1(3) and P2(2t + 1) are not pseudo-random
properties. This example shows also the real difference between even and
odd cycles in this context – recall that Property P2(2t) does imply pseudo-
randomness.

A possible explanation to the above described somewhat disturbing phe-
nomenon has been suggested by Simonovits and Sós in [74]. They noticed
that the above discussed properties are not hereditary in the sense that the
fact that the whole graph G possesses one of these properties does not im-
ply that large induced subgraphs of G also have it. A property is called
hereditary in this context if it is assumed to hold for all sufficiently large
subgraphs F of our graph G with the same error term as for G. Simonovits
and Sós proved that adding this hereditary condition gives significant extra
strength to many properties making them pseudo-random.
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Theorem 2.7 [74]. Let L be a fixed graph on l vertices, and let p ∈ (0, 1)
be fixed. Let (Gn) be a sequence of graphs. If for every induced subgraph
H ⊆ G on h vertices,

NH(L) = p|E(L)|hl + o(nl),

then (Gn) is weakly pseudo-random, i.e. property P4 holds.

Two main distinctive features of the last result compared to Theorem
2.6 are: (a) P1(3) assumed hereditarily implies pseudo-randomness; and (b)
requiring the right number of copies of a single graph L on l vertices is
enough, compared to Condition P1(l) required to hold for all graphs on l
vertices simultaneously.

Let us switch now to the case of vanishing edge density p(n) = o(1).
This case has been treated in two very recent papers of Chung and Graham
[25] and of Kohayakawa, Rödl and Sissokho [50]. Here the picture becomes
significantly more complicated compared to the dense case. In particular,
there exist graphs with very balanced edge distribution not containing a
single copy of some fixed subgraphs (see the Erdős–Rényi graph and the
Alon graph in the next section (Examples 6, 9, resp.)).

In an attempt to find properties equivalent to weak pseudo-randomness
in the sparse case, Chung and Graham define the following properties in
[25]:

CIRCUIT(t): The number of closed walks w0, w1, . . . , wt = w0 of length
t in G is

(

1 + o(1)
)

(np)t;

CYCLE(t): The number of labeled t-cycles in G is
(

1 + o(1)
)

(np)t;

EIG: The eigenvalues λi, |λ1| ≥ |λ2| ≥ . . . |λn|, of the adjacency matrix of
G satisfy:

λ1 =
(

1 + o(1)
)

np,

|λi| = o(np), i > 1.

DISC: For all X,Y ⊂ V (G),

∣

∣e(X,Y ) − p|X| |Y |
∣

∣ = o(pn2).

(DISC here is in fact DICS(1) in [25]).
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Theorem 2.8 [25]. Let (G = Gn : n → ∞) be a sequence of graphs with
e(Gn) =

(

1 + o(1)
)

p
(

n
2

)

. Then the following implications hold for all t ≥ 1:

CIRCUIT (2t) ⇒ EIG⇒ DISC.

Proof. To prove the first implication, let A be the adjacency matrix of
G, and consider the trace Tr(A2t). The (i, i)-entry of A2t is equal to the
number of closed walks of length 2t starting and ending at i, and hence
Tr(A2t) =

(

1 + o(1)
)

(np)2t. On the other hand, since A is symmetric it
is similar to the diagonal matrix D = diag(λ1, λ2, . . . , λn), and therefore
Tr(A2t) =

∑2t
i=1 λ

2t
i . We obtain:

n
∑

i=1

λ2t
i =

(

1 + o(1)
)

(np)2t.

Since the first eigenvalue of G is easily shown to be as large as its average
degree, it follows that λ1 ≥ 2

∣

∣E(G)
∣

∣/
∣

∣V (G)
∣

∣ =
(

1 + o(1)
)

np. Combining
these two facts we derive that λ1 =

(

1 + o(1)
)

np and |λi| = o(np) as
required.

The second implication will be proven in the next subsection.

Both reverse implications are false in general. To see whyDISC 6⇒ EIG
take a graph G0 on n − 1 vertices with all degrees equal to

(

1 + o(1)
)

n0.1

and having property DISC (see next section for examples of such graphs).
Now add to G0 a vertex v∗ and connect it to any set of size n0.8 in G0, let G
be the obtained graph. Since G is obtained from G0 by adding o(

∣

∣E(G0)
∣

∣)
edges, G still satisfies DISC. On the other hand, G contains a star S of size
n0.8 with a center at v∗, and hence λ1(G) ≥ λ1(S) =

√
n0.8 − 1 �

∣

∣E(G)
∣

∣/n
(see, e.g. Chapter 11 of [64] for the relevant proofs). This solves an open
question from [25].

The Erdős–Rényi graph from the next section is easily seen to satisfy
EIG, but fails to satisfy CIRCUIT (4). Chung and Graham provide an
alternative example in [25] (Example 1).

The above discussion indicates that one probably needs to impose some
additional condition on the graph G to glue all these pieces together and to
make the above stated properties equivalent. One such condition has been
suggested by Chung and Graham who defined:

U(t): For some absolute constant c, all degrees in G satisfy: d(v) < cnp,
and for every pair of vertices x, y ∈ G the number et−1(x, y) of walks of
length t− 1 from x to y satisfies: et−1(x, y) ≤ cnt−2pt−1.
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Notice that U(t) can only hold for p > c′n−1+1/(t−1), where c′ depends
on c. Also, every dense graph (p = Θ(1)) satisfies U(t).

As it turns out adding property U(t) makes all the above defined proper-
ties equivalent and thus equivalent to the notion of weak pseudo-randomness
(that can be identified with property DISC):

Theorem 2.9 [25]. Suppose for some constant c > 0, p(n) > cn−1+1/(t−1),
where t ≥ 2. For any family of graphs Gn,

∣

∣E(Gn)
∣

∣ =
(

1 + o(1)
)

p
(

n
2

)

,
satisfying U(t), the following properties are all equivalent: CIRCUIT (2t),
CY CLE(2t), EIG and DISC.

Theorem 2.9 can be viewed as a sparse analog of Theorem 2.6 as it also
provides a list of conditions equivalent to weak pseudo-randomness.

Further properties implying or equivalent to pseudo-randomness, includ-
ing local statistics conditions, are given in [50].

2.4. Eigenvalues and pseudo-random graphs

In this subsection we describe an approach to pseudo-randomness based on
graph eigenvalues – the approach most frequently used in this survey. Al-
though the eigenvalue-based condition is not as general as the jumbledness
condition of Thomason or some other properties described in the previous
subsection, its power and convenience are so appealing that they certainly
constitute a good enough reason to prefer this approach. Below we first pro-
vide a necessary background on graph spectra and then derive quantitative
estimates connecting the eigenvalue gap and edge distribution.

Recall that the adjacency matrix of a graph G = (V,E) with vertex set
V = {1, . . . , n} is an n-by-n matrix whose entry aij is 1 if (i, j) ∈ E(G),
and is 0 otherwise. Thus A is a 0, 1 symmetric matrix with zeroes along
the main diagonal, and we can apply the standard machinery of eigenvalues
and eigenvectors of real symmetric matrices. It follows that all eigenvalues
of A (usually also called the eigenvalues of the graph G itself) are real, and
we denote them by λ1 ≥ λ2 ≥ . . . ≥ λn. Also, there is an orthonormal
basis B = {x1, . . . , xn} of the euclidean space Rn composed of eigenvectors
of A: Axi = λixi, x

t
ixi = 1, i = 1, . . . , n. The matrix A can be decomposed

then as: A =
∑n

i=1 λixix
t
i – the so called spectral decomposition of A.

(Notice that the product xxt, x ∈ Rn, is an n-by-n matrix of rank 1; if
x, y, z ∈ Rn then yt(xxt)z = (ytx)(xtz)). Every vector y ∈ Rn can be
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easily represented in basis B: y =
∑n

i=1(y
txi)xi. Therefore, for y, z ∈ Rn,

ytz =
∑n

i=1(y
txi)(z

txi) and ‖y‖2 = yty =
∑n

i=1 (ytxi)
2
.

All the above applies in fact to all real symmetric matrices. Since the
adjacency matrix A of a graph G is a matrix with non-negative entries, one
can derive some important extra features of A, most notably the Perron–
Frobenius Theorem, that reads in the graph context as follows: if G is
connected then the multiplicity of λ1 is one, all coordinates of the first
eigenvector x1 can be assumed to be strictly positive, and |λi| ≤ λ1 for all
i ≥ 2. Thus, graph spectrum lies entirely in the interval [−λ1, λ1].

For the most important special case of regular graphs Perron–Frobenius
implies the following corollary:

Proposition 2.10. Let G be a d-regular graph on n vertices. Let λ1 ≥
λ2 ≥ . . . ≥ λn be the eigenvalues of G. Then λ1 = d and −d ≤ λi ≤ d for
all 1 ≤ i ≤ n. Moreover, if G is connected then the first eigenvector x1 is
proportional to the all one vector (1, . . . , 1)t ∈ Rn, and λi < d for all i ≥ 2.

To derive the above claim from the Perron–Frobenius Theorem observe
that e = (1, . . . , 1) is immediately seen to be an eigenvector of A(G) corre-
sponding to the eigenvalue d: Ae = de. The positivity of the coordinates of
e implies then that e is not orthogonal to the first eigenvector, and hence
is in fact proportional to x1 of A(G). Proposition 2.10 can be also proved
directly without relying on the Perron–Frobenius Theorem.

We remark that λn = −d is possible, in fact it holds if and only if the
graph G is bipartite.

All this background information, presented above in a somewhat con-
densed form, can be found in many textbooks in Linear Algebra. Readers
more inclined to consult combinatorial books can find it for example in a
recent monograph of Godsil and Royle on Algebraic Graph Theory [46].

We now prove a well known theorem (see its variant, e.g., in Chapter 9,
[18]) bridging between graph spectra and edge distribution.

Theorem 2.11. Let G be a d-regular graph on n vertices. Let d = λ1 ≥
λ2 ≥ . . . λn be the eigenvalues of G. Denote

λ = max
2≤i≤n

|λi|.

Then for every two subsets U,W ⊂ V ,

(4)

∣

∣

∣

∣

e(U,W ) − d|U | |W |
n

∣

∣

∣

∣

≤ λ

√

|U | |W |
(

1 − |U |
n

)(

1 − |W |
n

)

.
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Proof. Let B = {x1, . . . , xn} be an orthonormal basis of Rn composed from
eigenvectors of A: Axi = λixi, 1 ≤ i ≤ n. We represent A =

∑n
i=1 λixix

t
i.

Denote

A1 = λ1x1x
t
1,

E =
n
∑

i=2

λixix
t
i,

then A = A1 + E .

Let u = |U |, w = |W | be the cardinalities of U,W , respectively. We
denote the characteristic vector of U by χU ∈ Rn, i.e. χU (i) = 1 if i ∈ U ,
and χU (i) = 0 otherwise. Similarly, let χW ∈ Rn be the characteristic
vector of W . We represent χU , χW according to B:

χU =
n
∑

i=1

αixi, αi = χt
Uxi,

n
∑

i=1

α2
i = ‖χU‖2 = u,

χW =
n
∑

i=1

βixi, βi = χt
Wxi,

n
∑

i=1

β2
i = ‖χW ‖2 = w.

It follows easily from the definitions of A, χU and χW that the product
χt

UAχW counts exactly the number of edges of G with one endpoint in U
and the other one in W , i.e.

e(U,W ) = χt
UAχW = χt

UA1χW + χt
UEχW .

Now we estimate the last two summands separately, the first of them will
be the main term for e(U,W ), the second one will be the error term.
Substituting the expressions for χU , χW and recalling the orthonormality
of B, we get:

χt
UA1χW =

( n
∑

i=1

αixi

)t

(λ1x1x
t
1)

( n
∑

j=1

βjxj

)

(5)

=
n
∑

i=1

n
∑

j=1

αiλ1βj(x
t
ix1)(x

t
1xj) = α1β1λ1.

Similarly,

(6) χt
UEχW =

( n
∑

i=1

αixi

)t( n
∑

j=2

λjxjx
t
j

)( n
∑

k=1

βkxk

)

=
n
∑

i=2

αiβiλi.
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Recall now that G is d-regular. Then according to Proposition 2.10,
λ1 = d and x1 = 1√

n
(1, . . . , 1)t. We thus get: α1 = χt

Ux1 = u/
√
n and

β1 = χt
Wx1 = w/

√
n. Hence it follows from (5) that χt

UA1χW = duw/n.

Now we estimate the absolute value of the error term χt
UEχW . Recalling

(6), the definition of λ and the obtained values of α1, β1, we derive, applying
Cauchy–Schwartz:

|χt
UEχW | =

∣

∣

∣

∣

n
∑

i=2

αiβiλi

∣

∣

∣

∣

≤ λ

∣

∣

∣

∣

n
∑

i=2

αiβi

∣

∣

∣

∣

≤ λ

√

√

√

√

n
∑

i=2

α2
i

n
∑

i=2

β2
i

= λ
√

(

‖χU‖2 − α2
1

)(

‖χW ‖2 − β2
1

)

= λ

√

(

u− u2

n

)(

w − w2

n

)

.

The theorem follows.

The above proof can be extended to the irregular (general) case. Since
the obtained quantitative bounds on edge distribution turn out to be some-
what cumbersome, we will just indicate how they can be obtained. Let
G = (V,E) be a graph on n vertices with average degree d. Assume that
the eigenvalues of G satisfy λ < d, with λ as defined in the theorem. Denote

K =
∑

v∈V

(

d(v) − d
)2
.

The parameter K is a measure of irregularity of G. Clearly K = 0 if and
only if G is d-regular. Let e = 1√

n
(1, . . . , 1)t. We represent e in the basis

B = {x1, . . . , xn} of the eigenvectors of A(G):

e =
n
∑

i=1

γixi, γi = etxi,
n
∑

i=1

γ2
i = ‖e‖2 = 1.

Denote z = 1√
n

(

d(v1) − d, . . . , d(vn) − d
) t

, then ‖z‖2 = K/n. Notice

that Ae = 1√
n

(

d(v1), . . . , d(vn)
) t

= de + z, and therefore z = Ae − de =
∑n

i=1 γi(λi − d)xi. This implies:

K

n
= ‖z‖2 =

n
∑

i=1

γ2
i (λi − d)2 ≥

n
∑

i=2

γ2
i (λi − d)2

≥ (d− λ)2
n
∑

i=2

γ2
i .
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Hence
∑n

i=2 γ
2
i ≤ K

n(d−λ)2
. It follows that γ2

1 = 1 −∑n
i=2 γ

2
i ≥ 1 − K

n(d−λ)2

and

γ1 ≥ γ2
1 ≥ 1 − K

n(d− λ)2
.

Now we estimate the distance between the vectors e and x1 and show that
they are close given that the parameter K is small.

‖e− x1‖2 = (e− x1)
t(e− x1) = ete+ xt

1x1 − 2etx1 = 1 + 1 − 2γ1 = 2 − 2γ1

≤ 2K

n(d− λ)2
.

We now return to expressions (5) and (6) from the proof of Theorem
2.11. In order to estimate the main term χt

UA1χW , we bound the coefficients
α1, β1 and λ1 as follows:

α1 = χt
Ux1 = χt

Ue+ χt
U (x1 − e) =

u√
n

+ χt
U (x1 − e),

and therefore

(7)

∣

∣

∣

∣

α1 −
u√
n

∣

∣

∣

∣

=
∣

∣χt
U (x1 − e)

∣

∣ ≤ ‖χU‖ · ‖x1 − e‖ ≤

√

2Ku
n

d− λ
.

In a similar way one gets:

(8)

∣

∣

∣

∣

β1 −
w√
n

∣

∣

∣

∣

≤

√

2Kw
n

d− λ
.

Finally, to estimate from above the absolute value of the difference between
λ1 and d we argue as follows:

K

n
= ‖z‖2 =

n
∑

i=1

γ2
i (λi − d)2 ≥ γ2

1(λ1 − d)2,

and therefore

(9) |λ1 − d| ≤ 1

γ1

√

K

n
≤ n(d− λ)2

n(d− λ)2 −K

√

K

n
.
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Summarizing, we see from (7), (8) and (9) that the main term in the product
χt

UA1χW is equal to duw
n , just as in the regular case, and the error term is

governed by the parameter K.

In order to estimate the error term χt
UEχW we use (6) to get:

|χt
UEχW | =

∣

∣

∣

∣

n
∑

i=2

αiβiλi

∣

∣

∣

∣

≤ λ

∣

∣

∣

∣

n
∑

i=2

αiβi

∣

∣

∣

∣

≤ λ

√

√

√

√

n
∑

i=2

α2
i

n
∑

i=2

β2
i

≤ λ

√

√

√

√

n
∑

i=1

α2
i

n
∑

i=1

β2
i = λ‖χU‖ ‖χW ‖ = λ

√
uw.

Applying the above developed techniques we can prove now the second
implication of Theorem 2.8. Let us prove first that EIG impliesK = o(nd2),
where d =

(

1 + o(1)
)

np is as before the average degree of G. Indeed, for
every vector v ∈ Rn we have ‖Av‖ ≤ λ1‖v‖, and therefore

λ2
1n = λ2

1e
te ≥ (Ae)t(Ae) =

∑

v∈V

d2(v).

Hence from EIG we get:
∑

v∈V d
2(v) ≤

(

1 + o(1)
)

nd2. As
∑

v d(v) = nd,
it follows that:

K =
∑

v∈V

(

d(v) − d
)2

=
∑

v∈V

d2(v) − 2d
∑

v∈V

d(v) + nd2

=
(

1 + o(1)
)

nd2 − 2nd2 + nd2 = o(nd2),

as promised. Substituting this into estimates (7), (8), (9) and using λ = o(d)
of EIG we get:

α1 =
u√
n

+ o(
√
u ),

β1 =
w√
n

+ o(
√
w ),

λ1 =
(

1 + o(1)
)

d,

and therefore

χt
UA1χW =

duw

n
+ o(dn).

Also, according to EIG, λ = o(d), which implies:

χt
UEχw = o(d

√
uw) = o(dn),

and the claim follows.
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Theorem 2.11 is a truly remarkable result. Not only it connects between
two seemingly unrelated graph characteristics – edge distribution and spec-
trum, it also provides a very good quantitative handle for the uniformity of
edge distribution, based on easily computable, both theoretically and prac-
tically, graph parameters – graph eigenvalues. According to the bound (4),
a polynomial number of parameters can control quite well the number of
edges in exponentially many subsets of vertices.

The parameter λ in the formulation of Theorem 2.11 is usually called
the second eigenvalue of the d-regular graph G (the first and the trivial one
being λ1 = d). There is certain inaccuracy though in this term, as in fact
λ = max {λ2,−λn}. Later we will call, following Alon, a d-regular graph G
on n vertices in which all eigenvalues, but the first one, are at most λ in
their absolute values, an (n, d, λ)-graph.

Comparing (4) with the definition of jumbled graphs by Thomason we
see that an (n, d, λ)-graph G is (d/n, λ)-jumbled. Hence the parameter λ
(or in other words, the so called spectral gap – the difference between d and
λ) is responsible for pseudo-random properties of such a graph. The smaller
the value of λ compared to d, the more close is the edge distribution of G to
the ideal uniform distribution. A natural question is then: how small can
be λ? It is easy to see that as long as d ≤ (1 − ε)n, λ = Ω(

√
d ). Indeed,

the trace of A2 satisfies:

nd = 2
∣

∣E(G)
∣

∣ = Tr(A2) =
n
∑

i=1

λ2
i ≤ d2 +(n− 1)λ2 ≤ (1− ε)nd+(n− 1)λ2,

and λ = Ω(
√
d ) as claimed. More accurate bounds are known for smaller

values of d (see, e.g. [69]). Based on these estimates we can say that an
(n, d, λ)-graph G, for which λ = Θ(

√
d ), is a very good pseudo-random

graph. We will see several examples of such graphs in the next section.

2.5. Strongly regular graphs

A strongly regular graph srg(n, d, η, µ) is a d-regular graph on n vertices in
which every pair of adjacent vertices has exactly η common neighbors and
every pair of non-adjacent vertices has exactly µ common neighbors. (We
changed the very standard notation in the above definition so as to avoid
interference with other notational conventions throughout this paper and
to make it more coherent, usually the parameters are denoted (v, k, λ, µ)).
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Two simple examples of strongly regular graph are the pentagon C5 that
has parameters (5, 2, 0, 1), and the Petersen graph whose parameters are
(10, 3, 0, 1). Strongly regular graphs were introduced by Bose in 1963 [21]
who also pointed out their tight connections with finite geometries. As
follows from the definition, strongly regular graphs are highly regular struc-
tures, and one can safely predict that algebraic methods are extremely use-
ful in their study. We do not intend to provide any systematic coverage
of this fascinating concept here, addressing the reader to the vast litera-
ture on the subject instead (see, e.g., [24]). Our aim here is to calculate
the eigenvalues of strongly regular graphs and then to connect them with
pseudo-randomness, relying on results from the previous subsection.

Proposition 2.12. Let G be a connected strongly regular graph with pa-
rameters (n, d, η, µ). Then the eigenvalues of G are: λ1 = d with multiplicity
s1 = 1,

λ2 =
1

2

(

η − µ+

√

(η − µ)2 + 4(d− µ)

)

and

λ3 =
1

2

(

η − µ−
√

(η − µ)2 + 4(d− µ)

)

,

with multiplicities

s2 =
1

2



n− 1 +
(n− 1)(µ− η) − 2d
√

(µ− η)2 + 4(d− µ)





and

s3 =
1

2



n− 1 − (n− 1)(µ− η) − 2d
√

(µ− η)2 + 4(d− µ)



 ,

respectively.

Proof. Let A be the adjacency matrix of A. By the definition of A and the
fact that A is symmetric with zeroes on the main diagonal, the (i, j)-entry
of the square A2 counts the number of common neighbors of vi and vj in G
if i 6= j, and is equal to the degree d(vi) in case i = j. The statement that
G is srg(n, d, η, µ) is equivalent then to:

(10) AJ = dJ, A2 = (d− µ)I + µJ + (η − µ)A,

where J is the n-by-n all-one matrix and I is the n-by-n identity matrix.
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SinceG is d-regular and connected, we obtain from the Perron–Frobenius
Theorem that λ1 = d is an eigenvalue of G with multiplicity 1 and with
e = (1, . . . , 1)t as the corresponding eigenvector. Let λ 6= d be another
eigenvalue of G, and let x ∈ Rn be a corresponding eigenvector. Then x is
orthogonal to e, and therefore Jx = 0. Applying both sides of the second
identity in (10) to x we get the equation: λ2x = (d−µ)x+(η−µ)λx, which
results in the following quadratic equation for λ:

λ2 + (µ− η)λ+ (µ− d) = 0.

This equation has two solutions λ2 and λ3 as defined in the proposition
formulation. If we denote by s2 and s3 the respective multiplicities of λ2

and λ3 as eigenvalues of A, we get:

1 + s2 + s3 = n, Tr(A) = d+ s2λ2 + s3λ3 = 0.

Solving the above system of linear equations for s2 and s3 we obtain the
assertion of the proposition.

Using the bound (4) we can derive from the above proposition that if
the parameters of a strongly regular graph G satisfy η ≈ µ then G has a
large eigenvalue gap and is therefore a good pseudo-random graph. We will
exhibit several examples of such graphs in the next section.

3. Examples

Here we present some examples of pseudo-random graphs. Many of them
are well known and already appeared, e.g., in [79] and [80], but there also
some which have been discovered only recently. Since in the rest of the
paper we will mostly discuss properties of (n, d, λ)-graphs, in our examples
we emphasize the spectral properties of the constructed graphs. We will
also use most of these constructions later to illustrate particular points and
to test the strength of the theorems.

Random graphs.

1. Let G = G(n, p) be a random graph with edge probability p. If p
satisfies pn/ logn→ ∞ and (1−p)n logn→ ∞, then almost surely all
the degrees of G are equal to

(

1 + o(1)
)

np. Moreover it was proved
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by Füredi and Komlós [44] that the largest eigenvalue of G is a.s.
(

1+o(1)
)

np and that λ(G) ≤
(

2+o(1)
)√

p(1 − p)n. They stated this

result only for constant p but their proof shows that λ(G) ≤ O(
√
np )

also when p ≥ poly log n/n.

2. For a positive integer-valued function d = d(n) we define the model
Gn,d of random regular graphs consisting of all regular graphs on n
vertices of degree d with the uniform probability distribution. This
definition of a random regular graph is conceptually simple, but it is
not easy to use. Fortunately, for small d there is an efficient way to
generate Gn,d which is useful for theoretical studies. This is the so
called configuration model. For more details about this model, and
random regular graphs in general we refer the interested reader to two
excellent monographs [20] and [49], or to a survey [83]. As it turns
out, sparse random regular graphs have quite different properties from
those of the binomial random graph G(n, p), p = d/n. For example,
they are almost surely connected. The spectrum of Gn,d for a fixed d
was studied in [38] by Friedman, Kahn and Szemerédi. Friedman [39]
proved that for constant d the second largest eigenvalue of a random
d-regular graph is λ =

(

1+o(1)
)

2
√
d− 1. The approach of Kahn and

Szemerédi gives only O(
√
d ) bound on λ but continues to work also

when d is small power of n. The case d � n1/2 was recently studied
by Krivelevich, Sudakov, Vu and Wormald [61]. They proved that in
this case for any two vertices u, v ∈ Gn,d almost surely

∣

∣codeg(u, v) − d2/n
∣

∣ < Cd3/n2 + 6d
√

log n/
√
n,

where C is some constant and codeg(u, v) is the number of common
neighbors of u, v. Moreover if d ≥ n/ logn, then C can be defined to be
zero. Using this it is easy to show that for d� n1/2, the second largest
eigenvalue of a random d-regular graph is o(d). The true bound for the
second largest eigenvalue ofGn,d should be probably

(

1+o(1)
)

2
√
d− 1

for all values of d, but we are still far from proving it.

Strongly regular graphs.

3. Let q = pα be a prime power which is congruent to 1 modulo 4 so
that −1 is a square in the finite field GF (q). Let Pq be the graph
whose vertices are all elements of GF (q) and two vertices are adjacent
if and only if their difference is a quadratic residue in GF (q). This
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graph is usually called the Paley graph. It is easy to see that Pq is
(q − 1)/2-regular. In addition one can easily compute the number of
common neighbors of two vertices in Pq. Let χ be the quadratic residue

character on GF (q), i.e., χ(0) = 0, χ(x) = 1 if x 6= 0 and is a square
in GF (q) and χ(x) = −1 otherwise. By definition,

∑

x χ(x) = 0 and
the number of common neighbors of two vertices a and b equals

∑

x6=a,b

(

1 + χ(a− x)

2

)(

1 + χ(b− x)

2

)

=
q − 2

4
− χ(a− b)

2
+

1

4

∑

x6=a,b

χ(a− x)χ(b− x).

Using that for x 6= b, χ(b − x) = χ
(

(b− x)−1) , the last term can be
rewritten as

∑

x6=a,b

χ(a− x)χ
(

(b− x)−1) =
∑

x6=a,b

χ

(

a− x

b− x

)

=
∑

x6=a,b

χ

(

1 +
a− b

b− x

)

=
∑

x6=0,1

χ(x) = −1.

Thus the number of common neighbors of a and b is (q−3)/4−χ(a−
b)/2. This equals (q − 5)/4 if a and b are adjacent and (q − 1)/4
otherwise. This implies that the Paley graph is a strongly regular
graph with parameters

(

q, (q−1)/2, (q−5)/4, (q−1)/4
)

and therefore

its second largest eigenvalue equals (
√
q + 1)/2.

4. For any odd integer k let Hk denote the graph whose nk = 2k−1 − 1
vertices are all binary vectors of length k with an odd number of ones
except the all one vector, in which two distinct vertices are adjacent
iff the inner product of the corresponding vectors is 1 modulo 2.
Using elementary linear algebra it is easy to check that this graph
is (2k−2 − 2)-regular. Also every two nonadjacent vertices vertices in
it have 2k−3 − 1 common neighbors and every two adjacent vertices
vertices have 2k−3 − 3 common neighbors. Thus Hk is a strongly
regular graph with parameters

(

2k−1 − 1, 2k−2 − 2, 2k−3 − 3, 2k−3 − 1
)

and with the second largest eigenvalue λ(Hk) = 1 + 2
k−3

2 .

5. Let q be a prime power an let V (G) be the elements of the two
dimensional vector space over GF (q), so G has q2 vertices. Partition
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the q+ 1 lines through the origin of the space into two sets P and N ,
where |P | = k. Two vertices x and y of the graph G are adjacent if
x − y is parallel to a line in P . This example is due to Delsarte and
Goethals and to Turyn (see [72]). It is easy to check that G is strongly
regular with parameters

(

k(q − 1), (k − 1)(k − 2) + q − 2, k(k − 1)
)

.
Therefore its eigenvalues, besides the trivial one are −k and q − k.
Thus if k is sufficiently large we obtain that G is d = k(q− 1)-regular
graph whose second largest eigenvalue is much smaller than d.

Graphs arising from finite geometries.

6. For any integer t ≥ 2 and for any power q = pα of prime p let PG(q, t)
denote the projective geometry of dimension t over the finite field
GF (q). The interesting case for our purposes here is that of large q
and fixed t. The vertices of PG(q, t) correspond to the equivalence
classes of the set of all non-zero vectors x = (x0, . . . , xt) of length t+1
over GF (q), where two vectors are equivalent if one is a multiple of
the other by an element of the field. Let G denote the graph whose
vertices are the points of PG(q, t) and two (not necessarily distinct)
vertices x and y are adjacent if and only if x0y0 + . . . + xtyt = 0.
This construction is well known. In particular, in case t = 2 this
graph is often called the Erdős–Rényi graph and it contains no cycles
of length 4. It is easy to see that the number of vertices of G is
nq,t =

(

qt+1 − 1
)

/(q − 1) =
(

1 + o(1)
)

qt and that it is dq,t-regular
for dq,t = (qt − 1)/(q − 1) =

(

1 + o(1)
)

qt−1, where o(1) tends to zero
as q tends to infinity. It is easy to see that the number of vertices of
G with loops is bounded by 2(qt − 1)/(q − 1) =

(

2 + o(1)
)

qt−1, since
for every possible value of x0, . . . , xt−1 we have at most two possible
choices of xt. Actually using more complicated computation, which
we omit, one can determine the exact number of vertices with loops.
The eigenvalues of G are easy to compute (see [11]). Indeed, let A
be the adjacency matrix of G. Then, by the properties of PG(q, t),
A2 = AAT = µJ + (dq,t − µ)I, where µ =

(

qt−1 − 1
)

/(q − 1), J is
the all one matrix and I is the identity matrix, both of size nq,t ×nq,t.
Therefore the largest eigenvalue of A is dq,t and the absolute value of
all other eigenvalues is

√

dq,t − µ = q(t−1)/2.

7. The generalized polygons are incidence structures consisting of points
P and lines L. For our purposes we restrict our attention to those in
which every point is incident to q + 1 lines and every line is incident
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to q+ 1 points. A generalized m-gon defines a bipartite graph G with
bipartition (P,L) that satisfies the following conditions. The diameter
of G is m and for every vertex v ∈ G there is a vertex u ∈ G such
that the shortest path from u to v has length m. Also for every r < m
and for every two vertices u, v at distance r there exists a unique path
of length r connecting them. This immediately implies that every
cycle in G has length at least 2m. For q ≥ 2, it was proved by Feit
and Higman [36] that (q + 1)-regular generalized m-gons exist only
for m = 3, 4, 6. A polarity of G is a bijection π : P ∪ L → P ∪ L
such that π(P) = L, π(L) = P and π2 is the identity map. Also for
every p ∈ P, l ∈ L, π(p) is adjacent to π(l) if and only if p and l
are adjacent. Given π we define a polarity graph Gπ to be the graph
whose vertices are point in P and two (not necessarily distinct) points
p1, p2 are adjacent iff p1 was adjacent to π(p2) in G. Some properties
of Gπ can be easily deduced from the corresponding properties of G.
In particular, Gπ is (q+1)-regular and also contains no even cycles of
length less than 2m.

For every q which is an odd power of 2, the incidence graph of the
generalized 4-gon has a polarity. The corresponding polarity graph
is a (q + 1)-regular graph with q3 + q2 + q + 1 vertices. See [23],
[62] for more details. This graph contains no cycle of length 6 and
it is not difficult to compute its eigenvalues (they can be derived, for
example, from the eigenvalues of the corresponding bipartite incidence
graph, given in [78]). Indeed, all the eigenvalues, besides the trivial
one (which is q+ 1) are either 0 or

√
2q or −√

2q. Similarly, for every
q which is an odd power of 3, the incidence graph of the generalized
6-gon has a polarity. The corresponding polarity graph is a (q + 1)-
regular graph with q5 + q4 + · · · + q + 1 vertices (see again [23], [62]).
This graph contains no cycle of length 10 and its eigenvalues can be
derived using the same technique as in case of the 4-gon. All these
eigenvalues, besides the trivial one are either

√
3q or −√

3q or
√
q or

−√
q.

Cayley graphs.

8. Let G be a finite group and let S be a set of non-identity elements of
G such that S = S−1, i.e., for every s ∈ S, s−1 also belongs to S. The
Cayley graph Γ(G,S) of this group with respect to the generating set
S is the graph whose set of vertices is G and where two vertices g and
g′ are adjacent if and only if g′g−1 ∈ S. Clearly, Γ(G,S) is |S|-regular
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and it is connected iff S is a set of generators of the group. If G is
abelian then the eigenvalues of the Cayley graph can be computed in
terms of the characters of G. Indeed, let χ : G → C be a character
of G and let A be the adjacency matrix of Γ(G,S) whose rows and
columns are indexed by the elements of G. Consider the vector v
defined by v(g) = χ(g). Then it is easy to check that Av = αv
with α =

∑

s∈S χ(s). In addition all eigenvalues can be obtained in
this way, since every abelian group has exactly |G| different character
which are orthogonal to each other. Using this fact, one can often give
estimates on the eigenvalues of Γ(G,S) for abelian groups.

One example of a Cayley graph that has already been described earlier
is Pq. In that case the group is the additive group of the finite field
GF (q) and S is the set of all quadratic residues modulo q. Next we
present a slightly more general construction. Let q = 2kr + 1 be a
prime power and let Γ be a Cayley graph whose group is the additive
group of GF (q) and whose generating set is S =

{

x = yk | for some
y ∈ GF (q)

}

. By definition, Γ is (q − 1)/k-regular. On the other
hand, this graph is not strongly regular unless k = 2, when it is the
Paley graph. Let χ be a nontrivial additive character of GF (q) and
consider the Gauss sum

∑

y∈GF (q) χ(yk). Using the classical bound

|∑y∈GF (q) χ(yk)| ≤ (k−1)q1/2 (see e.g. [63]) and the above connection
between characters and eigenvalues we can conclude that the second
largest eigenvalue of our graph Γ is bounded by O(q1/2).

9. Next we present a surprising construction obtained by Alon [3] of a
very dense pseudo-random graph that on the other hand is triangle-
free. For a positive integer k, consider the finite field GF (2k), whose
elements are represented by binary vectors of length k. If a, b, c are
three such vectors, denote by (a, b, c) the binary vector of length 3k
whose coordinates are those of a, followed by coordinates of b and
then c. Suppose that k is not divisible by 3. Let W0 be the set
of all nonzero elements α ∈ GF (2k) so that the leftmost bit in the
binary representation of α7 is 0, and let W1 be the set of all nonzero
elements α ∈ GF (2k) for which the leftmost bit of α7 is 1. Since 3
does not divide k, 7 does not divide 2k − 1 and hence |W0| = 2k−1 − 1
and |W1| = 2k−1, as when α ranges over all nonzero elements of
the field so does α7. Let Gn be the graph whose vertices are all
n = 23k binary vectors of length 3k, where two vectors v and v′ are
adjacent if and only if there exist w0 ∈ W0 and w1 ∈ W1 so that
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v−v′ = (w0, w
3
0, w

5
0) + (w1, w

3
1, w

5
1), where here powers are computed

in the field GF (2k) and the addition is addition modulo 2. Note that
Gn is the Cayley graph of the additive group Z3k

2 with respect to the
generating set S = U0+U1, where U0 =

{

(w0, w
3
0, w

5
0) | w0 ∈W0

}

and
U1 is defined similarly. A well known fact from Coding Theory (see
e.g., [66]), which can be proved using the Vandermonde determinant, is
that every set of six distinct vectors in U0 ∪U1 is linearly independent
over GF (2). In particular all the vectors in U0 + U1 are distinct,
S = |U0| |U1| and hence Gn is |S| = 2k−1(2k−1 − 1)-regular. The
statement that Gn is triangle free is clearly equivalent to the fact that
the sum modulo 2 of any set of 3 nonzero elements of S is not a zero-
vector. Let u0 +u1, u

′
0 +u′1 and u′′0 +u′′1 be three distinct element of S,

where u0, u
′
0, u

′′
0 ∈ U0 and u1, u

′
1, u

′′
1 ∈ U1. By the above discussion, if

the sum of these six vectors is zero, then every vector must appear an
even number of times in the sequence (u0, u

′
0, u

′′
0, u1, u

′
1, u

′′
1). However,

since U0 and U1 are disjoint, this is clearly impossible. Finally, as we
already mentioned, the eigenvalues of Gn can be computed in terms of
characters of Z3k

2 . Using this fact together with the Carlitz-Uchiyama
bound on the characters of Z3k

2 it was proved in [3] that the second
eigenvalue of Gn is bounded by λ ≤ 9 · 2k + 3 · 2k/2 + 1/4.

10. The construction above can be extended in the obvious way as men-
tioned in [10]. Let h ≥ 1 and suppose that k is an integer such that
2k − 1 is not divisible by 4h+ 3. Let W0 be the set of all nonzero ele-
ments α ∈ GF (2k) so that the leftmost bit in the binary representation
of α4h+3 is 0, and let W1 be the set of all nonzero elements α ∈ GF (2k)
for which the leftmost bit of α4h+3 is 1. Since 4h+ 3 does not divide
2k−1 we have that |W0| = 2k−1−1 and |W1| = 2k−1, as when α ranges
over all nonzero elements of the field so does α4h+3. Define G to be the
Cayley graph of the additive group Z

(2h+1)k
2 with respect to the gener-

ating set S = U0 + U1, where U0 =
{

(w0, w
3
0, . . . , w

4h+1
0 ) | w0 ∈ W0

}

and U1 is defined similarly. Clearly, G is a 2k−1(2k−1 − 1)-regular
graph on 2(2h+1)k vertices. Using methods from [3], one can show
that G contains no odd cycle of length ≤ 2h+ 1 and that the second
eigenvalue of G is bounded by O(2k).

11. Now we describe the celebrated expander graphs constructed by
Lubotzky, Phillips and Sarnak [65] and independently by Margulis
[68]. Let p and q be unequal primes, both congruent to 1 modulo
4 and such that p is a quadratic residue modulo q. As usual de-
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note by PSL(2, q) the factor group of the group of two by two ma-
trices over GF (q) with determinant 1 modulo its normal subgroup

consisting of the two scalar matrices

(

1 0
0 1

)

and

(

−1 0
0 −1

)

. The

graphs we describe are Cayley graphs of PSL(2, q). A well known
theorem of Jacobi asserts that the number of ways to represent a
positive integer n as a sum of 4 squares is 8

∑

4-d, d|n d. This eas-
ily implies that there are precisely p + 1 vectors a = (a0, a1, a2, a3),
where a0 is an odd positive integer, a1, a2, a3 are even integers and
a2

0 +a2
1 +a2

2 +a2
3 = p. From each such vector construct the matrix Ma

in PSL(2, q) where Ma = 1√
p

(

a0 + ia1 a2 + ia3

−a2 + ia3 a0 − ia1

)

and i is an inte-

ger satisfying i2 = −1(mod q). Note that, indeed, the determinant of
Ma is 1 and that the square root of p modulo q does exist. Let Gp,q

denote the Cayley graph of PSL(2, q) with respect to these p+ 1 ma-
trices. In [65] it was proved that if q > 2

√
p then Gp,q is a connected

(p+ 1)-regular graph on n = q(q2 − 1)/2 vertices. Its girth is at least
2 logp q and all the eigenvalues of its adjacency matrix, besides the
trivial one λ1 = p+ 1, are at most 2

√
p in absolute value. The bound

on the eigenvalues was obtained by applying deep results of Eichler
and Igusa concerning the Ramanujan conjecture. The graphs Gp,q

have very good expansion properties and have numerous applications
in Combinatorics and Theoretical Computer Science.

12. The projective norm graphs NGp,t have been constructed in [17],
modifying an earlier construction given in [52]. These graphs are not
Cayley graphs, but as one will immediately see, their construction
has a similar flavor. The construction is the following. Let t > 2
be an integer, let p be a prime, let GF (p)∗ be the multiplicative
group of the field with p elements and let GF (pt−1) be the field
with pt−1 elements. The set of vertices of the graph NGp,t is the set
V = GF (pt−1) ×GF (p)∗. Two distinct vertices (X, a) and (Y, b) ∈ V
are adjacent if and only if N(X + Y ) = ab, where the norm N is
understood over GF (p), that is, N(X) = X1+p+···+pt−2

. Note that
|V | = pt − pt−1. If (X, a) and (Y, b) are adjacent, then (X, a) and
Y 6= −X determine b. Thus NGp,t is a regular graph of degree
pt−1 − 1. In addition, it was proved in [17], that NGp,t contains
no complete bipartite graphs Kt,(t−1)!+1. These graphs can be also
defined in the same manner starting with a prime power instead of



Pseudo-random Graphs 29

the prime p. It is also not difficult to compute the eigenvalues of
this graph. Indeed, put q = pt−1 and let A be the adjacency matrix
of NGp,t. The rows and columns of this matrix are indexed by the
ordered pairs of the set GF (q)×GF (p)∗. Let ψ be a character of the
additive group of GF (q), and let χ be a character of the multiplicative
group of GF (p). Consider the vector v : GF (q) × GF (p)∗ 7→ C
defined by v(X, a) = ψ(X)χ(a). Now one can check (see [14], [76] for
more details) that the vector v is an eigenvector of A2 with eigenvalue

|∑Z∈GF (q),Z 6=0 ψ(Z)χ
(

N(Z)
) |2 and that all eigenvalues of A2 have

this form. Set χ′(Z) = χ
(

N(Z)
)

for all nonzero Z in GF (q). Note
that as the norm is multiplicative, χ′ is a multiplicative character of
the large field. Hence the above expression is a square of the absolute
value of the Gauss sum and it is well known (see e.g. [31], [20]) that
the value of each such square, besides the trivial one (that is, when
either ψ or χ′ are trivial), is q. This implies that the second largest
eigenvalue of NGp,t is

√
q = p(t−1)/2.

4. Properties of pseudo-random graphs

We now examine closely properties of pseudo-random graphs, with a special
emphasis on (n, d, λ)-graphs. The majority of them are obtained using the
estimate (4) of Theorem 2.11, showing again the extreme importance and
applicability of the latter result. It is instructive to compare the properties of
pseudo-random graphs, considered below, with the analogous properties of
random graphs, usually shown to hold by completely different methods. The
set of properties we chose to treat here is not meant to be comprehensive or
systematic, but quite a few rather diverse graph parameters will be covered.

4.1. Connectivity and perfect matchings

The vertex-connectivity of a graph G is the minimum number of vertices
that we need to delete to make G disconnected. We denote this parameter
by κ(G). For random graphs it is well known (see, e.g., [20]) that the vertex-
connectivity is almost surely the same as the minimum degree. Recently
it was also proved (see [61] and [30]) that random d-regular graphs are d-
vertex-connected. For (n, d, λ)-graphs it is easy to show the following.
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Theorem 4.1. Let G be an (n, d, λ)-graph with d ≤ n/2. Then the vertex-
connectivity of G satisfies:

κ(G) ≥ d− 36λ2/d.

Proof. We can assume that λ ≤ d/6, since otherwise there is nothing to
prove. Suppose that there is a subset S ⊂ V of size less than d − 36λ2/d
such that the induced graph G[V − S] is disconnected. Denote by U the
set of vertices of the smallest connected component of G[V − S] and set
W = V −(S∪U). Then |W | ≥ (n−d)/2 ≥ n/4 and there is no edge between
U and W . Also |U | + |S| > d, since all the neighbors of a vertex from U
are contained in S ∪ U . Therefore |U | ≥ 36λ2/d. Since there are no edges
between U andW , by Theorem 2.11, we have that d|U | |W |/n < λ

√

|U | |W |.
This implies that

|U | < λ2n2

d2|W | =
λ

d

n

|W |
λn

d
≤ 1

6
· 4 · λn

d
<
λn

d
.

Next note that, by Theorem 2.11, the number of edges spanned by U is at
most

e(U) ≤ d|U |2
2n

+
λ|U |

2
<
λn

d

d|U |
2n

+
λ|U |

2
=
λ|U |

2
+
λ|U |

2
= λ|U |.

As the degree of every vertex in U is d, it follows that

e(U, S) ≥ d|U | − 2e(U) > (d− 2λ)|U | ≥ 2d|U |/3.

On the other hand using again Theorem 2.11 together with the facts that
|U | ≥ 36λ2/d, |S| < d and d ≤ n/2 we conclude that

e(U, S) ≤ d|U | |S|
n

+ λ
√

|U | |S| < d

n
d|U | + λ

√

d|U | ≤ d|U |
2

+
λ
√
d|U |

√

|U |

≤ d|U |
2

+
λ
√
d|U |

6λ/
√
d

=
d|U |

2
+
d|U |

6
=

2d|U |
3

.

This contradiction completes the proof.

The constants in this theorem can be easily improved and we make no
attempt to optimize them. Note that, in particular, for an (n, d, λ)-graph
G with λ = O(

√
d ) we have that κ(G) = d− Θ(1).
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Next we present an example which shows that the assertion of Theorem
4.1 is tight up to a constant factor. Let G be any (n, d, λ)-graph with
λ = Θ(

√
d ). We already constructed several such graphs in the previous

section. For an integer k, consider a new graph Gk, which is obtained
by replacing each vertex of G by the complete graph of order k and by
connecting two vertices of Gk by an edge if and only if the corresponding
vertices of G are connected by an edge. Then it follows immediately from
the definition that Gk has n′ = nk vertices and is d′-regular graph with
d′ = dk+ k− 1. Let λ′ be the second eigenvalue of Gk. To estimate λ′ note
that the adjacency matrix of Gk equals to AG ⊗ Jk + In ⊗ AKk

. Here AG

is the adjacency matrix of G, Jk is the all one matrix of size k × k, In is
the identity matrix of size n × n and AKk

is the adjacency matrix of the
complete graph of order k. Also the tensor product of the m×n dimensional
matrix A = (aij) and the s× t-dimensional matrix B = (bkl) is the ms×nt-
dimensional matrix A⊗B, whose entry labelled

(

(i, k)(j, l)
)

is aijbkl. In case
A and B are symmetric matrices with spectrums {λ1, . . . , λn}, {µ1, . . . , µt}
respectively, it is a simple consequence of the definition that the spectrum
of A ⊗ B is {λiµk : i = 1, . . . , n, k = 1, . . . , t} (see, e.g. [64]). Therefore
the second eigenvalue of AG ⊗ Jk is kλ. On the other hand In ⊗AKk

is the
adjacency matrix of the disjoint union of k-cliques and therefore the absolute
value of all its eigenvalues is at most k−1. Using these two facts we conclude
that λ′ ≤ λk+k−1 and that Gk is (n′ = nk, d′ = dk+k−1, λ′ = λk+k−1)-
graph. Also it is easy to see that the set of vertices of Gk that corresponds
to a vertex in G has exactly dk neighbors outside this set. By deleting these
neighbors we can disconnect the graph Gk and thus

κ(Gk) ≤ dk = d′ − (k − 1) = d′ − Ω
(

(λ′)2/d′
)

.

Sometimes we can improve the result of Theorem 4.1 using the informa-
tion about co-degrees of vertices in our graph. Such result was used in [61]
to determine the vertex-connectivity of dense random d-regular graphs.

Proposition 4.2 [61]. Let G = (V,E) be a d-regular graph on n vertices
such that

√
n log n < d ≤ 3n/4 and the number of common neighbors for

every two distinct vertices in G is
(

1 + o(1)
)

d2/n. Then the graph G is
d-vertex-connected.

Similarly to vertex-connectivity, define the edge-connectivity of a graph
G to be the minimum number of edges that we need to delete to make
G disconnected. We denote this parameter by κ′(G). Clearly the edge-
connectivity is always at most the minimum degree of a graph. We also say
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that G has a perfect matching if there is a set of disjoint edges that covers
all the vertices of G. Next we show that (n, d, λ)-graphs even with a very
weak spectral gap are d-edge-connected and have a perfect matching (if the
number of vertices is even).

Theorem 4.3. Let G be an (n, d, λ)-graph with d − λ ≥ 2. Then G is
d-edge-connected. When n is even, it has a perfect matching.

Proof. Let U be a subset of vertices of G of size at most n/2. To prove
that G is d-edge-connected we need to show that there are always at least d
edges between U and V (G)−U . If 1 ≤ |U | ≤ d, then every vertex in U has
at least d−

(

|U | − 1
)

neighbors outside U and therefore e(U, V (G) − U) ≥
|U |
(

d− |U | + 1
)

≥ d. On the other hand if d ≤ |U | ≤ n/2, then using that
d− λ ≥ 2 together with Theorem 2.11 we obtain that

e
(

U, V (G) − U
)

≥ d|U |
(

n− |U |
)

n
− λ

√

|U |
(

n− |U |
)

(

1 − |U |
n

)(

1 − n− |U |
n

)

= (d− λ)

(

n− |U |
)

n
|U | ≥ 2 · 1

2
· |U | = |U | ≥ d,

and therefore κ′(G) = d.

To show that G contains a perfect matching we apply the celebrated
Tutte’s condition. Since n is even, we need to prove that for every nonempty
set of vertices S, the induced graph G[V − S] has at most |S| connected
components of odd size. Since G is d-edge-connected we have that there
are at least d edges from every connected component of G[V − S] to S.
On the other hand there are at most d|S| edges incident with vertices in
S. Therefore G[V − S] has at most |S| connected components and hence G
contains a perfect matching.

4.2. Maximum cut

Let G = (V,E) be a graph and let S be a nonempty proper subset of V .
Denote by (S, V − S) the cut of G consisting of all edges with one end in S
and another one in V − S. The size of the cut is the number of edges in it.
The MAX CUT problem is the problem of finding a cut of maximum size in
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G. Let f(G) be the size of the maximum cut in G. MAX CUT is one of the
most natural combinatorial optimization problems. It is well known that
this problem is NP-hard [45]. Therefore it is useful to have bounds on f(G)
based on other parameters of the graph, that can be computed efficiently.

Here we describe two such folklore results. First, consider a random
partition V = V1 ∪ V2, obtained by assigning each vertex v ∈ V to V1 or V2

with probability 1/2 independently. It is easy to see that each edge of G has
probability 1/2 to cross between V1 and V2. Therefore the expected number
of edges in the cut (V1, V2) is m/2, where m is the number of edges in G.
This implies that for every graph f(G) ≥ m/2. The example of a complete
graph shows that this lower bound is asymptotically optimal. The second
result provides an upper bound for f(G), for a regular graph G, in terms of
the smallest eigenvalue of its adjacency matrix.

Proposition 4.4. Let G be a d-regular graph (which may have loops) of
order n with m = dn/2 edges and let λ1 ≥ λ2 ≥ . . . ≥ λn be the eigenvalues
of the adjacency matrix of G. Then

f(G) ≤ m

2
− λnn

4
.

In particular if G is an (n, d, λ)-graph then f(G) ≤ (d+ λ)n/4.

Proof. Let A = (aij) be the adjacency matrix of G = (V,E) and let
V = {1, . . . , n}. Let x = (x1, . . . , xn) be any vector with coordinates ±1.
Since the graph G is d-regular we have

∑

(i,j)∈E

(xi − xj)
2 = d

n
∑

i=1

x2
i −

∑

i,j

aijxixj = dn− xtAx.

By the variational definition of the eigenvalues of A, for any vector z ∈ Rn,
ztAz ≥ λn‖z‖2. Therefore

(11)
∑

(i,j)∈E

(xi − xj)
2 = dn− xtAx ≤ dn− λn‖x‖2 = dn− λnn.

Let V = V1 ∪ V2 be an arbitrary partition of V into two disjoint subsets
and let e(V1, V2) be the number of edges in the bipartite subgraph of G with
bipartition (V1, V2). For every vertex v ∈ V (G) define xv = 1 if v ∈ V1 and
xv = −1 if v ∈ V2. Note that for every edge (i, j) of G, (xi − xj)

2 = 4 if
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this edge has its ends in the distinct parts of the above partition and is zero
otherwise. Now using (11), we conclude that

e(V1, V2) =
1

4

∑

(i,j)∈E

(xi − xj)
2 ≤ 1

4
(dn− λnn) =

m

2
− λnn

4
.

This upper bound is often used to show that some particular results
about maximum cuts are tight. For example this approach was used in [5]
and [8]. In these papers the authors proved that for every graph G with m

edges and girth at least r ≥ 4, f(G) ≥ m/2 + Ω(m
r

r+1 ). They also show,
using Proposition 4.4 and Examples 9, 6 from Section 3, that this bound is
tight for r = 4, 5.

4.3. Independent sets and the chromatic number

The independence number α(G) of a graph G is the maximum cardinality
of a set of vertices of G no two of which are adjacent. Using Theorem 2.11
we can immediately establish an upper bound on the size of a maximum
independent set of pseudo-random graphs.

Proposition 4.5. Let G be an (n, d, λ)-graph, then

α(G) ≤ λn

d+ λ
.

Proof. Let U be an independent set in G, then e(U) = 0 and by Theorem
2.11 we have that d|U |2/n ≤ λ|U |

(

1 − |U |/n
)

. This implies that |U | ≤
λn/(d+ λ).

Note that even when λ = O(
√
d ) this bound only has order of magni-

tude O(n/
√
d). This contrasts sharply with the behavior of random graphs

where it is known (see [20] and [49]) that the independence number of ran-
dom graph G(n, p) is only Θ(n

d log d) where d =
(

1 + o(1)
)

np. More strik-
ingly there are graphs for which the bound in Proposition 4.5 cannot be
improved. One such graph is the Paley graph Pq with q = p2 (Example 3
in the previous section). Indeed it is easy to see that in this case all ele-
ments of the subfield GF (p) ⊂ GF (p2) are quadratic residues in GF (p2).
This implies that for every quadratic non-residue β ∈ GF (p2) all elements
of any multiplicative coset βGF (p) form an independent set of size p. As
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we already mentioned, Pq is an (n, d, λ)-graph with n = p2, d = (p2 − 1)/2
and λ = (p+ 1)/2. Hence for this graph we get α(Pq) = λn/(d+ λ).

Next we obtain a lower bound on the independence number of pseudo-
random graphs. We present a slightly more general result by Alon et al.
[12] which we will need later.

Proposition 4.6 [12]. Let G be an (n, d, λ)-graph such that λ < d ≤ 0.9n.
Then the induced subgraph G[U ] of G on any subset U , |U | = m, contains
an independent set of size at least

α
(

G[U ]
)

≥ n

2(d− λ)
ln

(

m(d− λ)

n(λ+ 1)
+ 1

)

.

In particular,

α(G) ≥ n

2(d− λ)
ln

(

(d− λ)

(λ+ 1)
+ 1

)

.

Sketch of proof. First using Theorem 2.11 it is easy to show that if U is a
set of bn vertices of G, then the minimum degree in the induced subgraph
G[U ] is at most db+ λ(1− b) = (d− λ)b+ λ. Construct an independent set
I in the induced subgraph G[U ] of G by the following greedy procedure.
Repeatedly choose a vertex of minimum degree in G[U ], add it to the
independent set I and delete it and its neighbors from U , stopping when the
remaining set of vertices is empty. Let ai, i ≥ 0 be the sequence of numbers
defined by the following recurrence formula:

a0 = m,

ai+1 = ai −
(

d
ai

n
+ λ(1 − ai

n
) + 1

)

=

(

1 − d− λ

n

)

ai − (λ+ 1), ∀i ≥ 0.

By the above discussion, it is easy to see that the size of the remaining set
of vertices after i iterations is at least ai. Therefore the size of the resulting
independent set I is at least the smallest index i such that ai ≤ 0. By
solving the recurrence equation we obtain that this index satisfies:

i ≥ n

2(d− λ)
ln

(

m(d− λ)

n(λ+ 1)
+ 1

)

.

For an (n, d, λ)-graph G with λ ≤ d1−δ, δ > 0, this proposition implies
that α(G) ≥ Ω(n

d log d). This shows that the independence number of a
pseudo-random graph with a sufficiently small second eigenvalue is up to
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a constant factor at least as large as α
(

G(n, p)
)

with p = d/n. On the
other hand the graph Hk (Example 4, Section 3) shows that even when
λ ≤ O(

√
d ) the independence number of (n, d, λ)-graph can be smaller

than α
(

G(n, p)
)

with p = d/n. This graph has n = 2k−1 − 1 vertices,

degree d =
(

1 + o(1)
)

n/2 and λ = Θ(
√
d ). Also it is easy to see that

every independent set in Hk corresponds to a family of orthogonal vectors
in Zk

2 and thus has size at most k =
(

1 + o(1)
)

log2 n. This is only half of
the size of a maximum independent set in the corresponding random graph
G(n, 1/2).

A vertex-coloring of a graph G is an assignment of a color to each
of its vertices. The coloring is proper if no two adjacent vertices get the
same color. The chromatic number χ(G) of G is the minimum number
of colors used in a proper coloring of it. Since every color class in the
proper coloring of G forms an independent set we can immediately obtain
that χ(G) ≥

∣

∣V (G)
∣

∣/α(G). This together with Proposition 4.5 implies the
following result of Hoffman [48].

Corollary 4.7. Let G be an (n, d, λ)-graph. Then the chromatic number
of G is at least 1 + d/λ.

On the other hand, using Proposition 4.6, one can obtain the following
upper bound on the chromatic number of pseudo-random graphs.

Theorem 4.8 [12]. Let G be an (n, d, λ)-graph such that λ < d ≤ 0.9n.
Then the chromatic number of G satisfies

χ(G) ≤ 6(d− λ)

ln (d−λ
λ+1 + 1)

.

Sketch of proof. Color the graph G as follows. As long as the remaining
set of vertices U contains at least n/ ln (d−λ

λ+1 + 1) vertices, by Proposition
4.6 we can find an independent set of vertices in the induced subgraph G[U ]
of size at least

n

2(d− λ)
ln

( |U |(d− λ)

n(λ+ 1)
+ 1

)

≥ n

4(d− λ)
ln

(

d− λ

λ+ 1
+ 1

)

.

Color all the members of such a set by a new color, delete them from
the graph and continue. When this process terminates, the remaining
set of vertices U is of size at most n/ ln (d−λ

λ+1 + 1) and we used at most

4(d − λ)/ ln (d−λ
λ+1 + 1) colors so far. As we already mentioned above, for
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every subset U ′ ⊂ U the induced subgraph G[U ′] contains a vertex of degree
at most

(d− λ)
|U ′|
n

+ λ ≤ (d− λ)
|U |
n

+ λ ≤ d− λ

ln (d−λ
λ+1 + 1)

+ λ ≤ 2(d− λ)

ln (d−λ
λ+1 + 1)

− 1.

Thus we can complete the coloring of G by coloring G[U ] using at most
2(d− λ)/ ln (d−λ

λ+1 + 1) additional colors. The total number of colors used is

at most 6(d− λ)/ ln (d−λ
λ+1 + 1).

For an (n, d, λ)-graph G with λ ≤ d1−δ, δ > 0 this proposition implies
that χ(G) ≤ O( d

log d). This shows that the chromatic number of a pseudo-
random graph with a sufficiently small second eigenvalue is up to a constant
factor at least as small as χ

(

G(n, p)
)

with p = d/n. On the other hand, the
Paley graph Pq, q = p2, shows that sometimes the chromatic number of a
pseudo-random graph can be much smaller than the above bound, even the
in case λ = Θ(

√
d ). Indeed, as we already mentioned above, all elements

of the subfield GF (p) ⊂ GF (p2) are quadratic residues in GF (p2). This
implies that for every quadratic non-residue β ∈ GF (p2) all elements of
a multiplicative coset βGF (p) form an independent set of size p. Also all
additive cosets of βGF (p) are independent sets in Pq. This implies that
χ(Pq) ≤ √

q = p. In fact Pq contains a clique of size p (all elements of a
subfield GF (p)), showing that χ(Pq) =

√
q � q/ log q. Therefore the bound

in Corollary 4.7 is best possible.

A more complicated quantity related to the chromatic number is the
list-chromatic number χl(G) of G, introduced in [34] and [82]. This is the
minimum integer k such that for every assignment of a set S(v) of k colors to
every vertex v ofG, there is a proper coloring ofG that assigns to each vertex
v a color from S(v). The study of this parameter received a considerable
amount of attention in recent years, see, e.g., [2], [57] for two surveys. Note
that from the definition it follows immediately that χl(G) ≥ χ(G) and it is
known that the gap between these two parameters can be arbitrarily large.
The list-chromatic number of pseudo-random graphs was studied by Alon,
Krivelevich and Sudakov [12] and independently by Vu [84]. In [12] and
[84] the authors mainly considered graphs with all degrees

(

1+o(1)
)

np and
all co-degrees

(

1 + o(1)
)

np2. Here we use ideas from these two papers to
obtain an upper bound on the list-chromatic number of an (n, d, λ)-graphs.
This bound has the same order of magnitude as the list chromatic number
of the truly random graph G(n, p) with p = d/n (for more details see [12],
[84]).
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Theorem 4.9. Suppose that 0 < δ < 1 and let G be an (n, d, λ)-graph
satisfying λ ≤ d1−δ, d ≤ 0.9n. Then the list-chromatic number of G is
bounded by

χl(G) ≤ O

(

d

δ log d

)

.

Proof. Suppose that d is sufficiently large and consider first the case when
d ≤ n1−δ/4. Then by Theorem 2.11 the neighbors of every vertex in G span
at most d3/n+λd ≤ O(d2−δ/4) edges. Now we can apply the result of Vu [84]
which says that if the neighbors of every vertex in a graph G with maximum
degree d span at most O(d2−δ/4) edges then χl(G) ≤ O

(

d/(δ log d)
)

.

Now consider the case when d ≥ n1−δ/4. For every vertex v ∈ V , let
S(v) be a list of at least 7d

δ log n colors. Our objective is to prove that there
is a proper coloring of G assigning to each vertex a color from its list. As
long as there is a set C of at least n1−δ/2 vertices containing the same color
c in their lists we can, by Proposition 4.6, find an independent set of at
least δn

6d log n vertices in C, color them all by c, omit them from the graph
and omit the color c from all lists. The total number of colors that can
be deleted in this process cannot exceed 6d

δ log n (since in each such deletion

at least δn
6d log n vertices are deleted from the graph). When this process

terminates, no color appears in more than n1−δ/2 lists, and each list still
contains at least d

δ log n > n1−δ/2 colors. Therefore, by Hall’s theorem, we
can assign to each of the remaining vertices a color from its list so that
no color is being assigned to more than one vertex, thus completing the
coloring and the proof.

4.4. Small subgraphs

We now examine small subgraphs of pseudo-random graphs. Let H be a
fixed graph of order s with r edges and with automorphism group Aut(H).
Using the second moment method it is not difficult to show that for every
constant p the random graph G(n, p) contains

(

1 + o(1)
)

pr(1 − p)(
s
2)−r ns

∣

∣Aut(H)
∣

∣

induced copies of H. Thomason extended this result to jumbled graphs.
He showed in [79] that if a graph G is (p, α)-jumbled and psn � 42αs2
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then the number of induced subgraphs of G which are isomorphic to H is
(

1 + o(1)
)

ps(1 − p)(
s
2)−rns/

∣

∣Aut(H)
∣

∣ .

Here we present a result of Noga Alon [6] that proves that every large
subset of the set of vertices of (n, d, λ)-graph contains the “correct” number
of copies of any fixed sparse graph. An additional advantage of this result
is that its assertion depends not on the number of vertices s in H but only
on its maximum degree ∆ which can be smaller than s. Special cases of
this result have appeared in various papers including [11], [13] and probably
other papers as well. The approach here is similar to the one in [13].

Theorem 4.10. [6] Let H be a fixed graph with r edges, s vertices and
maximum degree ∆, and let G = (V,E) be an (n, d, λ)-graph, where, say,

d ≤ 0.9n. Let m < n satisfy m � λ(n
d)

∆
. Then, for every subset V ′ ⊂ V

of cardinality m, the number of (not necessarily induced) copies of H in V ′

is
(

1 + o(1)
) ms

∣

∣Aut(H)
∣

∣

(

d

n

)r

.

Note that this implies that a similar result holds for the number of

induced copies of H. Indeed, if n� d and m� λ(n
d)

∆+1
then the number

of copies of each graph obtained from H by adding to it at least one edge
is, by the above Theorem, negligible compared to the number of copies of
H, and hence almost all copies of H in V ′ are induced. If d = Θ(n) then,
by inclusion-exclusion, the number of induced copies of H in V ′ as above
is also roughly the “correct” number. A special case of the above theorem
implies that if λ = O(

√
d ) and d� n2/3, then any (n, d, λ)-graph contains

many triangles. As shown in Example 9, Section 3, this is not true when
d = (1

4 + o(1))n2/3, showing that the assertion of the theorem is not far
from being best possible.

Proof of Theorem 4.10. To prove the theorem, consider a random one-
to-one mapping of the set of vertices of H into the set of vertices V ′. Denote
by A(H) the event that every edge of H is mapped on an edge of G. In
such a case we say that the mapping is an embedding of H. Note that it
suffices to prove that

(12) Pr
(

A(H)
)

=
(

1 + o(1)
)

(

d

n

)r

.

We prove (12) by induction on the number of edges r. The base case
(r = 0) is trivial. Suppose that (12) holds for all graphs with less than r
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edges, and let uv be an edge of H. Let Huv be the graph obtained from
H by removing the edge uv (and keeping all vertices). Let Hu and Hv

be the induced subgraphs of H on the sets of vertices V (H) \ {v} and
V (H) \ {u}, respectively, and let H ′ be the induced subgraph of H on the
set of vertices V (H) \ {u, v}. Let r′ be the number of edges of H ′ and note
that r − r′ ≤ 2(∆ − 1) + 1 = 2∆ − 1. Clearly Pr

(

A(Huv)
)

= Pr
(

A(Huv) |
A(H ′)

)

·Pr
(

A(H ′)
)

. Thus, by the induction hypothesis applied to Huv and
to H ′:

Pr
(

A(Huv) | A(H ′)
)

=
(

1 + o(1)
)

(

d

n

)r−1−r′

.

For an embedding f ′ of H ′, let ν(u, f ′) be the number of extensions of f ′

to an embedding of Hu in V ′; ν(v, f ′) denotes the same for v. Clearly,
the number of extensions of f ′ to an embedding of Huv in V ′ is at least
ν(u, f ′)ν(v, f ′) − min

(

ν(u, f ′), ν(v, f ′)
)

and at most ν(u, f ′)ν(v, f ′). Thus
we have

ν(u, f ′)ν(v, f ′) − min
(

ν(u, f ′), ν(v, f ′)
)

(m− s+ 2)(m− s+ 1)

≤ Pr
(

A(Huv) | f ′
)

≤ ν(u, f ′)ν(v, f ′)
(m− s+ 2)(m− s+ 1)

.

Taking expectation over all embeddings f ′ the middle term becomes

Pr
(

A(Huv) | A(H ′)
)

, which is
(

1 + o(1)
)

( d
n)

r−1−r′
. Note that by our

choice of the parameters and the well known fact that λ = Ω(
√
d ), the

expectation of the term min
(

ν(u, f ′), ν(v, f ′)
)

(≤ m) is negligible and we
get

Ef ′

(

ν(u, f ′)ν(v, f ′) | A(H ′)
)

=
(

1 + o(1)
)

m2

(

d

n

)r−1−r′

.

Now let f be a random one-to-one mapping of V (H) into V ′. Let f ′ be a
fixed embedding of H ′. Then

Prf(A(H) | f |V (H)\{u,v} = f ′) =

(

d

n

)

ν(u, f ′)ν(v, f ′)
(m− s+ 2)(m− s+ 1)

+ δ,

where |δ| ≤ λ

√
ν(u,f ′)ν(v,f ′)

(m−s+2)(m−s+1) . This follows from Theorem 2.11, where we
take the possible images of u as the set U and the possible images of v as
the set W . Averaging over embeddings f ′ we get Pr

(

A(H) | A(H ′)
)

on the
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left hand side. On the right hand side we get
(

1 + o(1)
)

( d
n)

r−r′
from the

first term plus the expectation of the error term δ. By Jensen’s inequality,
the absolute value of this expectation is bounded by

λ

√

E
(

ν(u, f ′)ν(v, f ′)
)

(m− s+ 2)(m− s+ 1)
=
(

1 + o(1)
) λ

m

(

d

n

)(r−r′−1)/2

.

Our assumptions on the parameters imply that this is negligible with re-
spect to the main term. Therefore Pr

(

A(H)
)

= Pr
(

A(H) | A(H ′)
)

·
Pr
(

A(H ′)
)

=
(

1 + o(1)
) (

d
n

)r
, completing the proof of Theorem 4.10.

If we are only interested in the existence of one copy of H then one
can sometimes improve the conditions on d and λ in Theorem 4.10. For
example if H is a complete graph of order r then the following result was
proved in [11].

Proposition 4.11 [11]. Let G be an (n, d, λ)-graph. Then for every integer
r ≥ 2 every set of vertices of G of size more than

(λ+ 1)n

d

(

1 +
n

d
+ . . .+

(n

d

)r−2
)

contains a copy of a complete graph Kr.

In particular, when d ≥ Ω(n2/3) and λ ≤ O(
√
d ) then any (n, d, λ)-

graph contains a triangle and as shows Example 9 in Section 3 this is tight.
Unfortunately we do not know if this bound is also tight for r ≥ 4. It
would be interesting to construct examples of (n, d, λ)-graphs with d =
Θ(n1−1/(2r−3)) and λ ≤ O(

√
d ) which contain no copy of Kr.

Finally we present one additional result about the existence of odd cycles
in pseudo-random graphs.

Proposition 4.12. Let k ≥ 1 be an integer and let G be an (n, d, λ)-graph
such that d2k/n� λ2k−1. Then G contains a cycle of length 2k + 1.

Proof. Suppose that G contains no cycle of length 2k + 1. For every two
vertices u, v of G denote by d(u, v) the length of a shortest path from u to
v. For every i ≥ 1 let Ni(v) =

{

u | d(u, v) = i
}

be the set of all vertices in
G which are at distance exactly i from v. In [32] Erdős et al. proved that
if G contains no cycle of length 2k + 1 then for any 1 ≤ i ≤ k the induced
graph G

[

Ni(v)
]

contains an independent set of size
∣

∣Ni(v)
∣

∣/(2k− 1). This



42 M. Krivelevich and B. Sudakov

result together with Proposition 4.5 implies that for every vertex v and for
every 1 ≤ i ≤ k,

∣

∣Ni(v)
∣

∣ ≤ (2k − 1)λn/d. Since d2k/n � λ2k−1 we have
that λ = o(d). Therefore by Theorem 2.11

e
(

Ni(v)
)

≤ d

2n

∣

∣Ni(v)
∣

∣

2
+ λ
∣

∣Ni(v)
∣

∣ ≤ d

n

(2k − 1)λn

2d

∣

∣Ni(v)
∣

∣ + λ
∣

∣Ni(v)
∣

∣

< 2kλ
∣

∣Ni(v)
∣

∣ = o(d
∣

∣Ni(v)
∣

∣).

Next we prove by induction that for every 1 ≤ i ≤ k,
|Ni+1(v)|
|Ni(v)| ≥

(

1 − o(1)
)

d2/λ2. By the above discussion the number of edges spanned by
N1(v) is o(d2) and therefore e

(

N1(v), N2(v)
)

= d2 − o(d2) =
(

1 − o(1)
)

d2.
On the other hand, by Theorem 2.11

e
(

N1(v), N2(v)
)

≤ d

n

∣

∣N1(v)
∣

∣

∣

∣N2(v)
∣

∣ + λ
√

∣

∣N1(v)
∣

∣

∣

∣N2(v)
∣

∣

≤ d

n
d

(2k − 1)λn

d
+ λ
√

d
∣

∣N2(v)
∣

∣

= λd

√

∣

∣N2(v)
∣

∣

d
+O(λd) = λd

√

∣

∣N2(v)
∣

∣

∣

∣N1(v)
∣

∣

+ o(d2).

Therefore
|N2(v)|
|N1(v)| ≥

(

1 − o(1)
)

d2/λ2. Now assume that
|Ni(v)|
|Ni−1(v)| ≥

(

1 −
o(1)

)

d2/λ2. Since the number of edges spanned by Ni(v) is o(d
∣

∣Ni(v)
∣

∣) we
obtain

e
(

Ni(v), Ni+1(v)
)

= d
∣

∣Ni(v)
∣

∣ − 2e
(

Ni(v)
)

− e
(

Ni−1(v), Ni(v)
)

≥ d
∣

∣Ni(v)
∣

∣ − o(d
∣

∣Ni(v)
∣

∣)− d
∣

∣Ni−1(v)
∣

∣

≥
(

1 − o(1)
)

d
∣

∣Ni(v)
∣

∣ −
(

1 + o(1)
)

d(λ2/d2)
∣

∣Ni(v)
∣

∣

=
(

1 − o(1)
)

d
∣

∣Ni(v)
∣

∣ − o(d
∣

∣Ni(v)
∣

∣)

=
(

1 − o(1)
)

d
∣

∣Ni(v)
∣

∣ .
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On the other hand, by Theorem 2.11

e
(

Ni(v), Ni+1(v)
)

≤ d

n

∣

∣Ni(v)
∣

∣

∣

∣Ni+1(v)
∣

∣ + λ
√

∣

∣Ni(v)
∣

∣

∣

∣Ni+1(v)
∣

∣

≤ d

n

(2k − 1)λn

d

∣

∣Ni(v)
∣

∣ + λ
√

∣

∣Ni(v)
∣

∣

∣

∣Ni+1(v)
∣

∣

= O(λ
∣

∣Ni(v)
∣

∣) + λ
∣

∣Ni(v)
∣

∣

√

∣

∣Ni+1(v)
∣

∣

∣

∣Ni(v)
∣

∣

= λ
∣

∣Ni(v)
∣

∣

√

∣

∣Ni+1(v)
∣

∣

∣

∣Ni(v)
∣

∣

+ o(d
∣

∣Ni(v)
∣

∣).

Therefore
|Ni+1(v)|
|Ni(v)| ≥

(

1 − o(1)
)

d2/λ2 and we proved the induction step.

Finally note that

∣

∣Nk(v)
∣

∣ = d
k−1
∏

i=1

∣

∣Ni+1(v)
∣

∣

∣

∣Ni(v)
∣

∣

≥
(

1 + o(1)
)

d

(

d2

λ2

)k−1

=
(

1 + o(1)
) d2k−1

λ2k−2
� (2k − 1)

λn

d
.

This contradiction completes the proof.

This result implies that when d � n
2

2k+1 and λ ≤ O(
√
d ) then any

(n, d, λ)-graph contains a cycle of length 2k + 1. As shown by Example 10
of the previous section this result is tight. It is worth mentioning here that
it follows from the result of Bondy and Simonovits [22] that any d-regular
graph with d� n1/k contains a cycle of length 2k. Here we do not need to
make any assumption about the second eigenvalue λ. This bound is known
to be tight for k = 2, 3, 5 (see Examples 6,7, Section 3).

4.5. Extremal properties

Turán’s theorem [81] is one of the fundamental results in Extremal Graph
Theory. It states that among n-vertex graphs not containing a clique of
size t the complete (t − 1)-partite graph with (almost) equal parts has the
maximum number of edges. For two graphs G and H we define the Turán
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number ex(G,H) of H in G, as the largest integer e, such that there is an
H-free subgraph of G with e edges. Obviously ex(G,H) ≤

∣

∣E(G)
∣

∣ , where
E(G) denotes the edge set of G. Turán’s theorem, in an asymptotic form,
can be restated as

ex(Kn,Kt) =

(

t− 2

t− 1
+ o(1)

)(

n

2

)

,

that is the largest Kt-free subgraph of Kn contains approximately t−2
t−1 -

fraction of its edges. Here we would like to describe an extension of this
result to (n, d, λ)-graphs.

For an arbitrary graph G on n vertices it is easy to give a lower bound on
ex(G,Kt) following Turán’s construction. One can partition the vertex set
of G into t− 1 parts such that the degree of each vertex within its own part
is at most 1

t−1 -times its degree in G. Thus the subgraph consisting of the

edges of G connecting two different parts has at least a t−2
t−1 -fraction of the

edges of G and is clearly Kt-free. We say that a graph (or rather a family of
graphs) is t-Turán if this trivial lower bound is essentially an upper bound
as well. More precisely, G is t-Turán if ex(G,Kt) = ( t−2

t−1 + o(1))
∣

∣E(G)
∣

∣ .

It has been shown that for any fixed t, there is a number m(t, n) such
that almost all graphs on n vertices with m ≥ m(t, n) edges are t-Turán (see
[77], [51] for the most recent estimate form(t, n)). However, these results are
about random graphs and do not provide a deterministic sufficient condition
for a graph to be t-Turán. It appears that such a condition can be obtained
by a simple assumption about the spectrum of the graph. This was proved
by Sudakov, Szabó and Vu in [75]. They obtained the following result.

Theorem 4.13 [75]. Let t ≥ 3 be an integer and let G = (V,E) be an
(n, d, λ)-graph. If λ = o(dt−1/nt−2) then

ex(G,Kt) =

(

t− 2

t− 1
+ o(1)

)

∣

∣E(G)
∣

∣ .

Note that this theorem generalizes Turán’s theorem, as the second eigen-
value of the complete graph Kn is 1.

Let us briefly discuss the sharpness of Theorem 4.13. For t = 3, one can
show that its condition involving n, d and λ is asymptotically tight. Indeed,
in this case the above theorem states that if d2/n � λ, then one needs to
delete about half of the edges of G to destroy all the triangles. On the
other hand, by taking the example of Alon (Section 3, Example 9) whose
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parameters are: d = Θ(n2/3), λ = Θ(n1/3), and blowing it up (which means
replacing each vertex by an independent set of size k and connecting two
vertices in the new graph if and only if the corresponding vertices of G are
connected by an edge) we get a graph G(k) with the following properties:

|V (G(k)
) | = nk = nk; G(k) is dk = dk-regular; G(k) is triangle-free;

λ
(

G(k)
)

= kλ and λ
(

G(k)
)

= Ω
(

d2
k/nk

)

.

The above bound for the second eigenvalue of G(k) can be obtained by using
well known results on the eigenvalues of the tensor product of two matrices,
see [59] for more details. This construction implies that for t = 3 and any
sensible degree d the condition in Theorem 4.13 is not far from being best
possible.

4.6. Factors and fractional factors

Let H be a fixed graph on n vertices. We say that a graph G on n vertices
has an H-factor if G contains n/h vertex disjoint copies of H. Of course,
a trivial necessary condition for the existence of an H-factor in G is that h
divides n. For example, if H is just an edge H = K2, then an H-factor is a
perfect matching in G.

One of the most important classes of graph embedding problems is to
find sufficient conditions for the existence of an H-factor in a graph G,
usually assuming that H is fixed while the order n of G grows. In many
cases such conditions are formulated in terms of the minimum degree of G.
For example, the classical result of Hajnal and Szemerédi [47] asserts that if
the minimum degree δ(G) satisfies δ(G) ≥ (1− 1

r)n, then G contains bn/rc
vertex disjoint copies of Kr. The statement of this theorem is easily seen to
be tight.

It turns our that pseudo-randomness allows in many cases to significantly
weaken sufficient conditions for H-factors and to obtain results which fail
to hold for general graphs of the same edge density.

Consider first the case of a constant edge density p. In this case the
celebrated Blow-up Lemma of Komlós, Sárközy and Szemerédi [54] can be
used to show the existence of H-factors. In order to formulate the Blow-up
Lemma we need to introduce the notion of a super-regular pair. Given ε > 0
and 0 < p < 1, a bipartite graph G with bipartition (V1, V2), |V1| = |V2| = n,
is called super (p, ε)-regular if
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1. For all vertices v ∈ V (G),

(p− ε)n ≤ d(v) ≤ (p+ ε)n ;

2. For every pair of sets (U,W ), U ⊂ V1, W ⊂ V2, |U |, |W | ≥ εn,

∣

∣

∣

∣

∣

e(U,W )

|U | |W | −
∣

∣E(G)
∣

∣

n2

∣

∣

∣

∣

∣

≤ ε.

Theorem 4.14 [54]. For every choice of integers r and ∆ and a real
0 < p < 1 there exist an ε > 0 and an integer n0(ε) such that the following
is true. Consider an r-partite graph G with all partition sets V1, . . . , Vr of
order n > n0 and all

(

r
2

)

bipartite subgraphs G[Vi, Vj ] super (p, ε)-regular.
Then for every r-partite graph H with maximum degree ∆(H) ≤ ∆ and all
partition sets X1, . . . , Xr of order n, there exists an embedding f of H into
G with each set Xi mapped onto Vi, i = 1, . . . , r.

(The above version of the Blow-up Lemma, due to Rödl and Ruciński
[71], is somewhat different from and yet equivalent to the original formula-
tion of Komlós et al. We use it here as it is somewhat closer in spirit to the
notion of pseudo-randomness).

The Blow-up Lemma is a very powerful embedding tool. Combined
with another “big cannon”, the Szemerédi Regularity Lemma, it can be
used to obtain approximate versions of many of the most famous embedding
conjectures. We suggest the reader to consult a survey of Komlós [53] for
more details and discussions.

It is easy to show that if G is an (n, d, λ)-graph with d = Θ(n) and
λ = o(n), and h divides n, then a random partition of V (G) into h equal
parts V1, . . . , Vh produces almost surely

(

h
2

)

super (d/n, ε)-regular pairs.
Thus the Blow-up Lemma can be applied to the obtained h-partite subgraph
of G and we get:

Corollary 4.15. Let G be an (n, d, λ)-graph with d = Θ(n), λ = o(n). If
h divides n, then G contains an H-factor, for every fixed graph H on h
vertices.

The case of a vanishing edge density p = o(1) is as usual significantly
more complicated. Here a sufficient condition for the existence of an H-
factor should depend heavily on the graph H, as there may exist quite
dense pseudo-random graphs without a single copy of H, see, for example,
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the Alon graph (Example 9 of Section 3). When H = K2, already a very
weak pseudo-randomness condition suffices to guarantee an H-factor, or a
perfect matching, as provided by Theorem 4.3. We thus consider the case
H = K3, the task here is to guarantee a triangle factor, i.e. a collection of
n/3 vertex disjoint triangles. This problem has been treated by Krivelevich,
Sudakov and Szabó [59] who obtained the following result:

Theorem 4.16 [59]. Let G be an (n, d, λ)-graph. If n is divisible by 3 and

λ = o

(

d3

n2 logn

)

,

then G has a triangle factor.

For best pseudo-random graphs with λ = Θ(
√
d ) the condition of the

above theorem is fulfilled when d� n4/5 log2/5 n.

To prove Theorem 4.16 Krivelevich et al. first partition the vertex set
V (G) into three parts V1, V2, V3 of equal cardinality at random. Then they
choose a perfect matching M between V1 an V2 at random and form an
auxiliary bipartite graph Γ whose parts are M and V3, and whose edges are
formed by connecting e ∈M and v ∈ V3 if both endpoints of e are connected
by edges to v in G. The existence of a perfect matching in Γ is equivalent
to the existence of a triangle factor in G. The authors of [59] then proceed
to show that if M is chosen at random then the Hall condition is satisfied
for Γ with positive probability.

The result of Theorem 4.16 is probably not tight. In fact, the following
conjecture is stated in [59]:

Conjecture 4.17 [59]. There exists an absolute constant c > 0 so that
every d-regular graph G on 3n vertices, satisfying λ(G) ≤ cd2/n, has a
triangle factor.

If true the above conjecture would be best possible, up to a constant
multiplicative factor. This is shown by taking the example of Alon (Section
3, Example 9) and blowing each of its vertices by an independent set of
size k. As we already discussed in the previous section (see also [59]), this
gives a triangle-free dk-regular graph G(k) on nk vertices which satisfies
λ
(

G(k)
)

= Ω
(

d2
k/nk

)

.

Krivelevich, Sudakov and Szabó considered in [59] also the fractional
version of the triangle factor problem. Given a graph G = (V,E), denote
by T = T (G) the set of all triangles of G. A function f : T → R+ is called
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a fractional triangle factor if for every v ∈ V (G) one has
∑

v∈t f(t) = 1. If
G contains a triangle factor T0, then assigning values f(t) = 1 for all t ∈ T0,
and f(t) = 0 for all other t ∈ T produces a fractional triangle factor. This
simple argument shows that the existence of a triangle factor in G implies
the existence of a fractional triangle factor. The converse statement is easily
seen to be invalid in general.

The fact that a fractional triangle factor f can take non-integer values,
as opposed to the characteristic vector of a “usual” (i.e. integer) triangle
factor, enables to invoke the powerful machinery of Linear Programming to
prove a much better result than Theorem 4.16.

Theorem 4.18 [59]. Let G = (V,E) be a (n, d, λ)-graph. If λ ≤ 0.1d2/n
then G has a fractional triangle factor.

This statement is optimal up to a constant factor – see the discussion
following Conjecture 4.17.

Already for the next case H = K4 analogs of Theorem 4.16 and 4.18
are not known. In fact, even an analog of Conjecture 4.17 is not available
either, mainly due to the fact that we do not know the weakest possible
spectral condition guaranteeing a single copy of K4, or Kr in general, for
r ≥ 4.

Finally it would be interesting to show that for every integer ∆ there
exist a real M and an integer n0 so that the following is true. If n ≥ n0 and
G is an (n, d, λ)-graph for which λ ≤ d(d/n)M , then G contains a copy of
any graph H on at most n vertices with maximum degree ∆(H) ≤ ∆. This
can be considered as a sparse analog of the Blow-up Lemma.

4.7. Hamiltonicity

A Hamilton cycle in a graph is a cycle passing through all the vertices of
this graph. A graph is called Hamiltonian if it has at least one Hamilton
cycle. For background information on Hamiltonian cycles the reader can
consult a survey of Chvátal [28].

The notion of Hamilton cycles is one of the most central in modern
Graph Theory, and many efforts have been devoted to obtain sufficient con-
ditions for Hamiltonicity. The absolute majority of such known conditions
(for example, the famous theorem of Dirac asserting that a graph on n ver-
tices with minimal degree at least n/2 is Hamiltonian) deal with graphs
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which are fairly dense. Apparently there are very few sufficient conditions
for the existence of a Hamilton cycle in sparse graphs.

As it turns out spectral properties of graphs can supply rather powerful
sufficient conditions for Hamiltonicity. Here is one such result, quite general
and yet very simple to prove, given our knowledge of properties of pseudo-
random graphs.

Proposition 4.19. Let G be an (n, d, λ)-graph. If

d− 36
λ2

d
≥ λn

d+ λ
,

then G is Hamiltonian.

Proof. According to Theorem 4.1 G is (d−36λ2/d)-vertex-connected. Also,
α(G) ≤ λn/(d + λ), as stated in Proposition 4.5. Finally, a theorem of
Chvátal and Erdős [29] asserts that if the vertex-connectivity of a graph G
is at least as large as its independence number, then G is Hamiltonian.

The Chvátal–Erdős Theorem has also been used by Thomason in [79],
who proved that a (p, α)-jumbled graph G with minimal degree δ(G) =
Ω(α/p) is Hamiltonian. His proof is quite similar in spirit to that of the
above proposition.

Assuming that λ = o(d) and d → ∞, the condition of Proposition 4.19
reads then as: λ ≤

(

1−o(1)
)

d2/n. For best possible pseudo-random graphs,

where λ = Θ(
√
d ), this condition starts working when d = Ω(n2/3).

One can however prove a much stronger asymptotical result, using more
sophisticated tools for assuring Hamiltonicity. The authors prove such a
result in [58]:

Theorem 4.20 [58]. Let G be an (n, d, λ)-graph. If n is large enough and

λ ≤ (log logn)2

1000 log n(log log log n)
d,

then G is Hamiltonian.

The proof of Theorem 4.20 is quite involved technically. Its main in-
strument is the famous rotation-extension technique of Posa [70], or rather
a version of it developed by Komlós and Szemerédi in [56] to obtain the ex-
act threshold for the appearance of a Hamilton cycle in the random graph
G(n, p). We omit the proof details here, referring the reader to [58].
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For reasonably good pseudo-random graphs, in which λ ≤ d1−ε for some
ε > 0, Theorem 4.20 starts working already when the degree d is only poly-
logarithmic in n – quite a progress compared to the easy Proposition 4.19!
It is possible though that an even stronger result is true as given by the
following conjecture:

Conjecture 4.21 [58]. There exists a positive constant C such that for
large enough n, any (n, d, λ)-graph that satisfies d/λ > C contains a Hamil-
ton cycle.

This conjecture is closely related to another well known problem on
Hamiltonicity. The toughness t(G) of a graph G is the largest real t so
that for every positive integer x ≥ 2 one should delete at least tx vertices
from G in order to get an induced subgraph of it with at least x connected
components. G is t-tough if t(G) ≥ t. This parameter was introduced by
Chvátal in [27], where he observed that Hamiltonian graphs are 1-tough
and conjectured that t-tough graphs are Hamiltonian for large enough t.
Alon showed in [4] that if G is an (n, d, λ)-graph, then the toughness of G
satisfies t(G) > Ω(d/λ). Therefore the conjecture of Chvátal implies the
above conjecture.

Krivelevich and Sudakov used Theorem 4.20 in [58] to derive Hamiltonic-
ity of sparse random Cayley graphs. Given a group G of order n, choose
a set S of s non-identity elements uniformly at random and form a Cayley
graph Γ(G,S∪S−1) (see Example 8 in Section 3 for the definition of a Cay-
ley graph). The question is how large should be the value of t = t(n) so as
to guarantee the almost sure Hamiltonicity of the random Cayley graph no
matter which group G we started with.

Theorem 4.22 [58]. Let G be a group of order n. Then for every c > 0
and large enough n a Cayley graph X(G,S ∪ S−1), formed by choosing a
set S of c log5 n random generators in G, is almost surely Hamiltonian.

Sketch of proof. Let λ be the second largest by absolute value eigenvalue of
X(G,S). Note that the Cayley graph X(G,S) is d-regular for d ≥ c log5 n.
Therefore to prove Hamiltonicity of X(G,S), by Theorem 4.20 it is enough
to show that almost surely λ/d ≤ O(log n). This can be done by applying
an approach of Alon and Roichman [16] for bounding the second eigenvalue
of a random Cayley graph.

We note that a well known conjecture claims that every connected
Cayley graph is Hamiltonian. If true the conjecture would easily imply
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that as few as O(logn) random generators are enough to give almost sure
connectivity and thus Hamiltonicity.

4.8. Random subgraphs of pseudo-random graphs

There is a clear tendency in recent years to study random graphs different
from the classical by now model G(n, p) of binomial random graphs. One of
the most natural models for random graphs, directly generalizing G(n, p),
is defined as follows. Let G = (V,E) be a graph and let 0 < p < 1. The
random subgraph Gp if formed by choosing every edge of G independently
and with probability p. Thus, when G is the complete graph Kn we get back
the probability space G(n, p). In many cases the obtained random graph Gp

has many interesting and peculiar features, sometimes reminiscent of those
of G(n, p), and sometimes inherited from those of the host graph G.

In this subsection we report on various results obtained on random
subgraphs of pseudo-random graphs. While studying this subject, we study
in fact not a single probability space, but rather a family of probability
spaces, having many common features, guaranteed by those of pseudo-
random graphs. Although several results have already been achieved in
this direction, overall it is much less developed than the study of binomial
random graphs G(n, p), and one can certainly expect many new results on
this topic to appear in the future.

We start with Hamiltonicity of random subgraphs of pseudo-random
graphs. As we learned in the previous section spectral condition are in many
cases sufficient to guarantee Hamiltonicity. Suppose then that a host graph
G is a Hamiltonian (n, d, λ)-graph. How small can the edge probability
p = p(n) be chosen so as to guarantee almost sure Hamiltonicity of the
random subgraph Gp? This question has been studied by Frieze and the
first author in [42]. They obtained the following result.

Theorem 4.23 [42]. Let G be an (n, d, λ)-graph. Assume that λ =

o
(

d5/2

n3/2(log n)3/2

)

. Form a random subgraph Gp of G by choosing each edge

of G independently with probability p. Then for any function ω(n) tending
to infinity arbitrarily slowly:

1. if p(n) = 1
d

(

logn + log logn − ω(n)
)

, then Gp is almost surely not
Hamiltonian;
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2. if p(n) = 1
d

(

log n+log log n+ω(n)
)

, then Gp is almost surely Hamil-
tonian.

Just as in the case of G(n, p) (see, e.g. [20]) it is quite easy to predict
the critical probability for the appearance of a Hamilton cycle in Gp. An
obvious obstacle for its existence is a vertex of degree at most one. If such a
vertex almost surely exists in Gp, then Gp is almost surely non-Hamiltonian.
It is a straightforward exercise to show that the smaller probability in the
statement of Theorem 4.23 gives the almost sure existence of such a vertex.
The larger probability can be shown to be sufficient to eliminate almost
surely all vertices of degree at most one in Gp. Proving that this is sufficient
for almost sure Hamiltonicity is much harder. Again as in the case of G(n, p)
the rotation-extension technique of Posa [70] comes to our rescue. We omit
technical details of the proof of Theorem 4.23, referring the reader to [42].

One of the most important events in the study of random graphs was
the discovery of the sudden appearance of the giant component by Erdős
and Rényi [33]. They proved that all connected components of G(n, c/n)
with 0 < c < 1 are almost surely trees or unicyclic and have size O(logn).
On the other hand, if c > 1, then G(n, c/n) contains almost surely a unique
component of size linear in n (the so called giant component), while all
other components are at most logarithmic in size. Thus, the random graph
G(n, p) experiences the so called phase transition at p = 1/n.

Very recently Frieze, Krivelevich and Martin showed [43] that a very sim-
ilar behavior holds for random subgraphs of many pseudo-random graphs.
To formulate their result, for α > 1 we define ᾱ < 1 to be the unique
solution (other than α) of the equation xe−x = αe−α.

Theorem 4.24 [43]. Let G be an (n, d, λ)-graph. Assume that λ = o(d).
Consider the random subgraph Gα/d, formed by choosing each edge of G
independently and with probability p = α/d. Then:

(a) If α < 1 then almost surely the maximum component size is O(logn).

(b) If α > 1 then almost surely there is a unique giant component of
asymptotic size (1 − ᾱ

α)n and the remaining components are of size
O(log n).

Let us outline briefly the proof of Theorem 4.24. First, bound (4) and
known estimates on the number of k-vertex trees in d-regular graphs are used
to get estimates on the expectation of the number of connected components
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of size k in Gp, for various values of k. Using these estimates it is proved
then that almost surely Gp has no connected components of size between
(1/αγ) log n and γn for a properly chosen γ = γ(α). Define f(α) to be 1
for all α ≤ 1, and to be ᾱ/α for α > 1. One can show then that almost
surely in Gα/d the number of vertices in components of size between 1 and

d1/3 is equal to nf(α) up to the error term which is O(n5/6 log n). This
is done by first calculating the expectation of the last quantity, which is
asymptotically equal to nf(α), and then by applying the Azuma–Hoeffding
martingale inequality.

Given the above, the proof of Theorem 4.24 is straightforward. For the
case α < 1 we have nf(α) = n and therefore all but at most n5/6 logn
vertices lie in components of size at most (1/αγ) log n. The remaining
vertices should be in components of size at least γn, but there is no room
for such components. If α > 1, then (ᾱ/α)n+O(n5/6 log n) vertices belong
to components of size at most (1/αγ) log n, and all remaining vertices are
in components of size at least γn. These components are easily shown to
merge quickly into one giant component of a linear size. The detail can be
found in [43] (see also [7] for some related results).

One of the recent most popular subjects in the study of random graphs
is proving sharpness of thresholds for various combinatorial properties.
This direction of research was spurred by a powerful theorem of Friedgut–
Bourgain [37], providing a sufficient condition for the sharpness of a thresh-
old. The authors together with Vu apply this theorem in [60] to show sharp-
ness of graph connectivity, sometimes also called network reliability, in ran-
dom subgraphs of a wide class of graphs. Here are the relevant definitions.
For a connected graph G and edge probability p denote by f(p) = f(G, p)
the probability that a random subgraph Gp is connected. The function
f(p) can be easily shown to be strictly monotone. For a fixed positive con-
stant x ≤ 1 and a graph G, let px denote the (unique) value of p where
f(G, px) = x. We say that a family (Gi)

∞
i=1 of graphs satisfies the sharp

threshold property if for any fixed positive ε ≤ 1/2

lim
i→∞

pε(Gi)

p1−ε(Gi)
→ 1.

Thus the threshold for connectivity is sharp if the width of the transition
interval is negligible compared to the critical probability. Krivelevich, Su-
dakov and Vu proved in [60] the following theorem.
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Theorem 4.25 [60]. Let (Gi)
∞
i=1 be a family of distinct graphs, where Gi

has ni vertices, maximum degree di and it is ki-edge-connected. If

lim
i→∞

ki lnni

di
= ∞,

then the family (Gi)
∞
i=1 has a sharp connectivity threshold.

The above theorem extends a celebrated result of Margulis [67] on net-
work reliability (Margulis’ result applies to the case where the critical prob-
ability is a constant).

Since (n, d, λ) graphs are d
(

1 − o(1)
)

-connected as long as λ = o(d) by
Theorem 4.1, we immediately get the following result on the sharpness of
the connectivity threshold for pseudo-random graphs.

Corollary 4.26. Let G be an (n, d, λ)-graph. If λ = o(d), then the
threshold for connectivity in the random subgraph Gp is sharp.

Thus already weak connectivity is sufficient to guarantee sharpness of
the threshold. This result has potential practical applications as discussed
in [60].

Finally we consider a different probability space created from a graph
G = (V,E). This space is obtained by putting random weights on the
edges of G independently. One can then ask about the behavior of optimal
solutions for various combinatorial optimization problems.

Beveridge, Frieze and McDiarmid treated in [19] the problem of esti-
mating the weight of a random minimum length spanning tree in regular
graphs. For each edge e of a connected graph G = (V,E) define the length
Xe of e to be a random variable uniformly distributed in the interval (0, 1),
where all Xe are independent. Let mst(G,X) denote the minimum length
of a spanning tree in such a graph, and let mst(G) be the expected value
of mst(G,X). Of course, the value of mst(G) depends on the connectiv-
ity structure of the graph G. Beveridge et al. were able to prove however
that if the graph G is assumed to be almost regular and has a modest edge
expansion, then mst(G) can be calculated asymptotically:

Theorem 4.27 [19]. Let α = α(d) = O(d−1/3) and let ρ(d) and ω(d) tend
to infinity with d. Suppose that the graph G = (V,E) satisfies

d ≤ d(v) ≤ (1 + α)d for all v ∈ V (G),
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and

e(S, V \ S)

|S| ≥ ωd2/3 log d for all S ⊂ V with d/2 < |S| ≤ min
{

ρd, |V |/2
}

.

Then

mst(G) =
(

1 + o(1)
) |V |
d
ζ(3),

where the o(1) term tends to 0 as d→ ∞, and ζ(3) =
∑∞

i=1 i
−3 = 1.202 . . . .

The above theorem extends a celebrated result of Frieze [40], who proved
it in the case of the complete graph G = Kn.

Pseudo-random graphs supply easily the degree of edge expansion re-
quired by Theorem 4.27. We thus get:

Corollary 4.28. Let G be an (n, d, λ)-graph. If λ = o(d) then

mst(G) =
(

1 + o(1)
) n

d
ζ(3).

Beveridge, Frieze and McDiarmid also proved that the random variable
mst(G,X) is sharply concentrated around its mean given by Theorem 4.27.

Comparing between the very well developed research of binomial random
graphs G(n, p) and few currently available results on random subgraphs of
pseudo-random graphs, we can say that many interesting problems in the
latter subject are yet to be addressed, such as the asymptotic behavior of the
independence number and the chromatic number, connectivity, existence of
matchings and factors, spectral properties, to mention just a few.

4.9. Enumerative aspects

Pseudo-random graphs on n vertices with edge density p are quite similar
in many aspects to the random graph G(n, p). One can thus expect that
counting statistics in pseudo-random graphs will be close to those in truly
random graphs of the same density. As the random graph G(n, p) is a prod-
uct probability space in which each edge behaves independently, computing
the expected number of most subgraphs in G(n, p) is straightforward. Here
are just a few examples:

• The expected number of perfect matchings in G(n, p) is n!
(n/2)!2n/2 p

n/2

(assuming of course that n is even);
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• The expected number of spanning trees in G(n, p) is nn−2pn−1;

• The expected number of Hamilton cycles in G(n, p) is (n−1)!
2 pn.

In certain cases it is possible to prove that the actual number of subgraphs
in a pseudo-random graph on n vertices with edge density p = p(n) is close
to the corresponding expected value in the binomial random graph G(n, p).

Frieze in [41] gave estimates on the number of perfect matchings and
Hamilton cycles in what he calls super ε-regular graphs. Let G = (V,E) be
a graph on n vertices with

(

n
2

)

p edges, where 0 < p < 1 is a constant. Then
G is called super (p, ε)-regular, for a constant ε > 0, if

1. For all vertices v ∈ V (G),

(p− ε)n ≤ d(v) ≤ (p+ ε)n ;

2. For all U,W ⊂ V , U ∩W = ∅, |U |, |W | ≥ εn,

∣

∣

∣

∣

e(U,W )

|U | |W | − p

∣

∣

∣

∣

≤ ε.

Thus, a super (p, ε)-regular graph G can be considered a non-bipartite ana-
log of the notion of a super-regular pair defined above. In our terminology,
G is a weakly pseudo-random graph of constant density p, in which all de-
grees are asymptotically equal to pn. Assume that n = 2ν is even. Let
m(G) denote the number of perfect matchings in G and let h(G) denote
the number of Hamilton cycles in G, and let t(G) denote the number of
spanning trees in G.

Theorem 4.29 [41]. If ε is sufficiently small and n is sufficiently large
then

(a)

(p− 2ε)ν n!

ν!2ν
≤ m(G) ≤ (p+ 2ε)ν n!

ν!2ν
;

(b)

(p− 2ε)nn! ≤ h(G) ≤ (p+ 2ε)nn! ;
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Theorem 4.29 thus implies that the numbers of perfect matchings and
of Hamilton cycles in super ε-regular graphs are quite close asymptotically
to the expected values of the corresponding quantities in the random graph
G(n, p). Part (b) of Theorem 4.29 improves significantly Corollary 2.9 of
Thomason [79] which estimates from below the number of Hamilton cycles
in jumbled graphs.

Here is a very brief sketch of the proof of Theorem 4.29. To estimate
the number of perfect matchings in G, Frieze takes a random partition of
the vertices of G into two equal parts A and B and estimates the number
of perfect matchings in the bipartite subgraph of G between A and B. This
bipartite graph is almost surely super 2ε-regular, which allows to apply
bounds previously obtained by Alon, Rödl and Ruciński [15] for such graphs.

Since each Hamilton cycle is a union of two perfect matchings, it follows
immediately that h(G) ≤ m2(G)/2, establishing the desired upper bound
on h(G). In order to prove a lower bound, let fk be the number of 2-factors
in G containing exactly k cycles, so that f1 = h(G). Let also A be the
number of ordered pairs of edge disjoint perfect matchings in G. Then

(13) A =

bn/3c
∑

i=1

2kfk.

For a perfect matching M in G let aM be the number of perfect matchings
of G disjoint from M . Since deleting M disturbs ε-regularity of G only
marginally, one can use part (a) of the theorem to get aM ≥ (p− 2ε)ν n!

ν!2ν .
Thus

(14) A =
∑

M∈G

aM ≥
(

(p− 2ε)ν n!

ν!2ν

)2

≥ (p− 2ε)nn! · 1

3n1/2
.

Next Frieze shows that the ratio fk+1/fk can be bounded by a polynomial
in n for all 1 ≤ k ≤ k1 = O(p−2), fk ≤ 5−(k−k0)/2 max {fk0+1, fk0

} for all
k ≥ k0 + 2, k0 = Θ(p−3 log n) and that the ratio (fk1+1 + . . . + fbn/3c)/fk1

is also bounded by a polynomial in n. Then from (13), A ≤ Op(1)
∑k0+1

k=1 fk

and thus A ≤ nO(1)f1. Plugging (14) we get the desired lower bound.

One can also show (see [1]) that the number of spanning trees t(G) in
super (p, ε)-regular graphs satisfies:

(p− 2ε)n−1nn−2 ≤ t(G) ≤ (p+ 2ε)n−1nn−2,
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for small enough ε > 0 and large enough n. In order to estimate from
below the number of spanning trees in G, consider a random mapping f :
V (G) → V (G), defined by choosing for each v ∈ V its neighbor f(v) at
random. Each such f defines a digraph Df = (V,Af ), Af = {(v, f(v)

)

:

v ∈ V }. Each component of Df consists of cycle C with a rooted forest
whose roots are all in C. Suppose that Df has kf components. Then
a spanning tree of G can be obtained by deleting the lexicographically
first edge of each cycle in Df , and then extending the kf components to a
spanning tree. Showing that Df has typically O(

√
n ) components implies

that most of the mappings f create a digraph close to a spanning tree of G,
and therefore:

t(G) ≥ n−O(
√

n )|f : V → V | ≥ n−O(
√

n )(p− ε)nn.

For the upper bound on t(G) let Ω∗ = {f : V → V :
(

v, f(v)
)

∈ E(G) for

v 6= 1 and f(1) = 1}. Then

t(G) ≤ |Ω∗| ≤
(

(p+ ε)n
)n−1 ≤ (p+ 2ε)n−1nn−2.

To see this consider the following injection from the spanning trees of G
into Ω∗: orient each edge of a tree T towards vertex 1 and set f(1) = 1.
Note that this proof does not use the fact that the graph is pseudo-random.
Surprisingly it shows that all nearly regular connected graphs with the same
density have approximately the same number of spanning trees.

For sparse pseudo-random graphs one can use Theorem 4.23 to estimate
the number of Hamilton cycles. Let G be an (n, d, λ)-graph satisfying the
conditions of Theorem 4.23. Consider the random subgraph Gp of G, where
p = (log n + 2 log log n)/d. Let X be the random variable counting the
number of Hamilton cycles in Gp. According to Theorem 4.23, Gp has
almost surely a Hamilton cycle, and therefore E[X] ≥ 1 − o(1). On the
other hand, the probability that a given Hamilton cycle of G appears in Gp

is exactly pn. Therefore the linearity of expectation implies E[X] = h(G)pn.
Combining the above two estimates we derive:

h(G) ≥ 1 − o(1)

pn
=

(

d
(

1 + o(1)
)

logn

)n

.

We thus get the following corollary:
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Corollary 4.30 [42]. Let G be an (n, d, λ)-graph with

λ = o(d5/2/
(

n3/2(log n)3/2)).

Then G contains at least
(

d
(1+o(1)) log n

)n
Hamilton cycles.

Note that the number of Hamilton cycles in any d-regular graph on
n vertices obviously does not exceed dn. Thus for graphs satisfying the
conditions of Theorem 4.23 the above corollary provides an asymptotically
tight estimate on the exponent of the number of Hamilton cycles.

5. Conclusion

Although we have made an effort to provide a systematic coverage of the
current research in pseudo-random graphs, there are certainly quite a few
subjects that were left outside this survey, due to the limitations of space
and time (and of the authors’ energy). Probably the most notable omission
is a discussion of diverse applications of pseudo-random graphs to questions
from other fields, mostly Extremal Graph Theory, where pseudo-random
graphs provide the best known bounds for an amazing array of problems.
We hope to cover this direction in one of our future papers. Still, we would
like to believe that this survey can be helpful in mastering various results
and techniques pertaining to this field. Undoubtedly many more of them
are bound to appear in the future and will make this fascinating subject
even more deep, diverse and appealing.

Acknowledgment. The authors would like to thank Noga Alon for many
illuminating discussions and for kindly granting us his permission to present
his Theorem 4.10 here. The proofs of Theorems 4.1, 4.3 were obtained in
discussions with him.
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[15] N. Alon, V. Rödl and A. Ruciński, Perfect matchings in ε-regular graphs, Electronic
J. Combinatorics, Vol. 5 (1998), publ. R13.

[16] N. Alon and Y. Roichman, Random Cayley graphs and expanders, Random Struc-
tures and Algorithms 5 (1994), 271–284.
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[49] S. Janson, T.  Luczak and A. Ruciński, Random graphs, Wiley, New York, 2000.
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