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Abstract Research on trajectory behavior has increased
significantly in the last few years. The focus has been on the
search for patterns considering the movement of the moving
object in space and time, essentially looking for similar ge-
ometric properties and dense regions. This paper proposes
an algorithm to detect a new kind of behavior pattern that
identifies when a moving object is avoiding specific spatial
regions, such as security cameras. This behavior pattern is
called avoidance. The algorithm was evaluated with real tra-
jectory data and achieved very good results.

Keywords Trajectory behavior · Spatiotemporal pattern ·
Moving objects · Trajectory data mining · Avoidance
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1 Introduction

Usage of location aware devices such as GPS and mobile
phones has significantly increased in the last few years.
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2010—The Brazilian Symposium on Geoinformatics.
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These kinds of devices can generate sequences of space-time
points capturing the trajectories of the object that carries the
device. This kind of data—trajectory data—acquired for op-
erational level use, is being generated at an incredible rate,
and can be analyzed to obtain new knowledge; a higher level
knowledge for decision making processes.

There are several real-world situations that consider spa-
tiotemporal phenomena that are a target of analysis and re-
search, as the pattern of humans buying items in a supermar-
ket or a shopping center, animal migration behavior monitor-
ing, human behavior in parks and cities, vehicle traffic, boat
movement, etc. The study of trajectory behavior of these
moving objects intends to transform these enormous quan-
tity of raw data in useful information to the decision mak-
ing process, knowledge discovery, and reality interpretation.
It can contribute to problem solving (for instance, identify-
ing fishing areas [19]), to identify standards and tendencies,
or to discover outliers, for instance. Trajectory data are ob-
tained as a sequence of points (id, x, y, t), where (x, y) rep-
resent the geographic coordinates of the object id in the time
instant t . We call this data as raw trajectories.

Many works have been developed over the last years con-
sidering the study of trajectory behavior. These works have
been developed according to two major research perspec-
tives: a geometric one [3, 6, 8, 9, 12] and a semantic one
[2, 4, 5, 17, 18].

Some works analyze one trajectory at a time while oth-
ers evaluate sets of trajectories using, for instance, clustering
techniques. Several works search for some kind of similarity
between trajectories: spatial format, time interval, velocity,
stops at the same points, and so on. Those works discover
different types of patterns, such as: flocks, convergence,
leadership, encounter, co-location episodes, and so on.

However, as far as we know, there are no works that iden-
tify, in trajectory data, the behavior of moving objects that
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Fig. 1 Examples of the avoidance behavior

avoid some regions or that avoid other trajectories. For in-
stance, people avoiding to collide with other people during
a walk in a park, vehicles that change their route in situations
of low speed traffic, or individuals that move in a suspicious
manner avoiding vigilance cameras or security points.

An avoidance behavior can occur, for instance, when a
trajectory avoids a specific spatial region, when one or more
trajectories change their direction to avoid intersecting each
other, or when one or more trajectories change their speed
to avoid other moving objects, as can be seen in Fig. 1. In
Figs. 1(a) and (b), the avoidance is between two trajectories
and by direction changing. Figure 1(d) presents an example
of avoidance between two trajectories by speed changing,
while (c) presents another kind of avoidance where a moving
object avoids a static region.

This work presents a new algorithm able to identify an
avoidance behavior where a moving object avoids a specific
spatial region, as in the example shown in Fig. 1(c).

The discovery of avoidance patterns in moving objects
may be useful in several application domains, such as the
discovery of individuals with suspicious behavior, avoiding
monitoring cameras, police stations, blitz, and so on. Avoid-
ance pattern discovery can be interesting for traffic applica-
tions, with cars avoiding low traffic regions.

The remainder of this paper is organized as follows:
Sect. 2 shows the main related works, Sect. 3 presents the
heuristics used to identify an avoidance, Sect. 4 presents
the developed algorithm to recognize an avoidance pattern,
Sect. 5 shows some experiments, Sect. 6 presents a discus-
sion on the parameters of the algorithm, and Sect. 7 con-
cludes the paper.

2 Related work

Detecting patterns of movement has been of interest since
1970, when Hagenstrand posed the bases of Time-
Geography [10], where he first proposed the idea of “spa-
tiotemporal prism” to represent the human movement. From
that time, a number of approaches tried either to represent
the human movement or to detect patterns from datasets of
movement traces. The paper from Dodge et al. [7] presents

a taxonomy of movement patterns. The interesting part of
this work is that they first proposed a systematic vision of
the movement patterns distinguishing between generic and
behavioral patterns, and the generic pattern is divided into
compound and primitive. For example, a moving cluster is
classified as a primitive pattern whereas a flock is a behav-
ioral pattern. Despite the fact that this proposal is interesting
as a tentative to classify the many movement patterns pro-
posed in the last decade, we believe that some important
patterns are not included as, for example, the avoidance pat-
tern.

Several recent works define trajectory patterns basically
considering the geometric part of trajectories. Laube in 2005
introduced the mobile group pattern, which is a set of trajec-
tories close to each other, with distance less than a given
threshold, for a minimal amount of time (minTime) [13]. In
this approach, the direction is not considered and frequent
groups are computed with the algorithm Apriori [1]. Laube
also [12] proposed five types of geometric trajectory patterns
based on movement, direction, and location, convergence,
encounter, flock, leadership, and recurrence. A flock pattern
has at least m subtrajectories within a region of radius r that
move in the same direction during a certain time interval.
The leadership pattern must have at least m subtrajectories
within a circular region of radius r that move in the same
direction, and at least one of the entities is heading in that
direction for at least a certain time. Encounter is the pattern
characterized by at least m subtrajectories that are concur-
rently inside the same circular region of radius r , assuming
they move with the same speed and direction. Reccurrence
patterns occur when at least m entities visit a circular region
at least k times.

In [6], collocation episodes in spatiotemporal data are
computed, where groups of trajectories are spatially close
in a time window and move together.

Another approach is the T-pattern [8]. It is a sequential
trajectory pattern mining algorithm that first generates re-
gions of interest considering dense regions in space, and
then computes sequences of regions visited, taking into ac-
count transition time from one region to another and mini-
mum support.

In trajectory data analysis, there are no works that define
avoidance patterns. The few works about avoidance con-
cern collision-avoidance. The idea is to develop real-time
systems, called “collision-avoidance systems” that proac-
tively detect the risk of collision between vehicles, and are
intended to be used by pilots or automatically during their
travels to avoid the collision with other vehicles. The focus
has been on avoidance of different types of collision on cars
[11], ships [15], and air traffic [20]. Also, in transportation
systems, collision-avoidance is studied [16] for pedestrians.

Some works in robotics [14, 21, 22] use the idea of avoid-
ance in trajectories, but instead of analyzing a trajectory to
identify an avoidance, as proposed in our work, they use the
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concept of collision-avoidance for planning the future tra-
jectories of a robot.

On the contrary, our proposal aims at analyzing histori-
cal GPS traces (trajectories) in order to detect the presence
of avoidance patterns. This method is not intended for real
time collision avoidance, but to detect a specific avoidance
behavior in past trajectories. To the best of our knowledge,
there are no similar approaches in the literature.

3 Heuristics to identify an avoidance behavior

The avoidance behavior pattern occurs when a mobile object
is moving toward an object of interest or target object (as a
surveillance or security camera, for example), shifts to avoid
passing the object of interest, and after that goes back to its
original path. The challenge is to differentiate what is really
a shift to avoid the object of interest from a natural path
change caused by another reason.

Some aspects that have to be considered are the follow-
ing.

The moving object should not cross (intersect) the object
of interest called the target object (the region covered by the
security camera, for instance), because if the moving object
changes its direction but yet crosses the target object, it did
not stay away from the target and, therefore, does not char-
acterize an avoidance.

The moving object should keep going in the direction to
the target object (the object to be avoided) and deviate from
the target object relatively close to it to be considered an
avoidance. A counterexample is a person walking and one or
more kilometers away he/she deviates from a security cam-
era; this person is probably changing his/her direction by
any other reason and not for escaping the security camera,
therefore, not characterizing an avoidance behavior. To ma-
terialize this idea, we created the concepts of target object
and region of interest. Target object is a convex spatial lo-
cation that a trajectory could avoid. The region of interest is
defined by a distance d from the target object. Any behavior
outside the region of interest is not considered because it is
too far from the target object. Then a moving object must
intercept the region of interest in order to characterize an
avoidance.

Figure 2 shows these intuitions. Trajectory t1 was mov-
ing in the direction to the target object, deviated to avoid it,
and after a while continued more or less on its original path,
characterizing a case of avoidance. Trajectory t2 moves in
the direction to the target object and intersects it, without
avoiding it and, therefore, not characterizing a case of avoid-
ance. Finally, trajectory t3 was moving in the direction to the
target object but changed its direction far away from the tar-
get, and the deviation occurred outside the region of interest
and, therefore, not characterizing an avoidance behavior.

Fig. 2 Example of target object, region of interest, and trajectories
behavior

Fig. 3 Examples of trajectory behaviors

Even with the definition of region of interest, we ob-
served that some trajectories, although intersecting the re-
gion of interest and not crossing the target object, did not
present a clear behavior of moving toward the target object
before changing direction. In these cases, it is not possible
to give to these trajectories a suspicious behavior, consider-
ing the example of security cameras. Figure 3 shows some
examples. The trajectory t2 clearly presents an avoidance be-
havior, but for the trajectories t1 and t3 this is not so obvious.

In order to make more robust the identification of an
avoidance behavior, we introduce the notion of subtrajectory
directed to the target. The subtrajectory directed to the tar-
get is the longest subtrajectory that is moving in the direction
to the target object, inside the region of interest, with length
greater or equal to a minimum length l. Then a new condi-
tion to characterize an avoidance is: The trajectory should
have a subtrajectory directed to the target. Figure 4 presents
some examples of this concept. The trajectories t1 and t2
have a subtrajectory directed to the target but the trajectories
t3 and t4 do not.

After these considerations, we can define the heuristic to
characterize an avoidance: A trajectory t has an avoidance in
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relation to a target object o if it has a subtrajectory directed
to the target o and does not intersect the target object o.

However, if we observe the avoidance behavior of the tra-
jectories in Fig. 5, intuitively we can say that the avoidance
of trajectory t1 is stronger than the avoidance of trajectory t2,
because t1 returns to its original path after deviating the tar-
get object (the security camera), with a clear intent of avoid-
ing the target. In the case of trajectory t2, this is not so obvi-
ous, because the trajectory deviated the camera and follows
this new direction without returning to its original path.

To know if a trajectory returns to its original path or not
after deviating the target, we create the notion of a confi-
dence incremental region, denoted by a region inside the re-
gion of interest that does not contain the target object and is
situated between the target object and the edge of the region
of interest, on the opposite side of the subtrajectory directed
to the target, with width equal the diameter of the target ob-
ject. An example is shown in Fig. 6. This region is unique
for each trajectory considering a target object.

Intuitively, trajectory t1, in Fig. 6(a) presents an avoid-
ance with greater degree of certainty than trajectory t2 in

Fig. 4 Example of subtrajectory directed to the target

Fig. 6(b), because t1 intersects the confidence incremental
region. In this case, we are more sure that trajectory t1 has
an intentional avoidance and we give an weight for this sit-
uation. We create two levels of avoidance of one trajectory
in relation to a target object: strong avoidance—when the
trajectory intersects the confidence incremental region, and
weak avoidance—when a trajectory moves in direction to
a target, has a subtrajectory directed to the target, but nei-
ther intersects the target nor the confidence incremental re-
gion. This idea is mapped to a value, called local avoidance
confidence (in relation to a specific target object): 0.0 for no
avoidance, 0.5 for weak avoidance, and 1.0 for strong avoid-
ance.

A last heuristic is that if there is a region with several
security cameras we can analyze the behavior of the whole
trajectory in relation to the whole set of target objects. To
do this, if a trajectory crosses the region of interest of sev-
eral target objects, we can have a global avoidance value
for the whole trajectory, considering each local avoidance
value. As a first approximation, we define the equation

Avti =
∑n

k=1 Avik

n
(1)

where Avti stands for the avoidance confidence for the whole
trajectory i. Avik is the value of local avoidance for trajectory
i in relation to the target object k, and n is the number of
regions of interest intersected by trajectory i.

Figure 7 shows an example of avoidance confidence for
a whole trajectory. Trajectory t1 has a strong avoidance
considering the target object 1, a weak avoidance in rela-
tion to the target object 2, and has no avoidance for tar-
gets 3 and 4. Therefore, its global avoidance confidence is
(1 + 0.5 + 0)/3 = 0.5. The target object 4 is not counted in
the denominator because its region of interest is not inter-
sected by the trajectory.

Fig. 5 Two different examples of avoidance
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Fig. 6 Examples of confidence incremental regions

4 An algorithm for avoidance detection

Based on the heuristics presented in Sect. 3, we propose an
algorithm to detect avoidance patterns, in the pseudo-code
shown in Listing 1.

Initially, the algorithm tests the intersection of the trajec-
tory points with the regions of interest of each target object
(line 12). Only the trajectory points that intersect any region
of interest are considered in the rest of the algorithm, which
significantly decreases the processing time. If the trajectory
intersects the region of interest, then it is not an avoidance
(lines 14–15). The function SubtrajDT() (line 17) returns the
longest subtrajectory that goes to the target inside the region
of interest. The pseudocode is presented in Listing 2 and
is detailed later in this section. The function ConfIncrR()
(line 18 of Listing 1) determines the confidence incremental
region, and is detailed later in Listing 3. If the trajectory in-
tersects the increasing confidence region in a time period af-
ter the time period of the subtrajectory directed to the target,
then the avoidance is strong (lines 19–20); otherwise, the
avoidance is weak (lines 21–22). The global confidence of
the avoidance of a whole trajectory i is computed in line 29,
using (1).

Fig. 7 Example of a trajectory in a region with four target objects
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Listing 1 Pseudocode of the proposed avoidance algorithm

1 IN P U T : T / / s e t o f t r a j e c t o r i e s
2 O / / s e t o f t a r g e t o b j e c t s
3 d / / s i z e o f t h e b u f f e r f o r t h e r e g i o n o f
4 / / i n t e r e s t around t h e t a r g e t o b j e c t
5 subt / / m in imal s i z e o f t h e s u b t r a j e c t o r y
6 / / d i r e c t e d t o t h e t a r g e t
7
8 OUTPUT : Avt / / s e t o f d e g r e e s o f a v o i d a n c e
9

10
11 METHOD :
12 FOR each ti ∈ T | intersects ( ti ,buffer ( O ,d ) ) DO

13 FOR each ok ∈ O DO

14 I F intersects ( ti ,ok )
15 avik = none

16 E L S E

17 I F SubtrajDT ( ti ,ok ,d ) >= subt

18 CIR=ConfIncrR ( ti ,ok ,d )
19 I F intersects ( ti ,CIR )
20 avik = strong

21 E L S E

22 avik = weak

23 E N D I F

24 E L S E

25 avik = none

26 E N D I F

27 E N D I F

28 ENDFOR

29 calculate Avti
30 ENDFOR

31 return Avt

The function SubtrajectoryDT() shown in Listing 2, con-
siders the first trajectory point inside the region of interest
and takes the next points, one by one, while the direction
of the line segment from the initial point to the last con-
sidered point intersects the target object. This procedure is
repeated for the next points to determine the longest sub-
trajectory directed to the target inside the region of inter-
est.

As shown in Listing 2, the procedure starts with the two
first trajectory points that intersect the region of interest of
the target object being considered (lines 11–12) and a loop
is performed for all points in P (lines 14–29). Inside the
loop, the first step is to calculate the azimuth between the
two points to determine the direction of the trajectory and
to extend this line segment until a possible intersection with
the target object occurs (lines 15–17). If the line segment in-
tersects the target object, then the mobile object is moving in
the direction to the target (line 18). The next step is to cal-
culate the Euclidean distance between the points and save
the longest subtrajectory directed to the target (lines 20–21).
While the line segment is moving in the direction to the tar-
get, the initial point is kept and the next point is taken. If
the line segment is not moving in the direction to the target
(line 24), the initial point becomes the next after that one
that was the initial (lines 25–27). This procedure continues
until all points of P have been evaluated.

Listing 2 Pseudocode of the SubtrajDT function

1 IN P U T : P / / s e t o f t r a j e c t o r y p o i n t s t h a t
2 / / i n t e r s e c t t h e r e g i o n o f i n t e r e s t
3 o / / t a r g e t o b j e c t b e i n g a n a l y z e d
4 d / / s i z e o f t h e b u f f e r f o r t h e r e g i o n o f
5 / / i n t e r e s t around t h e t a r g e t o b j e c t
6
7 OUTPUT : dist / / g r e a t e r e u c l i d e a n d i s t a n c e i n
8 / / d i r e c t i o n o f t h e t a r g e t o b j e c t
9

10 METHOD :
11 i = P .firstPoint ( )
12 next = P .nextPoint ( )
13 dist ,auxdist = 0
14 REPEAT

15 ap = azimuth ( pi ,pnext )
16 paux .x = sen (ap )∗2∗d+(pi .x
17 paux .y = cos (ap )∗2∗d+(pi .y
18 I F intersects (makeline ( pi ,paux ) , o )
19 auxdist = calcDistance ( pi ,pnext )
20 I F auxdist >dist
21 dist = auxdist

22 E N D I F

23 next = P .nextPoint ( )
24 E L S E

25 P .point = i

26 i = P .nextPoint ( )
27 next = P .nextPoint ( )
28 E N D I F

29 U N T I L the end of P

30 return dist

Figure 8 exemplifies the calculus of the subtrajectory di-
rected to the target. Figures 8(a), (b), and (c) show the same
trajectory t1 and the line segment calculated to test the in-
tersection with the target at each cycle of the repeated loop.
In Fig. 8(a), the line segment is created between the two
first points inside the region of interest, p2 and p3. As it
intersects the target object, the point p2 is kept and the
procedure continues with the points p2 and p4, as shown
in Fig. 8(b), where the line segment intersects the target.
In Fig. 8(c), the line segment is between the points p2

and p5, where the expanded line does not intersect the tar-
get. The procedure continues between the points p3 and p4

and after between p3 and p5, and so on. The subtrajec-
tory directed to the target will be the distance between p2

and p4.
The function ConfIncrR() (line 18 of Listing 1) calcu-

lates the confidence incremental region. Its pseudo-code is
presented in Listing 3. The function initially computes the
azimuth between the first point of the trajectory inside the
region of interest and the centroid of the target object. In the
sequence, two line segments are computed, tangent to the
target and with the calculated azimuth, from the target ob-
ject to the exterior boundary of the region of interest (lines
13–14). Finally, the geometry of the confidence incremental
region is computed (line 15).
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Fig. 8 Example of subtrajetory
directed to the target calculus

Although all examples of target objects are circular, this function works for any convex target object.

Listing 3 Pseudocode of the ConfIncrR function

1 IN P U T : P / / s e t o f t r a j e c t o r y p o i n t s t h a t
2 / / i n t e r s e c t t h e r e g i o n o f i n t e r e s t
3 o / / t a r g e t o b j e c t b e i n g a n a l y z e d
4 d / / s i z e o f t h e b u f f e r f o r t h e r e g i o n o f
5 / / i n t e r e s t around t h e t a r g e t o b j e c t
6
7 OUTPUT : reg / / c o n f i d e n c e i n c r e m e n t a l r e g i o n
8
9 METHOD :

10 i = P .firstPoint ( )
11 Oc = centroid ( o )
12 az = azimuth (i , Oc )
13 lim1 = makeLine1 (az , o ,exteriorRing (buffer ( o ,d ) ) )
14 lim2 = makeLine2 (az , o ,exteriorRing (buffer ( o ,d ) ) )
15 reg = computeRegion (lim1 ,exteriorRing ( o ) ,lim2 ,
16 exteriorRing (buffer ( o ,d ) ) )
17 return reg

5 Experiments

In order to evaluate the results of the proposed algorithm,
two different experiments where performed with real GPS
data collected at the rate of one point per second. One dataset
was collected by cars and the other one by pedestrians.

5.1 Experiment I—car trajectories

The car trajectories were collected in the city of Porto Ale-
gre, with and without restrictions, i.e., avoiding or no spe-

Fig. 9 Car trajectories in Porto Alegre
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cific regions mapped as the target objects. The target ob-
ject may be any convex geometry, but in our experiments
we considered this object as a circle with a radius of 20 me-
ters and 80 meters around the target as the region of interest.
As the minimal length for the subtrajectory directed to the
target, we defined 8 meters. The 8 meters represents 10% of
the size of the buffer around the target. Figure 9 shows these
trajectories.

Table 1 shows the results of the first experiment that
found avoidance patterns in 6 of 21 trajectories, with the
respective global confidence.

Figure 10 shows the avoidance patterns for trajectories
in Table 1. Figure 10(a) shows trajectory t7 that intersects
only the region of interest of target object 2, and Fig. 10(b)
shows trajectory t13 that intersects only the region of in-
terest of target 1. Both are cases of strong avoidance be-
cause the trajectories crossed the respective confidence in-
cremental region. Figure 10(c) shows trajectory t18, which

intersects all 4 regions of interest. For target objects 0, 1,
and 2, it also intersects the confidence incremental region,
therefore, getting a local confidence as strong. Because this
trajectory does not intersect the confidence incremental re-

Table 1 Result of the first experiment considering 20 meters as the
radius of the target object, 80 meters for the buffer of the region of
interest around the target object, and 8 meters as the minimum length
for the subtrajectory directed to the target

Tid Global confidence

t7 1

t13 1

t18 0.875

t21 0.5

t15 0.333

t11 0.25

Fig. 10 Avoidance patterns for
trajectories in Table 1
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gion of the target object 3, it has a weak local avoidance at
this point and, therefore, the global avoidance confidence is
(1 + 1 + 1 + 0.5)/4 = 0.875.

Figure 10(d) shows trajectory t21, which intersects 3 re-
gions of interest, all with weak local confidence, since there
was no valid intersection of any confidence incremental re-
gion. This trajectory intersects the region of interest of tar-
get 1 twice. For the first time, it does not have any subtrajec-
tory directed to the target. The second intersection of trajec-
tory t21 with the region of interest of target 1 had a subtra-
jectory directed to the target that was long enough, but after
that the trajectory did not intersect the confidence incremen-
tal region.

Trajectory t15, shown in Fig. 10(e), presents one strong
local avoidance considering the target 0. In relation to the
target 1, the local avoidance is none, since the trajectory in-
tersects the target object. In relation to the target 3, the lo-
cal avoidance is also none, i.e., there is no avoidance since
the trajectory intersects the region of interest but it has no
subtrajectory moving in direction to the target with a valid
length. Therefore, the global confidence for this trajectory is
1/3 (0,333), having one strong avoidance and intersections
with three regions of interest.

Finally, trajectory t11, shown in Fig. 10(f), intersects the
region of interest of the target objects 0 and 1, and has one
weak local avoidance in relation to target 1 and no avoidance
in relation to target 0, because the subtrajectory moving to
the target was less than 8 m when the trajectory finished.

For this dataset, a total of 11 avoidance patterns were
computed for all trajectories.

5.2 Experiment II—pedestrian trajectories

The second dataset is a set of 17 pedestrian trajectories col-
lected at the Germania park in the city of Porto Alegre,
considering four monitoring regions located on the crossing
paths of the main routes in the park. Differently from the
car trajectories that follow a road network, pedestrians may
follow any directions anywhere. Although there are a few
main routes, the objects move in aleatory ways in the park,
therefore, these trajectories present characteristics very dif-
ferent from car trajectories. Indeed, the speed that a pedes-
trian moves may affect the density of the points, since the
path followed by a pedestrian during 15 minutes, for in-
stance, will be much shorter and denser than a car travel-
ing in a highway during the same time period. As the GPS
for the pedestrians was configured as for the car trajectories,
i.e., the collection of a point every one second; this trajectory
dataset is much denser than the previous one.

In this experiment, we considered 10 meters as the radius
of the target object and 40 meters as the buffer of the region
of interest, simulating a reasonable distance for a pedestrian
to identify a camera and then to choose a change on her/his

Fig. 11 Pedestrian trajectories in a park

Table 2 Result of the pedestrians experiment considering 10 meters
as the radius of the target object, 40 meters for the buffer of the region
of interest around the target object, and 4 meters as minimum length
for the subtrajectory directed to the target

Tid Global confidence

t7 0.667

t6 0.5

t8 0.5

t4 0.167

path. We used 4 meters as the minimal length for the subtra-
jectory directed to the target.

Figure 11 shows the visualization of these trajectories in
Google Earth. The circles represent the monitoring regions
defined as the target objects. After running the algorithm,
eight avoidance patterns were found. Table 2 shows the re-
sult of the avoidance patterns of these trajectories, with its
respective global confidence.

Among the trajectories with avoidance patterns, trajec-
tory t7 had the highest global confidence. As can be seen in
Fig. 12(a), this trajectory avoided the target objects 1 and 2
with strong local confidence. The global confidence was re-
duced by the intersection of this trajectory with the region
of interest of the target 0, where there was no subtrajectory
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Fig. 12 Some pedestrian trajectories

directed to the target with a valid length. Additional exper-
iments have demonstrated that when we use 2 meters for
the minimal subtrajectory length directed to the target; the
global confidence for this trajectory becomes maximal.

In trajectory t6 (Fig. 12(b)), we identify one case of weak
local avoidance, in relation to the target object 3, and one
strong local avoidance in relation to the target object 2.
This trajectory intersected the region of interest of target ob-
ject 0, but has no subtrajectory directed to the target with
4 m length to characterize an avoidance. Then no avoid-
ance was identified in relation to this target. This trajectory
does not intersect the region of interest of target 1. There-
fore, the avoidance level for the whole trajectory resulted in
(1 + 0.5 + 0)/3 = 0.5.

Trajectory 8, shown in Fig. 12(c), intersects the four re-
gions of interest but in relation to the target object 1 there
is no valid subtrajectory directed to the target. Considering
the targets 2 and 3, the trajectory does not intersect the con-
fidence incremental region, receiving the value weak (0.5)
as local avoidance. In relation to the target object 0, a strong
avoidance has been identified because the trajectory satisfies
all avoidance conditions.

In Fig. 12(d), trajectory 4 intersects three regions of in-
terest, but in relation to the target objects 1 and 2 there
is no subtrajectory directed to the target with the minimal
length of 4 m, and hence has no avoidance with these tar-
gets. A weak avoidance exists with respect to the target
object 3. The avoidance for the whole trajectory is then
(0 + 0 + 0.5)/3 = 0.167.

Although in this paper we have shown the results of a
few experiments on two datasets, we have performed more
experiments and the results show that the algorithm cor-
rectly finds the existing avoidance patterns. Of course, the
parameters—length of the buffer around the target object
to define the region of interest, and the minimal length of
the trajectory directed to the target—are very important and
should be defined according to the specific application in
hand.

6 Discussion

In this section, we present a discussion on the parameters of
the proposed algorithm and an analysis of its complexity.

As in most algorithms, the choice of the values for the
parameters is an important issue. First, the application do-
main should be considered. For instance, in the case of car
trajectories in a city (i.e., in a road network), the trajectories
are limited by the streets and, as a consequence, the choice
of the parameters is facilitated. The size of the buffer of the
region of interest and the length of the subtrajectory directed
to the target should be defined considering that inside the re-
gion of interest there should be a distance greater than the
minimum size of the subtrajectory directed to the target be-
fore the last crossing road, such that if the trajectory turns on
that crossing road the avoidance will be detected. Consider-
ing this heuristic and knowing that the average length of the
blocks in the region of experiment 1 was about 70 meters,
and that the position of the target objects is in the middle of
the blocks, we defined the buffer of the region of interest as
80 meters. To evaluate other values, we executed the same
experiment with two other sets of parameters. First, we kept
80 meters as the buffer of the region of interest and we in-
creased the minimum length of the subtrajectory directed to
the target from 10 to 20 meters. There was no modification
in the results. The same occurred with 30 meters as the min-
imum size of the subtrajectory directed to the target. This
happens because the trajectories are constrained by the road
network.

Considering the experiment with pedestrians, where
there were no restrictions to the trajectories, we changed the
minimum length of the subtrajectory directed to the target
from 4 to 8 meters, and the results were exactly the same. In
another experiment, we considered 60 meters as the buffer of
the region of interest and 12 meters as the minimum length
of the subtrajectory directed to the target. With these pa-
rameters, 3 new avoidances were detected, which is quite
natural, since we considered a longer area and there were no
limitations like a road network. Besides, the avoidance of
trajectory 7 with target object 1 was no longer detected be-
cause the length of the biggest subtrajectory in the direction
to the target was 11.74 meters (less than 12 meters).
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Algorithm complexity, in the worst case, considering the
existence of an R-Tree index and T trajectory points and N

target objects, is O(T LogN).

7 Conclusion and future work

Trajectory data are becoming more and more common in
daily life. Several works have been developed to extract
interesting information and knowledge from these data, as
well as trying to infer the behavior of the moving ob-
ject. Most works have focused on the common behavior of
groups of trajectories of different moving objects.

In this paper, we contribute to advance trajectory data
analysis one step forward proposing a novel work to iden-
tify avoidance behavior in trajectories. Our work identifies
avoidance behavior of individual objects in relation to ex-
isting static targets that could be security cameras, police
offices, or police controllers, and so on.

The proposed method may be useful in several applica-
tion domains like the monitoring of prisoners in semi-open
(prerelease) level, traffic management, and security control.

As we use raw trajectory data, without considering se-
mantic information, the proposed heuristics cannot know if
a trajectory deviated the target with the unique intention to
avoid it, or if it is the normal path of the moving object.
However, this method may help users of different applica-
tions to investigate these trajectories.

At this point, we have not considered any semantics
to provide more information about the avoidance patterns.
However, as future ongoing work, we are investigating new
measures to ensure if an avoidance was intentional or forced
by an event, like a blocked street, therefore, reducing false
positives.
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