How frameworks compare to other
object-oriented reuse techniques.

FRAMEWORKS =

(COMPONENTS+PATTERNS)

‘Frameworks are an object-oriented reuse technique. They share many characteris-

tics with reuse techniques in general [8], and object-oriented reuse techniques in

particular. Although they have been used successfully for some time, and are an impor-

tant part of the culture of long-time object-oriented developers, they are not well under-

stood outside the object-oriented community and are often misused. Moreover, there is

confusion about whether frameworks are large-scale patterns, or whether they are just

another kind of component.

Even the definitions of frameworks vary. The defi-
nition we use most is “a framework is a reusable
design of all or part of a system that is represented by
a set of abstract classes and the way their instances
interact.” Another common definition is “a frame-
work is the skeleton of an application that can be cus-
tomized by an application developer.” These are not
conflicting definitions; the first describes the struc-
ture of a framework while the second describes its pur-
pose. Nevertheless, they point out the difficulty of
defining frameworks clearly.

Frameworks are important, and continually become
more important. Systems like OLE, OpenDoc, and
DSOM are frameworks; Java is spreading new frame-
works like AWT and Beans. Most commercially avail-
able frameworks seem to be for technical domains such
as user interfaces or distribution, and most application-
specific frameworks are proprietary. But the steady rise
of frameworks means every software developer should
know what they are and how to deal with them.

Ralph E. Johnson

The ideal reuse technology provides components
that can be easily connected to make a new system.
The software developer does not have to know how
the component is implemented, and it is easy for the
developer to learn how to use it. The resulting sys-
tem will be efficient, easy to maintain, and reliable.
The electric power system is like that; you can buy
a toaster from one store and a television from
another, and they will both work at either your
home or office. Most people do not know Ohm’s
Law, yet they have no trouble connecting a new
toaster to the power system. Unfortunately, software
is not nearly as composable as the electric power
system.

The original vision of software reuse was based on
components. In the beginning, commercial interest in
object-oriented technology also focused on reusable

COMMUNICATIONS OF THE ACM October 1997/ Vol. 40, No. 10 39

components, as illustrated by Brad Cox’s Software ICs
[5]. However, object-oriented technology has not cre-
ated a market in reusable components. This has hap-
pened in the Visual Basic market, in part because of
the dominance of Microsoft, in part because Visual
Basic is simple and easy to use. But frameworks are
not software components as they were originally
foreseen.

Frameworks are a component in the sense that
venders sell them as products, and an application
might use several frameworks. But frameworks are
more customizable than most

Frameworks as Reusable Design
esigners often trade simplicity for power. A
simple asset will be easy to use, but can be
used in fewer cases. A generic asset with
many parameters and options can be used more
often, but will be harder to learn to use.

For example, it is cheaper to buy a compiler than to
build one. Most compilers only compile one language.
On the other hand, you could build a compiler for
your own language by reusing parts of the GNU C
compiler, gcc, which has a parser generator and a
reusable backend for code genera-

components, and have more
complex interfaces. Program-
mers must learn these interfaces
before they can use the frame-
work, and, consequentially,
learning a new framework is
hard. In return, frameworks are
powerful; they can be used for
just about any kind of applica-
tion and a good framework can
reduce the amount of effort to
develop customized applications
by an order of magnitude.

It is probably best to think of [
frameworks and components as

N\
AY

ox zw1q tion. It takes more work and exper-
tise to build a compiler by reusing
8% parts of gce than it does just to use a
compiler, but then you can compile

: your own language. Finally, you
| might decide that gcc is not flexible
enough, since your language might
be concurrent or depend on garbage
collection, so you write your com-
piler from scratch. Even though you
don’t reuse any code, you will prob-
ably still use many of the same
design ideas as gcc, such as having a
separate parser. You can learn these
ideas from any good textbook on

different, but cooperating, tech-
nologies. First, frameworks pro-
vide a reusable context for
components. Each component
makes assumptions about its
environment. If components
make different assumptions then
it is hard to use them together. A
framework will provide a standard way for compo-
nents to handle errors, to exchange data, and to
invoke operations on each other. The so called “com-
ponent systems” such as OLE, OpenDoc, and Beans,
are really frameworks that solve standard problems
that arise in building compound documents and
other composite objects. But any kind of framework
provides the standard interfaces that enable existing
components to be reused.

A second way in which frameworks and compo-
nents work together is that frameworks make it easier
to develop new components. Applications seem infi-
nitely variable, and no matter how good a component
library is, it will eventually need new components.
Frameworks let us make a new component (such as a
user interface) out of smaller components (such as a
widget) and they also provide the specifications for
new components and a template for implementing
them.

40

October 1997/Vol. 40, No. |0 COMMUNICATIONS OF THE ACM

compilers.

A component represents code
reuse. A textbook represents design
reuse. The source for gcc lies some-
where in between. Design reuse has
advantages over code reuse [1]. It
can be applied in more contexts and
so is more common. Also, it is
applied earlier in the development process, and so can
have a larger impact on a project. But most design
reuse is informal, and happens through using experi-
enced developers. There is no standard design nota-
tion and there are no standard catalogs of designs to
reuse. A single company can standardize, and some
do, but this will not lead to industry-wide reuse.

Frameworks are a form of design reuse. They are
similar to other techniques for reusing high-level
design, such as templates [12] or schemas [9]. The
main difference is that frameworks are expressed in a
programming language, but these other ways of
reusing high-level design usually depend on a special
purpose design notation and require special software
tools. The fact that frameworks are programs makes
them easier for programmers to learn and to apply.
They don’t need any tools except their compilers, and
they can gradually change an application into a frame-
work. On the other hand, it means that frameworks

tend to be specific to a programming language. More-
over, some design ideas, such as behavioral con-
straints, cannot be expressed well in current
languages.

Frameworks are similar to application generators
[3], which usually compile a high-level, domain-spe-
cific language to a standard architecture. Designing a
framework is like designing a programming lan-
guage, except that the only concrete syntax is the one
used to implement the framework. Also, the transla-
tor of an application generator can (but usually does-
n’t) perform optimizations. Problem domain experts
usually prefer their own syntax, but expert program-
mers usually prefer frameworks because they are easier
to extend and combine than special-purpose lan-
guages. It is possible to combine frameworks and a
domain-specific language by translating programs in
the language into a set of objects in the framework
[10]. The window builders associated with GUI
frameworks are examples of domain-specific visual
programming languages.

Frameworks are a kind of domain-specific architec-
ture [11]. The main difference between them is that a
framework is ultimately an object-oriented design,
while a domain-specific architecture might not be.

Because these techniques are similar, they share
similar benefits. They all can save time and money
during development. Time to market is increasingly
important, and is the main reason many companies
build frameworks. But they find that the uniformity
caused by reuse is just as important. Graphical user
interface frameworks give a set of applications a simi-
lar look and feel, and using a distributed object frame-
work ensures that all applications can communicate
with each other. Uniformity reduces the cost of main-
tenance, too, since Now maintenance programmers
can move from one application to the next without
having to learn a new design.

One motivation of design reuse is to enable open
systems, so developers can mix and match compo-
nents from different vendors. This implies reusing
interface design, and is one of the motivations for
object-oriented systems like CORBA. So far, though,
these systems have focused on lower-level interfaces
and not reusable designs.

These reuse techniques share similar costs. In par-
ticular, they all require domain analysis and domain
engineering, so there is a big expense before benefits
can be realized. All reuse techniques require that
developers be trained to use the artifact, they create
dependences on the reused artifacts, and they often
introduce inefficiencies. Before using any of them, the
costs and benefits should be analyzed.

Because frameworks do not require any tools other

than those needed for an object-oriented program-
ming language, they tend to appear wherever object-
oriented languages are used. In fact, developers often
do not even know they are using a framework, but
just talk about the “class library.” Frameworks differ
from other class libraries by reusing high-level design.
This means that there is more to learn before a class
can be reused, they can never be reused in isolation,
and typically a set of classes must be learned at once.
You can often tell that a class library is a framework if
there are dependencies among its components and if
programmers who are learning it complain about its
complexity.

Frameworks and Patterns

atterns have recently become a popular way to

reuse design information in the object-ori-

ented community [2, 4, 6]. A pattern
describes a problem to be solved, a solution, and the
context in which that solution works. It names a
technique and describes its costs and benefits. Devel-
opers who share a set of patterns have a common
vocabulary for describing their designs, and also a
way of making design tradeoffs explicit. Patterns are
supposed to describe recurring solutions that have
stood the test of time.

Since some frameworks have been implemented
several times, they represent a kind of pattern, too.
Model/View/Controller is a user-interface framework
that is described as a pattern in Bushmann et al. [1].
Moreover, applications that use frameworks must con-
form to the frameworks’ design and model of collabo-
ration, so the framework causes patterns in the
applications that use it. However, frameworks are
more than just ideas, they are also code. This code
provides a way of testing whether a developer under-
stands the framework, examples for learning it, and an
oracle for answering questions about it. In addition,
code reuse often makes it possible to build a simple
application quickly, and that application can then
grow into the final application as the developer learns
the framework.

The patterns in the book Design Patterns [6] are
closely related to frameworks in another way. These
patterns were discovered by examining a number of
frameworks, and were chosen as being representative
of reusable, object-oriented software. A single frame-
work usually contains many patterns, so these pat-
terns are smaller than frameworks. Moreover, the
design patterns cannot be expressed as C++ or
Smalltalk classes and then just reused by inheritance
or composition. Therefore, those patterns are more
abstract than frameworks. Frameworks are at a differ-
ent level of abstraction than the patterns in Design

COMMUNICATIONS OF THE ACM October 1997,/Vol. 40, No. 10 41

Patterns. Design patterns are the micro-architectural
elements of frameworks.

For example, Model/View/Controller can be
decomposed into three major design patterns, and
several less important ones [6]. It uses the Observer
pattern to ensure the view’s picture of the model is
up-to-date, the Composite pattern to nest views, and
the Strategy pattern to cause views to delegate
responsibility for handling user events to their
controller.

Frameworks are firmly in the middle of reuse tech-
niques. They are more abstract and flexible than com-
ponents, but more concrete and easier to reuse than a
pure design (but less flexible and less likely to be
applicable). Although they can be thought of as a more
concrete form of a pattern, frameworks are more like
techniques that reuse both design and code, such as
application generators and templates. Patterns are
illustrated by programs, but a framework is a program.

Problems with Frameworks

ome of the problems with frameworks have

been described already. Because they are pow-

erful and complex, they are difficult to learn.
This means they require better documentation and
longer training than other systems. They are hard
to develop, therefore they cost more to develop and
require better programmers than normal applica-
tion development. These are some of the reasons
frameworks are not used more widely, in spite of
the fact that the technology is old. But these prob-
lems are shared with other reuse techniques.
Although reuse is valuable, it is not free—compa-
nies that are going to take advantage of reuse must
pay its price.

One of the strengths of frameworks is that they are
represented by traditional object-oriented program-
ming languages. This is also a weakness of frame-
works, however, and it is one that the other
design-oriented reuse techniques do not share.

One of the problems with using a particular lan-
guage is that it restricts frameworks to systems using
that language. In general, different object-oriented
programming languages don’t work well together, so
it is not cost-effective to build an application in one
language with a framework written in another. COM
and CORBA address this problem, since they let pro-
grams in one languge interoperate with programs in
another. Further, some frameworks have been imple-
mented twice so that users of two different languages
can use them, such as the SEMATECH CIM frame-
work described in this issue.

Current programming languages are good at
describing the static interface of an object, but not its

42

October 1997/Vol. 40, No. 10 COMMUNICATIONS OF THE ACM

dynamic interface. Because frameworks are described
with programming languages, it is hard for develop-
ers to learn the collaborative patterns of a framework
by reading it. Instead, they depend on other docu-
mentation and talking to experts. Patterns are one
approach to improving the documentation. Another
approach is to describe the constraints and interac-
tions between components formally, such as with con-
tracts [7]. But since part of the strength of
frameworks is the fact that the framework is expressed
in code, it might be better to improve object-oriented
languages so that they can express patterns of collab-
oration more clearly.

Frameworks are a practical way to express reusable
designs. They deserve the attention of both
researchers and practitioners. Although we need bet-
ter ways to express and develop frameworks, they have
already shown themselves to be valuable.

REFERENCES

. Biggerstaff, T.J., and Richter, C. Reusability framework, assessment,
and directions. IEEE Software 4, 2 (Mar. 1987), 41-49.

. Bushmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M.
Pattern-Oriented Software Architecture: A System of Patterns. Wiley, West
Sussex, England, 1996.

. Cleaveland, J.C. Building application generators. IEEE Software 4, 5
(July 1988), 25-33.

. Coplien, J.O. Patterns. SIGS Publications, NY, 1996.

. Cox, B.J. Object-Oriented Programming. Addison-Wesley, Reading, Mass.,
1986.

6. Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading,
Mass., 1995.

7. Helm, R., Holland, I.M., and Gangopadhyay, D. Contracts: Specifying
behavioral compositions in object-oriented systems. In Proceedings of
OOPSLA ‘90, (Oct. 1990), pp. 169—-180; printed as SIGPLAN Notices
25, 10.

. Krueger, C.W. Software reuse. ACM Comput. Surveys 24, 2 (June 1992),
131-183.

9. Lubars, M.D. and Harandi, M.T. Knowledge-based software design
using design schemas. In Proceedings of the 9th International Conference on
Software Engineering (Mar. 1987), pp. 253-262.

10. Roberts, D. and Johnson, R. Evolving frameworks: A pattern language
for developing frameworks. In D. Riehle, F. Buschmann, and R.C.
Martin, Eds., Pattern Languages of Program Design 3, Addison-Wesley,
Reading, Mass., 1997.

. Tracz, W. Dssa frequently asked questions. ACM Software Engineering
Notes, 19, 2 (Apr. 1994), 52-56.

12. Volpano, D.M. and Kieburtz, R.B. The templates approach to software

reuse. In T.J. Biggerstaff and A.J. Perlis, Eds., Software Reusability, Vol.
I, ACM Press, 1989.

—_

N

(3

(VLN

o]

1

—

RALPH E. JOHNSON (johnson@cs.uiuc.edu) is Coordinator of
Project Design Activity in the Department of Computer Science
at the University of Illinois-Urbana.

Permission to make digital/hard copy of part or all of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage, the copyright notice, the title of the publication and
its date appear, and notice is given that copying is by permission of ACM, Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists requires prior spe-
cific permission and/or a fee.

© ACM 0002-0782/97/1000 $3.50

