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Abstract

In frequent geographic pattern mining a large amount of
patterns can be non-novel and non-interesting. This prob-
lem has been addressed recently, and background knowl-
edge is used to reduce well known geographic patterns.
However, a large amount of meaningless patterns which is
independent of domain knowledge is still extracted from ge-
ographic data. Therefore, this paper proposes a method for
filtering specific types of meaningless spatial patterns us-
ing qualitative spatial reasoning. We proof a significant re-
duction of the number of frequent patterns, which is also
shown with experiments performed on real data. These ex-
periments even show a reduction in computational time.

1. Introduction

The huge amount of patterns generated by frequent pat-
tern mining algorithms has been extensively addressed in
the last few years. Different objective and subjective mea-
sures have been proposed to evaluate how interesting as-
sociation rules are. However, according to [5] it is dif-
ficult to come up with a single metric that quantifies the
“interestingness” or “goodness” of an association rule. In
most approaches, non-interesting rules are eliminated dur-
ing the rule generation, i.e., aposteriori, when frequent item-
sets have already been generated.

In spatial frequent pattern mining the number of non-
interesting association rules can increase even further than
in transactional pattern mining. Geographic data have se-
mantic dependencies and spatial properties which in many
cases are well known and non-interesting [3, 8].

Figure 1 shows a partial map of the city of Porto Ale-
gre, located in southern Brazil, where the large polygons

Figure 1. Districts, Streets, and Illumination
Points of the Porto Alegre City

are districts, black lines are streets and black dots are illu-
mination points. In this example we can see at least two se-
mantic dependencies which generate well known patterns.
Illumination points are adjacent to streets, and all streets are
related to at least one district. Such dependencies generate
non-interesting association rules such as, for example:

is a District ∧ contains Street

→ contains IlluminationPoints.

In the geographic domain, not only well known geo-
graphic dependencies generate a large number of patterns



without novel and useful knowledge. Different spatial pre-
dicates may contain the same geographic object type.
In transactional frequent pattern mining items have binary
values, and either do or do not participate in a transaction.
For instance, the item milk either participates or not in a
transaction t. In spatial frequent pattern mining the same
spatial object (item) may have different qualitative spatial
relationships with the target feature (transaction), and by
consequence participate more then once in the same trans-
action t. For instance, a city C may contain an instance i1
of river, be crossed by an instance i2 of river, or even touch
an instance i3 of river. Different spatial relationships with
the same geographic object type will generate associations
such as

contains River → touches River

when data are considered at general granularity levels [12].
This rule says that “cities which contain river do also touch
river”. It is well known that a city does not touch a river
because it also contains a river. Such kind of rule is non-
interesting for most applications. An interesting association
rule would be the combination of any of these two predi-
cates with a different geographic object type or some non-
spatial attribute. For instance:

contains River → WaterPollution = high

or

touches River → exportationRate = high.

To understand the problem in real applications, let us
consider Figure 2, which shows the same part of the city
of Porto Alegre shown in Figure 1, with some different
geographic object types. The large polygons represent a
certain part of the 109 districts, black squares are police
centers, dark polygons represent slums, and white dots are
schools. Our objective is to investigate possible associa-
tions between the high criminality rates in different districts
with slums, schools, and police centers. In our initial hy-
pothesis, districts that have high criminality rates will be
spatially related to slums, and districts with low criminal-
ity rate contain schools and police centers. For this prob-
lem we need to consider the data at a more general granu-
larity level (e.g. contains slum, contains school), with-
out taken into account the instance of each relevant feature
type (e.g. contains slum159, contains school20), since
we are not interested in specific instances of schools, police
centers, or slums.

Considering districts as the reference object type and
slums, police centers, and schools as the relevant object
types, the first step is to compute the different spatial re-
lationships of each district with all relevant feature types.
These relationships may be of type topological, distance, or

Figure 2. Districts, Slums, Schools, and Po-
lice Centers of the Porto Alegre City

order [11]. Notice in Figure 2 that the district “Nonoai”,
for instance, has many topological relationships with diffe-
rent instances of slum. It touches slum180, covers slum183,
overlaps slum174 and contains slum159. Considering dis-
tance relationships and police centers, the district Nonoai
will be either close or far from the police centers accord-
ing to the distance threshold. Districts Cristal and Caval-
hada, however, will be very close, since they contain po-
lice centers. These different relationships that districts can
have with different geographic object types (e.g. slums, po-
lice centers) generate many predicates with the same feature
type, and by consequence, meaningless association rules. In
this example, non-interesting association rules such as

is a District → contains slum ∧ touches slum

or
contains school → touches school

will be generated. With distance relationships we can have
rules with even less meaning. In the example, notice that the
district Cristal for instance, will be very close to one police
center but far from all other police centers in the city. In this
case we will have rules such as

is a District → closeTo PoliceCenter

∧ farFrom PoliceCenter.

For each different relevant geographic object type (slum,
police center, and school) there exists a possibility to gen-
erate different topological predicates, according to the 9-
intersection model proposed by [10]: contains, within,
touches, crosses, covers, coveredBy, overlaps, equals, and
disjoint. For distance or order relationships, the higher the



number of specified qualitative relationships is (e.g. close,
very close, far), the higher is the probability to generate
non-interesting frequent patterns. This kind of patterns can
be generated for any qualitative spatial relationship.

Since our objective is to find associations between the
different geographic object types (slums, schools, and po-
lice centers) in different districts, associations of predicates
with different qualitative spatial relationships, but with the
same geographic object type, do only impede the pattern
discovery and should be eliminated. Moreover, they do not
express any co-relation between the different geographic
object types.

Existing quantitative co-location pattern mining ap-
proaches such as [13] may not generate this kind of mean-
ingless patterns. However, they have the disadvantage
of considering only quantitative distance relationships and
their input is restricted to point datasets, which is a signifi-
cant limitation for real applications.

Only a few qualitative approaches in frequent geo-
graphic pattern mining address the problem of mining non-
interesting patterns. In [14], for instance, such problems
have not been addressed. In [3] well known patterns can
be eliminated using background knowledge, but pruning is
performed aposteriori. Existing metrics proposed to reduce
the number of patterns in transactional databases do not
warrant the elimination of non-interesting qualitative spa-
tial patterns.

Recently, two of the present authors proposed different
approaches to reduce the number of frequent geographic
patterns using background knowledge. In [8] they pro-
posed Apriori-KC, in which some changes were proposed
on Apriori [1] to eliminate well known geographic pat-
terns. In [7] they extended this method with an additional
step where not only frequent itemsets are reduced, but input
space is reduced as much as possible, since this is still the
most efficient way for pruning frequent patterns. However,
still a large number of frequent itemsets is generated in [7]
and [8] although well known dependencies are eliminated
very efficiently. In [9] they applied the closed frequent pat-
tern mining approach to the geographic domain, eliminat-
ing both well known dependencies and redundant frequent
itemsets. As a continued study in frequent geographic pat-
tern mining, in this paper we propose a method to reduce the
number of non-interesting spatial patterns using qualitative
spatial reasoning. Not only the data is considered, but its
semantics is taken into account, and frequent patterns that
contain the same feature type are removed apriori.

In transactional frequent pattern mining some works ad-
dress the problem of mining interesting association rules [5,
16, 17, 18]. They incorporate user-specified constraints or
define either objective or subjective metrics of interesting-
ness. Moreover, pruning is performed aposteriori, after the
rule generation. The method proposed in this paper is more

Tuple Spatial Predicates
(district)
Teresopolis murderRate=high, theftRate=low, contains slum

overlaps slum, contains school, touches school
Vila Nova murderRate=low, theftRate=low, contains slum

touches slum, touches school
Cavalhada murderRate=low, theftRate=high, contains slum

touches slum,overlaps slum, contains school
touches school, contains policeCenter

Cristal murderRate=high, theftRate=high, contains slum
overlaps slum, covers slum, contains school
touches school, contains policeCenter

Nonoai murderRate=high, theftRate=high, contains slum
touches slum,overlaps slum, covers slum
contains school, touches school

Camaqua murderRate=high, theftRate=low, contains slum
overlaps slum, contains school, touches school

Table 1. Partial Dataset of the City of Porto
Alegre where rows are Districts and items are
Spatial and Non-Spatial Predicates Related to
the Different Districts

effective and efficient, since it explores the anti-monotone
constraint of Apriori [2] and prunes non-interesting patterns
during the frequent set generation. Other transactional pat-
tern mining approaches such as [4, 19] remove redundant
frequent patterns and association rules exploiting support
and confidence constraints, while our method is indepen-
dent of such thresholds. In these approaches “redundan”
rules are eliminated by frequent itemset pruning, but “non-
interesting” and “meaningless” rules are still generated.

The reminder of the paper is organized as follows. Sec-
tion 2 explains the problem of mining frequent qualitative
spatial patterns. Section 3 presents a filtering method to
eliminate non-interesting patterns. Section 4 evaluates the
method with experimental results. Finally in Section 5 is the
conclusion of the paper and suggestions for some directions
for future work.

2. The Problem of Mining Qualitative Spatial
Patterns

We will explain the problem of meaningless patterns
considering topological relationships, although it exists for
any type of qualitative spatial relationship. Considering all
possible topological relationships between districts and the
relevant object types shown in Figure 2 without considering
their instance, we can generate a dataset similar to the one
shown in Table 1.

Now let us consider minimum support 50%. The fre-
quent itemsets are those which appear in at least 3 rows in
the dataset shown in Table 1. Considering such a high min-
imum support, Table 2 shows all possible frequent itemsets
that can be generated from the dataset. Considering that the



dataset has 9 predicates, two non-spatial (murderRate and
theftRate) and 7 spatial predicates, a total of 60 frequent
itemsets with two or more elements is generated. Among
the 60 frequent itemsets, 31 contain at least one pair with the
same geographic object type, as represented in bold style in
Table 2.

In this small example we see how many frequent pred-
icate sets can be generated without expressing interesting
knowledge. However, it is important to observe that the
generation of frequent itemsets having the same spatial fea-
ture type varies according to both the value of minimum
support and the dataset.

As can be observed in Table 2, the combination of pairs
with the same feature type slum or school appear the first
time during the generation of frequent itemsets with size
k = 2. Then these pairs start replicating in a combinato-
rial explosion of frequent predicates sets. Considering this,
the most efficient way to eliminate meaningless patterns in
spatial frequent pattern mining is to remove the pairs in
which such patterns appear the first time. This can be done
in the second pass of the algorithm, by exploiting the anti-
monotone constraint, as explained in the following section.

3. Filtering non-interesting Spatial Patterns

Existing spatial frequent pattern algorithms generate
candidates and frequent sets. In spatial frequent pattern
mining the computational cost relies on the spatial predicate
extraction (number of instances of both target and relevant
feature types). Therefore the candidate generation is not a
problem as in transactional databases, since the number of
predicates is much smaller than the number of items [15].

Apriori [2] has been the basis for dozens of algorithms
for mining spatial and non-spatial frequent itemsets. Al-
though it generates a large number of frequent itemsets and
association rules, spatial association rule mining algorithms
are Apriori-like. In [8] two of the presenting authors ex-
tended Apriori to Apriori-KC, to eliminate well known geo-
graphic dependencies, where knowledge constraints (KC)
are given as background knowledge. To eliminate frequent
patterns which contain the same geographic feature type we
need to perform some reasoning over the data, i.e., it is nec-
essary to check the meaning of the items into a frequent
itemset and if they can be either removed or not. For this
purpose, we added one more step to Apriori-KC, which we
will call Apriori-KC+, as shown in Listing 1.

In Apriori-KC+ besides the elimination of pairs of pred-
icates with well known dependencies, we also eliminate
pairs of predicates with the same feature type. However, the

Listing 1. Apriori-KC+

IN P U T: Ψ, // a spatial dataset
φ, //a set of pairs of dependencies
minsup; //minimum support

L1 = {large 1-predicate sets};

FOR (k = 2; Lk−1! = ∅; k + +)
Ck = apriori_gen(Lk−1); //New candidates
I F (k==2)
C2 = C2 − φ;//remove dependencies
FOR (∀ pairs p ∈ C2 with same feature type)
remove p from C2;

END

FOR (all rows w ∈ Ψ)
Cw = subset(Ck, w); // Candidates ∈ w
FOR (all candidates c ∈ Cw)
c.count++;

END

Lk = {c ∈ Ck | c.count ≥ minsup};
END

RETURN ∪kLk

background knowledge given as an input to Apriori-KC+
is only necessary to eliminate dependencies. Background
knowledge is not necessary to remove pairs with the same
feature type, since this problem is independent of domain
knowledge.

Going further into the algorithm, in the first pass, the
support of the individual elements is computed to determine
large-predicate sets. In the subsequent passes, given k as
the number of the current pass, the large sets Lk−1 in the
previous pass (k − 1) are grouped into sets Ck with k ele-
ments, which are the candidate sets. This is performed by
the apriori gen function, described in [1].

The support of each candidate set is computed, and if it
is equal or higher than minimum support, then this set is
considered frequent. This process continues until the large
set in the pass results in an empty set.

To eliminate meaningless patterns we added one step
which is performed when k = 2, such that all pairs of ele-
ments that contain the same feature type are removed from
C2. By removing these pairs, no larger frequent predicate
set will be generated with the same feature type. According
to the anti-monotone constraint of Apriori [1] which states
that if an itemset Z is infrequent no superset of Z will be
frequent, the elimination of a pair having the same feature
type will not generate any set with size k > 2. This makes



Size Frequent predicate sets with minsup = 50%
k
2 {murderRate=high, theftRate=low},{murderRate=high, contains slum}, {murderRate=high, overlaps slum},{murderRate=high, contains school},

{murderRate=high, touches school},{theftRate=low, contains slum}, {theftRate=low, overlaps slum}, {theftRate=low, contains school},
{theftRate=low, touches school}, {contains slum, overlaps slum}, {contains slum, touches slum}, {contains slum, contains school},
{contains slum, touches school}, {overlaps slum, contains school}, {overlaps slum, touches school}, {touches slum, touches school},
{contains school, touches school}

3 {murderRate=high,theftRate=low,contains slum}, {murderRate=high,theftRate=low,overlaps slum}, {murderRate=high,theftRate=low,contains school},
{murderRate=high,theftRate=low,touches school}, {murderRate=high,contains slum,overlaps slum}, {murderRate=high,contains slum,contains school}
{murderRate=high,contains slum,touches school}, {murderRate=high,overlaps slum,contains school}, {murderRate=high,overlaps slum,touches school},
{murderRate=high,contains school,touches school}, {theftRate=low,contains slum,overlaps slum}, {theftRate=low,contains slum,contains school}
{theftRate=low,contains slum,touches school}, {theftRate=low,overlaps slum,contains school}, {theftRate=low,overlaps slum,touches school},
{theftRate=low,contains school,touches school}, {contains slum,overlaps slum,contains school}, {contains slum,overlaps slum,touches school}
{contains slum,touches slum,touches school}, {contains slum,contains school,touches school}, {overlaps slum,contains school,touches school}

4 {murderRate=high,theftRate=low,contains slum,overlaps slum)}, {murderRate=high,theftRate=low,contains slum,contains school}
{murderRate=high,theftRate=low,contains slum,touches school}, {murderRate=high,theftRate=low,overlaps slum,contains school}
{murderRate=high,theftRate=low,overlaps slum,touches school}, {murderRate=high,theftRate=low,contains school,touches school}
{murderRate=high,contains slum,overlaps slum,contains school}, {murderRate=high,contains slum,overlaps slum,touches school}
{murderRate=high,contains slum,contains school,touches school}, {murderRate=high,overlaps slum,contains school,touches school}
{theftRate=low,contains slum,overlaps slum,contains school}, {theftRate=low,contains slum,overlaps slum,touches school}
{theftRate=low,contains slum,contains school,touches school}, {theftRate=low,overlaps slum,contains school,touches school}
{contains slum,overlaps slum,contains school,touches school}

5 {murderRate=high,theftRate=low,contains slum,overlaps slum, contains school}
{murderRate=high,theftRate=low,contains slum,overlaps slum, touches school}
{murderRate=high,theftRate=low,contains slum,contains school, touches school}
{murderRate=high,theftRate=low,overlaps slum,contains school, touches school}
{murderRate=high,contains slum,overlaps slum,contains school, touches school}
{theftRate=low,contains slum,overlaps slum,contains school, touches school}

6 {murderRate=high,theftRate=low,contains slum,overlaps slum, contains school,touches school}

Table 2. Frequent Itemsets of Table 1 with minimum support 50%

the approach effective and independent of any threshold
such as minimum support, minimum confidence, lift, etc.
Indeed, no background knowledge is required from the data
mining user and the method eliminates the exact combina-
tions which generate meaningless rules.

The proposed method does not sacrifice the result qual-
ity. For instance, suppose that {A,B} is a frequent set hav-
ing the same feature type. This pair is eliminated with the
purpose to avoid the generation of larger frequent sets that
contain the same feature type, such as {A,B, C}, for ex-
ample. If the set {A,B, C} has minimum support, then
the pairs {A,B}, {A,C}, and {B,C} have minimum sup-
port as well. As we eliminate only pairs with same feature
types, which in this example is {A,B}, the sets {A,C} and
{B,C} which combine the predicate C with both A and B
separately, are still generated, and no information is lost.

In a practical example, a pair such as
{contains slum, touches slum} is removed to avoid
the generation of a larger frequent predicate set such as
{contains slum, touches slum, murderRate = high}.
Although one can argue that such a frequent itemset
could generate interesting rules in which murderRate
would be high in districts which both contain and touch
slum, such information is still expressed by the fre-
quent sets {contains slum, murderRate = high} and
{touches slum, murderRate = high}.

4. Evaluating the Pattern Filtering

In this section we evaluate the proposed method with ex-
periments on real data and present some analysis over the
method.

4.1 Analysis

In this section we give a lower bound on the gain of gen-
erated frequent itemsets using the algorithm listed in List-
ing 1 in comparison with the frequent itemsets that would
be generated using the standard Apriori method.

Suppose we have a dataset consisting of x elements and
that by using a standard Apriori algorithm our largest fre-
quent itemset contains m elements. We know that we then
have in total at least

m∑
i=2

(
m

i

)
frequent itemsets.

Applied to the results shown in Table 2 where m = 6,
the formula would give us as lower bound for the number
of tuples =

∑6
i=2

(
6
i

)
=

(
6
2

)
+

(
6
3

)
+

(
6
4

)
+

(
6
5

)
+

(
6
6

)
=

15+20+15+6+1 = 57, which is correct because Table 2
contains 60 frequent itemsets.

Suppose that one of the largest frequent itemsets con-
tains u geographic feature types with more than one quali-
tative spatial relationsip in this largest frequent itemset, and
n other attributes.



Figure 3. Minimal Gain having only u = 1 Ge-
ographic Feature Type and having different
values for t1 and n in the Largest Frequent
Itemset

Let tk denote the number of qualitative spatial relationships
of object k ∈ [1, u], then m =

∑u
k=1 tk + n. If we use the

proposed improvement, then the minimum gain of frequent
itemsets is.
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Applied to the Table 2 where m = 6, u = 2, t1 = 2, t2 =
2 and n = 2 this gives us a minimal gain =
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1+1+2+2+2+2+1+4+1+4+1+2+2+2+1 = 28, what
is only 2 less than in reality. These are actually the 2-itemset
{contains slum, touches slum} and the 3-itemset
{contains slum, touches slum, touches school} which
contain the attribute touches slum that is not present in
the largest frequent itemset of Table 2.

Suppose we have only 1 geographic feature type with
more than one qualitative spatial relationship in the largest
frequent itemset, so u = 1. In Figure 3 the minimal gain
is plotted when t1 = 1, 2, . . . , 8 and n = 1, 2, . . . , 10. Al-
though in Figure 3 it seems that for small values of t1 and
n the minimal gain is constant, this is just because of the
large minimal gain for the highest values of t1 and n, which
is clear from Table 3.

n

t1
0 2 8 22 52 114 240 494
0 4 16 44 104 228 480 988
0 8 32 88 208 456 960 1976
0 16 64 176 416 912 1920 3952
0 32 128 352 832 1824 3840 7904
0 64 256 704 1664 3648 7680 15808
0 128 512 1408 3328 7296 15360 31616
0 256 1024 2816 6656 14592 30720 63232
0 512 2048 5632 13312 29184 61440 126464
0 1024 4096 11264 26624 58368 122880 252928

Table 3. Minimal Gain having only u = 1 Ge-
ographic Feature Type and having different
values for t1 and n in the Largest Frequent
Itemset

4.2 Experiments

Figure 4 shows the result of an experiment performed
with a geographic dataset with one non-spatial attribute and
6 geographic object types, that with different topological
relationships generated 13 spatial predicates. Among these
predicates, a total of 9 pairs had the same feature type with
a different relationship, and four pairs had a geographic de-
pendence.

Different experiments were performed on this dataset,
considering minimum support 5%, 10%, and 15%. First
we extracted patterns from this dataset using Apriori, which
does not eliminate any meaningless pattern. Then Apriori-
KC was applied, and pairs of geographic objects with the
dependencies specified in Φ were eliminated. At the end
we mined the dataset with Apriori-KC+, which eliminates
pairs with either well known dependencies or same feature
type.

As can be observed in Figure 4, the elimination of 4 geo-
graphic dependencies with Apriori-KC reduced the number
of frequent sets generated by Apriori in around 28% for dif-
ferent values of minimum support. However, with the elim-
ination of meaningless combinations with the same feature
type, Apriori-KC+ reduced this number much further. The
elimination of 9 pairs with equal feature type reduced the
number of frequent sets in more than 60% in relation to
Aprioi and aroundf 50% in relation to Apriori-KC.

The computational time to eliminate both dependencies
and frequent sets with same feature types is reduced with
Apriori-KC+, as shown in Figure 5.

It is important to consider that for any spatial
dataset with qualitative spatial relationships the fre-
quent set reduction is data dependent. For example,
a pair of predicates with the same feature type such
as {contains(Street), crosses(Street)} in cities, will
have much higher support than a pair of predicates such
as {contains(River), crosses(River)}, since normally
cities have a lot more streets than rivers.



Figure 4. Frequent Geographic Patterns (Apri-
ori), Frequent Geographic Patterns without
Dependences (Apriori-KC), and Frequent Ge-
ographic Patterns without both Dependences
and Same Feature Type (Apriori-KC+)

Figure 5. Computational Time to Generate
Frequent Geographic Patterns with Apriori,
Apriori-KC, and Apriori-KC+

Figure 6. Frequent Geographic Patterns (Apri-
ori) and Frequent Geographic Patterns with-
out Same Feature Type (Apriori-KC+)

A second experiment was performed with a dataset gen-
erated with 10 spatial predicates. Among these predicates,
five pairs had the same feature type. In this dataset no ge-
ographic objects with dependencies were considered, and
only predicates with the same feature type were removed.
Figure 6 shows the frequent set reduction with Apriori-KC+
in relation to Apriori considering different values of mini-
mum support.

In this experiment the number of frequent sets is reduced
in more than 55% for any value of minimum support. In
Figure 7 we can observe that the computational time is re-
duced as well, which shows that Apriori-KC+ is more ef-
fective than Apriori and more efficient when applied to geo-
graphic data. In both experiments we can observe that the
higher the number of either dependencies or meaningless
combinations, the more efficient is Apriori-KC+.

If we apply our formula for the gain (Formula 1) to the
largest frequent itemset with a minimum support of 5% us-
ing the experiment shown in Figure 6, where m = 8, u = 3
and t1 = t2 = t3 = n = 2, the formula predicts a mini-
mum gain of 148 frequent itemsets, where the real gain is
281. If we do the same for largest frequent itemset using a
minimum support of 17% where m = 7, u = 3, t1 = t2 =
t3 = 2 and n = 1, we predict a gain of 74 which is equal to
the real gain.



Figure 7. Computational Time to Extract Fre-
quent Geographic Patterns with Apriori and
Apriori-KC+

5. Conclusions and Future Works

In frequent geographic pattern mining a large amount of
patterns is well known apriori. Besides these well known
patterns, another amount is non-interesting. The same
geographic object type can have different qualitative spa-
tial relationships with the reference geographic object type,
and as a consequence, many “items” are the same feature
type with a different spatial relationship. Therefore, many
combinations having the same feature type generate non-
interesting rules in most applications, such as, for example,

contains street → touches street.

Trying to reduce the number of well known patterns
and non-interesting association rules this paper presented
Apriori-KC+, which is an extension of Apriori-KC to avoid
the combination or pairs of spatial predicates which contain
the same feature type. In summary, Apriori-KC+ eliminates
frequent patterns which contain the same feature type apart
from the well known geographic dependences when back-
ground knowledge is given as an input.

The main strength of the proposed method for eliminat-
ing non-interesting patterns is its simplicity. In a single but
very effective and efficient step, combinations of redundant
features in the same frequent sets are removed exploiting
the anti-monotone constraint. Indeed, this step can be im-
plemented by any algorithm that generates frequent item-
sets, including transactional rule mining algorithms which
propose different measures for rule interestingness.

The proposed method only eliminates what is non-
interesting and does not sacrifice the result quality. It re-
moves frequent patterns having the same feature type, and
not same feature type with different instances such as

contains streetX → touches streetY.

It is effective and efficient for feature type granularities.
Future works include the generation of maximal frequent

geographic patterns in order to eliminate redundant frequent
itemsets as proposed by the closed frequent pattern mining
approaches.
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