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Routability-Driven Detailed Placement
Using Reinforcement Learning
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| Sub- 90nm Technology: Complex DRC rules
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step to address those challenges [1].

Advantages of Reinforcement Learning:

-Training data is
generated on the fly.

-Agent learns creative
solutions.
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Once trained:
The RL model decides
which DP algorithm
should be applied to
optimize routability.

Routing predictor

Trained model

Goal >

State: part of the
grid graph where
the center is the

|
N

A reinforcement learning
framework to improve circuit
routability in detailed
placement step.

Reward: wirelength change

and signal is determined by
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New violations:

’ when an action
inserts new

violations, it is
undone.

Integrate the routing predictor with Detailed

Placement algorithms to start the training.

Decide which RL learning policy is suitable for

Routing predictor [2]: Sup. Learning NN
Training features: pin and cell density, macros

width and height, neighbor node features.
Grid graph DRVs hotspots

the problem.
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