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Abstract. Cloud computing has changed the way that computing is delivered 

and used, turning it into a utility like water or electricity. In this context, many 

challenges and opportunities appear to make the Cloud a stable, accessible 

and trustworthy environment. Resource provisioning in the Cloud must be 

dynamic and able to adapt to changing needs. In this paper, a provisioning 

method is proposed that uses neural networks to provide the desired quality of 

service and assure SLA.  

1. Introduction 

Throughout the history of computing, there have been several paradigm shifts from 

main-frames to mini computing to microprocessing to networked computers. Cloud 

computing is on track to be the next major paradigm shift. While the precise concept is 

still being defined, basically, cloud computing can be defined as a  major advance in 

delivering services where information is stored and processed on the Internet (i.e., “the 

Cloud") usually via massive large-scale data centers which can be accessed remotely 

through various clients and platforms [Grimes, J., Jaeger, P. and Lin, J. 2008]. 

Essentially, cloud computing is a key concept that seeks  to encapsulate the concept of 

ubiquitous processing and storage, by concealing  the real complexity and underlying 

layers from the users [Grimes, J., Jaeger, P. and Lin, J. 2008]. 

  In this paper specifically, we are addressing the following research questions, 

while providing the guidelines for  an innovative and significant solution:  (a) What kind 

of  model is required to  provide  support for prediction and resource provisioning? (b) 

What tools need to be used for this purpose?  

 We argue that a model that applies a hybrid neural network to infer the current 

situation and predict future events can be used to overcome previous problems. Thus, in 

this paper our goal is to analyze the use of Multioutput Adaptative Neuro-Fuzzy 

Inference systems (MANFIS) as an underlying mechanism for predicting a desired 



  

model. To achieve this, we make a comparison between a MANFIS and a Multi Layer 

Perceptron (MLP) network with the back-propagation learning rule.  

 This paper examines advances in the state of the art by offering  an alternative 

that combines  a hybrid type of neural networks with wide-area distributed systems. This 

combination in resource provisioning for cloud computing has an innovative feature that 

can be exploited in a more satisfactory way. We stress that our proposal has focus on 

“low level” attributes to an underlying mechanism for predicting, we will not consider 

“high level” ones related to business impact and economics relations like monetary 

costs. 

 This paper is structured as follows:  in Section 2 we comment on some related 

work. In Section 3 we present some alternative methods for dynamic resource 

provisioning and show why they are unsuitable to the needs of cloud computing. In 

Section 4 we introduce concepts used in the neural network and explain the reasons 

underlying the   use of MANFIS. The standard approach to construct both Neural 

Networks and the experimental results are examined in Section 5. Finally some 

concluding remarks, known limitations and recommendations for future work are 

discussed in Section 6. 

2. Related Work 

Cloud Computing, the long-held dream of computing as a utility, has the potential to 

transform a large part of the IT industry, making software even more attractive as a 

service and shaping the way IT hardware is designed and purchased [Armbrust, M., et. 

al 2009]. 

 As recent works in Cloud area related to prediction we can found [Zohar, E. and 

Cidon, I. 2011] that presents a solution called Predictive ACK (PACK) for prediction in 

Traffic Redundancy Elimination (TRE).  Although it is an excellent wok, it is for 

reducing bandwidth costs and not for prediction and resource provisioning. Another 

work is [Mallick, S. and Hains,G. 2011] that presents a cloud monitoring method based 

on prediction. It uses a rules-based system for monitoring and alert. The authors are 

working to use a mathematical model like quantitative analysis or Markov chain. We 

believe that an interesting alternative would be Neural Networks as mathematical model.  

Related to Neural Networks for prediction we can found several works in various areas 

of application. However, there are few works that uses a hybrid approach like ANFIS 

and MANFIS. We can found [Yilmaz, I. and Kaynar, O. 2011] that apply ANFIS for 

prediction of swell potential of clayey soils, [Elabd, S. and Schlenkhoff A. 2009] for 

travel time prediction and [Pramanika, N. and Kumar, R., 2009] that used a prediction 

model for water reservoir management. Those uses MANFIS we can cite [Gomathi, V., 

Ramar, K. and Jeevakumar, A. S. 2009] for human facial expression recognition and 

[Zhang, J., Chung, H.S. and Lo, W. 2008] for Chaotic Time Series Prediction. 

Regardless of be used in different scenarios, such works demonstrate the potential and 

flexibility of Neural Networks. 

 We point a lack of a solution that use a hybrid neural network as approach to 

provide certain SLAs and quality of service to their users and allow they to define the 

strict requirements and QoS attributes needed for Cloud systems to run smoothly.  The 



  

alternatives to overcome this issue will be dealt with in the next sections and a proposal 

to address this problem will be outlined. 

3. Alternatives for Dynamic Resources Provisioning 

Compliance with the non-functional requirements that constitute the SLA requires a 

mechanism that is able to monitor and analyze the current state of the instance (or 

service) based on certain attributes (the desired granularity) and compare these results 

with the SLA agreed between the provider and the consumer. 

 On the basis of the analysis conducted in Section 2, most cloud computing 

solutions have some kind of SLA mechanisms and QoS, but these mechanisms are 

unable to represent the granularity and specific needs of consumers, for example, for 

enterprise mission-critical virtual instances.  

Table 1. QoS Attributes 

Requirements Specifications Examples 

Adaptability 
Allow dynamic reconfiguration during 

running time 
Change in status from the requirements needed to instantiate 

a new virtual machine 

Supervision Monitor the current QoS Monitoring parameters like CPU load, memory consumption 

Prediction 
Capacity to predict future behavior  

based on current historical data 
Analyze the CPU load for a time and predict if  more CPU 

cores are needed 

Granularity 
Allow the definition of specific 

parameters for each service 
Define requirements during execution time such as  

response time and  throughput 

 Granularity is the ability to ensure the availability and reliability of data and 

services hosted in the Cloud. This granularity corresponds to the typical non-functional 

requirements for each application or hosted service and depends on the perceived needs 

of each customer and consumer in the Cloud. 

 The primary need for the definition of such an algorithm or technique is that it 

meets  the requirements of QoS in the context of cloud computing. Table 1 shows  the 

proposed QoS requirements necessary for the dynamic provisioning mechanisms of  the 

Cloud. These requirements have been drawn  from the SLA requirements, as pointed out 

by [Aib, I. and Daheb, B. 2007], and the SLA requirements for IP networks, which can 

be applied to cloud computing. 

Table 2. Analysis of algorithms and QoS techniques 

Technique / Algorithm Adaptability Supervision Granularity Prediction 

FIFO No No No No 

PQ No No No No 

CQ No No No No 

WFQ No No No No 

CBWFQ No No No No 

RED No Yes No Yes 

WRED No Yes No Yes 

FRED No Yes No Yes 

Architectural Transluscency Yes Yes No Yes 



  

Technique / Algorithm Adaptability Supervision Granularity Prediction 

Neural Networks Yes Yes Yes Yes 

 The survey of the QoS algorithms in Table 2 was conducted with the aim of 

seeking alternatives that are already consolidated and stable and that can fit the cloud 

computing model. The QoS algorithms used for network management, congestion, flow 

control and traffic prioritization have been evaluated [Aib, I. and Daheb, B. 2007]. In 

addition to these, solutions were sought such as those  used in grid computing as well as  

Cloud computing proposals [Balen, D. and Westphall, C. B. 2011]. 

 We argue that Neural networks can be applied to the Cloud model as a 

prediction and provisioning device. It were chosen because neural networks have the 

ability to learn from past behavior and predict future behavior on the basis of historical 

data. 

4. Neural Networks with Clouds 

Before constructing a model that can be implemented to show the provisioning, 

monitoring and prediction capabilities of cloud computing, we need to define its 

underlying mechanism. As argued above, the best choice is neural network. Neural 

network is a wide study and research field, with different network types and algorithms.  

 A commonly used Neural Network is Multi-Layer Perceptron (MLP).  MLP 

consists of three or more layers (an input and output layer with one or more hidden 

layers). Each node implements a nonlinear activation function and an associated weight 

wij that is used to calculate the activation potential of the node. In MLP the calculation 

of error in the output of the network is given by the sum of squared errors for instant 

output of each node in the network and is represented by  

 

 For weight actualization, the method of steepest descent is used to update 

neurons in output and hidden layers.  This method is known as the back-propagation 

learning rule. The configuration steps of MLP, involves  defining  the number of layers, 

the number of neurons in each layer, the activation function used in each layer, the 

learning rate and the number of epochs used to train the network according to the input 

data and desired output. These steps are laborious, require several analyze and 

adjustments to ensure the generalization power of network and due to the “black box” 

model of MLP, their internal functionalities are no “human friendly”. 

 An alternative means of overcoming these problems is having a network that 

“learns” about inferred data and represents this knowledge in a more “human” way. The 

most widely used approach is to combine fuzzy logic with neural networks to build 

hybrid networks. Different models can be employed to implement a Mamdani and 

Takagi Sugeno fuzzy inference systems like FALCON, ANFIS, NEFCON, 

NEFCLASS, NEFPROX, FUN, SONFIN, EFuNN and many others [Abraham, A. 

2005]. In general Takagi-Sugeno has a lower Root Mean Square Error (RMSE) and 

produces a more accurate system than the Mamdani-type, which is much faster than  

Takagi-Sugeno [Marza, V. and Teshnehlab, M. 2009]. However, as we are seeking for 



  

accuracy, we did not consider models like FALCON, NEFCON, NEFCLASS and 

EfuNN, or even FUN that does not use a formal learning technique (it randomizes the 

parameter values of membership functions).  With regard to other models, [Mackey, 

M.C. and Glass, L. 1977] provided a comparative performance of some neuro-fuzzy 

systems for prediction of chaotic time series (Table 3). 

Table 3. Performance of some neuro-fuzzy models 

System Epochs Test RMSE 

ANFIS 75 0.0017 

NEFPROX 216 0.332 

EfuNN 1 0.0140 

dmEFuNN 1 0.0042 

SONFIN 1 0.0180 

 As shown, ANFIS has a lower RMSE than   NEFPROX, SOFIN and dmEFuNN 

which uses the Takagi-Sugeno model. Thus our choice was to use ANFIS for prediction.  

However as our network needs to predict several values for resource provisioning,  

ANFIS cannot be used because it produces a single output. For this reason, we decided 

to use a Multi output Adaptative Neuro-Fuzzy Inference System [Benmiloud, T. 2010] 

which is an extension of the Adaptative Neuro-Fuzzy Network (ANFIS) [Jang, J. R. 

1993]. As its name implies, MANFIS acts like multiple interconnected ANFIS 

providing multiple outputs instead of just one. As in the case of ANFIS, the strength of 

MANFIS  lies in its  ability to  construct  input-output mapping based on both human 

knowledge (in the form of fuzzy if-then rules) and learning  the  provided data. 

 Figure 1 shows   a typical MANFIS with one-input for a first-order Sugeno 

fuzzy model with three outputs. 

 

Figure 1:  MANFIS for a one-input first-order Sugeno model with three rules – 

architecture with three outputs 

 In a MANFIS, each layer has a defined function: layer 1 maps the input to the 

fuzzy rules and its correspondent Membership Function (MF); in layer 2 the input 

signals are multiplied and the output is the product representing the firing strength of a 



  

rule; in layer 3 each rule´s   firing strength is normalized; in layer 4 each node is an 

adaptive node that has  a function with parameters defined by the output of layer 3; and 

in layer 5 the output is generated by the summation of all incoming signals. 

 What is interesting about MANFIS is that each network neuron implements a 

fuzzy set. The network can adjust the MF used by its internal fuzzy inference based on 

the data provided in the training phase.  To adjust the MF parameters a gradient vector is 

used which measures the system inference by means of a set of rules that seek to reduce 

the global error. The adjustment of weights is done by using a two-passes hybrid 

algorithm that combines the Least-Square Estimator (LSE) with the Gradient Descent 

(GD) method. This hybrid learning approach is beneficial due to the fact that the 

convergence is much faster since the dimensions of the search space is reduced in the 

original pure backpropagation method used in ANN technique. In the case of  MANFIS, 

this algorithm has  to be adapted to work with multiple outputs instead of one, as with 

the  original ANFIS.  The backward pass is identical, the signal of error is 

backpropagated and the local parameters are updated by the gradient descent method. 

For a system with one output y:   

  

where  

   h: the training rate for ia       and    p: number of data of x (or yd ) 

 The partial derivative is used to update the parameters of the membership 

functions.   The difference resides in forward pass, where the node  output goes forward 

until layer 4 and the resulting  parameters are identified and corrected by the sum of 

gradient of the errors of overall outputs (instead of just one error signal used by the 

least-squares method with one output).  That is: 

    

        which      

 Following this explanation of   the factors that determined the use of MLP and 

MANFIS, in the next section we will present the used approach to decide which one is 

most suitable for our Cloud environment and then analyze the experimental results. 

5. Experimental Results 

The developing an application in neural networks should be undertaken in the following 

stages:    defining input and output data, configuring the network, training, testing and 

validation.  With this in mind, as in the case of input data, we will provide the QoS 

attributes and system state variables used in Cloud environment.  These inputs have 

been selected because of their strong influence on performance and system availability.  

They are defined as follows: (i1) Requests: the amount of requests at the time. 

The Unity used was requests per second (RPS); (i2) Concurrent Requests: the amount of 

simultaneous requests that the environment receives; (i3) Time per request: number of 

seconds for each request to be completed; (i4) Memory consumption: the amount of 



  

RAM consumed by the requests in a certain snapshot of time; (i5) Processor Load: the 

processor load is the capacity load from the system processor. The processes are kept in 

wait or execution state. The load represents the sum of all the processes that are being 

executed plus the waiting process queue. The load may vary from 0 (empty queue) to 

1.0 (full queue) and > 1.0 (full queue plus waiting processes); (i6) Storage Consumption: 

Number of Megabytes consumption from the requests.  In the output, the network has to 

predict the resource provisioning needed by the environment, using the current context. 

These values are: (o1) Processor Cores: to determine the number of cores necessary to 

allocate a new virtual instance or update [one] a single running instance; (o2) Memory: 

amount of memory necessary to carry out  the current workload from the environment; 

(o3) Storage: amount of storage needed for the environment to maintain the  current 

workload.  These inputs (i1..6) and outputs parameters (o1..3) was used in MLP and 

MANFIS. 

 Our first analysis was a MLP.  To train the network, we provided data that 

represented the current input and the desired output (a Boolean value to indicate if the 

operational SLA was violated, the number of processor cores, the amount of memory 

and amount of storage provisioning required).  To obtain these data, we prepared some 

scripts in PHP, Shell and Perl language to monitor the workload of a web server in 

different situations.  The observed range was 30 days, which we believe represents 

different situations of use. 

 With the aid of the collected data, we built a MLP using a Matlab and Neural 

Network toolbox. To test and evaluate the generalization power of the developed 

network, we used the 10-fold cross-validation method, and after constructing a  

confusion matrix, the best suitable topology was  formed by 6 input nodes (which are 

the non-functional requirements of QoS as well as the system state indicators 

represented by the CPU load, memory and storage usage), two hidden layers, with 7 and 

12 nodes respectively and the hyperbolic tangent as an activation function, and 4 output 

nodes representing the predicted values. The used learning rate was 1e
-3

. With this 

configuration the Mean Squared Error (MSE) was 0.0188 (RMSE=0.1371) after 500 

epochs (Figure 2). 

 To construct and train the MANFIS, we employed the same input/output data set 

that had been used previously in MLP with 3500 values, which we believe  represents a 

Cloud server working in  different situations. The network was also constructed by 

means of Matlab software. As expected, MANFIS does not need a lot of manual 

configuration.  This is due to the fact that the parameter configurations are adjusted by 

internal mathematical functions based on input data. However, the designer of the 

network still has to select the best method to partition the input space. In our case, due to 

the number of variables involved in the input, we cannot use grid partition as a method 

for input space partitioning (it generates rules by enumerating all possible combinations 

of membership functions of all the input and this leads to an exponential explosion of 

the rules).  In view of this, we decided to use subtractive clustering which produces  

scattering partition. With this method only a limited number of computational resources 

are needed due to small number of  rules in force.  In this case, the only information 

required is the degree of influence of the cluster center on each input and output 

dimension, assuming the data falls within a unit hyperbox (range [0 1]).  If a smaller 



  

cluster radius is specified, this will usually yield more smaller clusters in the data, and 

hence result in more rules. 

 

Figure 2: Mean Squared Error after 500 epochs 

 As in the case of MLP, by means of the 10-fold cross-validation method, the best 

suitable configuration was achieved with 0.15 for cluster radius to comply with SLA, 

memory and storage input and 0.5 for storage input. For comparative purposes, we used 

a training set which was   done in 500 epochs too. With this configuration, the resulting 

RMSE was 0.0707 (Figure 3) in contrast with   0.1371 in MLP.  The total number of 

rules generated by the space partitioning was around 15 for each input (in tests using 

grid partition with 3 membership functions for each of the 6 entries, the total was 3
6
, 

which equals 729 rules). As expected, we found that if we reduce the cluster radius 

values, the number of rules and amount of computational time needed to calculate these 

rules increases dramatically. In this case, to be computationally efficient, we must  

reduce the training set and hence  reduce  the generalization power of the network.  

 Moreover, with regard to the low RMSE of MANFIS compared to MLP, if we 

analyze the convergence graphs of MLP and MANFIS we can note that the convergence 

of  MANFIS occurs at a  much faster rate  than MLP in training mode. 

 

Figure 3. RMSE after 500 epochs 

  At training mode, we can conclude that MANFIS has a greater power of 

prediction due to a low RMSE. To evaluate and validate the predictive power of both 

approaches in our Cloud environment, we used the same scenario as that employed in  



  

our previous work [Schubert, F., Rolim, C. O. and C.B. Westphall 2011] which is 

depicted  in Table 4. It contains input values and expected output (gray rows) by a 

prediction mechanism in different scenarios that simulates a normal server load and an 

overloaded server. Again we stress that we do not consider “high level” attributes 

related to business impact and economics relations like monetary costs. 

Table 4. Test Scenarios 

Attributes Scenario 1 Scenario 2 Scenario 3 

Concurrent Requests 85 287 958 

Requests per Second 225 163 328 

Time per request 62 193 230 

Memory Usage 64.2 287 434 

Storage Usage 85 287 958 

System Load 0.8 3.8 10.4 

Expected SLA 0 1 1 

Expected Memory Provisioned 0 347.84 562.56 

Expected  Storage Provisioned 0 4383 5054 

Expected  Cores Provisioned 0 4 10 

 These scenarios have been generated on the basis of historical data obtained 

from the test environment for their inputs and the predicted output has been calculated 

by means of the following allocation functions: 

Mal = 128MB + MpReq 

Sal = 4096MB + SpReq 

Cal = Reqs * 0.02 

 The Mal function represents the memory allocation that constitutes 128MB for 

the base instance plus the amount of memory needed for the average number of  

incoming requests. The Sal function stays for storage allocation, saying that the 

provision network will result in a 4096 Megabytes basic system storage plus the storage 

needed per incoming request. The Cal function handles the provision of CPU cores, 

where each request will be multiplied by 0.02.   This value has been calculated on the 

basis of a systems analysis used for processing consumption per test request.  The 

functions were defined on the basis of the test environment and test web application. For 

simulation purposes, the MpReq (Memory per Request) and SpReq (Storage per 

Request) variables have been considered as 1 Megabyte of RAM memory and disk 

storage respectively. 

 The values obtained from the test scenarios outlined above, were included as 

input in both networks (MLP and MANFIS) and the output can be seen in Table 5.  If we 

compare the expected output values of Table 4 (gray rows - Expected SLA, Expected 

Memory Provisioned, Expected Storage Provisioned, Expected Cores Provisioned) with 

the predicted output of MLP and MANFIS (Table 5 – bold values), we can draw the 

following conclusions:  The first test scenario depicts a normal server load with a 

number of requests that do not violate the SLA. The predicted output values of MLP and 

MANFIS were considered to be acceptable with a small precision error. This means that 



  

both networks are able to predict a normal state in the instance that does not violate the 

SLA. The service was not degraded and the neural networks were able to identify it 

without   provisioning any resource. 

 A different result can be seen in Test Scenario 2. The SLA and Storage attributes 

have been correctly predicted by both networks. In MLP the number of CPU Cores has 

been rounded to low and the Memory predicted was 23% larger than expected. On the 

other hand, the number of CPU cores predicted by MANFIS was 15% larger than 

expected and the Memory provisioned was around 1% higher than expected.   

 In  Test  Scenario 3, both networks correctly predicted the  SLA violation. 

However, MLP was wrong in its  prediction of  the number of Cores; the  Memory was 

27% lower than expected and the Storage provisioned was around 10% lower. The 

results of MANFIS were more accurate.  The Memory, Storage and number of Cores 

predicted was around 1% higher than  expected. These values can be considered to be 

correct. 

Table 5. Results of provisioning in different scenarios* 

 MLP Provisioning MANFIS Provisioning 

                    Scenario 

    Attributes 

Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3 

SLA Status 

     Predicted / Expected 

 

0 / 0 1 / 1 1 / 1 0 / 0 1.009 / 1 1.00 / 1 

Memory  

  Predicted / Expected 

 

0.0002 / 0 431.2512 / 347.84 408.38 / 562.56 0.0027 / 0 345.30 / 347.84 563.49 / 562.56 

Storage  

   Predicted / Expected 

 

0 / 0 4383 / 4383 4557 / 5054 0.0018 / 0 4383.7 / 4383 5058.25 / 5054 

Cores    

  Predicted / Expected 
0 / 0 3 / 4 9 / 10 0.0087 / 0 6.12 / 4 10.1732 / 10 

 *In bold are predicted values. The values after the slash came from table 4 and are shown to facilitate comparison 

 The results show that MLP is a useful way of predicting values in a Cloud 

environment but more manual intervention is required to configure its parameters and a 

lot of run/test procedures to obtain satisfactory results.  In contrast, MANFIS is a model 

that does not need a lot of manual intervention. We just had to make a few adjustments 

to the   cluster radius parameters and the network itself did the rest. The prediction 

results of MANFIS were more accurate than MLP and it was clear that the training stage  

was  faster and more computationally effective.  Furthermore, in the training stage,  we 

noted that MANFIS could achieve  the desired RMSE with fewer values in the data 

training  set. However this data must contain the maximum and minimum values in the  

universe of discourse, otherwise the generalization power of the  network will be 

degraded. 

 To summarize, both types of network successfully detected the shortage of 

resources and predicted values to deal with these situations.  MANFIS was found to 

have a better predictive capacity than MLP in our tests and required less effort for 

configuration and training. This leads us to believe that it is more suitable to provide 

resource provisioning for Cloud computing environments. Nevertheless, apart from its  

results,   it is a useful  approach and it would be worth confirming  its effectiveness with 

more experiments in real environments. 



  

6. Conclusion and Recommendations for Future Studies 

The dynamic provisioning of resources remains a challenge for cloud computing. The 

use of neural networks for provisioning and SLA violation detection is one of the 

solutions proposed by UC Berkeley in its technical report on cloud [Armbrust, M. et al. 

2009]. It applies where pervasive and aggressive use of machine learning as a tool for 

diagnosis, prediction and resource provisioning is used to enable dynamic scheduling, 

automatic reaction to performance problems and the automatic management of cloud 

systems [Armbrust, M. et al. 2009]. 

 In this paper, we conducted an analysis of two type of neural network called 

MLP and MANFIS, a different hybrid type that blends learning capacities with fuzzy 

logic and provides good predictive capacities, as an underlying mechanism for cloud 

resource provisioning.  The results show that MANFIS is more suitable for our needs. 

However to be used in a real environment,  special precautions must be taken specially 

in the choice of the clustering method of input data since  it can have an  impact on the  

number of rules and the generalization power of the network. 

 It should be stressed that there is a lack of a mathematical approach to train the 

MANFIS (“on the fly”) to improve the application of this network in different scenarios. 

Hence, we are seeking a way to do this in future studies another recommendation for 

future work is the development of a module that couples a neural model with Cloud 

simulators, such as CloudSim [Calheiros R., et al. 2009.]. This combination would allow 

the effectiveness of neural networks to be measured in environments where provisioning 

is closer to reality. Another topic of interest for future developments is an analysis of the 

economic feasibility and business impact from such techniques in enterprise or research 

facilities. 

 Finally, we conclude that the future of cloud computing might  derive some  

benefit from  statistical learning machines, with neural networks playing an important 

role in the forecasting, prediction and evaluation of cloud computing environments. 
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