
PROVIDING DEPENDABILITY FOR WEB SERVICES∗

Jeferson L. R. Souza
Distributed Systems Research Laboratory (LaPeSD)

Department of Informatics and Statistics (INE)
Federal University of Santa Catarina (UFSC)

Florianópolis - SC - Brazil

jeferson@inf.ufsc.br

Frank Siqueira
Distributed Systems Research Laboratory (LaPeSD)

Department of Informatics and Statistics (INE)
Federal University of Santa Catarina (UFSC)

Florianópolis - SC - Brazil

frank@inf.ufsc.br

ABSTRACT
Web services have been widely employed to allow intero-
perability among applications and/or technologies. However,
the standard technologies and protocols which provide the
foundation for Web Services do not address issues such as
fault tolerance and dependability of services. Aiming to
solve this limitation, this paper proposes a software archi-
tecture for providing dependability for Web Services. This
architecture is responsible for increasing service availability
and maintaining all replicas of a service in a consistent state,
having as main characteristic the separation of these replicas
in groups.

Categories and Subject Descriptors
C.2.4 [Computer Communication Networks]: Distri-
buted Systems—Distributed applications; D.4.5 [Operational
Systems]: Reliability—Fault-Tolerance

General Terms
Reliability

Keywords
Dependability, Fault Tolerance, Web Services

1. INTRODUCTION
The Web Services technology has as its main purpose the

provision of interoperability for applications built upon it.
This interoperability is employed mainly for data exchange,
allowing the use of Web Services for system integration thor-
ough the adoption of a standard communication protocol
and a data representation format. The adoption of widely
available standards allows these systems to exchange in-
formation in a uniform fashion, despite being implemented
using a wide range of languages and technologies on top of

∗This work is partially supported by CNPq, Brazil.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’08 March 16-20, 2008, Fortaleza, Ceará, Brazil
Copyright 2008 ACM 978-1-59593-753-7/08/0003 ...$5.00.

different software and hardware platforms. For some spe-
cific systems, such as ERP (Enterprise Resource Planning),
the interaction and communication with other systems is
very important. Therefore, the failure of a web service re-
quired by these systems in order to work properly becomes
highly critical. This failure may, for example, interrupt a
production line for some hours due to a failure in the inte-
gration with the system of a business partner that provides
parts necessary for production. Improving the availability
of these web services is highly necessary for the adoption of
this technology in critical environments.

The more traditional solution for providing fault tolerance
in computing systems is the use of replication schemas, which
are able to improve the dependability of services [11, 7].
Based on this premise, this paper proposes a fault tolerance
architecture for Web Services called WS-FTA (Web Services
Fault Tolerance Architecture). This architecture describes a
conceptual model in which a set of components, which may
be implemented using different technologies, provides fault
tolerance mechanisms for Web Services. The proposed solu-
tion is based on the current standards adopted web services
- i.e., it is fully interoperable with legacy systems.

This paper is organized as follows: section 2 presents a
general view of dependability in Web Services. Section 3
presents the WS-FTA model, and its reference implementa-
tion is described in section 4. Section 5 evaluates the perfor-
mance of the reference implementation, and finally, section
6 presents some conclusions and suggestions for further de-
velopment of this work.

2. DEPENDABILITY IN WEB SERVICES
Web Services may be defined as any service, available on

the Internet, which communicates using a XML-based stan-
dard protocol and is not limited to any operating system
and/or programming language. A set of protocols and stan-
dards has been adopted for service discovery, interface des-
cription and message exchange among web services. These
protocols and standards are, respectively: UDDI (Universal
Discovery, Description and Integration), WSDL (Web Ser-
vices Description Language) and SOAP [1].

The Web Services conceptual model has three main enti-
ties derived from the Service Oriented Architecture (SOA)
[1]. The Service Register maintains information regarding
service description and localization. Service Consumers uti-
lize this register to locate the service and to obtain the des-
cription of its interface, which is necessary in order to have
access to the service. The Service Provider registers itself
in a service register, so that service consumers can locate it

2207

and avail of its services. Service register, service provider
and service consumer use the protocols cited previously to
interact with each other.

Web Services provide a very interesting technology for
conceiving and building distributed systems [14]. One of the
main advantages provided by the standard protocols which
form the Web Services technology is the interoperability
among applications. However, such as any software, Web
Services may be affected by programming failures, and since
they are executed on top of a platform consisting of an ap-
plication server, operating system, computer hardware and
network infrastructure, they are affected by any failure suf-
fered by this platform. These problems, which may result
in service unavailability, can be classified in three types:
problems related to the service, problems with the execution
platform (hardware and/or software) and network communi-
cation problems. Therefore, fault tolerant techniques must
be applied with the goal of reducing the impact of service
failures.

According to several literature sources [8, 4, 9, 7, 5], fault
tolerance in Web Services can be defined as the capacity
of providing the requested service in the presence of faults.
Fault tolerance techniques can be used to improve Web Ser-
vices dependability. The provision of fault tolerance is based
on the use of techniques that allow a fault to be handled in a
way that it does not interrupt the execution of the software.
In this scenario, techniques such as state replication [6], fail-
ure detection [2], event ordering [11, 10] and reliable com-
munication [3] are employed for providing fault tolerance in
the required level.

Considering that a common way to provide dependability
for Web Services has not been standardized, the next sub-
section presents some software architectures and infrastruc-
tures that have been proposed in the literature.

2.1 Related Work
Ye and Shen [14] have developed a middleware to sup-

port the conception of reliable Web Services using the active
replication technique. This middleware requires that service
consumers are implemented using a set of classes that allow
these consumers to access the replicated service with fault
tolerance properties. Only operations that change the state
of replicas are executed with total ordering. The service ad-
ministrator must provide a list describing these operations.

Li et al. [7] have defined a framework called SWS, which
supports the development of fault tolerant Web Services.
This framework employs replication schemas and N-Modular
redundancy as conceptual base [13]. The main goal of this
work is to use Web Services in critical applications, modeling
security attacks as byzantine faults. This work separates
replicas in different groups, having an inter-group commu-
nication protocol (SWS-IGC) and a message ordering me-
chanism (SWS-MO) in order to guarantee correct and effi-
cient group communication. Changes in the UDDI registry
were necessary for maintaining group membership informa-
tion. Service consumers must be developed using a specific
package provided by the framework.

Santos et al. [9] have proposed a fault tolerant infrastruc-
ture for Web Services called FTWEB. This infrastructure is
based on the FT-CORBA specification [FT-CORBA2002].
Service replicas are organized in only one group, and all
requests issued by service consumers are forwarded to a
component called WSDispacher. The WSDispatcher is res-

ponsible for managing the group of replicas, receiving the
requests and forwarding these requests to all replicas of the
service provider. In this work, services are implemented
as CORBA objects, using a component called WSWrap-
per, which is responsible for integrating these objects with
the rest of the infrastructure. Service consumers are imple-
mented with the WSDriver component, which allows con-
sumers to avail of the fault tolerant services provided by
FTWEB.

Fang et al. [4] have defined a fault tolerant architecture
called FT-SOAP. This infrastructure is also based on FT-
CORBA specification, such as FTWEB. FT-SOAP employs
passive replication to provide service reliability. FT-SOAP
is composed by four kinds of components: the replication
manager; fault detectors; fault notifiers; and a recovery and
logging mechanism. FT-SOAP adds a new element to the
WSDL file which stores references to Web Services that in-
tegrate a group of replicas of a fault tolerance service.

Salas, J. et al. [8] specify a framework for high avail-
ability in Web Services called WS-Replication. The main
objective of this framework is the replication of Web Ser-
vices, organizing one group of replicas using active replica-
tion. WS-Replication defines two main components: a repli-
cation component and a reliable multicast component. The
replication component is responsible for all characteristics
involved in active replication and uses the reliable multicast
component to send requests to all replicas. This reliable
multicast component is based on the SOAP protocol.

Although they allow improving the availability of Web
Services, these related proposals present limitations, such
as lack of support for legacy consumers (i.e., consumers de-
veloped without any fault tolerance support) and incompat-
ibility or the necessity of changes in the existing standards.
The architecture proposed in this paper aims to reach simi-
lar goals without presenting these limitations.

3. THE WS-FTA ARCHITECTURE
The specification of this software architecture provides an

abstract description of the required components for the pro-
vision of dependability for Web Services. This software ar-
chitecture is called WS-FTA (Web Services Fault Tolerance
Architecture). WS-FTA provides implicit separation of con-
cerns, dividing responsibilities and functionalities among the
defined components. These components are:

• Group Communication component (GC): responsible
for encapsulating the access to the transport protocol
employed to send and receive messages;

• Message Orderer component (MO): responsible for guar-
anteeing the total ordering of messages in all replicas;

• Recovery component (REC): responsible for recovering
the state of a faulty replica;

• Log component (LOG): responsible for registering in-
teractions among service consumers, service providers
and WS-FTA components;

• Replica Failure Detector (RFD): responsible for de-
tecting the failure of a single replica;

• Group Failure Detector (GFD): responsible for detect-
ing the failure of a group of service replicas.

2208

Figure 1: Components of WS-FTA

The architecture proposed in this paper adopts the use of
replication as the main strategy to provide dependability
for Web Services. Another important design strategy is the
organization of replicas in multiple groups. This strategy
allows the use of different replication techniques in different
groups. Consumers are unaware of replication, and perceive
groups of replicas as a single entity.

The architecture allows a minimal configuration in which
there is only one group, and all replicas belong to this group.
In this scenario, the WS-FTA Proxy will send the request to
all replicas and will be responsible for executing the voting
algorithm which will select the result that will be sent to the
service consumer.

Legacy consumers - i.e., consumers which do not have a
WS-FTA Proxy - send a request to just one service replica,
which is responsible for forwarding the request to the other
replicas. This replica is called the group leader. In this case,
replication transparency is provided by the group leader.
Depending on the adopted replication technique, the leader
may have to collect the results obtained by each replica, and
execute a voting algorithm in order to choose the result that
will be returned to the legacy consumer.

Figure 1 shows that each host with a service replica runs
also a set of components provided by the architecture. Not
all of them, however, must be active in all replicas. The MO
and GFD components are enabled only in the group leader.
The MO component is responsible for defining the order in
which received requests will be processed. The GFD, on the
other hand, is enabled only in configurations with multiple
groups. This component is responsible for detecting the fail-
ure of other groups of replicas; therefore, it is needed only
when more than one group exists. The creation of multiple
groups with replicas of the same service results in a higher
level of failure transparency. In a scenario with multiple
groups, consumers which use the WS-FTA Proxy issue re-
quests only to group leaders, which forward the request to
the other replicas within their groups. This strategy reduces
network traffic and turns the knowledge of the whole group
membership unnecessary for the customer. For legacy con-
sumers, the fact that the service is replicated and that one or
more groups exist is fully transparent, since just one replica
- a group leader - interacts with this consumer.

Figure 2 illustrates the procedure necessary for the reli-

Figure 2: Replicas organized in two groups

able execution of a service request. The first step consists
in sending the request to all group leaders (Step 1). Legacy
consumers send the request to just one leader (Step 1a) and
this leader forwards the request to the remaining leaders
(Step 1b). The communication among replicas is done using
the GC component, which provides reliable communication.
The next step is the ordering of received requests, which
is performed by group leaders. The MO component allows
the use of different ordering algorithms. Since this process
depends on the chosen ordering algorithm, its execution is
not illustrated in the figure. After defined the execution or-
der, all leaders send the requests in the established order to
the other replicas in their groups (Step 2). For each group,
if the replication technique adopted by this group requires
all group replicas to process the request, the group leader
receives through the GC component the results returned by
each replica (Step 3). For consumers built using the WS-
FTA Proxy, group leaders forward the results generated by
replicas of the corresponding group, so that the proxy can
execute a voting algorithm and select the result that will
be delivered to the service consumer (Step 4). For legacy
consumers, the leader that received the request is also res-
ponsible for receiving the results from all other group leaders
(Step 4a), and through a voting algorithm elects the result
that will be sent to the legacy consumer (Step 4b).

Given that a leader represents solely its group to the con-
sumers, it is a point of failure for the whole group. There-
fore, it is important that all other replicas in a group moni-
tor the group leader, so that, in case of failure, some other
replica takes over its role and notifies the other group leaders
of this change. Ordinary replicas are also monitored, and in
case of failure detection, recovery mechanisms are activated
in order to try to restart the replica in the same host or, in
case of host failure, to create a new replica on a different
host. The current state is obtained from the LOG compo-
nent, which receives from the group leader state updates
periodically.

In the case of a group failure (e.g. when the connection
with the external network fails), legacy consumers that have
issued requests for this group will not have failure trans-
parency. To keep using the service, legacy consumers will
have to get a reference for other replica leader. To tolerate
group failure, consumers can use the WS-FTA proxy.

2209

The organization of the replicas in different groups makes
possible the distribution of these groups in different local
networks interconnected through a wide area networking in-
frastructure, e.g. the Internet. For example, it is possible to
place one group in a local network in the U.S. and another
group in a different network located in Europe, maintain-
ing the service availability even in the presence of network
faults. The interoperability among replicas in different net-
works is given by the adoption of a platform and transport-
independent application level protocol - e.g., SOAP. Addi-
tionally, the message exchange must be reliable, given that
these messages will guarantee the maintenance of a consis-
tent state among service replicas. Message recovery may be
either given by the adoption of WS-Reliability [12] or by
implementing recovery mechanisms at application level.

Another advantage visualized in the separation of the repli-
cas in different groups, is a major flexibility for covering
different classes of failure [2], allowing a high independence
degree among groups. In a distributed environment, this
allows each group to be placed at a different network, and
to use different replication techniques, transport protocols,
and mechanisms for failure detection and recovery.

4. REFERENCE IMPLEMENTATION
In the previous section, WS-FTA is defined as an ab-

stract description of components that supply dependability
for Web Services. This level of abstraction allows the WS-
FTA to be implemented on top of different platforms.

A reference implementation was developed in Java using
the Java Development Kit (JDK), version 1.6. In this ref-
erence implementation, all components are represented as
Java classes, interacting in accordance with the previously
presented description.

The communication protocol is encapsulated by the GC
component. The WS-FTA defines classes and interfaces that
must be implemented to provide the communication among
replicated services and architectural components. In this ref-
erence implementation, instead of adopting a group commu-
nication framework, the group communication mechanisms
were implemented from scratch. In order to allow intero-
perability with other implementations of the architecture
and with legacy systems, SOAP [1] was adopted as the base
communication protocol for sending/receiving messages in-
side and outside groups. Moreover, the active replication
technique was adopted for internal group organization.

One of the main goals of the communication among group
leaders is to guarantee that consumer requests are executed
with total ordering in all replicas. This guarantee is provided
by the MO component using any total ordering algorithm.
In this reference implementation, an optimistic total order
algorithm, based on ideas presents in [10], was adopted. In
this algorithm, a leader multicasts a request sending n − 1
unicast messages, where n is the number of the leaders. For
each unicast message, a delay is calculated, trying to guar-
antee the delivery of messages totally ordered. This delay
must be calculated according to the network communication
time between sender and receiver. Assuming a set of leaders
L = {A1, B1, C1}, where A1 send messages to B1 and C1,
and the transmission time between B1 and A1 is 15ms and
between C1 and A1 is 10ms - i.e., messages sent by A1 to C1
arrive before messages sent to B1. In order to compensate
this difference, a delay is added before sending messages to

C1. This delay is calculated by the following formula:

Ta(r−→r′) = MaxTNode(r) − T(r−→r′)

Where:
Ta(r−→r′) : delay for sending the message from replica r to
r′;
T(r−→r′) : estimated time for the message sent by r to be
received by r′;
MaxTNode(r) : maximum T(r−→r′).

In the example, MaxTNode(A1) = 15ms and Ta(A1−→C1) =
5ms, i.e., messages sent to C1 will be delayed by 5ms.

Besides ordering requests, it is also necessary to detect the
failure of replicas. This task is performed by the RFD and
GFD components of the WS-FTA architecture. RFD and
GFD are implemented by class ”FailureDetector”, which
provides two monitoring methods: Push and Pull. In the
Push method, replicas send ”I am alive!” heartbeat messages
periodically, which inform the detectors that the replica is
working properly. If the detector does not receive the mes-
sage within a specified time limit, the detector puts the
replica under suspicion. This method requires the replica
and the detector to agree on a frequency in which the heart-
beat messages will be sent.

In the Pull method, the detectors periodically send ”Are
you alive?” messages to the replicas to check if they are
working properly, and wait for the replica to send a response
until a timeout expires. If the response is not received within
this time limit, the detector suspects of replica failure.

In both methods, the detector waits for the response dur-
ing a certain time. However, if the service does not answer,
the detector assumes that the replica has failed and takes
actions to maintain the reliability level. These actions in-
clude sending a notification to other detectors and to the
REC component, which executes the faulty replica recovery
process.

5. PERFORMANCE EVALUATION
This section presents some results obtained from tests ex-

ecuted with the reference implementation of the WS-FTA
architecture, described in the previous section, in order to
evaluate its performance.

Since WS-FTA allows the use of different replication tech-
niques, ordering algorithms, failure detection algorithms and
group communication protocols, it is necessary to identify
which techniques, algorithms and protocols have been used
in the tests. The reference implementation was configured
with the following characteristics:

• Group communication protocol: SOAP;

• Replication technique: Active replication;

• Failure detection algorithm: Pull (in both RFD and
GFD);

• Message ordering algorithm: Optimistic order (described
in section 4).

These tests were executed on four computers with AMD
1.83GHz processors, 512MB of RAM, running Windows
XP SP2. Three different configurations have been tested:
one group with two replicas; two groups, each one with two
replicas; and one group with four replicas. The replicas were
deployed on different machines interconnected by a 100Mbps

2210

Figure 3: Increase in response time

Ethernet LAN. The same tests were executed with a non-
replicated service, aiming to evaluate the impact on perfor-
mance resulting from the use of the architecture.

Figure 3 shows the cost incurred to improve the reliability
of the service using the architecture. These performance fi-
gure have been obtained with a service that just replies with
a payload from 1 to 128KB, which was invoked 1000 times in
order to obtain the average response time. The obtained re-
sults show a 6ms overhead for accessing one group with two
replicas, 14ms for one group with four replicas, and 11ms
for two groups with two replicas each, compared to the re-
sponse time of the same service without replication, when
the service replies with 1KB messages. This shows that it
is possible to obtain a sharp increase in the dependability
without a heavy impact on the response time of the service.
The increase in the message size results in a proportional in-
crease in the overhead, due to the use of a voting algorithm
to decide which response is sent to the consumer. The results
also show that four replicas divided in two groups lead to an
overhead approximately 16% smaller than if these replicas
are organized in only one replication group, showing that
the use of more than one replication group can improve the
performance of the replicated services.

6. CONCLUSIONS AND FUTURE WORK
This paper presented a software architecture for depend-

able Web Services. This architecture, called WS-FTA, pro-
vides an abstract description of all the necessary components
for guaranteeing reliability and dependability in Web Ser-
vices. The architecture is fully compatible with the current
standards and specifications adopted by the Web Services
technology.

Moreover, WS-FTA allows the formation and develop-
ment of groups of service replicas using different technolo-
gies. The possibility of allocating groups in different local
networks provides a higher degree of reliability, allows more
flexibility and results in the confinement of network traffic
within the local network. In addition, the division of replicas
into groups makes possible the provision of fault tolerance
for legacy consumers.

Inter-group communication occurs only among group lead-

ers, reducing traffic in the wide area network, in which the
response time is a limiting factor for distributed applica-
tions.

There are several new features planned to be incorporated
to the WS-FTA architecture, such as: to provide quality of
service (QoS) mechanisms for balancing load among repli-
cas and for guaranteeing a limited response time; to allow
the dynamic discovery of new service groups; to incorporate
support for Web Services running on computational grids;
and to implement various message ordering and failure de-
tection algorithms, allowing the creation of groups able to
tolerate a wide range of classes of failures that may occur in
distributed systems.

7. REFERENCES
[1] E. Cerami. Web Services Essentials: Distributed

Applications with XML-RPC, SOAP, UDDI and
WSDL. O’Reilly, 2002.

[2] T. D. Chandra and S. Toueg. Unreliable failure
detectors for reliable distributed systems. Journal of
the ACM, 1996.

[3] G. V. Chockler, I. Keidar, and R. Vitenberg. Group
communication specifications: A comprehensive study.
ACM Computing Surveys, 2001.

[4] C.-L. Fang, D. Liang, F. Lin, and C.-C. Lin. Fault
tolerant web services. Journal of System Architecture,
2006.

[5] W. He. Recovery in web service applications. In IEEE
International Conference on e-Technology,
e-Commerce and e-Service, Taipei, Taiwan, 2004.

[6] P. Jalote. Fault tolerance in distributed systems.
Prentice-Hall, Inc, Upper Saddle River, NJ, USA,
1994.

[7] W. Li, J. He, Q. Ma, I.-L. Yen, F. Bastani, and
R. Paul. A framework to support survivable web
services. In 19th IEEE International Parallel and
Distributed Processing Symposium (IPDPS’05),
Denver, Colorado, USA, 2005.

[8] J. Salas, F. Perez-Sorrosal, M. Patiño-Martinez, and
R. J́ımenez-Peris. Ws-replication: A framework for
highly available web services. In 15th International
World Wide Web Conference, Edinburgh, Scotland,
2006.

[9] G. T. Santos, L. C. Lung, and C. Montez. Ftweb: A
fault tolerant infrastructure for web services. In 9th
IEEE International EDOC Enterprise Computing
Conference (EDOC’05), Enschede, Netherlands, 2005.

[10] A. Sousa, J. Pereira, F. Moura, and R. Oliveira.
Optimistic total order in wide area networks. In 21st
IEEE Symposium on Reliable Distributed Systems
(SRDS’02), Suita, Japan, 2002.

[11] P. Veŕıssimo and L. Rodrigues. Distributed Systems for
System Architects. Kluwer Academic Publishers, 2001.

[12] WS-Reliability. WS-Reliability Specification Version
1.1. OASIS, 2004.

[13] L. Xu and J. Bruck. Deterministic voting in
distributed systems using error-correcting codes. In
IEEE Transactions on Parallel and Distributed
Systems, volume 09, 1998.

[14] X. Ye and Y. Shen. A middleware for replicated web
services. In IEEE International Conference on Web
Services (ICWS’05), Orlando, Florida, USA, 2005.

2211

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

