Dynamic operation - 20

A simple model for the propagation delay

Propagation delay vs. $C_{\text {ext }} / C_{\text {int }}$ ratio

1. $t_{p 0}$ (for minimum-L devices) is independent of the sizing (W's) of the gate; 2. Making W infinitely large eliminates the impact of any external load
$C_{\text {int }}$ - intrinsic (self-loading) output capacitance
$C_{\text {ext }}$ - extrinsic load capacitance (fan-out + wiring)

Dynamic operation - 21

Inverter Delay

- Minimum length devices
- Assume that for $W_{P}=2 W_{N}=2 W$
- same pull-up and pull-down currents
- approx. equal resistances $R_{N}=R_{P}$
- approx. equal rise $t_{p L H}$ and fall $t_{p H L}$ delays
- Analyze as an RC network
$R_{P}=R_{\text {unit }}\left(\frac{W_{P}}{W_{\text {unit }}}\right)^{-1} \approx R_{\text {unit }}\left(\frac{W_{N}}{W_{\text {unit }}}\right)^{-1}=R_{N}=R_{W}$
Delay $(D): t_{p H L}=(\ln 2) R_{N} C_{L} \quad t_{p L H}=(\ln 2) R_{P} C_{L}$
Load for previous stage: $C_{g i n}=3 \frac{W}{W_{\text {unit }}} C_{\text {unit }}$

Dynamic operation - 22 Inverter Delay

Delay $=0.69 R_{w}\left(C_{i n t}+C_{\text {ext }}\right)=0.69 R_{W} C_{\text {int }}+$ $0.69 R_{W} C_{e x t}=0.69 R_{W} C_{i n t}\left(1+C_{e x t} / C_{i n t}\right)$

Note:
= Delay (Internal) + Delay (Load)
$\mathrm{R}_{\mathrm{W}} \propto \mathrm{L} / \mathrm{W}$
$\mathrm{C}_{\text {int }} \propto \mathrm{WL}$

Dynamic operation - 23

Delay Formula

$$
\begin{aligned}
& \text { Delay } \sim R_{W}\left(C_{i n t}+C_{e x t}\right) \\
& t_{p}=k R_{W} C_{i n t}\left(1+C_{e x t} / C_{i n t}\right)=t_{p 0}(1+f / \gamma)
\end{aligned}
$$

$C_{\text {int }}=\gamma C_{\text {gin }}$ with $\gamma \approx 1$
Note:
$f=C_{\text {ext }} / C_{\text {gin }}$ - effective fanout
$\mathrm{R}_{\mathrm{w}} \propto \mathrm{L} / \mathrm{W}$
$\mathrm{C}_{\text {int }} \propto \mathrm{WW}$
$R=R_{\text {unit }} / W ; C_{\text {int }}=W C_{\text {unit }}$
$t_{p 0}=0.69 R_{\text {unit }} C_{\text {unit }}$
$\mathrm{t}_{\mathrm{p} 0} \propto \mathrm{~L}^{2} \rightarrow$ minimum L for minimum delay

Dynamic operation - 24
 Ring oscillators - 1

N : (odd) number of inverters (usually >5)

$$
t_{p}=k R_{W} C_{i n t}\left(1+C_{e x t} / C_{i n t}\right)=t_{p 0}(1+f / \gamma)
$$

$$
\begin{aligned}
& C_{\text {int }}=\mathcal{C}_{\text {gin }} \text { with } \gamma \approx 1 \quad f_{\text {osc }}=\frac{1}{2 N t_{p}} \rightarrow C_{t_{p}}=\frac{1}{2 N f_{\text {osc }}} . C_{\text {gin }}=1
\end{aligned}
$$

Ring oscillators are used as process monitors to verify if a chip is faster or slower than nominally expected. Ex: 31-stage ring oscillator in a 180 nm process oscillates at 540 MHz .

Dynamic operation - 25
 Ring oscillators - 2

N : (odd) number of inverters (usually >5)

o ○

$\mathbf{V}_{\mathbf{D D}}$	0.8 V	1.0 V	1.2 V
Frequency	17.2 MHz	26.3 MHz	33.4 MHz

Ring oscillator output as viewed with an oscilloscope. The time base is set to 20ns per division and the voltage scale is set to 500 mV per division. The measured wave period is 30.44 ns and the measured amplitude is 1.08 V when the supply voltage is 1.2 V .

Dynamic operation - 26

Inverter chain - 1

If C_{L} is given:

- How many stages are needed to minimize the delay?
- How to size the inverters?

May need some additional constraints.

Dynamic operation - 27

Inverter chain - 2

j-th inverter

$$
t_{p, j}=t_{p 0}\left(1+C_{g, j+1} / \gamma C_{g, j}\right)=t_{p 0}\left(1+f_{j} / \gamma\right)=
$$

$$
t_{p}=\sum_{j=1}^{N} t_{p, j}=t_{p 0} \sum_{j=1}^{N}\left(1+C_{g, j+1} / \gamma C_{g, j}\right) ; \quad C_{g, N+1}=C_{L} \longleftrightarrow \begin{aligned}
& \text { N-1 unknowns: } C_{g, 2}, C_{g, 3}, \\
& \ldots . C_{q, N-1}, C_{q, N}
\end{aligned}
$$

First inverter is minimally sized

Dynamic operation - 28 Inverter chain - 3

Let's minimize $\quad t_{p}=\sum_{j=1}^{N} t_{p, j}=t_{p 0} \sum_{j=1}^{N}\left(1+C_{g, j+1} / \gamma C_{g, j}\right) ; \quad C_{g, N+1}=C_{L}$
Taking the N-1 derivatives partial derivatives and equating them to 0 we find that

$$
C_{g, j}=\sqrt{C_{g, j-1} C_{g, j+1}}
$$

Thus, each inverter is sized up by the same factor f wrt the preceding gate

$$
f=C_{g, j+1} / C_{g, j}=\sqrt[N]{C_{L} / C_{g, 1}}=\sqrt[N]{F}
$$

The minimum delay is
$t_{p}=t_{p 0} \sum_{j=1}^{N}(1+f / \gamma)=N t_{p 0}(1+\sqrt[N]{F} / \gamma) \longmapsto$ What's N that minimizes delay?

Dynamic operation - 29

Inverter chain - 4

$$
t_{p}=t_{p 0} \sum_{j=1}^{N}(1+f / \gamma)=N t_{p 0}(1+\sqrt[N]{F} / \gamma) \quad \Longrightarrow d t_{p} / d N=0
$$

The minimum delay is
for N obtained from

Canonical case: $\gamma=0 \longrightarrow \begin{aligned} & f=e, \quad N=\ln F=\ln \left(C_{L} / C_{g, 1}\right)\end{aligned}$

$$
\int t_{p}=e t_{p i} \ln \left(C_{L} / C_{g, 1}\right) \quad \begin{aligned}
& t_{p i}: \text { prop } \\
& \text { unit inv }
\end{aligned}
$$ unit inverter loaded with another unit inverter

Dynamic operation - 30

Inverter chain - 5
Optimum effective fan-out $f \quad f=\exp (1+\gamma / f)$

$$
\begin{aligned}
& f_{\text {opt }}=3.6 \\
& \text { for } \gamma=1
\end{aligned}
$$

Dynamic operation - 31

Inverter chain - 6
Buffer Design

$4 \quad 2.8$
15.3

* Values normalized to t_{po}

Sources: Weste and Rabaey

Power, energy, and energy delay - 1

- Power is drawn from a voltage source attached to the $V_{D D}$ pin(s) of a chip.
- Instantaneous Power: $\quad p(t)=i(t) v(t)$

Delivered by the power source $\quad p(t)=i_{D D}(t) V_{D D}$
Energy:
$E=\int_{0}^{T} p(t) d t=\int_{0}^{T} i(t) v(t) d t$
Average Power:

$$
P_{\mathrm{avg}}=\frac{E}{T}=\frac{1}{T} \int_{0}^{T} i(t) v(t) d t
$$

Power, energy, and energy delay - 2

Where Does Power Go in CMOS?

- Dynamic Power Consumption

Charging and Discharging Capacitors

- Short Circuit Currents

Short Circuit Path between Supply Rails during Switching

- Leakage

Leaking diodes and transistors

Power, energy, and energy delay - 3

Dynamic Power Dissipation

Energy delivered by the power supply ($\left.\mathrm{E}_{\mathrm{DD}}\right)^{\prime}$ to charge C

$$
E_{\mathrm{DD}}=\int_{0}^{T} i_{D D}(t) V_{D D} d t=V_{D D} \int_{0}^{T} i_{D D}(t) d t=V_{D D} \int_{0}^{V_{D D}} C d v_{o}=C V_{D D}^{2}
$$

The energy stored in the
fully charged capacitor is

$$
E_{C}=\int_{0}^{T} v_{o} i_{C} d t=\int_{0}^{V_{D D}} v_{o} C d v_{o}=C \frac{V_{D D}^{2}}{2}
$$

Power, energy, and energy delay - 4

Dynamic Power Dissipation

Where's the energy delivered by V_{DD} ?

One half of the energy is stored in C whereas the other half is converted into heat in the pull-up network

During the $1 \rightarrow 0$ transition of the output, the energy stored on C is dissipated into the n -channel
transistor

Power, energy, and energy delay - 5

Dynamic Power Dissipation

$$
P_{\text {dynamic }}=\frac{1}{T} \int_{0}^{T} i_{D D}(t) V_{D D} d t=\frac{V_{D D}}{T} \int_{0}^{T} i_{D D}(t) d t
$$

$$
=\frac{V_{D D}}{T}\left[T f_{\mathrm{sw}} C V_{D D}\right]=C V_{D D}^{2} f_{\mathrm{sw}} \quad f_{\mathrm{sw}}=\alpha f_{c k}, \quad \alpha \rightarrow \text { activity factor }
$$

For low power reduce $C, V_{D D}$, and $f_{s w}$

Power, energy, and energy delay - 6

Dynamic Power Dissipation

$$
\text { Example: } \quad \begin{array}{ll}
\mathrm{V}_{\mathrm{DD}} \\
\mathrm{~V}_{\mathrm{DD}}=2.5 \mathrm{~V} & \begin{array}{l}
\text { Energy delivered by the power } \\
\text { supply }\left(\mathrm{E}_{\mathrm{DD}}\right) \text { to charge } \mathrm{C}
\end{array} \\
E_{\mathrm{DD}}=C V_{D D}{ }^{2}=6 \cdot 2.5^{2}=37.5 \mathrm{fJ}
\end{array}
$$

For an activity factor of 0.1 , the average dynamic power dissipation is $\sim 18 \mu \mathrm{~W}$

One million identical inverters with the same activity factor of 0.1 would give a total power dissipation of $\sim 18 \mathrm{~W}$

Power, energy, and energy delay - 7

Short Circuit Currents

- When transistors switch, both nMOS and pMOS transistors may be momentarily ON at once
- Typically < 10\% of dynamic power if rise/fall times are comparable for input and output

Power, energy, and energy delay - 8

Short Circuit Currents

Power, energy, and energy delay - 9

Short Circuit Currents

Minimizing Short-Circuit
Power

- Keep the input and output rise/fall times the same
($<10 \%$ of Total Consumption)
from [Veendrick84]
(IEEE Journal of Solid-State Circuits, August 1984)
- If $V_{\boldsymbol{d} \boldsymbol{d}}<V_{\boldsymbol{t n}}+\left|V_{\boldsymbol{t} \boldsymbol{p}}\right|$ then short-circuit power can be eliminated!

Power, energy, and energy delay - 10

Leakage \rightarrow static dissipation

Reverse-Biased Diodl Leakage

$$
I_{D L}=J_{S} \times A
$$

Sub-threshold current one of most compelling issues in low-energy circuit design!

Power, energy, and energy delay - 11

Leakage \rightarrow static dissipation

Transistors that are supposed to be off leak

Input at $V_{D D}$

Input at 0

Power, energy, and energy delay - 12

Leakage \rightarrow static dissipation

- Leakage control is critical for low-voltage operation

In our simplified model, currents for V_{GS} below V_{T} were assumed to be zero. However, subthreshold current is very important, especially for advanced technologies (low V_{T} 's) and can be the major component of power dissipation.

Power, energy, and energy delay - 13 Leakage \rightarrow static dissipation

Static power is due to the current that flows between supply rails in the absence of switching activity $P_{\text {stat }}=I_{\text {stat }} V_{D D}$

Power, energy, and energy delay - 14

Power-Delay Product (PDP) = Average energy consumed per switching event ($0 \rightarrow 1$ or $1 \rightarrow 0$)

$$
P D P=\frac{C V_{D D}^{2}}{2}
$$

Energy-Delay Product (EDP) $=$ quality metric of gate $=E \times$ $t_{p} E D P=P D P \cdot t_{p}=\frac{C V_{D D}^{2}}{2} t_{p}$

