Logical minimization tools can’t deal well with a big number of inputs. Machine Learning methods such as Decision Trees (DT) can provide better results compared to traditional tools.

METHODOLOGY

Using a data set with 100 benchmarks composed by incomplete truth tables from the IWLS 2020 contest, simplification results from C5.0 and Scikit-Learn (both DT tools) were compared Espresso’s ones.

- Parsing PLA to Decision Tree inputs
- EQN format (intermediate)
- C5.0 SPAXM
- Evaluation with ABC

Proposed Learning Flow

Espresso was not able to end its optimization for larger benchmarks.

DISCUSSION AND CONCLUSION

Decision Trees can reach accuracy and number of nodes similar to Espresso for incomplete truth tables.

- DTs showed to be a faster alternative
- C5.0 SPAXM had a slight improvement compared to SOP and POS.
- SK reached the best accuracy, but the number of inputs had to be considerably higher to do so.

Next Steps:

Explore the proposed flow to fast logic minimization
Extend the proposed flow englobing the synthesis steps

Figure of Merit: (# of Nodes)/Acc

<table>
<thead>
<tr>
<th>Method</th>
<th>#Nodes</th>
<th>Acc (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Espresso</td>
<td>797.11</td>
<td>78.05</td>
</tr>
<tr>
<td>C5.0 SOP</td>
<td>56.39</td>
<td>75.57</td>
</tr>
<tr>
<td>C5.0 POS</td>
<td>62.19</td>
<td>76.63</td>
</tr>
<tr>
<td>C5.0 SPAXM</td>
<td>123.44</td>
<td>77.84</td>
</tr>
<tr>
<td>SK SOP</td>
<td>1149.08</td>
<td>81.58</td>
</tr>
</tbody>
</table>