Exploring Tree-Based Inference Engines for Low-Power Learning Applications
Brunno Abreu, Mateus Grellert, Sergio Bampi - UFRGS

Introduction

- **Machine Learning** has become popularized and is being applied in several fields
- When considering **embedded devices**, **power dissipation** of ML tools must be considered
- Neural Networks can still be costly in embedded devices
- Simpler models can be used, such as **Decision Trees (DTs)**

GOAL: propose a design flow for analyzing trade-offs of DT models with varying complexity (input quantization/tree depth)

Proposal

- **Design flow** proposed to generate HDL descriptions and obtain power results
- FPUs dissipate too much power; therefore, **quantization** is performed
- DT training performed on software using Python Scikit-Learn library
- **Tree-VHDL translation**: translates the Python structure into VHDL synthesizable code
- Architectures synthesized for 65nm ASIC std-cells library, with **Cadence Genus**

Results

- **Input quantization** (approximation) led to accuracy increases of up to 8.7%
- Some models obtained similar accuracy results with **less power dissipation**
- Except for the wearable data set, every model reached a **stable accuracy** with relatively shallower trees
- Input quantization higher than **10 bits** did not present significant improvements in accuracy
- Some **data sets** obtained the best accuracy values with **smaller widths**

Contact: baabreu@inf.ufrgs.br