
  �

Chapter IX
Enhancing the Process of 
Knowledge Discovery in 
Geographic Databases 
Using Geo-Ontologies

Vania Bogorny
Universidade Federal do Rio Grande do Sul (UFRGS), Brazil

Paulo Martins Engel
Universidade Federal do Rio Grande do Sul (UFRGS), Brazil

Luis Otavio Alavares
Universidade Federal do Rio Grande do Sul (UFRGS), Brazil

Copyright © 2008, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Abstract

 This chapter introduces the problem of mining frequent geographic patterns and spatial association rules 
from geographic databases. In the geographic domain most discovered patterns are trivial, non-novel, 
and noninteresting, which simply represent natural geographic associations intrinsic to geographic data. 
A large amount of natural geographic associations are explicitly represented in geographic database 
schemas and geo-ontologies, which have not been used so far in frequent geographic pattern mining. 
Therefore, this chapter presents a novel approach to extract patterns from geographic databases using 
geo-ontologies as prior knowledge. The main goal of this chapter is to show how the large amount of 
knowledge represented in geo-ontologies can be used to avoid the extraction of patterns that are previ-
ously known as noninteresting.
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Introduction

Knowledge discovery in databases (KDD) is the 
nontrivial process of identifying valid, novel, 
potentially useful and ultimately understand-
able patterns from data (Fayyad et al., 1996). 
In frequent pattern mining (FPM), which is the 
essential role in mining associations, one of the 
main problems is the large amount of generated 
patterns and rules. In geographic databases this 
problem increases significantly because most 
discovered patterns include well-known natural 
associations intrinsic to geographic data. While 
in transactional databases items are supposed 
to be independent from each other (e.g.,, milk, 
cereal, bread), independently of their meaning, 
in geographic databases a large amount of data 
are semantically dependent (e.g., island within 
water). 

Geographic dependences are semantic con-
straints that must hold in geographic databases 
(GDB) to warrant the consistency of the data (e.g.,, 
island must be completely located inside a water 
body). They are part of the concept of geographic 
data and are explicitly represented in geo-ontolo-
gies. Without considering semantics of geographic 
data, the same geographic dependences explicitly 
represented in geo-ontologies and geographic 
database schemas are unnecessarily extracted by 
association rule mining algorithms and presented 
to the user. 

Geographic dependences produce two main 
problems in the process of mining spatial asso-
ciation rules:

a.	 Data preprocessing: A large computational 
time is required to preprocess GDB to ex-
tract spatial relationships (e.g., intersection 
between districts and water bodies). The 
spatial join (Cartesian product) operation, 
required to extract spatial relationships, is 
the most expensive operation in databases 
and the processing bottleneck of spatial data 
analysis and knowledge discovery. 

b.	 Frequent pattern and association rule 
generation: A large number of patterns and 
spatial association rules without novel, use-
ful, and interesting knowledge is generated 
(e.g., is_a(Island)  within (Water)).

Aiming to improve geographic data prepro-
cessing and eliminate well-known geographic 
dependences in geographic FPM in order to 
generate more interesting spatial association rules 
(SAR), this chapter presents a unified framework 
for FPM considering the semantics of geographic 
data, using geo-ontologies. While dozens of spatial 
and nonspatial FPM algorithms define syntactic 
constraints and different thresholds to reduce 
the number of patterns and association rules, we 
consider semantic knowledge constraints (Bo-
gorny et al., 2005b), and eliminate the exact sets 
of geographic objects that produce well-known 
patterns (Bogorny et al., 2006b, 2006c).

The main objective of this chapter is to show 
the important role that ontologies can play in 
the knowledge discovery process using the FPM 
technique. The focus addresses the use of se-
mantic knowledge stored in ontologies to reduce 
uninteresting patterns, but not to create ontologies 
for data mining.

The remainder of the chapter is organized as 
follows: Section 2 presents some background con-
cepts about geographic data, spatial relationships, 
spatial integrity constraints, and geo-ontologies. 
Section 3 introduces the concepts of frequent pat-
terns and spatial association rules, the problem 
generated by geographic dependences in both 
data preprocessing and spatial association rule 
mining, and what has been done so far to alleviate 
this problem. Section 4 presents a framework to 
improve geographic data preprocessing and spatial 
association rule mining using geo-ontologies. 
Experiments are presented to show the significant 
reduction in the number of frequent patterns and 
association rules. Section 5 presents future trends 
and Section 6 concludes the chapter.   
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Background

Geographic data are real world entities, also 
called spatial features, which have a location on 
Earth’s surface (Open GIS Consortium, 1999a). 
Spatial features (e.g., Brazil, Argentina) belong 
to a feature type (e.g., country), and have both 
nonspatial attributes (e.g., name, population) 
and spatial attributes (geographic coordinates 
x,y). The latter normally represent points, lines, 
polygons, or complex geometries.

In geographic databases, every different fea-
ture type is normally stored in a different database 
relation, since most geographic databases follow 
the relational approach (Shekhar & Chawla, 2003). 
Figure 1 shows an example of how geographic data 
can be stored in relational databases. There is a 
different relation for every different geographic 
object type (Shekhar & Chawla, 2003) street, 
water resource, and gas station, which can also 
be called as spatial layers.

The spatial attributes of geographic object 
types, represented by shape in Figure 1, have 
implicitly encoded spatial relationships (e.g., 
close, far, contains, intersects). Because of these 
relationships, real world entities can affect the 

behavior of other features in the neighborhood. 
This makes spatial relationships the main char-
acteristic of geographic data to be considered for 
data mining, knowledge discovery (Ester et al., 
2000; Lu et al., 1993), and the main character-
istic, which separates spatial data mining from 
nonspatial data mining. 

The process of extracting spatial relationships 
brings together many interesting and uninteresting 
spatial associations. Figure 2 shows an example 
where gas stations and industrial residues reposito-
ries may have any type of spatial relationship with 
water resources. Considering, for example, that 
water analysis showed high chemical pollution, 
the different spatial relationships among water 
resources, gas stations, and industrial residues 
repositories will be interesting for knowledge 
discovery. Notice in Figure 2 that there is a stan-
dard pattern among the data.

Figure 3 shows two examples of spatial rela-
tionships that represent well-known geographic 
domain dependences. In Figure 3 (left), viaducts 
intersect streets, and bridges intersect both water 
resources and streets, since both bridges and via-
ducts have the semantics of connecting streets. In 
Figure 3 (right), gas stations intersect streets they 
do only exist in areas with streets access. 

Figure 1. Example of geographic data storage in relational databases
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The main difference between the examples 
shown in Figure 2 and Figure 3 is that in the 
former spatial relationships may hold or not, and 
may conduce to more interesting patterns. In the 
latter, under rare exceptions or some geographic 
location inconsistency, the spatial relationships 
hold for practical purposes in a 100% of the cases, 
and will produce well known geographic domain 
patterns in the discovery process. If considered 

in association rule mining, well known spatial 
relationships will generate high confidence rules 
such as is_a (Viaduct)  intersect (Street) (99%) 
or is_a (GasStation)  intersect (Street) (100%). 
Although users might be interested in high con-
fidence rules, not all strong rules necessarily 
hold considerable information. Moreover, the 
mixed presentation of thousands of interesting 
and uninteresting rules can discourage users 

Figure 2. Examples of implicit spatial relationships

Figure 3. Examples of spatial relationships that produce well known geographic patterns in spatial 
data mining
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from interpreting them in order to find novel and 
unexpected knowledge (Appice et al., 2005).

Patterns in the discovery process should be 
considered interesting when they represent un-
known strong regularities, rare exceptions, or 
when they help to distinguish different groups 
of data. In geographic databases, however, there 
are a large number of patterns intrinsic to the 
data, which represent strong regularities, but do 
not add novel and useful knowledge to the dis-
covery. They are mandatory spatial relationships 
which represent spatial integrity constraints that 
must hold in order to warrant the consistency of 
geographic data.   

Spatial Relationships and Spatial 
Integrity Constraints

Spatial relationships can be classified as distance, 
direction, and topological. Distance relationships 
are based on the Euclidean distance between 
two spatial features, as shown in Figure 4(a). 
Direction relationships deal with the order as 
spatial features are located in space such as north, 
south, east, and so forth, as shown in Figure 4(b). 
Topological relationships describe concepts of 
adjacency, containment, and intersection between 
two spatial features, and remain invariant under 
topological transformations such as rotating and 
scaling. Figure 4(c) shows examples of topologi-
cal relationships, which will be the focus in this 
chapter.

Binary topological relationships are mutually 
exclusive, and there are many approaches in the 
literature to formally define a set of topological 
relationships among points, lines, and polygons 
(Clementini et al., 1993; Egenhofer & Franzosa, 
1995). The OGC (Open GIS Consortium) (Open 
GIS Consortium, 2001), which is an organiza-
tion dedicated to develop standards for spatial 
operations and spatial data interchange to provide 
interoperability between Geographic Information 
Systems (GIS), defines a standard set of topological 
operations: disjoint, overlaps, touches, contains, 
within, crosses, and equals. 

Topological relationships can be mandatory, 
prohibited, or possible. Mandatory and prohibited 
spatial relationships represent spatial integrity 
constraints (Cockcroft, 1997; Serviane et al., 
2000), and their purpose is to warrant as well as 
maintain both the quality and the consistency of 
spatial features in geographic databases.

Mandatory spatial integrity constraints are 
normally represented by cardinalities one-one 
and one-many in geographic data conceptual 
modeling (Bogorny et al., 2001; Serviane et al., 
2000; Shekhar & Chawla, 2003) in order to warrant 
that every instance of a geographic feature type is 
spatially related to at least one instance of another 
spatial feature type (e.g., “island within water 
body”). In data mining, such constraints produce 
well-known patterns and high confidence rules 
because of the strong co-relation of the data.

Figure 4. Spatial relationships
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While mandatory relationships must hold, 
prohibited relationships should not (e.g., “road 
cannot contain river”).

Possible relationships, however, are usually 
not explicitly represented, since they can either 
exist or not (e.g., “roads cross water bodies,” 
“counties contain factories”). Possible relation-
ships may produce more interesting patterns, and 
are therefore the most relevant to find novel and 
useful knowledge in spatial data mining. 

Mandatory constraints are well-known con-
cepts to geographers and geographic database 
designers, and are normally explicitly represented 
in geographic database schemas (Bogorny et al., 
2006b, 2006c) and geo-ontologies (Bogorny et 
al., 2005b). 

Geo-Ontologies and Spatial Integrity 
Constraints

Ontology is an explicit specification of a con-
ceptualization (Gruber, 1993). More specifically 
ontology is a logic theory corresponding to the 
intentional meaning of a formal vocabulary, that 
is, an ontological commitment with a specific 
conceptualization of the world (Guarino, 1998). 
It is an agreement about the concepts meaning 
and structure for a specific domain. Each concept 
definition must be unique, clear, complete, and 
nonambiguous. The structure represents the prop-
erties of the concept, including a description, at-
tributes, and relationships with other concepts.   

Ontologies have been used recently in many 

Figure 5. Geo-Ontology representation and OWL code
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and different fields in computer science, such 
as artificial intelligence, databases, conceptual 
modeling, semantics Web, and so forth. There-
fore, a relevant number of ontologies has been 
proposed, and a number of models, languages, 
and tools was developed. Chaves et al.  (2005a), 
besides defining a geo-ontology for administrative 
data for the country of Portugal, defines a meta-
model, named GKB (geographic knowledge base), 
which is a starting point to define an ontology for 
geographic data.   

In geo-ontologies, spatial integrity constraints 
are represented by properties of geographic data. 
They are specified as restriction properties given 
by a spatial relationship and both minimum and 
maximum cardinalities. For instance, a concept 
island, which is a piece of land surrounded by 
water, must have a mandatory one-one relation-
ship with the concept water.

Figure 5 shows a small example of a geographic 
ontology with the specification of different to-
pological relationships, generated with Protégé, 
in order to illustrate how mandatory semantic 
constraints are represented.

In the example in Figure 5, gas stations and 
bus stops must have a mandatory constraint with a 
road because every gas station and every bus stop 
must topologically touch one or more instances of 
a road. Roads, however, do not necessarily have 
gas stations or bus stops, so their relationship is not 
represented. Cities must also contain at least one 
road, while roads have no mandatory relationship 
with city. Notice in the OWL representation that 
minimum cardinality 1 is explicitly represented 
and can be easily retrieved.

To evaluate the amount of well-known depen-
dences in real geo-ontologies we analyzed the first 
geo-ontology of Portugal, named geo-net-pt01 
(Chaves et al., 2005b). Although not all elements 
of the geographic domain have been defined in 
geo-net-pt01, there are many one-one and one-
many dependences.

The repository of the geo-ontology stores three 

levels of information: geo-administrative, geo-
physical, and network. The geo-administrative 
level stores administrative information about ter-
ritorial division, and includes geographic feature 
types such as municipalities, streets, and so forth. 
The network level stores nonspatial data and rela-
tionships about the geo-administrative layer (e.g., 
population of a district). The geo-physical level 
stores feature types including continents, oceans, 
lakes, bays, water bodies, and so forth. 

In geo-net-pt01, among 58 different spatial 
feature types, 55 one-one relationships were 
defined in the geo-administrative level.

The following section introduces the problem 
of mining geographic data with well-known 
dependences.

The Problem of Geographic 
Dependences in Spatial 
Association Rule Mining

In transactional data mining, every row in the 
dataset to be mined is usually a transaction and 
columns are items, while in spatial data mining, 
every row is an instance (e.g., Buenos Aires) of 
a reference object type (e.g., city), called target 
feature type, and columns are predicates. Every 
predicate is related to a nonspatial attribute (e.g., 
population) of the target feature type or a spatial 
predicate. Spatial predicate is a relevant feature 
type that is spatially related to specific instances 
of the target feature type (e.g., contains factory). 
Spatial predicates are extracted with operations 
provided by GIS, and can be represented at dif-
ferent granularity levels (Han & Fu, 1995; Lu, 
et al. 1993), according to the objective of the 
discovery. For example, chemical factory, metal-
lurgical factory, and textile factory could be used 
instead of factory.

Spatial predicates are computed with spatial 
joins between all instances t of a target feature 
type T (e.g., city) and all instances o (e.g., Rio de 
la Plata) of every relevant feature type O (e.g., 
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river) in a set of relevant feature types S (e.g., 
river, port, street, factory) that have any spatial 
relationship (e.g., touches, contains, close, far) 
with T. Being T a set of instances T={t1, t2,…,tn}, 
S = { O1, Oi,…, Om}, and Oi = { o1, o2,…, oq}, 
the extraction of spatial predicates implies the 
comparison of every instance of T with every 
instance of O, for all O ⊂ S. 

The spatial predicate computation is the first 
step for extracting association rules from geo-
graphic databases. An association rule consists 
of an implication of the form X  Y, where X and 
Y are sets of items co-occurring in a given tuple 
(Agrawal, Imielinkski & Swami, 1993). Spatial 
association rules are defined in terms of spatial 
predicates, where at least one element in X or Y is 
a spatial predicate (Koperski, 1995). For example, 
is_a(Slum) ∧ far_ from(WaterNetwork)  
disease=Hepatitis is a spatial association rule. 

We assume that F = {f1, f2, …,fk, ..., fn} is a 
set of nonspatial attributes (e.g., population) and 
spatial predicates (e.g., close_to(Water)) that 
characterize a reference feature type, and Ψ (da-
taset) is a set of instances of a reference feature 
type, where each instance is a row W such that 
W ⊆ F. There is exactly one tuple in the dataset 
to be mined for each instance of the reference 
feature type.   

The support s of a predicate set X is the per-
centage of tuples in which the predicate set X 
occurs as a subset. The support of the rule X → 
Y is given as s(X∪Y).

The rule X → Y is valid in Ψ with confidence 
factor 0 ≤ c ≤ 1, if at least c% of the instances in 
Ψ that satisfy X also satisfy Y. The notation X → 
Y (c) specifies that the rule X → Y has confidence 
factor of c. More precisely, the confidence factor 
is given as s(X∪Y)/s(X).

The general problem of mining spatial asso-
ciation rules can be decomposed in three main 
steps, where the first one is usually performed as 
a data preprocessing method:

a.	 Extract spatial predicates: A spatial predi-

cate is a spatial relationship (e.g., distance, 
order, topological) between the reference 
feature type and a set of relevant feature 
types.

b.	 Find all frequent patterns/predicates: A 
set of predicates is a frequent pattern if its 
support is at least equal to a certain threshold, 
called minsup.

c.	 Generate strong rules: A rule is strong if 
it reaches minimum support and the confi-
dence is at least equal to a certain threshold, 
called minconf. 

Assertion 1 (Agrawal & Srikant, 1994): if a 
predicate set Z is a frequent pattern, then every 
subset of Z will also be frequent. If the set Z 
is infrequent, then every set that contains Z is 
infrequent too. All rules derived from Z satisfy 
the support constraint if Z satisfies the support 
constraints.

Well-known geographic dependences appear 
in the three steps of the spatial association rule 
mining process. In the first step (a) well-known 
geographic dependences may exist among T and 
any O ⊂ S. In the second (b) and third (c) steps, 
dependences exist among relevant feature types, 
that is, between pairs of O ⊂ S. In the following 
sections we describe the problem that such depen-
dences generate in frequent geographic pattern 
mining and what has been done so far to reduce 
this problem.

Geographic Dependences Between 
the Target Feature Type and 
Relevant Feature Types 

In data preprocessing, time and effort are required 
from the data mining user to extract spatial re-
lationships and transform geographic data in a 
single table or single file, which is the input format 
required by most data mining algorithms. Even in 
multirelational data mining where geographic data 
are transformed to first-order logic, the process of 
extracting spatial relationships is required. 
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The problem of which spatial relationships 
should be considered for knowledge discovery 
has been addressed in earlier works. (Koperski & 
Han, 1995;Lu et al., 1993) presented a top-down 
progressive refinement method where spatial 
approximations are calculated in a first step, and 
in a second step, more precise spatial relation-
ships are computed to the outcome of the first 
step. The method has been implemented in the 
module Geo-Associator of the GeoMiner system 
(Han, Koperski & Stefanvic, 1997), which is no 
longer available. Ester et al., (2000) proposed new 
operations such as graphs and paths to compute 
spatial neighborhoods. However, these operations 
are not implemented by most GIS, and to com-
pute all relationships between all objects in the 
database in order to obtain the graphs and paths 
is computationally expensive for real databases. 
Appice et al., (2005) proposed an upgrade of 
Geo-Associator to first-order logic, and all spa-
tial relationships are extracted. This process is 
computationally expensive and nontrivial in real 
databases. While the above approaches consider 
different spatial relationships and any geometric 
object type, a few approaches such as (Huang, 
Shekhar & Xiong, 2004; Yoo & Shekhar, 2006) 

compute only distance relationships for point 
object types. 

Table 1 shows an example of a spatial dataset 
at a high granularity level, where every row is a 
city and predicates refer to different geographic 
object types (port, water body, hospital, street, and 
factory) spatially related to city. Let us consider 
two geographic dependences: city and street, and 
port and water body, where the former is between 
the target feature type and a relevant feature type 
and the latter is among the two relevant feature 
types.

In the dataset shown in Table 1, the depen-
dence between the target feature type city and 
the relevant feature type street is explicit, because 
every city has at least one street and the predicate 
contains(Street) has a 100% support. Predicates 
with 100% support appear in at least half of the 
total number of patterns and generate a large 
number of noninteresting association rules. For 
example, a rule such as contains(factory)  
contains(Street) expresses that cities that contain 
factories do also contain streets. Although such a 
rule seems to be interesting, it can be considered 
obvious due the simple fact that all cities contain 
streets, having they factories, or not.

Table 1. Example of a preprocessed dataset in a high granularity level for mining frequent patterns and 
SAR

Table 2. Frequent patterns and rules with dependences 
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Table 2 shows the result of a small experiment 
performed with Apriori (Agrawal & Srikant, 
1994) over the dataset in Table 1. Considering 
20% minimum support, 31 frequent sets and 180 
rules were generated. Among the 31 frequent sets 
and the 180 rules, 16 frequent sets and 130 rules 
had the dependence contains(Street). Notice 
that increasing minimum support to 50% does 
not warrant the elimination of the geographic 
dependence. Although the number of frequent 
sets is reduced to 25 and rules to 96, 13 frequent 
sets and 72 rules still have the dependence. 

Geographic dependences besides generating 
a large number of well-known patterns and as-
sociation rules, require unnecessary spatial joins. 
To illustrate the power that semantics may have 
in spatial join computation, let us consider a few 
examples, shown in Table 3. Without considering 
semantics, all topological relationships between 
two spatial feature types would be tested in order 
to verify which one holds. Considering semantics, 
the number of relationships to test reduces signifi-
cantly. As shown in Table 3, the only topological 
relationship semantically consistent between gas 

station and road should be touches. A city hall 
must be within a city, while a water body can be 
disjoint, touch, or cross a road.

Although the topological relationships shown 
in Table 3 are semantically possible, not all of them 
are interesting for knowledge discovery. So, if be-
sides considering the semantics of spatial features 
we also consider spatial integrity constraints, it is 
possible to reduce still further the number of topo-
logical relationships and define which should be 
computed for knowledge discovery. Remembering 
that mandatory relationships produce well known 
patterns and that only possible relationships are 
interesting for knowledge discovery, Table 4 shows 
the topological relationships of the same objects in 
Table 3 that would be computed if semantics and 
integrity constraints were considered. The pairs 
gas station and road, bridge and water body, city 
hall and city, as well as treated water net and city 
have mandatory one-one or one-many constraints 
and no relationship is necessary for KDD. 

Despite mandatory and prohibited constraints 
do not explicitly define the interesting spatial 

Table 3. Possible and mandatory topological relationships considering semantics of feature types

Table 4. Possible topological relationships for knowledge discovery
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relationships to be extracted for knowledge 
discovery, we are able to eliminate those which 
are either mandatory or prohibited, and specify 
those which are possible, as will be explained in 
Section 4. 

Geographic Dependences Among 
Relevant Feature Types 

To find frequent predicate sets and extract strong 
association rules, predicates are combined with 
each other for the different instances of the target 
feature type T, and not among T and O as explained 
in the previous section.

To illustrate the geographic dependence rep-
lication process in frequent geographic pattern 
mining, let us consider the frequent set genera-
tion introduced by (Agrawal & Srikant, 1994) for 
the Apriori algorithm. Apriori performs multiple 
passes over the dataset. In the first pass, the sup-
port of the individual elements is computed to 
determine k-predicate sets. In the subsequent 
passes, given k as the number of the current pass, 
the large sets Lk-1 in the previous pass (k -1) are 
grouped into sets Ck with k elements, which are 
called candidate sets. The support of each can-
didate set is computed, and if it is equal or higher 

than minimum support, then this set is considered 
frequent/large. This process continues until the 
number of large sets is zero.

Geographic dependences appear the first time 
in frequent sets with 2 elements, where k=2. Table 
5 shows the frequent sets extracted from the data-
set in Table 1 with 50% minimum support, where 
k is the number of elements in the frequent sets. 
Notice that since the dependence has minimum 
support, that is, a frequent predicate set, this 
dependence is replicated to many frequent sets 
of size k>2 with predicates that reach minimum 
support, as shown in bold style in Table 5. Con-
sidering such a small example and high minimum 
support, one single geographic dependence par-
ticipates in six frequent sets, which represents 
30% of the frequent sets. Notice that the number 
of rules having a geographic dependence will be 
much larger than the frequent sets, mainly when 
the largest frequent set (with 4 elements) contains 
the dependence.

In Table 5, we can observe that the technique 
of generating closed frequent sets (Paskier et al., 
1999; Zaki & Hsiao,  2002) would not eliminate 
geographic dependences, because both sets with 
4 elements that contain the dependence are closed 
frequent sets. The closed frequent set approach 

Table 5. Large predicate sets with 50% minimum support
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eliminates redundant frequent sets, but does not 
eliminate well known dependences if applied to 
the geographic domain.

In order to evaluate the amount of well-known 
rules generated with the dependence, let us observe 
Table 6, which shows a few examples of associa-
tion rules generated with frequent predicate sets 
of size 2 {Contains(Port),crosses(Water Body)}, 
size 3 {Contains(Port),contains(Hospital),cros
ses(Water Body)}, and size 4 {Contains(Port), 
contains(Hospital), contains(Street),crosses(
Water Body)}. Rules 1 and 2 are generated from 
the set with two elements, and represent a single 
geographic dependence and its inverse. Rules 3, 4, 
5, and 6 reproduce rules 1 and 2 with an additional 
element in the antecedent or the consequent of rule. 
The same happens with frequent sets that contain 
4 elements. Rules 7, 8, and 9 are rules 1 and 2 with 
two additional elements that combined with the 
dependence reached minimum support. 

Approaches that reduce the number of rules 
and eliminate redundant rules (Zaki, 2000) do not 
warrant the elimination of all association rules 
that contain geographic dependences.

Existing algorithms for mining frequent geo-
graphic patterns and generating strong spatial 
association rules do neither make use of semantic 
knowledge to specify which spatial relationships 

should be computed in data preprocessing, nor 
to reduce the number of well-known patterns. 
Koperski and Han (1995) reduces the number of 
rules using minimum support during the predicate 
generation. Clementini et al., (2000) presented 
a similar method for mining association rules 
from geographic objects with broad boundaries. 
Appice et al.,  (2005) reduces the number of rules 
with user specified pattern constraints, which 
require a lot of background knowledge from the 
data mining user. This method is inefficient since 
pattern constraints are applied in post-processing 
steps, after both frequent sets and association 
rules have already been generated.

Because of the dependence replication process 
in both frequent sets and association rules, shown 
in Table 5 and Table 6 respectively, it might be 
difficult for the data mining user to analyze all 
rules to discover if they are really interesting or 
not. To help the data mining user, in the follow-
ing section we present a framework to remove all 
well known geographic dependences, warranting 
that no association rules with such dependences 
will be generated.

A Framework for Geographic 
Data Preprocessing and

Table 6. Examples of association rules with frequent sets of size 2, 3, and 4 having the geographic 
dependence
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 Spatial Association Rule 
Mining with Ontologies

Recently, in (Bogorny et al., 2005b, 2006a, 2006b, 
2006c) we introduced the idea of using semantic 
knowledge for reducing spatial joins and well 
known patterns in SAR mining. In Bogorny et 
al., (2006a) we proposed to eliminate well-known 
patterns among the target feature type and rel-
evant feature types with intelligent geographic 
data preprocessing. In data preprocessing, how-
ever, not all well-known dependences can be 
removed. Then, we presented a frequent pattern 
mining algorithm that uses semantic knowledge 
to eliminate dependences among relevant feature 
types during the frequent set generation (Bo-
gorny et al., 2006b). In Bogorny et al., (2006c) 
we proposed an integrated framework, which 
eliminates geographic dependences completely 
in both data preprocessing and frequent pattern 
generation, using geographic database schemas 
as prior knowledge. 

This section presents an interoperable frame-
work for geographic data preprocessing and spatial 
association rule mining using geographic ontolo-
gies. Ontologies are used not only to eliminate 

well known dependences, but to verify which 
spatial relationships should be computed in the 
spatial predicate computation.

Figure 6 shows the framework that can be 
viewed in three levels: data repository, data pre-
processing, and data mining. At the bottom are 
the geographic data repositories: the knowledge 
repository which stores geo-ontologies and geo-
graphic databases stored in GDBMS (geographic 
database management systems) constructed under 
OGC specifications. Following the OGC specifica-
tions (Open GIS Consortium, 1999b) makes our 
framework interoperable with all GDBMS con-
structed under OGC specifications (e.g., Oracle, 
PostGIS, MySQL, etc). 

At the center is the spatial data preparation 
level, which covers the gap between data mining 
tools and geographic databases. At this level, data 
and knowledge repositories are accessed through 
JDBC/ODBC connections and data are retrieved, 
preprocessed, and transformed into the single 
table format. At this level, dependences among the 
target feature and relevant features are removed, 
as described in the next section.

On the top are the data mining toolkits or 
algorithms for mining frequent patterns and 

Figure 6. A Framework for mining frequent geographic patterns using ontologies
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generating association rules. At this level, a new 
method for mining frequent geographic patterns 
is presented. Dependences among relevant feature 
types that can only be removed into the data min-
ing algorithm are eliminated during the frequent 
set generation, as will be explained along with 
this section.

Data Preprocessing: Using 
Semantics to Eliminate Geographic 
Dependences between the Target 
Feature Type and the Relevant 
Feature Types

There are four main steps to implement the tasks 
of geographic data preprocessing for association 
rule mining: Feature Selection, Dependence 
Elimination, Spatial Join, and Transforma-
tion. The Feature Selection step retrieves all 
relevant information from the database such that 
the user can choose the target feature type T, the 
target feature nonspatial attributes and the set 

S of relevant feature types that may have some 
influence on T. The feature types as well as their 
geometric attributes are retrieved through the 
OpenGIS database schema metadata, stored in 
the relation geometry_columns (see Bogorny et 
al., 2005a) for details.

The algorithm that implements the remaining 
data preprocessing steps is presented in Figure 
7. The Dependence Elimination step searches 
the ontology φ and verifies the properties of T. 
If T has a mandatory dependence M with any O 
in S, then O is eliminated from the set S of rel-
evant feature types. Notice that for each relevant 
feature type removed from the set S, no spatial 
join is required to extract spatial relationships. 
By consequence, no spatial association rule will 
be generated with this relevant feature type. If a 
prohibited relationship P is defined between T 
and O in the ontology φ, then the set of possible 
relationships to compute for data mining is given 
by D(T,O) = R – P(T,O), where R is the set of all to-
pological relationships R = {touches, contains, 

Figure 7. Pseudo-code of the data preprocessing algorithm
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within, crosses, overlaps, equals, disjoint}. If 
there is no property of T in φ that relates T and 
O, then all relationships are computed.

The Spatial Join step computes the spatial 
relationships D between T and all remaining O 
in S. Spatial joins D to extract spatial predicates 
are performed on-the-fly with operations provided 
by the GIS. 

The Transformation step transposes as well 
as discretizes the Spatial Join module output 
(Ψ) into the single table format understandable 
to association rule mining algorithms. 

Frequent Pattern Generation: Using 
Semantics to Eliminate Geographic 
Dependences Among Relevant 
Features

Frequent pattern and association rule mining 
algorithms, under rare exceptions (Han, Pei & 
Yin, 2000) generate candidates and frequent sets. 
The candidate generation in spatial data mining 
is not a problem because the number of predi-
cates is much smaller than the number of items 
in transactional databases (Shekhar & Chawla, 
2003). Moreover, the computational cost relies 
on the spatial join computation.

Approaches that generate closed frequent sets 
do previously compute the frequent sets, and than 

verify if they are closed. Although they reduce the 
number of frequent sets, they do not warrant the 
elimination of well known geographic patterns. 
In SAR mining, it is more important to reduce 
the number of frequent sets than warrant that the 
resultant frequent sets are free of well-known 
dependences, aiming to generate more interest-
ing frequent sets.

Apriori (Agrawal & Srikant, 1994) has been 
the basis for dozens of algorithms for mining spa-
tial and nonspatial frequent sets, and association 
rules. We will illustrate the method of geographic 
dependence elimination during the frequent set 
generation using Apriori, as shown in Figure 8.

We propose to remove from the candidate 
sets all pairs of elements that have geographic 
dependences. As in Apriori, multiple passes are 
performed over the dataset. In the first pass, the 
support of the individual elements is computed to 
determine large-predicate sets. In the subsequent 
passes, given k as the number of the current pass, 
the large/frequent sets Lk-1 in the previous pass 
(k-1) are grouped into sets Ck with k elements, 
which are called candidate sets. Then the support 
of each candidate set is computed, and if it is equal 
or higher than minimum support, then this set is 
considered frequent. This process continues until 
the number of frequent sets is zero.

Similarly to Srikant and Agrawal (1995), 

Figure 8. Frequent set generation function
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which eliminates in the second pass candidate 
sets that contain both parent and child specified 
in concept hierarchies, we eliminate all candidate 
sets which contain geographic dependences, but 
independently of any concept hierarchy.

The dependences are eliminated in an efficient 
way, when generating candidates with 2 elements, 
and before checking their frequency. If the pairs of 
predicates (e.g., contains(Port), contains(Water 
Body)) contain feature types (e.g., Port, Water 
Body) that have a mandatory constraint in the 
ontology φ, then all pairs of predicates with a 
dependence in φ are removed from C2. 

According to Assertion 1, this step warrants 
that the pairs of geographic objects that have a 
mandatory constraint in the ontology φ will neither 
appear together in the frequent sets, nor in the 
spatial association rules. This makes the method 
effective independently of other thresholds, and 
clearly improves in efficiency, since less frequent 
sets will be generated.

The main strength of this method in our 
framework is its simplicity. This single, but 
very effective and efficient step, removes all 
well-known geographic dependences, and can 
be implemented by any algorithm that generates 
frequent sets. Considering the example of frequent 
sets shown in Table 5, the dependence is elimi-
nated when it appears at the first time, such that 
no larger frequent sets or association rules with 
the dependence will be generated.

Experiments and Evaluation

In order to evaluate the interoperability of the 
framework, experiments were performed with real 
geographic databases stored under Oracle 10g and 
PostGIS. Districts, a database table with 109 poly-
gons and nonspatial attributes, such as population 
and sanitary condition, was defined as the target 
feature type T. Datasets with different relevant 
feature types (e.g., bus routes—4062 multilines, 
slums —513 polygons, water resources—1030 
multilines, gas stations 450 points) were prepro-

cessed and mined, using ontologies and without 
using ontologies.

Estimating the time reduction to compute 
spatial joins for mining frequent patterns is 
very difficult, since this step is completely data 
dependent. The computational time reduction 
to extract spatial joins depends on three main 
aspects: how many dependences (relevant feature 
types) are eliminated in data preprocessing; the 
geometry type of the relevant feature (point, line, 
or polygon); and the number of instances of the 
eliminated feature type (e.g., 60,000 rows). For 
example, if a relevant feature type with 57 580 
polygons is eliminated, spatial join computation 
would significantly decrease. If the eliminated 
feature type has 3062 points, time reduction 
would be less significant. However, for every 
relevant feature type eliminated, no spatial join 
is necessary, and this warrants preprocessing 
time reduction. 

To evaluate the frequent pattern reduction by 
pruning the input space, Figure 9 describes an 
experiment performed with Apriori, where 2 de-
pendences between the reference object type and 
the relevant feature types were eliminated. Notice 
that input space pruning reduces frequent patterns 
independently of minimum support. Considering 
minsup 10%, 15%, and 20%, the elimination of 
one single dependence pruned the frequent sets 
around 50%. The elimination of two dependences 
reduced the number of frequent sets in 75%. The 
rule reduction is still more significant, as can be 
observed in Figure 10, reaching around 70% when 
one dependence is removed and 90% when two 
dependences are eliminated, independently of 
minimum support.

Algorithms that generate closed frequent sets 
and eliminate nonredundant rules can reduce still 
further the number of both frequent sets and as-
sociation rules if applied to the geographic domain 
using our method for pruning the input space. 

Figure 11 shows the result of an experiment 
where two dependences among relevant feature 
types were eliminated during the frequent set 
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generation, but without input pruning. Notice 
that even using ontologies only in the frequent set 
generation we get a reduction on the number of 
frequent sets independently of minimum support. 
Moreover, the higher the number of dependences, 
the more significant is the reduction.

Figure 12 shows an experiment where de-
pendences were eliminated in both input space 
(between the target feature and relevant features) 

Figure 9. Frequent sets generated with input space pruning
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Figure 10. Spatial association rules with input space pruning and 70% minimum confidence
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and during the frequent set generation (among 
relevant features). The total number of frequent 
sets is reduced in more than 50% by removing one 
single dependence, independently of minimum 
support. Using ontologies we completely eliminate 
well known dependences, and very efficiently.  

Future Trends

Data mining techniques to extract knowledge 
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from large spatial and nonspatial databases have 
mainly considered syntactic constraints and the 
data by itself, without considering semantics. 
The result is that the same geographic depen-
dences that are well-known by GDB designers 
and explicitly represented in GDB schemas and 
geo-ontologies to warrant the consistency of the 
data, are extracted by data mining algorithms, 
which should discover only novel and useful 
patterns. When dealing with geographic data, 
which are semantically interdependent because 
of their nature, the meaning of data needs to be 

considered, at least to avoid the extraction of well 
known patterns.   

There is an emerging necessity to consider 
semantic geographic domain knowledge in spa-
tial data mining. The large amount of knowledge 
explicitly represented in geographic database 
schemas and spatio-temporal ontologies needs 
to be incorporated into data mining techniques, 
since they provide a valuable source of domain 
knowledge. How to use this knowledge in data 
mining systems and for which purposes are still 
open problems. In this chapter, we presented an 

Figure 11. Frequent sets generated with frequent set pruning

Figure 12. Frequent sets generated with input space and frequent set pruning
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efficient solution, addressing a small fraction of 
these problems. We used geo-ontologies in spatial 
association rule mining to reduce well-known pat-
terns, but the use of ontologies in different data 
mining techniques such as clustering, classifica-
tion, and outlier detection are still open problems. 
In clustering, for example, the use of semantics 
could either avoid the separation of geographic 
objects that have mandatory constraints or orga-
nize them into the same cluster without the need 
of computing their relationship. The use of prior 
knowledge to evaluate the interestingness of 
patterns extracted with the different data mining 
techniques still needs to be addressed.

The development of toolkits that integrate 
data mining techniques, geographic databases, 
and knowledge repositories is another need for 
practical applications. Although a large number 
of algorithms has been proposed, their imple-
mentation in toolkits with friendly graphical user 
interfaces that cover the whole KDD process is 
rare. The gap between data mining techniques 
and geographic databases is still a problem that 
makes geographic data preprocessing be the most 
effort and time consuming step for knowledge 
discovery in these databases. 

Conclusion

This chapter presented an intelligent framework 
for geographic data preprocessing and SAR min-
ing using geo-ontologies as prior knowledge. The 
knowledge refers to mandatory and prohibited 
semantic geographic constraints, which are ex-
plicitly represented in geo-ontologies because 
they are part of the concepts of geographic data. 
We showed that explicit mandatory relationships 
produce irrelevant patterns, and that prohibited 
relationships do not need to be computed, since 
they will never hold if the database is consistent. 
Possible implicit spatial relationships may lead to 
more interesting patterns and rules, and they can 
be inferred using geo-ontologies. 

Experiments showed that independent of the 
number of elements, one dependence is enough 
to prune a large number of patterns and rules, 
and the higher the number of eliminated seman-
tic constraints, the larger is the frequent pattern 
and rule reduction. We showed that well-known 
dependences can be partially eliminated with in-
telligent data preprocessing, independently of the 
algorithm to be used for frequent pattern mining. 
To completely eliminate geographic dependences 
we presented a pruning method that can be ap-
plied to any algorithm that generates frequent 
sets, including closed frequent sets. Algorithms 
for mining nonredundant association rules can 
reduce the number of rules further if applied 
to the geographic domain using our method to 
generate frequent sets.

Considering semantics in geographic data 
preprocessing and frequent pattern mining has 
three main advantages: spatial relationships 
between feature types with dependences are not 
computed; the number of both frequent sets and 
association rules is significantly reduced; and the 
most important, the generated frequent sets and 
rules are free of associations that are previously 
known as noninteresting.

The main contribution of the method presented 
in this chapter for mining spatial association rules 
is for the data mining user, which will analyze 
much less obvious rules. The method is effective 
independently of other thresholds, and warrants 
that geographic domain associations will not ap-
pear among the resultant set of rules.
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