

Comparison of a Multi output Adaptative Neuro-Fuzzy

Inference System (MANFIS) and Multi Layer Perceptron

(MLP) in Cloud Computing Provisioning

Carlos Oberdan Rolim
1
, Fernando Schubert

2
, Anubis G. M. Rossetto

3
, Valderi R.

Q. Leithardt
1
,

Cláudio F. R. Geyer

1
, Carlos B. Westphall

2

1
Instituto de Informática – Universidade Federal do Rio Grande do Sul (UFRGS)

Caixa Postal 15.064 – 91.501-970 – Porto Alegre – RS – Brazil

2
Departamento de Informática e Estatística – Universidade Federal de Santa Catarina

(UFSC) – Caixa Postal 476 – 91.501-970 – SC – Brazil

3
Instituto Federal Sul-Rio-Grandense – Campus Passo Fundo – Passo Fundo – RS – Brazil

{carlos.oberdan,valderi.quietinho,geyer}@inf.ufrgs.br,

{schubert,westphall}@inf.ufsc.br,

anubis.rossetto@passofundo.ifsul.edu.br

Abstract. Cloud computing has changed the way that computing is delivered

and used, turning it into a utility like water or electricity. In this context, many

challenges and opportunities appear to make the Cloud a stable, accessible

and trustworthy environment. Resource provisioning in the Cloud must be

dynamic and able to adapt to changing needs. In this paper, a provisioning

method is proposed that uses neural networks to provide the desired quality of

service and assure SLA.

1. Introduction

Throughout the history of computing, there have been several paradigm shifts from

main-frames to mini computing to microprocessing to networked computers. Cloud

computing is on track to be the next major paradigm shift. While the precise concept is

still being defined, basically, cloud computing can be defined as a major advance in

delivering services where information is stored and processed on the Internet (i.e., “the

Cloud") usually via massive large-scale data centers which can be accessed remotely

through various clients and platforms [Grimes, J., Jaeger, P. and Lin, J. 2008].

Essentially, cloud computing is a key concept that seeks to encapsulate the concept of

ubiquitous processing and storage, by concealing the real complexity and underlying

layers from the users [Grimes, J., Jaeger, P. and Lin, J. 2008].

 In this paper specifically, we are addressing the following research questions,

while providing the guidelines for an innovative and significant solution: (a) What kind

of model is required to provide support for prediction and resource provisioning? (b)

What tools need to be used for this purpose?

 We argue that a model that applies a hybrid neural network to infer the current

situation and predict future events can be used to overcome previous problems. Thus, in

this paper our goal is to analyze the use of Multioutput Adaptative Neuro-Fuzzy

Inference systems (MANFIS) as an underlying mechanism for predicting a desired

model. To achieve this, we make a comparison between a MANFIS and a Multi Layer

Perceptron (MLP) network with the back-propagation learning rule.

 This paper examines advances in the state of the art by offering an alternative

that combines a hybrid type of neural networks with wide-area distributed systems. This

combination in resource provisioning for cloud computing has an innovative feature that

can be exploited in a more satisfactory way. We stress that our proposal has focus on

“low level” attributes to an underlying mechanism for predicting, we will not consider

“high level” ones related to business impact and economics relations like monetary

costs.

 This paper is structured as follows: in Section 2 we comment on some related

work. In Section 3 we present some alternative methods for dynamic resource

provisioning and show why they are unsuitable to the needs of cloud computing. In

Section 4 we introduce concepts used in the neural network and explain the reasons

underlying the use of MANFIS. The standard approach to construct both Neural

Networks and the experimental results are examined in Section 5. Finally some

concluding remarks, known limitations and recommendations for future work are

discussed in Section 6.

2. Related Work

Cloud Computing, the long-held dream of computing as a utility, has the potential to

transform a large part of the IT industry, making software even more attractive as a

service and shaping the way IT hardware is designed and purchased [Armbrust, M., et.

al 2009].

 As recent works in Cloud area related to prediction we can found [Zohar, E. and

Cidon, I. 2011] that presents a solution called Predictive ACK (PACK) for prediction in

Traffic Redundancy Elimination (TRE). Although it is an excellent wok, it is for

reducing bandwidth costs and not for prediction and resource provisioning. Another

work is [Mallick, S. and Hains,G. 2011] that presents a cloud monitoring method based

on prediction. It uses a rules-based system for monitoring and alert. The authors are

working to use a mathematical model like quantitative analysis or Markov chain. We

believe that an interesting alternative would be Neural Networks as mathematical model.

Related to Neural Networks for prediction we can found several works in various areas

of application. However, there are few works that uses a hybrid approach like ANFIS

and MANFIS. We can found [Yilmaz, I. and Kaynar, O. 2011] that apply ANFIS for

prediction of swell potential of clayey soils, [Elabd, S. and Schlenkhoff A. 2009] for

travel time prediction and [Pramanika, N. and Kumar, R., 2009] that used a prediction

model for water reservoir management. Those uses MANFIS we can cite [Gomathi, V.,

Ramar, K. and Jeevakumar, A. S. 2009] for human facial expression recognition and

[Zhang, J., Chung, H.S. and Lo, W. 2008] for Chaotic Time Series Prediction.

Regardless of be used in different scenarios, such works demonstrate the potential and

flexibility of Neural Networks.

 We point a lack of a solution that use a hybrid neural network as approach to

provide certain SLAs and quality of service to their users and allow they to define the

strict requirements and QoS attributes needed for Cloud systems to run smoothly. The

alternatives to overcome this issue will be dealt with in the next sections and a proposal

to address this problem will be outlined.

3. Alternatives for Dynamic Resources Provisioning

Compliance with the non-functional requirements that constitute the SLA requires a

mechanism that is able to monitor and analyze the current state of the instance (or

service) based on certain attributes (the desired granularity) and compare these results

with the SLA agreed between the provider and the consumer.

 On the basis of the analysis conducted in Section 2, most cloud computing

solutions have some kind of SLA mechanisms and QoS, but these mechanisms are

unable to represent the granularity and specific needs of consumers, for example, for

enterprise mission-critical virtual instances.

Table 1. QoS Attributes

Requirements Specifications Examples

Adaptability
Allow dynamic reconfiguration during

running time
Change in status from the requirements needed to instantiate

a new virtual machine

Supervision Monitor the current QoS Monitoring parameters like CPU load, memory consumption

Prediction
Capacity to predict future behavior

based on current historical data
Analyze the CPU load for a time and predict if more CPU

cores are needed

Granularity
Allow the definition of specific

parameters for each service
Define requirements during execution time such as

response time and throughput

 Granularity is the ability to ensure the availability and reliability of data and

services hosted in the Cloud. This granularity corresponds to the typical non-functional

requirements for each application or hosted service and depends on the perceived needs

of each customer and consumer in the Cloud.

 The primary need for the definition of such an algorithm or technique is that it

meets the requirements of QoS in the context of cloud computing. Table 1 shows the

proposed QoS requirements necessary for the dynamic provisioning mechanisms of the

Cloud. These requirements have been drawn from the SLA requirements, as pointed out

by [Aib, I. and Daheb, B. 2007], and the SLA requirements for IP networks, which can

be applied to cloud computing.

Table 2. Analysis of algorithms and QoS techniques

Technique / Algorithm Adaptability Supervision Granularity Prediction

FIFO No No No No

PQ No No No No

CQ No No No No

WFQ No No No No

CBWFQ No No No No

RED No Yes No Yes

WRED No Yes No Yes

FRED No Yes No Yes

Architectural Transluscency Yes Yes No Yes

Technique / Algorithm Adaptability Supervision Granularity Prediction

Neural Networks Yes Yes Yes Yes

 The survey of the QoS algorithms in Table 2 was conducted with the aim of

seeking alternatives that are already consolidated and stable and that can fit the cloud

computing model. The QoS algorithms used for network management, congestion, flow

control and traffic prioritization have been evaluated [Aib, I. and Daheb, B. 2007]. In

addition to these, solutions were sought such as those used in grid computing as well as

Cloud computing proposals [Balen, D. and Westphall, C. B. 2011].

 We argue that Neural networks can be applied to the Cloud model as a

prediction and provisioning device. It were chosen because neural networks have the

ability to learn from past behavior and predict future behavior on the basis of historical

data.

4. Neural Networks with Clouds

Before constructing a model that can be implemented to show the provisioning,

monitoring and prediction capabilities of cloud computing, we need to define its

underlying mechanism. As argued above, the best choice is neural network. Neural

network is a wide study and research field, with different network types and algorithms.

 A commonly used Neural Network is Multi-Layer Perceptron (MLP). MLP

consists of three or more layers (an input and output layer with one or more hidden

layers). Each node implements a nonlinear activation function and an associated weight

wij that is used to calculate the activation potential of the node. In MLP the calculation

of error in the output of the network is given by the sum of squared errors for instant

output of each node in the network and is represented by

 For weight actualization, the method of steepest descent is used to update

neurons in output and hidden layers. This method is known as the back-propagation

learning rule. The configuration steps of MLP, involves defining the number of layers,

the number of neurons in each layer, the activation function used in each layer, the

learning rate and the number of epochs used to train the network according to the input

data and desired output. These steps are laborious, require several analyze and

adjustments to ensure the generalization power of network and due to the “black box”

model of MLP, their internal functionalities are no “human friendly”.

 An alternative means of overcoming these problems is having a network that

“learns” about inferred data and represents this knowledge in a more “human” way. The

most widely used approach is to combine fuzzy logic with neural networks to build

hybrid networks. Different models can be employed to implement a Mamdani and

Takagi Sugeno fuzzy inference systems like FALCON, ANFIS, NEFCON,

NEFCLASS, NEFPROX, FUN, SONFIN, EFuNN and many others [Abraham, A.

2005]. In general Takagi-Sugeno has a lower Root Mean Square Error (RMSE) and

produces a more accurate system than the Mamdani-type, which is much faster than

Takagi-Sugeno [Marza, V. and Teshnehlab, M. 2009]. However, as we are seeking for

accuracy, we did not consider models like FALCON, NEFCON, NEFCLASS and

EfuNN, or even FUN that does not use a formal learning technique (it randomizes the

parameter values of membership functions). With regard to other models, [Mackey,

M.C. and Glass, L. 1977] provided a comparative performance of some neuro-fuzzy

systems for prediction of chaotic time series (Table 3).

Table 3. Performance of some neuro-fuzzy models

System Epochs Test RMSE

ANFIS 75 0.0017

NEFPROX 216 0.332

EfuNN 1 0.0140

dmEFuNN 1 0.0042

SONFIN 1 0.0180

 As shown, ANFIS has a lower RMSE than NEFPROX, SOFIN and dmEFuNN

which uses the Takagi-Sugeno model. Thus our choice was to use ANFIS for prediction.

However as our network needs to predict several values for resource provisioning,

ANFIS cannot be used because it produces a single output. For this reason, we decided

to use a Multi output Adaptative Neuro-Fuzzy Inference System [Benmiloud, T. 2010]

which is an extension of the Adaptative Neuro-Fuzzy Network (ANFIS) [Jang, J. R.

1993]. As its name implies, MANFIS acts like multiple interconnected ANFIS

providing multiple outputs instead of just one. As in the case of ANFIS, the strength of

MANFIS lies in its ability to construct input-output mapping based on both human

knowledge (in the form of fuzzy if-then rules) and learning the provided data.

 Figure 1 shows a typical MANFIS with one-input for a first-order Sugeno

fuzzy model with three outputs.

Figure 1: MANFIS for a one-input first-order Sugeno model with three rules –

architecture with three outputs

 In a MANFIS, each layer has a defined function: layer 1 maps the input to the

fuzzy rules and its correspondent Membership Function (MF); in layer 2 the input

signals are multiplied and the output is the product representing the firing strength of a

rule; in layer 3 each rule´s firing strength is normalized; in layer 4 each node is an

adaptive node that has a function with parameters defined by the output of layer 3; and

in layer 5 the output is generated by the summation of all incoming signals.

 What is interesting about MANFIS is that each network neuron implements a

fuzzy set. The network can adjust the MF used by its internal fuzzy inference based on

the data provided in the training phase. To adjust the MF parameters a gradient vector is

used which measures the system inference by means of a set of rules that seek to reduce

the global error. The adjustment of weights is done by using a two-passes hybrid

algorithm that combines the Least-Square Estimator (LSE) with the Gradient Descent

(GD) method. This hybrid learning approach is beneficial due to the fact that the

convergence is much faster since the dimensions of the search space is reduced in the

original pure backpropagation method used in ANN technique. In the case of MANFIS,

this algorithm has to be adapted to work with multiple outputs instead of one, as with

the original ANFIS. The backward pass is identical, the signal of error is

backpropagated and the local parameters are updated by the gradient descent method.

For a system with one output y:

where

 h: the training rate for ia and p: number of data of x (or yd)

 The partial derivative is used to update the parameters of the membership

functions. The difference resides in forward pass, where the node output goes forward

until layer 4 and the resulting parameters are identified and corrected by the sum of

gradient of the errors of overall outputs (instead of just one error signal used by the

least-squares method with one output). That is:

 which

 Following this explanation of the factors that determined the use of MLP and

MANFIS, in the next section we will present the used approach to decide which one is

most suitable for our Cloud environment and then analyze the experimental results.

5. Experimental Results

The developing an application in neural networks should be undertaken in the following

stages: defining input and output data, configuring the network, training, testing and

validation. With this in mind, as in the case of input data, we will provide the QoS

attributes and system state variables used in Cloud environment. These inputs have

been selected because of their strong influence on performance and system availability.

They are defined as follows: (i1) Requests: the amount of requests at the time.

The Unity used was requests per second (RPS); (i2) Concurrent Requests: the amount of

simultaneous requests that the environment receives; (i3) Time per request: number of

seconds for each request to be completed; (i4) Memory consumption: the amount of

RAM consumed by the requests in a certain snapshot of time; (i5) Processor Load: the

processor load is the capacity load from the system processor. The processes are kept in

wait or execution state. The load represents the sum of all the processes that are being

executed plus the waiting process queue. The load may vary from 0 (empty queue) to

1.0 (full queue) and > 1.0 (full queue plus waiting processes); (i6) Storage Consumption:

Number of Megabytes consumption from the requests. In the output, the network has to

predict the resource provisioning needed by the environment, using the current context.

These values are: (o1) Processor Cores: to determine the number of cores necessary to

allocate a new virtual instance or update [one] a single running instance; (o2) Memory:

amount of memory necessary to carry out the current workload from the environment;

(o3) Storage: amount of storage needed for the environment to maintain the current

workload. These inputs (i1..6) and outputs parameters (o1..3) was used in MLP and

MANFIS.

 Our first analysis was a MLP. To train the network, we provided data that

represented the current input and the desired output (a Boolean value to indicate if the

operational SLA was violated, the number of processor cores, the amount of memory

and amount of storage provisioning required). To obtain these data, we prepared some

scripts in PHP, Shell and Perl language to monitor the workload of a web server in

different situations. The observed range was 30 days, which we believe represents

different situations of use.

 With the aid of the collected data, we built a MLP using a Matlab and Neural

Network toolbox. To test and evaluate the generalization power of the developed

network, we used the 10-fold cross-validation method, and after constructing a

confusion matrix, the best suitable topology was formed by 6 input nodes (which are

the non-functional requirements of QoS as well as the system state indicators

represented by the CPU load, memory and storage usage), two hidden layers, with 7 and

12 nodes respectively and the hyperbolic tangent as an activation function, and 4 output

nodes representing the predicted values. The used learning rate was 1e
-3

. With this

configuration the Mean Squared Error (MSE) was 0.0188 (RMSE=0.1371) after 500

epochs (Figure 2).

 To construct and train the MANFIS, we employed the same input/output data set

that had been used previously in MLP with 3500 values, which we believe represents a

Cloud server working in different situations. The network was also constructed by

means of Matlab software. As expected, MANFIS does not need a lot of manual

configuration. This is due to the fact that the parameter configurations are adjusted by

internal mathematical functions based on input data. However, the designer of the

network still has to select the best method to partition the input space. In our case, due to

the number of variables involved in the input, we cannot use grid partition as a method

for input space partitioning (it generates rules by enumerating all possible combinations

of membership functions of all the input and this leads to an exponential explosion of

the rules). In view of this, we decided to use subtractive clustering which produces

scattering partition. With this method only a limited number of computational resources

are needed due to small number of rules in force. In this case, the only information

required is the degree of influence of the cluster center on each input and output

dimension, assuming the data falls within a unit hyperbox (range [0 1]). If a smaller

cluster radius is specified, this will usually yield more smaller clusters in the data, and

hence result in more rules.

Figure 2: Mean Squared Error after 500 epochs

 As in the case of MLP, by means of the 10-fold cross-validation method, the best

suitable configuration was achieved with 0.15 for cluster radius to comply with SLA,

memory and storage input and 0.5 for storage input. For comparative purposes, we used

a training set which was done in 500 epochs too. With this configuration, the resulting

RMSE was 0.0707 (Figure 3) in contrast with 0.1371 in MLP. The total number of

rules generated by the space partitioning was around 15 for each input (in tests using

grid partition with 3 membership functions for each of the 6 entries, the total was 3
6
,

which equals 729 rules). As expected, we found that if we reduce the cluster radius

values, the number of rules and amount of computational time needed to calculate these

rules increases dramatically. In this case, to be computationally efficient, we must

reduce the training set and hence reduce the generalization power of the network.

 Moreover, with regard to the low RMSE of MANFIS compared to MLP, if we

analyze the convergence graphs of MLP and MANFIS we can note that the convergence

of MANFIS occurs at a much faster rate than MLP in training mode.

Figure 3. RMSE after 500 epochs

 At training mode, we can conclude that MANFIS has a greater power of

prediction due to a low RMSE. To evaluate and validate the predictive power of both

approaches in our Cloud environment, we used the same scenario as that employed in

our previous work [Schubert, F., Rolim, C. O. and C.B. Westphall 2011] which is

depicted in Table 4. It contains input values and expected output (gray rows) by a

prediction mechanism in different scenarios that simulates a normal server load and an

overloaded server. Again we stress that we do not consider “high level” attributes

related to business impact and economics relations like monetary costs.

Table 4. Test Scenarios

Attributes Scenario 1 Scenario 2 Scenario 3

Concurrent Requests 85 287 958

Requests per Second 225 163 328

Time per request 62 193 230

Memory Usage 64.2 287 434

Storage Usage 85 287 958

System Load 0.8 3.8 10.4

Expected SLA 0 1 1

Expected Memory Provisioned 0 347.84 562.56

Expected Storage Provisioned 0 4383 5054

Expected Cores Provisioned 0 4 10

 These scenarios have been generated on the basis of historical data obtained

from the test environment for their inputs and the predicted output has been calculated

by means of the following allocation functions:

Mal = 128MB + MpReq

Sal = 4096MB + SpReq

Cal = Reqs * 0.02

 The Mal function represents the memory allocation that constitutes 128MB for

the base instance plus the amount of memory needed for the average number of

incoming requests. The Sal function stays for storage allocation, saying that the

provision network will result in a 4096 Megabytes basic system storage plus the storage

needed per incoming request. The Cal function handles the provision of CPU cores,

where each request will be multiplied by 0.02. This value has been calculated on the

basis of a systems analysis used for processing consumption per test request. The

functions were defined on the basis of the test environment and test web application. For

simulation purposes, the MpReq (Memory per Request) and SpReq (Storage per

Request) variables have been considered as 1 Megabyte of RAM memory and disk

storage respectively.

 The values obtained from the test scenarios outlined above, were included as

input in both networks (MLP and MANFIS) and the output can be seen in Table 5. If we

compare the expected output values of Table 4 (gray rows - Expected SLA, Expected

Memory Provisioned, Expected Storage Provisioned, Expected Cores Provisioned) with

the predicted output of MLP and MANFIS (Table 5 – bold values), we can draw the

following conclusions: The first test scenario depicts a normal server load with a

number of requests that do not violate the SLA. The predicted output values of MLP and

MANFIS were considered to be acceptable with a small precision error. This means that

both networks are able to predict a normal state in the instance that does not violate the

SLA. The service was not degraded and the neural networks were able to identify it

without provisioning any resource.

 A different result can be seen in Test Scenario 2. The SLA and Storage attributes

have been correctly predicted by both networks. In MLP the number of CPU Cores has

been rounded to low and the Memory predicted was 23% larger than expected. On the

other hand, the number of CPU cores predicted by MANFIS was 15% larger than

expected and the Memory provisioned was around 1% higher than expected.

 In Test Scenario 3, both networks correctly predicted the SLA violation.

However, MLP was wrong in its prediction of the number of Cores; the Memory was

27% lower than expected and the Storage provisioned was around 10% lower. The

results of MANFIS were more accurate. The Memory, Storage and number of Cores

predicted was around 1% higher than expected. These values can be considered to be

correct.

Table 5. Results of provisioning in different scenarios*

 MLP Provisioning MANFIS Provisioning

 Scenario

 Attributes

Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3

SLA Status

 Predicted / Expected

0 / 0 1 / 1 1 / 1 0 / 0 1.009 / 1 1.00 / 1

Memory

 Predicted / Expected

0.0002 / 0 431.2512 / 347.84 408.38 / 562.56 0.0027 / 0 345.30 / 347.84 563.49 / 562.56

Storage

 Predicted / Expected

0 / 0 4383 / 4383 4557 / 5054 0.0018 / 0 4383.7 / 4383 5058.25 / 5054

Cores

 Predicted / Expected
0 / 0 3 / 4 9 / 10 0.0087 / 0 6.12 / 4 10.1732 / 10

 *In bold are predicted values. The values after the slash came from table 4 and are shown to facilitate comparison

 The results show that MLP is a useful way of predicting values in a Cloud

environment but more manual intervention is required to configure its parameters and a

lot of run/test procedures to obtain satisfactory results. In contrast, MANFIS is a model

that does not need a lot of manual intervention. We just had to make a few adjustments

to the cluster radius parameters and the network itself did the rest. The prediction

results of MANFIS were more accurate than MLP and it was clear that the training stage

was faster and more computationally effective. Furthermore, in the training stage, we

noted that MANFIS could achieve the desired RMSE with fewer values in the data

training set. However this data must contain the maximum and minimum values in the

universe of discourse, otherwise the generalization power of the network will be

degraded.

 To summarize, both types of network successfully detected the shortage of

resources and predicted values to deal with these situations. MANFIS was found to

have a better predictive capacity than MLP in our tests and required less effort for

configuration and training. This leads us to believe that it is more suitable to provide

resource provisioning for Cloud computing environments. Nevertheless, apart from its

results, it is a useful approach and it would be worth confirming its effectiveness with

more experiments in real environments.

6. Conclusion and Recommendations for Future Studies

The dynamic provisioning of resources remains a challenge for cloud computing. The

use of neural networks for provisioning and SLA violation detection is one of the

solutions proposed by UC Berkeley in its technical report on cloud [Armbrust, M. et al.

2009]. It applies where pervasive and aggressive use of machine learning as a tool for

diagnosis, prediction and resource provisioning is used to enable dynamic scheduling,

automatic reaction to performance problems and the automatic management of cloud

systems [Armbrust, M. et al. 2009].

 In this paper, we conducted an analysis of two type of neural network called

MLP and MANFIS, a different hybrid type that blends learning capacities with fuzzy

logic and provides good predictive capacities, as an underlying mechanism for cloud

resource provisioning. The results show that MANFIS is more suitable for our needs.

However to be used in a real environment, special precautions must be taken specially

in the choice of the clustering method of input data since it can have an impact on the

number of rules and the generalization power of the network.

 It should be stressed that there is a lack of a mathematical approach to train the

MANFIS (“on the fly”) to improve the application of this network in different scenarios.

Hence, we are seeking a way to do this in future studies another recommendation for

future work is the development of a module that couples a neural model with Cloud

simulators, such as CloudSim [Calheiros R., et al. 2009.]. This combination would allow

the effectiveness of neural networks to be measured in environments where provisioning

is closer to reality. Another topic of interest for future developments is an analysis of the

economic feasibility and business impact from such techniques in enterprise or research

facilities.

 Finally, we conclude that the future of cloud computing might derive some

benefit from statistical learning machines, with neural networks playing an important

role in the forecasting, prediction and evaluation of cloud computing environments.

References

Abraham, A. (2005) “Adaptation of Fuzzy Inference System Using Neural Learning,”. In:

Springer-Verlag Berlin Heidelberg.

Aib, I. and Daheb, B. (2007), “Management, Control and Evolution of IP Networks,” In: ISTE

2007. Chapter: SLA Driven Network Management.

Armbrust, M., Fox, A., Griffïth, R., Joseph, A. D., Katz, R., Konwinski, A., Lee, G., Patterson

, D., Rabkin, A., Stoica, I. and Zaharia, M., (2009), “Above the Clouds: A Berkeley View of

Cloud Computing,” University of California at Berkeley, Tech. Rep.

Balen, D. and Westphall, C. B. (2011) “Experimental Assessment of Routing for Grid and

Cloud,” In: International Conference on Networking – ICN 2011.

Benmiloud, T. (2010) “Multioutput adaptive neuro-fuzzy inference system”. In: Proceedings of

the 11th WSEAS international conference on Neural networks and 11th WSEAS

international conference on evolutionary computing and 11th WSEAS international

conference on Fuzzy systems (NN'10/EC'10/FS'10), World Scientific and Engineering

Academy and Society (WSEAS), Stevens Point, Wisconsin, USA.

Buyya, R., Pandley, S. and Vecchiola, C., (2009), “Cloudbus Toolkit for Market-Oriented

Cloud Computing,” Proceeding of the 1st International Conference on Cloud Computing

(CloudCom 2009, Springer, Germany), Beijing, China.

Calheiros , R. et al. (2009). “CloudSim: A Novel Framework for Modeling and Simulation of

Cloud Computing Infrastructures and Services”. In: University of Melbourne, GRIDS

Laboratory.

Calheiros R. , et al. (2009). “CloudSim: A Novel Framework for Modeling and Simulation of

Cloud Computing Infrastructures and Services”. University of Melbourne, GRIDS

Laboratory, 2009.

Elabd, S. and Schlenkhoff A. (2009), "ANFIS and BP neural network for travel time

prediction". In: World Academy of Science, Engineering and Technology, 57, pp 116–121.

Gomathi, V., Ramar, K. and Jeevakumar, A. S. (2009), "Human Facial Expression Recognition

using MANFIS Model", In: Proceedings of World Academy of Science Engineering and

Technology, 38, pp 338-342.

Grimes, J., Jaeger, P. and Lin, J. (2008), “Weathering the Storm: The Policy Implications of

Cloud Computing,” unpublished.

Jang, J. R. (1993) “ANFIS: Adaptive-Network-Based Fuzzy Inference System,” In: IEEE

Transactions on Systems, Man, and Cybernetics, vol 23, pages 65—685.

Mackey, M.C. and Glass, L. (1977) “Oscilation and Chaos”, in Physiological Control Systems,

Science, Vol 197, pp.287-289.

Mallick, S. and Hains,G. (2011), “Virtualization based cloud capacity prediction”, In:

International Conference on High Performance Computing and Simulation HPCS 2011,

IEEE, pp 849–852.

Marza, V. and Teshnehlab, M. (2009) “Estimating Development Time and Effort of Software

Projects by using a Neuro_Fuzzy Approach,” In: Advanced Technologies, Kankesu

Jayanthakumaran (Ed.), ISBN: 978-953-307-009-4, InTech.

Pramanika, N. and Kumar, R., (2009) "Application of neural network and adaptive neuro-fuzzy

inference systems for river flow prediction", In: Hydrological Sciences Journal,Taylor &

Francis, pp 247-260.

Schubert, F., Rolim, C. O. and C.B. Westphall (2011), “Aplicação de Algoritmos de

Provisionamento Baseados em Contratos de Nível de Serviço para Computação em Nuvem”,

In: XXiX Simposio Brasileiro de Redes de Computadores - IX Workshop em Clouds, Grids

e Aplicações (WCGA 11), Campo Grande – MS.

Yilmaz, I. and Kaynar, O. (2011), "Multiple regression, ANN (RBF, MLP) and ANFIS models

for prediction of swell potential of clayey soils", In: Expert Syst. Appl. 38, 5, 5958-5966.

Zhang, J., Chung, H.S. and Lo, W. (2008). "Chaotic Time Series Prediction Using a Neuro-

Fuzzy System with Time-Delay Coordinates", In: IEEE Transactions on Knowledge and

Data Engineering, 20(7), 956-964.

Zohar, E. and Cidon, I. (2011) “The Power of Prediction : Cloud Bandwidth and Cost

Reduction”, In: Proceedings of the ACM SIGCOMM 2011 conference on SIGCOMM

(SIGCOMM '11).

