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The Wireless Explosion (Fosca Giannotti 2007 – www.geopkdd.eu)

Have you ever feel to be tracked?
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The Wireless Explosion 

The world becomes more and more mobile with the easy 

access to smart phones, GPS, etc

Sattelite services, sensors and wireless technologies are 

rapidly improving

lots of spatio-temporal data is being generated
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A Explosão da Rede Sem Fio

Mobile devices leave behind digital traces that are collected as 

trajectories, describing the movement of its users 

Mobile devices generate a new type of data, called “ Trajectories of 

Moving Objects”

The Wireless Explosion (Fosca Giannotti 2007 – www.geopkdd.eu)
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Mobility Data Analysis
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Mobility Data Analysis

Several analysis may be done over trajectories: 

How people move around the town

During the day, during the week, etc.

Are there typical movement behaviours? In a certain area at a certain 

time?

How are people movement habits changing in this area in last decade-

year-month-day?

Are there relations between movements of two areas?

.....
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Mobility Data Analysis: Applications

Trajectory data analysis may be useful in 

several application domains

Veicule MonitoringVeicule Monitoring

Transportation Companies monitor their trucks

Insurance companies use GPS devices to monitor 

insured vehicles to reduce insurance price

Traffic AnalysisTraffic Analysis

To alert people about traffic jams,                 

accidents, etc... 

Identify/predict low traffic regions                            

in a city
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Mobility Data Analysis

Animal Migration / Behaviour AnalysisAnimal Migration / Behaviour Analysis

Which are the trajectories of                                    

a given migration bird?                                      

Where do birds stop? For how long?

Which is the migration pattern of certain species?

Fishing Analysis and ControlFishing Analysis and Control

Are boats really fishing in                                  

allowed areas?

Can we classify vessel trajectories?
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Mobility Data Analysis

Weather prediction and movement Weather prediction and movement 

analysisanalysis

Hurricane trackingHurricane tracking
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Trajectory Data
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Trajectory Data (Giannotti 2007 – www.geopkdd.eu)

Spatio-temporal Data

Represented as a set of points, located in space and time  

T=(x1,y1, t1), …, (xn, yn, tn)   =>   position in space at time ti was 
(xi,yi)

Tid           position (x,y)      time (t)

1   48.890018  2.246100   08:25

1   48.890018  2.246100   08:26

...        ...                                ...

1   48.890020  2.246102   08:40

1   48.888880  2.248208   08:41

1   48.885732  2.255031   08:42

...       ...                                ...

1   48.858434  2.336105   09:04

1   48.853611  2.349190   09:05

...       ...                                ...

2       ...                                 ...
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Trajectories: Overall Characteristics

1. Geometric shape

2. Length (traveled distance)

3. Duration (in time)

4. Speed
Mean and maximal Speed

Acceleration, deceleration

5. Direction:
Periods of straight, curvilinear, circular movement

More.....

(Adrienko 2008)
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Trajectory Patterns
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Mining Trajectories: Clustering

Group together similar trajectories

For each group produce a summary

= cell

Fosca Giannotti 2007 – www.geopkdd.eu
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Mining Trajectories :  Frequent patterns Fosca Giannotti 2007 – www.geopkdd.eu

Frequent followed paths

= cell
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Mining Trajectories: classification models 

Extract behaviour rules from history

Use them to predict behaviour of future users

60%

7%

8%

5%

20%

?

Fosca Giannotti 2007 – www.geopkdd.eu

= cell
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Trajectory Data Mining Methods
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Spatio-Temporal Data Mining Methods

Two approaches:

Geometry-based spatio-temporal data mining:
Density-based clustering methods

Focus on physical similarity

Consider only geometrical properties of trajectories (space and 
time)

Semantic-based spatio-temporal data mining
Deal with sparse data also

Patterns are computed based on the semantics of the data

Trajectories are pre-processed to enrich the data
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Geometry-based Trajectory Data Mining 

Methods
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General Geometric Trajectory Patterns
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Relative Motion Patterns (Laube 2004)

T1

T2

T3

T4

T5

convergence

Proposed 5 kinks of trajectory patterns based on movement, 
direction, and location: convergence, encounter, flock, 
leadership, and recurrence

Convergence: At least m entities pass through the same

circular region of radius r, not necessarily at the same 

time (e.g. people moving to train station)
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Relative Motion Patterns (Laube 2004)

Flock pattern: At least m entities are within a region of radius r and move in 
the same direction during a time interval >= s (e.g. traffic jam)

Leadership: At least m entities are within a circular region of radius r, they 
move in the same direction, and at least one of the entities is heading in that 
direction for at least t  time steps. (e.g. bird migration, traffic accident)

Encounter: At least m entities will be concurrently inside the same circular 
region of radius r, assuming they move with the same speed and direction. 
(e.g. traffic jam at some moment if cars keep moving in the same direction)

Flock

Leadership

Encounter
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Relative Motion Patterns (Laube 2004)

F1

F1
F1

F1Recurrence

Recurrence: at least m entities visit a 

circular region at least k times
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Extension of the work proposed by [Laube 2004, 2005]

Gudmundsson(2006)

Computes the longest duration flock patterns

The longest pattern has the longest duration

And has at least a minimal number of 

trajectories

Gudmundsson (2007)

proposes approximate algorithms for computing 

the patterns leadership, encounter, 

convergence, and flock

Focus relies on performance issues
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Frequent Trajectory Patterns
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Frequent Mobile Group Patterns (Hwang, 2005)

A group pattern is a set of trajectories close to each other 

(with distance less than a given minDist) for a minimal 

amount of time (minTime)

Direction is not considered

Frequent groups are computed with the algorithm Apriori

Group pattern: time, distance, and minsup
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Co-Location Patterns (Cao 2006)

Co-location episoids in spatio-temporal data

Trajectories are spatially close in a time window and move together

w1

w2
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Traclus (Han, 2007)

Clustering algorithm (TraClus-Trajectory Clustering)

Group sub-trajectories

Density-based

Partition-and-group method
1) each trajectory is partitioned into a set of line segments (sub-
trajectories) with lenght L defined by the user

2) similar segments (close segments) are grouped
Similarity is based on a distance function 

Interesting approach for trajectories of hurricanes

Main drawback: Clustering is based on spatial distance
time is not considerd
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Trajectory Sequential Patterns
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T-Patterns (Giannotti, 2007) 

Sequential Trajectory Pattern Mining

Considers both space and time

Objective is to describe frequent movement 
Considering visited regions of interest

During movements and the duration of movements

Steps:
1. Compute or find regions of interest, based on dense spatial 

regions (no time is considered)

2. Select trajectories that intersect two or more regions in a 
sequence, annotating travel time from one region to another

3. Compute sequences of regions visited in same time intervals
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Fix a set of pre-defined regions

timetime

AA

BB

CC

Map each (x,y) of the trajectory to its region

Sample pattern:

T-Patterns (Giannotti, 2007)

BA  →
.min20
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Detect significant regions thru spatial clustering

),(),( 22

.min20

11 yxaroundyxaround  →

timetime

Map each (x,y) of the trajectory to its region

Sample pattern:

around(xaround(x11,y,y11))

around(xaround(x22,y,y22))

T-Patterns (Giannotti, 2007)
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Trajectory Classification

The idea is to classify types of trajectories
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TraClass Algorithm (Lee 2008)

Two main steps algorithm:

First: region – based clustering

Second: trajectory-clustering

Time is not considered
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TraClass Algorithm (Lee 2008)

Classify subtrajectories instead of whole trajectories

Examples:

� Red trajectories move from Port A to Container Port and then to Port B

� Blue trajectories move from Port A to Refinery and then to Port B

Classifying whole trajectory would classify all trajectories as moving from 

Port A to Port B
36
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Trajectory Outlier Detection
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• The objective is to find trajectories that have different behavior 

in relation to other trajectories

• For instance:

– A fishing vessel that has a behaviour different 

from other fishing vessels in the same area

– A hurricane that may change behaviour in certain 

parts of its trajectory

– Cars or pedestrians with suspishious behaviour

Trajectory Outlier Detection
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• Partition trajectories into subtrajectories

• Compare subtrajectories based on:

– distance and length

• If a subtrajectory is not close to other 

trajectories for a minimal lenght

– It is an outlier

TraOD - Trajectory Outlier Detection (Lee 2008)

12/15/2010 39 of  90Tutorial on Spatial and Spatio-Temporal Data Mining (ICDM 2010)

• Example:

– Looking to the whole trajectory, TR3 is not detected as 
an outlier since its overall behavior is similar to 
neigbouhr trajectories

• Looking at the subtrajectories, T3 can be an outlier 

40

TR5

TR1

TR4TR3
TR2

An outlying sub-trajectory

TraOD - Trajectory Outlier Detection (Lee 2008)
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Two phases: partitioning and detection

TR5

TR1

TR4TR3

TR2

A set of trajectories

(1) Partition

(2) Detect TR3

A set of trajectory partitions

An outlier

Outlying trajectory partitions

TraOD - Trajectory Outlier Detection (Lee 2008)
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42

13 Outliers from Hurricane Data

TraOD - Trajectory Outlier Detection (Lee 2008)
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Summary

Tid           geometry           timest
1   48.890018  2.246100   08:25

1   48.890018  2.246100   08:26
...        ...                                ...

1   48.890020  2.246102   08:40
1   48.888880  2.248208   08:41

1   48.885732  2.255031   08:42

...       ...                                ...
1   48.858434  2.336105   09:04

1   48.853611  2.349190   09:05
...       ...                                ...

1   48.853610  2.349205   09:40
1   48.860515  2.349018   09:41

...       ...                                ...

1   48.861112  2.334167   10:00
1   48.861531  2.336018   10:01

1   48.861530  2.336020   10:02
...       ...                                 ...

2       ...                                 ...

These data mining approaches deal with Trajectory Samples
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Semantic-based Trajectory Data Mining Methods
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Semantic Trajectory Data Mining

The main idea is to enrich trajectories with domain 

semantic information in preprocessing steps

This task can be done using data mining

Apply data mining as a second step

Mining is on semantic rich trajectories
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Geometric Pattern

Geometric Patterns X Semantic Patterns (Bogorny 2008)

CCCC

T1

T2

T3

T4
T1

T2

T3

T4

H

H

H

Hotel

R
R

R Restaurant

TP

TP

TP Touristic

Place

Semantic trajectory Pattern

(a) Hotel to Restaurant, passing by CC

(b) go to Cinema, passing by CC
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Geometric Patterns X Semantic Patterns (Bogorny 2008)

There is very little or no semantics in most DM approaches for 
trajectories 

Consequence: 

• Patterns are purely geometrical

• Difficult to interpret from the user’s point of view

• Do not discover semantic patterns,         

which can be independent of spatial location
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DJ-Cluster (Zhou 2007)

DJ-Cluster is a variation of DBSCAN 

Focus relies on performance issues

Objective: find interesting places of individual trajectories

Clusters are computed from a SET of trajectories of the same object

Time is not considered
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A Conceptual View on Trajectories (Spaccapietra 2008)

A trajectory is a spatio-temporal thing (an object) that

has generic features

generic: application independent

has semantic features

semantic: application dependent

A trajectory is more than a moving object
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The Model of Stops and Moves (Spaccapietra 2008)

STOPS

Important parts of trajectories

Where the moving object has stayed for a 

minimal amount of time

Stops are application dependent
Tourism application

– Hotels, touristic places, airport, I

Traffic Management Application
– Traffic lights, roundabouts, big eventsI

MOVES

Are the parts that are not stops
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Semantic Trajectories

A semantic trajectory is  a set of stops and moves

Stops have a place, a start time and an end time

Moves are characterized by two consecutive stops
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Methods for Adding Semantics to Trajectories

12/15/2010 55 of  90Tutorial on Spatial and Spatio-Temporal Data Mining (ICDM 2010)

Methods to Compute Stops and Moves

1) IB-SMoT (INTERSECTION-based) 

Interesting for applications like tourism and urban planning

2) CB-SMoT (SPEED-based clustering)

Interesting for applications where the speed is important,

like traffic management

3) DB-SMOT (DIRECTION-based clustering)

Interesting in application where the direction variation is important

like fishing activities
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IB-SMoT  (Alvares 2007a)

A candidate stop C is a tuple (RC, ∆C), where  
RC is the geometry of the candidate stop (spatial feature type)  
∆C is the minimal time duration

E.g. [Hotel E.g. [Hotel E.g. [Hotel E.g. [Hotel ---- 3 hours]3 hours]3 hours]3 hours]

An application A is a finite set 
A = {C1 = (RC1 , ∆C1 ), …, CN = (RCN , ∆CN)} of candidate 
stops with non-overlapping geometries RC1, … ,RCN

E.g. [Hotel E.g. [Hotel E.g. [Hotel E.g. [Hotel ---- 3 hours, Museum 3 hours, Museum 3 hours, Museum 3 hours, Museum –––– 1 hour]1 hour]1 hour]1 hour]
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IB-SMoT 

Input: candidate stops // Application

trajectories // trajectory samples

Output:  

Method:

For each trajectory 

Check if it intersects a candidat stop for a minimal amount of time

Semantic rich trajectories

Jurere

09-12

FloripaS

16-17

IbisH. 

13-14

(Alvares 2007ª)
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• Clusters single trajectories based on the speed variation: 

low speed � important place

CB-SMoT: Speed-based clustering (Palma 2008)
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Input: Trajectory samples

Speed variation

minTime

Output: stops and moves           

Step 1: find clusters 

Step 2: Add semantics to each 

cluster  

2.1: If intersects α during ∆tα�

stop α

Jurere

09-12

FloripaS

16-17

IbisH. 

13-14

Unknown stop

2.2: If no intersection

during ∆t � unknown stop

CB-SMoT: Speed-based clustering (Palma 2008)
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T1

T2

same unknown stop

another unknown stop

Unknown Stops (CB-SMOT)

CB-SMoT: Speed-based clustering (Palma 2008)

12/15/2010 61 of  90Tutorial on Spatial and Spatio-Temporal Data Mining (ICDM 2010)

Can Find Clusters Inside Buildings

p1

p6

p7

p11

t6= 10:10AM

t7= 10:32AM

CB-SMoT: Speed-based clustering (Palma 2008)
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DB-SMOT : Direction-based Clustering (Manso 2010)

Input:      trajectories // trajectory samples

minDirVariation      // minimal direction variation

minTime              // minimum time

maxTolerance      

Output:  semantic rich trajectories

Method:

For each trajectory 

Find clusters with direction variation

higher than minDirVariation

For a minimal amount of time
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Examples of semantic trajectory patterns
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Multiple-granularity semantic trajectory 

pattern mining

12/15/2010 65 of  90Tutorial on Spatial and Spatio-Temporal Data Mining (ICDM 2010)

Afternoon or Thursday or 6:00PM – 8:00PM or RUSH-HOUR

IbisHotel or Hotel or Accommodation

STOPS at Multiple-Granularities (Bogorny 2009)

Stop at Ibis Hotel from 6:04PM to 7:42PM, september 16, 2010

space

time
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ITEMS - the building blocks for semantic pattern discovery

An item is generated either from a stop or a move

An item is a set of complex information (space + 
time), that can be defined in many formats/types 
and at different granularities
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Building an ITEM for Data Mining (Bogorny 2009)

Formats/types for an item:

>ameOnly: is the name of the stop/move

STOPS: name of the spatial feature instance 
• IbisHotel

MOVES: name of the two stops which define the move
• SydneyAirport – IbisHotel

+ameStart: is the name of the stop/move + start time 

IbisHotel [morning]                                      --stop

LouvreMuseum [weekend]                          --stop

IbisHotel-SydneyAirport [10:00AM-11:00AM]    --move
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Building an ITEM for Data Mining (Bogorny 2009)

>ameEnd:  name of a stop/move + end time

IbisHotel[morning]                           �stop

IbisHotel-SydneyAirport[10:00AM-11:00AM]      � move

>ameStartEnd:  name of a stop/move + start time + end time 

IbisHotel[08:00AM-11:00AM][1:00pm-6:00pm]    � stop

LouvreMuseum[morning][afternoon]          � stop
SydenyAirport– IbisHotel [10:00AM-11:00PM] [10:00AM-6:00PM]   

12/15/2010 69 of  90Tutorial on Spatial and Spatio-Temporal Data Mining (ICDM 2010)

Multiple-Granularity Semantic Trajectory DMQL (Bogorny 2009)

ST-DMQL is an approach to semantically enrich 

trajectories with domain information

Autormatically tranforms these semantic information into 

different space and time granularities

Extracts frequent patterns, association rules and 

sequential patterns from semantic trajectories
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Multiple Level Semantic Sequential Patterns 

Large Sequences of Length 2 (ITEM=SPACE+Start_Time)

(41803_street_5, 41803_street_5) Support: 7

(41803_street_4, 41803_street_4) Support: 9

(41803_street_4, 66655_street_4) Support: 5

(41803_street_2, 41803_street_2) Support: 6

(41803_street_8, 41803_street_8) Support: 5

(41803_street_3, 0_unknown_3) Support: 5

gid

Spatial feature type (stop name)

time unit = month
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Large Sequences of Length 2 (ITEM=SPACE+Start_Time)

(41803_street_tuesday,41803_street_tuesday) Support: 9

(41803_street_tuesday,66655_street_tuesday) Support: 5

(41803_street_monday,66655_street_monday) Support: 5

(41803_street_monday,41803_street_monday) Support: 11

(41803_street_monday,0_unknown_monday) Support: 5

(41803_street_thursday,41803_street_thursday) Support: 13

(41803_street_thursday,0_unknown_thursday) Support: 6

(41803_street_wednesday,41803_street_wednesday) Support: 7

gid

Spatial feature type (stop name)

Time unit = Day of the week

Multiple Level Semantic Sequential Patterns
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Tools:

Weka- STPM

Athena
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Trajectory Behaviour Patterns

Recent works have emerged on mining behaviour 

patterns from trajectories
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Athena (Baglioni 2009)

Semantic-rich movement analysis

Which are the home-
work trajectories? And 
the common behaviors 
of them?

To answer these questions 
the idea is to get the home-
work trajectory (or pattern)
from a knowledge base, for 
then to discover the 
trajectories that frequently 
follow this pattern
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Athena (Baglioni 2009)

Semantic     
Trajectory

Move

Stop

Commuter
Trajectory

Commuter trajectory≡ a trajectory frequently starting 

outside the city, stopping inside the city for a long time and  
going back outside the city

ontology
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Athena (Baglioni 2009)

Based on ontologies to represent domain knowledge 

and to infer the semantic types of the 

patterns/trajectories.

A trajectory pattern is given as input and the method 

checks the trajectories that support the pattern to 

classify the trajectory
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Pattern Interpretation (Ong 2010)

This work focuses on post-

processing, trying to interpret the 

patterns

Considering that the movement 

context is essential to correctly 

interpret and understand the 

patterns

CONTEXT = geography + thematic 

attributes
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Pattern Interpretation (Ong 2010)

1. Mining flock movement patterns

2. Semantic enrichment: annotates patterns with 
information about the moving object (e.g. age, 
gender)

3. Mine the enriched patterns with hierarchical clustering 
to help the user to interpret the patterns
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Works Summarized in this part of the Tutorial

Geometric Pattern

Mining Methods

(mining is on sample

points)

Semantic Pattern Mining 

Methods (Generate 

Semantic Trajectories using 

DM  - mining is on Semantic 

Trajectories)

Behaviour Pattern

Mining and

Interpretation Methods

Laube 2004, 2005 

Hwang 2005

Gudmundson 2006, 2007

Giannotti 2007 

Lee  2007 

Cao 2006, 2007

Lee 2007, 2008a, 2008b

Li  2010

Alvares 2007 

Zhou 2007 

Palma 2008 

Bogorny 2009 

Bogorny 2010

Manso 2010 

Alvares 2010

Giannotti 2009

Baglioni 2009

Ong 2010
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Summary, Challenges and Open Issues in Spatio-

Temporal Data Mining
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Trajectory Clustering

Most works are density-based clustering methods

Most are adapted spatial or non-spatial clustering algorithms

Consider either time or space, only a few consider both dimensions

Challenges and Open Issues in Spatio-Temporal Data Mining
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Trajectory Similarity

Focus relies on objective similarity measures

Shape, direction, closeness

Needs: semantic similarity

Higher abstraction level similarity

Example: 

– groups of trajectories going together for shopping

– Groups of trajectories going together to the University two times 

a week

Challenges and Open Issues in Spatio-Temporal Data Mining
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Need for data mining methods using:

Metadata

Domain knowledge

Semantics

Ontologies  

For:

Trajectory data pre-processing

Pattern pruning

Improve the quality of the patterns

Pattern interpretation

Challenges and Open Issues in Spatio-Temporal Data Mining

12/15/2010 86 of  90Tutorial on Spatial and Spatio-Temporal Data Mining (ICDM 2010)

More needs

There is a need for collaboration between data miners and 

domain experts (environmental experts, transportation 

managers, metheorologists, etc) 

to evaluate data mining methods and the discovered patterns

Post-Processing: almost no spatial or spatio-temporal data 

mining methods evaluate the patterns and their 

interestingness

12/15/2010 87 of  90Tutorial on Spatial and Spatio-Temporal Data Mining (ICDM 2010)

Thank You !
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