PROFESSIONAL

XML
Databases

Kevin Williams

Professional XML Databases

Kevin Williams

Michael Brundage
Patrick Dengler
Jeff Gabriel
Andy Hoskinson
Michael Kay
Thomas Maxwell
Marcelo Ochoa
Johnny Papa
Mohan Vanmane

Wrox Press Ltd.

Professional XML Databases

© 2000 Wrox Press

All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case of
brief quotations embodied in critical articles or reviews.

The author and publisher have made every effort in the preparation of this book to ensure the accuracy
of the information. However, the information contained in this book is sold without warranty, either
express or implied. Neither the authors, Wrox Press nor its dealers or distributors will be held liable for
any damages caused or alleged to be caused either directly or indirectly by this book.

WFrOX

Published by Wrox Press Ltd,
Arden House, 1102 Warwick Road, Acocks Green,
Birmingham, B27 6BH, UK
Printed in the Canada
ISBN 1861003587

Trademark Acknowledgements

Wrox has endeavored to provide trademark information about all the companies and products
mentioned in this book by the appropriate use of capitals. However, Wrox cannot guarantee the
accuracy of this information.

Authors
Kevin Williams

Michael Brundage,
Patrick Dengler
Jeff Gabriel,

Andy Hoskinson,
Michael Kay
Thomas Maxwell,
Marcelo Ochoa
Johnny Papa,
Mohan Vanmane

Technical Reviewers
Danny Ayers
David Baliles

Cary Beuershausen
Matt Birbeck
Maxime Bombadier
Bob Cherinka
Michael Corning
Jeremy Crosbie
Dino Esposito
Nazir Faisal

Sam Ferguson

Constantinos Hadjisotiriou

Scott Haley

Alex Homer
Michael Kay

Jim Macintosh
Craig McQueen
Thomas B. Passin
David Schult
Marc H. Simkin
Dave Sussman
Dorai Thodla
Beverley Treadwell
Warren Wiltsie

Credits

Technical Architect
Jon Duckett

Technical Editors
Chris Mills

Andrew Polshaw
Lisa Stephenson

Category Manager
Dave Galloway

Author Agent
Tony Berry

Project Manager
Avril Corbin

Production Manager
Simon Hardware

Production Project Coordinator
Mark Burdett

Indexing
Alessandro Ansa

Figures
Shabnam Hussain

Cover
Shelley Frazier

Proof Readers
Diana Skeldon
Agnes Wiggers

About the Authors

Kevin Williams

Kevin's first experience with computers was at the age of 10 (in 1980) when he took a BASIC class at a
local community college on their PDP-9, and by the time he was 12, he stayed up for four days straight
hand-assembling 6502 code on his Atari 400. His professional career has been focussed on Windows
development - first client-server, then onto Internet work. He's done a little bit of everything, from VB
to Powerbuilder to Delphi to C/C++ to MASM to ISAPI, CGI, ASP, HTML, XML, and any other
acronym you might care to name; but these days, he's focusing on XML work. Kevin is currently
working with the Mortgage Bankers' Association of America to help them put together an XML standard
for the mortgage industry.

Michael Brundage

Michael Brundage works as a software developer on Microsoft's WebData Internet team, where he
develops XML features for SQL Server 2000. Michael participates actively in the design of the XML
Query Language, producing Microsoft's prototype for the W3C Working Group. Before Microsoft,
Michael was the Senior Software Engineer for NASA's Interferometry Science Center at Caltech, where
he developed networked collaborative environments and a simulation of radiative transfer.

Michael would like to thank his wife Yvonne for her patience; Dave Van Buren, friend and mentor, for
starting it all; Microsoft for allowing him to write; Chris Suver and Paul Cotton for reviewing early
drafts; and everyone at Wrox Press for their help, humor, and flexibility.

Patrick Dengler

Patrick is busily growing Internet startups throughout the "Silicon Forest" area. His interests include
building companies by creating frameworks for Internet architectures. He has received several patents in
stateless Internet database architectures.

I want to thank my lovely, graceful and beautiful wife Kelly for simply putting up with me.
Without her and my family, Devin, Casey, and Dexter, I wouldn't be whole.

Jeff Gabriel

Jeff Gabriel currently works as a developer for eNationwide, the e-commerce arm of Nationwide
Insurance Systems. Jeff is an MCSE, and was formerly a Webmaster before finding the call to be true
geek too strong. He enjoys spending time with his wife Meredith and two children; Max and

Lily. He also likes to read books about technology and computers when not working on same."

Thanks to my family for understanding the long hours it took to write for this book, and my great
desire to do it. I also thank God, who has answered my prayers with many great opportunities.

Finally, thanks to the guys at ATGI Inc. Thanks to Matt for your excellent direction and support
over the years, and to Jason, an incomparable source for all things Java.

Andy Hoskinson

Andy Hoskinson is a senior technical director for a leading Internet professional services firm. He
develops enterprise-class Internet solutions using a variety of technologies, including Java and XML.
Andy is a co-author of Professional Java Server Programming, J2EE Edition (Wrox Press,

Sept. 2000). He is also a co-author of Microsoft Commerce Solutions (Microsoft Press, April 1999), and
has contributed to several different technical publications, including Active Server Developer's Journal
and Visual J++ Developer's Journal.

Andy is a Sun Certified Java Programmer and Microsoft Certified Solution Developer, and lives in
Northern Virginia with his wife Angie. Andy can be reached at andy @hoskinson.net.

Michael Kay

Michael Kay has spent most of his career as a software designer and systems architect with ICL, the IT
services supplier. As an ICL Fellow, he divides his time between external activities and mainstream
projects for clients, mainly in the area of electronic commerce and publishing. His background is in
database technology: he has worked on the design of network, relational, and object-oriented database
software products — as well as a text search engine. In the XML world he is known as the developer of
the open source Saxon product, the first fully-conformant implementation of the XSLT standard.

Michael lives in Reading, Berkshire with his wife and daughter. His hobbies include genealogy and
choral singing.

Thomas Maxwell

Thomas Maxwell has worked the last few years for eNationwide, the Internet arm of one of the world's
largest insurance companies, developing advanced internet/intranet applications - Many of which
utilized XML databases. He also continues to work with his wife Rene to develop cutting edge Internet
applications, such as the XML based Squirrel Tech Engine, for Creative Squirrel Solutions — a technical
project implementation firm. Tom's technical repertoire includes such tools as Visual Basic, ASP,
COM+, Windows DNA and of course XML. Tom can be reached at tmaxwell@creativesquirrel.com

During the writing of this book I became the proud father of my wife's and my first child. So I
would like to thank, firstly my wife for being understanding of my desire to meet the book's
deadlines. And secondly to the staff of Wrox for understanding that a new baby sometimes makes it
difficult to meet deadlines. I would also like to thank the understanding people who helped with the
non-book things that allowed me the time to contribute to this book, including Tom Holquist, who
understands why one may be a little late to the office once in a while and my family including
Marlene and Sharon for helping with Gabrielle in the first few weeks.

Marcelo Ochoa

Marcelo Ochoa works at the System Laboratory of Facultad de Ciencias Exactas, of the Universidad
Nacional del Centro de la Provincia de Buenos Aires and as an external consultant and trainer for Oracle
Argentina. He divides his time between University jobs and external projects related to Oracle web
technologies. He has worked in several Oracle related projects like translation of Oracle manuals and
multimedia CBTs. His background is in database, network, Web and Java technologies. In the XML
world he is known as the developer of the DB Producer for the Apache Cocoon project, the framework
that permits generate XML in the database side.

Introduction

Chapter 1:
Chapter 2:
Chapter 3:
Chapter 4:
Chapter 5:
Chapter 6:
Chapter 7:
Chapter 8:
Chapter 9:
Chapter 10:
Chapter 11.:
Chapter 12:
Chapter 13:
Chapter 14:
Chapter 15:
Chapter 16:
Chapter 17:
Chapter 18:
Chapter 19:
Chapter 20:
Chapter 21.:
Appendix A:
Appendix B:
Appendix C:
Appendix D:
Appendix E:
Appendix F:
Index

Summary of Contents

XML Design for Data

XML Structures for Existing Databases

Database Structures for Existing XML

Standards Design

XML Schemas

DOM

SAX - The Simple API for XML

XSLT and XPath

Relational References with XLink

Other Technologies (XBase, XPointer, XInclude, XHTML, XForms)
The XML Query Language

Flat Files

ADO, ADO+, and XML

Storing and Retrieving XML in SQL Server 2000
XML Views in SQL Server 2000

JDBC

Data Warehousing, Archival, and Repositories
Data Transmission

Marshalling and Presentation

SQL Server 2000 XML Sample Applications

DB Prism: A Framework to Generate Dynamic XML from a Database
XML Primer

Relational Database Primer

XML Schema Datatypes

SAX 2.0: The Simple API for XML

Setting Up a Virtual Directory for SQL Server 2000
Support, Errata and P2P.Wrox.Com

11

47

67
111
143
191
241
285
347
375
409
431
481
533
581
627
669
701
723
763
807
863
201
915
929
975
985
991

Table of Contents

Introduction 1
Why XML and Databases 2
What This Book is About 3
Who Should Use This Book? 3

Data Analysts 3
Relational Database Developers 3
XML Developers 4
Understanding the Problems We Face 4
Structure of the Book 4
Design Techniques 5
Technologies 5

Data Access 6
Common Tasks 6

Case Studies 7
Appendices 7
Technologies Used in the Book 7
Conventions 8
Customer Support 8
Source Code and Updates 8
Errata 9

Chapter 1: XML Design for Data 11

XML for Text Versus XML for Data 12
XML for Text 12
XML for Data 12

Representing Data in XML 14
Element Content Models 14

Element-only Content 14
Mixed Content 14
Text-only Content 15
EMPTY Content 15
ANY Content 16
Using Attributes 16
Other Considerations 17
Audience 17
Performance 17
Data Modeling Versus Representation Modeling 18
XML Data Structures — A Summary 20

Table of Contents

Mapping Between RDBMS and XML Structures 20
Structure 21
Elements 21
Attributes 22

Data Points 22
Our Invoice Using Elements 24

Our Invoice Using Attributes 25
Comparing the Two Approaches 26
Elements or Attributes — The Conclusion 30
Relationships 30
Containment 31

More Complex Relationships — Pointers 32

More Complex Relationships — Containment 34
Relationships — Conclusion 36
Sample Modeling Exercise 37
Before We Begin 37
What is the Scope of the Document? 38

Which Structures Are We Modeling? 38

What Are the Relationships Between Entities? 39

Which Data Points Need to be Associated with Each Structure? 39
Creating the XML DTD 40
Start With the Structures 41

Add the Data Points to the Elements 41
Incorporate the Relationships 41
Sample XML Documents 43
Summary 45
Chapter 2: XML Structures for Existing Databases 47
Migrating a Database to XML 48
Scoping the XML Document 49
Creating the Root Element 51
Model the Tables 51
Model the Nonforeign Key Columns 52
Adding ID Attributes 54
Handling Foreign Keys 55
Add Enumerated Attributes for Lookup Tables 55

Add Element Content to the Root Element 57

Walk the Relationships 58

Add Missing Elements to the Root Element 60
Discard Unreferenced ID attributes 61

An Example XML Document 62
Summary 63
Chapter 3: Database Structures for Existing XML 67
How to Handle the Various DTD Declarations 68
Element Declarations 68
The Element-only (Structured Content) Model 68

The Text-only Content Model 75

The EMPTY Content Model 78

The Mixed Content Model 80

The ANY Content Model

Table of Contents

Attribute List Declarations 84
CDATA 84
Enumerated Lists 85
ID and IDREF 87
IDREFS 91
NMTOKEN and NMTOKENS 94
ENTITY and ENTITIES 95

Entity Declarations 96

Notation Declarations 96

Avoid Name Collisions! 96

Summary 97

Example 97

Modeling the Attributes 102

Summary 107
The Rules 107
Chapter 4: Standards Design 111
Scoping the Solution 111

Types of Standards 112
System Internal Standards 112
Cross-system Standards 112
Industry-level Standards 112

Document Usage 113
Archival Documents 113
Transactional Data Documents 115
Presentation Layer Documents 117

Before Diving In: Ground Rules 120

Implementation Assumptions 121

Elements vs. Attributes 121

Restricting Element Content 122
Don't Allow the ANY Element Type 122
Don't Allow the Mixed-content Element Type 123
Constrain Elements that have Structured Content 123

Capturing Strong Typing Information 124

Naming Conventions 125

Understanding the Impact of Design Decisions 126

Performance 126
Document Size 126
Overnormalization 127
Too Many Pointing Relationships 127

Coding Time 129
Document Complexity 130
Pointing Relationships 130
Levels of Abstraction 130

Developer Ramp-up Time 131

Extensibility 131

During the Development 131

Subdividing the Workload 131

Data issues 132
General vs. Specific 132
Required vs. Optional 133
"Tag soup” 133
Keeping the Structure Representation-Independent 133

Table of Contents

Pulling it all Together 135
Peer Review 135
Resolving Disputes 135
The Implementation Guide 135

Statement of Purpose 135
Dictionary 136
Document Structure Diagram 138
Sample Documents 139
Summary 140
Chapter 5: XML Schemas 143
Introducing Schemas 144
A Note Before We Start — Other Schema Technologies 144
Jumping Right In 145
Schemas are Just XML Files 145

Our First Simple Schema 145

Why Schemas 147
XML Parsers with Schema Support 149
Learning the New Vocabulary 150
Datatypes 150
Structures 151
XML Schema Preamble — The <schema> Element 151
Attribute Declarations 152
Element Definitions 153
Complex Type Definitions 155
Content From Another Schema - <any> 157
Named Model Groups — <group> 157
Attribute Groups 158
Notation declarations 158
Annotations 159

Using Other Namespaces 160
Summary of Structures 161

Datatypes 162
Primitive Datatypes 162
Derived Datatypes 163

Built-in Derived Types for XML Schema 163
Atomic, List and Union Datatypes 164
Atomic Datatypes 164
List Datatypes 165
Union Datatypes 166
Aspects of Datatypes 166
Value Spaces 166
Lexical Spaces 167
Facets 167
Fundamental Facets 167
Constraining Facets 169
Simple Type Definitions 175
Scope of Simple Type Definitions 178
Global Scope of Simple Type Definitions 178
Local Scope of Simple Type Definitions 178
ID, IDREF and IDREFS 179
Using ID as a Primary Key and IDREF for Foreign Keys 179
Identity-Constraints 180
Unique Values 180
Key and KeyRef 181

Table of Contents

Example Schemas 181
Example 1 — Name Details 182
Example 2 — Using an Attribute Group to Represent Rows 185
Example 3 — Mixed Content Models 185
Example 4 — Enumeration 188

Summary 189

Chapter 6: DOM 191

What is the DOM? 192

How Does the DOM Work? 192
DOMString 193
DOM Implementations 193

DOM Interfaces 194

The Structure Model 195
Inheritance and Flattened Views 197
The DOM Core 197

Fundamental interfaces 198

Node 200
Getting Node Information 201
Traversing the Tree 203
Adding, Updating, and Removing Nodes 205

Document 208

DOMImplementation 210

DocumentFragment 211

NodelList 212

Element 213

NamedNodeMap 216

Attr 216

CharacterData and Text 217
Handling Complete Strings 217
Handling Substrings 218
Modifying Strings 218
Splitting Text 219

Comments 220

DOMEXxception 220

Extended Interfaces 220
CData Sections 221
DocumentType 221
Notation 221
EntityReference 221
Entity 222
Processing Instructions 222

Working With Our Data 222
Accessing the DOM from JavaScript 222

Retrieving the Data from an XML Document using the DOM 223
Adding to the Contents of the Document Using the DOM 228
Adding Information from Another DOM Tree 230

Table of Contents

When To Use or Not Use the DOM 232
Size of Document 233
How the DOM Processes a Document 234

The Task in Hand 235
Reading and Filtering 235

Add, Update, Delete 236
Transformations of Structure 236
Creating Documents 237
Summary 238
Chapter 7: SAX — The Simple API for XML 241
SAX Parsers 242
Understanding SAX 242
Example 1 - A Simple SAX Application 244
Preparing the XMLReader Class 245
Catching Events from the XMLReader 246
The Error Handler 248

The Result 249

A Moment with DOM 249
Choosing Between SAX and DOM 251
Best Uses of the DOM 252

Best Uses of SAX 252

The Stateless World of SAX 252
Example 2 — Creating Attribute Centric Content from Element Centric Content 253
The frmAttsCentric Form 254

The XML Document 255

The ContentHandler Class 256

The Error Handler Class 260

The Result 260
Context Summary 261
Handling Large Documents 261
Example 3 — Creating an Efficient XML Document from a Large Verbose One 262
Prepare the XMLReader Class 263

Begin Parsing Events 265

The Results 266

SAX Filters 267
Example 4 — Using an Implementation of the XMLFilter Class 267
Preparing to Use a Chain of XMLFilters 268

Using the XMLFilter Implementation Class 270

The saxContentHandler Class 273

The Result 274
Filters Summary 274
Take What You Need - Storing Result Data 275
Example 5 — Complex State 275
The XML 276

The ContentHandler 276
Writing to the Database 280

The Result 282
Summary 283

Table of Contents

Chapter 8: XSLT and XPath 285
What is XSLT? 286
The Transformation Process 287
XSLT as a Programming Language 289

XML Syntax 289
Rule-based 289
XPath Queries 290
Functional Programming 291
Data Types 292
The XPath Data Model 293
Names and Namespaces 297
XPath Expressions 298
Context 298
Primaries 299
Operators 299
Comparing Node-sets 301
Location Paths 301
Example Location Paths 301

Syntax Rules for Location Paths 302

Steps 302

Axis Names 303
Node-tests 304
Predicates 304
Abbreviations 305

XPath Functions 306
Stylesheets, Templates, and Patterns 314
The <xsl:stylesheet> Element 314
The <xsl:template> Element 315
Patterns 317
Selecting a Template Rule 318
Parameters 319
The Contents of a Template 320
Attribute Value Templates 320
XSLT Instructions 321
Literal Result Elements 329
Sorting 329
Top-level Elements 330
Some Working Examples 336
Example: Displaying Soccer Results 336
Source 336

The First Stylesheet 337
Stylesheet 2 339
Selecting a Stylesheet Dynamically 342
XSLT and Databases 343
Summary 344

vii

Table of Contents

Chapter 9: Relational References with XLink 347
Resource Linking 348
Invoice 349

Item 349
Invoiceltem 349
Simple XLink Elements 349
role 351

arcrole 351

title 351

show 351
actuate 352
Simplify the Simple Link with a DTD 352
Extended XLink Elements 353
The Elements of Extended Style Links 356
The arc-type Element 358

The resource-type Element 361

The locator-type Element 363

Using Extended Links 366
Extended Link Summary 369
Extended Links and Relational Data 369
Making the Relationship with XLink 370
Summary 373
Additional Resources 373
Chapter 10: Other Technologies (XBase, XPointer, Xinclude, XHTML, XForms) 375
XBase 376
"Advanced" XBase 378
Determining the Base URI and Relative URIs 380
XBase Summary 381
XPointer 381
Technology Status 382
Locations and Targets 382
Identifiers Using XPointer and XLink 382

Full Form 383

Bare Names 383

Child Sequences 384
Extensions to XPath 385
Points 385
Ranges 386

How Do We Select Ranges? 387
Querying with XPointer 389
Other Points 391
XPointer Function Extensions to XPath 391

Rules and Errors 393
XPointer Summary 393
Xinclude 393
Modular Development 393

An XInclude Example 394
Syntax 395
XInclude Advantages 397
XInclude Summary 397

viii

Table of Contents

XHTML 398
How XHTML differs from HTML 398
XHTML Flavors 401

Transitional 401
Strict 402
Frameset 402
XHTML Summary 402

XForms 402
How Do XForms Differ from HTML Forms? 402
The Model 403

The Data Model 403

The Logic Layer 404

The Presentation Layer 404
Current Status 404

A Few More Features 404
DataTypes 404
Common Facets 405

Data Models 406
XForms Summary 407
Summary 407
Chapter 11: The XML Query Language 409

Requirements and Use Cases 410
Selection 410
Transformation 411
Data Centricity 412
Types and Operators 412

Data Model 413
Collections 413
References 413
Nodes 413
Scalars and ValueNodes 414
Node Constructors and Accessors 415
Information ltems 415
Types 415
Implementation Issues 416

Algebra 416

Syntax 417
XPath 421

XPath Overview 421
Evaluating XPath as a Query Language 421
XPath Examples 422
XSLT 423
XSLT Overview 424
XSLT as a Query Language 424
XSLT Examples 424
Quilt 426
Quilt Overview 426
Quilt as a Query Language 427
Quilt Examples 427
XSQL 428
XSQL Overview 428
XSQL as a Query Language 428
XSQL Examples 428
Summary 429

Table of Contents

Chapter 12: Flat Files 431
Types of flat files 432
Delimited 432
Fixed-width 432
Tagged record 432
Issues 433
Level of Normalization 433
Data Formatting 433
Plan of Attack 433
Transform the XML Document to name-value Pairs 433
Transform the Flat File to name-value Pairs 436
Map the Transform 439
Transforming from Flat Files to XML 442
Programming Approaches 442
Manual Serialization 442

SAX 442

The DOM 442
Handling Different Flat File Types 442
Delimited 443
Fixed-width 448
Tagged Record 456
Transforming from XML to Flat Files 461
Programming Approaches 461
Parse and Serialize 461

XSLT 461
Handling Different File Types 461
Delimited 462
Fixed-width 470
Tagged Record 476
Summary 479
Chapter 13: ADO, ADO+, and XML 481
XML Support in ADO 2.6 and SQL Server 2000 482
What is a Stream? 482
Obtaining a Stream 483
Persistence of XML 484
Running XML Queries 484
Queries Using FOR XML 484
Queries Using Annotated Schema 485
Merging XML with Relational Data 485
New XML Properties 485
Mapping Schema 485

Base Path 486

Output Stream 486

XML Persistence 486
Persisting to a File 486
Opening a Recordset from a File 488
Persisting to a Stream 490
Opening a Recordset from a Stream 491
Persisting to the Response Object 492
Writing a Stream to a Client 493
Persisting a Stream to a Client 495

Table of Contents

XML Queries via ADO 496
FOR XML Usage 497
FOR XML Template Queries 498

FOR XML URL Queries 498

FOR XML via ADO 499
Running a FOR XML Command 499
Non-SQL Queries via ADO 504
Mapping Schema File 504
Mapping Schema & Base Path Properties 506

Code Examples 506
Joining XML and SQL Data 509
The ASP Page 511
Returning XML 513
Inserting Data 515
ADO+ 517
Evolution 517
The Idea 517

The ADO+ Framework 518
DataSet 518
Connection 518
DataSetCommand 519
DataSet 519
Schema 519

The DataSetCommand and the Connection Objects 524

VB 524
Typeness of DataSet 528
Summary 530
Chapter 14: Storing and Retrieving XML in SQL Server 2000 533
Retrieving XML from SQL Server 2000: FOR XML 534
New SQL Server Query Support 535
FOR XML: General Syntax 536
The RAW Mode 537
The AUTO Mode 538
The Explicit Mode 540
Specifying Column Aliases 541
Specifying the Metadata Columns 542
Specifying the Directive in the Column Alias 542
Generating XML from the Rowset (Universal Table) 547
Hierarchy Generation 548
The First Rowset: Representing the <customer> Element 549

The Second Rowset: Representing the <order> Element 549

The SELECT Query 550
Processing the Rowset (Universal Table) 550
Further Examples 551
Example 1 — Using idrefs to Create Attributes 551
Example 2 — Producing XML Containing Siblings 555
Alternative Ways to Retrieve XML 556

Table of Contents

Storing XML in SQL Server 2000: OPENXML 556
Using OPENXML in SQL Statements 557
Creating the In-Memory Representation of the Document 557
Understanding OPENXML 559

OPENXML: Attribute-centric and Element-centric Mapping 561
Additional Mapping Information for Specifying the Rowset Schema 562
The Edge Table Schema for the Rowset 566

Bulk Loading XML 572
How the Database is Generated from XML 574

Summary 578

Chapter 15: XML Views in SQL Server 2000 581
Fragments and Documents 582

XDR Schemas 582

The Default Mapping 584
Querying SQL Server 585
Names and Other Restrictions 586

Annotated XDR Schemas 586
Tables and Columns (sql:relation and sql:field) 586
Null Values 588
Join Relationships (sql:relationship) 588

Multi-column Joins 589
Link Tables 590
Qualified Joins (sql:limit-field and sql:limit-value) 591
Keys, Nesting and Ordering (sql:key-fields) 592
Alternative Mappings 593
Unmapped Data (sql:map-field) 593
Constant Elements (sgl:is-constant) 594
XML Text (sql:overflow-field) 595
Data Types (sql:datatype, dt:type, sql:id-prefix) 596
Booleans and Binaries 597
Strings 598
Numbers 598
Identifiers 599
Dates and Times 600
Mapping Between XDR Types and SQL Types 601
CDATA Sections 601
Embedded Binary Values 602

Table 1. Annotation Summary 603

Templates 604

XPath 605
Introduction 607
Navigation 607
Predication 608
XPath Types 609
XPath Expressions 610
XPath and the XML View 611
Default Schema 612
XPath Parameters 612
Additional XPath Axes 613

Xii

Table of Contents

Updategrams 613
Introduction 614
Values, Absence and NULL 616
Insert/Update/Delete Heuristics 617
Parameters 618
Default Schema 618
Server-Generated |dentities 619
Data Types 619
Overflow 620

Advanced Topics 620
Namespaces and External Schemas 620
Structural Recursion 622

Summary 624

Chapter 16: JDBC 627
How XML Enhances JDBC (and vice versa) 627
Software Needed for This Chapter 628

JDK 1.3 628
Xalan XSLT Processor for Java 628
Software Needed to Implement Rowsets 629
Tomcat 3.1 630
A JDBC Data Source and Driver (Oracle, SQL Server, etc.) 631

Generating XML from JDBC 632
Our Simple XML Gateway Architecture for JDBC 632
The JDBC2XML Class 634

Applying XML Encoding Rules to the Result Set Data 634
Serializing the Result Set's Metadata and Data as XML 635
Executing the Query 637
The XMLDataGateway Servlet 637
Implementing the Servlet 638
Developing an HTML Form Interface 639
Using the XMLDataGateway Servlet 640
Summary 646
The JDBC2HTML Servlet 646
Implementing the JDBC2HTML Servlet 647
Writing an XSL Stylesheet 649
Using the JDBC2HTML Servlet 651
Summary 652

Using XML for distributed JDBC Applications 652
The Rowset Interface 653
The sun. j dbc. rowset . WebRowSet Class 653
Implementing a Distributed JDBC Application Using the WebRowSet Class 654

Setting up the Sample Database 655
Fetching a Rowset Via HTTP: The WebRowSetFetchServlet Class 655
Performing a Batch Update Via HTTP: The WebRowSetUpdateServlet Class 658
Inserting, Updating, and Deleting Data at the Client: The WebRowSetHTTPClient Class 659
Packaging the Code for J2EE Deployment 664
The Web Application Deployment Descriptor 665
Building the Application 666
Compile the Java Classes 666
Package the Bytecode into a JAR 667
Package the Application into a WAR 667
Summary 667

Table of Contents

Chapter 17: Data Warehousing, Archival, and Repositories 669
Data Warehousing 670
The Two Roles of Data 670
Detailed Information Gathering 670
Information Querying and Summarization 671

The Traditional Solution 672
The Data Warehousing Solution 675
On-Line Transaction Processing (OLTP) 675
On-Line Analytical Processing (OLAP) 676

Parts of an OLAP Database 677

The Role of XML 683
Summary 691
Data Archival 692
Classical Approaches 692
Using XML for Data Archival 693
Summary 696
Data Repositories 696
Classical Approaches 696
Using XML for Data Repositories 697
Summary 698
Summary 699
Chapter 18: Data Transmission 701
Executing a Data Transmission 701
Agree on a Format 702
Transport 702
Routing 702
Request-Response Processing 702
Classic Strategies 702
Selecting on a Format 702
Delimited Files 703
Fixed-width Files 703
Proprietary/Tagged Record Formats 703
Problems with Classic Structures 705
Transport 706
Physical Media 706

E-mail 706

FTP 707

Socket Code 707

Virtual Private Network (VPN) 707
Leased-Line 707

How Can XML Help? 708
XML Documents are Self-Documenting 708
XML Documents are Flexible 709
XML Documents are Normalized 710
XML Documents can Utilize Off-The-Shelf XML Tools 710
Routing and Requesting 710

Xiv

Table of Contents

SOAP 712
The SOAP Envelope 713

The SOAP Header 713

The SOAP Body 714

The SOAP Fault Element 716
Transmission Over HTTP 717
HTTP SOAP Request 718

HTTP SOAP Response 718

An HTTP Transmission Example 718

Biztalk 720
Compressing XML 720
Summary 721
Chapter 19: Marshalling and Presentation 723
Marshalling 723
Custom Structures 724
Recordsets 725
XML 726
The Long-Term Solution: Built-In Methods 726
The Manual Approach 726
Example 727
Conclusion 737
Information Gathering 737
The long-term solution: XForms 737
Manual Approach 738
Example 1: Transforming Form Data to XML on the Client 738
Example 2: Transforming Form Submissions to XML on the Server 743
Example 3: Creating HMTL Forms with XSLT for Updates 744
Conclusion 753
Presentation 754
Why Use XML? 754
Example: XML Detail — HTML Detail 754
Example: XML Detail — WML Detail 756
Example: XML Detail — WML Summary 757
Summary 760
Conclusion 760
Chapter 20: SQL Server 2000 XML Sample Applications 763
Project 1 — Accessing SQL Server 2000 Directly Over HTTP 764
XML Templates — Getting XML from SQL Server Across the Web 764
Templates Featuring XPath Queries 767
Applying XSLT to a Template 768
Updategrams 769
Posting a Template Using an HTML Form 770
Posting a Template to the Server 771
Passing Parameters to the Query 773
Executing Template Files 774
Sample ASP Application 776
Creating the Application 778
Sample ADO Applications 781
Executing a Command 781
Executing an XML Template 782
Passing Parameters 784

XV

Table of Contents

Building an Empire: an eLemonade Company
The Internet Lemonade Stand — Project Requirements
Database Design
External XML Sources

The Two Different Solutions
Prototyping with OpenXML and FOR XML
Displaying News and Expenses
Place Orders and Create Customer Accounts
Prototyping with XPath and Updategrams
Annotate a Schema
Improve the Schema
Display News and Expenses
Create and Edit Customer Accounts
Personalized Customer Page

Summary
Helpful Web Sites

786
786
787
789

789
789
790
791
792
793
794
798
800
803

805
805

Chapter 21: DB Prism: A Framework to Generate Dynamic XML from a Database 807

Cocoon Architecture

DB Prism Architecture
DB Prism Class Diagram
DB Prism: Benefits Provided to the Cocoon Framework

Part I. DB Prism Internals
Who is who?
Wrappers
Engine
Common Issues with Writing a New Adapter
Writing the New Adapter
DBPrism.java
DBConnection.java
DBFactory.java
SPProc.java

Part Il: Putting DB Prism to Work
Before Start
Cocoon Setup
Downloading Cocoon
Create a Write-enabled Directory
DB Prism Setup
Downloading DB Prism
Database Setup
Configuring DB Prism to Access the Database
Making the Hello World Example
Making a Content Management System
Brief Introduction to a CMS
Design of the Meta Model
Writing the Java Code
Building Pages
Related Procedures for Making The Page
Installing the CMS
Deployment

Conclusions and Beyond

Summary

809

811
811
814

814
814
814
815
818
818
819
822
825
825

826
826
829
829
829
831
831
833
835
836
838
838
842
844
844
848
858
859

860
861

Table of Contents

Appendix A: XML Primer 863
What is a Markup Language? 863
Tags and Elements 864
Attributes 864
What is XML? 865
How XML Documents are Processed 869
The Basic Building Blocks of XML 869
The XML Declaration 870
Elements 871
Attributes 872
Character Data 873

CDATA Section 874

Entity References 875
Processing Instructions 876
Comments 877
Namespaces 877
Document Type Definitions 878
The Standalone Declaration 880
Element Declarations 880
Attribute Declarations 885
Notation Declarations 892

Entity Declarations 892
Conditional Sections 895
Thinking in Trees 896
Technology Overview 897
XML Schemas 897
The Document Object Model (DOM) 897
The Simple API for XML (SAX) 897
XSLT/XPath 898
XML Query 898
XLink 898
XPointer 898
XBase 898
XForms 898
XML Fragment Interchange 899
XlInclude 899
Summary 899
Appendix B: Relational Database Primer 901
Types of Database 902
SQL 902
Designing Relational Databases 902
Logical Data Design 903
Entities 903
Attributes 903
Relationships 904
Physical Data Design 905
Tables 905
Columns 906

Table of Contents

Creating Our Tables 908
Primary Keys 909
Foreign Keys 910
Indexes 911
Triggers 912
Stored Procedures 913

Summary 913

References 913

Appendix C: XML Schema Datatypes 915

Primitive Types 915
string 916
boolean 916
decimal 916
float 917
double 917
timeDuration 917
recurringDuration 918
binary 919
uriReference 919
ID 920
Constraining Facets for Primitive Types 921

Built-in Derived Types 922
CDATA 923
token 923
language 923
NMTOKEN, NMTOKENS 924
ENTITIES 924
IDREFS 924
name, NCName 924
integer, negativelnteger, positivelnteger, nonNegativelnteger, nonPositivelnteger 925
byte, short, int, long 925
unsignedByte, unsignedShort, unsignedint, unsignedLong 925
century, year, month, date 925
recurringDate, recurringDay 925
time, timelnstant, timePeriod 926
Constraining Facets for Derived Types 926

Appendix D: SAX 2.0: The Simple API for XML 929
Class org.xml.sax.SAXException 964
Appendix E: Setting Up a Virtual Directory for SQL Server 2000 975
Introduction 975
Setting up Your Virtual Directory 975
Appendix F: Support, Errata and P2P.Wrox.Com 985
Index 991

Xviii

Table of Contents

Xix

Introduction

In a very short space of time, XML has become a hugely popular format for marking up all kinds of
data, from web content to data used by applications. It is finding its way across all tiers of development:
storage, transport, and display - and it is being used by developers writing programs in many languages.

Meanwhile, relational databases are currently by far the most commonly used type of databases, and
can be found in most organizations. While there have been many formats for data storage in the past,
because relational databases can provide data for large numbers of users, with quick access, and security
mechanisms built in to the database itself, they are set to remain a central tool for programmers for a
long while yet.

There are rich and compelling reasons for using both XML and database technologies, however when
put side by side they can be seen as complimentary technologies — and like all good partnerships, when
working together the sum of what they can achieve is greater than their individual merits. If we think
about the strengths of relational databases, they provide strong management and security features. Large
numbers of people can connect to the same data source, and the integrity of the source can be ensured
through its locking mechanisms. Meanwhile, XML, being plain text, can easily be sent across a network
and is cross-platform (you can use XML in any programming language that you can write a parser for).
Furthermore, it can easily be transformed from one vocabulary to another.

With the strong hold relational databases have as a datea storage format, and with the flexibility offered
by XML as a data exchange mechanism, we have an ideal partnership to store and serve data when
creating loosely coupled, networked applications. The partnership easily allows us to securely share data
with clients of varying levels of sophistication, making the data more widely accessible.

Introduction

If you think about the structure of the two, however, there is a lot to learn when using these two
technologies side by side. The hierarchical structure of XML can be used to create models that do not
easily fit into the relational database paradigm of tables with relationships. There are complex nested
structures that cannot be represented in table creation scripts, and we can model constraints in DTDs
that cannot be represented between tables and keys. Then, when we provide data as XML, there are a
whole set of issues relating to its processing, and the technologies that have been built around XML that
we must be aware of in order to make use of the data.

Why XML and Databases

There are many reasons why we might wish to expose our database content as XML, or store our XML
documents in a database. In this book, we'll see how XML may be used to make our systems perform
better and require less coding time.

One obvious advantage to XML is that it provides a way to represent structured data without any
additional information. Because this structure is "inherent" in the XML document rather than needing to
be driven by an additional document that describes how the structure appears as you do with, say, a flat
file, it becomes very easy to send structured information between systems. Since XML documents are
simply text files, they may also be produced and consumed by legacy systems allowing these systems to
expose their legacy data in a way that can easily be accessed by different consumers.

Another advantage to the use of XML is the ability to leverage tools, either already available, or starting
to appear, that use XML to drive more sophisticated behavior. For example, XSLT may be used to style
XML documents, producing HTML documents, WML decks, or any other type of text document. XML
servers such as Biztalk allow XML to be encapsulated in routing information, which then may be used
to drive documents to their appropriate consumers in our workflow.

Data serialized in an XML format provides flexibility with regard to transmission and presentation.
With the recent boom in wireless computing, one challenge that many developers are facing is how to
easily reuse their data to drive both traditional presentation layers (such as HTML browsers) and new
technologies (such as WML-aware cell phones). We'll see how XML provides a great way to decouple
the structure of the data from the exact syntactical presentation of that data. Additionally, since XML
contains both data and structure, it avoids some of the typical data transmission issues that arise when
sending normalized data from one system to another (such as denormalization, record type discovery,
and so on).

One caveat to remember is that, at least at this time, relational databases will perform better than XML
documents. This means that for many internal uses, if there are no network or usage barriers, relational
databases will be a better "home" for our data than XML. This is especially important if we intend to
perform queries across our data — in this case a relational database is much better suited to the task than
XML documents would be. We'll look at where these approaches make sense later in the book, as well
as seeing how a hybrid structure can be created that combines the best of both the relational database
world and the XML world.

If we imagine that you are running an e-commerce system and that we take your orders as XML,
perhaps some of our information needs to be sent to some internal source (such as our customer service
department) as well as to some external partner (an external service department). In this case, we might
want to store past customer order details in a relational database but make them available to both
parties, and XML would be the ideal format for exposing this data. It could be read no matter what
language the application was written in or what platform it was running on. It makes the system more
loosely coupled and does not require us to write code that ties us to either part of the application.
Clearly, in the case where numerous users (especially external B2B and B2C) need different views of the
same data, then XML can provide a huge advantage.

Introduction

What This Book is About

This book teaches us how to integrate XML into our current relational data source strategies. Apart
from discussing structural concerns to aid us in designing our XML files, it covers how to store and
manage the data we have been working with. It will demonstrate how to store XML in its native format
and in a relational database, as well as how to create models that will allow quick and efficient access
(such as data-driven web pages). Then, we'll discuss the similarities and differences between relational
database design and XML design, and look at some algorithms for moving between the two.

Next, we'll look into the developer's XML toolbox, discussing such technologies as the DOM, SAX,
XLink, XPointer, and XML covers. We will also look at the most common data manipulation tasks and
discuss some strategies using the technologies we've discussed.

Whether we are using XML for storage, as an interchange format, or for display, this book looks at
some of the key issues we should be aware of, such as:

Guidelines for how to handle translating an XML structure to a relational database model.
Rules for modeling XML based upon a relational database structure.

Common techniques for storing, transmitting, and displaying your content.

Data access mechanisms that expose relational data as XML.

How to use related technologies when processing our XML data.

XML support in SQL Server 2000.

O oo o0go g

For those in need of a refresher in relational databases or XML, primers have been provided on both of
these topics in the appendices.

Who Should Use This Book?

While this book will discuss some conceptual issues, its focus is on development and implementation.
This is a book for programmers and analysts who are already familiar with both XML and using
relational databases. For those who do not have much knowledge of XML, it is advisable that you read
a title like Beginning XML Wrox Press (ISBN - 18671003412). There are really three groups of readers
that may benefit from the information in this book:

Data Analysts

Data analysts, those responsible for taking business data requirements and converting them into data
repository strategies, will find a lot of useful information in this book. Compatibility issues between
XML data structures and relational data structures are discussed, as are system architecture strategies
that leverage the strengths of each technology. Technologies that facilitate the marshalling of relational
data through XML to the business logic and/or presentation layer are also discussed.

Relational Database Developers

Developers who have good relational database skills and want to improve their XML skills will also find
the book useful. The first group of chapters specifically discusses relational database design and how it
corresponds to XML design. There is a chapter devoted to the problem of data transmission, and the
ways in which XML can make this easier to overcome. Some alternative strategies for providing data
services are also discussed, such as using XSLT to transform an XML document for presentation, rather
than processing the data through a custom middle tier.

Introduction

XML Developers

Developers who are already skilled in the use of XML to represent documents but want to move to
more of a data focused approach will find good information in this book as well. The differences
between the use of XML for document markup and the use of XML for data representation are clearly
defined, and some common pitfalls of XML data design are described (as well as strategies for avoiding
them). Algorithms for the persistence of XML documents in relational databases are provided, as well as
some indexing strategies using relational databases that may be used to speed access to XML documents
while retaining their flexibility and platform independence.

Understanding the Problems We Face

In the relatively short period of time that XML has been around, early adopters have learned some
valuable lessons. Two of the most important ones are:

0 How to model their data for quick and efficient data access.

O How to retain flexibilityof data so that it meets ongoing business needs.

When exposing database content as XML, we need to look at issues such as how to create the XML
from the table structure, and then how to describe relationships between the XML representations of
this data.

When looking at storing XML in a database, we need to see how we reproduce models, which contain
hierarchical structures in tables with columns and rows. We need to see how to represent features such
as containment with relationships, and how to express complex forms in a structured fashion.

And in both cases we need to make sure that the XML we create is in a format that can be processed
and exchanged.

There have also been a number of technologies that have fallen into the toolboxes of developers, such
as the DOM, SAX, and XSLT, each of which has a part to play in data handling and manipulation.
There are important choices to be made when deciding which of these technologies to use. Some of
these technologies are still in development, but it is important to be aware of the features that they will
offer in the near future, and how they may help solve problems or influence design in the long run.

Structure of the Book

To help you navigate this book and it has been divided into four sections based on:
Design techniques.
Technologies.

Data Access Technologies.

O o o g

Common Tasks.

This is rounded off with two case study chapters, which show the application of some of the concepts we
have learnt, and two appendices for those less familiar with the core topics of the book: XML and
Relational Databases.

Introduction

Design Techniques

The first section discusses best-practice design techniques that should be used when designing relational
databases and XML documents concurrently, and consists of chapters 1 through 4.

O Chapter 1, XML Design for Data, provides some good strategies for the design of XML
structures to represent data. It outlines the differences between an XML document to be used
for document markup and an XML document to be used for data. It also gives some design
strategies based on the audience for the documents and the performance that is required, as
well as defining how these designs map onto relational database designs and vice versa.

O Chapter 2, XML Structures for Existing Databases, contains some algorithmic strategies for
representing preexisting relational data in the form of XML. Common problems, such as the
modeling of complex relationships and the containment versus. pointing approach, are
discussed.

O Chapter 3, Database Structures for Existing XML, includes some algorithmic strategies for
representing preexisting XML documents in a relational database. Strategies for handling
predefined structures (DTDs or schemas) as well as unstructured documents are described. In
addition, challenging issues such as the handling of the ANY element content model and
M XED element content model are tackled.

O Chapter 4, Standards Design, discusses the design of data standards, common representations
of data that may be used by many different consumers and/or producers. It covers common
problems encountered during standards development, including type agreement, enumeration
mapping, levels of summarization, and collaboration techniques.

Technologies

The second section mainly introduces the various XML technologies (either existing or emergent) that
developers will use to create XML data solutions. We also discuss flat file formats at the end of this
section. It is made up of Chapters 5 through 12.

O Chapter 5, XML Schemas, covers the new document definition language currently being
created by the W3C. It discusses the status of XML Schemas and provides a list of processors
that perform validation of documents against XML schemas. It also covers the (extensive) list
of advantages to using XML schemas for data documents as opposed to DTDs. It then
provides a reference to XML schema syntax, ending up with some sample schemas to
demonstrate their strengths.

0 Chapter 6, DOM, discusses the XML Document Object Model. It includes a list of DOM-
compliant parsers, and discusses the syntax and usage of the DOM. The DOM's strengths are
summarized, and some sample applications of the DOM are demonstrated.

O Chapter 7, SAX, describes the Simple API for XML. It also includes a list of SAX-compliant
parsers, and discusses the syntax and usage of SAX. It then compares the strengths and
weaknesses of SAX, compared with the DOM to help us decide which API should be used in
different situations. Finally, there are some sample applications that use SAX.

O Chapter 8, XSLT andXPath, discusses the XML transformation technologies created by the
W3C. Itdiscusses the sytax ofboth XSLT and Xpath. Examples of the use of XSLT/XPath for

data manipulation and data presentation are also provided.

O Chapter 9, XLink, introduces information about the XML resource linking mechanism
defined by the W3C. The chapter covers the XLink specification (both simple and extended
links), and discusses some ways that XLink may be used to describe relationships between
data, with examples.

Introduction

Chapter 10, Other technologies, covers some other XML technologies related to linking,
retrieving, and describing relationships between data. It discusses how these technologies
might be applied to data design and development. Technologies covered include XBase,
XPointer, XInclude, and XForm:s.

Chapter 11, XML Query, introduces the new query language in development by the W3C. It
discusses the status of the XML Query specification(s), and describes how XML Query can be
used to facilitate access to XML documents. It then goes on to look at other ways of querying
XML documents, and compares the abilities of each.

Chapter 12, Flat File formats, discusses flat files, and some of the issues encountered when
moving data between flat files and XML (for example, using the DOM). We'll also learn some
strategies for mapping XML to flat files (using XSLT) and some of the issues we may
encounter when doing so.

Data Access

In this third section we will start with a look at two specific data access technologies: JDBC and
ADO (we also provide a preview to ADO+). We will then look at the XML support offered in
SQL Server 2000..

0

Chapter 13, ADO and ADO+, shows how we can use ADO to make data available as XML
and provide updates as XML. It builds upon the new functionality provided with SQL Server
2000, showing how to exploit it from the ADO object model. To finish with, ADO+ makes a
cameo appearance as we provide a preview of the capabilities of this new technology.

Chapter 14, XML Support in SQL Server 2000, discusses the XML Support added to SQL
Server 2000. It shows us how you can write SQL queries that will return XML from SQL
Server, and how we can send SQL Server XML documents for it to store. It finishes off with
describing how to handle bulk loads from XML to SQL Server.

Chapter 15, XML Viewsin SQL Server 2000, builds on what we saw in the last chapter,
looking at how we can use schemas to create views of the data held in SQL Server, and map
this to XML, so that we can run queries, as well as add, delete and update records. These
make use of two new features called templates and updategrams.

Chapter 16, JDBC, looks at how XML (and associated technologies) can be used to enhance
the use of JDBC (and vice versa), to produce scalable and extensible architectures with the
minimum of coding. The two sections of this chapter specifically look at generation of XML
from a JDBC data source, and using XML to update a JDBC data source.

Common Tasks

The fourth section of the book discusses some common applications of XML to data implementations,
and provides some strategies for tackling each type of problem discussed. It is made up of Chapters 17
through 19.

0

Chapter 17, Data War ehousing, covers strategies for near-line archival and retrieval of XML
documents. It describes strategies for indexing XML documents using a relational database,
and includes some samples of archival and near-line storage.

Chapter 18, Data Transmission, discusses the ubiquitous problem of data transmission
between dissimilar data repositories and the use of XML to facilitate that transmission. Import
and export techniques are discussed, as well as ways to bypass corporate firewalls when
transmitting XML documents (using technologies such as XML-RPC or SOAP).

Introduction

Chapter 19, Marshalling and Presentation, describes the use of XML as a driver, for the
marshalling of a more useful form of data from our relational databases, and for the
presentation layer. SQL script and VBScript examples are provided that drive these processes,
as well as the use of XForm's to move data in the other direction (from client to server).

Case Studies

We round off this book with two very different chapters as case studies:

0

Chapter 20, SQL Server 2000 XML sample applications, is designed to introduce us to, and
show us how to get results from, some of the more advanced XML features in SQL Server
2000; and how to program them. We will do this by building up two separate projects, each of
which is designed to show us how to get the most out of specific features. The first one deals
with SQL Server 2000 data access over HTTP, and the second one looks at building a sample
e-commerce site - the eLemonade site.

Chapter 21, DB Prism, looks at DB Prism, an open source tool for generating dynamic XML
from a database, either running as a stand-alone servlet, or by acting as an adapter to connect
any database with a publishing framework such as Cocoon (the particular framework used in
this chapter). This study shows how to implement and use this technology.

Appendices

We have also provided two primers in the appendices for those that are unfamiliar with, or need to
brush up on, XML, or relational databases.

O

Appendix A, XML Basics Primer, contains a quick refresher on XML for those who aren't
familiar with basic XML concepts, or just needs to get back up to speed. It discusses the
origins of XML, the various pieces that go together to make up an XML document, elements,
attributes, text nodes, CDATA nodes, and so on, and discusses the use of DTDs (document
type definitions).

Appendix B, Relational Database Primer, provides a similar refresher on relational
databases. It covers the building blocks of relational databases, tables, columns, relationships,
and so forth. It also discusses normalization (which will be important when we talk about
structuring XML documents later in the book) and the relationship between RDBMS
constructs and XML constructs.

These are followed by appendices on Schema datatypes, SAX, and Setting up virtual directories in
SQL Server

Technologies Used in the Book

This book demonstrates data access and manipulation in a number of languages. There are examples in
ECMAScript, Java, Visual Basic, and ASP. While some of us may not be familiar with the languages
used in all of the chapters, we have endeavoured to make the descriptions adequate enough us you to
transfer what you have learnt in the chapter to our language of choice. Also, in many cases, algorithms
are presented in a conceptual or pseudocoded way so that they may be applied to the any target
platform of choice.

We have intentionally focused most of our examples on the use of document type definitions (or DTDs),
rather than the technically superior XML Schemas. The reason for this should be obvious - until the
W3C reaches full recommendation status with the XML Schemas standard documents, there will be a
lack of processors that can actually validate against XML Schemas. This book is intended to get us up
and running fast - in other words, to provide us with real examples of code that we can adopt to our
own business solutions. All of the examples provided in this book (with the obvious exception of the
examples in the emergent technology chapters such as the XLink chapter and the XML Schemas
chapter) will work out-of-the-box with commonly used, widely available processors.

Introduction

Conventions

We have used a number of different styles of text and layout in this book to help differentiate between
the different kinds of information. Here are examples of the styles we used and an explanation of what
they mean:

Code has several fonts. If it's a word that we're talking about in the text — for example, when discussing
a For ..Next loop, it's in this font. If it's a block of code that can be typed as a program and run, then it's
also in a gray box:

<?xm version 1.0?>

Sometimes we'll see code in a mixture of styles, like this:

<?xm version 1.07?>
<l nvoi ce>
<part>
<nane>W dget </ name>
<pri ce>$10. 00</ pri ce>
</ part>
</invoi ce>

In cases like this, the code with a white background is code we are already familiar with; the line
highlighted in grey is a new addition to the code since we last looked at it.

Advice, hints, and background information comes in this type of font.

Important pieces of information come in boxes like this.

Bullets appear indented, with each new bullet marked as follows:

0 Important Wordsare in a bold type font.

0 Words that appear on the screen, in menus like the File or Window, are in a similar font to
that which we would see on a Windows desktop.

O Keys that we press on the keyboard like Cirl and Enter, are in italics.

Customer Support

We've tried to make this book as accurate and enjoyable as possible, but what really matters is what the
book actually does for you. Please let us know your views, either by returning the reply card in the back
of the book, or by contacting us via email at feedback@wrox.com.

Source Code and Updates

As we work through the examples in this book, we may decide that we prefer to type in all the code by
hand. Many readers prefer this because it's a good way to get familiar with the coding techniques that
are being used.

Introduction

Whether you want to type the code in or not, we have made all the source code for this book is
available at our web site at the following address:

http://www.wrox.com/

If you're one of those readers who likes to type in the code, you can use our files to check the results
you should be getting - they should be your first stop if you think you might have typed in an error. If
you're one of those readers who doesn't like typing, then downloading the source code from our web
site is a must!

Either way, it'll help you with updates and debugging.

Errata

We've made every effort to make sure that there are no errors in the text or the code. However, to err is
human, and as such, we recognize the need to keep you informed of any mistakes as they're spotted and
corrected. Errata sheets are available for all our books at http://www.wrox.com. If you find an error that
hasn't already been reported, please let us know.

Our web site acts as a focus for other information and support, including the code from all Wrox books,
sample chapters, previews of forthcoming titles, and articles and opinions on related topics.

Introduction

10

XML Design for Data

In this chapter, we will look at some of the issues and strategies that we need to think about when
designing the structure of our XML documents. The modeling approach we take in our XML
documents will have a direct and significant impact on performance, document size, readability, and
code size. We'll see some of the ramifications of certain design decisions, and recommend some best
practice techniques.

One of the key factors to understand when creating models for storing data in XML, is that there are
important differences between XML documents that represent marked up text, and XML documents
that represent data with a mixed content model. We'll start this chapter with an outline of these
differences, and see how the data we're modeling impacts our approach.

This chapter makes reference to relational database concepts to explain some of the issues likely to be
encountered when working with XML for data. If relational database concepts are unfamiliar, it is
advisable to look at Appendix B before tackling this chapter.

Finally, in this chapter, table creation scripts are written to run with SQL Server — if you are using a
relational database platform other than SQL Server, you may need to tweak the scripts to get them to
work properly.

In this chapter we will see:

How the types of data we are marking up will affect the way we model the information.
How to model data structures.
How to model data points.

How to model the relationships between the structures.

O O 0o o od

A sample application illustrating some best practices.

First, though, we need to understand the difference between using XML to mark up text, and XML
for data.

Chapter 1

X

VIL for Text Versus XML for Data

As I indicated, before we can start modeling our data, it is important that we understand just what it is
that we're trying to model. Let's take a look at two different uses of XML:

O for marking up text documents

0 for the representation of raw data

and see how they differ.

XML for Text

XML grew from SGML, which was used for marking up documents in electronic format. That's why
much of the early literature on XML - and the work developers did with it — was concerned with the
use of XML for annotating blocks of text with additional semantic information about that text. For
example, if we were marking up a chapter of a book, we might do something like the following:

<par agr aph>
<quot e speaker="Eustace">"| don't believe |I've seen that orange pie
pl ate before, "</ quote>Eustace said. He exam ned it closely, noting
that <pl ot poi nt >t here was a purple stain about hal fway around one
edge. </ pl ot poi nt ><quot e speaker ="Eust ace">"Pecul i ar, "</ quot e> he
decl ar ed.

</ par agr aph>

There are two important points to note in this example. Because we are marking up text:

0 If the markup were removed, the text of the paragraph itself would still have the same
meaning outside the XML document.

0 The order of the information is of critical importance to understanding its meaning — we
cannot start reordering the text we mark up and still expect it to have the same meaning.

This is typical of how XML has been used to mark up text; we can think of this as marking up content.

There is, however, a sharp contrast between marking up this sort of text and using XML to hold raw
data, as we will see next.

XML for Data

12

As this book's focus is XML and databases, the second type of information that we mark up is of greater
interest to us. Our databases hold all kinds of business information. For the rest of the chapter, we will
focus on how we should be looking at marking up this kind of information. As we will see, there are a
number of ways in which we could mark up this data without changing its meaning.

One of the key differences between marking up text and data is that text must usually stay in the order
in which it's presented, and the markup adds meaning to the text. However, data can be represented in
a number of different ways and still have the same functionality. Having seen an example of text that we
have marked up, let's look at an example of data to make this distinction clearer.

XML Design for Data

Here's an example of a document that is designed to hold data:

<l nvoi ce
or der Dat e="7/ 23/ 2000"
shi pDat e="7/ 28/ 2000" >
<Cust oner
nanme="Honer Si npson"
address="742 Evergreen Terrace"
city="Springfield"
st at e="KY'
post al Code="12345" />
nel tem
product Descri pti on="Wdgets (0.5 inch)"
quantity="17"
unitPrice="0.10" />

<L

<Lineltem
product Descri pti on="Gomets (2 inch)"
quantity="22"

uni t Price="0.05" />
</l nvoi ce>

As you can see, this is an example of an invoice marked up in XML.

Now, if we were to show this data outside of the document, we could present it in a number of different
ways. For example, we might represent the data this way:

I nvoi ce

Honmer Si npson
742 Evergreen Terrace
Springfield, KY 12345

Ordered on: 7/23/2000
Shi pped on: 7/28/ 2000

Pr oduct Quantity Price
W dgets (0.5 inch) 17 0.10
Grommets (2 inch) 22 0. 05

Alternatively, it would be equally valid to represent the data this way:

Honmer Sinpson| 742 Evergreen Terrace| Springfi el d| KY| 12345
07232000| 07282000

W dgets (0.5 inch)|17]|0.10

G ommets (2 inch)|22|0.05

When we're looking at this type of data, the order in which it is stored does not matter as much to the
meaning of the document as it did to the previous section, where we were marking up the book.

For example, it does not change the meaning of the document if the order date is stored before or after
the ship date in the XML document — as long as they can be identified, and as long as they are
associated with the invoice to which they belong. Similarly, the order in which the line items are stored
is not meaningful - as long as they are associated with the appropriate invoice.

13

Chapter 1

So, we have already seen a clear distinction here between the different types of data that we are
marking up. When we are using XML to mark up data that does not have to follow a strict order we can
be more flexible in the way we store it, which in turn can impact upon how easy it is to retrieve or
process the data.

Representing Data in XIVIL

Because XML allows us to be so flexible in the way that we can mark up our data, let's take a look at
some ways in which we should restrict our XML structure designs for data.

Element Content Models

We will start our discussion about how we can structure our XML vocabularies by looking at how to
model element content. When using a DTD to define the structure of an XML vocabulary, there are five
possible content models for elements:

Element-only content.

Mixed content.

Text-only content (a special case of mixed content).
The EMPTY model.

The ANY model.

O o o o g

Let's take a look at each of these in turn and see how they might be used to represent data.

Element-only Content

Element-only content is used when elements may only contain other elements. For example, the
following content model is element-only:

<! ELEMENT | nvoi ce (Custoner, Lineltemt)>

Here we have an | nvoi ce element, as the root element, which can contain a Cust oner element,
followed by one or more Li nel t emelements. An example of a document that conforms to this
would be:

<l nvoi ce>
<Cust oner />
<Lineltem/>
<Lineltem/>
</1nvoi ce>

This structure provides the cleanest way to contain one structure inside another. This will be our
representation of choice for the nesting of elements.

Mixed Content

In the mixed content model, elements may contain zero or more instances of a list of elements, in any
order, along with any amount of text in any position. An example of the mixed content model might be:

<! ELEMENT | nvoi ce (#PCDATA | Lineltem| Custoner)*>

14

XML Design for Data

A couple of example documents might be:

<l nvoi ce>
This is the invoice for <Custoner>Kevin WIIians</ Custoner>
</l nvoi ce>

or:

<l nvoi ce>
<Lineltem/>
<Cust oner >Kevin W | i anms</ Cust oner >
<Lineltem/>

</l nvoi ce>

This model isn't good for modeling data because the allowable subelements might appear at any point
within the element, and any number of times. This makes it very difficult to map to data elements, and
makes writing code to handle the document (and move it to a data repository, such as a relational
database) a nightmare. We should avoid the use of the mixed content model for data.

Text-only Content

In the text-only content model, elements may only contain text strings. An example of the text-only
content model might be:

<! ELEMENT Custoner (#PCDATA) >
and a sample document might be:
<Cust orrer >Kevin Wi ans</ Cust oner >

Using text-only elements is one way to include data pointsin our document.

When werefer to data pointsin this context, we mean single values, analogous to
columnsin arelational database or fieldsin aflat file.

However, we could also use attributes, which can have advantages over this method — as we'll see a
little later in the chapter.

EMPTY Content

In the EMPTY content model, an element cannot contain anything at all; it must be expressed either as
the empty-element-tag, or as a start-tag followed immediately by an end-tag (the preferred notation
being an empty-element-tag). The following is an example of the empty content model:

<! ELEMENT Custoner EMPTY>

A sample document might be:

<Custoner />

15

Chapter 1

This content model will come in useful when we have a situation where the only additional information
associated with an element is at the data point level. For example, let's say we had a Cust oner element
that only had a Fi r st Narme and Last Name associated with it. Since these pieces of information are data
points — that is, single values — we could use the empty content model for the Cust oner element and
represent the data points as attributes. We will see how that's done shortly.

ANY Content

The last content model we could use is the ANY content model. In this model, any element or text may
appear inside the element when defined this way, in any order. So, for this example:

<!l ELEMENT Cust oner ANY>

we might have the following document:

<Cust onmer >Kevin WI | i ans</ Cust oner >

or:

<Cust omer >
<Cust omer >
<Cust onmer >Kevin WI | i ans</ Cust oner >
</ Cust oner >
</ Cust oner >

Like the mixed content model, this content model is too permissive for data. Without some idea of what
structures might appear, and in what order, leveraging and operating upon the data will be extremely
difficult. For this reason, we will avoid using the ANY content model in the structures we design.

Using Attributes

The other way to represent data points, and the recommended method for doing so in data documents,
is by using attributes. For example, in the following sample structure:

<! ELEMENT Cust omer EMPTY>

<I ATTLI ST Cust oner
Fi r st Name CDATA #REQUI RED
Last Nane CDATA #REQUI RED>

we would have a document that looks like the following:

<Cust omer
Fi r st Name="Kevi n"
Last Nanme="W|I | i ans"/>

This approach has several inherent advantages over using text-only elements to represent data points.
We'll take a look at some of these later in the chapter.

16

XML Design for Data

Other Considerations

So far, we have looked at some of the obvious considerations to take into account when creating our
data model, but we should always be asking ourselves if all of the relevant data for the document is
being represented in as efficient and accessible a manner as possible. So, let's take a look at some of the
other considerations that we need to take into account when designing XML structures, namely:

O Audience.
O Performance.

0 Data modeling versus representation modeling.

Audience

When designing XML structures, we should take into account the universe of producers and consumers
that might be manipulating documents based on those structures.

We need to ask ourselves the following questions:

O Doesthedocument need to be human-readable?
Depending on the planned usage of our documents, they might only be read by automatic
processes, or they might need to be read by humans. If a document is not intended to be
human-readable, abbreviations and other modifications may be made to reduce document
size.

0O Isthedocument intended primarily for display or for processing?
If our documents will most commonly be styled to flattened structures — for example, flat file
exports — we may want to flatten the structures in our XML so that the XSLT engine's
workload will be reduced.

O How many consumerswill be processing the document?
If we want our data to be made available to as many consumers as possible — as we would
with an industrywide standard — we might try to keep the structure as flexible as possible. If it
is only to be read by one type of application, we can tune it specifically to the requirements of
that application.

O Isthedocument intended to operate under a standard that constrainsthe allowable structure?
If our structures are being designed to run under the BizTalk Framework (or another e-
commerce initiative), we may want to represent data points as text-only elements rather than
attributes — as that's the recommended structure for BizTalk messages.

Performance

Often, performance is the other side of the audience coin; the narrower the audience, the more finely
tuned the document structures may be for performance. For example, say we have an XML document,
stored in a file or streamed across the Web, that looks like the following:

<l nvoi ce
cust omer Nanme="Kevin WIlians">
<Lineltem
product Name="G omets (2 inch)"
quantity="17"
price="0.10" />
</l nvoi ce>

17

Ch

apter 1

This document is mostly human-readable — the customer and product names are spelled out, and the
document has white space added to make it easy to comprehend. Now, let's suppose that human-
readability is not a factor, and instead the document has to perform as well as possible. The following
might be an alternative design:

<l c="cl7"><L p="p22" g="17" pr=".1" /></1>
In this case:

O We've abbreviated the element and attribute names (because the document is being read by a
machine process).

O We've removed unnecessary whitespace (again, because readability is not a factor).

O We've used customer and product lookup codes rather than spelling out their names.

This document works very well if it is being passed between two known systems that understand the
cryptic abbreviations, but it doesn't work as well for documents that might have to be human-readable.
Which version we choose all comes down to the planned usage of the document, and the other design
factors that have to be taken into consideration.

Data Modeling Versus Representation Modeling

18

When designing XML structures for data, it's important to focus on the data itself and not the common
representation of the data in the real world. For example, say we have an invoice that looks like this:

W dgets, Inc.
I nvoi ce

Cust omer : Kevin WIlians
742 Evergreen Terrace
Springfield, KY 12345

Ship to: Kevin WIlians
742 Evergreen Terrace
Springfield, KY 12345

Shi pper : FedEx

I tem Code Descri ption Quantity Price Tot a
1A2A3AB W dget (3 inch) 17 $0. 10 $1. 70
2BC3DCB G omet (2 inch) 22 $0. 05 $1. 10
Tot al $2. 80

We might be tempted to construct an XML document that looks like this:

<l nvoi ce>
W dgets, Inc.
I nvoi ce

Cust oner: <cust omer Nane>Kevin W | i ans</ cust oner Nanme>
<or der Addr ess>742 Evergreen Terrace</order Address>
<order Ci ty>Springfiel d</orderC ty>
<or der St at e>KY</ or der St at e>
<or der Post al Code>12345</ or der Post al Code>

XML Design for Data

Ship to: <shi pNane>Kevin W | i ans</ shi pNane>

<shi pAddr ess>742 Evergreen Terrace</shi pAddress>
<shi pG ty>Spri ngfi el d</shi pGity>,

<shi pSt at e>KY</ shi pSt at e>

<shi pPost al Code>12345</ shi pPost al Code>

Shi pper: <shi ppi ngConpany>FedEx</ shi ppi ngConpany>

It em Code Description Quantity Price Tot a

<Li nel t emr»
<i t enCode>1A2A3AB</ i t enCode>
<i tenDescripti on>W dget (3 inch)</itenDescription>
<quantity>17</quantity>
<pri ce>%$0. 10</ pri ce>
<linePrice>$1.70</1inePrice>
</ Li nel ten»
<Li nel t emr»
<i t enCode>2BC3DCB</ i t enCode>
<i tenDescripti on>G omet (0.5 inch)</itenmDescription>
<quantity>22</quantity>
<pri ce>$0. 05</ pri ce>
<linePrice>%$1.10</linePrice>
</ Li nel ten»

Tot al

<total Price>%$2.80</total Price>

</l nvoi ce>

However, this is an example of modeling to the representation, not the data itself. Here are some of the
problems with this approach:

0

Formatting information isretained in the XML document.

Information about the location of data in a particular representation, or text that always
appears in the representation of XML documents of this type, should not be retained in XML.
If we need to reconstruct the appearance of the representation later, we should use XSLT or
some other formatting mechanism to recreate it.

Summary information isretained in the XML document.

Information such as the line item totals and grand total for the invoice should not be retained
in the XML document, unless there's a compelling reason to do so. This follows the same
argument as to why summary information shouldn't be retained in a relational database unless
there's a compelling reason to do so. Summary information may always be extrapolated from
the detail information provided, so it isn't strictly necessary in the XML document. If a value
included in an XML document cannot be brought into a nonXML representation for
manipulation, then the document has virtually no worth as a data medium. An exception
could be, for example, when the information needs to be accessible directly from the
document at a summary level, perhaps via XSLT.

Field formatting information isretained.

The dollar symbol for the price element, for example, does not belong in the pri ce field - it
is part of the formatting of the information for a particular representation, not part of the
actual information content.

19

Chapter 1

A much better structure would be:

<l nvoi ce
cust omer Nane="Kevin WIIianms">
<Addr ess
addr essType="bi |l i ng"
street="742 Evergreen Terrace"
city="Springfield"

st at e="KY'
post al Code="12345" />
<Addr ess

addr essType="shi ppi ng"

street="742 Evergreen Terrace"

city="Springfield"

st at e="KY'

post al Code="12345" />

<Li nel tem

i t emCode="1A2A3AB"
i temDescription="Wdget (3 inch)"
quantity="17"

price="0. 10"
currency="USD"' />
<Li nel tem

i t emCode="2BC3DCB"
itenmDescription="Gomret (0.5 inch)"
quantity="22"
price="0. 05"
currency="USD"' />

</ nvoi ce>

In this sample, all formatting information has been discarded, and the XML document represents the
pure data representation of the document content.

XML Data Structures — A Summary

In this section, we've looked at some of the issues that should be taken into consideration when
developing our XML structures for data. We've learned that the mixed content and ANY content
elements should be avoided under most circumstances, and that the structures that we define should be
designed to carry the data, not any specific representation of the data. Beyond that, we should take into
account the audience for documents, and any performance constraints that producers or consumers may
impose.

Next, we'll take a look at the various structures in RDBMS systems and XML, and how they map to one
another.

Mapping Between RDBMS and XML Structures

In this section, we'll see how relational data may be moved into XML structures. We'll see how
structures, data points, and relationships are modeled in XML, and see some common pitfalls and how
to avoid them. We'll follow that discussion with an example modeling exercise, to see how the
techniques we have learned can be put into action.

20

XML Design for Data

Structure

Let's see how we can map information between tables in databases and elements in XML. We'll start
with a look at how we might model some sample data for a customer in a relational database. We'll then
look at two possible ways in which we might store the same data in XML.

In relational databases, groups of data points that together describe a larger concept are represented by
tables that are made up of columns. Here we can create a table to hold all the details about an address:

CREATE TABLE Customer (
firstNane varchar (50),
| ast Name var char (50),
mai | i ngAddr ess var char (50),
mai | i ngC ty varchar (60),
mai |l i ngState char(2),
mai | i ngPost al Code var char (10))

and the table would look like this:

firsthame |lastMame [mailingaddress [mailing it [mailingstate | mailingPostalCode |
| & |Kevin Wfilliams 742 Springfield Road Springfield (4§ 12345
*

In XML, groups of data points can be grouped together to describe a larger concept represented by an
element. Going back to our customer details, we might use a <Cust omer > element to represent the
same information as we had in our Customer table.

When moving data between XML form and arelational database, a table should
always become an element with element-only content, and an element with element-
only content should always become a table — unless we are performing additional
normalization or denor malization when we are moving the information.

Within our <Cust oner > element, the details about the customer can be represented in one of two
ways:

O Using text-only elements.

0 Using attributes.

Elements

The first way data points are represented in XML documents is by using elements. For text-only
elements, we might define our <Cust oner > element like this:

<! ELEMENT Custoner (firstNanme, |astNane, mailingAddress, mailingCty,
mai | i ngSt at e, mai | i ngPost al Code) >

<! ELEMENT first Name (#PCDATA) >

<! ELEMENT | ast Nanme (#PCDATA) >

<! ELEMENT nai | i ngAddr ess (#PCDATA) >

<! ELEMENT mai |l i ngCty (#PCDATA) >

<! ELEMENT nui | i ngSt at e (#PCDATA) >

<! ELEMENT mai | i ngPost al Code (#PCDATA) >

21

Chapter 1

which would result in details being nested in separate elements under the <Cust oner > element
like this:

<Cust oner >
<first Name>Kevi n<fir st Name>
<l ast Name>W | | i ans<| ast Nane>
<mai | i ngAddr ess>742 Evergreen Terrace <nmailingAddress>
<mai | i ngC ty>Springfiel d<mailingCty>
<mai | i ngSt at e>KY<nai | i ngSt at e>
<mai | i ngPost al Code>12345<nmi | i ngPost al Code>
</ Cust omer >

When representing datain an XML document, any element that is defined as having
text-only content using the #PCDATA keywor d will correspond to a column in a
relational database.

Attributes

Another way of representing data points in XML documents is with attributes. In this approach,
elements that represent tables have attributes associated with them that represent columns:

<! ELEMENT Cust omrer EMPTY>
<I ATTLI ST Cust oner
firstNane CDATA #REQUI RED
| ast Name CDATA #REQUI RED
mai | i ngAddr ess CDATA #REQUI RED
mai | i ngCity CDATA #REQUI RED
mai | i ngSt at e CDATA #REQUI RED
mai | i ngPost al Code CDATA #REQUI RED>

Here we are storing the details of the customer as attributes on the <Cust oner > element:

<Cust oner
firstNane="Kevin"
| ast Name="W | | i ans"
mai | i ngAddr ess="742 Evergreen Terrace"
mai lingCty "Springfield"
mai | i ngSt at e=" KY"
mai | i ngPost al Code="12345" />

Let's look in more detail at the two alternatives for the representation of data points.

Data Points

As we have just seen, there are two primary design strategies that may be used to represent columns as
XML structures:

O Elements, which are nested as children of the element that represents the grouping of
information.

O Attributes, which are added to the element that represents the grouping of information.

22

XML Design for Data

Each approach has its proponents, and they tend to be quite vocal about their opinions. So what are the
advantages and disadvantages of each of these two different approaches?

In order to compare the different ways we can represent data, let's use the invoice for a widget
manufacturing plant that we saw earlier. Here, again,is how the invoice looks:

W dgets, Inc.
I nvoi ce

Cust omrer : Kevin WIliams
742 Evergreen Terrace
Springfield, KY 12345

Ship to: Kevin WIlians
742 Evergreen Terrace
Springfield, KY 12345

Shi pper: FedEx

I tem Code Descri ption Quantity Price Tot al
1A2A3AB W dget (3 inch) 17 $0. 10 $1. 70
2BC3DCB G ommet (0.5 inch) 22 $0. 05 $1. 10
Tot al $2. 80

For this invoice, we're interested in the following data points:

Customer name.
Billing address.
Billing city.

Billing state.
Billing postal code.
Shipping address.
Shipping city.
Shipping state.
Shipping postal code.
Shipping company.
Item code.

Item description.

Quantity purchased.

e 1 |

Price per unit.
We'll assume that the consumer of our XML document will recalculate the line totals and invoice total,

if it requires them. As we saw earlier, our consumer should be able to calculate these kinds of values
from our XML data, otherwise our XML isn't worth a great deal!

23

Ch

apter 1

The invoice has the following data point groupings:

O Invoice.

O Line Item.

Notice that we're discussing structure internal to the invoice, and not as it relates to some external
system. For example, it's likely that this customer will order from us again (assuming we get him his
widgets and grommets in a timely manner), so in our invoice database we will probably keep a
Cust omer table that retains information about each of our customers. However, since each of our
documents represents one invoice, we will pass the customer information as part of the invoice
information, as there is a one-to-one relationship.

There are circumstances where we should break up a one-to-one relationship, but generally it's not a
good idea, as it will increase the document size and slow down processing. We will go into XML
design in much more detail in Chapter 4.

Our Invoice Using Elements

Now, back to the comparison. Using elements, our structure would look something like this
(ch02_ex1. dt d):

24

<! ELEMENT

<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT

I nvoi ce (custonerNane, billingAddress, billingCity, billingState,
bi | I i ngPost al Code, shi ppi ngAddress, shippingGty,
shi ppi ngSt at e, shi ppi ngPost al Code, shi ppi ngConpany,

Li nel t emt) >
cust oner Nane (#PCDATA) >
bi I i ngAddr ess (#PCDATA) >
billingCity (#PCDATA)>
billingState (#PCDATA) >
bi I I i ngPost al Code (#PCDATA) >
shi ppi ngAddr ess (#PCDATA) >
shi ppi ngGity (#PCDATA) >
shi ppi ngSt at e (#PCDATA) >
shi ppi ngPost al Code (#PCDATA) >
shi ppi ngConpany (#PCDATA) >
Li neltem (i tenCode, itenDescription, quantity,
i t enCode (#PCDATA) >
i tenmDescri ption (#PCDATA) >
quantity (#PCDATA) >
pri ce (#PCDATA) >

price)>

and here's an example of data marked up using this model (ch02_ex1. xni):

<?xm version="1.0" ?>
<! DOCTYPE | nvoi ce SYSTEM "http://nyserver/xm db/ch02_ex1_el enents. dtd">

<l nvoi ce>

<cust onmer Nane>Kevi n W | i ans</ cust omer Nane>

<bi | I i ngAddr ess>742 Evergreen Terrace</billingAddress>

<bil'lingCity>Springfield</billingCty>
<bi | I'i ngSt at e>KY</ bi | | i ngSt at e>

XML Design for Data

<bi I I i ngPost al Code>12345</ bi | | i ngPost al Code>
<shi ppi ngAddr ess>742 Evergreen Terrace</ shi ppi ngAddr ess>
<shi ppi ngGi t y>Spri ngfi el d</ shi ppi ngGi ty>
<shi ppi ngSt at e>KY</ shi ppi ngSt at e>
<shi ppi ngPost al Code>12345</ shi ppi ngPost al Code>
<shi ppi ngConpany>FedEx</ shi ppi ngConpany>
<Li nel t enr»
<i t enCode>1A2A3AB</ i t enCode>
<i tenDescripti on>Wdget (3 inch)</itenDescription>
<quantity>17</quantity>
<price>0. 10</ pri ce>
</ Li nel ten»
<Li nel t emr»
<i t enCode>2BC3DCB</ i t enCode>
<i tenDescripti on>G omret (0.5 inch)</itenmDescription>
<quantity>22</quantity>
<price>0. 05</ pri ce>
</ Li nel ten»
</l nvoi ce>

Our Invoice Using Attributes
Using attributes, rather than elements, the DTD would look like this (ch02_ex1_attri but es. dt d):

<! ELEMENT I nvoi ce (Lineltemt+)>

<I ATTLI ST I nvoi ce
cust onmer Name CDATA #REQUI RED
bi I 1i ngAddr ess CDATA #REQUI RED
bil1ingCGty CDATA #REQUI RED
bi | Ii ngState CDATA #REQUI RED
bi | 1'i ngPost al Code CDATA #REQUI RED
shi ppi ngAddr ess CDATA #REQUI RED
shi ppi ngCi ty CDATA #REQUI RED
shi ppi ngSt at e CDATA #REQUI RED
shi ppi ngPost al Code CDATA #REQUI RED
shi ppi ngConpany (FedEx | USPS | UPS) #REQUI RED>

<! ELEMENT Li nel t em EMPTY>
<I ATTLI ST Li neltem
i temCode CDATA #REQUI RED
i temDescri ption CDATA #REQUI RED
quantity CDATA #REQUI RED
pri ce CDATA #REQUI RED>

and the corresponding XML would look like this (ch02_ex1_attri but es. xm):

<?xm version="1.0" ?>
<! DOCTYPE | nvoi ce SYSTEM "http:// nyserver/xm db/ ch02_ex1_el enents. dt d">

<l nvoi ce
cust omer Nane="Kevin WIIians"
bi I li ngAddress="742 Evergreen Terrace"

bi I'l'i ngG ty="Springfield"

25

Ch

apter 1

bi I I'i ngSt at e=" KY"
bi | I i ngPost al Code="12345"
shi ppi ngAddr ess="742 Evergreen Terrace"
shi ppi ngC ty="Spri ngfiel d"
shi ppi ngSt at e=" KY"
shi ppi ngPost al Code="12345"
shi ppi ngConpany="FedEx" >
<Li neltem
i t enCode="1A2A3AB"
i temDescription="Wdget (3 inch)"

quantity="17"
price="0.10" />
<Li nel tem

i t enCode="2BC3DCB"
i temDescription="G omret (0.5 inch)"
quantity="22"
price="0.05" />
</l nvoi ce>

Having created two examples of the invoice — one that uses element content, and another that uses
attributes to store the information - let's take a look at how the two examples stack up based upon some
basic document metrics.

Comparing the Two Approaches

The things we will look at are:

Readability.
Compatibility with databases.
Strong data typing.

Programming complexity.

o o o o o

Document size.

Readability

In both sample documents above, the documents are equally readable. All data points for a given
structural element are grouped together, and structures are clearly delineated.

Compatibility with Databases

26

In relational databases, content (data points), and structure are clearly disambiguated. Structure is
represented with tables and relationships, and data points are represented with columns. Since we're
probably going to be spending a lot of our time moving data in and out of relational databases, we
would like our XML documents to disambiguate content and structure as well.

Unfortunately, if we use text-only elements to represent data points, we lose this clear distinction —
sometimes elements represent structure, and other times they represent content. Any code that is
parsing these structures must be aware which element represents data and which represents structure,
and must handle it appropriately (or check to see whether text is contained in the element or not, before
deciding how to handle that element).

XML Design for Data

However, if we use attributes for data points, structure and content are separate and distinct — structure
is represented by the elements and the way they are nested, while content is represented in attributes.
This is possibly the strongest argument for using attributes.

In addition, attributes are unordered. Look at the following two documents:

<?xm version="1.0"?>

<Book Aut hor="Ron Obvi ous" CreateDate="7/23/2000">
This is a sinmple XM. docunent.

</ Book>

and:

<?xm version="1.0"?>

<Book CreateDate="7/23/2000" Author="Ron Cbvi ous">
This is a sinmple XM. docunent.

</ Book>

They are identical from the perspective of an XML parser — the parser doesn't attach any particular
importance to the order in which attributes are encountered in the original document. This is similar to
the way a relational database works, where the meaning of a data point is simply indicated by its name,
and not a combination of its name and location.

While element order has meaning for documents (for example, it's important to understand that the
second paragraph comes after the first one), it loses importance when representing data. Thus, the
ordering of elements just adds unnecessary complexity.

Strong Data Typing

When using DTDs to govern the content of XML structures, there is little scope for strong datatyping.
The one exception would be the ability to constrain attributes to a particular list of allowable values. For
example, the shi ppi ngConpany data point in our example might take one of the three values FedEXx,
USPS, or UPS. If we describe the data point with an attribute, we can constrain the value of the attribute
to this list of three values (and in fact did so in the second DTD example). However, we have no similar
way to limit these allowable values for the data point if it is expressed as an element.

Programming Complexity

One of the most important concerns when designing XML documents, has to be the programming
complexity and parser speed for solutions implemented around the XML structures. To illustrate this,
let's look at retrieving some information from the two invoice examples we developed, using the
element and attribute models.

Parsing technologies — the DOM and SAX - are discussed in Chapters 6 and 7 respectively. Without
going into too much depth here, let's make some comparisons between the number of steps it take to
retrieve the quantity of the first | i nel t emfor each of the data models. We will first compare the
element and attribute approaches when parsed by the DOM, and then look at the same two models
under SAX.

27

Chapter 1

The DOM

When an XML document is parsed using the Document Object Model, it is pulled into memory and
decomposed into a tree that may then be walked by code. In order to access the quantity of the first line
item ordered on an invoice, the following steps would be required for the element approach:

1. Get the root element (the | nvoi ce element).

2. Go to the first Li nel t emchild of the | nvoi ce element.

3. Go to the quantity child of the Li nel t emelement.

4. Go to the text node child of the quant ity element and return its value.

On the other hand, the following steps would be required to access the document if the attribute
approach was used:

1. Get the root element (the | nvoi ce element).
2. Get the first Li nel t emchild of the | nvoi ce element.

3. TIterate through the Li nel t emelement for the attribute name-value pair list of the
quant ity attribute, and return its value.

In other words, fewer steps are required to obtain the value of an attribute when using the DOM than to
retrieve the value of a text-only element. Since the DOM pulls everything into memory, the odds are
that we will see little to no performance difference between the two strategies, but the code will be
simpler when using attributes.

SAX

SAX is the Simple API for XML, and it is intended to be an event-driven alternative to the memory-
hungry DOM. SAX is covered in much more detail in Chapter 7, but suffice to say it has a much
smaller memory footprint than the DOM. However, when using SAX to handle documents, things get
more complicated. Because SAX is event driven, there are a few additional steps required when
obtaining the text value of an element as opposed to retrieving the value of an attribute.

Using the same example with elements, the steps for SAX for elements would be:

1. Before starting, set the Booleans bl nl nvoi ce, bl nLi nel t em and bl nQuanti ty to false,
and also, set the value of the counter i Li nel t emto zero and the string sQuantity to a
blank string.

2. Inthe startEl enent event, when the | nvoi ce start tag is encountered, set the value of
the Boolean variable bl nl nvoi ce to true.

3. Inthe startEl enent event, when the Li nel t emstart tag is encountered, set the value of
the Boolean variable bl nLi nel t emto t r ue if bl nl nvoi ce is t r ue, indicating that the
processor window is inside a Li nel t emtag. Also increment the i Li nel t emcounter to
indicate which Li nel t emis being read.

28

XML Design for Data

4. 1Inthe startEl enent event, when the quanti ty start tag is encountered, if the Boolean
bl nLi nel t emis t rue and the i Li nel t emcounter is 1, set the value of the bl nQuantity
Boolean variable to t r ue.

5. Inthecharacters event, if bl nQuantity istrue, append the received text to the
sQuantity string.

6. In the endEl enent event, if the quantity end tag is encountered, set the bl nQuantity
Boolean to f al se. The value for the quantity is now available for use.

7. In the endEl ement event, if the Li nel t emend tag is encountered, set the bl nLi nel tem
Boolean to f al se. In addition, if the | nvoi ce end tag is encountered, set the
bl nl nvoi ce Boolean to f al se.

Whereas if we were using attributes, these would be the steps:

1. Before starting, set the Boolean bl nl nvoi ce to f al se, and also set the value of the
counter i Li nel t emto zero.

2. Inthe startEl enent event, when the | nvoi ce start tag is encountered, set the value of
the Boolean variable bl nl nvoi ce to true.

3. Inthe startEl ement event, when the Li nel t emstart tag is encountered, if bl nl nvoi ce
is true, increment the value of the i Li nel t emcounter. If this value is 1, pull the value of
the quant i ty attribute from the attribute name-value pair set provided as a parameter to
the start El enent event. The value for the quantity is now available for use.

4. Inthe endEl enent event, if the Li nel t emend tag is encountered, set the bl nLi nel tem
Boolean to f al se.

5. In the endEl enent event, if the | nvoi ce end tag is encountered, set the bl nl nvoi ce
Boolean to f al se.

As you can see, fewer event handlers are required when using attributes to represent data points, and
this results in simpler code. The code size improvement will be significant for handlers that are more
complex. From a performance perspective, there will probably be virtually no difference — the

additional event handlers are not particularly complex.

Document Size

When an element is used to describe a data point, three strings appear in the serialized XML document:
the start tag, the value of the data point, and the end tag:

<shi ppi ngAddr ess>742 Evergreen Terrace</ shi ppi ngAddr ess>

However, when an attribute is used to describe a data point, the attribute name, the equals sign, the
quotes, and the attribute value are required:

shi ppi ngAddr ess="742 Evergreen Terrace"

29

Chapter 1

It should be obvious that repeating the name of the data point in the end element tag increases the size
of the document, compared with the size of the document when an attribute is used to represent the
data point. As a result, more network bandwidth will be consumed when transmitting files using
elements than when using attributes; more disk space will be consumed by the documents if they are
persisted to files, and so on. If these things are important to us, we should think about using attributes to
minimize our document size.

Elements or Attributes - The Conclusion

In the author's opinion, attributes are better suited to the representation of data points than text-only
elements are. In other words, attributes are best suited when only one value is to be expected (data
points) whereas elements are a necessity when multiple values are needed (like our | i nel t emin the
example above). When using attributes:

O Accessing the information is easier.
O Documents are smaller.

0 The disambiguation of structure and data closely mirrors the way structure and data are
disambiguated in a relational database.

For the remainder of this book, we will be using attributes to represent data points in our sample
structures.

Relationships

30

When we need to associate groups of data points with other groups of data points in a relational
database, we do so by adding a relationship between the two tables in question. In order to see how we
can do this in XML, let's look at two sample tables | nvoi ce and Li nel t emand the relationships
between them. Here is the SQL script to create the tables (ch02_ex3. sql):

CREATE TABLE | nvoice (
i nvoi cel D i nteger PRI MARY KEY,
custoner| D i nt eger,
orderDate datetine,
shi pDat e dateti ne)
CREATE TABLE Lineltem (
lineltem D integer,
i nvoi cel D i nt eger,
product Descri pti on varchar (255),
quantity integer,
unitPrice float,
CONSTRAI NT fk_Li nel tem nvoi ce
FOREI GN KEY (i nvoi cel D)
REFERENCES | nvoi ce (i nvoicel D))

Remember, the scripts in this chapter are for SQL Server — if you want to run them in a different
database you may have to modify them. For example, here you'll need to change f1 oat to nunber
to run the script in Oracle.

XML Design for Data

Here are the tables that this script will create, and their relationships:

Invoice
invoicelD [customerID [orderDate [shipDate
i3 I
Lineltem
lineltemID [invoiceID | productDescription | quantity | unitPrice |
i3

Note that the arrow is used to show the relationship between the tables - how they are linked, by means
of keys. The arrow points from the foreign key on the Lineltem table to the primary key on the Invoice
table. We could say that the Lineltem table "refers back to" the Invoice table. We will encounter these
diagrams at numerous times as we progress through the book.

In the above table definitions, we have added a foreign key in the Li nel t emtable , i nvoi cel D, that
points back to the primary key in the | nvoi ce table. This indicates that the i nvoi cel Dvalue in the
Li nel t emtable must always correspond to an i nvoi cel D value for a customer record.

Containment

In XML, one-to-one and one-to-many relationships (such as the one above between | nvoi ce and
Li nel t enj are best represented by containment, as shown here (ch02_ex2. dt d):

<! ELEMENT I nvoi ce (Lineltemt)>
<I ATTLI ST I nvoi ce
order Dat e CDATA #REQUI RED
shi pDat e CDATA #REQUI RED>
<! ELEMENT Li nel t em EMPTY>
<I ATTLI ST Lineltem
product Descri pti on CDATA #REQUI RED
quantity CDATA #REQU RED
uni t Pri ce CDATA #REQUI RED>

An example of a document with this structure looks like this (ch02_ex2. xm):

<?xm version="1.0" ?>
<! DOCTYPE | nvoi ce SYSTEM "http:// nmyserver/xm db/ ch02_ex2. dtd">

<l nvoi ce
or der Dat e="7/ 23/ 2000"
shi pDat e="7/ 28/ 2000" >
<Lineltem
product Descri pti on="Wdgets (3 inch)"
quantity="17"
uni tPrice="0.10" />

<Li nel tem
product Descri pti on="G omets (0.5 inch)"
quantity="22"

unitPrice="0.05" />
</l nvoi ce>

31

Chapter 1

Here, it is clear that the Li nel t eminformation is part of the | nvoi ce. One-to-one and one-to-many
relationships (such as the relationship between | nvoi ce and Li nel t en) are best represented by
containment. However, it is possible to have more complex relationships in relational databases than
can be represented with containment alone.

More Complex Relationships - Pointers
Let's extend our previous example by adding a Pr oduct table (ch02_ex3. sql):

CREATE TABLE I nvoice (
i nvoi cel D i nteger PRI MARY KEY,
customner| D i nteger,
orderDate datetine,
shi pDat e datetine)
CREATE TABLE Product (
product | D i nt eger PRI MARY KEY,
product Short Nane varchar (50),
product Descri pti on varchar (255))
CREATE TABLE Lineltem (
lineltem D integer PRI MARY KEY,
i nvoi cel D i nt eger
CONSTRAI NT fk_Li neltem nvoi ce
FOREI GN KEY (i nvoi cel D)
REFERENCES | nvoi ce (invoicel D),
product | D i nt eger
CONSTRAI NT fk_Li nel t emPr oduct
FOREI GN KEY (product| D)
REFERENCES Product (productl D),
quantity integer,
unitPrice float)

and here are the tables with their relationships:

Invoice
invoicelD | customerID | orderDate [shipDate |
[D T
Lineltem
lineltemID [invoiceID | productiD | quantity [unitPrice |
N3
Product
productID | productShortMName | productDescription |
| b v

In this case, there is a many-to-many relationship being expressed between | nvoi ce and Pr oduct .
Many products may appear on one invoice, and one product may appear on many invoices. In a
relational database, this is expressed through the relating table Li nel t em An invoice may have many
line items, and a product may appear on many line items.

32

XML Design for Data

Let's see how we could show this more complex relationship in XML. Here is another version of the

data model (ch02_ex3. dt d):

<I ELEMENT OrderData (Invoi ce+, Product+)>
<! ELEMENT I nvoi ce (Lineltem+)>
<I ATTLI ST I nvoi ce
order Dat e CDATA #REQUI RED
shi pDat e CDATA #REQUI RED>
<! ELEMENT Li nel t em EMPTY>
<I ATTLI ST Lineltem
product | DREF | DREF #REQUI RED
quantity CDATA #REQUI RED
uni t Pri ce CDATA #REQUI RED>
<! ELEMENT Product EMPTY>
<l ATTLI ST Product
product | D | D #REQUI RED
pr oduct Short Name CDATA #REQUI RED
product Descri pti on CDATA #REQUI RED>

In this case, we are using an | D/I DREF pair to indicate which product is indicated by which line item.
We do it this way because we're trying to avoid the repetition of information. If we nested Pr oduct
inside Li nel t em we'd have to repeat the product information for every invoice where it appears.

An example document might look like this (ch02_ex3. xni):

<?xm version="1.0" ?>

<! DOCTYPE OrderData SYSTEM "http:// nmyserver/xm db/ ch02_ex3. dtd">

<Or der Dat a>
<l nvoi ce

or der Dat e=" 7/ 23/ 2000"

shi pDat e="7/ 28/ 2000" >

<Li neltem
pr oduct | DREF="pr od1"
quantity="17"
uni tPrice="0.10" />
<Li neltem
pr oduct | DREF="pr od2"
quantity="22"

unitPrice="0.05" />
</l nvoi ce>
<l nvoi ce
or der Dat e=" 7/ 23/ 2000"
shi pDat e="7/ 28/ 2000" >

<Li neltem
pr oduct | DREF="pr od2"
quantity="30"
uni tPrice="0.05" />
<Li neltem
pr oduct | DREF="pr od3"
quantity="19"

unitPrice="0.15" />
</l nvoi ce>
<Pr oduct
product | D="prod1"
pr oduct Short Name="W dgets (3 inch)"

product Descri pti on="Rubberi zed Brown Wdgets (3 inch)" />

33

Chapter 1

<Pr oduct

product | D="pr od2"

product Short Nanme="G ommets (0.5 inch)"

product Descri pti on="Vul cani zed Orange G omets (0.5 inch)" />
<Pr oduct

product | D="pr od3"

pr oduct Shor t Nanme=" Sprockets (1 inch)"

product Descri pti on="Anodi zed Silver Sprockets (one inch)" />

</ Or der Dat a>

In this case, the first invoice is for widgets and grommets, while the second invoice is for grommets and
sprockets. However, we've only included the specific product information once for grommets; it's
pointed to by the two line items that use it.

Disadvantages of Pointers

While this layout seems better from a relational perspective, there are some problems with it:

O It can slow processing down. This is because neither the DOM nor SAX provide a way to
easily navigate | D/| DREF relationships. (Some implementations of the DOM, such as
Microsoft's MSXML parser, provide a way to look up an element by its | D value — but such
functions are extensions to the base DOM level 1 architecture as defined by the W3C. The
DOM level 2 has just been released, however, and may make this less of a problem once
compliant parsers start appearing).

0O We might have to parse the document more than once. If our document is laid out in
such a way that the element with a particular | D may appear before the element with an
| DREF pointing to that | D, using SAX will be even more of a headache. We'll either need to
make multiple passes through the document to get the element to pass through the parse
window again, or we'll need to cache the element when it passes through the parse window
the first time.

O |ID/IDREF (or ID/IDREFS) relationships are unidirectional. That is, it's easy to navigate
from an | DREF to the associated | D, but not as easy to navigate from an | Dto any | DREFs
that point to that | D. The problem is compounded if the relationship is | D-I DREFS - in that
case, all the | DREFS need to be tokenized and each token compared against the | D currently
being examined.

More Complex Relationships - Containment

So let's look at an alternative structure for the same database tables, where the product data is contained
inside the Li nel t emelement (ch02_ex4. dt d):

<! ELEMENT OrderData (Il nvoice+)>
<! ELEMENT | nvoi ce (Lineltemt)>
<! ATTLI ST I nvoi ce
order Dat e CDATA #REQUI RED
shi pDat e CDATA #REQUI RED>
<! ELEMENT Li nel tem (Product) >
<! ATTLI ST Lineltem
quantity CDATA #REQUI RED
uni t Pri ce CDATA #REQUI RED>
<! ELEMENT Product EMPTY>
<! ATTLI ST Product
pr oduct Short Name CDATA #REQUI RED
product Descri pti on CDATA #REQUI RED>

34

XML Design for Data

and here is the new sample document (ch02_ex4. xni):

<?xm version="1.0" ?>
<I DOCTYPE OrderData SYSTEM "http://nyserver/xm db/ch02_ex4. dtd">

<Or der Dat a>
<l nvoi ce
or der Dat e="7/ 23/ 2000"
shi pDat e="7/ 30/ 2000" >
<Lineltem
quantity="17"
uni t Price="0.10">
<Pr oduct
pr oduct Short Name="W dgets (3 inch)"
product Descri pti on="Rubberi zed Brown Wdgets (3 inch)" />
</ Li nel ten>

<Li neltem
quantity="22"
uni t Price="0.05">
<Pr oduct

product Short Name="G ommets (0.5 inch)"
product Descri pti on="\Vul cani zed Orange G ommets (half inch)" />
</ Li nel ten»
</l nvoi ce>
<l nvoi ce
or der Dat e="7/ 23/ 2000"
shi pDat e="7/ 30/ 2000" >
<Lineltem
quantity="30"
uni t Price="0.05">
<Pr oduct
pr oduct Short Name="G omets (2 inch)"
product Descri pti on="Vul cani zed Orange G ommets (two inch)" />
</ Li nel ten>

<Li neltem
quantity="19"
uni t Price="0.15">
<Pr oduct

pr oduct Shor t Name="Sprockets (1 inch)"
product Descri pti on="Anodi zed Silver Sprockets (one inch)" />
</ Li nel ten»
</l nvoi ce>
</ Or der Dat a>

While this document does repeat information (the product info for the grommets), it is a superior
document to the first one for most applications. Only containment is used, so there are no issues with
the DOM or SAX. The document is slightly larger, but since XML is a fairly verbose language anyway,
this doesn't present that much of a problem (especially since SAX becomes a viable out of the box
solution again if this approach is adopted).

If the consuming system needs to know that the grommets referenced in the first invoice and the

grommets referenced in the second invoice are actually the same grommets, we can add a field to the
Product structure to make this clear:

35

Chapter 1

<Or der Dat a>
<l nvoi ce
or der Dat e="7/ 23/ 2000"
shi pDat e="7/ 30/ 2000" >
<Li neltem
quantity="17"
uni tPrice="0.10">
<Pr oduct
product Nunber =" wi d- b- 1"
product Short Name="W dgets (3 inch)"
product Descri pti on="Rubberi zed Brown Wdgets (3 inch)" />
</ Li nel t en»>
<Li neltem
quantity="22"
uni tPrice="0.05">
<Pr oduct
pr oduct Nunber =" gr o- c- 2"
product Short Name="G omets (0.5 inch)"
product Descri pti on="Vul cani zed Orange Grommets (half inch)" />
</ Li nel t en»>
</l nvoi ce>
<l nvoi ce
or der Dat e="7/ 23/ 2000"
shi pDat e="7/ 30/ 2000" >
<Li neltem
quantity="30"
uni tPrice="0.05">
<Pr oduct
pr oduct Nunber =" gr o- c- 2"
pr oduct Short Name="G omets (0.5 inch)"
product Descri pti on="Vul cani zed Orange Grommets (half inch)" />
</ Li nel t en»>
<Li neltem
quantity="19"
uni tPrice="0.15">
<Pr oduct
product Nunber =" spr - d- 3"
pr oduct Short Name="Sprockets (1 inch)"
product Descri pti on="Anodi zed Silver Sprockets (one inch)" />
</ Li nel t en»>
</l nvoi ce>
</ Or der Dat a>

The consumer could then match the pr oduct Nunber attributes between products to identify which
referenced products were exactly the same, allowing an RDBMS consumer, for example, to normalize
the product data out of the rest of the structure. This approach is better than leaving it to the consumer
to reconcile the products based on the product name and description (as the consumer would need to if
there was no pr oduct Nunber attribute provided in the second scenario).

Relationships — Conclusion

36

When designing XML data structures we should exercise caution when setting up the relationships
between the elements in their DTDs. In particular, the use of pointers — | DREF(S)-I D attributes — can
have a profound impact on processing performance, especially when the processing engine is SAX.

In addition, the over use of pointing relationships can create difficulties for developers from a structure
comprehension and code complexity perspective. However, pointing relationships may be called for in
some cases, especially when document size is an issue. We should bear all of this in mind to ensure that
the structure we create is well tuned to its purpose.

XML Design for Data

Sample Modeling Exercise

Having seen several of the issues involved in creating a model for our XML, let's take a look at a
working example of a data structure we might want to model in XML.

To illustrate some of the points that we have learnt, we will take two invoices from a fictional widget
factory and move them to an XML model:

W dgets, Inc.

I nvoi ce

Order Date: 7/23/2000
Ship Date: 7/28/2000

Cust omrer : Kevin WIliams
744 Evergreen Terrace
Springfield, KY 12345

Shi pper: FedEx

I tem Code Descri ption Quantity Price Tota
1A2A3AB W dget (3 inch) 17 $0. 10 $1.70
2BC3DCB Gromet (0.5 inch) 22 $0. 05 $1.10
Tot al $2. 80
W dgets, Inc.

I nvoi ce

Order Date: 7/23/2000
Ship Date: 7/28/2000

Cust oner : Hormer J. Sinpson
742 Evergreen Terrace
Springfield, KY 12345

Shi pper: UPs

I tem Code Descri ption Quantity Price Tota
1A2A3AB W dget (0.5 inch) 17 $0. 10 $1. 10
3D1F2GX Sprocket (2 inch) 22 $0. 20 $1. 80
Tot al $2. 90

Before We Begin

When looking at the best way to model this information as XML, there are some questions that we need
to ask first:

What is the scope of the document?

O

O Which structures are we modeling?

O What are the relationships between entities?
O

Which data points need to be associated with each structure?

So, we shall start by addressing each of these in turn, and see what this leaves us in terms of a relational
database model. Then we can turn this into an XML DTD.

37

Chapter 1

What is the Scope of the Document?

The first thing we need to do is to decide what the scope of our XML document will be. This is
important because, based on the granularity of the XML documents, an XML repository could be very
flexible or very inflexible. So far, we have two invoices that we need to model, so the question here is
whether each XML document should represent just one invoice, or potentially more than one. Let's
look at the advantages and disadvantages of each:

Using One XML Document Per Invoice

0 Advantages:
Q Better control of the documents, locking and unlocking them, as necessary, and atomic
access to a single invoice will be reasonably fast.
O Disadvantages:
Q Aggregating information from many different invoices will be time-consuming, as many
different documents will need to be accessed, parsed, and processed.

O If there is information that could be shared across many invoices (such as product
descriptions), it must instead be repeated in each document to maintain atomicity.

Using One XML Document to Represent Many Invoices

O Advantages:
O Aggregation and information sharing will be much better.

0 Disadvantages:

Q The load on the processor will be greater, as the size of the documents will be greater.

O Processors attempting to access single invoices will be likely to contend for access to the
same XML documents.

To make the decision, we need to think about the anticipated use of the documents. For our purposes,
let's assume that each XML document may contain many invoices.

Which Structures Are We Modeling?

38

Next, we need to identify the structures that are being modeled. These will correspond to the elements
we use in our XML structures. In our example, there are five different entities that need to be modeled:

0 O der Dat a. This will be the root element we use for the document. Even though it may or
may not have semantic information associated with it, (we might pass the date range for which
the document applies, for example), we need to add this element because every XML
document needs a root element.

I nvoi ce. Each | nvoi ce element will correspond to one physical invoice in our system.
Cust orer . Each Cust oner element will correspond to one customer.

Part. Each Part element will correspond to a part that may appear on an invoice.

O o o o

Li nel t em This is important because it gives us a way to relate parts to an invoice while
adding additional information about the part's role in that invoice.

XML Design for Data

What Are the Relationships Between Entities?

Now let's take a look at the relationships between the various entities that we have identified. Looking at
the sample invoices, it becomes clear that the following relationships exist:

O

Or der Dat a consists of many | nvoi ces. Each | nvoi ce may be associated with only one
Or der Dat a entity.

O Each I nvoi ce entity has one Cust orer entity associated with it. Each Cust ormer entity
may be associated with more than one | nvoi ce.

O Each | nvoi ce has one or more Li nel t ementities associated with it. Each Li nel tem
entity appears on exactly one | nvoi ce.

Each Li nel t ementity has one Par t entity associated with it. Each Part entity may be
associated with more than one Li nel tem

Which Data Points Need to be Associated with Each Structure?

Finally, we need to decide which data points are associated with each structure. Here is how the data
points map to the structures that we just defined, these will be elements:

0

Or der Dat a:

O startDate - the earliest invoice date found in this particular document.

O endDat e - the latest invoice date found in this particular document.

I nvoi ce:

O order Dat e - the date the invoice was submitted.

Q shi pDat e - the date the order placed on the invoice was shipped to the customer.
Q shi pper - the firm used to ship the order.

Cust oner :

nane - the customer's name.
addr ess - the customer's street address.
Ci ty - the customer's city.

st at e — the customer's state.

[Sy Wy Wy

post al Code - the customer's postal code.

Part:

O itenCode - the alphanumeric code identifying the part to internal systems.
O description - the description of the part.

l'ineltem

O quantity — quantity of the part associated with the line item being ordered.
Q price - price per unit of the part associated with this line item.

Note that we chose not to include the line item total prices, or the grand total price. This is a conscious
choice that needs to depend on the performance and compactness requirements of the producer and
consumer of this document. We decided that it was better to have the documents more compact than to
add redundant information for the totals. However, if we decide we need the totals later, we'll need to
calculate them.

39

Chapter 1

So, let's have a look at a diagram of the structure this would leave us with if we were still in the
relational database paradigm:

OrderData
startDate
endDate

Customer Invoice

name orderDate

address } 14 shipDate

city shipper

state

postalCode
Lineltem Part
quantity itemCode
price } } description

For more explanation of the notation used in this diagram see Appendix B.

Note that in our database, the relationship between Cust omer and I nvoi ce (and Li nel t emand Part)
might be one-to-zero-or-more rather than one-to-one-or-more; we could have a customer or part that
isn't part of an invoice. However, for the purposes of our document, we'll assume that only the
customers and parts needed to describe the invoices in the document will be included.

Having answered some questions that help us define a model for this data, let's now translate this into

an XML DTD.

Creating the XML DTD

We will approach the writing of the DTD in a manner that reflects the choices we had to make. By
approaching the writing of the DTD methodically, it is easier to see our model build up. Here is the
order in which we will create the DTD:

O Add the defined entities.
0 Add the elements to the entities.

0 Create the relationships.

40

XML Design for Data

Start With the Structures

First, we defined five structures within the invoices. All of the structures we have identified become
elements in our XML DTD, so we start by adding those:

<! ELEMENT Order Data EMPTY>
<! ELEMENT | nvoi ce EMPTY>
<! ELEMENT Custoner EMPTY>
<! ELEMENT Part EMPTY>

<! ELEMENT Li nel tem EMPTY>

Add the Data Points to the Elements

Next, all of the data points we have defined become attributes of the elements with which they are
associated. We'll use the general type of CDATA for all our data points except shi pper — we know all
the permissible values for this data point, so we'll use an enumeration. We also know that all the
information will be required, so all attributes will have the #REQUI RED specifier:

<! ELEMENT Order Data EMPTY>

<! ATTLI ST Order Dat a
start Dat e CDATA #REQUI RED
endDat e CDATA #REQUI RED>

<! ELEMENT | nvoi ce EMPTY>
<I ATTLI ST I nvoi ce
or der Dat e CDATA #REQUI RED
shi pDat e CDATA #REQUI RED
shi pper (FedEx | UPS | USPS) #REQUI RED>

<! ELEMENT Cust omer EMPTY>
<I ATTLI ST Cust omer
nane CDATA #REQUI RED
addr ess CDATA #REQUI RED
city CDATA #REQUI RED
stat e CDATA #REQUI RED
post al Code CDATA #REQUI RED>

<! ELEMENT Part EMPTY>

<! ATTLI ST Part
i t enCode CDATA #REQUI RED
descri pti on CDATA #REQUI RED>

<! ELEMENT Li neltem EMPTY>

<I ATTLI ST Lineltem
quantity CDATA #REQUI RED
price CDATA #REQUI RED>

Incorporate the Relationships

The final thing we need to do is to model the relationships we defined in our structure. This step
requires a certain amount of delicacy, as it's easy to handle this modeling incorrectly. The most
important thing to remember is to always use containment whenever possible, and only resort to
pointing when it is mandated by our business rules or performance requirements. For the purposes of
this exercise, let's assume that we want to keep our documents as small as possible — so we'll use
pointing relationships to avoid the repetition of data.

41

Ch

apter 1

42

You'll recall that we identified four relationships that needed to be modeled:

0 O der Dat a consists of many | nvoi ces. Each | nvoi ce may be associated with only one
Or der Dat a entity.

Q Each I nvoi ce entity has one Cust omer entity associated with it. Each Cust orer entity
may be associated with more than one | nvoi ce.

O Each | nvoi ce has one or more Li nel t ementities associated with it. Each Li nel t em
entity appears on exactly one | nvoi ce.

0 Each Li nel t ementity has one Part entity associated with it. Each Part entity may be
associated with more than one Li neltem

The Or der Dat a to | nvoi ce relationship is pretty straightforward; we'll add a child element to the
Or der Dat a element, allowing it to contain one or more | Nvoi ces. Similarly, the relationship between
I nvoi ces and Li nel t ens is handled the same way. This gives us the following structure:

<! ELEMENT OrderData (Il nvoice+)>
<! ATTLI ST O derData
start Dat e CDATA #REQUI RED
endDat e CDATA #REQUI RED>

<! ELEMENT | nvoi ce (Lineltemt)>
<I ATTLI ST | nvoi ce
order Dat e CDATA #REQUI RED
shi pDat e CDATA #REQUI RED
shi pper (FedEx | UPS | USPS) #REQUI RED>

<! ELEMENT Cust oner EMPTY>
<I ATTLI ST Cust oner
nanme CDATA #REQUI RED
addr ess CDATA #REQUI RED
city CDATA #REQUI RED
st at e CDATA #REQUI RED
post al Code CDATA #REQUI RED>

<! ELEMENT Part EMPTY>

<! ATTLI ST Part
i t emCode CDATA #REQUI RED
description CDATA #REQUI RED>

<! ELEMENT Li nel t em EMPTY>

<! ATTLI ST Lineltem
quantity CDATA #REQUI RED
price CDATA #REQUI RED>

For the Cust orrer /I nvoi ce one-to-many relationship, we could include a required Cust ormer element
for each | nvoi ce — but then if two invoices had the same customer we would have to repeat the data.
Instead, we'll create an | DREF attribute on the | nvoi ce element, which points back to the Cust orer
element. Note that when we do this, we still need to have a place to contain the Cust onmer element.

Typically, elements that are only pointed to should be promoted to children of the element for which
they will be in scope. This promotes the reusability of fragments of the master document. For example,
if the Cust onmer element would only be pointed to from one particular | nvoi ce element, it would
appear as a child of that | nvoi ce element, and then the pointing relationship would be redundant. In
our case, it may be pointed to by any of the | nvoi ce elements in the document, and thus should be a
child of the Or der Dat a element.

XML Design for Data

Similarly, the Part /Li nel t emrelationship should be modeled with an | DREF attribute, and the Part
element should appear as a child of the Or der Dat a element.

Naturally, for each element that is pointed to, we need to add an | D attribute to be the target of the
pointer. (Remember, one of our design constraints was that the document needed to be kept as small as
possible, which is why we're using this approach instead of using repeated structures.)

So, we are left with the following final structure for our data model (ch03_ex5. dt d):

<I ELEMENT OrderData (Invoice+, Custoner+, Part+)>
<! ATTLI ST OrderData

start Dat e CDATA #REQUI RED

endDat e CDATA #REQUI RED>

<! ELEMENT I nvoi ce (Lineltem+)>
<I ATTLI ST I nvoi ce
order Dat e CDATA #REQUI RED
shi pDat e CDATA #REQUI RED
shi pper (FedEx | UPS | USPS) #REQUI RED
cust omer | DREF | DREF #REQUI RED>

<! ELEMENT Cust omer EMPTY>

<! ATTLI ST Cust oner
custoner| D | D #REQUI RED
nanme CDATA #REQUI RED
addr ess CDATA #REQUI RED
city CDATA #REQUI RED
state CDATA #REQUI RED
post al Code CDATA #REQUI RED>

<! ELEMENT Part EMPTY>

<I ATTLI ST Part
part| D | D #REQUI RED
i t emCode CDATA #REQUI RED
descri pti on CDATA #REQUI RED>

<! ELEMENT Li nel tem EMPTY>

<I ATTLI ST Lineltem
quantity CDATA #REQU RED
price CDATA #REQUI RED
part | DREF | DREF #REQUI RED>

and that's all there is to it.

Sample XML Documents

We've covered our entities, our attributes, and our relationships, and built a structure suitable for our
needs. Let's see how those two sample invoices would be represented in an XML document based on
the structures we've defined (ch02_ex5. xn):

<?xm version="1.0" ?>
<I DOCTYPE OrderData SYSTEM "http://nyserver/xm db/ch02_ex5. dtd">

<Or der Dat a
start Dat e="9/ 12/ 2000"
endDat e="9/ 13/ 2000" >
<l nvoi ce
or der Dat e="9/ 12/ 2000"

43

Chapter 1

shi pDat e="9/ 13/ 2000"
shi pper =" FedEx"
cust omer | DREF=" cust oner 1" >

<Li nel tem
quantity="17"
price="0.10"
part| DREF="part1" />
<Li nel tem
quantity="22"
price="0.05"

part| DREF="part2" />
</1nvoi ce>
<l nvoi ce
or der Dat e="9/ 12/ 2000"
shi pDat e="9/ 13/ 2000"
shi pper =" UPS"
cust omer | DREF=" cust oner 2" >

<Li nel tem
quantity="11"
price="0.10"
part| DREF="part1" />
<Li nel tem
quantity="9"
price="0. 20"

part| DREF="part3" />
</l nvoi ce>
<Cust oner
cust omer | D="cust oner 1"
nane="Kevin WIIians"
address="742 Evergreen Terrace"
city="Springfield"

st at e=" KY"
post al Code="12345" />
<Cust omer

cust oner | D="cust oner 2"
nane="Honer J. Sinpson"

addr ess="742 Evergreen Terrace"
city="Springfield"

st at e=" KY"
post al Code="12345" />
<Part

partl D="part 1"

i t enCode="1A2A3AB"

descripti on="Wdget (3 inch)" />
<Part

part| D="part 2"

i t enCode="2B3CDCB"

description="G omet (0.5 inch)" />
<Part

part| D="part 3"

i t enCode="3D1F2GX"

descri pti on="Sprocket (2 inch)" />

</ Or der Dat a>

As you can see, the structure is human-readable and straightforward. The use of human-readable IDs
makes it easy for someone to understand what part or customer each | DREF is pointing to. We have
captured the structure, the data points, and the relationships we identified in the first part of the
development process, and minimized the repetition of data through the use of the pointing relationships.

44

XML Design for Data

Summary

In this chapter, we've taken a look at some good strategies for the design of XML structures to support
data. We've seen how audience and performance considerations can influence our designs, and taken a
look at some ways in which we can standardize our XML structures for consistency and best behavior.

To begin with, we discussed the differences between XML used for marking up text documents, and
that used for the representation of raw data. In this book, we'll be concentrating on the latter. The main
difference is that the order in which content is presented is less important in the case of data, so we have
more flexibility when it comes to designing the structure.

We then moved on to look at XML representations of data in more detail, and saw how we can map
data between relational databases and XML:

O

We've seen that the mixed content and ANY content models for elements are not suited to the
representation of data.

The element-only model is useful for nesting elements (structures) — in general, relational
database tables become elements with element-only content.

The text-only and EMPTY models can be used to include data points (single values) in our
documents. However, we can also use attributes when representing individual data points, and
we argue that there are good reasons to why (most of the time) using attributes is the best
method.

One-to-one and one-to-many relationships between two elements are generally best
represented by containment.

Relationships can also be represented by pointers (an | D/l DREF pair). This can be especially
useful in complex many-to-many relationships, and where document size is an issue.
However, caution should be exercised when using pointers, as they can have a profound
impact on processing performance and complexity.

Using the information presented in this chapter, we should be able to design an XML structure to model
any set of structured data we
might encounter. We'll look at designing XML structures for existing databases in the next chapter.

45

Chapter 1

46

-

/7

S

XML Structures for Existing
Databases

In this chapter, we will examine some approaches for taking an existing relational database and moving
it to XML.

With much of our business data stored in relational databases, there are going to be a number of reasons
why we might want to expose that data as XML:

Sharing business data with other systems.

Interoperability with incompatible systems.

Exposing legacy data to applications that use XML.

Business-to-business transactions.

Object persistence using XML.

O o o o o o

Content syndication.

Relational databases are a mature technology, which, as they have evolved, have enabled users to
model complex relationships between data that they need to store. In this chapter, we will see how to
model some of the complex data structures that are stored in relational databases in XML documents.

To do this, we will be looking at some database structures, and then creating content models using
XML DTDs. We will also show some sample content for the data in XML to illustrate this. In the
process, we will come up with a set of guidelines that will prove helpful when creating XML
models for relational data.

Chapter 2

Note that there are some mechanisms out there already that provide a "default”" way to derive XML
from existing relational database structures. ADO 2.5 will return a "flattened" recordset in an XML
representation, while SQL Server 2000 provides direct extraction of joined structures as XML.
However, these technologies are still maturing, and can't handle more complex situations, like many-to-
many relationships, that must be represented by IDREF-ID pointers. In this chapter, we'll see how
structures can be handcrafted to properly represent these types of relationships. We will tune our

structures to maximize performance, and minimize document size.

Migrating a Database to XML

In this chapter, we'll be using an example to see how the rules we are creating would be applied in a
real-world situation. The structure we'll be migrating to XML is an invoice tracking and reporting

system, and looks like this:

Our invoice database maintains information about invoices submitted by customers, and the parts
ordered on those invoices, as well as some summary information about those parts. We'll create our
XML structure to hold this information.

Please note that as we're building up our structure over the course of the chapter, some processors
may balk at the resultant DTDs created - specifically those that detect orphan element declarations
- but the final product should be handled properly by any processor.

48

ShipMethod Invoice Customer

ShipMethodType CustomerKey CustomerKey

Description InvoiceKey Name
InvoiceNumber Address
TrackingNumber City
Orderdate State
ShipDate PostalCode
ShipMethodType

Part Lineltem

PartKey InvoiceKey

PartNumber Partkey

Name Quantity

Color Price

Size

MonthlyPartTotal MonthlyTotal MonthlyCustomerTotal

Month Month Month

Year Year Year

PartKey VolumeShipped CustomerKey

VolumeShipped
PriceShipped

PriceShipped

VolumeShipped
PriceShipped

XML Structures for Existing Databases

Scoping the XML Document

The first rule when designing an XML structure to hold relational information is to decide what the
scope of the document is. The scope refers to the data and relationships that we want to reproduce when
creating our XML document - after all, when exposing the database content, we may not need all of the
data that the database stores.

If we think about executing a query against a database, we may only require a subset of the information
that it holds. For example, an e-commerce site stores data with relationships that model everything the
customer has bought in the past, as well as current orders being processed. If we were writing a CRM
application, we would not necessarily need to retrieve all of their past purchases — only those that had
recently been placed.

In short, the scope of the document that we are creating is driven by business requirements — what the
data is going to be used for, and how it is going to be used — and these business requirements may vary
widely.

For example, our business requirement could be to transmit information to our accounting office about
summarizing the monthly invoice totals, as well as a customer-by-customer breakdown so that billing
may be performed. In this case, we may want to send only a certain subset of the information to our
accounting office (the shaded tables):

ShipMethod Invoice Customer

ShipMethodType CustomerKey CustomerKey

Description InvoiceKey Name
InvoiceNumber Address
TrackingNumber City
Orderdate State
ShipDate PostalCode
ShipMethodType

Part Lineltem

PartKey InvoiceKey

PartNumber PartKey

Name Quantity

Color Price

Size

MonthlyPartTotal MonthlyTotal MonthlyCustomerTotal

Month Month Month

Year Year Year

PartKey VolumeShipped CustomerKey

VolumeShipped
PriceShipped

PriceShipped

VolumeShipped
PriceShipped

49

Chapter 2

An alternative business requirement might be to transmit an XML copy of an invoice to a customer
each time a new invoice is submitted, in which case the subset of the information we would be
transmitting might look like this:

ShipMethod Invoice Customer
ShipMethodType CustomerKey CustomerKey
Description InvoiceKey Name
InvoiceNumber Address
TrackingNumber City
Orderdate State
ShipDate PostalCode
ShipMethodType
Part Lineltem
PartKey InvoiceKey
PartNumber PartKey
Name Quantity
Color Price
Size
MonthlyPartTotal MonthlyTotal MonthlyCustomerTotal
Month Month Month
Year Year Year
PartKey VolumeShipped CustomerKey
VolumeShipped PriceShipped VolumeShipped
PriceShipped PriceShipped

Additionally, we might want to control the specific columns that are transmitted. For example, say our
customer wanted to query a product they had ordered; they have their invoice number to identify their
purchase, but they aren't necessarily going to care about the invoice tracking number that our
application uses internally. The extra number may in fact confuse them more.

By identifying the specific set of tables and columns that are going to be transmitted, we can start to
get a feel for how the XML document needs to be laid out. If we happen to have access to a logical
data diagram of the database, such as an ErWIN model, it can also be very helpful when constructing
our XML.

Rule 1: Choose the Data to Include.

Based on the business requirement the XML document will be fulfilling, decide
which tables and columns from our relational database will need to beincluded in
our documents.

For the purposes of our example, we'll assume that all the information in our structure is relevant to the
process (with the exception of the system-generated keys, which we can discard).

50

XML Structures for Existing Databases

Creating the Root Element

Once we've clarified the scope of the document that we need to create, which may be driven by
business needs, we need to create the root element within which our XML representation of the data is
nested.

For our example, we'll create a root element called <Sal esDat a> to hold the other elements we will
create:

<Sal esDat a>
...other elenents go here
</ Sal esDat a>

It's also possible that we may want to add some information to our XML document that isn't part of our
relational database. This information might be used to indicate transmittal, routing, or behavioral
information. For example, we might want to add a source attribute, so that the consuming process can
decide which custom handler needs to be run to parse the document being passed. If we choose to add
information about the document like this, it makes the most sense to add it as attributes of the root
element we create. As we'll see in Chapter 18, many of the emergent XML servers (such as BizTalk)
provide just such a mechanism, known as the envelope.

For our example, we'll add an attribute to our root element, to govern what the consuming processor
should do with the document when it is received. Specifically, we'll add a St at us attribute. This
attribute will let the processor know whether the information in the document is new, an update to
existing data, or a courtesy copy.

So far then, we have the following structure:

<! ELEMENT Sal esData EMPTY>
<! ATTLI ST Sal esDat a
Status (NewVersion | UpdatedVersion | CourtesyCopy) #REQU RED>

Rule 2: Create a Root Element.

Create aroot element for the document. Add the root element to our DTD, and
declare any attributes of that element that are required to hold additional semantic
information (such asrouting information). Root element's names should describe
their content.

Model the Tables

Having defined our root element, the next step is to model the tables that we've chosen to include in
our XML document. As we saw in the last chapter, tables map directly to elements in XML.

Loosely speaking, these tables should either be:

O Content tables, which, for our purposes, simply contain a set of records (for example, all the
customer addresses for a certain company).

O Lookup tables, which contain a list of ID-description pairs, that are used to further classify
information, in a particular row of a table, by storing a description for each ID encountered in
a content table. Tables such as Shi pMet hod in our example are lookup tables.

51

Chapter 2

52

There is another type of table — a relating table - whose sole purpose is to express a many-to-many
relationship between two other tables. For our purposes, we shall model a table like this as a content
table.

At this stage we will only be modeling content tables. Lookup tables will actually be modeled as
enumerated attributes later in the process.

For each content table that we've chosen to include from our relational database, we will need to create
an element in our DTD. Applying this rule to our example, we'll add the <l nvoi ce>, <Cust oner >,
<Part >, <Mont hl yTot al >, and other elements to our DTD:

<! ELEMENT Sal esData EMPTY>
<I ATTLI ST Sal esDat a
Status (NewMersion | UpdatedVersion | CourtesyCopy) #REQU RED>
<! ELEMENT | nvoi ce EMPTY>
<! ELEMENT Cust onmer EMPTY>
<! ELEMENT Part EMPTY>
<! ELEMENT Mont hl yTotal EMPTY>
<! ELEMENT Mbnt hl yCust oner Tot al EMPTY>
<! ELEMENT Mont hl yPart Total EMPTY>
<! ELEMENT Li nel t em EMPTY>

For the moment, we will just add the element definitions to the DTD. We'll come back to ensure that
they are reflected in the necessary element content models, (including those of the root element), when
we model the relationships between the tables.

Note that we didn't model the Shi pMet hod table, because it's a lookup table. We'll handle this table
in Rule 6.

Rule 3: Model the Content Tables.
Create an element in the DTD for each content table we have chosen to model. Declare
these elements as EMPTY for now.

odel the Nonforeigh Key Columns

Using this rule, we'll create attributes on the elements we have already defined to hold the column
values from our database. In a DTD, these attributes should appear in the ! ATTLI ST declaration of the
element corresponding to the table in which the column appears.

If a column is a foreign key joining to another table, don't include it in this rule — we'll handle foreign
key columns later in the process, when we model the relationships between the elements we have
created.

Declare each attribute created this way as having the type CDATA. If the column is defined in your
database as not allowing NULL values, then make the corresponding attribute #REQUI RED; otherwise,
make the corresponding attribute #| MPLI ED.

We have four choices here. #F| XED means the DTD provides the value. #REQUI RED means it
must appear in the document. #1 MPLI ED means that it may or may not appear in the document.
Finally, a value with these means that the processor must substitute that value for the attribute
if it is not provided in the document. #| MPLI ED is the only way to legitimately leave off an
attribute value.

XML Structures for Existing Databases

If we choose to store table column values as the content of elements, rather than attributes, we can take
the same approach - create an element for each data point, and add it to the content list of the element
for the table in which the column appears. Use no suffix if the column does not allow nulls; or the
optional suffix (?) if the column allows nulls. Be aware that if we take this approach, we'll need to be on
the look out for possible name collisions between columns in different tables with the same name. This
is not an issue when using attributes.

To summarise:

Does the column allow NULL S? Elements Attributes
Allows NULLS Use the ? suffix Declare as #| MPLI ED
Doesn't allow NULLS Use no suffix Declare as #REQUI RED

For our example, remember that we want to keep all the nonforeign key columns, with the exception of
the system-generated primary keys:

<! ELEMENT Sal esData EMPTY>
<I ATTLI ST Sal esDat a
Status (NewVersion | UpdatedVersion | CourtesyCopy) #REQU RED>
<! ELEMENT | nvoi ce EMPTY>
<I ATTLI ST I nvoi ce
I nvoi ceNunber CDATA #REQUI RED
Tracki ngNunber CDATA #REQUI RED
Order Dat e CDATA #REQUI RED
Shi pDat e CDATA #REQUI RED>
<! ELEMENT Cust oner EMPTY>
<I ATTLI ST Cust omer
Nane CDATA #REQUI RED
Addr ess CDATA #REQUI RED
City CDATA #REQUI RED
St at e CDATA #REQUI RED
Post al Code CDATA #REQUI RED>
<! ELEMENT Part EMPTY>
<! ATTLI ST Part
Par t Nunber CDATA #REQUI RED
Name CDATA #REQUI RED
Col or CDATA #REQUI RED
Si ze CDATA #REQUI RED>
<! ELEMENT Mont hl yTotal EMPTY>
<! ATTLI ST Mont hl yTot al
Mont h CDATA #REQUI RED
Year CDATA #REQUI RED
Vol uneShi pped CDATA #REQUI RED
Pri ceShi pped CDATA #REQUI RED>
<! ELEMENT Mont hl yCust oner Total EMPTY>
<! ATTLI ST Mont hl yCust oner Tot al
Vol uneShi pped CDATA #REQUI RED
Pri ceShi pped CDATA #REQUI RED>
<! ELEMENT Mont hl yPart Total EMPTY>
<! ATTLI ST Mont hl yPart Tot al
Vol urreShi pped CDATA #REQUI RED
Pri ceShi pped CDATA #REQUI RED>
<! ELEMENT LI nel t em EMPTY>
<I ATTLI ST Lineltem
Quantity CDATA #REQUI RED
Price CDATA #REQUI RED>

Note that we left off Mont h and Year on the <Mont hl yPart Tot al > and <Mont hl ySummar yTot al >
structures, since these will be dictated by the <Mont hl yTot al > element associated with these elements.

53

Chapter 2

Rule 4: Modeling Nonforeign Key Columns.

Create an attribute for each column we have chosen to includein our XML document
(except foreign key columns). These attributes should appear in the! ATTLI ST
declaration of the element corresponding to the table in which they appear. Declare
each of these attributes as CDATA, and declareit as #1 MPLI ED or #REQUI RED
depending on whether the original column allowed nulls or not.

Adding ID Attributes

The next step is to create an | D attribute for each of the structural (nondata point) elements we have
defined so far in our XML database (with the exception of the root element). This is to uniquely identify
elements that need to be referred to by other elements.

For the name of the attribute, we use the element name followed by | D. This might cause name
collisions with other attributes that have already been added to the XML, in which case we need to
change the names of these as appropriate. These should be defined as being of type | D, and must be
declared as #REQUI RED. If we add these | D attributes to each element for now, we can optionally
remove some from the created XML structures when we come to model all of the relationships.

When populating these structures, a unique ID will need to be created for each instance of an element
that is generated. We need to ensure that these IDs are unique not only across all elements of a specific
type, but across all elements in our document. One way to do this programmatically (assuming that
we're using automatically incremented integers for the primary keys in our database) is to use the
primary key for the row being created, prefixed by the name of the table in which it appears.

For example, for the customer in our database with the ID number 17, we might use the string
Cust oner 17 for the value of the Cust oner | D attribute on the Cust onmer element. If we have
nonnumeric keys in our database, or similar table names with numeric suffixes (like Cust omrer and
Cust oner 1), this may cause name collisions — as always, be on the look out for these.

In our example, then, we have:

<! ELEMENT Sal esData EMPTY>
<! ATTLI ST Sal esDat a
Status (NewMersion | UpdatedVersion | CourtesyCopy) #REQU RED>
<! ELEMENT | nvoi ce EMPTY>
<! ATTLI ST I nvoi ce
I nvoi cel D | D #REQUI RED
I nvoi ceNunber CDATA #REQUI RED
Tracki ngNunber CDATA #REQUI RED
O der Dat e CDATA #REQUI RED
Shi pDat e CDATA #REQUI RED>
<! ELEMENT Cust oner EMPTY>
<! ATTLI ST Cust oner
Custoner | D | D #REQUI RED
Name CDATA #REQUI RED
Addr ess CDATA #REQUI RED
City CDATA #REQUI RED
St at e CDATA #REQUI RED
Post al Code CDATA #REQUI RED>
<! ELEMENT Part EMPTY>
<! ATTLI ST Part
Part| D | D #REQUI RED
Par t Number CDATA #REQUI RED
Name CDATA #REQUI RED
Col or CDATA #REQUI RED
Si ze CDATA #REQUI RED>

54

XML Structures for Existing Databases

<! ELEMENT Mont hl yTotal EMPTY>
<! ATTLI ST Mont hl yTot al
Mont hl yTotal | D | D #REQUI RED
Mont h CDATA #REQUI RED
Year CDATA #REQUI RED
Vol uneShi pped CDATA #REQUI RED
Pri ceShi pped CDATA #REQUI RED>
<! ELEMENT Mont hl yCust oner Tot al EMPTY>
<! ATTLI ST Mont hl yCust oner Tot al
Mont hl yCust oner Tot al | D | D #REQUI RED
Vol umeShi pped CDATA #REQUI RED
Pri ceShi pped CDATA #REQUI RED>
<! ELEMENT Mont hl yPart Tot al EMPTY>
<! ATTLI ST Mont hl yPart Tot al
Mont hl yPart Total | D | D #REQUI RED
Vol urreShi pped CDATA #REQUI RED
Pri ceShi pped CDATA #REQUI RED>
<! ELEMENT LI nel tem EMPTY>
<I ATTLI ST Lineltem
Lineltem D | D #REQUI RED
Quantity CDATA #REQUI RED
Price CDATA #REQUI RED>

Rule 5: Add ID Attributes to the Elements.

Add an ID attribute to each of the elements we have created in our XML structure
(with the exception of theroot element). Use the element name followed by | Dfor the
name of the new attribute, watching as always for name collisions. Declarethe
attribute astype | D, and #REQUI RED.

Handling Foreign Keys

In relational database structures, the only way to show a relationship between data kept in different
tables is via a foreign key. As we saw in the previous chapter, there are two ways to show this
relationship in XML. We can create hierarchical structures, which allow us to use containment to show
relationships between data (where related information is nested inside a parent element). Alternatively,
if we want to keep the XML structures separate — like the tables of a database — we can use an | Dto
point to a corresponding structure that has an | DREF attribute.

Each way has its benefits and drawbacks. Pointing is more flexible than containment, but pointing
relationships may only typically be navigated in one direction by the processor, and tend to be slower
than navigating parent-child relationships.

The next thing we need to decide is whether to use containment or pointing to represent the
relationships between our tables. In addition, we need to add the enumerated attributes that correspond
to the lookup tables we are using. Let's see how to do that first.

Add Enumerated Attributes for Lookup Tables

If we have a foreign key in a table that points to a lookup table, we need to add an enumerated attribute
to the element representing the table in which that foreign key appears.

Before we can do so with our example transformation, we need to identify the nature of the
relationships between the tables we have selected to include in our XML structures. For each
relationship, we need to identify:

O Whether it's a lookup or content relationship

0 Whether it is a content relationship, and if so the direction in which it will be navigated

55

Chapter 2

This is important in larger structures because some relationships can be navigated in more than one
direction, depending on how the relationships are arrived at. As a general rule, relationships should be
navigated in the same direction that a program would most often navigate them. For example, in our
case we're much more likely to navigate from | nvoi ce to Li nel t emthan we are to navigate from

Li nel temto I nvoi ce.

We need to determine the direction we'll be navigating between our elements because it determines
where our | D-| DREF relationships should be. Remember that these are effectively unidirectional - it's
relatively easy to traverse a structure from an | DREF value to an | D value, but not the other way
around. Deciding how we will normally be traversing our structures helps us to determine how we
should structure them. If we need to navigate between two elements in either direction, we may need to

add an | DREF in each element pointing back to the other element in the relationship. However, this will

increase document creation time and size.

Since we want our document to support invoices and monthly summary information, we conclude that
we want our relationships to provide a way to navigate from invoices to associated information. For
example, we want to be able to go from an invoice, to its line items, to the part associated with each line
item; or from an invoice, to the customer who ordered it. Under other circumstances, we might order
our relationships differently — for example, if we wanted a customer-centric XML document.

After assessing all the relationships in our structure, we can conclude that the navigation between the
tables looks something like this:

ShipMethod Invoice Customer

ShipMethodType CustomerKey CustomerKey

Description lookup| InvoiceKey __» | Name
InvoiceNumber Address
TrackingNumber City
Orderdate State
ShipDate PostalCode
ShipMethodType

.

56

Part Lineltem

PartKey InvoiceKey

PartNumber ¢ PartKgy

Name Quantity T
Color Price

Size

f

MonthlyPartTotal MonthlyTotal MonthlyCustomerTotal
Month Month Month

Year ¢ Year Year

PartKey VolumeShipped CustomerKey

VolumeShipped
PriceShipped

PriceShipped

VolumeShipped
PriceShipped

XML Structures for Existing Databases

We have a foreign key called Shi pMet hodType pointing to a table called Shi pMet hod, therefore we
need to add an enumerated value for Shi pMet hod to the <l nvoi ce> element. Let's assume that in our
database, the Shi pMet hod table contains the following values:

ShipMethod Description

1 US Postal Service
2 Federal Express
3 UPS

The enumerated attribute should take the name of the lookup table, and should be declared as

#REQUI RED if the foreign key does not allow NULLS, or #I MPLI ED otherwise. The determination of the
allowable values for the enumeration is a subjective process, and will depend on other design
constraints (such as size). The values allowed should typically be human-readable versions of the
description for each record.

So, creating an attribute with allowable enumerated values for the three possible lookup values, and
adding the attribute to the <I nvoi ce> element, gives us this:

<! ELEMENT | nvoi ce EMPTY>
<I ATTLI ST I nvoi ce

I nvoi cel D | D #REQUI RED

I nvoi ceNunber CDATA #REQUI RED

Tracki ngNunber CDATA #REQUI RED

Or der Dat e CDATA #REQUI RED

Shi pDat e CDATA #REQUI RED>

Shi pMet hod (USPS | FedEx | UPS) #REQUI RED>
<! ELEMENT Cust oner EMPTY>

Rule 6: Representing Lookup Tables.

For each foreign key that we have chosen to includein our XML structuresthat
references a lookup table:

1. Create an attribute on the element representing the table in which the foreign key is
found.

2. Givethe attribute the same name asthe table referenced by the foreign key, and
make it #REQUI REDif the foreign key does not allow NULLS or #I MPLI ED otherwise.
3. Makethe attribute of the enumerated list type. The allowable values should be some
human-readable form of the description column for all rowsin the lookup table.

Add Element Content to the Root Element

When we created the root element for the DTD, and added child elements for tables, we did not define
the content models for the elements in the DTD — we said we would cover that when looking at
relationships, and here we are.

The next rule, therefore, is to add the content model for the root element to the DTD. We should add
element content that is appropriate for the type of information we are trying to communicate in our
documents.

57

Chapter 2

For our example, we decided that the primary concepts we want to convey are related to the | nvoi ce
and Mont hl yTot al . When we add the elements representing those contents as allowable element
content for the root element, we get the following:

<! ELEMENT Sal esData (| nvoi ce*, MnthlyTotal *)>
<I' ATTLI ST Sal esDat a

Status (NewMersion | UpdatedVersion | CourtesyCopy) #REQU RED>
<! ELEMENT | nvoi ce EMPTY>

Rule 7: Adding Element Content to Root elements.
Add a child element or elementsto the allowable content of the root element for each
table that models the type of information we want to represent in our document.

Walk the Relationships

The next rule is a little tricky. We need to walk the relationships between the table (or tables) to add
element content or | D-| DREF(S) pairs as appropriate. This process is similar to the process we would
use when walking a tree data structure — we navigate each of the relationships, then each of the
relationships from the children of the previous relationships, and so on, until all the relationships
contained in the subset of tables we have chosen to include in our XML document have been traversed.
Relationships that lead outside of the subset of tables we're representing do not need to be traversed.

Again, when we have a choice of directions in which a relationship may be followed, we do so in the
direction that makes the most business sense — for example, we'll probably need to go from | nvoi ce to
Li nel t empretty frequently, but much less often from Li nel t emto | nvoi ce. On the other hand, a
relationship such as the one between Cust oner and | nvoi ce may need to be walked in either
direction as frequently, making it necessary to define the relationship in both directions. We need to
determine the direction in which the relationships will be walked, in order to determine whether
pointing or containment should be used to represent the relationships.

One-to-One or One-to-Many Relationships

58

First consider the case where a relationship is one-to-one or one-to-many in the direction we selected for
the relationship traversal, and the relationship is the only one in the selected subset of tables where this
table is the destination of a relationship traversal. Then we should represent the relationship by adding
the child element as element content of the parent content.

Assign the multiplicity of the element according to the following table:

If therelationship is Set the multiplicity to
One-to-one ?

One-to-many *

For our example DTD, adding the containment relationships gives us the following:

<! ELEMENT Sal esData (| nvoice*, MnthlyTotal *)>
<I ATTLI ST Sal esDat a

Status (NewMersion | UpdatedVersion | CourtesyCopy) #REQU RED>
<! ELEMENT | nvoi ce (Lineltent)>

XML Structures for Existing Databases

<I ATTLI ST I nvoi ce
I nvoi cel D | D #REQUI RED
I nvoi ceNunber CDATA #REQUI RED
Tracki ngNunmber CDATA #REQUI RED
Or der Dat e CDATA #REQUI RED
Shi pDat e CDATA #REQUI RED>
Shi pMet hod (USPS | FedEx | UPS) #REQUI RED>

<! ELEMENT Mont hl yTotal (Monthl yCustonerTotal *, MonthlyPart Total *) >
<I ATTLI ST Mont hl yTot al

Mont hl yTotal | D | D #REQUI RED

Mont h CDATA #REQUI RED

Year CDATA #REQUI RED

Vol urreShi pped CDATA #REQUI RED

Pri ceShi pped CDATA #REQUI RED>

Rule 8: Adding Relationshipsthrough Containment.

For each relationship we have defined, if therelationship is one-to-one or one-to-many
in thedirection it isbeing navigated, and no other relationship leadsto the child
within the selected subset, then add the child element as element content of the parent
element with the appropriate cardinality.

Many-to-One or Multiple Parent Relationships

If the relationship is many-to-one, or the child has more than one parent, then we need to use pointing
to describe the relationship. This is done by adding an | DREF or | DREFS attribute to the element on
the parent side of the relationship. The | DREF should point to the | D of the child element. If the
relationship is one-to-many, and the child has more than one parent, we should use an | DREFS
attribute instead.

Note that if we have defined a relationship to be navigable in either direction, for the purposes of
this analysis it really counts as two different relationships.

Note that these rules emphasize the use of containment over pointing whenever it is possible. Because of
the inherent performance penalties when using the DOM and SAX with pointing relationships,
containment is almost always the preferred solution. If we have a situation that requires pointing,
however, and its presence in our structures is causing too much slowdown in our processing, we may
want to consider changing the relationship to a containment relationship, and repeating the information
pointed to wherever it would have appeared before.

Applying this rule to our example and adding | DREF/I DREFS attributes, we arrive at the following:

<! ELEMENT Sal esData (I nvoice*, MnthlyTotal *)>
<! ATTLI ST Sal esDat a
Status (NewMersion | UpdatedVersion | CourtesyCopy) #REQU RED>

<! ELEMENT I nvoi ce (Lineltent)>
<! ATTLI ST I nvoi ce

I nvoi cel D | D #REQUI RED

I nvoi ceNunber CDATA #REQUI RED

Tracki ngNunmber CDATA #REQUI RED

59

Chapter 2

O der Dat e CDATA #REQUI RED
Shi pDat e CDATA #REQUI RED
Shi pMet hod (USPS | FedEx | UPS) #REQUI RED
Cust omer | DREF | DREF #REQUI RED>
<I ELEMENT Customer EMPTY>

<! ELEMENT Mbnt hl yCust oner Tot al EMPTY>
<! ATTLI ST Mont hl yCust oner Tot al
Mont hl yCust oner Tot al | D | D #REQUI RED
Vol umeShi pped CDATA #REQUI RED
Pri ceShi pped CDATA #REQUI RED
Cust orer | DREF | DREF #REQUI RED>
<! ELEMENT Mont hl yPart Total EMPTY>
<! ATTLI ST Mont hl yPart Tot al
Mont hl yPart Total | D | D #REQUI RED
Vol umeShi pped CDATA #REQUI RED
Pri ceShi pped CDATA #REQUI RED
Part | DREF | DREF #REQUI RED>
<! ELEMENT Li nel tem EMPTY>
<! ATTLI ST Li neltem
Lineltenm D | D #REQUI RED
Quantity CDATA #REQUI RED
Pri ce CDATA #REQUI RED
Par t | DREF | DREF #REQUI RED>

Rule 9: Adding Relationships using | DREF/I DREFS.

Identify each relationship that is many-to-onein the direction we have defined it, or
whose child isthe child in more than onerelationship we have defined. For each of
these relationships, add an | DREF or | DREFS attributeto the element on the parent
side of the relationship, which pointsto the | D of the element on the child side of the
relationship.

We're getting close to our final result, but there are still a couple of things we need to do to finalize the
structure. We'll see how this is done in the next couple of sections.

Add Missing Elements to the Root Element

60

A significant flaw may have been noticed in the final structure we arrived at in the last section — when
building documents using this DTD, there's no place to add a <Cust orer > element. It's not the root
element of the document, and it doesn't appear in any of the element content models of any of the other
elements in the structure. This is because it is only pointed to, not contained.

Elements that turn out to only be referenced by | DREF(S) need to be added as allowable element
content to the root element of the DTD. Then, when creating the document, the orphaned elements are
created within the root element and then pointed to, where appropriate.

Applying this rule to our example, we see that we are missing the <Cust ormer > and <Par t > elements.
Adding these as allowable structural content to our root element gives us:

XML Structures for Existing Databases

<! ELEMENT Sal esData (Invoice*, Custoner*, Part*, MnthlyTotal *)>
<! ATTLI ST Sal esDat a

Status (NewMersion | UpdatedVersion | CourtesyCopy) #REQU RED>
<! ELEMENT I nvoi ce (Lineltent)>

Rule 10: Add Missing Elements.

For any element that isonly pointed to in the structure created so far, add that
element as allowable element content of the root element. Set the cardinality suffix of
the element being added to *.

Discard Unreferenced ID attributes

Finally, we need to discard those | D attributes that we created in Rule 5 that do not have | DREF(S)
pointing to them. Since we created these attributes in the process of building the XML structures,
discarding them if they are not used does not sacrifice information, and saves developers the trouble of
generating unique values for the attributes.

Rule 11: Remove Unwanted | D Attributes.
Remove | D attributesthat are not referenced by | DREF or | DREFS attributes
elsewherein the XML structures.

Applying Rule 11 to our example gives us our final structure. On review, the | nvoi cel D,

Li nel tem D, Mont hl yPart Tot al | D, Mont hl yTot al | D, and Mont hl yCust oner Tot al | D attributes
are not referenced by any | DREF or | DREFS attributes. Removing them, we arrive at our final structure,
ch03_ex01. dt d:

<! ELEMENT Sal esData (Invoice*, Custoner*, Part*, MnthlyTotal *)>
<I ATTLI ST Sal esDat a
Status (NewMersion | UpdatedVersion | CourtesyCopy) #REQUI RED>
<! ELEMENT I nvoi ce (Lineltent)>
<I ATTLI ST I nvoi ce
I nvoi ceNunmber CDATA #REQUI RED
Tr acki ngNunber CDATA #REQUI RED
Or der Dat e CDATA #REQUI RED
Shi pDat e CDATA #REQUI RED
Shi pMet hod (USPS | FedEx | UPS) #REQUI RED
Cust oner | DREF | DREF #REQUI RED>
<! ELEMENT Cust oner EMPTY>
<I ATTLI ST Cust omer
Custoner| D | D #REQUI RED
Nane CDATA #REQUI RED
Addr ess CDATA #REQUI RED
Cty CDATA #REQUI RED
St at e CDATA #REQUI RED
Post al Code CDATA #REQUI RED>
<! ELEMENT Part EMPTY>
<! ATTLI ST Part
Part | D | D #REQUI RED
Par t Nunber CDATA #REQUI RED
Nane CDATA #REQUI RED

61

Chapter 2

Col or CDATA #REQUI RED
Si ze CDATA #REQUI RED>
<! ELEMENT Mont hl yTotal (Mnthl yCust oner Tot al *, Mont hl yPart Tot al *) >
<I ATTLI ST Mont hl yTot al
Mont h CDATA #REQUI RED
Year CDATA #REQUI RED
Vol uneShi pped CDATA #REQUI RED
Pri ceShi pped CDATA #REQUI RED>
<! ELEMENT Mbnt hl yCust oner Tot al EMPTY>
<I ATTLI ST Mont hl yCust oner Tot al
Vol unesShi pped CDATA #REQUI RED
Pri ceShi pped CDATA #REQUI RED
Cust oner | DREF | DREF #REQUI RED>
<! ELEMENT Mont hl yPart Total EMPTY>
<! ATTLI ST Mont hl yPart Tot al
Vol unmeShi pped CDATA #REQUI RED
Pri ceShi pped CDATA #REQUI RED
Part | DREF | DREF #REQUI RED>
<! ELEMENT Li nel t em EMPTY>
<! ATTLI ST Li neltem
Quantity CDATA #REQUI RED
Price CDATA #REQUI RED
Part | DREF | DREF #REQUI RED>

An Example XML Document

Finally, here's an example of an XML document (ch03_ex01. xni) that would be valid for this DTD:

<?xm version="1.0"?>
<! DOCTYPE Sal esData SYSTEM "http://nyserver/xm db/ ch03_ex01. dtd" >
<Sal esDat a St at us="NewVer si on">
<l nvoi ce | nvoi ceNunber="1"
Tr acki ngNunber =" 1"
Or der Dat e="01012000"
Shi pDat e="07012000"
Shi pMet hod=" FedEx"
Cust oner | DREF=" Cust oner 2" >
<Li neltem Quantity="2"
Price="5"
Part | DREF="Part 2" />
</ I nvoi ce>
<Cust omer Custoner| D="Cust oner 2"
Name="BobSm t h"
Addr ess="2AnyStreet "
C ty="Anyt own"
St at e=" AS"
Post al Code=" ANYCCDE" />
<Part PartlD="Part2"
Par t Nunmber =" 13"

Nane="W nkl e"
Col or =" Red"
Si ze="10" />
<Mont hl yTot al Mont h="January"
Year =" 2000"

Vol uneShi pped="2"
Pri ceShi pped="10">

62

XML Structures for Existing Databases

<Mont hl yCust oner Tot al Vol uneShi pped="5"
Pri ceShi pped="25"
Cust omer | DREF=" Cust oner 2" />
<Mont hl yPart Tot al Vol uneShi pped="28"
Pri ceShi pped="40"
Part | DREF="Part 2" />
</ Mont hl yTot al >
</ Sal esDat a>

Summary

In this chapter, we've seen some guidelines for the creation of XML structures to hold data from
existing relational databases. We've seen that this isn't an exact science, and that many of the decisions
we will make while creating XML structures will entirely depend on the kinds of information we wish to
represent in our documents.

If there's one point in particular we should come away with from this chapter, it's that we need to try to
represent relationships in our XML documents with containment as much as possible. XML is designed
around the concept of containment — the DOM and XSLT treat XML documents as trees, while SAX
and SAX-based parsers treat them as a sequence of branch begin and end events and leaf events. The
more pointing relationships we use, the more complicated the navigation of your document will be, and
the more of a performance hit our processor will take — especially if we are using SAX or a SAX-based
parser.

We must bear in mind as we create these structures that there are usually many XML structures that
may be used to represent the same relational database data. The techniques described in this chapter
should allow us to optimize our documents for rapid processing and minimum document size. Using the
techniques discussed in this chapter, and the next, we should be able to easily move information
between our relational database and XML documents.

Here are the eleven rules we have defined for the development of XML structures from relational
database structures:

O Rulel: Choosethe Data to Include.
Based on the business requirement the XML document will be fulfilling, we decide which
tables and columns from your relational database will need to be included in our documents.

O Rule2: Createa Root Element.
Create a root element for the document. We add the root element to our DTD, and declare
any attributes of that element that are required to hold additional semantic information (such
as routing information). Root element's names should describe their content.

O Rule3: Model the Content Tables.
Create an element in the DTD for each content table we have chosen to model. Declare these
elements as EMPTY for now.

O Rule4: Modeling Non-Foreign Key Columns.
Create an attribute for each column we have chosen to include in our XML document (except
foreign key columns). These attributes should appear in the ! ATTLI ST declaration of the
element corresponding to the table in which they appear. Declare each of these attributes as
CDATA, and declare it as #| MPLI ED or #REQUI RED depending on whether the original column
allows NULLS or not.

63

Chapter 2

64

Rule 5: Add ID Attributesto the Elements.

Add an | Dattribute to each of the elements you have created in our XML structure (with the
exception of the root element). Use the element name followed by | D for the name of the new
attribute, watching as always for name collisions. Declare the attribute as type | D, and
#REQUI RED.

Rule 6: Representing Lookup Tables.

For each foreign key that we have chosen to include in our XML structures that references a
lookup table:

1. Create an attribute on the element representing the table in which the foreign key is found.
2. Give the attribute the same name as the table referenced by the foreign key, and make it
#REQUI RED if the foreign key does not allow NULLS or #l MPLI ED otherwise.

3. Make the attribute of the enumerated list type. The allowable values should be some
human-readable form of the description column for all rows in the lookup table.

Rule 7: Adding Element Content to Root elements.
Add a child element or elements to the allowable content of the root element for each table
that models the type of information we want to represent in our document.

Rule 8: Adding Relationships through Containment.

For each relationship we have defined, if the relationship is one-to-one or one-to-many in the
direction it is being navigated, and no other relationship leads to the child within the selected
subset, then add the child element as element content of the parent element with the
appropriate cardinality.

Rule 9: Adding Relationships using IDREF/IDREFS.

Identify each relationship that is many-to-one in the direction we have defined it, or whose
child is the child in more than one relationship we have defined. For each of these
relationships, add an | DREF or | DREFS attribute to the element on the parent side of the
relationship, which points to the | D of the element on the child side of the relationship.

Rule 10: Add Missing Elements.

For any element that is only pointed to in the structure created so far, add that element as
allowable element content of the root element. Set the cardinality suffix of the element being
added to *.

Rule 11: Remove Unwanted I D Attributes.
Remove | D attributes that are not referenced by | DREF or | DREFS attributes elsewhere in the

XML structures.

XML Structures for Existing Databases

65

Chapter 2

66

Database Structures for Existing
XML

So far, we have seen some general points on designing XML structures, and how best to design XML
documents to represent existing database structures. In this chapter, we'll take a look at how database
structures can be designed to store the information contained in an already existing XML structure.

There are a number of reasons why we might need to move data from an XML repository to a relational
database. For example, we might have a large amount of data stored in XML that needs to be queried
against. XML (at least with the tools currently available) is not very good at performing queries,
especially queries that require more than one document to be examined. In this case, we might want to
extract the data content (or some portion of it) from the XML repository and move it to a relational
database. Remember that XML's strengths are cross-platform transparency and presentation, while
relational databases are vastly better at searching and summarization. Another good reason why we
might want to move data into relational structures, would be to take advantage of the relational
database's built-in locking and transactional features. Finally, our documents might contain huge
amounts of data - more than we need to access when performing queries and/or summarizing data - and
moving the data to a relational database will allow us to obtain just the data that is of interest to us.

In this chapter, we will see how the various types of element and attribute content that can occur in
XML are modeled in a relational database. In the process of doing this, we will go on to develop a set of
rules that can be used to generically transform XML DTDs into SQL table creation scripts.

Chapter 3

How to Handle the Various DTD Declarations

As we are looking at creating database structures from existing XML structures, we will approach this
chapter by looking at the four types of declarations that may appear in DTDs:
0 element declarations.
0 attributelist declarations.
O entity declarations.
0 notation declarations.

We can then see how each of these types of declaration can best be modeled in relational database
structures. To help us demonstrate this we will create examples that persist XML documents to a SQL
database and show the SQL create scripts. So, let's start with element declarations.

Element Declarations
As we have seen, in DTDs there are five types of element declaration:

O element-only.
O text-only.

o EMPTY.

o M XED.

O ANY.

So, let's look at each of these in turn, and see how each element content model would be modeled in a
relational database.

The Element-only (Structured Content) Model

In this content model, the element may only contain other elements. Let's start with a simple example.

Simple Element Content
In the following DTD (ch03_ex01. dt d) we have a simple content model for an | nvoi ce element:

<! ELEMENT | nvoi ce (Custoner, Lineltent)>
<! ELEMENT Cust oner (#PCDATA)>
<! ELEMENT Li nel t em (#PCDATA) >

The | nvoi ce element can have two child elements, a Cust oner, and zero or more Li nel tem
elements. So, let's see some sample XML that this DTD describes (ch03_ex01. xni):

<?xm version="1.0"7?>
<I DOCTYPE | i sting SYSTEM "ch03_ex01.dtd" >

<l nvoi ce>
<Cust onmer > </ Cust oner >
<Li neltenr </Lineltenr
<Li neltenr </Lineltenr
</1nvoi ce>

68

Database Structures for Existing XML

This type of element is naturally represented in a relational database by a set of tables.

We can model the relationships between the element and its child element(s) by including a reference
from the subelement table back to the element table, in ch03_ex01. sql , as follows:

CREATE TABLE Cust oner (
Cust omer Key i nteger PRI MARY KEY

)

CREATE TABLE | nvoice (
I nvoi ceKey i nteger PRI MARY KEY,
Cust omer Key i nt eger
CONSTRAI NT FK_I nvoi ce_Cust oner FOREI GN KEY (Cust omner Key)

REFERENCES Cust onmer (Cust oner Key)
)

CREATE TABLE Lineltem (
Li nel tenKey i nt eger,
| nvoi ceKey i nt eger
CONSTRAI NT FK_Li neltem.| nvoi ce FOREI GN KEY (I nvoi ceKey)

REFERENCES | nvoi ce (| nvoi ceKey)
)

When the above script is run, it creates the following set of tables:

Invoice
InvoiceKey | Customerkey |
a3 A
Lineltem Customer
LineltemKey [InvoiceKey | CustomerKey |
> 1 »

Note that we've added key columns to each table; the relationship between the foreign keys in the
Cust orer and Li nel t emtables, and the primary key in the | nvoi ce table, as indicated by the arrows.

It's good practice when developing relational databases to keep a "data-clear" ID (a value that does not
contain application data, but that uniquely identifies each record) on each table. Since XML doesn't
provide an ID per se (ID attributes are handled a little differently, as we'll see later), it makes sense to
generate one whenever a row is added to one of our relational database tables.

Rule 1: Always Createa Primary Key.

Whenever creating atablein therelational database:

1. Add a column to it that holds an automatically incremented integer.
2. Name the column after the element with Key appended.

3. Set thiscolumn to be the primary key on the created table.

Note that there isn't any way in the table creation script to specify that each invoice must have
exactly one customer, or each invoice may have zero or more line items. This means that it is
technically possible to populate the relational structures with data that could not be used to create a
valid XML document:

69

Chapter 3

Invoice

InvoiceKey | CustomerKey |
| #]1 4
¥*
P Customer
Lineltem CustomerKey |
LineltemKey [InvoiceKey | &1
] >

So, while this data set is perfectly acceptable given the table structures we have defined, it is not valid
given the XML constraints we have defined - there are no line items associated with invoice 1. If we
want to enforce more strict rules such as this in our relational database, we'll need to add triggers or
other mechanisms to do so.

So, we have seen how we can transfer a simple content model to a relational structure, but that it is not
possible to enforce the rules of the DTD unless we use a trigger or some other code mechanism to
enforce those rules. Next, let's look at what happens with a more complex content model.

Elements That Contain One Element OR Another

We can have greater problems when defining more complex relationships in XML that cannot be
represented in table creation scripts. For example, say we had this hypothetical data model:

<IELEMENT A (B | (C, D)>
<IELEMENT B (...)>
<IELEMENT C (...)>
<IELEMENT D (...)>

Here element A can contain either element B or element C followed by element D. The best we can do
with this sample structure is something like this:

CREATE TABLE A (
AKey i nt eger,
)

CREATE TABLE B (
BKey i nt eger,
AKey i nt eger,
)

CREATE TABLE C (
CKey i nt eger,
AKey i nt eger,
)

CREATE TABLE D (
DKey i nt eger,
AKey i nt eger,
)

The table structure produced by the above script looks like this:

[[oKey [aKey |
(]

II‘% [aKey
I__L'Ler [AKey |

70

Database Structures for Existing XML

Because there's no way we can enforce the "choice" mechanism in our relational database, there's no
way to specify that for an A row we might have a B row, or that we may have a Crow and a D row, but
that we are not going to get both a B row, and a C and D row.

If we want to enforce more complex relationships like this in our database, we'll need to add triggers or
other logic that prevents nonvalidating cases from occurring. For example, we might add a trigger on
an insertion to the B table that removes the C and D rows for the A row referenced in the B row, and
vice versa.

Rule 2: Basic Table Creation.

For every structural element found in the DTD:

1. Create atablein therelational database.

2. If the structural element has exactly one allowable parent element (or isthe root
element of the DTD), add a column to thetable. This column will be aforeign key that
references the parent element.

3. Maketheforeign key required.

Subelements That Can Be Contained By More Than One Element

An other problem we may run into is where a particular subelement may be contained in more
than one element. Let's take a look at an example (ch03_ex02. dt d) to see how to work around
the problem.

<! ELEMENT I nvoi ce (Custoner, Lineltent)>
<! ELEMENT Cust oner (Address)>

<! ELEMENT Li neltem (Product) >

<! ELEMENT Product (Manufacturer)>

<! ELEMENT Manuf acturer (Address)>

<! ELEMENT Addr ess (#PCDATA) >

The interesting point to note here, is that the Addr ess element can be a child of Cust orer or of
Manuf act ur er . Here is some sample XML that represents the structure in this DTD,
ch03_ex02. xmi :

<?xm version="1.0"?>
<! DOCTYPE |isting SYSTEM "ch03_ex02.dtd" >

<l nvoi ce>

<Cust omer >
<Addr ess> </ Addr ess>
</ Cust oner >

<Li nel t enmr»
<Pr oduct >
<Manuf act ur er >
<Addr ess> </ Addr ess>
</ Manuf act ur er >
</ Pr oduct >
</ Li nel ten»

<Li nel t enr»
</ Li nel ten»

</l nvoi ce>

71

Chapter 3

In this case, how do we represent the Addr ess element? We can't simply add an Addr ess table that
has both a Manuf act ur er Key and a Cust oner Key (as we did in the first example when Cust oner
and Li nel t emwere both foreign keys to | nvoi ce). If we did this we would associate the manufacturer
with the same address as the customer — by enforcing the foreign keys, we would always have to
associate both records with a particular address.

To overcome this problem, we have to adopt a slightly different approach. There is more than one
solution to this problem, so let's start off by looking at what happens if we do not add a foreign key.

Don't Add the Foreign Key

The first way to get around this problem would be to create a structure where the Addr ess table would
contain both the Manuf act ur er Key and Cust oner Key fields, but the foreign key wouldn't be added,
as shown here, in ch03_ex02. sql :

CREATE TABLE Custoner (
Cust oner Key i nt eger,

)

CREATE TABLE Manufacturer (
Manuf act ur er Key i nt eger,

)

CREATE TABLE Address (
Cust oner Key i nteger NULL,
Manuf act urer Key i nteger NULL,
)

Here are the tables that this script would generate:

Customer Manufacturer
CustomerKey | Manufacturerkey |
>l n :
Address
Customerkey [ManufacturerKey I

This would work, but could lead to performance degradation on most relational database platforms

(depending on the way joins are handled internally), and is not typically a good idea. So, let's look at
some other options.

Use an AddressKey Field in Customer and Manufacturer Instead
As another option, we could move the Addr essKey into the Cust orrer and Manuf act ur er tables, as
shown in the following script (ch03_ex03. sql):

CREATE TABLE Address (
Addr essKey i nteger, PRI MARY KEY (AddressKey)
)

72

Database Structures for Existing XML

CREATE TABLE Custoner (
Cust omer Key i nt eger,
Addr essKey i nt eger,

CONSTRAI NT FK_Cust orrer _Addr ess FOREI GN KEY (Addr essKey)
REFERENCES Addr ess (AddressKey))

CREATE TABLE Manufacturer (
Manuf act ur er Key i nt eger,
Addr essKey i nt eger,

CONSTRAI NT FK_Manuf act ur er _Addr ess FORElI GN KEY (Addr essKey)
REFERENCES Addr ess (AddresskKey))

This script serves to create the following table structure:

Customer Manufacturer
CustomerKey | addresskey | Manufacturerkey | AddressKey |
i3 L 5
Address
AddressKey]

This works very well when the Addr ess subelement appears only once in each element. However,
what would happen if the Addr ess subelement could appear more than once in a particular element,
for example maybe we have a separate invoice address and delivery address (in the DTD this could be
represented by the + or * modifier)? Here, one Addr essKey would not then be sufficient, and the
design would not work.

Promote Data Points

If all of the relationships that the subelement participates in are one-to-one, promoting the data points to
the next higher structure is a good solution, as seen in the following, ch03_ex04. sql :

CREATE TABLE Customer (
Cust omer Key i nt eger,
Cust onmer Addr ess var char (30),
CustonmerCity varchar (30),
Cust oner St at e char (2),
Cust omer Post al Code var char (10))

CREATE TABLE Manufacturer (
Manuf act ur er Key i nt eger,
Manuf act ur er Addr ess var char (30),
Manuf acturerCity varchar(30),
Manuf act urer State char(2),
Manuf act ur er Post al Code var char (10))

73

Chapter 3

This script creates the following tables:

Manufacturer
Manufacturerkey [Manufacturerdddress [Manofacturercity [ManufacturerState |ManufacturerPostalCode |
L
Cu=ztomer
Customerkey | Customeraddress [CustomerCity [Customerstate [CustomerPostalCode |
ol

This solution works just as well as moving the foreign key to the parent elements. It may also make
more sense from a relational database perspective (improving query speed) as well. How many
databases have you worked on that stored general address information separate from the other
information about the addressee?

Add Intermediate Tables

This is the most general case, and will handle the situation where multiple addresses may appear for the
same customer or manufacturer - see ch03_ex05. sql , below:

CREATE TABLE Custoner (
Cust oner Key,
o)

CREATE TABLE Manufacturer (
Manuf act ur er Key,

)

CREATE TABLE Address (
Addr essKey,
poo)

CREATE TABLE Cust oner Address (
Cust oner Key,
Addr essKey)
CONSTRAI NT FK_Cust oner Addr ess_Cust oner FOREI GN KEY (Cust oner Key)

REFERENCES Cust onmer (Cust oner Key)
CONSTRAI NT FK_Cust oer Addr ess_Addr ess FOREI GN KEY (Addr essKey)

REFERENCES Addr ess (Addr essKey)

CREATE TABLE Manuf act ur er Address (
Manuf act ur er Key,
Addr essKey)
CONSTRAI NT FK_Manuf act ur er Addr ess_Manuf act urer FOREI GN KEY (Manuf act ur er Key)

REFERENCES Manuf act urer (Manuf act ur er Key)
CONSTRAI NT FK_Manuf act ur er Addr ess_Addr ess FOREI GN KEY (Addr essKey)

REFERENCES Addr ess (Addr essKey)

This creates the table structure shown below:

Customer CustomerAddress
Customerkey] Customerkey | AddressKey]
> — ==
Address
AddressKey |
A >
Manufacturer ManufacturerAddress
ManuFacturerk [[Manufacturerkey |AddressKey]
+ 0

74

Database Structures for Existing XML

It is worth noting, however, that this will cause significant performance degradation when retrieving an
address associated with a particular customer or manufacturer, because the query engine will need to
locate the record in the intermediate table before it can retrieve the final result. However, this solution
is also the most flexible in terms of how items of data may be related to one another. Our approach will
vary depending on the needs of our particular solution.

Conclusion

We have seen several solutions for representing different element content models. When dealing with
element-only content, we have seen that we should create a table in our database for each element.
However, because of the constraints that a DTD can impose upon the XML it is describing, it can be
difficult to model these in the database.

Hopefully we should not have to encounter the last situation we looked at — where an element can be a
child of more than one element and that it can have different content — too often. But if we do have to
deal with it, when possible we should try to move the foreign key into the parent elements (the second
solution we presented) or promote the data points in the subelement (the third solution). If not, then we
should go with the intermediate table solution and be aware of the inherent performance consequences.

Rule 3: Handling Multiple Parent Elements.

If aparticular element may have more than one parent element, and the element may
occur in the parent element zero times or one time:

1. Add aforeign key to the table representing the parent element that pointsto the
corresponding record in the child table, making it optional or required as makes
sense.

2. If the element may occur zer o-or-more or one-or-mor e times, add an intermediate
table to the database that expressesthe relationship between the parent element and
this element.

So, we've seen how to create tables that represent structural content for elements, and how to link them
to other structural content. But that only works for subelements that do not have the text-only content
model. Let's see how to handle text only next.

The Text-only Content Model

If we have an element that has text-only content, it should be represented by a column in our database
added to the table corresponding to the element in which it appears. Let's look at an example DTD
(ch03_ex06. dt d):

<l ELEMENT Custoner (Nane, Address, City?, State?, Postal Code)>
<! ELEMENT Nane (#PCDATA) >

<! ELEMENT Address (#PCDATA) >

<IELEMENT City (#PCDATA) >

<! ELEMENT State (#PCDATA) >

<! ELEMENT Post al Code (#PCDATA) >

Here we are trying to store the customer details. For example, here is some sample XML
(ch03_ex06. xm):

<?xm version="1.0"?>
<! DOCTYPE |isting SYSTEM "ch03_ex06. dtd" >

75

Chapter 3

<Cust oner >
<Nane> </ Nane>
<Addr ess> </ Addr ess>
<City> </Cty>
<State> </ St ate>
<Post al Code> </ Post al Code>
</ Cust oner >

The corresponding table creation script (ch03_ex06. sql) might look like this:

CREATE TABLE Custoner (
Cust oner Key i nt eger,
Nanme var char (50),

Addr ess var char (100),
City varchar (50) NULL,
State char(2) NULL,
Post al Code varchar (10))

which would create the following table:

Cusktomerkey [Mame [address [ity [State [PostalCode

L b
Note that we have arbitrarily assigned sizes to the various columns. Remember that DTDs are
extremely weakly typed - all we know is that each of these elements may contain a string of unknown
size. If we want to impose constraints like these on our database, we need to make sure that any XML
documents we store in these structures meet the constraints we have imposed. If we choose to use XML
Schemas (once they become available), this problem will disappear.

Since Ci ty and St at e are optional fields in our Cust omer structure, we've allowed them to be NULL
in our table - if the elements have no value in the XML document, set the appropriate columns to NULL
in the table.

Rule 4: Representing Text-Only Elements.

If an element istext-only, and may appear in a particular parent element once
at most:

1. Add a column to the table representing the parent element to hold the content
of this element.

2. Make surethat the size of the column created is large enough to hold the
anticipated content of the element.

3. If the element is optional, make the column nullable.

This covers elements that are specified with either no modifier or the ? modifier, but there will be cases
where we will have something more complex.

Multiple Text-Only Elements

There may be times when we have to deal with more than one text-only element. Let's look at an
example where we can have more than one customer name (ch4_ex07. dt d):

76

Database Structures for Existing XML

<I ELEMENT Custoner (Nane+, Address, City?, State?, Postal Code)>
<! ELEMENT Nane (#PCDATA) >

<! ELEMENT Address (#PCDATA) >

<! ELEMENT City (#PCDATA) >

<! ELEMENT State (#PCDATA) >

<! ELEMENT Post al Code (#PCDATA) >

Here, we actually need to add another table to represent the customer name:

CREATE TABLE Customer (
Cust oner Key i nt eger,
Addr ess var char (100),
City varchar (50) NULL,
State char(2) NULL,
Post al Code varchar (10),
PRI MARY KEY (Cust oner Key))

CREATE TABLE Cust onmer Nane (
Cust omer Key i nt eger,
Nane var char (50)
CONSTRAI NT FK_Cust orrer Name_Cust omrer FOREI GN KEY (Cust oner Key)

REFERENCES Cust oner (Custoner Key))

This script gives us the following table structure:

Customer

CustomerKey [Address [City [State [PostalCode |

>

CustomerName
CustomerKey [Name
» v

A A

For each instance of the child Nane element under the Cust onmer element, a new record is added to
the Cust omer Nane table with a Cust ormer Key linking back to that Cust omer element.

Note that if this text-only element may appear in more than one parent element, we need to add an
intermediate table (similar to the one we used in Rule 3) to show the relationship between the parent
element and the child element.

Rule 5: Representing Multiple Text Only Elements

If an element istext-only, and it may appear in a parent element more than once:

1. Create atableto hold the text values of the element and a foreign key that relates
them back to their parent element.

2. And if the element may appear in mor e than one parent element more than once,
create intermediate tablesto express the relationship between each parent element
and this element.

77

Ch

apter 3

Note that the three preceding rules will often need to be used at the same time. For example, in an
XML structure that uses text-only elements to represent data we might have the following:

<! ELEMENT I nvoi ce (InvoiceDate, |nvoiceNunber, Custoner, Lineltent)>
<! ELEMENT Custoner (...)>

<I ELEMENT Lineltem (...)>

<! ELEMENT | nvoi ceDat e (#PCDATA) >

<! ELEMENT | nvoi ceNunber (#PCDATA) >

In this case, applying both parts of rule 5 simultaneously yields the following structure,
(ch03_ex08. sql):

CREATE TABLE | nvoi ce (
I nvoi ceKey i nt eger,
I nvoi ceDat e dateti e,
I nvoi ceNunber i nteger,
PRI MARY KEY (I nvoi ceKey))

CREATE TABLE Custoner (
Cust oner Key i nt eger,
I nvoi ceKey i nt eger,

CONSTRAI NT FK_Cust omer _I nvoi ce FOREI GN KEY (| nvoi ceKey)
REFERENCES | nvoi ce (I nvoi ceKey))

CREATE TABLE Lineltem (
Li nel t enKey i nt eger,
I nvoi ceKey i nt eger,

CONSTRAI NT FK_Li neltem| nvoi ce FOREI GN KEY (| nvoi ceKey)
REFERENCES | nvoi ce (I nvoi ceKey))

This script would generate the following tables:

Customer

CustomerKey | InvoiceKey i
53

Invoice
InvoiceKey [InvoiceDate [Invoicehumber |
> >

Lineltemn

LineltemKey [InvoiceKey |

i3

Designing our structures with these intermediate tables, will allow us to express the multiple
occurrences of a text element, within a parent element, in our relational database.

The EMPTY Content Model

78

In a system where attributes are used to contain data points, the EMPTY content model will often be
encountered. An element with the EMPTY content model should be modeled as a table - columns in that
table will come either from this element's relationships with its parents (foreign keys) or any attributes
associated with this element (which we'll discuss a little later). For example, we might see the following
structure (ch03_ex09. dt d):

Database Structures for Existing XML

<! ELEMENT Cust omer EMPTY>
<! ATTLI ST Cust oner
Nanme CDATA #REQUI RED
Addr ess CDATA #REQUI RED
City CDATA #l MPLI ED
St at e CDATA #l| MPLI ED
Post al Code CDATA #| MPLI ED>

The following XML (ch03_ex09. xni) can be represented by such a DTD:

<?xm version="1.0"?>
<I DOCTYPE |isting SYSTEM "ch03_ex09. dtd" >

<Cust omer Nanme="Bob"
Addr ess=" Sonewher e"
Ci t y="Sonet own"
St at e=" Sonepl ace"
Post al Code="SC"' />

This would translate to the following script in a relational database (ch03_ex09. sql):

CREATE TABLE Cust omer (
Cust oner Key i nt eger,
Nane var char (50),

Addr ess var char (100),
City varchar (50) NULL,
State char(2) NULL,
Post al Code varchar (10))

which would produce the following table:

Cuskomerkey [Mame [address [ity [State [PostalCode |

k

We'll see more examples of the EMPTY content model when we talk about the proper handling of
attributes.

Rule 6: Handling Empty Elements

For every EMPTY element found in the DTD:

1. Create atablein therelational database.

2. If the structural element has exactly one allowable parent element, add a column to
thetable - this column will be a foreign key that references the parent element.

3. Maketheforeign key required.

These three content models should be the ones we encounter the most often - especially in structures
that were designed to hold data. However, we might be unlucky enough to have to contend with the
mixed or ANY content models - so let's take a look at them next.

79

Chapter 3

The Mixed Content Model

We will remember that an element having the mixed content model provides a list of possible child
elements that may appear, along with text content, in any order and with any frequency. So, for
example, let's look at the model for the paragraph element in XHTML 1.0 (ch03_ex10. dt d):

< ELEMENT p (#PCDATA | a | br | span | bdo | object | ing | map | tt | i | b |
big| small | em| strong | dfn | code | q | sub | sup | sanp |
kbd | var | cite | abbr | acronym| input | select | textarea |
| abel | button | ins | del | script | noscript)*>

Whew! What this means is that a <p> element, in XHTML 1.0, may contain any of the other elements
listed, or text data (#PCDATA), in any combination, in any order. This would not be fun to store in a
relational database, but it is not impossible either. Let's look at one possible solution (ch03_ex10. sql).

CREATE TABLE p (
pKey i nt eger,
PRI MARY KEY (pKey))

CREATE TABLE Tabl eLookup (
Tabl eLookupKey i nt eger,
Tabl eNane var char (255),
PRI MARY KEY (Tabl eLookupKey))

CREATE TABLE Text Content (
Text Cont ent Key i nt eger,
El enent Nane var char (255) NULL,
Text Cont ent var char (255))

CREATE TABLE pSubel enents (
pKey i nt eger
CONSTRAI NT FK_pSubel enment s_p FORElI GN KEY (pKey)
REFERENCES p (pKey),
Tabl eLookupKey i nt eger
CONSTRAI NT FK_pSubel ement s_Tabl eLookup FOREI GN KEY (Tabl eLookupKey)

REFERENCES Tabl eLookup (Tabl eLookupKey),
Tabl eKey i nt eger,
Sequence i nt eger

)

This gives us the following table structure:

p

pKey |
53 4 ;

pSubelements

pKey | TableLookupKey | TableKey | Sequence |

i3
—I ; Cells reference each other
TableLookupKey | | TableName | TextContentKey | |ElementMame | TextContent |
’ v ’ v |

TableLookup TableContent

80

Database Structures for Existing XML

How does this work? Well, the p table corresponds to the <p> element - each <p> element will
correspond to one row in the p table. Beyond that, it gets interesting. Let's see an example before we dig
deeper. Say we use our definition from before:

<IELEMENT p (#PCDATA | a | br | span | bdo | object | ing | map | tt | i | b
big | small | em| strong | dfn | code | g | sub | sup | samp
kbd | var | cite | abbr | acronym| input | select | textarea |
| abel | button | ins | del | script | noscript)*>

For the sake of argument, let's pretend that all the other elements have other structures embedded in
them. We'll discuss how to handle embedded text-only content in a mixed-content model a little later in
the chapter. So, take the following document fragment:

<p>This is sone text. Here's sonmething in bol d, and sonething in
<i>italics</i> And finally, here's the |last of the text.</p>

How do we represent this? Well, we'll have a column in the p table, of course:

pey
F1

*

We will pre-populate the Tabl eLookup table with one row for each element that corresponds to a table
in our database. We will also add a record with a key of O that corresponds to our generic text table,
called Text Cont ent :

Tablelookupkey | TableMame
| |0 Texkcontent
| |1 p
| 12 a
| 13 br
| |4 span
| IS bdo
| |8 object
| |7 img
| |#& map
g a4
| |10 i
| |11 b
| |1z big
| 113 small
| |14 =l
[b |15 strong
| |1& dfn
|17 code
| |18 q
| |19 sub
| |20 sup
| |21 samp
| |2z kbd
] War
| |24 cite
| |25 abbr
| |26 ACKOnYm
| |27 input
| |25 select
| |29 textarea
| |30 label
N button
| |32 ins
| |33 del
| |34 script
| |35 noscripk

*

81

Chapter 3

82

Now, let's take a look at the pSubel erment s table. For each node contained in a particular <p>
element, we'll create a record in this table linking it to the particular bit of information associated with
it. If we decompose the <p> element in our example, we will see that it has the following children:

Text node: "This is some text. Here's something in"
A element
Text node: ", and something in "

An <i > element

o o o o oo

Textnode:". And finally, here's the last of the text."

We represent this in our tables like this:

pSubelements

pKey [TableLookupkey [TableKey [Sequence
] 1 0 1 1 5
] 1 11 1 2 g
] 1 0 2 3 ;
] 1 10 1 4 !
[Z]1 0 3 5
[% | |
Text Content

TextContentKey [ElementName |TextContent |
1 NULL This is some text. Here's something in |
i 2 NULL , and something in |
| #13 NULL here's the last of the text,
L3 |

The pSubel enent s table tells us that there are five pieces of information in the p element. The first,
third, and fifth ones are text - that's why the table lookup ID is 0. To discover the value of these text
strings, we take the Tabl eKey and use it to look up the appropriate text string in the Text Cont ent
table. For the second and fourth pieces of information, we use the value of the Tabl eLookupKeys to
find out what kind of element was found in these positions - a element and an <i > element,

respectively. We can then go to the tables representing those elements to discover what further content
they hold.

Note that there's another column in Text Cont ent that we haven't used yet - the El ement Nane
column. This column should be used if the subelement has a text-only content model. This keeps us
from needing to add another table that simply holds a text value, and is similar to the way we deal with
text-only content for subelements of structural elements.

So, if we take our previous example and assume that all of the possible subelements may only contain
text, we will represent the content in our data tables in this way:

paubelements
phEy | TableLookupkey | Tablekey | sequence

I 0 1 1

1 11 1 2

1] 2 3

1 10 1 4

| #]1] 3 5

| |

Database Structures for Existing XML

TextContent
TextZontentkey | ElementMame | TexbZonkenk
| |1 MUILL This is some bext, Here's something in
| |2 "h" bald
| |3 RILILL , and something in
E " italics
| |5 MUILL . fnd Finally, here's the last of the ket
2

The content definition for the element will tell us what the allowable values for El ement Name and/or
Tabl eLookupKey are. If we want to constrain this in the database, we'll need to add a trigger or some
other mechanism to prevent unacceptable values from appearing in these columns for p elements or
their text subelements.

Rule 7: Representing Mixed Content Elements.

If an element has the mixed content model:

1. Create atable called TableLookup (if it doesn't already exist) and add rows for
each tablein the database. Also add a row zero that pointsto a table called
TextContent.

2. Createthistable with a key, a string representing the element name for text only
elements, and atext value.

3. Next, create two tables - one for the element, and oneto link to the various content
of that element - called the element name, and the element name followed by
subelement, respectively.

4. In the subelement table, add a foreign key that points back to the main element
table, atablelookup key that pointsto the element table for subelement content, a
table key that pointsto the specific row within that table, and a sequence counter that
indicates that subelement or text element's position within this element.

By now, it is probably becoming understandable jus why we should avoid this content model for the
representation of data - the resulting relational structures are difficult to navigate and search, and the
parse and store process is relatively complex. But before we steer back to calmer waters, we need to
briefly discuss the ANY content model.

The ANY Content Model

Fortunately (or unfortunately), the ANY content model is simply a more general case of the specific
mixed content case defined above. The same strategy may be employed to store an element with the
ANY content model - the only difference being that there is no constraint on the allowable values of the
El enent Name and Tabl eLookupKey. The ANY content model, by definition, allows any element
defined in the DTD to appear here. We won't bother with another example here, as the technique for
storing an element with the ANY content model is exactly the same as the technique for storing a mixed-
content element.

83

Chapter 3

Rule 8: Handling the " ANY" Content Elements.

If an element hasthe ANY content model:

1. Createatablecalled TableLookup (if it doesn't already exist) and add rows for
each tablein the database.

2. Add arow zero that pointsto atable called TextContent.

3. Createthistable with a key, a string representing the element name for text-only
elements, and a text value.

4. Create two tables - one for the element and oneto link to the various content of that
element - name these after the element name and the element name followed by
subelement, respectively.

5. In the subelement table, add a foreign key that points back to the main element
table, atablelookup key that pointsto the element table for subelement content, a
table key that pointsto the specific row within that table, and a sequence counter that
indicates that subelement or text element's position within this element.

Next, let's take a look at attributes and how they are represented in a relational database.

Attribute List Declarations

There are six types of attribute that we will need to develop a handling strategy for if we are to store
them in our relational database. These types are:

CDATA

Enumerated lists

ID

| DREF/ | DREFS

NMTOKEN/ NMTOKENS

ENTI TY/ ENTI TI ES

O o o o g o

We'll tackle each one in turn, as we did with the element content models, and see how we can build
structures to persist them.

CDATA

Attributes that are of type CDATA are the ones most commonly encountered. We'll recall, that these
attributes may take any string value. This makes them ideal candidates for columns associated with the
table that was created by the element to which they belong. For example, take this DTD

(ch03_ex11. dt d):

<! ELEMENT Cust oner EMPTY>
<I ATTLI ST Cust oner
Nanme CDATA #REQUI RED
Addr ess CDATA #REQUI RED
Cty CDATA #REQUI RED
St at e CDATA #REQUI RED
Post al Code CDATA #REQUI RED>

84

Database Structures for Existing XML

This would correspond to the following table script (ch03_ex11. sql):

CREATE TABLE Cust omer (
Cust oner Key i nt eger,
Nane var char (50),

Addr ess var char (100),
City varchar (50) NULL,
State char(2) NULL,
Post al Code varchar (10))

which looks like this when run:

Customerkey [Mame [address [City [State [Fostalcode |

]

Remember that the CDATA attribute can be specified as #REQUI RED, #| MPLI ED, or #FI XED. As in the
example above, if a CDATA attribute is specified as #REQUI RED, then its value should be required in the
relational database. However, if it is specified as #| MPLI ED, then its value should be allowed to be
NULL. Attributes that carry the #F| XED specification should probably be discarded, unless your
relational database needs that information for some other purpose (such as documents coming from
various sources, tagged with information on their routing that needs to be tracked).

Rule 9: CDATA Attributes.

For each attribute with a CDATA type:

1. Add a column to thetable corresponding to the element that carriesthat attribute,
and give the table the name of the element.

2. Set the column to be a variable length string, and set its maximum size large enough
to handle expected values of the attribute without exceeding that size.

Rule 10: REQUIRED/IMPLIED/FIXED Attributes.

1. If an attributeis specified as #REQUIRED, then it should berequired in the
database.

2. If theattributeis specified as# MPLIED, then allow nullsin any column that is
created as aresult.

3. If the attribute is specified as #FI XED, it should be stored as it might be needed by
the database, for example, as a constant in a calculation - treat it the same as
#REQUIRED attributes.

Enumerated Lists

When an attribute provides an enumerated list of possible values it may take, we can model that in our
relational database with a lookup table. Take this example where we are specifying the type of
customer:

<! ELEMENT Custoner EMPTY>
<! ATTLI ST Cust oner
Cust omer Type (Conmercial | Consuner | Governnent) #REQUI RED>

Here, the Cust ormer Type attribute must be one of three values: Conmer ci al , Consumner, or
Gover nnent . The following example (ch03_ex12. sql) details the lookup table needed to add these
constraints to this attribute in our database:

85

Ch

apter 3

86

CREATE TABLE Cust oner TypeLookup (
Cust oner Type snmal lint,
Cust oner TypeDesc var char (100)
PRI MARY KEY (Custoner Type))

CREATE TABLE Custoner (
Cust oner Key i nt eger,
Cust oner Type snal | int
CONSTRAI NT FK_Cust onmer _Cust oner TypeLookup FORElI GN KEY (Cust oner Type)
REFERENCES Cust oner TypeLookup (Cust oner Type))

I NSERT Cust oner TypeLookup (Custoner Type, Custoner TypeDesc)
VALUES (1, 'Commercial')

I NSERT Cust oner TypeLookup (Cust oner Type, Custoner TypeDesc)
VALUES (2, 'Consuner')

I NSERT Cust oner TypeLookup (Custoner Type, Custoner TypeDesc)
VALUES (3, 'Governnent')

This script produces the following set of tables:

Customer
CustomerKey [CustomerType |

- ——

CustomerType | [CustomerTypeDesc |

b1 Commercial .
| |2 Consumer ?
[3 Government '
Ed
CustomerTypelookup

Now, any records that are added to the Cust onmer table must map to Cust omer Type values found in

the Cust oner TypeLookup table.

The only caveat when using this technique is to watch out for multiple attributes with the same name

but different allowable values. Take for example this DTD fragment:

<! ELEMENT Cust oner EMPTY>
<I ATTLI ST Cust oner
Cust oner Type (Commercial | Consuner | Governnent) #REQUI RED>

<! ELEMENT | nvoi ce EMPTY>
<! ATTLI ST I nvoi ce
Custoner Type (FirstTime | Regular | Preferred) #REQU RED>

Here, there are two attributes called Cust onmer Type that have different meanings based on the context
of the element to which they are attached. For the Cust omer element, Cust ormrer Type represents the
type of business for the customer; for the | nvoi ce element, Cust omer Type represents the type of
customer for pricing purposes. Obviously we can't just create one table called Cust omer TypeLookup
that contains both lists; instead, two different lookup tables need to be created. One approach when this
happens is to prefix the attribute name with the element name for the purposes of the lookup table - so

Cust oner TypeLookup would become Cust oner Cust onmer TypeLookup and
I nvoi ceCust omer TypeLookup.

Database Structures for Existing XML

Rule 11: ENUMERATED Attribute Values.

For attributes with enumerated values:

1. Create atwo byte integer field that will contain the enumerated value translated to
an integer.

2. Create alookup table with the same name as the attribute and the word L ookup

appended.

3. Insert arow in thistable corresponding to each possible value for the enumer ated
attribute.

4. When inserting rows into the element tablein which the attribute isfound, translate
thevalue of the attribute to theinteger value correspondingtoiit.

ID and IDREF
Attributes that are declared as having type | D are used to uniquely identify elements within an XML
document. Attributes declared with the | DREF type are used to point back to other elements with | D
attributes that match the token in the attribute. There are a couple of approaches we can take to store
ID information, based on the circumstances - here are some examples:

Example 1
In the first example, perhaps the Cust omer | D actually represents a key in the consumer's relational
database.
<! ELEMENT Customer EMPTY>

<! ATTLI ST Cust omer
Cust oner | D | D #REQUI RED>

<Cust oner Custoner| D="Cust3917" />

The information being passed as part of the XML document might be used to insert or update rows into
a relational database, based on whether a row matching the provided key (with Cust omer I D =

" Cust 3917") is available. In this case, we should persist the | D value to the Cust omer | D column,
inserting or updating as necessary.

In the next case, the | Ds (for whatever reason) have meaning outside the context of the XML document
- they indicate whether a particular customer was the billing or shipping customer for this invoice.

<! ELEMENT Cust omer EMPTY>
<! ATTLI ST Cust oner
Cust omer | D | D #REQUI RED>

<Custonmer Custoner!|D="BillingCustoner" />
<Cust onmer Cust oner | D="Shi ppi ngCust oner" />

In this case, the information should be persisted to a non key field as if it were of type CDATA, since the
value itself has meaning (in addition to anything it might point to).

Example 2

In the next example, the Cust ormer | D may be intended only to allow | D- | DREF(S) relationships to
be expressed - the value Cust ormrer One has no intrinsic meaning outside of the context of the
particular XML document in which it appears:

<! ELEMENT Cust omer EMPTY>
<! ATTLI ST Cust oner
Cust onmer | D | D #REQUI RED>

<Cust onmer Custoner| D="Cust oner One" />

87

Chapter 3

In this case, we should store the | Din a lookup table to allow other data to be related back to this
record when | DREF(S) appear that reference it.

Let's expand this example, with the following DTD (ch03_ex12. dt d):

<! ELEMENT Order (Customer, |nvoice)>

<! ELEMENT Cust ormer EMPTY>
<I ATTLI ST Cust oner
Custoner| D | D #REQUI RED>

<! ELEMENT | nvoi ce EMPTY>
<! ATTLI ST I nvoi ce
I nvoi cel D | D #REQUI RED
Cust oner | DREF | DREF #REQUI RED>

and here is some corresponding XML (ch03_ex12. xm):

<?xm version="1.0"7?>
<! DOCTYPE | i sting SYSTEM "ch03 ex12.dtd" >

<Or der >

<Cust onmer Custoner| D="Cust3917" />

<l nvoi ce I nvoi cel D="1nv19283" Cust oner | DREF="Cust 3917" />
</ Or der >

Here we can see how the | D corresponds to the | DREF within the document instance. The customer ID
corresponds with the invoice number. In a database, the | DREF attribute should be represented as a
foreign key pointing back to the row corresponding to the element that contained the | D value.

Let's see how this works in the database. In the following script, ch03_ex12. sql, we create a
Cust omer table and an | nvoi ce table. The | nvoi ce table contains the foreign key, which points
back to the Primary key in the Cust omer table:

CREATE TABLE Custoner (
Cust oner Key i nt eger,
PRI MARY KEY (Cust oner Key))

CREATE TABLE | nvoice (
I nvoi ceKey i nt eger,
Cust oner Key i nt eger
CONSTRAI NT FK_I nvoi ce_Cust omer FOREI GN KEY (Cust oner Key)
REFERENCES Cust onmer (Cust oner Key))

and here is the table structure we have created:

Invoice
InvoiceKey [CustomerKey |

2

Customer
CustomerKey |
| 3 <

Database Structures for Existing XML

When the | nvoi ce element is parsed, we see that there's a reference to a Cust omer element; we then
set the Cust omer Key of the newly created | nvoi ce row to match the Cust omer Key of the customer
whose | D matches the | DREF found in the | nvoi ce element.

Again, we note that the | nvoi ce element might appear in the document before the Cust omer element
it points to, so we must be careful when linking up the foreign keys - we may need to "remember" the
IDs we encounter (and the rows created as a result) while parsing the document so that we can set
foreign keys accordingly.

If we didn't design the XML structures, we should also be on the lookout for | DREF attributes that don't
make it clear what type of element they point back to. For example, the following structure is perfectly
acceptable in XML:

<! ELEMENT Cust omer EMPTY>
<! ATTLI ST Cust omer
Cust oner | D | D #REQUI RED>

<! ELEMENT | nvoi ce EMPTY>
<I ATTLI ST I nvoi ce
I nvoi cel D | D #REQUI RED
Cl i ent| DREF | DREF #REQUI RED>

<Cust oner Custoner| D="Cust3917" />
<l nvoi ce I nvoicel D="1nv19283" d i ent| DREF="Cust 3917" />

In this case, the Cl i ent | DREF actually points back to a Cust onmer element - but this would only be
revealed through some analysis.

Finally, it could be that the XML structure is designed so that an | DREF attribute actually points to
some unknown element type. Take this example (ch03_ex13. dt d):

<l ELEMENT Order (Business, Consumer, |nvoice)>

<! ELEMENT Busi ness EMPTY>
<! ATTLI ST Busi ness
Busi nessl| D | D #REQUI RED>

<!l ELEMENT Consumer EMPTY>
<! ATTLI ST Consuner
Consuner | D | D #REQUI RED>

<! ELEMENT | nvoi ce EMPTY>
<I ATTLI ST I nvoi ce
I nvoi cel D | D #REQUI RED
Cl i ent| DREF | DREF #REQUI RED>

and here is some sample XML (ch03_ex13. xm):

<?xm version="1.0"?>
<I DOCTYPE | i sting SYSTEM "ch03_ex13.dtd" >

<Or der >

<Busi ness Busi nessl D="Bus281" />

<Consuner Consuner| D="Cons27615" />

<l nvoi ce I nvoi cel D="1nv19283" d i ent| DREF="Bus281" />

<l nvoi ce I nvoi cel D="1nv19284" C i ent| DREF="Cons27615" />
</ Order >

89

Chapter 3

In this case, we need to add some sort of discriminator to indicate what element is being pointed to.
This is similar to the way mixed content elements are handled. First, we need to create a lookup table
that contains all the tables in the SQL structures. We then add a Tabl eLookupKey to the | nvoi ce
structure, making it clear which element is being pointed to by the foreign key. This gives us table
creation script (ch03_ex13. sql), as seen below:

CREATE TABLE Tabl eLookup (
Tabl eLookupKey i nt eger,
Tabl eNane var char (255),
PRI MARY KEY(Tabl eLookupKey))

CREATE TABLE Busi ness (
Busi nessKey i nt eger)

CREATE TABLE Consuner (
Consuner Key i nt eger)

CREATE TABLE | nvoice (
I nvoi ceKey i nt eger,
Cl i ent KeyTabl eLookupKey i nt eger,
Cl i ent Key integer
CONSTRAI NT FK_| nvoi ce_Tabl eLookup FORElI GN KEY (Cl i ent KeyTabl eLookupKey)

REFERENCES Tabl eLookup (Tabl eLookupKey))

The resulting tables, when populated with some example values, would then look like this:

Invoice

InvoiceKey | ClientKeyTableLockupKey | ClientKey
]33 1 17
| J |34 2 276
- 4‘
Business
BusinessKey |

TableLookup _& 17
TableLookupKey | [TableName | | L |
1 ¥ BusinessKey

Consumer

2 Consumerkey
| ConsumerkKey |
| & |27

[|

The | nvoi ce table references the Tabl eLookup table through the C i ent KeyTabl eLookupKey
column to find the table name that holds the C i ent Key it needs. The Tabl eLookup table then
references the Busi ness and Consuner tables, and returns the correct O i ent Key value.

Rule 12: Handling I D Attributes.

1. If an attribute with type I D has meaning outside the context of the XML document,
storeit in the database.

2. If it'sarepresentation of the primary key value, we can useit toinsert or update
recordsin the database as necessary.

3. Otherwise, we just hang on to it so that we can link up any IDREF or IDREFS that
point to it elsewherein the document.

20

Database Structures for Existing XML

Rule 13: Handling IDREF Attributes.

1. If an IDREF attributeis present for an element and is known to always point to a
specific element type, add a foreign key to the element that referencesthe primary key
of the element to which the attribute points.

2. If the IDREF attribute may point to morethan one element type, add a table lookup
key that indicates to which table the key corresponds.

IDREFS

Attributes with the | DREFS type have to be handled a little differently, as they allow the expression of
many-to-many relationships. Let's look at an example (ch03_ex14. dt d):

<I ELEMENT Order (Invoice, ltem>

<! ELEMENT | nvoi ce EMPTY>
<I ATTLI ST I nvoi ce
I nvoi cel D | D #REQUI RED>

<! ELEMENT |t em EMPTY>
<IATTLI ST Item
Item D | D #REQUI RED
I nvoi cel DREFS | DREFS #REQUI RED>

We can use this to write some sample XML that illustrates a many-to-many relationship. The | t emwith
the | DI t eml is found on two different invoices, the invoice may contain many different items, and one
item may appear on many different invoices (ch03_ex14. dt d).

<?xm version="1.0"?>
<I DOCTYPE |isting SYSTEM "ch03_ex14.dtd" >

<Or der >
<l nvoi ce I nvoicel D="Inv1l" />
<l nvoi ce I nvoicel D="I1nv2" />
<ItemIltem D="Itenl" I|nvoicel DREFS="Inv1l | nv2" />
<ItemIltem D="1tenR" Invoi cel DREFS="Inv1" />
</ Order >

In order to represent this in a relational database, we need to create a join table to support the
relationship. Let's see how that would be done (ch03_ex14. sql):

CREATE TABLE | nvoi ce (
I nvoi ceKey i nt eger,
PRI MARY KEY (| nvoi ceKey))

CREATE TABLE |tem (
It enKey i nteger,
PRI MARY KEY (|tenkKey))

CREATE TABLE | nvoi celtem (
I nvoi ceKey i nt eger
CONSTRAI NT FK_I nvoi celtem.| nvoi ce FOREI GN KEY (I nvoi ceKey)
REFERENCES | nvoi ce (| nvoi ceKey),
I tenKey integer
CONSTRAI NT FK_I nvoi celtem|tem FOREI GN KEY (It enkKey)
REFERENCES Item (ItenKey))

91

Chapter 3

Here, we've created a join table called Invoiceltem that contains foreign keys referencing the Invoice
and Item tables. This allows us to express the many-to-many relationship between the two tables, as
shown below:

Invoice
InvoiceKey
Invoiceltem LL
Invoicekey | Ttemiey
[b |
ftem
ItemKey
3

Again, this strategy only works properly if the | DREFS attribute is known to point only to elements of a
specific type.

If the | DREFS attribute points to elements of more than one type, we need to add a table lookup key to
the join table to indicate which type of element is being referenced. For example, when modeling the
case shown below (ch03_ex15. dt d and ch03_ex15. xr):

<l ELEMENT Order (Invoice, POS, Item>

<! ELEMENT | nvoi ce EMPTY>
<I ATTLI ST | nvoi ce
I nvoi cel D | D #REQUI RED>

<! ELEMENT POCS EMPTY>
<I ATTLI ST PCS
PCSI D | D #REQUI RED>

<! ELEMENT |t em EMPTY>
<I ATTLI ST Item
Item D | D #REQUI RED
Del i veryl DREFS | DREFS #REQUI RED>

<?xm version="1.0"7?>
<I DOCTYPE | i sting SYSTEM "ch03_ex15. dtd" >

<Or der >
<l nvoi ce Invoicel D="Inv1l" />
<PCS PCs| D="PCS1" />
<ItemIltem D="Itenl" Deliveryl DREFS="Invl POCS1" />
<ItemIltem D="ItenR" Deliveryl DREFS="Inv1" />
</ Or der >

The SQL table creation script to handle this case, (ch03_ex15. sql), looks like this:

CREATE TABLE Tabl eLookup (
Tabl eLookupKey i nt eger,
Tabl eNane var char (255),
PRI MARY KEY (Tabl eLookupKey))

CREATE TABLE | nvoice (
I nvoi ceKey i nt eger)

92

Database Structures for Existing XML

CREATE TABLE PGS (
PCSKey i nt eger)

CREATE TABLE Item (
|t enKey i nt eger,

PRI MARY KEY (ItenKey))

CREATE TABLE | nvoi ceDel i very (
Tabl eLookupKey i nt eger

CONSTRAI NT FK Del i veryltem Tabl eLookup FOREI GN KEY (Tabl eLookupKey)

REFERENCES Tabl eLookup (Tabl eLookupKey),

Del i veryKey i nt eger,

| tenKey i nt eger

CONSTRAI NT FK Del i verylteml|tem FOREI GN KEY (ItenkKey)

REFERENCES Item (ItenKey))

The table lookup key column would then be populated (much as it was in the case where an | DREF
could point to more than one element type) as shown in the diagram below:

Invoice POS
InvoiceKey < > [POSKey |
i 187 i 217
¥ | L |
InvoiceDelivery Item
TableLookupKey I DeliveryKey I ItemKey ItemKey I
(] 1 187 13 » Fl13
B 2 217 13 ™ 14
i 1 187 14 E
L% |
TableLookup
TableLookupKey | TableName |
— 1 Invoice
| |2 POS
| 713 Item
%

Rule 14: Handling IDREFS Attributes.
1. If an IDREFS attributeis present for an element, add a join table (with the names
of both the element containing the attribute and the element being pointed to
concatenated) that contains a foreign key referencing both the element containing the
attribute and the element being pointed to.
2. If the IDREFS attribute may point to elements of different types, remove the
foreign key referencing the element being pointed to and add a table lookup key that
indicates the type of element pointed to.
3. Add aforeign key relationship between thistable and a lookup table containing the
names of all thetablesin the SQL database.

923

Chapter 3

NMTOKEN and NMTOKENS

24

An attribute defined to have the type NMTOKEN must contain a value consisting of letters, digits,
periods, dashes, underscores, and colons. We can think of this as being similar to an attribute with the
type CDATA, but with greater restrictions on the possible values for the attribute. As a result, we can
store an attribute of this type in the same way that we would store an attribute of type CDATA, as
shown in the following DTD and XML fragments:

<! ELEMENT Cust oner EMPTY>
<I ATTLI ST Cust oner
Ref er enceNunmber NMIOKEN #REQUI RED>

<Cust onmer ReferenceNunber="H127X9Y57" />
This would correspond to the following table:

CREATE TABLE Cust oner (
Ref er enceNunber var char (50))

If the attribute takes the type NMTOKENS on the other hand, it must contain a sequence of whitespace
delimited tokens obeying the same rules as NMTOKEN attributes. For example, we might have this
definition, ch03_ex16. dt d and ch03_ex16. xm :

<! ELEMENT Cust omer EMPTY>
<I ATTLI ST Cust oner
Ref er enceNunber NMIOKENS #REQUI RED>

<?xm version="1.0"7?>
<! DOCTYPE | i sting SYSTEM "ch03 ex16.dtd" >

<Cust omer ReferenceNunber="H127X9Y57 B235Z2X99" />

In this case, we need to create an additional table to hold the reference numbers, as many of them may
occur for the same Cust oner element. This is shown below, in ch03_ex16. sql :

CREATE TABLE Custoner (
Cust oner Key i nt eger)

CREATE TABLE Ref er enceNunber (
Ref er enceNunber Key i nt eger,
Cust oner Key i nt eger,

Ref er enceNunber var char (50))

This creates the following tables:

ReferenceNumber
ReferenceNumberKey | CustomerKey | ReferenceMumber |

| 2

Customer
CustomerKey |

| 2

Database Structures for Existing XML

For the previous XML example, we'd create one Cust omer row and two Ref er enceNunber rows -
one for each token in the NMTOKENS attribute.

Rule 15: NMTOKEN Attributes.
For each attribute with the NMTOKEN type, create a column in the table
corresponding to that element to hold the value for that attribute.

Rule 16: NMTOKENS Attributes.

1. For each attribute with the NM TOKENS type, create a table with an automatically
incremented primary key, aforeign key referencing therow in thetablethat
correspondsto the element in which the attributeisfound, and a string that will
contain the value of each token found in the attribute.

2. Add arow tothistable for each token found in the attribute for the element.

ENTITY and ENTITIES

Attributes declared with the ENTITY or ENTITIES type are used to specify unparsed entities associated
with an element. The attribute contains a token (or tokens, in the case of attributes declared as
ENTITIES) that match the name of an entity declared in the document's DTD. Let's see how we would
store this information.

<I NOTATION gi f PUBLIC "G F">
<l ENTI TY Bl ueLi ne SYSTEM "bl ueline. gif" NDATA gif>
<! ELEMENT Separ at or EMPTY>
<I ATTLI ST Separ at or
i mg ENTI TY #REQUI RED>

<Separ at or ing="Bl ueLine" />

We'll look at how we store the actual entity information later, when we talk about entity and notation
declarations. For now, what's important is that we should be able to identify which entity is being
referenced by the ENTI TY attribute on the Separ at or element. For the purposes of this discussion,
we'll assume that the goal of the XML persistence is to store the information in the XML document, as
opposed to the definitions of entities in the DTD associated with it. To that end, we should simply store
the value of the attribute as if it were declared as NMTOKEN or NMIOKENS; Details about the unparsed
entity, and the notation associated with it, are found in the document's DTD and are outside the scope
of this process.

Rule 17: ENTITY and ENTITIES Attributes.

Attributes declared with the ENTI TY or ENTI TI ES type should be handled asiif
they were declared with the NMTOKEN or NMTOKENS types, respectively (seerules
15 and 16).

95

Chapter 3

Entity Declarations

Entity declarations appear in DTDs, and are called by references that appear in the XML document.
There are three ways a parser may handle a reference to an entity in an XML document. Let's look
at these:

1. If the entity is an internal parsed entity, or an external parsed entity, that the parser
chooses to expand, the reference to the entity will not be returned by the parser; instead,
the expanded content will be returned as if it were stated in-line in the document. In this
case, no special steps need to be taken to store the entity information - instead, the
content will be stored according to the content model expressed in the DTD.

2. If the entity is an unparsed entity, it will appear as an attribute of an element, as seen in
the above example.

3. If the entity is an external parsed entity, and the parser is nonvalidating, the parser may
choose not to expand the reference into the corresponding node set when returning
information about the document. However, we have intentionally limited our discussion
here to validating parsers, so external entities should always be parsed.

Because all of these possibilities result in either the entity disappearing (from the parser's perspective),
or being referenced from an attribute, entity declarations do not need to be modeled in our SQL
database.

Notation Declarations

Notation declarations are used to describe the way unparsed entities should be handled by the parser.
As such, they are aspects of the DTD, and not of the document itself; therefore, notation declarations do
not need to be modeled in our SQL database either.

Avoid Name Collisions!

With the aforementioned set of rules, it's fairly easy to anticipate a situation where a name collision
might occur. That is, a situation where two tables or columns dictated by the XML DTD have the same
name. For example, let's say we had the following DTD:

<! ELEMENT Cust onmer (Custoner Key) >
<! ELEMENT Cust oner Key (#PCDATA) >

According to the rules we've set out, this would translate to the following table definition:

CREATE TABLE Custoner (
Cust oner Key i nt eger,
Cust oner Key varchar (10))

Clearly, this is invalid. In a case like this, one of the column names must be changed to avoid colliding
with the other. It makes more sense to change the nonkey field name, as it will not be referenced in
other tables. So we might change the table definition to this:

CREATE TABLE Cust oner (
Cust oner Key i nt eger,
XM_Cust oner Key var char (10))

96

Database Structures for Existing XML

Rule 18: Check for Name Collisions.

After applying all the preceding rules, check the results of the process for name
collisions. If name collisions exist, change the names of columns or tables as necessary
to resolve the name collision.

Summary

In the preceding pages, we've devised 18 rules that may be used to create a relational database schema
from an XML DTD. Using these rules, we should be able to take any document type definition for any
document we have and build a relational database that can hold the contents of the document. Using
these rules will also abstract the data away from the structure as much as possible, making the data that
was found in the XML document available for querying or other processing by the relational database.
We have collated all the rules at the end of the chapter - now let's go through an example to see how to
use many of the rules together.

Example

Here's an example that uses many of the rules we have defined. This example corresponds to a simple
order data document containing multiple invoices, much like we will see used in other chapters
throughout the book. Let's see how we would apply these rules to transform this XML DTD
(ch03_ex17. dt d) into a relational database creation script.

<I ELEMENT OrderData (Invoice+, Custoner+, Part+)>

<! ELEMENT I nvoi ce (Address,
Li nel t em+) >
<I ATTLI ST I nvoi ce
i nvoi ceDat e CDATA #REQUI RED
shi pDat e CDATA #| MPLI ED
shi pMet hod (FedEx | USPS | UPS) #REQUI RED
Cust oner | DREF | DREF #REQUI RED>

<! ELEMENT Address EMPTY>
<I ATTLI ST Address
Street CDATA #REQUI RED
City CDATA #l MPLI ED
St at e CDATA #l| MPLI ED
Post al Code CDATA #REQUI RED>

<! ELEMENT Li nel t em EMPTY>

<! ATTLI ST Lineltem
Par t | DREF | DREF #REQUI RED
Quantity CDATA #REQUI RED
Price CDATA #REQUI RED>

<! ELEMENT Custoner (Address,
Shi pMet hod+) >
<! ATTLI ST Cust oner
firstNane CDATA #REQUI RED
| ast Nane CDATA #REQUI RED
emai | Addr ess CDATA #l MPLI ED>

<! ELEMENT Shi pMet hod (#PCDATA) >

97

Chapter 3

<! ELEMENT Part EMPTY>

<! ATTLI ST Part
nane CDATA #REQUI RED
si ze CDATA #l| VPLI ED
col or CDATA #l MPLI ED>

This DTD is for a more detailed invoice than those examples we have seen so far. Let's look at a sample
XML document, ch03_ex17. xm :

<?xm version="1.0"7?>
<! DOCTYPE | i sting SYSTEM "ch03 ex17.dtd" >

<Or der Dat a>

<l nvoi ce invoi cebDat e="05052000"
shi pDat e="05122000"
shi pMet hod="FedEx" >
<Address Street="AnyStreet"
C ty="AnyTown"
St at e=" AS"
Post Code="Any Code" />
<Li nel tem Part | DREF="2015"
Quantity="2"
Price="20.99" />
</l nvoi ce>

<Cust omer >
<Address Street="AnyStreet"
C ty="AnyTown"
St at e=" AS"
Post Code="Any Code" />
<Shi pMet hod> FedEx </ Shi pMet hod>
</ Cust omer >

<Part nane="W nkl e"
si ze="10. 5"
col or="Bl ue" />

</ Or der Dat a>
First, let's look at which tables we need to create in our database to represent these elements.

Applying Rule 2, we see that we need to create tables called Or der Dat a, | nvoi ce, Li nel tem
Cust omer, and Part. Or der Dat a is the root element, and each of the others only has one element
type that may be its parent. Rule 2 also tells us to create a foreign key back to each of these element's
parent element tables. This gives us ch03_ex17a. sql :

CREATE TABLE OrderData (
Or der Dat aKey i nt eger,
PRI MARY KEY (O der Dat aKey))

CREATE TABLE | nvoice (
I nvoi ceKey i nt eger,
PRI MARY KEY (I nvoi ceKey),
Or der Dat aKey i nt eger
CONSTRAI NT FK_I nvoi ce_Order Dat a FOREI GN KEY (O der Dat aKey)

REFERENCES O der Dat a (O der Dat aKey))

98

Database Structures for Existing XML

CREATE TABLE Li neltem (
Li nel t enKey i nt eger,
| nvoi ceKey i nt eger

CONSTRAI NT FK_Li neltem.| nvoi ce FOREI GN KEY (| nvoi ceKey)
REFERENCES | nvoi ce (| nvoi ceKey))

CREATE TABLE Customer (
Cust oner Key i nt eger,
O der Dat aKey i nt eger

CONSTRAI NT FK_Cust ormer _Or der Dat a FORElI GN KEY (Or der Dat aKey)
REFERENCES Or der Dat a (Or der Dat aKey))

CREATE TABLE Part (
Part Key i nt eger,
O der Dat aKey i nt eger

CONSTRAI NT FK _Part_Order Data FOREI GN KEY (O der Dat aKey)
REFERENCES Or der Dat a (Or der Dat aKey))

This gives us the following table structure:

Customer

[[Customerkey [OrderDatakey |

Part OrderData
[JPartkey [OrderDatakey | | [OrderDataKey |
I t I bl s

L=

Invoice

| |Invoh:el<gy [OrderDatakey |

Lineltem

| [Lineltemkey |Invoicekey |
R

But what do we do about the Addr ess element? Well, since it may have more than one parent
(Cust omer or | nvoi ce), we apply rule 3. Since the Addr ess element may appear exactly once in

each of these parent elements, we can simply add a foreign key pointing to the Addr ess element from

each of its parents. This gives us ch03_ex17b. sql :

CREATE TABLE OrderData (
O der Dat aKey i nt eger,
PRI MARY KEY (O der Dat aKey))

CREATE TABLE Address (
Addr essKey i nt eger,
PRI MARY KEY (AddressKey))

CREATE TABLE | nvoi ce (
I nvoi ceKey i nt eger,
PRI MARY KEY (| nvoi ceKey),
Or der Dat aKey i nt eger

CONSTRAI NT FK_I nvoi ce_Order Dat a FOREI GN KEY (Or der Dat aKey)
REFERENCES Or der Data (Or der Dat aKey),
Addr essKey i nt eger

CONSTRAI NT FK_I nvoi ce_Addr ess FOREI GN KEY (AddressKey)
REFERENCES Addr ess (AddresskKey))

29

Chapter 3

CREATE TABLE Lineltem (
Li nel tenKey i nt eger,
I nvoi ceKey i nt eger,

CONSTRAI NT FK_Li neltem.| nvoi ce FOREI GN KEY (| nvoi ceKey)
REFERENCES | nvoi ce (I nvoi ceKey))

CREATE TABLE Custoner (
Cust oner Key i nt eger,
Or der Dat aKey i nt eger

CONSTRAI NT FK_Cust onmer _Or der Dat a FOREI GN KEY (Or der Dat aKey)
REFERENCES O der Dat a (Or der Dat aKey),
Addr essKey i nt eger

CONSTRAI NT FK_Cust oner _Addr ess FORElI GN KEY (Addr essKey)
REFERENCES Addr ess (AddressKey))

CREATE TABLE Part (
Par t Key i nt eger,
Or der Dat aKey i nt eger,

CONSTRAI NT FK_Part _Order Data FOREI GN KEY (Or der Dat aKey)
REFERENCES Or der Dat a (Or der Dat aKey))

The updated version of our creation script gives us this set of tables:

Customer

[[Customerkey |OrderDatakey |AddressKey |

Part \— OrderData Address
[[Partkey [OrderDatakey | | [[OrderDatakey | [[Addresskey |
0 — ’
Invoice
InvoiceKey | OrderDal:’FKey | Addresskey |

i3

Lineltem

[[LineltemKey [InvoiceKey

v

Looking at our original DTD, this covers all the elements except for Shi pMet hod. In our example,
we're going to use Shi pMet hod to hold all the various shipping methods that a customer can accept.
We can see that it's defined as #PCDATA, so we need to apply either rule 4 or rule 5. Since

Shi pMet hod may appear more than once in its only parent (Cust omer), we need to apply rule 5. It
states that we need to add a table for Shi pMet hod and a foreign key pointing back to the Cust onmer
with which the Shi pMet hod is associated. Now, we have this script, ch03_ex17c. sql :

CREATE TABLE OrderData (
Or der Dat aKey i nt eger,
PRI MARY KEY (Or der Dat aKey))

CREATE TABLE Address (

Addr essKey i nt eger,
PRI MARY KEY (Addr essKey))

100

Database Structures for Existing XML

CREATE TABLE | nvoice (
I nvoi ceKey i nteger,
PRI MARY KEY (| nvoi ceKey),
Or der Dat aKey i nt eger

CONSTRAI NT FK_I nvoi ce_Order Data FOREI GN KEY (O der Dat aKey)

REFERENCES Or der Data (Or der Dat aKey),
Addr essKey i nt eger

CONSTRAI NT FK_I nvoi ce_Addr ess FOREI GN KEY (AddressKey)

REFERENCES Addr ess (AddressKey))

CREATE TABLE Lineltem (
Li nel tenmKey i nt eger,
I nvoi ceKey i nt eger,

CONSTRAI NT FK_Li neltem.I nvoi ce FOREI GN KEY (| nvoi ceKey)

REFERENCES | nvoi ce (| nvoiceKey))

CREATE TABLE Customer (
Cust oner Key i nt eger,
PRI MARY KEY (Cust oner Key),
Or der Dat aKey i nt eger

CONSTRAI NT FK_Cust ormer _Or der Dat a FORElI GN KEY (Or der Dat aKey)

REFERENCES Or der Data (Or der Dat aKey),
Addr essKey i nt eger

CONSTRAI NT FK_Cust oner _Addr ess FOREI GN KEY (Addr essKey)

REFERENCES Addr ess (AddressKey))

CREATE TABLE Shi pMet hod (
Shi pMet hodKey i nt eger,
Cust oner Key i nt eger,

Shi pMet hod var char (10),

CONSTRAI NT FK_Shi pMet hod_Cust omer FOREI GN KEY (Cust orrer Key)

REFERENCES Cust ormer (Cust oner Key))

CREATE TABLE Part (
Part Key i nteger,
O der Dat aKey i nt eger,

CONSTRAI NT FK _Part_Order Data FOREI GN KEY (O der Dat aKey)

REFERENCES Or der Dat a (Or der Dat aKey))

The database table structure now looks like this:

ShipMethod
[[shipMethodke: [Customerke [ShipMethod |
> R
Customer
[[customerke [CrderDatake [addresske |
m ¥ |
Part CrderData Address
[[Partke [CrderDatake:] 1 [[orderbatake | [[Addresske
] B—] ~
Invoice | —
[[inwoiceke | Ordedel:aKe [Addresske

LinelItem

[Jlineltemke [Invaiceke

Note that we arbitrarily assigned Shi pMet hod to have a length of ten bytes.

101

Chapter 3

Modeling the Attributes

Now, let's start looking at the attributes on each of the elements. We can skip the Or der Dat a element,
since it doesn't have any attributes declared. Next, we have the | nvoi ce element:

<I ATTLI ST | nvoi ce
i nvoi ceDat e CDATA #REQUI RED,
shi pDat e CDATA #| MPLI ED,
shi pMet hod (FedEx | USPS | UPS) #REQUI RED,
Cust oner | DREF | DREF #REQUI RED>

We need to use three different rules to handle the attributes listed here. Applying Rule 9 to the

i nvoi ceDat e and shi pDat e attributes, we see that we need to add two columns to the | nvoi ce
table. Rule 11 tells us that we need to add a lookup value column to the | nvoi ce table and create a
shi pMet hod table, and Rule 13 tells us that we need to add a foreign key pointing back to the
Cust omer table. We now have:

CREATE TABLE I nvoice (
I nvoi ceKey i nteger,
Or der Dat aKey i nt eger
CONSTRAI NT FK_I nvoi ce_Order Data FOREI GN KEY (O der Dat aKey)
REFERENCES Or der Dat a (Or der Dat aKey),
Addr essKey i nt eger,
i nvoi ceDat e dateti ne,
shi pDat e dateti ne,
shi pMet hodKey i nt eger,
Cust oner Key i nt eger)

CREATE TABLE shi pMet hod (
shi pMet hodKey i nt eger,
shi pMet hod var char (5))

I NSERT shi pMet hod (shi pMet hodKey, shi pMet hod) VALUES (1, "FedEx")
I NSERT shi pMet hod (shi pMet hodKey, shi pMet hod) VALUES (2, "USPS")
| NSERT shi pMet hod (shi pMet hodKey, shi pMet hod) VALUES (3, "UPS")

Again, we've added stronger typing that may need to be verified when storing valid documents in our
database.

Next, let's tackle Addr ess:

<! ATTLI ST Address
Street CDATA #REQUI RED,
City CDATA #l MPLI ED,
St at e CDATA #l MPLI ED,
Post al Code CDATA #REQUI RED>

Rule 9 works for all four of these:

CREATE TABLE Address (
Addr essKey i nt eger,
Street varchar (50),
City varchar (40) NULL,
State varchar (2) NULL,
Post al Code var char (10))

102

Database Structures for Existing XML

Then, for Li nel tem

<I ATTLI ST Lineltem
Par t | DREF | DREF #REQUI RED,
Quantity CDATA #REQUI RED,
Price CDATA #REQUI RED>

One application of Rule 13 and two applications of Rule 9 yields this:

CREATE TABLE Lineltem (
Li nel tenmKey i nt eger,
I nvoi ceKey i nt eger
CONSTRAI NT FK_Li neltem.I nvoi ce FOREI GN KEY (| nvoi ceKey)
REFERENCES | nvoi ce (I nvoi ceKey),
Part Key i nt eger
CONSTRAI NT FK_Li neltemPart FOREI GN KEY (Part Key)
REFERENCES Part (PartKey),
Quantity integer,
Price float)

For this alteration to be complete of course, we must also add a PRI MARY KEY (Part Key) line to the
Part table creation script. Next, we look at Cust oner :

<! ATTLI ST Cust omer
firstNane CDATA #REQUI RED,
| ast Nane CDATA #REQUI RED,
emai | Addr ess CDATA #| MPLI ED>

This requires, three applications of Rule 9 for handling CDATA attributes, giving us:

CREATE TABLE Customer (
Cust omrer Key i nt eger,
O der Dat aKey i nt eger
CONSTRAI NT FK_Cust ormer _Or der Dat a FORElI GN KEY (Or der Dat aKey)
REFERENCES Or der Data (Or der Dat aKey),
Addr essKey i nt eger,
firstNanme varchar (30),
| ast Name var char (30),
emai | Address varchar (100) NULL)

Finally we have Par t , which looks like this:

<! ATTLI ST Part
nane CDATA #REQUI RED,
si ze CDATA #l VPLI ED,
col or CDATA #l MPLI ED>

This, along with three applications of rule 9 gives:

CREATE TABLE Part (
Par t Key i nteger,
Or der Dat aKey i nt eger
CONSTRAI NT FK_Part_Order Data FOREI GN KEY (Or der Dat aKey)
REFERENCES Or der Dat a (Or der Dat aKey) ,
nane var char (20),
si ze varchar (10) NULL,
col or varchar (10) NULL)

103

Chapter 3

Now that we've tackled all the elements and attributes, we have the following structure -
(ch03_ex17d. sql):

CREATE TABLE OrderData (
Or der Dat aKey i nt eger,
PRI MARY KEY (O der Dat aKey))

CREATE TABLE Address (
Addr essKey i nt eger,
PRI MARY KEY (Addr essKey),
Street varchar(50),
City varchar (40) NULL,
State varchar(2) NULL,
Post al Code varchar (10))

CREATE TABLE I nvoice (
I nvoi ceKey i nteger,
PRI MARY KEY (1 nvoi ceKey),
Or der Dat aKey i nt eger
CONSTRAI NT FK_I nvoi ce_Order Dat a FOREI GN KEY (O der Dat aKey)
REFERENCES Or der Dat a (O der Dat aKey),
Addr essKey i nt eger
CONSTRAI NT FK_I nvoi ce_Addr ess FOREI GN KEY (Addr essKey)
REFERENCES Addr ess (Addr essKey),
i nvoi ceDat e dateti ne,
shi pDate datetine,
shi pMet hodKey i nt eger,
Cust oner Key i nt eger)

CREATE TABLE Part (
Part Key i nt eger,
PRI MARY KEY (PartKey),
Or der Dat aKey i nt eger,
CONSTRAI NT FK_Part _Order Data FOREI GN KEY (Or der Dat aKey)
REFERENCES Or der Dat a (Or der Dat aKey))

CREATE TABLE Lineltem (
Li nel tenKey i nt eger,
I nvoi ceKey i nt eger,
CONSTRAI NT FK_Li neltem.| nvoi ce FOREI GN KEY (| nvoi ceKey)
REFERENCES | nvoi ce (I nvoi ceKey),
Par t Key i nt eger,
CONSTRAI NT FK_Li neltemPart FORElI GN KEY (Part Key)
REFERENCES Part (PartKey),
Quantity integer,
Price float)

CREATE TABLE Custoner (
Cust oner Key i nt eger,
PRI MARY KEY (Cust oner Key),
Or der Dat aKey i nt eger
CONSTRAI NT FK_Cust onmer _Or der Dat a FOREI GN KEY (Or der Dat aKey)
REFERENCES Or der Dat a (O der Dat aKey),
Addr essKey i nt eger
CONSTRAI NT FK_Cust onmer _Addr ess FOREI GN KEY (Addr essKey)
REFERENCES Addr ess (Addr essKey),
firstNane varchar(30),
| ast Name var char (30),
enmi | Address varchar (100) NULL)

104

Database Structures for Existing XML

CREATE TABLE Shi pMet hod (
Shi pMet hodKey i nt eger,
Cust omer Key i nt eger,
Shi pMet hod var char (10),
CONSTRAI NT FK_Shi pMet hod_Cust omer FOREI GN KEY (Cust onrer Key)
REFERENCES Cust orrer (Cust oner Key))

I NSERT shi pMet hod (shi pMet hodKey, shi pMet hod) VALUES (1, 'FedEx')
| NSERT shi pMet hod (shi pMet hodKey, shi pMet hod) VALUES (2, 'USPS')
I NSERT shi pMet hod (shi pMet hodKey, shi pMet hod) VALUES (3, 'USPS')

But we have one more problem - we've got a name collision on Shi pMet hod. Admittedly one of the
Shi pMet hod tables is upper camel case and the other is lower, but this will cause a problem if you're
running your relational database in case-insensitive mode. At any rate, having tables with extremely
similar names will cause no end of confusion when developers attempt to write code that accesses the
database. With that in mind, let's apply Rule 18 and change the second Shi pMet hod table (the one that
comes from the Shi pMet hod element) to be Cust omer Shi pMet hod. This gives us the following,
ch03_ex17final . sql:

CREATE TABLE OrderData (
O der Dat aKey i nt eger,
PRI MARY KEY (O der Dat aKey))

CREATE TABLE Address (
Addr essKey i nt eger,
PRI MARY KEY (Addr essKey),
Street varchar(50),
City varchar (40) NULL,
State varchar(2) NULL,
Post al Code varchar (10))

CREATE TABLE I nvoice (
I nvoi ceKey i nt eger,
PRI MARY KEY (I nvoi ceKey),
O der Dat aKey i nt eger
CONSTRAI NT FK_I nvoi ce_Order Dat a FOREI GN KEY (Or der Dat aKey)
REFERENCES Or der Data (Or der Dat aKey),
Addr essKey i nt eger
CONSTRAI NT FK_I nvoi ce_Address FOREI GN KEY (AddressKey)
REFERENCES Addr ess (AddressKey),
i nvoi ceDat e dateti e,
shi pDate datetine,
shi pMet hodKey i nt eger,
Cust omer Key 1 nt eger)

CREATE TABLE Part (
Par t Key i nteger,
PRI MARY KEY (PartKey),
O der Dat aKey i nt eger,
CONSTRAI NT FK _Part_Order Data FOREI GN KEY (O der Dat aKey)
REFERENCES Or der Dat a (Or der Dat aKey))

CREATE TABLE Lineltem (
Li nel tenKey i nt eger,
I nvoi ceKey i nteger,
CONSTRAI NT FK_Li neltem.I nvoi ce FOREI GN KEY (| nvoi ceKey)
REFERENCES | nvoi ce (| nvoi ceKey),
Par t Key i nteger,
CONSTRAI NT FK_Li neltemPart FORElI GN KEY (Part Key)
REFERENCES Part (PartKey),
Quantity integer,
Price float)

105

Chapter 3

CREATE TABLE Custoner (
Cust oner Key i nt eger,
PRI MARY KEY (Cust oner Key),
Or der Dat aKey i nt eger
CONSTRAI NT FK_Cust onmer _Or der Dat a FOREI GN KEY (Or der Dat aKey)
REFERENCES Or der Dat a (Or der Dat aKey) ,
Addr essKey i nt eger
CONSTRAI NT FK_Cust oer _Addr ess FOREI GN KEY (Addr essKey)
REFERENCES Addr ess (AddressKey),
firstNane varchar (30),
| ast Nane var char (30),
enui | Addr ess varchar (100) NULL)

CREATE TABLE shi pMet hod (
Shi pMet hodKey i nt eger,
Cust oner Key i nt eger,
Shi pMet hod var char (10),
CONSTRAI NT FK_Shi pMet hod_Cust onmer FORElI GN KEY (Cust oner Key)
REFERENCES Cust omer (Cust oner Key))

I NSERT shi pMet hod (shi pMet hodKey,
' FedEx')

| NSERT shi pMet hod (shi pMet hodKey,
"USPS')

I NSERT shi pMet hod (shi pMet hodKey,
' USPS')

CREATE TABLE Cust oner Shi pMet hod (
Cust oner Shi pMet hodKey i nt eger,
Cust oner Key i nt eger,

Cust oner Shi pMet hod var char (10))

shi pMet hod) VALUES (1,
shi pMet hod) VALUES (2,
shi pMet hod) VALUES (3,

Our final table structure looks like this:

ShipMethod
ShipMethodKey [CustomerKey [ShipMethod |
_L 1 <NULL> FedEx Numbers indicate
<NULL> UsSPs where keys are used
: <NULL> uses to link tables
-+ IV IT
CustomerShipMethod
ijkwlcmmk_ey [CustomerShipMethod |
LinelItem
I_Limm [InvoiceKey [Partkey [Quantity [Price |
pepers ITT VI
| |Partxw |OrderDatakey |
OrderData I
L
Customer I
1Custml(ey [OrderDatakey [Addresskey [Firsthame [lasthame [emailaddress |
I
Address II v
[[Addresskey [Street [City [State [PostalCode |
[»] v
Invoice
[[invoiceKey [OrderDatakey [AddressKey [invoiceDate [shipDate [shipMethodkey [Customerkey |
B TTT I v IV II

106

Database Structures for Existing XML

Summary

In this chapter, we've seen how to build relational structures to store XML content that conforms to a
known document type definition. We should be able to take any existing DTD and create a table
structure for it using the 18 rules we have defined. Remember that these rules are intended to allow us
to do two things: using them, the data is abstracted from the structure as much as possible to allow us to
perform queries and summarization against it; and we should be able to recreate our original XML
document from the information stored in the database. If our particular business problem has other
constraints (such as needing to have the XML document available without necessarily querying against
it), then we may need to take some other approach - such as persisting the serialized XML document
string to our database in a text field, rather than breaking it apart. Nevertheless, for most querying and
summarization problems, these rules present a good solution.

The Rules

O

Rule 1: Always Create a Primary Key

Whenever creating a table in the relational database:
1. Add a column to it that holds an automatically incremented integer.
2. Name the column after the element with Key appended.
3. Set this column to be the primary key on the created table.

Rule 2: Basic Table Creation

For every structural element found in the DTD:
1. Create a table in the relational database.
2. If the structural element has exactly one allowable parent element (or is the root element
of the DTD), add a column to the table. This column will be a foreign key that references
the parent element.
3. Make the foreign key required.

Rule 3: Handling Multiple Parent Elements
If a particular element may have more than one parent element, and the element may occur in
the parent element zero or one times:
1. Add a foreign key to the table representing the parent element that points to the
corresponding record in the child element, making it optional or required as makes sense.
2. If the element may occur zero-or-more or one-or-more times, add an intermediate table to
the database that expresses the relationship between the parent element and this element.

Rule 4: Representing Text Only Elements

If an element is text only, and may appear in a particular parent element once at most:
1. Add a column to the table representing the parent element to hold the content of this
element.
2. Make sure that the size of the column created is large enough to hold the anticipated
content of the element.
3. If the element is optional, make the column nullable.

Rule 5: Representing Multiple Text-Only Elements

If an element is text-only, and it may appear in a parent element more than once:
1. Create a table to hold the text values of the element and a foreign key that relates them
back to their parent element.
2. If the element may appear in more than one parent element more than once, create
intermediate tables to express the relationship between each parent element and this
element.

107

Chapter 3

108

Rule 6: Handling Empty Elements
For every EMPTY element found in the DTD:
1. Create a table in the relational database.
2. If the structural element has exactly one allowable parent element, add a column to the
table - this column will be a foreign key that references the parent element.
3. Make the foreign key required.

Rule 7: Representing Mixed Content Elements

If an element has the mixed content model:
1. Create a table called TableLookup (if it doesn't already exist) and add rows for each table
in the database. Also add a row zero that points to a table called TextContent.
2. Create this table with a key, a string representing the element name for text-only
elements, and a text value.
3. Next, create two tables - one for the element and one to link to the various content of that
element - called the element name and the element name followed by subelement,
respectively.
4. In the subelement table, add a foreign key that points back to the main element table, a
table lookup key that points to the element table for subelement content, a table key that
points to the specific row within that table, and a sequence counter that indicates that
subelement or text element's position within this element.

Rule 8: Handling the" ANY" Content Elements

If an element has the ANY content model:
1. Create a table called TableLookup (if it doesn't already exist) and add rows for each table
in the database.
2. Add a row zero that points to a table called TextContent.
3. Create this table with a key, a string representing the element name for text-only
elements, and a text value.
4. Create two tables - one for the element and one to link to the various content of that
element - called the element name and the element name followed by Subelement,
respectively.
5. In the subelement table, add a foreign key that points back to the main element table, a
table lookup key that points to the element table for subelement content, a table key that
points to the specific row within that table, and a sequence counter that indicates that
subelement or text element's position within this element.

Rule 9: CDATA Attributes

For each attribute with a CDATA type:
1. Add a column to the table corresponding to the element that carries that attribute, and
give the table the name of the element.
2. Set the column to be a variable-length string, and set its maximum size large enough that
expected values of the attribute won't exceed that size.

Rule 10: REQUIRED/IMPLIED/FIXED Attributes

If an attribute is specified as # REQUIRED, then it should be required in the database.
1. If an attribute is specified as #REQUIRED, then it should be required in the database.
2. If the attribute is specified as #IMPLIED, then allow nulls in any column that is created as
a result.
3. If the attribute is specified as #FIXED, it should be stored as is it might be needed by the
database, e.g. as a constant in a calculation - treat it the same as #REQUIRED attributes.

Database Structures for Existing XML

O Rulell: ENUMERATED Attribute Values
For attributes with enumerated values:

1. Create a two byte integer field that will contain the enumerated value translated to an
integer.
2. Create a lookup table with the same name as the attribute and the word Lookup
appended.
3. Insert a row in this table corresponding to each possible value for the enumerated
attribute.
4. When inserting rows into the element table in which the attribute is found, translate the
value of the attribute to the integer value corresponding to it.

O Rulel12: Handling ID Attributes
1. If an attribute with type ID has meaning outside the context of the XML document, store
it in the database.
2. If it's a representation of the primary key value, we can use it to insert or update records
in the database as necessary.
3. Otherwise, we just hang on to it so that we can link up any IDREF or IDREFS that point

to it

elsewhere in the document.

O Rule13: Handling IDREF Attributes
1. If an IDREF attribute is present for an element and is known to always point to a specific
element type, add a foreign key to the element that references the primary key of the
element to which the attribute points.
2. If the IDREF attribute may point to more than one element type, add a table lookup key
as well that indicates which table the key corresponds to.

O Rulel14: Handling IDREFS Attributes
1. If an IDREFS attribute is present for an element, add a join table (with the names of both
the element containing the attribute and the element being pointed to concatenated) that
contains a foreign key referencing both the element containing the attribute and the element
being pointed to.
2. If the IDREFS attribute may point to elements of different types, remove the foreign key
referencing the element being pointed to and add a table lookup key that indicates the type
of element pointed to.
3. Add a foreign key relationship between this table and a lookup table containing the
names of all the tables in the SQL database.

0 Rulel5: NMTOKEN Attributes
For each attribute with the NMTOKEN type, create a column in the table corresponding to
that element to hold the value for that attribute.

0 Rulel6: NMTOKENS Attributes
1. For each attribute with the NMTOKENS type, create a table with an automatically
incremented primary key, a foreign key referencing the row in the table that corresponds to
the element in which the attribute is found, and a string that will contain the value of each
token found in the attribute.
2. Add a row to this table for each token found in the attribute for the element.

O Rulel7: ENTITY and ENTITIES Attributes
Attributes declared with the ENTI TY or ENTI Tl ES type should be handled as if they were
declared with the NMTOKEN or NMTOKENS types, respectively (see rules 15 and 16).

O Rule18: Check for Name Collisions
After applying all the preceding rules, check the results of the process for name collisions.
If name collisions exist, change the names of columns or tables as necessary to resolve the
name collision.

109

Chapter 3

110

Standards Design

One of the biggest challenges facing the XML designer in today's market is standards design. Whether
it's two machines sitting in a room next to one another, or a thousand enterprise-level solutions located
all around the planet, they need to have a way to communicate clearly and unambiguously with one
another. XML provides a grammar for this conversation, but we also need to have a vocabulary — and
that vocabulary is an XML standard.

In this chapter, we'll look at some of the issues that may arise when developing XML standards,
including:

O Approaches that you can use to streamline the standards design process

O How to make sure everyone involved in the standards design process is comfortable with
the outcome

O How to facilitate adoption and implementation once the standard has been created

Scoping the Solution

When the need for an XML standard is identified, the first step is to understand the purpose and
usage of the document structure(s) that are part of the standard. Who is the anticipated producer
(or producers) of the document? Who is the anticipated consumer (or consumers)? How will the
document be used? To convey information? To archive information? To drive a presentation layer?
The answers to all of these questions will help govern the approach you take to designing and
implementing your solution.

Chapter 4

Types of Standards

There are three types of standards that we'll be discussing here.

System Internal Standards

The easiest type of standard to design is one that is used internally for a particular system. For example,
we might decide that we want to maintain records of all invoices processed by our system as XML
documents, so that we can more easily present them (via HTML, WAP, or some other presentation
mechanism) and archive them (by storing atomic documents to some near-line medium such as DVD-

RAM).

In a standard with this scope, one person (or a very small group of people) will be tasked with creating
the document structure. All the people on the team will share the same goals for the structure, and will
probably be able to reach a consensus on its layout pretty quickly. Additionally, since systems often
have a relational database back-end, the database can be used to directly drive the XML structures to be
created (using some of the techniques we learned in Chapter 3).

Cross-system Standards

A more complex type of standard is one that is shared by more than one system. To continue our
example, perhaps the team responsible for the inventory system and the team responsible for the
accounting system decide that they want to create an XML standard that allows them to transmit
information from one system to another.

In this case, the systems that are communicating with one another may have very different internal
architectures — one might be a legacy system using an ISAM database, while the other is a Sparc
running Solaris with Oracle 8i as the database. In addition, the various platforms may have different
requirements with regards to performance, parser compatibility, and so on, that need to be taken into
account. The data teams responsible for each system participating in the standards development will
have to meet, share information about production and consumption requirements, haggle over data
formats and enumerated values, and reach some sort of common ground that all the participating
members can be happy with.

We'll see how a standards team leader can help to facilitate that process later in this chapter. We'll also
see more about data transmission in Chapter 28.

Industry-level Standards

The most complex type of standard development effort you are likely to encounter is an industry-level
standards effort. In this type of effort, the structures being developed are intended to be used by many
different participants in a particular type of business, or brokers in a particular type of information.
Examples of these structures include MISMO (www.mismo.org) for mortgage data, SMBXML
(www.smbxml.org) for small- to medium-sized application service providers, and the HR-XML
consortium that aims to provide a standard for job postings and resumes (see www.hr-
xml.org/channels/home.htm for more details).

Designing these structures is often a protracted and cumbersome process, involving dozens of
participants who all have very specific requirements for the structures being created. More often than
not, these requirements will be in conflict with one another, requiring some sort of mediation process to
continue moving forward. In efforts with this scope, defining ground rules and restrictions at the
beginning of the standards process is critical to ensuring that the effort proceeds smoothly and results in
a good compromise for all involved.

112

Standards Design

Many times when developing a standard of this scope, the adoption of the standard over competing
standards or legacy standards is an issue. Therefore, the simpler and more comprehensible the new
standard is, the more likely it is that it will be accepted by the industry at large. This can lead to some
counterintuitive design decisions, such as repeating information as children of different parent elements,
rather than creating the element containing the information once and pointing to it with | DREF
attributes.

An additional concern when designing an industry standard is that (in theory) many of the IT groups
that will ultimately be using the standard may not be directly involved with its creation. It is then
incumbent upon the developers who are creating the standard to try to think ahead and take the needs
of all the possible participants into account.

It may, however, be useful to look for existing standards before embarking on your own — for
example, a list can be obtained from http://www.xml.com.

Once we've decided who the target audience for the standard is, we need to take a look at how the
structures we are designing are intended to be used.

Document Usage

The role a particular type of document will be playing in the system, enterprise, or industry is also very
important when designing XML structures. If the document is being used to archive information, it
should have a different set of design goals to a document that is being used to drive a presentation layer,
or convey information from one system to another. Let's discuss how we would deal with each of these
situations.

Archival Documents

When designing documents that will be used for archiving data, the documents should be designed to
be as self-contained as possible. That is, the document should not rely on the use of system identifiers or
any other information that would make the document impossible to interpret without knowing the
context in which the document was created.

For example, let's say we wanted to create a document structure to hold invoices from our inventory
system, and we had the following structured data to store in our XML documents:

Invoice
invoiceKey: integer
orderDate: datetime
shipDate: datetime
shipMethod: enumeration

Lineltem Part
lineltemKey: integer partKey: integer
quantity: numeric name: string
price: numeric color: string
size: string

113

Chapter 4

Our initial impulse might be to design the structures to reference the Part identifier — after all, if we
need to access the information in the archive, we could always refer it back to our relational database to
discover the details of the part being referenced. This would give us a structure such as the following
(ch05_ex01. dt d):

<! ELEMENT | nvoi ce (Custoner, Lineltemt)>
<! ATTLI ST I nvoi ce
order Dat e CDATA #REQUI RED
shi pDat e CDATA #REQUI RED
shi pMet hod CDATA #REQUI RED>
<! ELEMENT Cust oner EMPTY>
<I ATTLI ST Cust oner
nanme CDATA #REQUI RED
addr ess CDATA #REQUI RED
city CDATA #REQUI RED
stat e CDATA #REQUI RED
zi p CDATA #REQUI RED>
<! ELEMENT Li nel t em EMPTY>
<! ATTLI ST Li neltem
part Key CDATA #REQUI RED
quantity CDATA #REQUI RED
pri ce CDATA #REQUI RED>

However, what if the system were to be phased out five years later, and then a customer called
demanding to know detailed information about an invoice from the old system? With only an identifier
that was previously internal to the old system to track down the part, the person tasked with figuring out
just what parts were on the invoice is in for a long night. There are also other problems involved -
details can change over time, so customer and part numbers can disappear and/or be reissued.

The better representation would be to include all the part detail information you can, so that the
document will make sense independent of any other representation, as shown here in ch05_ex02. dt d:

<! ELEMENT I nvoi ce (Custoner, Lineltemt)>
<I ATTLI ST | nvoi ce
order Dat e CDATA #REQUI RED
shi pDat e CDATA #REQUI RED
shi pMet hod CDATA #REQUI RED>
<! ELEMENT Cust onmer EMPTY>
<I ATTLI ST Cust oner
nanme CDATA #REQUI RED
addr ess CDATA #REQUI RED
city CDATA #REQUI RED
st at e CDATA #REQUI RED
zi p CDATA #REQUI RED>
<! ELEMENT Li nel t em EMPTY>
<I ATTLI ST Lineltem
part Nunber CDATA #REQUI RED
nanme CDATA #REQUI RED
col or CDATA #REQUI RED
si ze CDATA #REQUI RED
quantity CDATA #REQUI RED
pri ce CDATA #REQUI RED>

This way, the actual information (and not simply handles to the representation in some other context)

may be retrieved directly from the document, and hours of aggravation may be avoided when trying to
recover the meaning of the document later in its lifecycle.

114

Standards Design

However, as we said earlier the representation you choose depends on the purpose of the document. If
the purpose of the document is to send data to a target system that will never understand the system
keys (like par t Key in the previous example), then the par t Key is just unnecessary information. On the
other hand, if a document is created for the sole purpose of transferring information between two
systems that comprehend the same system identifiers, then it's OK to use those identifiers. Let's look at
this latter situation in more detail.

Transactional Data Documents

Documents designed to be used to transmit information between two processes require a very different
approach. These documents are usually discarded — the consumer tears the document apart, picks out
the bits of information it needs to handle the transaction, and discards the document itself — so the
documents don't need to be as atomic. If the scope of the standard permits it, the documents may
reference internal system identifiers or other information that has no meaning without context.

If we need to support a number of different transactions, we might also want to implement an
enveloping mechanism that describes the behavior we're expecting from the system receiving the XML
document. Let's see an example of this. Say we wanted to be able to use the same document to update a
part or request a current price on a part. We might design a structure that looks like the following
(ch05_ex03. dt d):

<! ELEMENT Part Request (Part)>
<! ATTLI ST Part Request
request Type (UpdatePart | GetCurrentPrice) #REQU RED
request Key CDATA #REQUI RED>
<! ELEMENT Part EMPTY>
<! ATTLI ST Part
part Key CDATA #REQUI RED
part Nunber CDATA #| MPLI ED
nane CDATA #| MPLI ED
col or CDATA #l MPLI ED
si ze CDATA #l MPLI ED>

The response structure might look like this (ch05_ex04. dt d):

<! ELEMENT Part Response EMPTY>

<! ATTLI ST Part Response
request Key CDATA #REQUI RED
status (Success | Failure) #REQU RED
price CDATA #| MPLI ED>

The r equest Key attribute is used so that we can perform an asynchronous request and response.
Passing the r equest Key back in the response allows the requesting program to match it up with
information about the original request.

So to update the information on the part with the key 17, you would send this document
(ch05_ex03a. xm):

<?xm version="1.0"?>
<I DOCTYPE |isting SYSTEM "ch05_ex03.dtd" >

<Part Request
request Type="Updat ePart"
request Key="1028">
<Part
part Key="17"

115

Chapter 4

part Nunber =" 1A2A3AB"
name=" Spr ocket"
col or =" Bl ue"
size="2in." [>

</ Part Request >

In response, you might receive:

<Part Response
request Key="1028"
status="Failure" />

or:

<Part Response
request Key = "1028"
st at us="Success" />

The pri ce attribute is omitted here because pri ce is not part of the updat ePar t request-response
pair.

To request the price on the part with the key 17, you would send this document (ch05_ex03b. xn):

<?xm version="1.0"?>
<! DOCTYPE | i sting SYSTEM "ch05_ex03. dtd" >

<Part Request
request Type="GCet Current Pri ce"
request Key="1028">
<Part
part Key="17" />
</ Part Request >

and you might receive:

<Part Response
request Key="1028"
status="Failure" />

or:

<Part Response
request Key = "1028"
st at us="Success"
price="0.10" />

There are two schools of thought on this strategy. One says that having fewer structures to maintain
makes extending the structures simpler. If you add an attribute called mat eri al to the Part element,
it will probably need to be added to each structure that contains the Part element. On the other hand,
a more flexible structure tends to be more difficult to use — witness the number of attributes that are
present or absent in the above examples depending on how the structures are being used. You should
use whichever method best suits your needs.

116

Standards Design

The other thing to keep in mind with transmitted documents is that they are usually intended for
machine eyes only, so they can be tuned for minimum document size at the expense of readability. For
example, take the Par t Request structure we were examining before (ch05_ex03. dt d):

<! ELEMENT Part Request (Part)>
<I ATTLI ST Part Request
request Type (UpdatePart | GetCurrentPrice) #REQU RED
request Key CDATA #REQUI RED>
<! ELEMENT Part EMPTY>
<! ATTLI ST Part
part Key CDATA #REQUI RED
part Nunber CDATA #| MPLI ED
name CDATA #l MPLI ED
col or CDATA #l MPLI ED
si ze CDATA #| MPLI ED>

If we tune this document for minimum document size, we could use the following structure instead
(ch05_ex05. dt d):

<! ELEMENT Q (P)>
<IATTLI ST Q

t (U| G #REQUI RED

k CDATA #REQUI RED>
<! ELEMENT P EMPTY>
<I ATTLI ST P

k CDATA #REQUI RED

n CDATA #l MPLI ED

m CDATA #| MPLI ED

c CDATA #| MPLI ED

s CDATA #| MPLI ED>

A sample request using this minimal DTD would look like this (ch05_ex05. xm):

<?xm version="1.0"?>
<! DOCTYPE |isting SYSTEM "ch05_ex05. dtd" >

<Q t="U" k="1028"><P k="17" n="1A2A3AB" n¥"Sprocket" c="Blue" s="2 in." /></

This document is 151 bytes as opposed to the original request sample which was 279 bytes — a
significantly smaller document (the difference will be greater, of course, the larger the document is). If
your systems are moving millions of these transaction documents back and forth, minimizing your
documents in this way can ease any network bandwidth concerns you might have. It's an especially
good idea if you are utilizing the DOM in your application, due to the DOM's memory hungry nature

However, there are additional ramp-up issues for developers (due to the obscure nature of the element
and attribute names) and code maintainability issues (documentation is a must) when working with
documents like these. As with pretty much anything else in programming, this decision involves a
tradeoff.

Presentation Layer Documents

Often, your systems may need to be able to easily render content in different contexts. The obvious
example in the emerging wireless age is handheld devices and cellular phones, which all have their own
markup languages for the representation of content. One good way to provide this functionality (and to
disambiguate content and presentation in the same step) is to first render information to XML, and then
style the XML with XSLT to produce the representation appropriate for the target platform.

117

Chapter 4

When designing structures that are only intended to support a specific presentation of content, the XML
should be designed to match the planned presentation layout as closely as possible to avoid slow XSLT
transformation of that data. For example, say you wanted to see the following general output layout for
a document containing multiple invoices for a particular customer from our sample data set:

Invoice

Order date: 12/1/2000
Ship date: 12/4/2000
Ship method: UPS

Part Quantity Unit Price Price

2 in. blue grommet 17 0.10 1.70

3 in. silver widget 22 0.20 4.40

Total 6.10
Invoice

Order date: 12/2/2000
Ship date: 12/5/2000
Ship method: USPS

Part Quantity Unit Price Price
1 in. red sprocket 13 0.30 3.90
2 in. blue grommet 11 0.10 1.10
Total 5.00

You might be tempted to design your structure to minimize the repetition of data, and to leverage the
way data is stored natively in your system, as is shown in the following examples (ch05_ex06. dt d and
ch05_ex06. xm) :

<! ELEMENT | nvoi ceData (I nvoice+, Part+)>
<! ELEMENT | nvoi ce (Lineltemt)>
<I ATTLI ST | nvoi ce
or der Dat e CDATA #REQUI RED
shi pDat e CDATA #REQUI RED
shi pMethod (UPS | USPS | FedEx) #REQUI RED>
<! ELEMENT Li nel t em EMPTY>
<I ATTLI ST Lineltem
part | DREF | DREF #REQUI RED
quantity CDATA #REQUI RED
pri ce CDATA #REQUI RED>
<! ELEMENT Part EMPTY>
<! ATTLI ST Part
part! D | D #REQUI RED
nanme CDATA #REQUI RED
si ze CDATA #REQUI RED
col or CDATA #REQUI RED>

<?xm version="1.0"7?>
<! DOCTYPE | i sting SYSTEM "ch05_ex06. dtd" >

118

Standards Design

<l nvoi ceDat a>
<l nvoi ce
or der Dat e=" 12/ 1/ 2000"
shi pDat e=" 12/ 4/ 2000"
shi pMet hod=" UPS" >
<Li neltem
part | DREF="p1"
quantity="17"
price="0.10" />
<Li neltem
part | DREF="p2"
quantity="22"
price="0.20" />
</l nvoi ce>
<l nvoi ce
or der Dat e=" 12/ 2/ 2000"
shi pDat e=" 12/ 5/ 2000"
shi pMet hod=" USPS" >

<Lineltem
part | DREF="p3"
quantity="13"
price="0.30" />
<Lineltem
part| DREF="p1l"
quantity="11"

price="0.10" />
</l nvoi ce>

<Part
part| D="pl"
name="gr omret "
size="2 in."
col or="bl ue" />
<Part
part| D="p2"

nanme="w dget "
size="3 in."
color="silver" />
<Part

part| D="p3"
nane="sprocket"
size="1in."
color="red" />

</ I nvoi ceDat a>

However, you'd be better off designing the structure to be similar to the output structure, like this
(ch05_ex07. dt d and ch05_ex07. xm):

<! ELEMENT I nvoi ceData (I nvoi ce+)>
<! ELEMENT | nvoi ce (Lineltemt)>
<I ATTLI ST | nvoi ce
order Dat e CDATA #REQUI RED
shi pDat e CDATA #REQUI RED
shi pMet hod (UPS | USPS | FedEx) #REQU RED
total CDATA #REQUI RED>
<! ELEMENT Li nel t em EMPTY>
<I ATTLI ST Lineltem
part Descri pti on CDATA #REQUI RED
quantity CDATA #REQU RED
price CDATA #REQUI RED
i nePrice CDATA #REQUI RED>

119

Chapter 4

<?xm version="1.0"7?>
<! DOCTYPE | i sting SYSTEM "ch05_ex07.dtd" >

<l nvoi ceDat a>
<l nvoi ce

or der Dat e="12/ 1/ 2000"

shi pDat e="12/ 4/ 2000"

shi pMet hod=" UPS"

total ="6. 10" >

<Li neltem
partDescription="2 in. blue grommet"
quantity="17"

price="0. 10"
linePrice="1.70" />
<Li nel tem
partDescription="3 in. silver wdget"
quantity="22"
price="0.20"

linePrice="2.20" />
</1nvoi ce>
<l nvoi ce
or der Dat e=" 12/ 2/ 2000"
shi pDat e=" 12/ 5/ 2000"
shi pMet hod=" USPS"
total ="5. 00" >
<Li nel t em
partDescription="1 in. red sprocket"
quantity="13"

pri ce="0. 30"
l'inePrice="3.90" />
<Li nel tem
partDescription="2 in. blue gronmet"
quantity="11"
price="0.10"

linePrice="1.10" />
</1nvoi ce>
</ I nvoi ceDat a>

The reason is simple: the first example requires the navigation of pointing relationships, the calculation
of values, and generally requires processing that XSLT is not adept at performing. Actually, base

implementations of XSLT cannot even calculate the final total for each invoice from the first structure!
However, XSLT can transform the second example to the planned output format(s) quickly and easily.

Once you've established the audience and usage intent of the designed XML structures, you should
make that information available to all the participants in the standard process. This will allow the
designers to constrain the structures they create to make sure that these desired end results are achieved.

Next, let's take a look at other preparatory work you can do to facilitate the standards design process.

Before Diving In: Ground Rules

Before starting on a standards design effort, it's important to agree on some ground rules about the
structures being designed. This is especially important on standards with larger scopes, as there tend to
be more people (both geographically and functionally diverse) working on the effort simultaneously.
XML is a quite flexible grammar, and there are myriad different ways of expressing the same semantic
content in an XML structure.

120

Standards Design

Let's take a look at some ways you can constrain the design direction and help to ensure a coherent final
outcome.

Implementation Assumptions

Before proceeding with the design of your structures, you first need to determine which platforms and
software are likely to be used to access the structures. Using this information, you can set limitations on
the way your structures are created, so that they work as harmoniously as possible with the software
used by the document producers and consumers.

Again, scope is a major factor here — if you are simply designing a structure to be used internally by one
system, it should be pretty easy to pin down the technologies used to create and consume documents for
that structure. If you're designing for the industry, however, you need to anticipate users accessing your
documents with any sort of hardware and software imaginable — and thus need to keep the complexity
of the structure as minimal as possible.

If you have any doubt what software and hardware will be used to access the documents, the worst-case
assumption should be that the documents are being accessed using baseline implementations of the
DOM, XSLT, and SAX as defined by the W3C and David Megginson (the lead developer of the SAX
toolset — visit his website for more on him and SAX at http://www.megginson.com).

A perfect example of this is the MSXML nodeFr om D() extension function. This function is an
extension of the W3C DOM that allows a node to be quickly identified in the document tree based on a
given ID value. If you know that producers and consumers will be using the MSXML library to access
the documents, then the navigation of pointing relationships (I DREF(S) to | D) will be relatively easy.
However, if a process is accessing the document using an implementation of the DOM that does not
provide a helper function like this, the navigation of pointing relationships is a little more tricky (it
requires manual iteration of the elements in the tree looking for one that has an attribute of type | D that
matches the | DREF you're trying to locate).

Of course, this has a big impact on design. Design, performance, and code complexity are all
inextricably intertwined. If you have to take a huge performance hit for pointers, you need to avoid
them at all costs — but if there are helper functions on your anticipated platform(s), then you don't have
to worry quite so much

Elements vs. Attributes

This is the one issue that will probably cause the most heated debate among the participants in your
standards process. Everyone has an opinion on whether elements or attributes should be used for data
content, and in most cases those opinions are strongly held. There are other factors that may influence
your decision as well, such as code reuse or compliance with XML servers such as BizTalk.

Whether you choose to use elements or attributes for text content, you should decide before starting to
create the structures — and you should stick to one or the other throughout the structures you create.
Otherwise, element definitions like these will begin to appear (ch05_ex08. dt d and ch04_ex08. xni):

<! ELEMENT I nvoi ce (orderDate, shipDate, shipMethod, Lineltem+)>
<! ELEMENT or der Dat e (#PCDATA) >
<! ELEMENT shi pDat e (#PCDATA) >
<! ELEMENT shi pMet hod (#PCDATA) >
<! ELEMENT Li neltem EMPTY>
<! ATTLI ST Lineltem
part| D | D #REQUI RED
quantity CDATA #REQU RED
pri ce CDATA #REQUI RED>

121

Chapter 4

<?xm version="1.0"7?>
<! DOCTYPE | i sting SYSTEM "ch05_ex08. dtd" >

<l nvoi ce>
<or der Dat e>12/ 1/ 2000</ or der Dat e>
<shi pDat e>12/ 4/ 2000</ shi pDat e>
<shi pMet hod>UPS</ shi pMet hod>
<Li neltem
part| D="p17"
quantity="11"
price="0.10" />
</ | nvoi ce>

Structures like this are difficult to learn and code for, making the time to implement them greater, and
increasing the amount of code necessary to support them. If you choose to use only elements or only
attributes to represent your data points, and enforce that decision, the resulting structures will be more
readily accessible and implementable.

We discussed the subject of elements versus attributes for data points more thoroughly in Chapter 3.

Restricting Element Content

Because XML has its origins in SGML, it allows many different types of structures. Some of the
allowable structures in XML are better suited to text markup purposes than data structures, and as such
should be avoided whenever possible. If you set the ground rule up front that these text-centric
structures should be avoided, it will make your generated structures more usable.

Let's see some recommended guidelines for restricting element content.

Don't Allow the ANY Element Type

As we've seen in the preceding chapters, the ANY element type allows a great deal of flexibility in what
the element may contain. Say we have the following DTD:

<! ELEMENT a ANY>
<! ELEMENT b (#PCDATA) >
<! ELEMENT ¢ (#PCDATA) >

Then the following structures would all be perfectly legitimate:

<a>

<a>some string<c>some ot her string</c>
<a>Thi s el enent has sone text content
<a><b / ><c>f 0o</ c>f oof 00</ b>f oo<c>f oo</ c></ a>
<a><a><a><a [></ a></ a></ a>

As you can see, the freedom to mix text content and element content makes the processing of these
elements a nightmare. If you forbid the developers working on the standard to use this content type,
you can avoid the headaches documents like these can cause.

122

Standards Design

Don't Allow the Mixed-content Element Type

Structures of this type have the same sort of issues as structures of the ANY type. Text and elements may
be freely mixed in any combination allowed by the content specification. You should also specify that
this type of element content may not be used in your structures. The obvious exception is the element
that is only text (really a special case of the mixed-content element type): this type of element is used
when data points are being represented as elements.

Constrain Elements that have Structured Content

XML allows designers to specify complex structural content for elements using the grouping, choice,
and cardinality operators. While these complex structures allow fine control over the order and
frequency of elements appearing as children of the element being defined, they can be somewhat
problematic to code for.

In general, you should restrict structured content to sequential elements only, using commas to separate
the elements that may appear. The one situation where that doesn't strictly apply is when a true "either-
or" relationship is being modeled.

For example, let's say we had the following structure (ch05_ex09. dt d):

<l ELEMENT User (Supplier | Custoner)>
<! ATTLI ST User
| ogi n CDATA #REQUI RED
hashedPasswor d CDATA #REQUI RED>
<! ELEMENT Supplier EMPTY>
<! ATTLI ST Supplier
nane CDATA #REQUI RED
suppl yFrequency CDATA #REQUI RED
part | DREFS | DREFS #REQUI RED>
<! ELEMENT Cust oner EMPTY>
<I ATTLI ST Cust omer
nane CDATA #REQUI RED
address CDATA #REQUI RED
city CDATA #REQUI RED
stat e CDATA #REQUI RED
post al Code CDATA #REQUI RED>

If the User could be a Suppl i er, a Cust oner, or both, then the correct content model for the user
element should be:

<l ELEMENT User (Supplier?, Custoner?)>
The argument could then be made that the actual correct structure would be:
<! ELEMENT User ((Supplier, Custoner) | Supplier | Custoner)>

However, as you can imagine, the structures would become quite complex quickly if this sort of
structure were used often. Instead, it's better to ensure that at least one of Suppl i er or Cust oner is
provided in your code.

123

Chapter 4

Capturing Strong Typing Information

When gathering data points for the standard, it's important to capture strong typing information for that
data. Even though DTDs cannot enforce the strong typing, having it available in some form will help
implementers understand the exact format and purpose of each of the data points included in the
standard. Additionally, when XML Schemas become available, and it becomes possible to strongly type
the data points, the migration will be less painful, since you won't have to go through the additional step
of recapturing the typing for each of the data points.

Say you had the following structure:

<! ELEMENT | nvoi ce EMPTY>
<I ATTLI ST | nvoi ce
or der Dat e CDATA #REQUI RED
shi pDat e CDATA #REQUI RED
shi pMethod (USPS | UPS | FedEx) #REQUI RED>

It's important to specify the format of the date, especially if the company does business internationally;
some countries represent dates as MM/DD/YYYY and some as DD/MM/YYYY. In the United States,
for example, 07/04/2000 means July 4, 2000, while in Germany and England the same string would
indicate April 7, 2000. The best way to add this sort of information to your DTD is in the form of a
comment block:

<l-- Elenent: |nvoice -->
<l-- Attributes: -->
<l-- order Dat e -->
<l-- Dat a type: datetinme -->
<I-- For mat : YYYY- M DD -->
<I-- Description: This field contains the date the invoice was -->
<l-- subm tted. -->
<l-- shi pDat e -->
<I-- Dat a type: dateti me -->
<l-- For mat : YYYY- M DD -->
<l-- Description: This field contains the date the parts ordered -->
<I-- on the invoice were shipped to the custoner. -->
<l-- shi pMet hod -->
<l-- Dat a type: enunerated attribute -->
<l-- For mat : USPS: United States Postal Service -->
<l-- UPS: Uni ted Parcel Service -->
<l-- FedEx: Federal Express -->
<I-- Description: This field indicates what shipper was used to -->
<l-- ship the parts to the customer. -->

<! ELEMENT | nvoi ce EMPTY>
<I ATTLI ST | nvoi ce
order Dat e CDATA #REQUI RED
shi pDat e CDATA #REQUI RED
shi pMethod (USPS | UPS | FedEx) #REQUI RED>

While this will drastically increase the size of your DTD, many processors parse and cache DTDs,
making the extra comments irrelevant. If you find that your processor's performance is degraded when
using heavily commented DTDs, you might want to store the comments in some other medium (such as
the implementation guide, which we'll cover later).

124

Standards Design

Naming Conventions

In order for your standard to be internally coherent and comprehensible, a naming convention should
be used for all elements and attributes. The naming convention should be detailed enough that someone
who is implementing the standard may determine, at a glance, what a particular element or attribute
represents. For example, here's one possible naming convention you might use:

O Element names should be upper-camel-case (words concatenated, with the first letter of each
word capitalized).

O Attribute names should be lower-camel-case (words concatenated, with the first letter of each
word capitalized except for the first word in the attribute name).

O Attribute names should not repeat the element name in which they appear (for example, in
the | nvoi ce element use the attribute name or der Dat e, not i nvoi ceOr der Dat e).

O Attribute names should consist of (optionally) one or more prefixes describing the role of the
data point in the overall structure, followed by a main name describing the data point,
followed by a suffix describing the type of data that the data value may hold (including scaling
information, if any).

O Attributes that represent Boolean values take the prefix i s.

So the following structure would agree with the above naming convention list:

<! ELEMENT Sal esTax EMPTY>

<I ATTLI ST Sal esTax
st at eText CDATA #REQUI RED
val uePer cent CDATA #REQUI RED
i sExenpt (Y | N) #REQUI RED>

but this structure would not:

<! ELEMENT sal est ax EMPTY> (does not foll ow nam ng convention for
el enent s)
<I ATTLI ST sal est ax
st at e CDATA #REQUI RED (does not indicate the type of
i nformation)
per cent Val ue CDATA #REQUI RED (does not have the type of data as a
suffix)
TaxExenpt (Y | N) #REQU RED (repeats the prefix, and does not begin
with "is")

The exact details of the naming convention aren't as important as the existence of the convention itself.
As long as the convention makes it easy to understand the role and meaning of each element and
attribute simply by looking at its name, you can choose the syntactical style that suits the standards
group best.

Of course, the decisions you make regarding these ground rules will affect the entire future project, so
it's important to get it right. Therefore, the next thing we need to assess is exactly what bearing these
decisions will have.

125

Chapter 4

Understanding the Impact of Designh Decisions

There is a great temptation when designing XML structures to try to design the most elegant solution,
regardless of the implications for development of using the structures created. However, it's important
to take the development and production implications of your design decisions into account from the
outset. Let's look at some common metrics that can be adversely affected by design decisions.

Performance

The most obvious production metric is performance. With any XML implementation, careful attention
has to be paid to the way the documents are constructed, their size, and the way they are parsed to
avoid memory and network bottlenecks. Let's look at some common design decisions that can adversely
impact performance.

Document Size

If a developer is using the DOM, or some toolset or library that is based on the DOM, the entire XML
document is read into memory and parsed into the node tree before actions are taken on the document.
This creates an obvious memory bottleneck if the documents are too large, or if too many concurrent
sessions of the DOM (or DOM-dependent) parser are instantiated on a single machine.

If you are concerned about memory consumption, there are several approaches you can take to mitigate
the problem:

0 ReducetheTag Sizes.

As we saw earlier in the document, reducing the tag sizes on your elements can significantly
reduce the size of documents. This translates directly to a reduced footprint for each instance
of the DOM processor loaded and reading documents. This is probably the best approach to
the problem, but it has the significant downside of making the documents less human-
readable.

0O Add more Memory/Hardware.

As with any production system bottleneck, you can improve the system performance if you
distribute the load across additional systems, or add more memory to the system that is
experiencing the memory bottleneck. Unfortunately, this has the obvious drawback of
requiring new hardware or memory to be purchased and installed.

0O Reducethe Scope of the Structures.

If the XML documents cover a wide range of information, one way to reduce the memory
footprint is to remove information from your structures that is not accessed by your
consumers. Perhaps you elected to add some information to support theoretical future
consumers who might need it, or you tried to create a structure that was "one-size-fits-all." In
this case, consider breaking the structure into smaller structures, which may be used to satisfy
particular consumer requirements separately to control the system load.

126

Standards Design

O UseSAX Technology Instead.

SAX parsers, or processors that are based on SAX, have a significantly smaller footprint than
DOM parsers, since they stream the document through a parse window rather than loading
the entire document into memory. However, SAX parsers can be notoriously difficult to work
with, especially if your document has pointing relationships (I DI DREF connections) that need
to be navigated. If a pointing relationship is a backward reference (i.e., the | D pointed to by
the | DREF appears earlier in the document), then either multiple passes or some sort of
memory caching mechanism will be required to navigate the relationship — which defeats the
whole purpose of the small memory footprint.

Overnormalization

Another factor that can affect performance is how normalized your structure is — in other words, how
many nodes deep the created tree is. Depending on the specific processor implementation, a deeper tree
can take longer to navigate. If you think that your structures might be overnormalized, look for one-to-
one relationships between elements and their element content. These can typically be denormalized
easily, and the attributes of the child element brought into the parent.

Too Many Pointing Relationships

An overabundance of pointing relationships in your structures can have serious performance
implications for processors. As we mentioned earlier in the chapter, most implementations of the DOM
don't have a built-in way to navigate | D-| DREF relationships. Those that do still have to iterate through
the entire element node list looking for the element whose | D matches the | DREF you have.

The problem is only compounded if you are using the SAX processor. The more pointing relationships
that are in your structures, the more likely it is that one of the relationships will point backwards in the
document, forcing implementers to write caching schemes or perform multiple parse passes on
documents.

If you find that the number of pointing relationships is having performance implications for you, you
might try transforming some of the pointers to containment relationships. This may cause your
document to be slightly larger, but it will in fact be processed faster than one containing the pointing
relationships. Let's see an example of this.

Recall the sample invoice DTD we used to show how XML might be used to drive a presentation layer
(ch05_ex06. dt d and ch05_ex06. xm):

<! ELEMENT I nvoi ceData (Invoi ce+, Part+)>
<! ELEMENT I nvoi ce (Lineltem+)>
<I ATTLI ST I nvoi ce
order Dat e CDATA #REQUI RED
shi pDat e CDATA #REQUI RED
shi pMet hod (UPS | USPS | FedEx) #REQUI RED>
<! ELEMENT Li nel tem EMPTY>
<! ATTLI ST Lineltem
part | DREF | DREF #REQUI RED
quantity CDATA #REQU RED
price CDATA #REQUI RED>
<! ELEMENT Part EMPTY>
<! ATTLI ST Part
part| D | D #REQUI RED
name CDATA #REQUI RED
si ze CDATA #REQUI RED
col or CDATA #REQUI RED>

127

Chapter 4

<I nvoi ceDat a>
<l nvoi ce
or der Dat e="12/ 1/ 2000"
shi pDat e="12/ 4/ 2000"
shi pMet hod="UPS" >
<Li nel tem
part| DREF="p1"
quantity="17"
price="0.10" />
<Li nel tem
part | DREF="p2"
quantity="22"
price="0.20" />
</1nvoi ce>
<l nvoi ce
or der Dat e=" 12/ 2/ 2000"
shi pDat e="12/ 5/ 2000"
shi pMet hod=" USPS" >

<Li nel tem
part | DREF="p3"
quantity="13"
price="0.30" />
<Li nel tem
part | DREF="p1"
quantity="11"

price="0.10" />
</ I nvoi ce>

<Part
Part| D="pl"
name="gronmet "
size="2 in."
col or="bl ue" />
<Part
Part| D="p2"

name="w dget "
size="3 in."
color="silver" />
<Part

Part| D="p3"
name="sprocket"
size="1in."
color="red" />

</ I nvoi ceDat a>

In this example, an | D-| DREF navigation is required — taking the Par t | DREF value and navigating to
the appropriate information about the part. We can improve the performance of the document by
changing this relationship to a containment relationship, denormalizing it into the Li nel t emstructure,
and repeating the part data where necessary (ch05_ex10. dt d and ch05_ex10. xm):

<! ELEMENT | nvoi ceData (I nvoi ce+)>
<! ELEMENT I nvoi ce (Lineltemt)>
<I ATTLI ST | nvoi ce

order Dat e CDATA #REQUI RED

shi pDat e CDATA #REQUI RED

shi pMet hod (UPS | USPS | FedEx) #REQUI RED>
<! ELEMENT Li nel t em EMPTY>
<I ATTLI ST Li neltem

name CDATA #REQUI RED

si ze CDATA #REQUI RED

col or CDATA #REQUI RED

quantity CDATA #REQUI RED

pri ce CDATA #REQUI RED>

128

Standards Design

<?xm version="1.0"?>
<! DOCTYPE | i sting SYSTEM "ch05_ex10.dtd" >

<l nvoi ceDat a>
<l nvoi ce
or der Dat e=" 12/ 1/ 2000"
shi pDat e=" 12/ 4/ 2000"
shi pMet hod=" UPS" >

<Li neltem
name="gr omret "
size="2 in."

col or ="bl ue"
quantity="17"
price="0.10" />

<Li neltem
nane="w dget "
size="3 in."

col or="silver"
quantity="22"
price="0.20" />
</l nvoi ce>
<l nvoi ce
or der Dat e=" 12/ 2/ 2000"
shi pDat e="12/ 5/ 2000"
shi pMet hod=" USPS" >
<Li neltem
name="spr ocket "
size="1in."
col or="red"
quantity="13"
price="0.30" />
neltem
nanme="gronmet "
size="2 in."
col or="bl ue"
quantity="11"
price="0.10" />
</l nvoi ce>
</ I nvoi ceDat a>

<L

If the consuming system needs to know that the grommet referenced in the first invoice is the same as
the grommet referenced in the second invoice, it will need to reconcile that information by comparing
the name, size, and so on. The ch05_ex06 version will be smaller, while the ch05_ex10 version parses
more quickly - it all depends on your specific performance requirements.

Coding Time

Another important factor to take into consideration when developing XML structures is the time it will
take for code processors to produce and consume them. There are several ways that your structure
design can influence the time it takes to write code against it.

129

Chapter 4

Document Complexity

One pretty obvious way that your structure can influence the coding time required to build against it is
its complexity. The more complex a document structure, the more lines of code will need to be written
to produce or consume it.

While there's no way around a certain level of complexity — after all, the XML document needs to
contain all the information relevant to the task at hand — you can avoid document complexity by
avoiding overnormalization. If an element has a one-to-one relationship with another element, and
there's no compelling reason to keep the two separate, pulling the attributes of the child into the parent
and discarding the child will make the document tighter and easier to parse.

Pointing Relationships

The more pointing relationships your document uses, the more difficult it will be to write code that
produces or consumes it. Producers will need to generate identifiers and make sure all the references
properly link back to the identifiers, while consumers will need to hop around the tree pursuing
pointing relationships to extract the information they need. Removing pointing relationships where
possible will help to shorten the coding cycle.

Levels of Abstraction

When designing data structures, the developer can choose the level of abstraction to which the
structures will be taken. While additional abstraction can produce real benefits in a relational model, it
only introduces unnecessary processing for a producer or consumer of an XML document, as the level
of abstraction has to be rectified before the information can be accessed.

Let's see an example. Say we have this structure for the | nvoi ce element:

<! ELEMENT | nvoi ce (Date+)>

<! ELEMENT Date EMPTY>

<I ATTLI ST Date
dat eType (orderDate | shipDate) #REQU RED
dat eVal ue CDATA #REQUI RED>

<l nvoi ce>
<Dat e dat eType="orderDate" dateVal ue="12/1/2000" />
<Dat e dat eType="shi pDate" dat eVal ue="12/4/2000" />
</l nvoi ce>

Many developers are drawn to this type of implementation, as it seems more backward-compatible: if
you want to add a different kind of date for the invoice, just add a possible value to the enumerated
value and you're done. However, there are some issues with this type of structure in XML.

First, there's no way to state that only one or der Dat e and one shi pDat e date may appear. Thus, the
following document would be perfectly legal:

<l nvoi ce>
<Dat e dat eType="order Dat e" dateVal ue="12/1/2000" />
<Dat e dat eType="orderDate" dateVal ue="12/4/2000" />
</l nvoi ce>

130

Standards Design

Additionally, a consumer now has to retrieve all the child Dat e elements of the | nvoi ce element, look
at the dat eType to figure out what type of Dat e each is, and then act accordingly. A much better
structure, and one that is much easier to code to, is one that explicitly states each date type:

<! ELEMENT | nvoi ce EMPTY>

<I ATTLI ST I nvoi ce
order Dat e CDATA #REQUI RED
shi pDat e CDATA #REQUI RED>

<l nvoi ce
or der Dat e=" 12/ 1/ 2000"
shi pDat e="12/ 4/ 2000" />

Developer Ramp-up Time

Another issue to consider when designing your structures is the developer ramp-up time; in other
words, how long it will take the developer to understand the representation of the data found in the
XML structure you have created. This concern is similar to the concern over coding time, and naturally
may be addressed in similar ways. The main issues that will extend developer ramp-up time are the
document complexity, the number of pointing relationships used in the document, and the abstractness

of the document.

Extensibility

One thing to keep in mind when developing your XML structures is that they are likely to change over
time. While true backward compatibility is a difficult goal to attain with XML, you can at least design
your structures so that old documents may be migrated upward with a minimum of effort.

Again, one major thing you can do to make this easier is to avoid too many pointing relationships -
these will make understanding the impact of any changes you choose to make difficult at best. You
should also think about whether elements and attributes should be required or optional. If you are
striving for backward compatibility, any elements and attributes you add should be optional. However,
be aware that you lose a certain level of ability to perform business rule enforcement if you choose

to do so.

During the Development

Next, we need to look at some issues that are likely to arise during the development of your documents.

Subdividing the Workload

Since standards design efforts are typically collaborative efforts, there need to be some clearly-defined
ways to control who is working on what portion of the document. Typically, the best approach is to
subdivide the work and allow the domain experts to concentrate their efforts (initially, at least) on the
areas of the document that pertain to their skills.

131

Chapter 4

For example, say you were developing the invoice system we have been using as an example. You
might assign the design of the parts structures to your inventory control data developer, the invoice
structures to your point-of-sale data developer, and the summary tables to your accounting developer. A
good rule of thumb is to assign each part of the workload to the person or team that has the greatest
vested interest in the way that part of the structure is designed.

One good approach to subdividing the effort is to first meet as a team to map out the overall structure of
the document. For example, you might all agree that a document contains invoices, each of which
reference parts, and are summarized in a monthly element. Once consensus has been reached on this,
then each individual element (or group of elements) should be doled out to the developer who will be
working on it (or them). Once everyone has finished their own designs, you should meet again to bring
the structures together (and we'll see how this is done later in the chapter).

Data issues

While developing the structures, there are some common data issues you are likely to encounter. These
issues may stem from a disagreement among participants, or from issues associated with the resultant
structures. We'll look at the following issues, and how they may be addressed:

General vs. specific
Required vs. optional

"Tag soup"

o o o g

Keeping the Structure "Representation Independent”

General vs. Specific

This problem is the one that tends to crop up more often than any other, especially in standards with
wider scope. Let's say that we are designing an invoice and summary document to be passed back and
forth between the point-of-sale system and the accounting system. From the point-of-sale perspective,
the natural way to reference prices is going to be at the line item level — the customer paid a certain
price for each unit of a certain part, and a certain quantity of parts were ordered. However, from the
accounting perspective, the natural way to reference prices is at the invoice level - that way, accounting
can ensure that all customers are billed properly without having to recalculate totals for every invoice.
Which representation is correct in the structures we're creating?

One way to resolve this issue is to state that both the general and the specific representations are
correct, but that they should be declared as optional. This allows all producers of the document to
simply store whatever information is available. However, this introduces a problem: what if the
accounting system produces a document, and the point-of-sale system tries to consume it? It will not
have the information necessary (the line item information), and so the point-of-sale system cannot
recreate the line items for the invoice. Typically, a producer that includes the specific information can
create a document that can be consumed by a consumer looking for the general information, but not
vice-versa.

Another place where this crops up is in the discussion of enumerated values. For example, say the point-
of-sale designers propose the following structure for shi pMet hod:

<! ATTLI ST I nvoi ce
shi pMet hod (USPS | UPS | FedEx) #REQUI RED>

132

Standards Design

However, the fulfillment designer proposes this structure:

<I ATTLI ST I nvoi ce
shi pMet hod (USPSG ound |
USPSPriority |
UPSGr ound |
UPSQver ni ght |
FedExG ound |
FedExOver ni ght) #REQUI RED>

Again, we have the case of one designer proposing the general values, and one designer proposing more
specific values. Similar techniques must be used to determine what the representation used in the
standard should be. In this case, the ideal structure probably looks something like this:

<I ATTLI ST I nvoi ce
shi pper (USPS |
UPS |
FedEx) #REQUI RED
shi pMet hod (G ound |
Overni ght) #OPTI ONAL>

Required vs. Optional

Another issue that often arises is debate over whether a particular element or attribute should be
required or optional. For example, the point-of-sale designer might insist that the Li nel t emchild
element of the | nvoi ce element is required — after all, you can't have an invoice without line items,
right? On the other hand, the accounting designer insists that the Li nel t emchild element should be
optional — by the time the invoice reaches the accounting system, all they care about is the customer
and the amount due.

This decision is usually a toss-up — either you make the element optional, losing some of your ability to
control the content of the XML document (because a point-of-sale system could now leave off the

Li nel t emelements in the | nvoi ce element), or you make the element required (meaning that the
Accounting system now has to remember the line items for every invoice). Typically, the wider scope an
XML standards effort has, the more likely that items will be optional rather than required.

"Tag soup"

Developers familiar with relational database design, but unfamiliar with XML design, often tend to
overuse pointing relationships, as pointing relationships are highly reminiscent of foreign key
relationships in relational databases. However, using too many pointing relationships causes the
document to degenerate into "tag soup"” in other words, rather than being a tree structure, the document
is simply a large pile of leaves with pointers connecting back and forth between them.

We've already seen some of the perils of a document that has too many pointing relationships. It's
important that issues of incipient tag soup are addressed and resolved during the peer reviews (which
we'll discuss later).

Keeping the Structure Representation-Independent

A common mistake that new XML developers often make is to tie their structures too closely to a
specific representation of the data contained in those structures. The greatest benefit of XML is its
ability to abstract the data away from the specific representation of that data.

133

Chapter 4

Here's an example. Say we had the following printed invoice document, which has been our standard
document for the past twenty years:

Invoice

Order date: 12/1/2000
Ship date: 12/4/2000
Ship method: UPS

Part Quantity Unit Price Price
2 in. blue grommet 17 0.10 1.70
3 in. silver widget 22 0.20 4.40
Total 6.10

A developer might be tempted to design a structure that looked like this (ch05_ex11. dt d):

<! ELEMENT | nvoi ce (orderDate, shipDate, shipMethod, Linel, Line2, Line3)>
<! ELEMENT or der Dat e (#PCDATA) >
<! ELEMENT shi pDat e (#PCDATA) >
<! ELEMENT shi pMet hod (#PCDATA) >
<! ELEMENT Li nel EMPTY>
<I ATTLI ST Li nel
part Descri pti on CDATA #REQUI RED
quantity CDATA #REQUI RED
pri ce CDATA #REQUI RED>
<! ELEMENT Li ne2 EMPTY>
<! ATTLI ST Li ne2
part Descri pti on CDATA #REQUI RED
quantity CDATA #REQUI RED
pri ce CDATA #REQUI RED>
<! ELEMENT Li ne3 EMPTY>
<! ATTLI ST Li ne3
part Descri pti on CDATA #REQUI RED
quantity CDATA #REQUI RED
pri ce CDATA #REQUI RED>

The problem is that now the tag names in the XML refer back to a specific representation of the data —
the printed invoice — not the data itself. This problem tends to crop up more frequently when discussing
commonly used forms across an industry, such as a mortgage application form or an income tax form.
You should avoid making reference to specific aspects of a single representation of data, such as line
numbers, whenever possible. The only exception to this rule would be if your XML was intended only
to drive a presentation layer, and all planned representations of the data followed the same general
layout

Obviously, the better structure to use here would be this (ch05_ex11a. dt d):

<! ELEMENT | nvoi ce (orderDate, shipDate, shipMethod, Line+)>
<! ELEMENT or der Dat e (#PCDATA) >
<! ELEMENT shi pDat e (#PCDATA) >
<! ELEMENT shi pMet hod (#PCDATA) >
<! ELEMENT Li ne EMPTY>
<! ATTLI ST Li ne
part Descri pti on CDATA #REQUI RED
quantity CDATA #REQUI RED
price CDATA #REQUI RED>

134

Standards Design

Pulling it all Together

Once the developers have all produced their portions of the XML structures, it's time to pull it all
together into one coherent standard. However, as you might imagine, problems often arise when
attempting to do so. Let's see some of the ways you can deal with these problems and prepare associated
information to make the adoption of the standard as painless as possible.

Peer Review

It's important that the entire structure be subject to peer review. This helps ensure that the work done
by each team member is accurate and consistent with work done by the others on the team. In this step,
issues such as too many pointing relationships and too implementation-specific designs can be identified
and resolved.

In addition to the structure being reviewed by the team who developed it, it should be reviewed by
developers who did not work on the structure. These don't necessarily need to be XML designers, but
they should have a good working understanding of the data that drives the structures. As issues are
identified by the peer review, they should be addressed and resolved, either by the developer
responsible or the team as a whole.

Resolving Disputes

When everyone meets to discuss the structures, inevitably some disputes will arise that cannot be
resolved through a simple discussion. Most data developers have strongly-held opinions about the way
data should be represented (all interest rates should be shown as ratios, for example, or all data points
with similar types should be grouped together). No amount of debate is likely to create a consensus on
these types of issues. When arbitration fails, the way to resolve a dispute is to put it to a vote. If the team
consists of an even number of participants, the lead developer can decide ties. This way, the resultant
structures will be satisfactory to the majority of the participants in the process.

The Implementation Guide

When you deliver the XML structures you have created to the developers who will be using them, you
should also provide an implementation guide. This document should include:

A brief statement of the purpose of the structure
A dictionary describing the elements and attributes in the structure

A diagram of the structure

I I B |

A few sample documents that exercise the various permutations of the structure that are
allowed

Let's see how each part of the guide should be created.

Statement of Purpose

The first part of the document should talk about the purpose of the document. It should describe:

The scope of the structure (who will be using it)
The type of data described in the structure

The purpose to which documents using the structure will be put

O o o o

Any other considerations you took into account when designing the structure

135

Chapter 4

This should help identify the role of the document, and deter developers from using the document for a
purpose for which it was not originally intended (although you can pretty much guarantee that someone
will do this anyway - and then complain about the fact that it doesn't suit their needs perfectly).

Dictionary

Next, you should describe the various elements and attributes in the document in a human-readable
way. In this dictionary, you should provide detailed definitions, as well as describing the structure in
terms of "this-points-to-that" or "this-contains-one-or-more-of-those".

Let's see a sample dictionary for a structure we've been working with in this chapter (ch05_ex06. dt d):

<! ELEMENT | nvoi ceData (I nvoice+, Part+)>
<! ELEMENT | nvoi ce (Lineltem+)>
<! ATTLI ST I nvoi ce
order Dat e CDATA #REQUI RED
shi pDat e CDATA #REQUI RED
shi pMet hod (UPS | USPS | FedEx) #REQUI RED>
<! ELEMENT Li nel t em EMPTY>
<! ATTLI ST Lineltem
part | DREF | DREF #REQUI RED
quantity CDATA #REQUI RED
pri ce CDATA #REQUI RED>
<! ELEMENT Part EMPTY>
<! ATTLI ST Part
part! D | D #REQUI RED
name CDATA #REQUI RED
si ze CDATA #REQUI RED
col or CDATA #REQUI RED>

Our dictionary might look like this:

Element Details

I nvoi ceDat a Contains: | nvoi ce (one or more), followed by Part (one or more)
Is contained by: None
Ispointed to by: None
Description: This element is the root element of the document
Attributes: None

I nvoi ce Contains: Li nel t em(one or more)
Is contained by: | nvoi ceDat a
Is pointed to by: None
Description: This element represents one physical invoice
Attributes:

order Dat e
Data type: Datetime
Format: MM/DD/YYYY

136

Standards Design

Element

Details

I nvoi ce (continued)

Li neltem

Part

Description: This is the date the invoice was submitted (the date the
order was placed)

shi pDat e

Data type: Datetime

Format: MM/DD/YYYY

Description: This is the date the parts on this invoice shipped, or are
anticipated to ship

shi pMet hod
Data type: Enumerated
Format: USPS: United States Postal Service

UPS: United Parcel Service
FedEx: Federal Express

Description: This is the method used to ship the parts on this
invoice, or the anticipated shipping method for the parts on this
invoice

Contains: None

Is contained by: | nvoi ce

Ispointed to by: None

Description: This element represents one detail line on an invoice
Attributes:

part | DREF
Data type: IDREF (points to a Part element)

Format: N/A

Description: This attribute points to the Part element that describes
the part ordered on this line of the invoice

quantity

Data type: Numeric

Format: #####

Description: This attribute indicates how many of the specific parts
were ordered on this line of the invoice

price

Data type: Numeric

Format: #4444 #4#

Description: This attribute indicates the unit price paid by the
customer for the part ordered on this line of the invoice

Contains: None
Is contained by: | nvoi ceDat a
Ispointed to by: Li nel t em

Description: This element describes a particular part referenced on
one or more of the invoices in this document

Table continued on following page

137

Chapter 4

Element Details

Part (continued) Attributes:
part| D
Data type: ID (uniquely identifies this element within the document)
Format: N/A

Description: This attribute identifies this element within the
document, so that it may be pointed to from the Li nel t emelement

nane

Data type: String

Format: Maximum length 50 characters

Description: This attribute contains the name of the part being
described in this Part element

col or

Data type: String

Format: Maximum length 10 characters

Description: This attribute describes the color of the part being
described in this Part element

si ze

Data type: String

Format: Maximum length 20 characters

Description: This attribute describes the size of the part being
described in this Part element

Document Structure Diagram

It's important to create a diagram of the XML structures you create. You can either do this as an aid to
development during the design process, or at the end of the process to identify problems such as
orphaned mislinked elements. In addition, this model should be distributed along with the structures to
the developers that must use them - this will help the developers ramp up on the structures and
improve their time-to-delivery.

The W3C provides an example of "Elm tree" diagramming for XML structures
(http://www.w3.0rg/XML/1998/06/xmlispec-report-v21.htm). However, it does not go far enough in
addressing pointing relationships. We recommend that you use a modified form of the W3C
diagramming proposal, with an additional connector type to indicate pointing relationships. We also
recommend that you list the data points associated with an element, whether they are text elements or
attributes, inside the box representing that element (much as you might for a relational database
diagram).

Let's see an example of a diagram using this method for our example:

<! ELEMENT I nvoi ceData (I nvoi ce+, Part+)>
<! ELEMENT | nvoi ce (Lineltem+)>
<I ATTLI ST | nvoi ce
order Dat e CDATA #REQUI RED
shi pDat e CDATA #REQUI RED
shi pMethod (UPS | USPS | FedEx) #REQUI RED>
<! ELEMENT Li nelt em EMPTY>

138

Standards Design

<I ATTLI ST Lineltem
part| DREF | DREF #REQUI RED
quantity CDATA #REQUI RED
price CDATA #REQUI RED>
<! ELEMENT Part EMPTY>
<! ATTLI ST Part
part! D | D #REQUI RED
name CDATA #REQUI RED
si ze CDATA #REQUI RED
col or CDATA #REQUI RED>

For this sample structure, the corresponding diagram would be:

InvoiceData

Invoice
orderDate: datetime
shipDate: datetime
shipMethod: enumeration

Lineltem
partIDREF: IDREF

Part
partiD: ID
name: string
color: string
size: string

quantity: numeric
price: numeric

Sample Documents

Finally, you should include some sample documents in your implementation guide. These documents
should cover all of the anticipated uses of the structures you have designed, and exercise as many
variations of the structures as possible. You should annotate each sample document with a description
of what it represents, as well as any comments on less-clear parts of the structure (such as how pointing

relationships are used).

139

Chapter 4

Summary

As XML becomes increasingly pervasive, the need for XML standards to be developed will grow. These
standards may be as simple as a way for two systems in your enterprise to communicate with one
another, or complex enough to support a worldwide industry with thousands of participating companies.

In this chapter, we've taken a look at some things to keep in mind when designing your structures,

including:
0 Understanding how the type of standard and document usage will determine the structure of
our designs
0 Understanding the need to assess the way our design decisions will affect the finished solution
O Some of the factors we should take into consideration during the development process
O How to ensure that the final standard can be implemented as painlessly as possible

Using the techniques covered in this chapter, you should be able to create standards that will be both
easy to understand and well-suited to the tasks at hand.

This chapter brings us to the end of the Design Techniques section of this book. We'll now move on to
look at some of the specific technologies we'll need to use in more detail, starting with XML Schemas.

140

Standards Design

141

Chapter 4

142

Having seen how to model our XML data, we now need to know how to work with that data. In the
next two chapters, we are going to learn how to manipulate, add, update, and delete that data while it is
still in its XML document, and make it available to processing applications.

The Document Object Model (DOM) provides a means for working with XML documents (and other
types of documents) through the use of code, and a way to interface with that code in the programs we
write. In a sentence, the Document Object Model provides standardized access to parts of an XML
document. For example, the DOM enables us to:

O Create documents and parts of documents.

0 Navigate through the document.

O Move, copy, and remove parts of the document.

0 Add or modify attributes.

In this chapter, we'll discuss how to work with the DOM to achieve such tasks, as well as seeing:
What the DOM is.

O

O What interfaces are, and how they differ from objects.

O What XML related interfaces exist in the DOM, and what we can do with them.
O

How to use exceptions.

The DOM specification is being built level-by-level. That is, when the W3C produced the first DOM
Recommendation, it was DOM Level 1. Level 1 was then added to, to produce Level 2. At the time
of writing, DOM Level 3 was in its development stages, so in this chapter, we'll be discussing the
DOM Level 2.

Chapter 6

You can find the DOM Level 2 specification at:
http://www.w3.0rg/TR/DOM-Level-2/, and there's more information at:
http://www.w3.0rg/TR/1999/CR-DOM-Level-2-19991210/core.html.

What is the DOM?

As we are able to create our own XML vocabularies, and document instances that conform to these
vocabularies, we need a standard way to interact with this data. The DOM provides us with an object
model that can model any XML document — regardless of how it is structured - giving us access to its
content. So, as long as we create our documents according to the rules laid down in the XML 1.0
specification, the DOM will be able to represent them and give us interfaces to work with them
programmatically.

While the DOM is an object model, the model is abstract — the DOM is not a program itself, and the
specification does not tell us how to implement the interfaces it exposes. In actual fact, the DOM
specification just declares a set of Application Programming Interfaces, or APls, that define how a
DOM compliant piece of software would allow us to access a document and manipulate its contents.

When we looked at how we use XML in association with databases, we saw that it is a powerful device
in any developer's toolkit. It provides methods for our XML documents to be updated, and created,
records added, elements removed, attributes changed, etc.

How Does the DOM Work?

As we said, the DOM specification defines interfaces that a program can implement to be DOM
compliant. It does so in a programming language independent manner, so implementations of the DOM
can be written in our language of choice. Rather than writing the implementations of the interfaces
specified by the DOM, however, there are many pieces of software that implement it for us.

The DOM is usually added as a layer between the XML parser and the
application that needs the information in the document, meaning that the parser Application
reads the data from the XML document and then feeds that data into a DOM. T
The DOM is then used by a higher-level application. The application can do

whatever it wants with this information, including putting it into another
proprietary object model, if so desired.

XML
Document

So, in order to write an application that will be accessing an XML document through the DOM, we
need to have an XML parser and a DOM implementation installed on our machine. Some DOM
implementations, such as MSXML (http://msdn.microsoft.com/downloads/default.asp), have the parser
built right in, while others can be configured to sit on top of one of many parsers.

192

DOM

Most of the time, when working with the DOM, the developer will never even have to know that an
XML parser is involved, because the parser is at a lower level than the DOM, and will be hidden away.
Here are some other implementations that we may be interested in:

Xerces Part of the Apache Project, Xerces provides fully-validating
parsers available for Java and C++, implementing the W3C XML
and DOM (Level 1 and 2) standards. See http://xml.apache.org.

4DOM 4DOM was designed to provide Python developers with a tool that
could help them rapidly design applications for reading, writing,
or otherwise manipulating HTML and XML documents.

ActiveDOM ActiveDOM is an Active-X control that enables XML files to be
loaded and created based upon the W3C DOM 1.0 specification.

Docuverse DOM SDK Docuverse DOM SDK is a full implementation of the W3C DOM
(Document Object Model) API in Java.

PullDOM and MiniDOM PullDOM is simple Application Programming Interface (API) for
working with Document Object Model (DOM) objects in a
streaming manner with Python.

TcIDOM TcIDOM is a language binding for the DOM to the Tcl scripting
language.
XDBM XDBM is an XML Database Manager provided as an embedded

database for use within other software applications through the use
of a DOM-based APL

DOMString

In order to ensure that all DOM implementations work in the same way, the DOM specifies a data type
called DOVBt ri ng. This is a sequence of 16-bit units (characters) which is used anywhere that a string is
expected.

In other words, the DOM specifies that all strings must be UTF-16. Although the DOM specification
uses this DOVSt r i ng type anywhere it's talking about strings, this is just for the sake of convenience; a
DOM implementation doesn't actually need to make any type of DOVBt r i ng object available.

Many programming languages, such as Java, JavaScript, and Visual Basic, work with strings in 16-bit
units natively, so anywhere a DOVSt r i ng is specified, these programming languages could use their
native string types. On the other hand, C and C++ can work with strings in 8-bit units or in 16-bit units,
so care must be taken to ensure that we are always using the 16-bit units in these languages.

DOM Implementations

Because there are different types of DOM implementations, the DOM provides the DOM Core - a core
set of interfaces for working with basic documents — and a number of optional modules for working
with other documents. For example, the DOM can also be used for working with HTML documents
cascading style sheets (CSS). These modules are sets of additional interfaces that can be implemented
as required.

193

Chapter 6

The DOM Level 2 specification defines the following optional modules:

DOM Views Allows programs and scripts to dynamically access and
update the content of a representation of a document
(http://www.w3.0rg/TR/DOM-Level-2-Views)

DOM Events Gives programs and scripts a generic event system
(http://www.w3.0rg/TR/DOM-Level-2-Events)

DOM HTML Allows programs and scripts to dynamically access and
update the content and structure of HTML documents
(http://www.w3.0rg/TR/DOM-Level-2-HTML)

DOM Style Sheets and Allows programs and scripts to dynamically access and
Cascading Style Sheets (CSS) update the content and structure of style sheet documents
(http://www.w3.0rg/TR/DOM-Level-2-Style)

DOM Traversal and Range Allows programs and scripts to dynamically traverse and
identify a range of content in a document.
(http://www.w3.0rg/TR/DOM-Level-2-Traversal-Range)

For the rest of this chapter, we're going to be concentrating on the DOM Core.

DOM Interfaces

The name "Document Object Model" clearly has the word "object" in it. This is because the
implementation of the DOM creates an in-memory tree that represents the document as objects. These
objects are just the internal representation, which we refer to as Nodes. So when thinking about the
DOM's representation of a document, we talk in terms of nodes.

These objects, or nodes, expose a set of interfaces, and the DOM specification tells us what these
interfaces are, and what we can expect in return when calling a method or property on them. So, when
we are programming, we manipulate the objects through the interfaces. For example, using the
interfaces supplied, we can say 'go get the Customer object [of the document that is loaded] and tell me its
properties". Then we can manipulate the properties for that object.

Since that's the case, we'd better take a look at what these interfaces are, and what they're good for. To

get an idea of what interfaces are involved in the DOM, let's take a very simple XML document, such as
this one:

<par ent >
<child id="123">text goes here</chil d>
</ par ent >

When loaded into an implementation of the DOM, it would create the following set of nodes:

194

DOM

Document
Node

L‘Aﬁ NodeList
Element

<parent>

Node P

L‘Aﬁ NodelList
L EBMENtSl _ pi1q>

Document Root

Node
—— NamedNodeMap
Attr o "
Mese id="123
— NodelList

Text
CharacterData text goes here

Node

As we can see from this diagram, the in-memory representation that is created is a hierarchical structure
(that reflects the document), and each of the boxes represents a Node object that will be created. Some
of these nodes have child nodes, others are leaf nodes, which means that they do not have any children.

The names in the boxes are the interfaces that will be implemented by each object. For example, we
have nodes to represent the whole document, and nodes to represent each of the elements. Each object
implements a number of appropriate interfaces, such as Text , Char act er Dat a, and Node for the
object that represents the "t ext goes her e" character data. Let's look at what these interfaces signify in
more detail.

The Structure Model

When the document is loaded into the DOM, it creates the representation of the document in memory
so that we can alter and work with it. While it is held in memory, it is the interfaces that the DOM
exposes that allow us to manipulate the document's content.

In our previous example there are four key items of information that we may want to work with, which
have to be represented:

The <par ent > element.

The <chi | d> element.

The i d attribute on the child and its value.

o A o R

The text content of the <chi | d> element.

195

Chapter 6

However, in the diagram there are clearly more than the four nodes that represent each piece of
information from the document - the grayed out nodes. The other nodes do have a purpose, as we
shall see.

Each Node object created implements the Node interface.

Firstly, there is a node to represent the whole document, known as the Document node. We can see this
at the root of this tree. This is required because it is the conceptual root of the tree. It has to be there in
order to create the rest of the object model that represents the document, because elements, text nodes,
comments, etc. cannot appear outside the context of a document. The Docunment node implements the
methods to create these objects, and it will create nodes for all of the types of content we have in the
document. Because the first node in this example is the document element, this Node object also
supports the Document interface.

There are two other types of important interface that we can see in this hierarchy — NodeLi st and
NamedNodeMap - which are also shown in the white boxes:

0 NodeList: this Node object implements the NodeLi st interface. The NodeLi st is created to
handle lists of Nodes. This is necessary, even though we have only one child element here,
because we may want to use the DOM to add another element at this level. Although the
NodeLi st handles Nodes it does not actually support the Node interface itself — we can think
of it as being more like a handler. These are automatically inserted before elements and other
markup, and would be used to handle other nodes at the same level.

0 NamedNodeMap: this is required to handle unordered sets of nodes referenced by their name
attribute, such as the attributes of an element. Again, these are automatically inserted.

Both NodeLi st s and NanedNodeMaps change dynamically as the document changes. For example, if
another child element is added to a NodeLi st, it is immediately reflected in the NodeLi st .

Because XML documents need to have a unique root tag, the Docunment node can only have one
element as a child. In this case we have the <par ent > element. It could, however, also have other legal
XML markup (a processing instruction, comment, document type declaration), which is why we need
the NodeLi st object in there.

The root element of this document is <Par ent >. As we can see from the diagram, this node supports
the El ement interface as well as the Node interface, because it represents an element.

Next we have another NodeLi st node, followed by the <chi | d> element. Again we need the
NodeLi st object to handle other types of markup that could be at the same level, and to give us the
ability to handle other elements that we may want to add at this level.

The <chi | d> element - like the <par ent > element — is represented as an element node object, and
implements the Node and El enent interfaces.

Next we have NamedNodeMap and NodeLi st node objects. In this example, the NarmedNodeMap
handles the i d attribute and its value, while the NodeLi st handles the element content.

Then, the i d attribute is represented as a child of the NamedNodeMap, and implements the Node and
At tri but e interfaces. The element content is represented as a child of NodeLi st and implements the
Text, Char act er Dat a, and Node interfaces.

As we have seen, each node implements the Node interface. As we head down the tree, we see more
specialized interfaces that are inherited from the Node interface.

196

DOM

Inheritance and Flattened Views

When we come to look at the Node interface in a moment, we will see that it is, in fact, quite powerful.
We could do a lot with each object if it just implemented the Node interface. However, as we have seen,
nodes can implement other more specific interfaces that inherit from parent interfaces. The DOM does,
in fact, allow two different sets of interfaces to a document:

O A '"simplified" view that allows all manipulation to be done via the Node interface.

O An "object oriented" approach with a hierarchy of inheritance.

The DOM allows for these two approaches because the object oriented approach requires casts in Java
and other C-like languages, or query interface calls in COM environments, and both of these techniques
are resource intensive. To allow us to work with documents without having this memory overhead, it is
possible to use a document with the Node interface alone, which is the simplified or flattened view.
However, because the inheritance approach is easier to understand than thinking of everything as a
node, the higher level interfaces were added to give more object orientation.

This means that there may appear to be a lot of redundancy in the APIL. For example, as we shall see,
the Node interface allows things such as a nodeNane attribute, whereas the El enent interface will be
more specific and use a t agNane attribute. While the value of both may be the same, it was considered
a worthwhile addition.

In this chapter, we will look at the Node interface, so we will get a feel for the simplified or flattened
view, although we will cover the full DOM Core interfaces that are available to us.

The DOM Core

In all, the DOM Core provides the following interfaces:

DOMImplementation

Text }—v CDATASection |

NodeList

Node

NamedNodeMap

197

Chapter 6

These core interfaces are further broken down into Fundamental Interfaces and Extended | nterfaces.

O The Fundamental Interfaces must be implemented by all DOM implementations, even ones
that will only be working with non XML documents (such as HTML documents and CSS style
sheets).

0 The Extended Interfaces only need to be implemented by DOM implementations that will be
working with XML - they are not needed to work with HTML.

We might wonder why the Extended Interfaces were included in the DOM Core, instead of being in an
optional XML module. That may be to do with the move of HTML syntax towards XHTML.

Remember, there are several optional modules that build on the core implementation of the DOM, for
working with other types of documents - DOM HTML, DOM CSS, etc. Since this is a book on XML,
we will only study the DOM Core interfaces here. However, many of the concepts we learn will be
useful if we ever need to learn one of the optional modules.

Fundamental interfaces

The fundamental interfaces are so named because they are considered fundamental to all applications
that wish to be DOM compliant, so all such applications must implement these interfaces. In this section
we will quickly review each of the fundamental:

O Node

Docunent

DOM npl enent ati on
Docunent Fr agnent
NodeLi st

El enent
NamedNodeMap
Attr

Char act er Dat a
Text

Conment s
DOVExcepti on

O oo oo oo oo o g

To get us started, in this section we will demonstrate examples of how to use the DOM in IE5.x with
MSXML (we used MSXML 3 but the code presented here will generally work just as well with earlier
versions)- that is, using client-side HTML and JavaScript. To keep it simple, we'll look at some template
code here, and then use some snippets that can be added to this template to demonstrate some of the
features.

198

DOM

In order to work with this template we need to save the following document in the same folder as the
template (ch06_ex1. xml):

<r oot >
<DenpEl enent DenpAttri bute="stuff">This is the PCDATA</ DenpEl enent >
</root >

Here is the template that we will be using (ch06_ex1. ht m):

<HTM_>
<HEAD><TI| TLE>DOM Deno</ Tl TLE>

<SCRI PT | anguage="JavaScri pt">

var obj DOM

obj DOM = new Acti veXhj ect (" MSXM_3. DOVDocunent ") ;
obj DOM async = fal se;

obj DOM | oad("ch06_ex1. xm ") ;

//our code will go here...
</ SCRI PT>

</ HEAD>
<BODY>
<P>Thi s page denps sonme of the DOM capabilities.</P>
</ BODY>
</ HTM_>

If we're using an old version of MSXML, we may need to change MSXML2. DOVDocument ‘o
MSXM.. DOVDocunent .

The HTML page itself doesn't actually do anything, except display the text, This page demos some of
the DOM capabilities. All of the work is actually done in that <SCRI PT> block, and any results we want
to see are displayed in message boxes.

Note that the DOM specification does not supply instructions on how a document should be loaded. In
this example, we load the XML document into Microsoft's DOM implementation, MSXML, using two
of the extensions Microsoft added to the DOM: the async property, and the | oad method. The | oad
method takes in a URL to an XML file, and loads it. The async property tells the parser whether it
should load the file synchronously or asynchronously.

If we load the file synchronously, | oad won't return until the file has finished loading. Loading the
file asynchronously would allow our code to do other things while the document is loading, which
isn't necessary in this case.

So let's start with the Node interface.

199

Chapter 6

Node

Node is the most fundamental interface in the DOM. Almost all of the objects we will be dealing with
will extend this interface, which makes sense, since any part of an XML document is a node.

Although Node is implemented in all DOM objects, some of its properties and methods may not be
appropriate for certain node types. These methods and properties are just included for the sake of
convenience, so that if we're working with a variable of type Node, we will have access to some of the
functionality of the other interfaces, without having to cast to one of those types.

There are three key things that the Node object allows us to do:

O TraversetheTree In order to interrogate the tree, or make any adjustments to it, we need to
be in the correct place on the tree.

O Get information about the Node. By interrogating the Node object using the available methods
on this interface, we can get information such as the type of node, attributes of the node, it's
name, and its value.

0O Add, remove, and update nodes. If we want to alter the structure of a document, we need to be
able to add, remove, or replace nodes - for example, we might want to add another line item

to an invoice.

Here are the properties that are available on the Node object. As we can see, some of the attributes —
such as nodeName and nodeVal ue - allow us to get information about a node without casting down to
the specific derived interface:

previ ousSi bl i ng
next Si bl i ng
attributes

owner Documnent
nanespaceUR

prefix

| ocal Nane

Property Description

nodeName The name of the node. Will return different values depending on the
nodeType, as listed in Appendix C.

nodeVal ue The value of the node. Will return different values depending on the
nodeType, as listed in Appendix C.

nodeType The type of node. Will be one of the values from the table in Appendix C.

par ent Node The node that is this node's parent.

chi | dNodes A NodelLi st containing all of this node's children. If there are no children,
an empty NodeLi st will be returned — not NULL.

firstChild The first child of this node. If there are no children, this returns NULL.

lastChild The last child of this node. If there are no children, this returns NULL.

The node immediately preceding this node. If there is no preceding node,
this returns NULL.

The node immediately following this node. If there is no following node,
this returns NULL.

A NamedNodeMap containing the attributes of this node. If the node is not
an element, this returns NULL.

The document to which this node belongs.

The namespace URI of this node. Returns NULL if a namespace is not
specified.

The namespace prefix of this node. Returns NULL if a namespace is not
specified.

Returns the local part of this node's QName.

200

DOM

The value of the nodeNane and nodeVal ue properties depends on the value of the nodeType
property, which can return a constant.

Here are the methods that are exposed by the node object:

Method Description
i nsert Bef or e(newChi | d, Inserts the newChi | d node before the existing r ef Chi | d. If
ref Chi | d) ref Chi | d is NULL, it inserts the node at the end of the list.

Returns the inserted node.

repl aceChi | d(newChi | d, Replaces ol dChi | d with newChi | d. Used to update existing

ol dChi | d) records. Returns ol dChi | d.

renoveChi | d(ol dChi | d) Removes ol dChi | d from the list, and returns it.

appendChi | d(newChi | d) Adds newChi | d to the end of the list, and returns it.

hasChi | dNodes() Returns a Boolean; t r ue if the node has any children, f al se
otherwise.

cl oneNode(deep) Returns a duplicate of this node. If the Boolean deep parameter is

t r ue, this will recursively clone the subtree under the node,
otherwise it will only clone the node itself.

normal i ze() If there are multiple adjacent Text child nodes (from a previous
call to Text. spl it Text — which we'll see more of later) this
method will combine them again. It doesn't return a value.

supports(feature, Indicates whether this implementation of the DOM supports the
version) f eat ur e passed. Returns a Boolean, t r ue if it supports the
feature, f al se otherwise.

Getting Node Information

As we can see, the Node interface has several properties that let us get information about the node in
question. To demonstrate showing information on a node, we have to navigate to that node in the tree.
We'll see how to do this next. To navigate in these examples we use a simple dot notation.

The nodeType Property

If we're ever not sure what type of node we're dealing with, the nodeType property can tell you (all of
the possible values for nodeType are listed in Appendix C). For example, we could check to see if we're
working with an El ement like so:

i f (obj Node. nodeType == 1)
Luckily for us, most DOM implementations will include predefined constants for these node types. For
example, a constant might be defined called NODE_ELEMENT, with the value of 1, meaning that we could
write code like this:

i f (obj Node. nodeType == NODE_ELEMENT)

This makes it easier to tell what it is we are checking for, without having to remember that nodeType
returns 1 for an element.

201

Chapter 6

The attributes Property

A good example of a property of Node that doesn't apply to every node type is the at t ri but es
property, which is only applicable if the node is an element with attributes. The at t r i but es property
returns a NamedNodeMap containing any attributes of the node. If the node is not an element, or is an
element with no attributes, the at t ri but es property returns nul | .

The nodeName and nodeValue Properties

Two pieces if information that we will probably want from any type of node are its name and its value,
and Node provides the nodeNane and nodeVal ue attributes to retrieve this information. nodeNare is
read-only, meaning that we can get the value from the property but not change it, and nodeVal ue is
read-write, meaning that we can change the value of a node if desired.

The values returned from these properties differ from nodetype to nodetype. For example, for an
element, nodeNane will return the name of the element, but for a text node, nodeNane will return the
string "#t ext ", since PCDATA nodes don't really have a name.

If we have a variable named obj Node referencing an element like <nane>John</ name>, then we can
write code like this:

al ert (obj Node. nodeNaneg) ;
// pops up a nessage box sayi ng "nane"

obj Node. nodeNane = "FirstNane";
//will raise an exception! nodeNane is read-only

al ert (obj Node. nodeVal ue) ;
/] pops up a nessage box saying "null"

The result of that second alert may surprise us; why does it return "nul | ", instead of "John"? The
answer is that the text inside an element is not part of the element itself; it actually belongs to a text
node, which is a child of the element node.

If we have a variable named obj Text , which points to the text node child of this element, we can write
code like this:

al ert (obj Text. nodeNane) ;
/] pops up a nessage box saying "#text"

al ert (obj Text . nodeVal ue) ;
/] pops up a nessage box saying "John"

obj Text . nodeValue = "Bill";
//this is allowed, the elenment is now <nane>Bil | </ nanme>

Accessing Element Information with Node

We can navigate down the nodes in the tree, in this case using the docunent El ement and
firstChild, and display the nodeNane and nodeVal ue in an alert box.

To show how this works, we open the template HTML file that we created, and enter the following code
after the comment // our code wi I | go here.

202

DOM

To display the nodeNane we use the following code (ch06_ex2. ht m):

//our code will go here...

var obj Mai nNode;

obj Mai nNode = obj DOM docunent El enent . first Chil d;
al ert (obj Mai nNode. nodeNan®) ;

Here is the result:

Microsoft Inkern x|

& DemoElement

If we want to display its value, we change it to this:

var obj Mai nNode;
obj Mai nNode = obj DOM docunent El enent . first Chil d;
al ert (obj Mai nNode. nodeVal ue) ;

and again, here is the result:

Remember that this is an element we're talking about. The text in that element is contained not in the
element itself, but in a Text child. Therefore, an element doesn't have any values of its own, only
children.

Traversing the Tree

XML documents can be represented as trees of information because of their hierarchical nature. We
tend to express relationships between these nodes like those in a family tree, in terms such as
parent/child, ancestor/descendent etc. The DOM exposes properties that allow us to navigate through
the tree using this kind of terminology. These properties are par ent Node, first Chi |l d, | ast Chi | d,
previ ousSi bl i ng, and next Si bl i ng properties, all of which return a Node, or the chi | dNodes
property, which returns a NodeLi st .

Being able to traverse the tree is vital so that we can get to the node that we want to operate on, whether

we just want to retrieve some value, update its content, add something in at that position in the
document/structure, or indeed delete it.

203

Chapter 6

Not all nodes can have children (attributes, for example), and even if a node can have children, it might
not. When that happens, any properties that are supposed to return children will just return NULL. Or,
in the case of chi | dNodes, will return a NodeLi st with no nodes.

The following diagram shows a node (in the grayed
out box), and the relationships of the other nodes in parentNode
the tree to this node. It indicates the node that would

be returned from each of these properties:

childNodes

firstChild

lastChild

IIUUI

nextSibling

This diagram shows the relationships using the DOM terminology. If we want to get at the children of
the node with the gray background, we access the chi | dNodes property. Or, if we want the first or the
last child, there are properties which directly return these nodes. That's easier than having to navigate
through the chi | dNodes property. (If a node has only one child, fi rst Chil d and | ast Chi | d will
both return that node.)

The par ent Node property returns the node to which this node belongs in the tree, and
previ ousSi bl i ng and next Si bl i ng return the two nodes that are children of that parent node, and
are on either side of the node we're working with.

The hasChildNodes Method

If we just want to check if the node has any children, there is a method named hasChi | dNodes, which
returns a Bool ean value indicating whether or not it does. (Note that this includes text nodes, so even if
an element contains only text, hasChi | dNodes will return t r ue.)

For example, we could write code like the following, so that if a node has any children, a message box
will pop up with the name of the first one:

i f (obj Node. hasChi | dNodes())

al ert (obj Node. first Chil d. nodeNane) ;
}

204

DOM

The ownerDocument Property

Since every node must belong to a document, there's also a property called owner Docunent , which
returns an object implementing the Docunent interface to which this node belongs. Almost all of the
objects in the DOM implement the Node interface, so this allows us to find the owner document from
any object in the DOM.

Navigating the Tree with Node

Let's show an example of this working. Open up our template file and add the following code beneath
the comment:

//our code will go here...

var obj Mai nNode;

obj Mai nNode = obj DOM sel ect Si ngl eNode("/ r oot/ DenoEl enent ") ;
al ert (obj Mai nNode. first Chil d. nodeNane) ;

al ert (obj Mai nNode. first Chi | d. nodeVal ue) ;

This navigates to the DenpEl ement of the r oot , and generates two alert boxes with the nodeName and
nodeVal ue. As mentioned before, Text nodes always return #text from nodeNamne, since PCDATA
nodes don't have names. nodeVal ue returns the value of the PCDATA in the element.

x| Microsoft Intermn |

& This is the PCOATA

Adding, Updating, and Removing Nodes

All of the above properties for traversing the tree are read-only, meaning that we can get at the existing
children, but can't add new ones or remove old ones. To do that, there are a number of methods
exposed from the Node interface.

The appendChild Method

The simplest is the appendChi | d method, which takes an object implementing Node as a parameter,
and just appends it to the end of the list of children. We might append one node to another like this:

obj Par ent Node. appendChi | d(obj Chi | dNode) ;

The obj Chi | dNode node is now the last child node of obj Par ent Node, regardless of what type of
node it is.

The insertBefore Method

To have more control over where the node is inserted, we can call i nser t Bef or e. This takes two
parameters: the node to insert and the "reference node", which is the one before which we want the new
child inserted. (If the reference value is NULL, this produces a result like appendChi | d.)

205

Chapter 6

The following will add the same obj Chi | dNode to the same obj Par ent Node as the previous example,
but the child will be added as the second from last child:

obj Par ent Node. i nsert Bef or e(obj Chi | dNode, obj Par ent Node. | ast Chi |l d);

If we try an i nsert Bef or e and it finds the same node already exists, it will just update it (mimicking
r epl aceChi | d which we'll see shortly) rather than adding a new node.

The removeChild Method

To remove a child, we would call the r emoveChi | d method, which takes a reference to the child we
want to remove, and returns that object back to us in case we want to use it somewhere else. Even
though the node is removed from the tree, it still belongs to the document. However, if we were to
remove the child and then save the document, it would be lost.

So we could remove the last child of any node, and keep it in a variable, like this:
obj A dChild = obj Parent. renmoveChil d(obj Parent. | ast Child);

The replaceChild Method

There is also a timesaving method, r epl aceChi | d, which can remove one node, and replace it with
another. This is quicker than calling r emoveChi | d, and then appendChi | d or i nsert Bef ore.
(Although if we just call i nsert Bef or e and the node already exists, we get the same result as calling
repl aceChi | d). Again, the child that's removed is returned from the method, in case we want to use it
somewhere else.

To replace the first child of a node with another node, we would do this:
obj A dChild = obj Parent. repl aceChi | d(obj NewChi | d, obj Parent.firstChild);

The cloneNode Method

Finally, there is a method to create a copy of the node as a new separate node: cl oneNode. cl oneNode
takes a Boolean parameter that indicates whether this should be a deep clone (t r ue) or a shallow clone
(fal se). Ifit's a deep clone, the method will recursively clone the subtree under the node (in other
words all of the children will also be cloned), otherwise only the node itself will be copied.

If the node is an element, a shallow clone will not copy the PCDATA content of the node, since the
PCDATA is a child. However, attributes and their values will be copied. So if we have a node object,
called obj Node, which contains an element like <name i d=" 1" >John</ nane>", we could do this:

obj NewNode = obj Node. cl oneNode(f al se);
/ / obj NewNode i s now <nane id="1"/>

obj NewNode = obj Node. cl oneNode(true);
/1 obj NewNode i s now <nane id="1">John</ nanme>

Again, notice that the attribute is copied, even when we do a shallow clone.

Nodes that are created using cl oneNode can only be used in the same document as the original node;
we can't clone a node from one document, and insert it into another one.

206

DOM

Modifying the Tree with Node

Let's go back to our simple HTML file and see how we can modify the tree structure (ch06_ex4. xm):

var obj Mai nNode;
obj Mai nNode = obj DOM docunent El ement . first Chil d;

var obj NewNode;
obj NewNode = obj Mai nNode. cl oneNode(f al se);
obj Mai nNode. appendChi | d(obj NewNode) ;

al ert (obj DOM xm) ;

In this example, we copy our node, and then append it back into the XML tree. We're performing a

shallow clone, meaning that none of the children of the node is copied.

Note that the xm property we call in that last line is a Microsoft-specific extension to the DOM,

which displays the XML that is held in a node. Here we've used it to return the entire XML document
as a string and display it easily. This property is very useful when debugging applications, and when
we want to retrieve the content of a fragment. We just add the xm property to the node that we have in

memory.

Here is the result:

Microsoft Internet Explorer i | 5[

<taak =
& <DemoElement Demodktribube="stuff" =This is the PCOATA <DemoElement Demodttribube="stuff"} =
< [DemoElement >
< root =

Notice that although not one of the child elements of <DenpEl enent > gets cloned, the attribute and its

value does.
We can also attach that element before our text, by modifying our code as shown here:

//our code will go here...
var obj Mai nNode;
obj Mai nNode = obj DOM sel ect Si ngl eNode("/r oot/ DenoEl emrent ") ;

var obj NewNode;
obj NewNode = obj Mai nNode. cl oneNode(f al se);
obj Mai nNode. i nsert Bef or e(obj NewNode, obj Mai nNode. firstChild);

al ert (obj DOM xm) ;

For the reference node, we just use the fi rst Chi | d property. The XML now looks like this:

Microsoft Internet Explorer : e x|

=rogk=

& <DemoElement Demoattribute="stuff" = <DemoElement Demofttribute="stuff"f =This is the
PCDATA </DemoElement =
<frook =

207

Chapter 6

By simply changing the parameter of cl oneNode to t r ue, we can copy all of the node's children:

var obj NewNode;
obj NewNode = obj Mai nNode. cl oneNode(true);
obj Mai nNode. i nsert Bef or e(obj NewNode, obj Mai nNode. firstChild);

al ert (obj DOM xm) ;

In this case, that's just the one Text node. Our XML now looks like this:

Microsoft Internet Explorer i il

=rook>
& <DemoElement Demoattribute="stuff" > <DemoElement Demoattribute="stuff" >This is the
PCDATA </DemoElement =This is the PCDATA < /DemoElement =

<frook >

Document

The Docunent interface represents an entire XML document. It extends the Node interface, so any
Node properties and methods will also be available from a Docunent object. For Docurnent , the node
will be the document root — not the root element. All nodes must belong to one, and only one,
document.

Remember that for an XML document, the document root is a conceptual node which
contains everything elsein the document, including the root element.

In addition to the properties and methods provided by Node for navigating the tree, the Docunment
interface provides some additional navigational functionality. This is especially useful in finding
elements in a document and creating XML documents.

One of the most commonly used properties is docunent El enent , which returns an El ement object
corresponding to the root element. Two other very helpful functions of note are:

O get El ement sByTagNane to find elements in the document based on their name. It takes the
name of the element we are looking for as a string, and returns a NodeLi st containing all of
the matching elements. (We'll be studying the NodeLi st interface in a later section.)

0 get El ement sByl D which allows us to find elements by their ID attributes.This again returns
a NodeLi st containing all of the matching elements. This is useful if we have used | Ds to
model relationships.

The Docunent object is also important when we want to create an XML document from scratch.

We cannot create a Node object without first creating the Docunent object. Once the
Document has been created, we can use other methods to add nodesto it.

208

DOM

The Docunent interface provides factory methods that can be used to create other objects. These
methods are named cr eat eNodeType, where NodeType is the type of node you want to create, for
example, cr eat eEl enent or cr eat eAttri but e. When creating an element or attribute, however,
because we are creating them from the Docunment node, we also need to append them to the tree where
we want them to appear:

O First, create the node using one of the Docunent factory methods.

O Second, append the child in the appropriate spot (using the appendxxxx methods inherited
from the Node interface).

The alternative is to navigate to that part of the tree, and then use one of the Node interfaces methods.

An interesting point to note here is that, until we append the node to the tree, it will belong to the
document that created it, although it will not be part of the tree-structure until it has been
appended.

Let's see how we would create an XML document from scratch. Open the template file again, and
delete the lines:

obj DOM async = fal se;
obj DOM | cad("ch06_ex1.xm ");

First, we need to create a Docunment object called obj Dom Once that has been created, we can use the
document object to create an element and a text node. Here is the code for doing this:

//our code will go here...

var obj Node, obj Text;

obj Node obj DOM cr eat eEl enent ("root ") ;

obj Text obj DOM cr eat eText Node("r oot PCDATA");

The cr eat eEl ement method takes the name of the element to be created as its parameter, and
cr eat eText Node takes as its parameter, the text we want to go into the node.

With these objects created, we can now perform the second required step of adding the element to our
document. We will make it the root element, and add the text node to that element. Add the following
code right after the code we've already entered:

obj DOM appendChi | d(obj Node) ;
obj Node. appendChi | d(obj Text);
al ert (obj DOM xm) ;
The first command adds the tags, and the second the PCDATA.

If we save the HTML as ch06_ex5. ht nl , and view it with IE5, the following message box will appear:

Microsoft Internek E x|

& <rootzrook PCOATA = rook =

209

Chapter 6

If we then want to add an attribute to that node, it is as simple as this (ch06_ex6. ht m):

obj Node. appendChi | d(obj Text);

var obj Attr;
obj Attr = obj DOM createAttribute("id");

//set the attribute's val ue
obj Attr.nodeVal ue = "123";

|/ append the attribute to the el enent
obj Node. attri but es. set Namedl t en{obj Attr);

al ert (obj DOM xni)

The creat eAt t ri but e method takes the name of the attribute as its parameter, so we've created an
attribute named i d, given it the value 123, and then added that attribute to the node. (In the examples
at the end of the chapter we'll see an easier way of doing this, using the set At t ri but e method.

Our XML now looks like this:

Microsoft Internet Explorer |

& <root id="123"=>root PCDATA < Foot =

and thus, we have created an entire XML document, all from code.

DOMImplementation

The DOM npl enent at i on interface provides methods that apply to any document from this DOM
implementation. Just like most of the other types of DOM objects, we can't directly create a

DOM npl enent at i on object. Instead, we retrieve it from the i npl ement at i on property of the
Docunent interface.

The first method we'll look at is cr eat eDocunent , which works just like the cr eat eNodeType
methods of the Docunent interface. We probably won't use cr eat eDocunent very often, though,
since we can't directly create a DOM npl enent at i on object. We would first have to create a
Docunent, and access its i npl ement at i on property to get a DOM npl enment at i on object, before we
could even use this method. However, if we're creating multiple documents, meaning that we already
have one or more Document objects in existence, it might come in handy.

A more important method is the hasFeat ur e method, which we can use to find out if the current
DOM implementation supports a certain feature (for example, for MSXML 3 the candidates are XM,
DOM and M5-DOM. The method takes two parameters: a string representing the feature we're looking for,
and a string representing the version of the feature we need. If we don't pass the second parameter, then
hasFeat ur e will indicate whether this DOM supports any version of the feature. This can be useful for
finding out whether a particular browser supports certain features — so we can run different code for
different browsers, for example.

210

DOM

Say we want to know if a DOM implementation implements the Extended Interfaces, and is based on
version 2.0 or later of the DOM specification:

O hasFeature("XM", "2.0") would then return t r ue if it did. (Note that this would refer to
the DOM specification rather than a second version of the XML specification.)

0 hasFeature("XM.") would return true if this DOM implementation implements the
Extended Interfaces from any version of the DOM specification.

Most of the time we won't need to create a separate DOM npl enent at i on object, but will instead just
call its methods directly from the Docunent interface's i mpl ement at i on property, like this:

obj Doc. i npl ement ati on. hasFeature(" X\M.", "2.0")

DocumentFragment

As we all know by now, an XML document can have only one root element. However, when working
with XML information, it might be handy sometimes to have a few not-so-well-formed fragments of
XML gathered together, in a temporary holding place.

For example, if we think back to the invoice that we used in earlier chapters this is particularly useful
when dealing with line items. Maybe we want to create a number of nodes, and then insert them into
the document tree in one bunch. Alternatively we might want to remove a number of nodes from the
document and keep them around to be inserted back later, like a cut and paste type of operation. This is
what the Documnent Fr agrment interface provides.

As far as the interface itself, there are no added properties or methods to those provided by the Node
interface.

For its children, a Docunent Fr agnent has zero or more nodes. These are usually element nodes, but a
Docunent Fr agnent could even contain just a text node. Docunent Fr agnment objects can be passed to
methods which are used to insert nodes into a tree; for example, the appendChi | d method of Node. In
this case, all of the children of the Docunent Fr agnent are copied to the destination Node, but the
Docunent Fr agnment itself is not.

To demonstrate the Docunent Fr agnment interface in action, we'll write some quick code, which will
use one as a temporary holding place.

First off, we'll create our root element, as usual. Modify the HTML template as follows:

<HTM_>
<HEAD><TI| TLE>DOM Deno</ Tl TLE>

<SCRI PT | anguage="JavaScri pt">
var obj DOM
obj DOM = new Acti veX(hj ect (" MSXM.2. DOVDocunent ") ;
var obj Node;
obj Node = obj DOM cr eat eEl ement ("root ") ;
obj DOM appendChi | d(obj Node) ;

</ SCRI PT>

211

Chapter 6

</ HEAD>
<BODY>

<P>Thi s page denos sone of the DOM capabilities.</P>
</ BODY>

</ HTM.>

We'll then create a Docunent Fr agnent , and store a couple of elements in it:

var obj Frag;
obj Frag = obj DOM cr eat eDocunent Fragnent () ;

obj Node = obj DOM cr eat eEl enent (" chi | d1");
obj Frag. appendChi | d(obj Node) ;
obj Node = obj DOM cr eat eEl enent (" chi | d2");
obj Frag. appendChi | d(obj Node) ;

Notice that we are reusing our 0bj Node variable numerous times, instead of creating various node
variables for all of the nodes we're dealing with. This just makes it easier to code, rather than declaring a
number of variables for all of the nodes. Note that the nodes in this fragment have no root element —
this isn't a well-formed XML document, it's just a number of nodes that we want to keep together for the
moment.

Since our elements aren't much fun without any text in them, let's add a text child node to each one:

obj Frag. firstChil d. appendChi | d(obj DOM cr eat eText Node("Fi rst child node"));
obj Frag. | ast Chi | d. appendChi | d(obj DOM cr eat eText Node(" Second chil d node"));

In this case, we don't bother to create a variable to hold the Text node, we just create it and
immediately append it to the element.

Finally, we'll add the elements in our Docunent Fr agment to the root element of our document:

obj DOM docunent El enent . appendChi | d(obj Frag) ;
al ert (obj DOM xm) ;

As mentioned earlier, this appends the children of the Docunent Fr agnent , not the
Docurnent Fragment itself. If we save the file as ch06_ex7. ht nl , our final XML looks like this:

Microsoft Internet Explorer x|

& <rookx<childl =First child node <fchild1 = =childz >3econd child node </childz = < frook >

Nodelist

We've already touched on it a couple of times, so let's talk about the NodeLi st interface. Many of the
properties and methods in the DOM will return an ordered collection of Nodes instead of just one,
which is why the NodeLi st interface was created.

212

DOM

It's actually a very simple interface. There is only one property and one method:

O The |l engt h property returns the number of items in the NodeLi st .

O The it emmethod returns a particular item from the list. As a parameter, it takes the index of
the Node we want.

Items in a NodeLi st are numbered starting at 0, not at 1. That means that if there are five items in a
NodelLi st, the | engt h property will return 5, but to get at the first item we would call i t em(0),
and to get the fifth item we would call i t en{ 4) . So the last Node in the NodeLi st is always at
position (I engt h — 1). If we call i t emwith a number that's out of the range of this NodeLi st , it will
return nul | .

A node list is always "live"; that means that if we add some nodes to, and remove nodes from the
document, a node list will always reflect those changes. For example, if we got a node list of all elements
in the document with a name of fi r st, then appended an element named fi r st, the node list would
automatically contain this new element, without us having to ask it to recalculate itself.

Element

When we're not just referring to every item in an XML document as a "node", one of the pieces we're
going to be accessing most will be elements, so of course the DOM provides an El ement interface. As
we saw in the earlier chapters, we will often be selecting an element to represent a table or a row of
information from a database.

In addition to the properties and methods available from the Node interface, El enent also provides a

t agNane property and a get El ement sByTagNane method. The t agNane property returns exactly the
same results as the nodeName property of Node, and get El enent sBy TagName works exactly the same
as the method of the same name on the Docunent interface.

However, note that get El ement sBy TagName on the El errent interface will only return elements that
are children of the one from which the method is called. Of course, that applies to the

get El ement sByTagName on the Document interface as well, but the Docunment happens to include all
of the elements in the document anyway. This means that we can use these methods on a specific table
if we have two elements by the same name in the document as a whole.

All of the rest of the methods on the El enent interface are concerned with attributes. Firstly, there are
get Attribute and get Attri but eNode methods. Both methods take the name of the attribute we
want as a parameter, but get At t ri but e returns the value of that attribute in a string, whereas

get At tri but eNode returns an object implementing the At t r interface. We might use these to retrieve
data points for processing.

If we want to alter values of data points or other attributes, there is also a set At t ri but € method and a
set Attri but eNode method. set Attri but e takes two string parameters: the name of the attribute we
want to set, and the value we want to give it. If an attribute of that name doesn't exist, it is created, but if
the attribute already exists, it is replaced. set At t ri but eNode takes one parameter, an object
implementing the At tr interface. Again, if an attribute with the same name already exists, it is replaced
by the new attribute, but in this case, the old attribute is returned from the method, in case we need it
for something else.

Finally, there's a r emoveAt t ri but e method and a r enmoveAt t ri but eNode method.

removeAttri but e takes a string parameter, specifying the name of the attribute we wish to remove,
and r enoveAt t ri but eNode takes as a parameter an At t r object, which is the attribute we want to
remove. I enbveAt t ri but eNode returns the At t r object that was removed.

213

Chapter 6

Since most of the functionality of the El ement interface revolves around attributes, all we'll really need
to use to demonstrate it is a small XML document.

We will save the following to our hard drive as ch06_ex8. xni :

<?xm version="1.0"7?>
<root first="John' |ast='Doe'/>

then use the following modification to our template HTML file to load the document into MSXML, and
create an El ement variable to point to the docurment El enent (ch06_ex8. htm):

<HTM_>
<HEAD><T| TLE>DOM Deno</ Tl TLE>

<SCRI PT | anguage="JavaScri pt">

var obj DOM

obj DOM = new Acti veX(hj ect (" MSXM_2. DOVDocumnent ") ;
obj DOM async = fal se;

obj DOM | oad("ch06_ex8. xm ") ;

//our code will go here...

var obj El enent ;

obj El emrent = obj DOM docunent El enent ;

al ert (obj El ement . get Attribute("first"));
</ SCRI PT>

</ HEAD>
</ HTML>

Getting the value of an attribute is easy — we just need the following:
al ert (obj El ement. get Attribute("first"));

This gets the value of the fi r st attribute. We will save the page as dormel enent . ht mand view it: the
resulting message box contains the word John:

Microsoft Interne |

& John

We can change the value of the first attribute by adding the following line of code:

var obj El enent;
obj El ement = obj DOM docunent El enent ;

obj El ement . set Attribute("first", "Bill");

al ert (obj El ement . get Attribute("first"));

214

DOM

Our message box will then read:

But, as we learned earlier, we can also do this using an At tr object. Let's try replacing the previous line

of code with the following:

obj El ement = obj DOM docunent El enment ;

var obj Attr;

obj Attr = obj El enent.getAttributeNode("first");
obj Attr.nodeValue = "Bill";

alert(obj El ement.getAttribute("first"));var objAttr;

Alternatively, we can use the El enent object like this:

obj El ement . get Attri buteNode("first").nodeValue = "Bill";

Both of these methods will return the same result: a message box containing the name Bill.

Finally, we have two ways to add a i ddl e attribute to our element. We can add the following code to

append an At t r object (ch06_ex9. htm):

obj El ement . get Attri buteNode("first").nodeValue = "Bill";

al ert(obj El ement.getAttribute("first"));

var obj Attr;
obj Attr = objDOM createAttribute("mddle");
obj Attr.nodeVal ue = "Fitzgeral d Johansen";

obj El enent . set Attri but eNode(obj Attr);

al ert (obj DOM xm) ;

The resulting XML looks like this:

Microsoft Internet Explorer |
<7xml wersion="1.0"7 =
<root First="Bill" |ast="Coe" middle="Fitzgerald Johansen"/ >

215

Chapter 6

We can get exactly the same result by just using the set At t ri but e method, like this:

obj El ement . get Attri buteNode("first").nodevalue = "Bill";
al ert (obj El ement . get Attribute("first"));
obj El ement . set Attribute("mddle", "Fitzgerald Johansen");

al ert (obj DOM xmnl) ;

There isn't any way to arrange the m ddl e attribute between the fi r st and | ast attributes, but we
don't really mind, since the order of attributes on an XML element is insignificant. This is because
attributes are usually accessed by name.

NamedNodeMap

In addition to the NodeLi st interface, there's also a NanedNodeMap interface, which is used to
represent an unordered collection of nodes. Items in a NamedNodeMap are usually retrieved by name.

Li ke NodeList objects, objects contained in a NamedNodeMap are live, which means that the
contents dynamically reflect changes.

It is possible to access objects implementing NanmedNodeMap using an ordinal index, but since the
collection is unordered (and particularly because attributes are unordered in XML documents) it is not
wise to use this method for retrieving or setting values of objects in a NamredNodeMap, it is more for the
enumeration of the contents.

It should come as no surprise to us, then, that there is a get Naned| t emmethod, which takes a string
parameter specifying the name of the node, and returns a Node object. This is particularly useful if we
wish to perform some operation on a particular attribute of the XML document, and because it is
specific to an element, we can think of this as finding the data point in a particular row.

There is also a r enbveNaned| t emmethod, which takes a string parameter specifying the name of the
item we wish to remove, and returns the Node that was removed; and, to round out the functionality,
there's a set Named| t emmethod, which takes a parameter for the Node we want to insert into the
NamedNodeMap.

Even though the items in a NamedNodeMap are not ordered, we still might want to iterate through them
one by one. For this reason, NamedNodeMap provides a | engt h property and an i t emmethod, which
work the same as | engt h and i t emon the NodeLi st interface. The i t emcan refer to the node at any
position in the range 0 to | engt h-1 inclusive; but the DOM specification is clear that this "does not
imply that the DOM specifies an order to these Nodes". (We can see this for ourselves at
http://www.w3.0rg/TR/1999/CR-DOM-Level-2-19991210/core.html#ID-1780488922).

Attr

Although most of the interfaces in the DOM are spelled out in full, for some reason, the interface for
attributes was abbreviated to At tr.

216

DOM

The At tr interface extends the Node interface, but it is good to keep in mind the differences between
attributes and other items in the XML document. For one thing, attributes are not directly part of the
tree structure in a document; that is, attributes are not children of elements, they are just properties of
the elements to which they are attached. That means that the par ent Node, pr evi ousSi bl i ng, and
next Si bl i ng properties for an attribute will always return nul | : but, since par ent Node returns

nul |, Attr provides instead an owner El ement property, which returns the El ement to which this
attribute belongs.

Attr also supplies nane and val ue attributes, which return the name and value of the attribute. These
properties have the same values as the nodeNane and nodeVal ue properties of Node.

The final property supplied by the At t r interface is the speci f i ed property. The speci fi ed

property indicates whether this attribute is really a physical attribute on the element, with a real value,
or whether it is just an implied attribute, with the default value supplied.

CharacterData and Text

As we're well aware, working with XML documents involves a lot of work with text: sometimes in
PCDATA in the XML document, and sometimes in other places, like attribute values, or comments.
The DOM defines two interfaces for this purpose:

O A Charact er Dat a interface, which has a number of properties and methods for working
with text.

O A Text interface, which extends Char act er Dat a, and is used specifically for PCDATA in
the XML document.

Because Char act er Dat a extends Node, both Char act er Dat a objects and Text objects are also Node

objects. Char act er Dat a nodes, like At t r nodes, can't have children, so the same rules for Attr's
handling of child properties also apply to Char act er Dat a objects.

Handling Complete Strings

The simplest way to get or set the PCDATA in a Char act er Dat a object is to simply get it from the
dat a property. This sets or returns the whole string, in one chunk.

There is also a | engt h property, which returns the number of Unicode characters in the string.

When we are dealing with strings in Char act er Dat a objects, we should note that the characters
in the string are numbered starting at 0, not 1. So in the string 'H ", "H' would be letter 0, and
1" would be letter 1.

So, if we have a Text node object named obj Text containing the string "John", then:
al ert (obj Text. |l ength);

pops-up a message box saying 4, and :
al ert (obj Text. data);

pops-up a message box saying John.

217

Chapter 6

Handling Substrings

If we only want a part of the string, there is a subst ri ngDat a method, which takes two parameters:

O The offset at which to start taking characters.

O The number of characters to take.

If we specify more characters than are available in the string, subst ri ngDat a just returns the number
of characters up until the end, and stops.

For example, if we have a Char act er Dat a object named obj Text , and the contents of that object are
Thi s isthe mainstring, then:

al ert (obj Text. substring(12, 4));
would pop-up a message box saying main, and:

al ert (obj Text. substringData(12, 2000));
would pop-up a message box saying main string.

Modifying Strings

Adding text to the end of a string is done with the appendDat a function, which takes a single string
parameter containing the text to add to the end of the existing text.

If we used the same obj Text node as above, then:
obj Text . appendData(".");

would change the contents to "Thi s i s the mai nstring." with the period added.

Since we sometimes need to add data to the middle of a string, there is also the i nsert Dat a method,
which takes two parameters:

O The offset at which to start inserting characters (like the other parameters for this method, the
numbering starts at 0).

O The string we wish to insert.

The following code would change the data to "Thi s i s the groovy mainstring.":

obj Text.insertData(12, "groovy ");

Deleting characters from the string is done via the del et eDat a method, which we use exactly the same
as the subst ri ngDat a method. So calling:

obj Text . del eteData(12, 7);

218

DOM

on the Char act er Dat a node we've been working with, would change the string back to "Thi s i s t he
mai n string." removing the text "gr oovy".

Finally, if we want to replace characters in a string with other characters, instead of calling del et eDat a
and then i nsert Dat a, we can simply use r epl aceDat a. This method takes three arguments:

O The offset position at which to start replacing.
0 The number of characters to replace.

O The string to replace them with.

Note that the number of characters we're inserting doesn't have to be the same as the number of
characters we're replacing.

If we still have the same obj Text node containing "Thi s i s the mai nstring.", we can do the
following:

obj Text . repl aceData(8, 8, "a");
which will replace "t he mai n" with "a", thus changing the string to "Thisis astring.".

Splitting Text

The Text interface only adds one method to the ones inherited from Char act er Dat a, which is the
spl it Text method. This takes one Text object and splits it up into two, which are siblings of each
other. The method takes one parameter, which is the offset at which to make the split.

The result is that the first Text node will contain the text from the old node up until (but not including)
the offset point, and the second Text node will contain the rest of the text from the old node. If the
offset is equal to the length of the string, the first Text node will contain the old string as it was, and the
new node will be empty; and if the offset is greater than the string's length, a DOVExcept i on will be

raised.

We could, therefore, write code like this:

obj Text.splitText(11);

and the result would look something like this:

<element>

> —— This is the

<element> .
splitText(12)

—— This is the main string

—— main string

219

Chapter 6

Of course, if we were to save this XML document like that, our change would be lost, since the
PCDATA would then just become one string again. spl i t Text () comes in most handy when we are
going to be inserting other elements in the middle of the text.

Comments

The Comrent interface is one of the easiest interfaces we'll be studying in this chapter. Comrent
extends the Char act er Dat a interface, but it does not add any properties or methods! Working with a
comment in the DOM is just like working with any other text.

In fact, the only benefit we get from working with this interface is that when we create a Cormmrent
object and append it to the document, the DOM automatically adds the "<! - - - ->" markup.

DOMEXxception

DOM operations raise an exception when a requested operation cannot be performed, either because
the data is lost or because the implementation has become unstable. DOM methods tend to return a
specific error value in ordinary situations, such as out-of-bound errors when using NodeLi st .

Some languages and object systems (such as Java) require that exceptions be caught for a program to
continue functioning, while others (such as VB or C) do not support the concept of exceptions. If a
language does not support error handling, it can be indicated using native error reporting mechanisms
(a method may return the error code for example).

Beyond this, an implementation may raise other errors if they are needed for the implementation, such
as if a null argument is passed.

Here are some examples of the exceptions that can be raised (you'll find more in Appendix C):

NOT_FOUND_ERR If an attempt is made to reference a node in a context
where it does not exist.

DOVBTRI NG _SI ZE_ERR If the specified range of text does not fit into a
DOMString.

HI ERARCHY_REQUEST_ERR If any node is inserted somewhere it doesn't belong.

| NDEX_SI ZE_ERR If index or size is negative, or greater than the allowed
value.

NOT_SUPPORTED_ERR If the implementation does not support the type of object
requested.

Extended Interfaces

The Extended Interfaces form part of the DOM Core specification, but the objects that expose these
interfaces will only be encountered in a DOM implementation of an XML document.

To work out whether a DOM application implements these interfaces, we can use the hasFeat ur e
method of the DOM npl enent at i on interface. The f eat ur e string for all the interfaces listed in this
section is "XML" and the version is "2.0".

220

DOM

The Extended Interfaces are:

CDATA Secti on.
Docunent Type.
Not at i on.
Entity.

EntityReference.

O o o o o g

Processi ngl nstruction.

We will cover these a lot more quickly than the previous ones, because we should now have more of an
idea of the interfaces supported by the DOM.

CData Sections

The CDATASect i on interface is just as simple as the Conment interface we met earlier. CDATASect i on
extends Text , but does not add any properties or methods. Working with a CDATA section in the
DOM is just like working with any other text.

In fact, the only benefit we get from working with this interface is that when we create a
CDATASect i on and append it, the DOM automatically adds the "<! [CDATA[]]>" markup.

DocumentType

The Docunent Type interface only provides a list of entities that are defined for the document, which
are not editable.

Notation

The Not at i on interface represents a notation declared in the DTD. This could either be the format of
an unparsed entity by name, or the formal declaration of processing instruction targets. The nodeNarme
attribute inherited from Node is set to the declared name of the notation. They are read-only values and
do not have a parent.

EntityReference

Enti t yRef er ence objects may only be inserted into the structure model when an entity reference is in
the source document, or when the user wishes to insert an entity reference. Enti t yRef er ence nodes
and all their descendants are read-only.

Note, however, that the XML processor may completely expand references to entities while building the
structure model, instead of providing Ent i t yRef er ence objects. Even if it does provide such objects,
then for a given Ent i t yRef er ence node, it may be that there is no Entity node representing the
referenced entity.

221

Chapter 6

Entity

This interface represents an entity, either parsed or unparsed, in an XML document (though not its
declaration). The nodeNan® attribute contains the name of the entity.

Note that if the DOM isimplemented on top of an XML processor that expands
entities before passing the structure model to the DOM, there will be no
Entit yRef erence nodesin thedocument tree.

Enti ty nodes and all their descendants are read-only. This means that if we want to change the
contents of the Ent i t y, we will have to clone each Enti t yRef er ence, and replace the old ones with
the new one.

Processing Instructions

Finally, no DOM would be complete without a method for adding processing instructions. The
Processi ngl nstructi on interface extends Node, and adds two properties of its own: t ar get and
dat a.

The t ar get property is the name of the target to which we want to pass the PI, and the dat a is the
instruction itself. The dat a property can be changed, but t ar get is read-only.

Working With Our Data

Let's go back now and look at the invoice record that we have been working with throughout the book,
and see what the DOM allows us to do with it.

Accessing the DOM from JavaScript

In this section we will use some simple client-side pages to show how we can manipulate an XML
document in the DOM. These will generate simple alerts, like those earlier in the chapter, but will
show us:

O How to access values in the DOM.

0 How to update documents in the DOM.
Here is the document that we will be accessing (sal esDat a. ht m):

<?xm version="1.0"?>
<Sal esDat a St at us="NewVer si on">
<l nvoi ce | nvoi ceNunber="1"
Tr acki ngNunber =" 1"
O der Dat e="01012000"
Shi pDat e="07012000"
Shi pMet hod=" FedEx"
Cust oner | DREF=" Cust oner 2" >
<Lineltem Quantity="2"
Price="5"
Part | DREF="Part2" />

222

DOM

</l nvoi ce>
<Cust orer | D="Cust oner 2"

first Nane="Bob"

| ast Name="Smi t h"

Addr ess="2AnyStreet"

City="Anyt own"

St at e=" AS"

Post al Code=" ANYCCDE" />
<Part Partl|D="Part2"

Par t Nunber =" 13"

Nanme="W nkl e"
Col or =" Red"
Si ze="10" />

</ Sal esDat a>

We have a root element, Sal esDat a, with children of | nvoi ce, Cust oner, and Part. We will mainly
be working with the Cust omer element. The customer element has the following attributes:

Cust oner | D.

firstNare.

| ast Nane.

Addr ess.

City.

State.

Post al Code.

O o o o o o g

Let's start by looking at how we retrieve data from the document.

Retrieving the Data from an XML Document using the DOM

In this example, we will retrieve values from a document loaded into memory. It will demonstrate a
number of the methods that we can use to retrieve different values, and will write them to a browser.
We'll be retrieving:

An element.
An attribute.

O
O
O An attribute value.

O The tag name of an element.

With this information, we will be creating a page that displays the customer's first and last names and
their customer ID.

Here is the page that we will be using (ch06_ex11. ht m):

<HTM_>
<HEAD>
<TI TLE>DOM Deno</ Tl TLE>

<SCRI PT | anguage="JavaScri pt">

223

Chapter 6

var obj DOM

obj DOM = new Acti veXObj ect (" MSXM.2. DOVDocunent ") ;
obj DOM async = fal se;

obj DOM | oad(" sal esData. xm ") ;

/1 CGet to the root el enent
docunent. wite("We have found the root elenent: </ B>");

var Sal esDat a = obj DOM docunent El enent ;
al ert (var Sal esDat a. t agNane) ;
docunent . wri t e(var Sal esDat a. t agNane) ;

/1 Find the Custoner el enents and select the first one
docunent . wite
("<P>We have found the first Custoner Elenent, its nane is: ");

var El enCust 1 = var Sal esDat a. get El enent sByTagNane(" Custoner”).item0);
al ert (varEl enmCust 1. xm) ;
docunent . wri t e(var El enCust 1. t agNane) ;

//Find the Custoner ID Attribute
docunent . wite
("<P>Now we can retrieve the Custoner ID attribute, it is: ");

varAttrCust|I D = varEl enCust 1. get Attri bute("ID");
alert(varAttrCustlD);
docunent.wite(varAttrCustlD);

//Find the next attribute of Nane
docunent . wite("<P>The custoner's nane is: ");

varAttrFirst Name = varEl enCust 1. getAttribute("firstNane");
alert(varAttrFirstNane);
docunent .. wite(varAttrFirstNane);

varAttrLast Nane = var El enCust 1. get Attri bute("l ast Nane");
al ert(varAttrlLast Nane) ;
docunent . write(varAttrLast Nane) ;

//Now let's wite out the address
docunent. wite("<P>Their address is: ");
varAttrAddr = varEl enCust 1. get Attri bute("Address");
al ert(varAttrAddr);
docunent . write(varAttrAddr);

//Find the next attribute of City

varAttrGty = varEl enCust 1. get Attribute("Cty");
alert(varAttrGity);

docunent. wite(varAttrGity);

</ SCRI PT>

</ HEAD>

<BODY>

<P>W have retrieved a | ot <P>
</ BODY>

</ HTM.>

Let's see what this is doing. We start with a simple HTML page. All of the real work for this page is
done in the <scri pt >:

224

DOM

<HTM_>
<HEAD>
<Tl| TLE>DOM Deno</ Tl TLE>

<SCRI PT | anguage="JavaScri pt">

We start by creating an instance of the Microsoft MSXML parser. Because the DOM does not specify
how a document should be loaded into an instance of a parser, we use the | oad method of MSXML.
The document is then held in a variable called obj DOM so that we can work with it:

var obj DOM

obj DOM = new Acti veX(hj ect (" MSXM.2. DOVDocunent ") ;
obj DOM async = fal se;

obj DOM | cad("sal esData. xm ");

We can now retrieve the document element (or root element of the document instance) using the
docurent El ement attribute, and write it out using the t agName attribute. We show this in an alert
dialog — as we do with the other values that we retrieve — so that we can see what is happening. We'll
also write it to the page using the wr i t € method of the browser object model:

/1 CGet to the root el ement
docunent.wite("We have found the root elenent: ");

var Sal esDat a = obj DOM docunent El enent ;
al ert (var Sal esDat a. t agNan®) ;
docunent . wite(var Sal esDat a. t agNane) ;

We saved the document element in a variable so that we can use this same reference later. Here is the
alert that it displays:

Microsoft Internet Explorer

& SalesData

Remember that the document had three children. We want to find the middle one: Cust oner . If we
have a mixed content model, or we're not sure of how many child elements there are before Customer,
we can make use of the get El enent By TagNane method. This is how we'll retrieve Cust oner, to
illustrate the point:

//Find the Customer elenments and select the first one
docunent.wite
("<P>We have found the first Custoner Elenent, its nane is: ");

var El emCust 1 = var Sal esDat a. get El enent sByTagNane(" Custoner”).iten(0);

al ert (var El emCust 1. xm) ;
docunent . write(varEl enCust 1. t agNane) ;

225

Chapter 6

We again hold a reference to this child element in a new variable — var El enCust 1 — which will allow

us to use it again later in the document. This time, we have written the value of the Cust ormer element
to the alert box.

We can also see this in the following screenshot. Here, we have also written out the document element
we just met, and we're prepared to write the name of the tag we are currently on:

3 DOM Demo - Microsoft Internet Explorer - 10| =|
J File Edit “iew Favoitez Toolz Help ﬁ
oy »
« = 9 | @& G 4 | B
Back Fonward Stop Refrezh Home Search Favorites Histary Fd ail
We have found the root element: SalesData
We have found the first Customer Element, its name is:
Microsoft Internet Explorer x|
% Customer Customerl D=""Customer2" firstM ame="B ob"' lastM ame="Smith"' Address=""24nyStreet’’ City="Anptown"
State="A5" PostalCode="4NYCODE"/>
Ok |
|@ Opening page file: 2/H: 4B ooks43587 Pro #ML D atabasesyChapter || ’_’_ 25| Local intranet Az

Next we want to find the | D attribute of the Cust oner . To do this, we will be using the get Attri bute
method:

/1 Find the Custoner ID Attribute

docunent.wite
("<P>Now we can retrieve the Custoner ID attribute, it is: ");

varAttrCust|I D = varEl enCust 1. get Attri bute("ID");
alert(varAttrCustlD);
docunent.wite(varAttrCustlD);

Again, we create a new variable to hold this, and we write it to an alert box, as well as illustrating it on
the screen.

The remaining tasks involve getting the remaining attribute values out of their nodes. We do this using
the same method we just met:

226

//Find the next attribute of Nane

docunent. write("<P>The custoner's nanme is: ");

varAttrFirstNane = varEl enCust 1. get Attri bute("firstNane");
alert(varAttrFirstNane);
docunent. wite(varAttrFirstNane);

var AttrLast Nane = varEl emCust 1. get Attri bute("l ast Name");
al ert(varAttrLast Nane);

document. write(varAttrLast Nane);

DOM

//Now let's wite out the address
docunent.wite("<P>Their address is: ");
var Attr Addr = varEl enCust 1. get Attri bute("Address");
al ert (varAttrAddr);
docunent.wite(varAttrAddr);

//Find the next attribute of Cty

varAttrCty = varEl enCust 1. getAttribute("Gty");
alert(varAttrCity);
docunent.wite(varAttrCity);

</ SCRI PT>

</ HEAD>

<BODY>

<P>We have retrieved a | ot<P>
</ BODY>

</ HTM.>

Having finished off the page, we can see that we have retrieved all of the information from the attributes

of the Cust omer element, as well as retrieving the document element and one of its children:

Table Properties - PersonName x|
General I
g@“ﬁ Marmne: Perzont ame Permigzions. .. |
Owrer: dbo
Create date: 0241142000 17:56:30
Filegroup: FRIMARY
Flows: 0
Columms:
ey |I[iI |Name |Data Type |5ize[... |Nu||s |Defau|t
CustarmerD NLMMEN e O
Firzt arme char 20 O
LastMame char 20 O
1] | I
0k, I Cancel | Lpply | Help |

This may not be the most visually enticing presentation that we could come up with, but it illustrates
getting values out of the DOM. Next, let's go on to looking at updating the contents of the DOM.

227

Chapter 6

Adding to the Contents of the Document Using the DOM

In this section, will be demonstrated the following useful techniques:

O o o g

Adding elements to a document.
Adding text to the new element.
Adding attributes to a document.

Setting the value of the new attribute.

Here is the code we'll use to do this (ch06_ex11. ht nj:

228

<HTM_>
<HEAD>
<TI TLE>DOM Deno</ Tl TLE>

<SCRI PT | anguage="JavaScri pt">

var obj DOM

obj DOM = new Act i veX(hj ect (" MSXM.2. DOVDocunent ") ;
obj DOM async = fal se;

obj DOM | oad("sal esData. xm ") ;

//Get to the root el ement
var Sal esDat a = obj DOM docunent El enent ;

//show the original XM. docunent
al ert (var Sal esDat a. xn) ;

//Find the Customer elements and select the first one
var El enCust 1 = var Sal esDat a. get El enent sByTagNane(" Cust onmer").item0);

<!-- adding an el enent -->
docunent. write("<HR><Hl>Updat es appear in alert boxes:</Hl>");

//create a new el enent
var NewkEl em = obj DOM cr eat eEl enent (" Mont hl ySal esDat a") ;

/' append the el ement
var NewkEl em = var Sal esDat a. i nsert Bef or e(var NewkEl em var El enCust 1) ;

//create a new text-type node and append it
newText = obj DOM cr eat eText Node
("Can you see that we have created a new el enent ?");
var Newkl em appendChi | d(newText) ;

al ert (obj DOM xm) ;

<!-- adding an attribute -->

//create a new attribute and give it a val ue
var El enCust 1. set Attri bute("tel ephoneNo", "3591765524");

al ert (obj DOM xm) ;
</ SCRI PT>

</ HEAD>
<BODY>
<HR>

</ BODY>
</ HTM.>

DOM

In this example we will be writing all of the results to alert boxes. The first part of the example simply
loads the XML document into the DOM, just as we did before, and displays the original XML
document. We then retrieve a couple of useful values using the techniques we saw in the last example.
After that, we get onto the interesting part.

We will start by adding a new element to the document. Remember that this is a two-stage process:

O First we need to create this node off the document element.

O Then we append it to the tree in the place that we want.

The new element will be called Mont hl ySal esDat a. We have chosen to append this to the tree in
front of the Cust omer element:

//create a new el ement
var Newkl em = obj DOM cr eat eEl enment (" Mont hl ySal esData") ;

/ / append the el enent
var NewEl em = var Sal esDat a. i nsert Bef ore(var NewEl em var El enCust 1) ;

Now we need to put some content into this element. To do this, we again create a new node and append
it to the tree in two separate stages. This requires a Text node, whose value is written as a parameter to
the method. We then append this to the new element:

//create a new text-type node and append it
newText = obj DOM cr eat eText Node
("Can you see that we have created a new el enent ?");
var Newkl em appendChi | d(newText) ;

Finally, we will write the content of the file to an alert box:
al ert (obj DOM xm) ;

Here we can see the result. We have created the new Mont hl ySal esDat a element with a value in front
of the Cust oner element:

Microzoft Internet Explorer I

<7rmnl werzion="1.0"7»
<SalesD ata Status="MewWersion'»

<lrvoice InvoiceMumber="1" TrackingMumber="1"" OrderDiate="01012000" Shipl ate="07012000"
ShiptMethod="FedEx" Customel DREF="Customer2"»

<Lineltem Quantity="2"" Price="5" PartlDREF="Part2""/>

<Hnvoices

¢MonthlyS alesD atax Can pou gee that we have created a new element?< MtonthiyS alezl atas < Cugtomer
|D="Customer2" firsth ame="Bob" lazthame="Smith"* Addrezs="24nyStreet"’ Cibp="Anytown" State="A45"
PostalCode="4NvCODE" />

<Part Part|D="Part2" Parttumber="13" M ame=""inkle" Color="Red" Size="10"/>
</SalesData>

229

Chapter 6

Next let's see how we add an attribute. We will be adding a t el ephoneNo attribute to the Cust orrer
element. We use set At t ri but e to do this, giving it the name (t el ephoneNo) and value of the
attribute we want to include:

//create a new attribute and give it a val ue
var El enCust 1. set Attri bute("tel ephoneNo", "3591765524");

al ert (obj DOM xmnl) ;

and here is the resulting attribute shown in the XML document:

Microzoft Internet Explorer I

<l wergion=""7.0"7:
<SalesData Status="MNew\ersion'>

<Irevnice lrvoiceMumber="1" TrackingM umber="1" OrderDate="01012000" ShipDate="07012000"
ShipMethod="FedE«" Custarerl DREF="Custamer""s

<Lineltem Quantity="2" Price="0" PartiDREF="Part2"'/>

<Ahvoices

<MonthlyS alezD atar Can you zee that we have created a new element’?< MonthipS alesD atar < Customer
10="Customer" firstHame="Bob" laztMame="Smith" Addrezz=""2anpS treet’’ Citp="Anptown'' State="A5"
FozstalCode="4NYCODE" telephoneMo=""3551765524"/>

<Part PartlD="Part2" PartMumber="13" Mame=""inkle" Color="Red" Size="10"/>
</SalesDatar

Adding Information from Another DOM Tree

Next, we're going to try merging information from two different XML sources. This time, we will be
pulling in customer data from a second file called sal esDat a2. xni :

<?xm version="1.0"7?>
<Sal esDat a St at us="New\Ver si on" >
<l nvoi ce | nvoi ceNunber="1"
Tr acki ngNunber =" 1"
Or der Dat e="01012000"
Shi pDat e="07012000"
Shi pMet hod=" FedEx"
Cust oner | DREF=" Cust oner 2" >
<Li neltem Quantity="2"
Price="5"
Part | DREF="Part 2" />
</1nvoi ce>
<Cust omer | D="Custoner1"
firstName="Ton{
| ast Name="Boswel | "
Addr ess="39Brownhi | | Crescent"
G ty="Anot hert own"
State="1N'
Post al Code=" OTHERCCDE" />
<Part PartlD="Part 2"
Par t Nunber =" 13"
Nanme="W nkl e"

Col or =" Red"
Si ze="10" />
</ Sal esDat a>

230

DOM

The page that does this is called ch06_ex12. ht i :

<HTM_>
<HEAD>
<TI TLE>DOM Deno</ Tl TLE>

<SCRI PT | anguage="JavaScri pt">

var obj DOM

obj DOM = new Acti veXObj ect (" MSXM.2. DOVMDocunent ") ;
obj DOM async = true;

obj DOM | oad("sal esData. xm ") ;

/] CGet to the root el ement
var Sal esDat a = obj DOM docunent El enent ;

//second instance of the DOM
var obj SecondDOM
obj SecondDOM = new Acti veX(hj ect (" MSXM.2. DOVDocunent ") ;
obj SecondDOM async = true;
obj SecondDOM | oad(" sal esDat a2. xm ") ;

//CGet to the root el ement
var Sal esDat aB = obj SecondDOM docunent El enent ;

var |l nport Cust 1 = var Sal esDat aB. get El enent sByTagNane(" Cust oner").iten(0);

<l-- adding an el enment -->
docunent . wite("<HR><H1>Updat es appear in alert boxes:</H1>");

//clone the node fromthe second DOM
var Cl one = varl nport Cust 1. cl oneNode(true);

/ / append node to the first DOM
var Sal esDat a. appendChi | d(var C one) ;

al ert (obj DOM xm) ;
</ SCRI PT>

</ HEAD>
<BODY>
<HR>

</ BODY>
</ HTML>

We start as we did in the other two examples: loading up the XML document into the parser. This time,
however, we add a second instance of the DOM to hold the document that we want to retrieve more
information from. We need to collect the element that we want to insert into the first tree from this
second DOM tree, so we do this now, and store it in var | nport Cust 1:

/I second instance of the DOM
var obj SecondDOM
obj SecondDOM = new Acti veX(hj ect (" MSXM.2. DOVDocunent ") ;
obj SecondDOM async = true;
obj SecondDOM | oad("sal esDat a2. xm ") ;

//Get to the root el ement
var Sal esDat aB = obj SecondDOM docunent El enent ;

var |l mport Cust 1 = var Sal esDat aB. get El ement sByTagNane(" Custoner").iten(0);

231

Chapter 6

In order to add the Cust orrer element from the second document into the first document, we clone it.

This is why we just stored it. We do this using the c| oneNode method. We use a shallow clone, which
will still collect the attributes of this element:

//clone the node fromthe second DOM
var d one = varl nport Cust 1. cl oneNode(true);

If Cust orrer had child attributes, we could make sure that the clone cloned these as well by setting the
parameter of the cl oneNode method to t r ue, creating a deep (rather than shallow) clone.

Having cloned the node, we simply append it to the tree representing the first document, and write the
new document to an alert box:

// append node to the first DOM
var Sal esDat a. appendChi | d(var Cl one) ;

al ert (obj DOM xm) ;

and here is the result:

Microsoft Internet Explorer I

< Tl version=""1.0"7:
<5alesD ata Statuz="MNewWersion' >
¢lrvice [nyvoiceMumber="1" TrackingMumber="1" OrderD ate="01012000" ShipD ate="07072000"
Shiptethod="FedEx=" Customerl DREF="Customer2"»
<Lineltern Quantity="2" Price="8" PartiDREF="Fart2""/>
<A mvoicey

<Customer |1D="Custamer2" first ame="Bob" lagtMame="Smith" Address=""24npStreet" Cilp="4Anptawn"
State="AS" PostalCode="ANYCODE" >

<Part PartiD="Part2" Partiumber="13" Mame="\inkle" Color="Red" Size="10"/>

<Cugtomner 10="Custarmer1" firstMame="Tom"" lastM ame="Boswel" Addresz="33B rownhillCrescent"
City="Anothertown' State="IN" PostalCode="0THERCODE" />
</SalesDatar

When To Use or Not Use the DOM

As we have seen, the Document Object Model presents a standardized interpretation of an XML
document that makes the contents of the document available for processing, along with a set of
interfaces that expose properties and methods that will be useful when integrating XML into our
programs and data strategies. Because DOM implementations have been written for most major
programming and scripting languages, the programming language we wish to use in creating our
applications is not a major consideration.

Rather the two major considerations are:

O The size of the document with which we are working.

O What type of processing we want to do with the document that we load.

232

DOM

We shall look at each of these in turn, although we should think about the issues surrounding both when
deciding how to process our documents. Once we have looked at some of the major issues in deciding
whether the DOM is an appropriate technology, we will look at some of the alternative technologies
that we may wish to consider.

Size of Document

When deciding whether the DOM is an appropriate technology for our programming endeavors, we
should consider the size of the documents that we are likely to be dealing with. This is because of the
way in which DOM implementations expose the contents of XML documents.

Remember that the DOM creates an in-memory representation of the XML Document in order to work
with it. A DOM representation can need 5-10 times as much memory as the corresponding XML file
itself. This means that we can end up with some pretty memory intensive situations when dealing with
large amounts of data. In order to make a large document available, the DOM implementation must
load it into memory so that we can work with it.

It can also take more time to load a large file into memory, which is important if performance is a major
concern; and as well as the sheer size of the file, the number of nodes can have an effect performance.

On the other side of the coin, if we are creating documents using the DOM, we must consider the size of
documents that we want to create.

Because the DOM is so memory intensive there are some strategies that we can consider employing to
help reduce system load:

Will it Prevent Others From Using Other Information?

If we are loading the whole document into memory so that we can only change one record, we will
need to lock other users out, so that they cannot change the same records and risk the integrity of our
documents. The longer it takes to load a whole document into memory and work with it, the longer it
locks other users out. If we do not have a locking mechanism in place, then other users who may want
the same information may get incorrect records or may try to update the same data — and if we perform
our persistence after them, their changes will be lost.

Using Document Fragments to Reduce Bandwidth Demands

Can we afford to keep passing the whole document over the network? Can we just open a fragment, or
set of, what would be the whole document, so that we can work with a smaller subsection rather than
the whole document? For example, if we are only editing one record, then there is no point in retrieving
the whole document and loading it into memory. Rather we could just select the fragment that we want.

Luckily, as we have seen, we can just work with fragments of a document using the DOM. It is always
worth trying to limit the granularity of the document to the information that we want to actually work
with. If we just want to work with one invoice, we just collect that one invoice rather than opening a file
of invoices for a whole month.

Of course, we still need the whole document in memory before we can access a fragment. We'll have to
collect that fragment ahead separately, before we start working with it from the DOM.

233

Chapter 6

How the DOM Processes a Document

We have already seen that the DOM implementation sits on top of a parser (or is built in). The XML
document is read into the parser: this either exposes the XML document as a DOM tree, or an
implementation of the DOM implementation can sit on top of the parser. For the duration of the time
that the application wants to work with this document, the DOM representation remains in memory.
Once we have finished with the document it can then be persisted in some form.

Dom Tree
Root
Element
Read Access
R Child Child Application
XML Document Parser Element Element
Write Access

Value Attribute Value Attribute

New Saved XML

document

For large documents this means that the resources required to hold a document as a DOM tree can be
very intensive.

Alternatives to the DOM

An alternative to this approach would be to allow the document to be passed through as a stream, rather
than holding it in memory. This stream could then be used to raise events to the processing
applications. This is, in fact, the model that the Simple API for XML (SAX) uses, as we shall see in the
next chapter.

Content

Parsin, Reporting . o
XML Document E > Parser » SAX Event Reporting Event Stream Application

Using this approach we do not need to hold the document in memory, meaning that it takes up fewer
resources. However, it makes it far more difficult to do much more than read the document as it is
streamed through. If we want to add, update, modify, or create documents, we may require that the
document be streamed through the parser several times. We will learn more about how SAX processes a
document, and what tasks it is suited to, in the next chapter.

This shows how the size can affect the choice of how we process our documents. Of course, if we are
only dealing with small XML documents, then we do not need to worry too much about the memory
that will be taken up by the in memory tree that allows the DOM to process documents. When the
documents get larger, however, we need to think about the number and size of the files that we want to
process, and whether we could build our solution based on SAX instead, or whether there are other
strategies we could use.

234

DOM

The Task in Hand

Having seen that the size of the document will affect our choice of which processor to use, let's look at
how the task that we wish to achieve can affect the choice we make as well. Keep in mind that size is
still a consideration here.

When integrating XML into our database strategies, there are a range of tasks that we may want to
perform on the XML data. If we think about our XML invoice example, that we have been looking at in
the book so far, we may want to:
O Read values from the invoice into a processing application.
0O Edit the values in the document, such as a customer address.
O Add or remove records, such as line items.
O Generate new documents programmatically:

O From scratch, such as new invoices.

O From existing documents, creating a summary of invoices that represent
customer records.

O Display the invoice in a browser.
O Display the invoice in a program using a custom front-end, say in Visual Basic.
O Transform the invoice from the XML vocabulary we use to another vocabulary, perhaps for

an order fulfillment house.

When working with the XML, the tool we use to make it available to other applications depends upon
the task in hand. We can split these sorts of tasks into four general groups:
0 Add, update, modify.
0 Transformations of structure.
O Reading and filtering.
0 Creating documents.

We shall look at each of these in turn.

Reading and Filtering

Imagine that we only want to read values from an XML document into a processing application, and
then let it get on with what it has found, rather than making any changes to the document. In that case,
creating an in-memory representation of the document just to read values out of it, may not be as
efficient as catching events as the document is streamed through a processor.

Furthermore, if we wanted a subsection of the document, then we could also use a stream based
approach. We could take the items that we want, and write them to a new file or destination, rather than
loading the entire document into memory just to retrieve a subset of it.

Both of these are especially true if we want to read values from, or filter, large documents. If the
documents are only small and there is not a large load on the system, then it may not be such a problem
- it depends on the granularity of information that we are dealing with. For reading and filtering large
documents, the DOM is not always the best choice.

235

Chapter 6

Add, Update, Delete

What if we want to do more with the document than just read it into an application? Having got our
information in XML format, we might want to keep it up-to-date, meaning that we could need to add
records, update existing entries, or delete entries. As we have seen, the DOM provides a rich set of
interfaces for manipulating and updating the content of an XML document, so it is a natural candidate.
The DOM approach allows developers to take advantage of the logic built into a DOM implementation
for managing XML content, rather than having to create their own.

One of the key advantages to the DOM when modifying records is exactly that it holds the document
representation in memory. Remember when we were talking about creating new nodes and appending
them to the tree, we saw that we can do all of this while the DOM is in memory. However, when
working with a stream based approach to processing, we would need to have the content that we wanted
to add/change in memory in the processing application, so that we could make our modifications as the
document is streamed through.

Of course, we could just delete records as they are passed through a stream, by passing everything that
was not to be deleted to a new output. However, applications that perform these kinds of operations
usually perform more than just deletion. If we think about a customer call center, we will want to allow
operators to update records as well as delete them or add them.

Therefore the DOM is the better choice for modifying an XML document and holding the changed
document in memory, because it allows us to update the source, or if we need to browse to the records
we want to update.

Transformations of Structure

As far as transformation of documents goes, the main purposes are:

O To transform the XML for presentation to a web client (say using HTML).

O To transform the data into another XML vocabulary for a trading partner's application to
make use of, or for insertion into a database.

O To assemble data from selected bits and pieces of the overall data repository held in separate
smaller XML files.

The DOM may not always be the most appropriate solution for these transformations. If we think about
how the DOM would approach transformation, we would have to tell the DOM which nodes to remove
and append elsewhere — perhaps we might need to tell it to change the element and attribute names. In
fact, there are a lot of things that we would have to tell it to do in such a program. A popular alternative
would be to consider using XSLT instead of the DOM. We will meet XSLT in Chapter 8.

It is worth noting that most XSLT processors do actually use a DOM representation to perform their
transformation, so the concerns over document size still apply here. In fact, they are amplified, because
an XSLT processor generates three representations of the document to work with:

O The source tree.
O The result tree.

O The style sheet tree.

236

DOM

So, the memory footprint can be very high when transforming large documents. This has been a
criticism levelled at using XSLT to process transformations since its inception, and some suggest that it
is not suitable for transforming large documents. However, its adoption in the developer community
seems to suggest that XSLT will be around for a while, and the language is still sometimes used in other
implementations of transformation engines.

The advantages of XSLT, however, lie in the fact that it is a declarative language. This means that we
tell an XSLT processor how we want the resulting document to appear, and let the XSLT processor
implement the transformation for us. We do not need to tell it which nodes to remove and then append
elsewhere, we can just specify the format that we want the tree to appear in and let it get on with the
job. While there is a learning curve to getting used to the new language and way of working, it can be
more useful in the long run. Especially when we consider that we can use one style sheet to transform
multiple documents that may not have exactly the same structure, although they conform to the same
DTD or schema.

Creating Documents

Another task that we may wish to achieve is the programmatic creation of a new XML document. For
example:

0 If we wanted to create a totally new invoice.

O To create a monthly summary of invoices from all the invoices of one month.

Rather like when we were considering whether to use DOM for adding, updating and deleting records,
this would depend on how we built the document. If we want to build a document whose structure we
don't yet know, then we need to take the in-memory approach.

Maintaining the document in memory is a lot more helpful here, as we are able to traverse through it.
We can use the structure as it is in memory, as well as dealing with incoming data. We could even hold
different representations of documents in memory and append them to a new document.

We might want to merge several documents — say we wanted to create one document that contained a
month's invoices. To do so, we could create a new document in the DOM, then add a new root node
with any necessary summary information, and then append the other instances of invoice documents.

Alternatively, if we wanted to merge invoice data and other customer information, we could load the
invoice document, then append the second document, and perform the necessary operations to create
the merged document (such as moving or reordering of nodes).

Again, this feeds back to the question of the size of the document that we are creating, but there are few
easier ways to create a document programmatically. If we were to look to a stream based approach for
creating new documents, we would have to hold the parts of the document that we wanted to append in
memory so that they could be added as the document streams through, and these would have to be
persisted to a different location.

237

Chapter 6

Summary

In this chapter, we have explored the Document Object Model, which gives us an API to work with our
XML documents. We've seen how an implementation of the DOM works with a parser, which loads an
XML document into memory, allowing us to access and change values of the XML document.

We have seen how to:

Use the interfaces that the DOM API exposes.

Change values from a DOM representation of an XML document.

Use the methods of the DOM's interfaces to add, remove, clone, and update elements.
Set different attributes.

Tell when it is appropriate to use the DOM.

o o o o o g

Create some simple examples of using the DOM with JavaScript.

The examples we have seen, illustrated how we can load a document into memory and access it
programmatically. Because the DOM is an API reference, and because there are implementations of the
DOM in many programming languages, we will now be able to work with it to integrate it into our
applications — whatever language they may be written in.

In addition, although we have been focusing on the Level 2 Core, we should now be able to work with
future versions, and other extensions the DOM provides.

We also looked at some of the times when the DOM isn't the best answer to our problems. In
conclusion we decided that:

0 Developers who need to build applications for specific purposes may find it more efficient to
use SAX to read the document, and then manage the information in their internal data
structures.

O Developers who need to transform the structure of a document, either into another vocabulary
or for the purposes of presentation, may be better off using XSLT.

We'll cover XSLT in Chapter 8. Before that, though, we'll take a look at SAX.

238

DOM

239

Chapter 6

240

4

SAX - The Simple API for XML

SAX, the Simple API for XML, is slightly different from many of the other technologies in the XML
programmer's toolkit. Rather than being a specification developed by a standards body, it was created
by members of a mailing list called XML-Dev (under the guidance of David Megginson). If you are
interested, you can find out more about its history at http://www.megginson.com/SAX/index.html.

In addition to its name's claim to be simple, what else is there about SAX that makes it worth taking a
good look at? In a sentence, SAX is an alternative to the DOM as a method of accessing XML
documents — or at least, a complement to the DOM. As we will see later in the chapter, there are
advantages to using the two different approaches provided by the DOM and SAX to access and
manipulate data in XML, depending on what sort of document we are working with, and what sort of
things we want to do with it.

This chapter assumes familiarity with the DOM.

When we say that SAX is an alternative to the DOM, it's best not to think in terms of one or the other.
Rather, you will find SAX to be another weapon in your arsenal for attacking XML-related problems. A
complete SAX reference is beyond the scope of this book, but we will be looking at:

What SAX is
What it allows us to do
How we can use it, with examples in Java and Visual Basic

O
g
g
O Guidelines of when it is better to use SAX rather than the DOM

If you need to learn more about using SAX, there are some references at the end of the chapter.

Chapter 7

SAX Parsers

It is helpful to understand that SAX is an API, just like the DOM, and can be implemented in a parser.
This means that SAX itself does nothing more than provide interfaces and classes to be implemented by
a parser or application. It also means that when we talk about a "SAX parser", we are talking about a
particular implementation of a SAX-compliant parser, not the standard itself.

There are several freely available SAX parsers around for you to use (so you do not need to write an
implementation yourself). The following table provides a list of parsers, and where to get them.

Par ser Creator SAX L ocation Language(s)
Name Version Supported
Supported
Aelfred David 2.0 http://home.pacbell.net/ Java
Megginson david-b/xml/#utilities
(this version
by David
Brownell)
Saxon Michael Kay 2.0 http://users.iclway.co.uk/ Java
mhkay/saxon/index.html
(Saxon uses an implementation of
Aelfred, and is not itself strictly a
parser.)
MSXML3 Microsoft 2.0 http://msdn.microsoft.com/ C++, VB and
downloads/default.asp any COM-
compliant
language
Xerces C++ Apache XML 2.0 http://xml.apache.org/ C++
Parser Project xerces-c/index.html
Xerces Java Apache 2.0 http://xml.apache.org/ Java
xerces-j/index.html
JAXP Sun 2.0 http://java.sun.com/ Java
xml/download.html
XP James Clark 1.0 http://www.jclark.com/ Java
xml/xp/index.html

SAX is currently in version 2, and all the examples in this chapter will implement this version.
We'll be using Saxon's implementation of Aelfred and MSXML3.

Understanding SAX

The biggest difference between SAX and the DOM is that SAX is an event driven interface that requires
certain methods to be declared that can "catch" events from the parser.

When a DOM-based parser parses an XML document, it stores a tree-based representation of the
document in memory. SAX, on the other hand, streams the document through from start to finish,
looking at the different items it encounters as the document passes. For each structural item in the
document, SAX calls a method you have made available.

242

SAX — The Simple API for XML

For example, when the parser encounters an element's start tag, it can say, "Hey, I have a start tag
named 'X", but it then leaves you to do what you like with that information. From there, it moves on
and will not concern itself with this element again. What this means to you is that you must maintain
state, or context, while working with a SAX parser.

So, if we had this XML fragment parsed by a content handler:

<Start>
<here>This is sone text</here>
</Start>

We would have the following events:

Event Returns Value

start El enent | ocal Nanme "Start"

start El enent | ocal Nanme "here"

characters text "This is sonme text"
endEl erment | ocal Nane "here"

endEl erment | ocal Nane "Start"

Each of the events raised requires an implementation of the SAX interface to work with the information
provided by the parser. The beginning of an element is "caught" by the st art El ement method, the
end by the endEl enment method, and so on, as we'll explain below. These methods are usually grouped
together in a class that implements the Cont ent Handl er class.

One implication of the event-based approach is that the application you build will have to keep track of
the element names and other data caught by the content handler. For instance, imagine that we need to
connect the character data "Thi s i s sone t ext " with its element <her e>. Then, the st art El enent
method will need to set a variable of some kind that can be checked in the char act er s method, as in
this pseudo-code:

decl are variabl e — bool ean bl nEl enent
//Start receiving events

startEl ement - local Nane = "Start"

start El ement = | ocal Nane = "here"

if local Name = "here" then bl nEl enent = True
characters = text = "This is some text"

if blnElement then this character data belongs to the "here" el enent

We'll introduce the issue of context in the second example that we'll look at in this chapter, and work
with it in detail in the final example.

If we consider a few implications of this approach, we can start to build an idea of where we can use
SAX. We've been given a way to parse a document without the overhead of building an in-memory
tree. We can also avoid processing the entire document, because any one of the event-catching methods
can return control to the application before the whole document is read. These features mean that SAX
is going to be a very practical way to parse large XML documents. We can also ignore, change, or pass
along any item that the parser tells us about at runtime. This gives us an excellent opportunity to keep
only the parts of a document we want.

SAX will not be great for everything. As we mentioned above, it does not allow us to traverse the tree,
and it's not adept at moving backwards and forwards through a document — we only get one shot as it
goes through the parser - so it is best understood as an additional tool. We'll start with a look at a basic
approach for working with SAX.

243

Chapter 7

Example 1 — A Simple SAX Application

If SAX is simple, let's see if we can't get an example up and running quickly just to demonstrate it. This
simple example will be written in Java, and will utilize a SAX2 compliant parser.

This application is called Sax App, and you can download the saxapp. j ar file, or each of the
separate application files, from the Wrox web site at http://www.wrox.com

In this example, we will look at how to implement three interfaces:

0 XM.Reader - the interface for reading an XML document using callbacks
O Content Handl er - the interface to receive notification of the logical content of a document
0 ErrorHandl er - the basic interface for SAX error handlers

All SAX parsers should implement these, as they are three of the standard interfaces in the
or g. xnl . sax package. (There is only one other package: or g. xm . sax. hel pers.)

Our application is going to locate a small XML document from a command line argument, and pass it
to the SAX parser specified in the XM_Reader class. As the document is parsed, the XM_LReader will
alert the Cont ent Handl er of the events it has been registered to receive. The event handlers are
simply going to write the name of the event they have handled, and the name of the element (or type of
character data) they have received. The output will be written to the console.

When you have completed this example, you should be able to understand:

O How to implement a basic XM_Reader and Cont ent Handl er
O What the role of the XM_Reader is in relation to the Cont ent Handl er

0 How you can use the different methods in the Cont ent Handl er class to respond to specific
events from the parser

We're going to work out the first example in Java, using the Aelfred parser as provided by Michael
Kay's Saxon. That way, we'll see how SAX was originally implemented, and the basics of working with
SAX in the Java language. However, the rest of the examples in this chapter will be written with Visual
Basic and MSXMLS3 (the September 2000 release of MSXML from Microsoft).

In order to run this example, you will need to have SAX2 and SAX2-ext, both of which
are available from http://www.megginson.com/SAX/, as well as Saxon, which is
available from http://users.iclway.co.uk/mhkay/saxon/index.html.

We need to create an application class that will contain the XM_LReader , and allow us to set the
document content and error handlers. It is possible to do all of this in one class, but we will use different
classes for the XM_LReader , the Cont ent Handl er, and Err or Handl er implementations. We'll also use
Def aul t Handl er, the default base class for SAX2 event handlers, which is in the

org. xm . sax. hel pers package.

244

SAX — The Simple API for XML

Preparing the XMLReader Class

The XMLReader class (SAXApp. j ava) begins as follows:

import comicl.saxon.*; // The classpath for the SAXON i npl enentati on of
/1 Aelfred, the SAX parser chosen for this exanple.
/1 Qur table above contai ned several possible
/1 choices for this.

import java.io.*;

i mport org. xnl . sax. | nput Source;

i mport org.xm .sax. XM_Reader ;

i mport org.xm .sax. SAXExcepti on;

public class SAXApp
{

SAX is an API, and in order to work with it we need a parser that implements SAX. In this example we
are using the Aelfred parser, as provided by Saxon. So, we require a new instance of our chosen parser
within the mai n class to create our parser. We need to set XM_LReader to use this parser when our
simple application loads the document, so that the parser can raise events to the application.

public static void main (String args[]) throws SAXException
{

XMLReader xr = new com i cl.saxon. ael fred. SAXDriver();

Because the parser is going to send messages about what it finds in the XML document it's parsing, we
have to tell the parser where it can find the event handlers. We will use the content handler to receive
notification of events the parser raises while working through the document, and the error handler will
catch exceptions thrown by the parser when something has gone wrong.

SaxHandl er handl er = new SaxHandl er () ;
SAXErrors errHandl er = new SAXErrors();
xr. set Cont ent Handl er (handl er) ;

xr. set Error Handl er (err Handl er) ;

All that's left for this class is to figure out what to parse, and call the par se method of the XM_Reader .
Here is the whole SAXApp class, with the par se method included:

i nport comicl.saxon.*;
i nport java.io.*;
i mport org.xm . sax. | nput Source;
i nport org.xm .sax. XM_Reader ;

i nport org.xm .sax. SAXExcepti on;

public class SAXApp
{
public static void main (String args[]) throws SAXException
{
XMLReader xr = new com i cl.saxon. ael fred. SAXDriver();
SaxHandl er handl er = new SaxHandl er () ;
SAXErrors errHandl er = new SAXErrors();
xr . set Cont ent Handl er (handl er) ;
xr.set ErrorHandl er (errHandl er);

245

Chapter 7

/1 Parse each file provided on the comand |ine.
for (int i =0; i < args.length; i++) {
try {
Fil eReader r = new Fil eReader(args[i]);
Xr. parse(new | nput Source(r));
} catch (SAXException se) {

Systemerr.printin("Error parsing file: " + se);
} catch(Fil eNot FoundException fnfe) {
Systemerr.println("Error, file not found: " +
args[i] +": " + fnfe);
} catch(l OException ioe) {
Systemout.println("Error reading file: " +
args[i] +": " + ioe);

}

The | nput Sour ce wrapper is a SAX class that resolves the type of XML input being received by the
parser. We will take each document provided on the command line in turn, and parse it. There are also
some very simple error handlers in order to catch exceptions from the file reader and the parser. The
application will simply write some information to the screen as it receives events from the parser.

Of course, this application will not work yet, because it will alert non-existent classes about SAX events.
So, let's create the classes to take the messages from the parser.

Complete API documentation is available at http://www.megginson.com/
SAX/Javaljavadoc/index.html

Catching Events from the XMLReader

There are several events that can be caught as a document runs through SAX, but for now we will see
the st art Docunent , endDocunent, st art El enent, endEl enent , and char act er s methods. These
are the methods we will deal with most often.

Notice the pairs of "st art El ement " and "endEl erment " methods. As we said above, SAX is going to
report on events in document order, so the opening and closing of elements will occur as separate
events.

In our example, the events will be passed to SAXHandl| er , which extends the methods of the

Def aul t Handl er class. This class will only implement the methods for events we want our application
to be aware of. If we were not interested in the endDocumnent event, we could simply drop that method
from the class.

By the way, this should tip you off to another difference from the DOM. If you refer to a non-
existent node on the tree created by a DOM parser, you will get an error. With a SAX parser, nodes
you don't want are simply ignored, and you won't get any messages about nodes that don't exist.

246

SAX — The Simple API for XML

Each method that is declared must take certain arguments, as defined by the API.

Information on Def aul t Handl er from the API is instructive on its use. This class is available as
a convenience base class for SAX2 applications. It provides default implementations for all of the
callbacks in the four core SAX2 handler classes: Ent i t yResol ver, DTDHandl er,

Cont ent Handl er, and Er r or Handl er . Application writers can extend this class when they
need to implement only part of an interface. Parser writers can instantiate this class to provide
default handlers when the application has not supplied its own.

As application writers, then, our objective is to override the methods provided by the
Cont ent Handl er interface through the Def aul t Handl er class. By default, these methods do nothing,
so if we don't override them, no harm is done. The SaxHandl er class begins as follows:

i mport org. xnm . sax. hel pers. Def aul t Handl er;
i mport org.xm .sax.Attributes;

NN NNy
/1 Event handlers.
NN NN NNy

public class SaxHandl er extends Def aul t Handl er

{ public void startDocunent ()
{ Systemout.println("Start document");
}
public void endDocunent ()
{ System out. println("End docunent");
}

Notice the all-important ext ends Def aul t Handl er modifier on the class declaration. This lets our
compiler know we that are overriding the methods of the imported class of that name.

Additionally, because we have implemented the st art Docunment and endDocunent methods from the
Cont ent Handl er interface, we will be notified by our parser of these events. What we do with that
information is entirely up to us. While this method could be as complicated as we like, our current
example is just going to alert the user by writing a message to the console using

System out. println.

The rest of the class's methods are similar:

public void startEl ement(String uri, String nane,
String gNane, Attributes atts)

{

Systemout.printIn("Start elenent: {" + gNane + "}" + nane);
}
public void endEl enent(String uri, String nane, String gNanme)
{

System out. println("End el enent: {" +uri +"}" + gName);
}

247

Chapter 7

public void characters(char ch[], int start, int |ength)
{

System out. print (" Characters: ")

for(int i = start; i < start + length; i++) {

switch (ch[i]) {

case "\\':
Systemout. print("\\\\");
br eak;

case ""'
Systemout.print("\\\"");
br eak;

case '\n':
Systemout.print("\\n");
br eak;

case "\r':
Systemout.print("\\r");
br eak;

case "\t':
Systemout.print("\\t");
br eak;

defaul t:
Systemout.print(ch[i]);
br eak;

}

}
Systemout.print("\"\n");

}

We see a bit more action in the char act er s method due to the way whitespace has been handled. Any
whitespace characters occurring within elements are going to be reported to the char act er s method.
Because the goal of this application is to write all events to the console, it is more useful to print the
escape characters for whitespace, rather than the whitespace itself.

The Error Handler

Finally, we have a SAXEr r or s class to deal with the three kinds of errors we might come across: fatal
errors, parse errors, and parse warnings:

i mport org.xm .sax. SAXPar seException ;

public class SAXErrors inplenments org.xm . sax. ErrorHandl er

public void fatal Error (SAXPar seExcepti on spe){

systemerr.println ("Fatal error has occurred: " + spe);
}
public void error(SAXPar seExcepti on spe){
systemerr.println ("A parse error has occurred: " + spe);
}
public voi d warni ng(SAXPar seExcepti on spe){
systemerr.println ("Parse warning were issued: " + spe);
}

248

SAX — The Simple API for XML

The Result

In order to run this simple application, open a command console and enter the location of the compiled
application, with any XML document as an argument. If you are using a Microsoft OS, be sure to
include quotation marks around the application location:

C:\>"c:\conpiled_directory_|l ocati on\saxapp" sanpl e. xn
If we use the simple XML document we met earlier:

<?xm version="1.0"?>

<Start>

<Her e>

This is some text
</ Her e>

</ Start>

and call it exanpl e. xm , we should see the following result:

] command Prompt

: {Start}Start
N

: {HereXHere
Characters: "wnThis is some text>n"
End element: {>Here
Characters: ~n"
End element: {IStart
End document

C:vexamplel >

Admittedly, this is not very useful, but it shows us that the parser is indeed reading the document we
specified. Once you have this application running, you can try playing with the methods to see what
you can do in response to the events firing from the parser.

A Moment with DOM

Just to drive the point home, consider what would have happened if we had used the DOM instead of
SAX. First, using Microsoft's MSXML parser and Visual Basic, the XML document would be loaded
into memory, so the entire document would be available for inspection.

Di m xm Doc As NMBXM.2. DOVDocunent 30
Set xm Doc = New MSXM.2. DOVDocunent 30

Di m nodes As MSXM_2. | XM_.DOWNodeLi st
Di m node As MSXM.2. | XM_DOWNode
DimsXM. As String

Dmi As Integer

'Load the text as an XM. docunent
xm Doc. | oadXM. ("<Start> <Here> This is some text </Here> </Start>")

249

Chapter 7

Once loaded into memory, if we wanted to write the name of all elements to the screen, we would
manipulate the document held in memory using:

Set nodes = xml Doc. sel ect Nodes("//")

For i = 0 To (nodes.length - 1)
Set node = nodes.Iten(i)
I f node. nodeType = NODE_TEXT Then
sXML = sXML & "Node" & node. par ent Node. nodeNane & _

" value = " & node. Text & vbCrLf
El se
SXM. = sXM. & "Node" & i & " nanme = " & node. nodeNane & vbCrlLf
End |f

Next

MsgBox "XM.: " & vbCrLf & sXM,, vbOKOnly, "XM. through DOV

Giving us the message box:

XML through DOM x|

XML:

Model name = Stark

Model name = Here

ModeHere value = This is some text

When we use the MSXML sel ect Nodes method, we get an entire node list, as specified by the XPath
expression. We can then step through that list one at a time and get the names or values of the elements
within the result set. Again, this can be done because the entire document is loaded and available to the
parser. We can step through the document, rather than collect parts of the document as they are
announced.

If we wanted to, and without reloading the document, we could select one node of an element whose
name we already knew using this syntax:

xm Doc. sel ect Si ngl eNode("Start").text

The point is that you think about the document in entirely different ways when using the different APIs.

With the DOM, we consider what we have, and how we can get hold of the
values.

With SAX, we have to consider what we might receive, and how we want to
handle those events.

250

SAX — The Simple API for XML

Choosing Between SAX and DOM

Before we get to some less trivial examples, let's point out a few of the ways SAX might be more helpful
than the DOM. We'll pay special attention to each of these issues during the examples:

0 Handling large XML documents. There can be no doubt that the SAX method of parsing a
document shines over DOM when it comes to large documents. "Large" is a relative term,
but consider that a DOM-parsed document may take up to ten times its own size in RAM.
If you're dealing with a 2-3MB file, that might not be so important. However, if you're
dealing with large data sources of 100MB or more, the performance gains with SAX will
be staggering.

O Creating your own document as subset of the whole. SAX can be helpful in preparing a
document for the DOM or for another parser, by creating a new smaller document that
contains only the pieces we want. Because you're responding to events, you can keep what
you want, and let the rest fall to the cutting room floor.

O Filtering documentsin an event stream. SAX provides the XMLFi | t er interface for defining
classes that intercept parsing events as they pass from the XM_LReader to a Cont ent Handl er .
Setting up a string of filters, with different processing functions, could allow document
transformations to occur at several levels.

O Aborting processing. Again, this is related to large document savings: you can escape from
SAX processing during any event handler. When you have what you want from the data
source, you get out.

It isimportant to note that SAX parsersare only going to reap the memory reward if
they are pure, SAX-only implementations. Some parsers may build the treein memory
anyway, eliminating this benefit of the SAX event-driven model, so look carefully into
the SAX parser you choose.

Next, it's only fair to consider some of the areas where the DOM is more adept:

0 Modifying and saving the original document. SAX cannot really modify an XML document —
it is considered to be read-only. You can make SAX appear to modify the original by creating
a new document, and even write one by sending your own events to the event handlers, but
this is not nearly as simple as actually writing to the in-memory document with the DOM.

O Changing document structure. Here again, you change document structure in SAX by writing
a new document. The DOM allows you to make such changes explicitly.

O Random access; the problem of context. If you are going to be rooting around the XML
document, moving back and forth and working with different nodes at different times, SAX
could be very difficult to use. Because SAX doesn't bother with the details of the entire
document it is processing, or how the elements relate to one another (apart from document
order), you must maintain context programmatically. While you will be working to maintain
some context no matter how you use SAX, you will want to use the DOM for complicated
document handling. In order to simulate going back and forth in a document, you have
several challenges with SAX. You would have to know what you were looking for on the first
pass, get it, and then parse the document again in a second pass, getting some other value, and
so on.

In short, you can do anything with either API, but you should regard the two APIs as complementary.
Each has strengths and weaknesses that you can use to your best advantage depending upon the task in
hand. Let's consider a few ways we may want to use each approach.

251

Chapter 7

Best Uses of the DOM

0 Use the DOM to modify an XML document based on user input to an application, and save
the XML in memory before moving to another part of the application.

O The DOM is a better fit for retaining complex structures, as the structure is held in memory
for you by the tree representation of the document.

Best Uses of SAX

O When handling a very large document with only a small amount of relevant data, SAX is a
better choice, as you don't have to deal with the elements you don't need.

O SAXis the better method in situations where you will make only one pass through the
document retaining values.

O When you can get out of the document after a certain node or value has been retrieved, SAX
is an excellent choice. Any event handler method can be used to end parsing if you have
identified the item you need.

0 You should consider SAX when you have limited resources on the server parsing your

document. A very large document could easily overwhelm a computer's memory resources
when using the DOM.

The Stateless World of SAX

Although context is important, we do not have any context in SAX. While we may, for example, want

to know the current document context (such as which element we are at), in order to determine which

element a certain block of PCDATA belongs to, SAX parsers will only raise events in the order it finds
them in the document as it is streamed through.

Recall that if we have the XML fragment from the beginning of the chapter:
<Start>
<here>This is sone text</here>
</ Start>

we get the opportunity to respond to the following events:

Event Returns Value

start El enent | ocal Nane "Start"

st art El enent | ocal Nane "here"

characters t ext "This is sone text"
endEl enent | ocal Name "here"

endEl enent | ocal Name "Start"

In order to do anything intelligent with this information, we'll need to know that the her e element is in
scope when we encounter the character data. Otherwise, the text will be reported without any qualifiers.
Let's look at an example in which we'll turn the elements of an element-centric XML document into an

attribute-centric document. This could be useful in a situation where we are receiving a document of the
one type, and need to feed it to an application that only understands the other.

In this example, we will maintain context with flags and counters that are declared at a global level and
referenced in the methods of the Cont ent Handl er class. Each flag is a Boolean value that can be
turned "on" or "off" during execution by setting the variable to Tr ue or Fal se. This is valuable when
some rule or value has been evaluated in one method that we want to know about in another. While we
don't need to know the specific outcome, we do need to know that it has occurred. The counters, we will
be using to find the depth of the current element within the document.

252

SAX — The Simple API for XML

We'll be using Microsoft Visual Basic 6 for all of theremaining examplesin this
chapter. Each project, with all of its supporting code and XML documents, is
available from the Wrox web site. The only additional item you will need isa version
of MSXML, version 3.0 or higher. The codein this chapter isdesigned to work with
the October 2000 release, which you can download from
http://msdn.microsoft.com/downloads/default.asp.

Example 2 — Creating Attribute Centric Content from
Element Centric Content

In this example we will be looking at how to create a document that uses an attribute-centric content
model from a document that uses an element-centric one. This will demonstrate how SAX can be used
to make some transformations to the original document as it writes a new document on the fly. We will
also see one technique of maintaining context within the Cont ent Handl er class, using flags and
counters.

To do this:

O Start a new Visual Basic Standard EXE project called saxSanpl e. Add a reference to the
most recent version of the MSXML parser by selecting Project | References... from the
toolbar, and checking Microsoft XML, v3.0. If msxm . dl | has not been registered on your
system, there is a Browse... feature that will allow you to point to the file itself.

O Create a Visual Basic form named f r mAt t sCent ri ¢ that houses the application. This
form needs:

O A textbox, t xt | nput Doc, with Text property c:\ groceri es. xm . This contains the
name of the XML document that we want to convert.

O A command button, cndPar se, with Capt i on property Par se. When this button is
clicked, the specified XML document will be loaded.

O A command button, cndEXi t Sub, with Capt i on property Exi t. This button will close
the application.

O A textbox, t xt Resul t s, with blank Text . This is where the result will be displayed.

The simple form will look something like this:

chgroceries, wml

Parse Exit

4] =]

Make sure that the Mul ti | i ne property of the text box is set to Tr ue, otherwise you will see marks
inbetween the record.

253

Chapter 7

Now for the code. We need to:

O Setup the XM_Reader instance within the cndPar se_C i ck() method.

0O Call the set Cont ent Handl er () and set Err or Handl er () methods of the XM_LReader to
assign the saxEl enst oAt t s and saxErr or Handl er classes respectively.

O Create the saxEl enst 0At t s class implementing the | VBSAXCont ent Handl er interface,
and the saxEr r or Handl er class implementing the | VBSAXEr r or Handl er interface.

O Create code within handler methods to generate the desired result document.

The frmAttsCentric Form

First, we need to instantiate the XM_Reader , tell it where to send its parsing events, and where to send
error messages. Add the following code to the form:

Option Explicit
Private Sub cndParse_Q i ck()

Di m reader As SAXXM.Reader
Di m cont ent Handl er As saxEl enst 0Atts
Di m error Handl er As saxError Handl er

txtResults. Text = ""
Set reader = New SAXXM.Reader

Set cont ent Handl er = New saxEl enst 0Att s
Set errorHandl er = New saxError Handl er

Equi val ent to set Cont ent Handl er () and set ErrorHandl er () nethods in
' Java APlI. Tells the reader which classes will receive the events,
' and which will receive error nessages.

Set reader. content Handl er = cont ent Handl er
Set reader. errorHandl er = errorHandl er

Setting the XMLReader 's cont ent Handl er and err or Handl er properties points the reader at the
correct classes for this particular application. The reader must have these properties set before the

par seURL() method can be called. Otherwise, nothing will happen, because the reader has nothing to
report events to.

Having done this, we are ready to have the reader parse the document:
On Error GoTo Handl eError
reader . par seURL(t xt | nput Doc. Text)
Exit Sub
Handl eError:
txtResul ts. Text = txtResults. Text & "*** Error *** " & Err.Nunber & _

" . " & Err.Description

End Sub

254

SAX — The Simple API for XML

The par seURL() method of the SAXXM_Reader object is a straightforward way of specifying a
document's location. This application will take the location from the form's t xt | nput Doc text box.

Notice that the Java API defined class names are present throughout, but with the addition of
prefixes to the classes and interfaces.

Now that we have an XML reader available to raise events, we define the event handlers. When we
look at the cont ent Handl er class, we'll pay attention to the context in order to transform the structure
of the XML document.

Before we look more closely at what each event is going to do, though, we should look at the document
that will be parsed by the application.

The XML Document

This application assumes a well-formed document that has a document level element, and then a
recurring top-level element that contains all other element types. This would have the generic format:

<Docurnent El emrent >
<TopLevel El enment 1>
<QualifierAl >

<QualifierN>
</ TopLevel El enent 1>

<TopLevel El emrent N>

</ TopLevel El emrent N>
</ Document El ement >

For example, this could be a document from an inventory database that has repetitive nodes for each
item in stock, like the groceri es. xm document that we'll be using in this example:

<?xm version="1.0"?>
<G oceri es>
<ltenpr
<l t enKey>1</1t enKey>
<Nanme type="dairy" cal ori es="200">M | k</ Nane>
<Cost >$2. 0000</ Cost >
<Per cent Vi t am nA>75%</ Per cent Vi t am nA>
<| nt akeRecommendat i on>160z. </ | nt akeReconmendat i on>
</ltemr

<ltenpr

<| t enKey>2</ | t enKey>

<Nane type="dairy" cal ories="150">Cheese</ Nane>

<Cost >$1. 5000</ Cost >

<Ori gi n>W sconsi n</ Ori gi n>

<Per cent Vi t am nA>75%</ Per cent Vi t am nA>

<I nt akeReconmendat i on>50z. </ | nt akeRecommendat i on>
</ltemr

255

Chapter 7

<ltenmp

<l t enKey>3</ |t enKey>

<Nane type="grai ns" cal ori es="50">Br ead</ Nane>

<Cost >$2. 1500</ Cost >

<Ori gi n>l owa</ Ori gi n>

<Per cent Vi t am nA>15%/ Per cent Vi t am nA>

<I nt akeRecommendat i on>2 sl ices</| nt akeRecommendat i on>
</ltenr

<ltenmp
<l t enKey>4</ | t enKey>
<Nane type="j unkfood" cal ori es="350">Pastri es</ Nane>
<Cost >$4. 2500</ Cost >
<Per cent Vi t am nA>Less than 1%/ Percent Vi t am nA>
<I nt akeRecommendat i on>none</ | nt akeReconmendat i on>
</ltener
</ Groceries>

The ContentHandler Class

We will look first at the Cont ent Handl er class. Add a class module called saxEl enst 0Att s to the
application, and add the following code to it:

Option Explicit
I mpl enent s | VBSAXCont ent Handl er

' Set sonme nodul e-level variables for maintaining context
fromone parse event to the next

Private bContext As Bool ean

Private i Counter As |nteger

Private sCurrent Nane, sTopNane, sTopChar As String

" Initialize nodul e-1evel variabl es
Private Sub class_Initialize()

bCont ext = Fal se

i Counter = 0

sCurrent Nane = ""

sTopName = ""

sTopChar = ""
End Sub

We get started with some variable declarations that can be set on initialization. These variables will help
the application maintain context as parse events fire one method after another. The Boolean flag

bCont ext will be the primary context variable for this application, and tells the application whether or
not a child element that should become an attribute is in scope at any given time. This flag is set to

Fal se initially, to indicate that no such element is in scope.

The i Count er variable will be used to indicate that the document element is in scope, and when
top-level elements, are in scope. The remaining string variables will hold the values of particular
elements during the course of the application. This enables the application to write values to the result
document, even after the next event has fired. Without such variables, we must either write information
to the result document during a particular event, or lose the value forever.

256

SAX — The Simple API for XML

Flags, counters, and value-holders are a good jumping off point for the discussion of imlpementing
context. We'll look at a more complex state mechanism for larger applications in a later example.

The Cont ent Handl er class must include a method for each of the events the par ser
might send. In Java, methods that the application will not respond to can be left out of
the content handler. In Visual Basic, however, the | npl enent s keyword forces the
classto implement each method defined in the interface specified.

The startElement Method
Next, we'll add some code for the st art El ement () method:

Private Sub |VBSAXCont ent Handl er _start El ement (_
sNanmespaceURl As String,
sLocal Name As String,
sNanme As String, _
ByVal attributes As MSXM.2.|VBSAXAttri butes)

Notice the use of the SAX attributes class within the st art El ement () method. Attributes of each
element are actually sent as a separate object containing the type, URI, qualified name, local name, and
value of each attribute. Each of these values can be accessed from the at t ri but es object while within
the st art El ement () method.

Now we'll start to parse our gr oceri es. xm document. This application will output a document
fragment that focuses on the | t emelement as the top-level element, and treats each of its children as
qualifying attributes. Each child element will be added to the | t emelement as an attribute:

Dimi As I|nteger
Di m sVal
i Counter = iCounter + 1
If i Counter > 2 And sLocal Name <> sTopNane Then
sCurrent Name = sLocal Nane
bCont ext = True
frmAttsCentric.txtResults. Text = frmAttsCentric.txtResults. Text & _
" " & sCurrentNane & "="""

Right away, we check the i Count er and the sLocal Nane because we want to isolate the | t emelement
during subsequent calls, but we also need to skip the root. The i Count er is simply incremented each
time we enter the st art El enent method, so we can ignore the first element and catch the second.
Again, this application is dealing with a certain type of XML document structure. If we wanted to
capture the fifth element, we could check the i Count er differently. Alternatively, we could change the
application to check by element name.

We also set the context to Tr ue inside the | f statement, so that when we look at character data later,
we can generically decide if it should be written as an attribute.

The next order of business is to check the counter again, to see if the current node is now the second:

El self i Counter = 2 Then
This is the main el ement node (the second one encountered by the
' parser). There is an assunption that there is a top | evel el enent
to be ignored, and the next elenent will be our 'nmmin' elenent.
sTopNane = slLocal Name
End | f

257

Chapter 7

When the i Count er is 2, we have the name of our repetitive top element, and so we store this in the

sTopName variable as a way to change our processing for this special element on subsequent parser
events:

I f sLocal Name = sTopNane Then
' Every tine we cone to this element, we will start the process over
frmAttsCentric.txtResults. Text = frmAttsCentric.txtResults. Text & _
vbCrLf & "<" & sLocal Nane

Now, if our top-level element already has attributes, we want to preserve them, so we roll through the
attributes collection:

If attributes.length > 0 Then
For i = 0 To (attributes.length - 1)
frmAttsCentric.txtResults. Text = _
frmattsCentric.txtResults. Text & " " &

attributes. getLocal Nane(i) & "="
frmittsCentric.txtResults. Text = _
frmAttsCentric.txtResults. Text & """" & _

attributes. getValue(i) & """"
Next
End | f
End | f
End Sub

Attribute values can be referenced either by name or index number. Here we are getting the values by
sequential index number. We don't write out the end parenthesis for the top element here, because we
want to write future st art El ement events inside this same element. After closing up the logical
structures, we are ready to move on to the char act er s() method.

The characters Method

With character data, this application should seek to retain everything except for text that occurs outside
of <I t en® elements. All character data inside the top level <I t en® element must be stored for later
use, as it will have to be printed to the result document only after all other elements inside <I t en®> have
been written.

If the text currently being parsed is for an element that should now be an attribute (as noted by
bCont ext), it is written directly to the results:

Private Sub | VBSAXCont ent Handl er _characters(sText As String)
sText = strip(sText)
I f bContext Then

" If this is the root then any character data will be ignored
frmAttsCentric.txtResults. Text = _

frmattsCentric.txtResults. Text & sText
El sel f sTopName <> "" Then
sTopChar = sTopChar & sText & " "
End |f
End Sub

As the text is passed in, we send it to the st ri p() function, which simply removes any newline
whitespace characters for the sake of readability in the t Xt Resul t s window:

258

SAX — The Simple API for XML

Private Function strip(sText As String)
Sel ect Case sText
Case vbCrLf
sText = Repl ace(sText, vbCrLf, "")
Case vbCr
sText
Case vbLf
sText
End Sel ect
strip = sText
End Function

Repl ace(sText, vbCr, "")

Repl ace(sText, vbLf, "")

When using MSXML, all of the text inside a particular element will be returned in one call to the
charact er s() method. In general, however, each parser implementation is free to return the
characters in any grouping it chooses.

The endElement Method

Next, we will work with the element end tags. Add the following code to the class:

Private Sub |VBSAXCont ent Handl er _endEl ement (sNamespaceURl As String,
sLocal Name As String,
sQNane As String)
I f sLocal Nanme = sTopNanme Then
frmAttsCentric.txtResults. Text = frmAttsCentric.txtResults. Text & _

">" & vbCrLf & Trim(sTopChar) & "</" & sLocal Nane & ">" & vbCrLf
sTopChar = ""
El sel f bContext Then

' Close the attribute val ue quotes
frmAttsCentric.txtResults. Text = _

frmAttsCentric.txtResults. Text & """" ' Ends the el enent val ue

' Reset for processing next el enent
bCont ext = Fal se
End I f
End Sub

The actions we need to take inside the endEl erment () method can be somewhat less intuitive than the
others we have seen so far. Basically, it is at the end of an element that the application should clean up
the output to the result document, and prepare the variables for the next run of parser events. In this
case, we have two possible end element events that are important.

First, if this is the top-level element, the start element tag itself should be closed with the "greater than"
angled bracket, and the characters we have been holding on to in the sTopChar variable can finally be
written to the result. At this time, it is also appropriate to write the end element tag as well, and clear
out the sTopChar variable ready for the next <I t en®> element:

I f sLocal Nane = sTopNane Then
frmAttsCentric.txtResults. Text = frmAttsCentric.txtResults. Text & _

">" & vbCOrLf & Trim(sTopChar) & "</" & sLocal Nane & ">" & vbCrlLf
sTopChar = ""

259

Chapter 7

The second case we are interested in is for the ending of those elements that have now been written as
attributes of <I t en®. The handy bCont ext variable is ready to help us determine if the current end
element belongs to such an element. After checking if bCont ext is true, we can simply write the ending
quotes for the new attribute value:

El sel f bContext Then
frmattsCentric.txtResults. Text = _

frmAttsCentric.txtResults. Text & """"
bCont ext = Fal se

It is also important to reset bCont ext , as the next element that is parsed may be a top-level element. If
the bCont ext flag is not reset here, character events sent between elements will not be able to tell
whether the text should be written as attribute text, or as top-level element text.

Remember, you'll also need to implement empty procedures for the remaining

| VBSAXCont ent Handl er methods in order to be able to compile the project. These are:
docunent Locat or , endDocunent , endPr ef i xMappi ng, i gnor abl eWi t espace,
ski ppedEntity, startDocunent, and st art Prefi xMappi ng.

The Error Handler Class

This project also includes the following error handling code. MSXML treats all errors as fatal, so we
only need to deal with the f at al Err or () method:

Option Explicit
| npl enent s | VBSAXEr r or Handl er

Private Sub | VBSAXErrorHandl er _fatal Error(ByVal |ctr As |VBSAXLocat or,
msg As String, _
ByVal errCode As Long)
frmAttsCentric.txtResults. Text = frmAttsCentric.txtResults. Text & _

"k¥** arror *** " & nsg
End Sub

"Nothing for error() and warning(), MSXM. treats all errors as fatal.
Private Sub | VBSAXErrorHandl er _error(ByVal |ctr As |VBSAXLocat or,

msg As String, _

ByVal errCode As Long)

End Sub

Private Sub | VBSAXError Handl er _i gnor abl ewar ni ng(_
ByVal Ictr As |VBSAXLocat or,
nmsg As String, ByVal errCode As Long)

End Sub

The Result

Now compile the application, and point it at the inventory example gr oceri es. xnm . You should see
this result:

260

SAX — The Simple API for XML

& Formi Vs =100 x|

c:hagroceries. sml
Parze E it |

<Item [temk.ep="1" Name="Milk" Cozt="$2.0000" Percentvitamind="75%" IntakeRecommendation=""16o0z."»
</tems

<Item [temkep="2" Name="Cheese" Cozt="$1.5000" Ongin=""izconsin" Percentyitaming="75%" IntakeRecommenda
< b

<Item ltemkep="3" Name="Bread" Cost="$2.1500" Origin="Towa" PercentVitamind=""15%" IntakeRecommendation=""2
<k

<|tem ltemb.en="4" Mame="Paztries" Cozt="$4. 2500" PercentVitamind=""Lezs than 1%" IntakeR ecommendation="none
< b

< | -

Context Summary

In order to make intelligent decisions about what to do with the data from the XM_Reader , we have to
maintain document context within our application. The general idea is that we need values outside of
the event methods to use within each event. We can maintain context with the name of a particular
element, an index number, or a counter, or we can use a Boolean to turn a more generalized context on
or off at will. This type of document scanning is well suited to the SAX methodology, as we can move
easily in a linear fashion, and don't need to change values within the original document. If the example
inventory document included hundreds of thousands of items, the resource savings would be immense.

Handling Large Documents

It is often the case that an XML file may contain irrelevant data for a particular use or need. In a
database, all the columns of a data set are not relevant in all situations. We could selectively choose
columns in the SELECT statement of a SQL query. In XML, the equivalent of SQL has been said to be
XSLT.

XSLT takes an input document, and transforms it into a result document. SAX can be used in a similar
fashion by virtue of its nature of passing every item in an XML document through a function before
writing the result document. SAX can be ruthless, taking only what it needs from an XML document,
and dropping the rest without another thought. Fortunately, in the world of data, ruthless can also mean
efficient.

In this section we'll consider the ability of SAX to work with a very large document that may contain

only a small amount of relevant data. We will look at a simple transformation example first, utilizing
much of the implementation we've already seen, and then introduce SAX filters.

261

Chapter 7

Example 3 - Creating an Efficient XIMIL Document from a
Large Verbose One

In this example, we'll use a simple interface to tell the application which document will be our source
document, and specify a location for the resulting document. There are two options available: one that
produces another XML document, and one that produces a new document with HTML markup added.

This project is called saxTr ansf or nExanpl e. The interface is a form called f r ml'r ansf or m which
looks like this:

. Reduce XML File =[O x|

Ih:\groceries.xml

Ic:\outfile. sl
" taHTML i taxML
Generate Filz Exit

The code behind this form is quite straightforward:
Private Sub Franel_DragDrop(Source As Control, X As Single, Y As Single)

End Sub

Private Sub cndCreateFile_Cick()

Di mretval
If opt XML.Item(0) Then
Di m xQut put As New saxTransf or mXM.
Call xQutput.StartitUp(txtlnputFile. Text, txtCQutputFile. Text)

El se

Di m hQut put As New saxXM.t oHTM.

Call hQutput.StartitUp(txtlnputFile.Text, txtQutputFile.Text)
End | f

End Sub

Private Sub cndExit_Cick()

End
End Sub

The buttons simply call user-defined functions, St arti t Up, to set the document input and output
variables with the XM_LReader .

We won't cover the option for HTML output here, but it is implemented in the downloadable
support files. It simply demonstrates another way to filter an XML document. Expanded slightly, it
could serve as a way to produce XHTML. And the same methodology could be used to produce a

document of any type, including a simple CSV file.

262

SAX — The Simple API for XML

For this example, the input document will be the gr oceri es. xn file we saw in Example 2. The goal
of this application will be to retain only the <Name>, <Cost >, and <I| nt akeReconmendat i on>

elements, and wrap them in a new generic document level element called <MYXM_>. Additionally, the

type attribute of the <Name> element will be converted to a chi | d element, with its value being
displayed as the text value of the <Name> element.

The original XML as displayed by the Microsoft XMLReader has the following form:

R
File Edit Wiew Insert Tools Help

D| (M| < &[B(@ ¢ PS5 «|»|e][s]+]-[FE

Struckure Yalues -
E"E'_, Groceries <=
EICI ikem
----- \ Iternkery 1
=] Mame Milk.
E ----- @ type | dairy b
C e @ calories 200
™y Cost 42,0000
My, Calories 150
%y Percentvitaming 75%
.My IrtakeRecommendation LI 160z, -

For Help, press F1

I

Once the application has been run, the resultant out fi | . xm document will have this form:

£l outfile.xml - XML Notepad ﬁ

=10l %]

-

File Edit Wiew Insert Tools Help

D& of #|=|@] s PlsS] «[+|e|e]+]-[F(x

Skruckure

Walues

-

Tilk
$2.0000
160z,

For Help, press F1

=
Tz

When you have completed this example you should be able to:

O Understand how SAX can be used as an alternative method of transforming XML documents
from XSLT

O Write functions inside the Cont ent Handl er class for additional functionality

O

Change document types from XML to any other

Prepare the XMLReader Class

Our content handler class is called saxTr ansf or mXM., and begins with the usual variable declarations
for maintaining context:

263

Chapter 7

Option Explicit

| mpl enent s | VBSAXCont ent Handl er
Private ts As Text Stream

Private fso As Fil eSyst enhj ect
Private i El enent Counter As |nteger

Private sFfirstel enent As String
Private bContext As Bool ean

The Text St reamand Fi | eSyst enObj ect will be used to generate our output file. Notice also the
bCont ext variable of Example 2 has returned. This will be our only state mechanism, because again
our goal is to run through this document, and write to the result document as quickly as possible. We
are not really interested in collecting anything.

This particular handler class has a user-defined function called St ar ti t Up that will be called by the
form to set the document input and output variables with the XM_Reader :

Public Sub StartitUp(infile As String, outfile As String)
Set fso = New Fil eSyst en(bj ect

On Error Resune Next
fso.DeleteFile (outfile) 'clear out the file.

Set ts = fso. OpenTextFile(outfile, ForWiting, True)

Di m reader As SAXXM_Reader 30
Di m errorhandl er As saxError Handl er

Set reader = New SAXXM_Reader 30
Set errorhandl er = New saxError Handl er

Set reader.contentHandl er = Me
Set reader.errorhandl er = errorhandl er

reader. parseURL (infile) ' Parse it

End Sub

For this example, we have written our reader right into the handler class, and set the r eader property
using Me. This is the reserved word used by VB to indicate the current class:

Set reader.contentHandler = Me

There is nothing about SAX that requires different classes for any of the class implementations —
separation of duties is simply a code practice choice. In this case, we want to open a Text St r eam
object with variables from our form, and have the object available throughout the class. We don't want
to start parsing until we know our output file, so it is convenient to instantiate the reader at this time.

264

SAX — The Simple API for XML

Begin Parsing Events

The goal of this particular transformation is to produce a smaller XML document that fits our particular
data needs, not to change the document type. Therefore, we want to make sure the XML document
fragment that comes out of the other end can be used as well-formed XML by the next consumer. We
use the st art Docunent and endDocunment methods to insert the proper tags for the beginning and
ending of the new result document:

Private Sub | VBSAXCont ent Handl er _st art Docunent ()
ts.Wite ("<?xm version="1.0" ?2><MYXM.>")
bCont ext = Fal se

End Sub

Private Sub |VBSAXCont ent Handl er _endDocunent ()
ts.Wite ("</ MYXM>")
End Sub

The content handler is being used to save only certain elements we have chosen: <Name>, <Cost >,
and <I nt akeReconmendat i on>. The process of eliminating the other elements begins in the
st art El ement method. The desired elements are selected by name to be written to the stream.
Elements that are not named are simply ignored, and do not really have to be "handled" at all:
Private Sub | VBSAXCont ent Handl er _st art El ement (sNanespaceURl As String, _
sLocal Name As String,
sQNane As String, _
ByVal Attributes As MSXM.2. | VBSAXAttri butes)

Sel ect Case slLocal Nane
Case "Nanme"
ts.Wite ("<" & caseChange(sLocal Nane, 1) & ">")
If Attributes.length <> 0 Then

ts.Wite ("<" & Attributes. getVal ueFromNane(sNanespaceURl, "type") _

& "/>")
bCont ext = True
End I f
Case "Cost"

ts.Wite ("<" & caseChange(sLocal Nane, 2) & ">"
bCont ext = True
Case "I nt akeRecommendat i on"
ts.Wite ("<" & sLocal Nane & ">"
bCont ext = True
End Sel ect

End Sub
In order to demonstrate some simple on the fly transformations, we are changing the case of different
elements with the caseChange function, which changes either to proper or lower case based on an

integer input identifier, i ChangeType:

Private Function caseChange(sText As String, iChangeType As |nteger) _

As String
Sel ect Case i ChangeType
Case 1
caseChange = StrConv(sText, vbProper Case)
Case 2
caseChange = StrConv(sText, vbLower Case)
End Sel ect

End Function

265

Chapter 7

Of course, the functions you implement to filter the values sent by the SAX parser can be as elaborate
as you like.

If we have run into an element we want, we not only write the element name, we also need to set our
simple state mechanism:

bCont ext = True

This state of Tr ue for bCont ext lets the application know that, for the time being, the parser is
throwing events related to an element we are interested in. Now, when we come to the characters
method, we can discard the characters of unwanted elements by simply checking the current bCont ext
value:

Private Sub | VBSAXCont ent Handl er _characters(sChars As String)

I f bContext Then
ts.Wite (sChars)
End |f

End Sub

Ending the elements is very similar to the start. We have to run the element names through
caseChange again, so our resulting XML will be well-formed, and reset our state mechanism:

Private Sub | VBSAXCont ent Handl er _endEl enent (sNamespaceURl As String, _
sLocal Nane As String,
s@ane As String)

Sel ect Case slLocal Nane
Case "Name"
ts.Wite ("</" & caseChange(sLocal Nane, 1) & ">" & vbCrLf)
bCont ext = Fal se
Case "Cost"
ts.Wite ("</" & caseChange(sLocal Nane, 2) & ">" & vbCrLf)
bCont ext = Fal se
Case "I nt akeRecommendati on”
ts.Wite ("</" & sLocal Nane & ">" & vbCrLf)
bCont ext = Fal se
End Sel ect

End Sub

That's it: we have a new document that is still well formed, is less than half the size, and meets the
specifications of our input or retrieval mechanism.

In the downloadable project, we've also included an extra class — saxXM.t OHTM. - to deal with the
HTML output, as well as an error handler class similar to the one we saw in the previous example.

The Results

If you use gr oceri es. xm , the output file should now look like this:

266

SAX — The Simple API for XML

<?xm version="1.0" ?><MYXM_><Name><dai ry/ >M | k</ Nane>
<cost >$2. 0000</ cost >

<I nt akeReconmendat i on>160z. </ | nt akeReconmendat i on>
<Nane><dai ry/ >Cheese</ Nane>

<cost >$1. 5000</ cost >

<I nt akeReconmendat i on>50z. </ | nt akeRecomendat i on>
<Name><gr ai ns/ >Br ead</ Nane>

<cost >$2. 1500</ cost >

<I nt akeReconmendat i on>2 sl i ces</ | ntakeRecomendat i on>
<Nane><j unkf ood/ >Past ri es</ Nane>

<cost >$4. 2500</ cost >

<I nt akeReconmendat i on>none</ | nt akeRecomendat i on>

</ MYXM.>

You should be able to see how this would be useful when dealing with documents that are either more
verbose than necessary, or more importantly, those that do not meet the guidelines of your DTD or
Schema. SAX offers a great way to force data into a format you want, and it can do it on the fly.

SAX Filters

It is actually quite common to use a Cont ent Handl er class as an interceptor between the XM_Reader
and the Cont ent Handl er which will write the document. The contributors to the SAX API advanced
this usage as an extension to the XM_LReader called XMLFilter.

The XMLFi | t er class takes a reference to a parent XM_Reader class. The parent property is set to
another instance of an XM_LReader , whether it is a base XM_Reader , or an implementation of an

XMLFi | t er. In this way, the events of the parsing XM_Reader are sent first to the highest level parent,
which will (at least) respond to each event by sending another SAX event to the child XM_Reader . This
may sound a bit confusing, but we'll at look some code in just a moment.

In order to use a filter, we actually want to implement the methods and properties of an XMLFi | t er in
a new class.

The SAX API provides a helper class called XMLFi | t er | npl that was not provided
with MSXML. A VB translation of this helper class has been provided with the
downloadable files for this example. It iscalled VBXM.Fi | ter | npl . cl s, and
contains only the default methods that will passthe XML document on to the next
reader unchanged.

Example 4 - Using an Implementation of the XMLFilter
Class

For this example, we will build an application that implements a rather trivial XMLFi | t er. A user
interface will collect the location of an input document, and the name of two elements which should be
removed from the XML document before it is finally passed to the Cont ent Handl er .

267

Chapter 7

What is implemented in the filters, or whether or not they are separate classes in this example, is not
really important. Having the XMLFi | t er | npl , and seeing how the filters are chained, will make it
possible to create any filter based application. The content handler class — saxConent Handl er — will
simply write the XML document to the t Xt Resul t s text box on the application's user interface. The
application allows you to choose whether the result document should be shown with the filter or without
for easy comparison of the output. The interface looks like this:

. Filter XML Document -0 x|

Iput Source: Il::\groceries.:-:ml

Ignarable Element: Iname of element to ignore:

Ignorable Element2: Ianother element to remaove

Uze Filters | Parse Unfiltered

When you have completed this example you should be able to:

O Implement the XMLFi | t er interface in a class that can be used to filter SAX events before
passing them on to a Cont ent Handl er

O Instantiate a reader that is used as a parent for an XMLFi | t er implementation

0 Understand how a chain of filters could be used together in one application

The way that the filters are called is the most important lesson in this example, as we 've seen how to
actually respond to events in the filters, and the ContentHandler, in previous examples.

Preparing to Use a Chain of XMLFilters

The XM_Reader and XMLFi | t er implementations will be set up in the code for the form
(frReadt oFi | ter). The XMLFi | ter | npl is created in one class called saxXM_Fi | t er | npl , and the
content handler is created as another class called saxCont ent Handl er .

268

SAX — The Simple API for XML

Our form gives us two options. The one we're really interested in here is where we filter our XML:

Private Sub cnmdUseFilter_dick()
Di m reader As SAXXM_Reader
Dmfilterlnpll As saxXM.Filterlnpl
Dmfilterlnpl2 As saxXMFilterlnpl
DmxmFilterl As | VBSAXXM.Fi | ter
Dmxm Filter2 As | VBSAXXM.Fil ter

Right away, we see a new interface declaration being used for the filter interface definitions:

| VBSAXXMLFi | t er. The | VBSAXXMLFi | t er type is the XMLFilter interface, not the implementation
of that interface. xm Fi | t er 1 and 2 will be set to the filter class created based on the

saxXM.Fi | terl npl template. filterlnpl1and 2 are instantiated as objects of the type

saxXM.Fi | t er | mpl , which will actually do the work. Notice that the first filter sets an actual instance
of an XM_Reader as its parent. This must be done for the top-level filter to end the chain:

Set reader = New SAXXM.Reader

Set filterlnpll = New saxXM.Filterl npl
filterlnpl 1. setlgnorabl eEl enent (txtlgnore. Text)

Set xmFilterl = filterlnpll
Set xm Filterl. parent = reader

Set filterlnpl2 = New saxXM.Filterl npl
filterlnpl 2. setlgnorabl eEl enent (txtlgnoreMre. Text)

Set xmFilter2 = filterlnpl2
Set xm Filter2. parent = filterlnpll

The values of the two text boxes are passed to the filter implementations in turn to identify which
element name should be ignored for that particular run of the filter. The set | gnor abl eEl enent
procedure contained in the saxXMLFi | t er | npl class (more of that shortly) sets a variable value that
can be referenced during processing:

Publ i c Sub setl gnorabl eEl ement (sEl emrent Local Nane)
sl gnor eEl enent = sEl emrent Local Nane
End Sub

After each filter has been set in the f r mReadt oFi | t er's cndUseFi | t er _d i ck method, the r eader
variable is reset to the name of the last filter in the chain, in this case fi | t er | npl 2. Finally, the
ContentHandler class — saxCont ent Handl er - is declared and instantiated as xnl Handl| er . The next
bit should be familiar by now — the r eader property for cont ent Handl er is set to the instance of
saxCont ent Handl er . And the par seURL method is called to set the application in motion:

Set reader = filterlnpl2

Di m xm Handl er As saxCont ent Handl er
Set xm Handl er = New saxCont ent Handl er
Set reader. content Handl er = xm Handl er

parse and di spl ay out put
reader. parseURL txtFilelLoc. Text

End Sub

269

Chapter 7

In calling the par seURL method on the cont ent Handl er, we are actually calling the par seURL
method of the second instance of the filter implementation. In saxXM_Fi | t er | npl , that method looks
like this:

Private Sub | VBSAXXM_Reader _parseURL(ByVal sURL As String)
set upPar se
saxFi | t er Parent . parseURL sURL

End Sub

saxFi | t er Par ent was declared as of type XM_Reader in the declarations section of the class. The
set upPar se method is going to set this reader instance to the parent of the filter, which in our case is
another filter, fi | t er | npl 1. Therefore, when the par seURL method of saxFi | t er Par ent is called,
the parse event is going to be handed up the chain to the first filter instance.

The other button on our form is much simpler. This just parses the document unfiltered:

Private Sub cndParse_C i ck()
Di m reader As SAXXM_Reader

Set reader = New SAXXM_Reader

Di m xnml Handl er As saxCont ent Handl er
Set xm Handl er = New saxCont ent Handl er
Set reader. cont ent Handl er = xnl Handl er

reader. parseURL txtFil eLoc. Text ' Parse it

End Sub

Before we go further, we should look at the implementation class.

Using the XMLFilter Implementation Class

The actual filter implementation has a rather long introduction in the declarations section of
saxXM.Fi | ter| mpl, because it must account for each type of interface the XM_Reader may
implement:

Option Explicit

"Visual Basic inplenentation of the hel per class XM.Filterlnpl
"class rel eased as part of the SAX2 API.

I mpl enents | VBSAXXMLFi | ter ' Special hel per interface definition
I npl enent s | VBSAXXM_Reader

I mpl enent s | VBSAXCont ent Handl er

I mpl enent s | VBSAXEr r or Handl er

I mpl enent s | VBSAXDTDHandl er

I mpl enents | VBSAXEnt it yResol ver

Private saxFilterParent As |VBSAXXM.Reader

Pri vate saxErrorHandl er As | VBSAXErr or Handl er
Private saxCont ent Handl er As | VBSAXCont ent Handl er
Pri vat e saxDTDHandl er As | VBSAXDTDHandl er

Private saxEntityResol ver As | VBSAXEntityResol ver

270

SAX — The Simple API for XML

Private sBaseURL As String
Private sSecureBaseURL As String
Private saxLocator As |VBSAXLocat or

"Allow filter caller to set the name of an elenment to be renoved from XM
'results passed to next content handler. Use bool ean value for context to
‘al so ignore chars for ignorable el enent

Private blgnore As Bool ean

Private bNext El em As Bool ean

Private slgnoreEl enent As String

With these declarations the filter will be able to receive any of the property, feature, and event calls that
could be sent to the XM_Reader , allowing it to effectively sit between the reader and content handler
and listen in on all the messages bound for the other side.

So, the set upPar se method has been called on the lowest level filter, fi | t er | npl 2. This method will
set the familiar XM_LReader properties for the current filter class, but sets them on the parent of this
particular filter. Therefore, the cont ent Handl er property set on the instance of fi | t er | npl 2, passes
a reference to itself to the instance of fi | t er | npl 1 and sets its cont ent Handl er property:

Public Sub setupParse()

Set saxFilterParent.contentHandl er = Me

Set saxFilterParent.errorHandl er = Me

Set saxFilterParent.dtdHandl er = Me
"EntityResol ver not yet inplenented in MSXM
' (Sept enber 2000 beta rel ease)

'Set saxFilterParent.entityResolver = Me

End Sub

The same routine is used to set fi | t er | npl 2 as the err or Handl er, dt dHandl er, and
entityResol ver forfilterlnpl1l. Now, when the par seURL method of saxFi | t er Par ent is
called, it passes that URL up the chain to fil terl npl 1.

Private Sub | VBSAXXM_Reader _parseURL(ByVal sURL As String)
set upPar se
saxFi |l t er Parent. parseURL sURL

End Sub

Of course, filterlnpl 1 has the identical par seURL method as fi | t er | npl 2, and will also call

set upPar se. However, this time, the saxFi | t er Par ent instance will be an actual XM_Reader
implementation, and the chain will stop with that reader sending its events to the Cont ent Handl er of
record for filterlnpl 1, whichisfilterlnpl 2. Thus, SAX parse events are passed back down the
chain until the Cont ent Handl er of the last filter in the chain is reached, which is an actual
implementation of the Cont ent Handl er, saxCont ent Handl er in our case.

Confused? Well, in short, the application sets properties and calls parse up the chain, and the

XM_Reader instance on the other end passes parse events back down the chain to the instance of the
content handler.

271

Chapter 7

Parse Events

The parse event handlers in the filters can behave just like the event handlers we have already seen in
the Cont ent Handl er implementations themselves. However, each must pass the information it
receives along as a SAX parse event, just as it received it. Thus, the methods that do the work in this

example make the necessary changes, or judgment calls, and then pass the event down the chain to the
next Cont ent Handl er :

Private Sub | VBSAXCont ent Handl er _st art Document ()

blgnore = False '"initialize ignorable elenment context flag to fal se
bNext El em = True 'init el enment content context flag to true
saxCont ent Handl er . st art Docunent

End Sub

Private Sub | VBSAXCont ent Handl er _st art El enment (sNamespaceURI As Stri ng,
sLocal Nane As String,
sQName As String,
ByVal oAttributes As MSXM.2. | VBSAXAttri butes)

'Pass the xm Reader events al ong except for the el enent nane specified
'as ignorable

I f sLocal Name <> sl gnoreEl enent Then
bNext El em = True

"set/reset context flag to true for non-ignored el enents.
saxCont ent Handl er. st art El ement sNanmespaceURlI, sLocal Nane,

s@\ane, OAttributes
El se

bl gnore = True 'context flag for characters nethod to

"ignore chars fromignorabl e el enent
End |f

End Sub
Private Sub | VBSAXCont ent Handl er _characters(sChars As String)

If Not blgnore And bNext El em Then
saxCont ent Handl er. characters sChars
El se

bNext El em = Fal se
"continue to ignore chars until next elenent starts to strip whitespace

bl gnore = Fal se 'reset context flag for ignorable el ement
End |f

End Sub

Private Sub | VBSAXCont ent Handl er _endEl enent (sNamespaceURl As Stri ng,
sLocal Nane As Stri ng,
sQName As String)

I f sLocal Name <> sl gnoreEl enent Then

saxCont ent Handl er . endEl enent sNanespaceURlI, sLocal Name, sQNane
End | f

End Sub

Private Sub | VBSAXCont ent Handl er _endDocunent ()
saxCont ent Handl er . endDocunent
End Sub

272

SAX — The Simple API for XML

Each method's interface is in fact an implementation of the Cont ent Handl er interface methods - there
is really nothing new for you to notice here. The only change is the method call at the end of each
method. For instance, the endEl ermrent call:

saxCont ent Handl er. endEl enment sNanmespaceURI, sLocal Nanme, sQName

Recall that in the declarations section, the saxCont ent Handl| er variable was set to be of the type
| VBSAXCont ent Handl er . This variable is set in the Property Set statement of the filter:

Private Property Set |VBSAXXM_Reader _content Handl er _
(ByVal handler As MSXM.2. | VBSAXCont ent Handl er)
Set saxCont ent Handl er = handl er
End Property

Again, this property was set for the first filter when we set everything up in f r TReadt oFi | t er:

Set reader. content Handl er = xml Handl er

This property was sent up the chain for each filter in turn by the set upPar se method inside the filter
implementation.

You'll find the complete code for this examplein the download available from the
Wrox web site.

The saxContentHandler Class

The final ContentHandler in this example, will simply write what it receives from the fi | ter | npl 2
just as it comes in, but will add the angle brackets back to the start and end elements.

The code for this class is then trivial:

Option Explicit
I mpl emrent s | VBSAXCont ent Handl er
Dim sResult As String
Private Sub |VBSAXCont ent Handl er _st art El ement (sNanespaceURl As String,
sLocal Nanme As String,
sQ\ane As String,
ByVal attributes As MSXM.2. | VBSAXAttri butes)
sResult = sResult & "<" & sLocal Nane & ">"
End Sub
Private Sub |VBSAXCont ent Handl er _endEl ement (sNamespaceURl As String, _
sLocal Name As String,
sQNane As String)

sResult = sResult & "</" & sLocal Nane & ">"

273

Chapter 7

End Sub

Private Sub | VBSAXCont ent Handl er _char act ers(sText As String)
sResult = sResult & sText
End Sub

Private Sub | VBSAXCont ent Handl er _endDocunent ()
frnReadt oFi | ter.txtResults. Text = sResult
End Sub

The Result

When the gr oceri es. xm document is parsed, with the <I t enKey> and <Cost > elements set as the
two ignorable elements, we see this result:

= Filter XML Document]] e |

Ic:'\gloceries.xml

Input S ource:

Ignorable Element?: I|tEI‘I‘|KE.'}I

lgnarable Element2: Icost

Farze Unfilkered

<Grocenes>] <ltem:1 <Mame:Milks MNames]
<PercentVitaminé: 75% < /Percentyitamings |

<IntakeR ecommendation: 160z < AntakeR ecommenda
tiors] <Atem:l <ltemzl <Mame:Cheeszed/Mame:]
< Originewizconging Arigine |
<PercentVitaminé: 75% < /Percentyitamings |

<|ntakeR ecommendation:Boz. < /ntak el ecommendati
anl </termzll <lterm:l <Mame>Breads</Mames|
<rigin:|owa< Driginz 1

<PercentVitamings 15% < /Percentyitaming |

<|ntakeR ecommendation: 2

shices</AntakeR ecommendations] </term>Il <Item>]
<MamerPastries<Mamexl <PercentVitamind:Less
than 1%</Percentyitannind: |

<|ntakeR ecommendation: none< Antak el ecommendat
ionx] </Atem: K Grocenies:

Filters Summary

In this section we have seen that large documents that contain data or nodes that are not needed for the
current situation can be transformed by the SAX Cont ent Handl er to become more efficient and more
useful for our purpose. In addition to using a Cont ent Handl er directly, we saw the implementation of
a SAX XMLFi | t er, which sits between the XM_Reader and Cont ent Handl er classes. The filter is an
ideal way to create XML transformations in separate logical blocks.

Transforming XML documents is an excellent way to prepare the result document for your application
to meet the needs of your situation. In the next section, we'll look at retrieving data out of the result
documents, and storing those values.

274

SAX — The Simple API for XML

Take What You Need - Storing Result Data

In the previous section, we worked the document we were given into a new file or structure that could
be used instead of the original. In the next example, we do not stop with an end document, but will pass
the transformed data directly to a database.

We will work with a fanciful stock quote reporting stream that contains numerous nodes for describing
each company. However, we are only interested in writing the company name, the current stock price,
opening price, and current rating along with minor analysis.

Example 5 — Complex State

Our final application will take the same basic shape as Example 2: in fact the Ul is borrowed directly.
This time, though, we are going to be more explicit about what we expect to find, and we are going to
parse the XML string to get only pieces of data to write to our stock analysis database. The UI form has
a small application added inside it that will display the summarized information we wanted to see. Of
course, while we are going to use one form to hit both processes, in the real worlds, the

saxDeseri al i ze class would be run behind the scenes.

When you have completed this example you should be able to:

O Create a complex state mechanism for tracking the value of several elements during the
execution of the parser

0 List yourself among the known masters of SAX parsing

This example uses Microsoft SQL Server 7.0 (or 2000). The SQL command file used to
set up the database, and an Excel spreadsheet of the data, are both available with the
code download for thisbook. You'll also find the stored procedures you need defined
in the code package, and the VB project that contains everything else.

In order to try this yourself, you will need a database named Ti cker with the following setup:

thiHistory

thiCompanyInfo

- Stack Symbol
- ZurrentPrice
CobeTime

275

Chapter 7

The XML

The XML document we are looking at — ti cker. xm - at is a series of stock elements, arbitrarily
contained within a Ti cker Tape element. This represents a stream of stock information. Each stock
element has the following format:

<Ti cker Tape>
<St ock synbol =" LKSQWN >
<Nane>Sone Conpany</ Name>
<Price>112.1224</ Pri ce>
<PE>2. 4</ PE>
<R>0. 7</ R>
<Hi st ory>
<Prevd ose>111</ Prevd ose>
<H gh52>154</ Hi gh52>
<Lows2>98</ Lows2>
<Range52>56</ Range52>
<Shar esTraded>12, 421, 753</ Shar esTr aded>
<Shar esActi ve>981, 420, 932</ Shar esAct i ve>
<Rat i ng>HOLD</ Rat i ng>
</ Hi story>
<Tr adedOn>NYSE</ Tr adedOn>
<Quot eTi me>14: 12: 33</ Quot eTi me>
</ St ock>

<St ock>
</ St ock>
</ Ti cker Tape>

Our goal is to cut out several of the unwanted elements, and hold only the information we find useful. If
we had a result document, it would have the form of the following XML fragment:

<Nane>Sone Conpany</ Nanme>
<Price>112. 1224</ Pri ce>
<H st ory>
<PrevC ose>111</ PrevCl ose>
<H gh52>154</ H gh52>
<Rat i ng>HOLD</ Rat i ng>
</ Hi story>
<Quot eTi me>14: 12: 33</ Quot eTi me>

The ContentHandler

We start out with the declarations section of the Cont ent Handl er class, this time called
saxDeseri al i ze:

Option Explicit
"The next line is inportant — it says what is inplenented

I mpl enent s | VBSAXCont ent Handl er
Di mi Counter As |nteger

276

SAX — The Simple API for XML

'Col lection for context(state) variables

Di m col Cont ext As val Col | ect
Di m quotes As New st reaniToDb

' Storage variables for el enment val ues

Dimcurr_Synbol As String
Dimcurr_Price As Currency
Dimcurr_Prev As Currency
Di m curr_Hi gh As Currency
Dimcurr_Rating As String

'Set A obals for elenent state

'enuner ati ons nunber consecutively if no value is given

Private Enum Ti cker St ate
stateTicker = 1
stateStock =
statePrice =
stateHi story
statePrev = 5

2
3
=4

stateHi gh = 6
stateRate = 7
End Enum

Private Sub class_initialize()

i Counter = 0

Set col Cont ext = New val Col | ect

End Sub

We promised earlier that we would get into a more complex way of handling state. In this example,
we've set up a an enumeration of constants, in addition to some other global variables that hold values,
much like in Example 2. We are going to use this enumeration in concert with the context collection
col Cont ext, declared above it. The enumeration values will be passed to the collection, and the
collection read during the execution of other methods. We will refer to this collection and enumeration

setup as a state machine.

We set up our state machine in the st art El enent method, by adding the value of the enumeration
variables to the collection for the current element, if it matches an element we are looking for:

Private Sub | VBSAXCont ent Handl er _st art El enent (sNanespaceURl As Stri ng,

Sel ect Case sLocal Nane
Case "Ticker Tape"
col Cont ext . Col | ect

Case " Stock"
col Cont ext . Col | ect
Case "Price"

col Cont ext . Col | ect
Case "History"

col Cont ext . Col | ect
Case "Prevd ose"

col Cont ext . Col | ect

sLocal Name As String,
sQNane As String, _
ByVal oAttributes As MBXM.2. | VBSAXAttri butes)

(stateTicker)
(st ateStock)
(statePrice)
(stateHistory)

(statePrev)

277

Chapter 7

Case "Hi gh52"
col Context. Col | ect (stateH gh)
Case "Rating"
col Cont ext. Col | ect (stateRate)
Case El se
End Sel ect

I f sLocal Nane = "Stock" Then
If oAttributes.length > 0 Then
curr_Synbol = oAttri butes. getVal ue(0)
End | f

End |f
End Sub

Not every element passed into the Cont ent Handl er will be useful to us. This is where we can drop
whatever we don't want. It's really a matter of being proactive about the elements we do want to keep
track of, and just letting the others fall away silently. Each time we find the local name of an element we
want, we add the enumerated value to the collection, col Cont ext . The collection object has been very
simply wrapped in its own class, val Col | ect.

The valCollect Class

Here is this class in its entirety:

Di mval Col As Collection

Public Sub Collect(ByVal var As Variant)
val Col . Add var
End Sub

Publi ¢ Function Delete() As Variant
Del ete = Peek()
If val Col . Count > 1 Then
val Col . Renpbve val Col . Count
End | f
End Function

Public Function Peek() As Variant
Peek = val Col . Item(val Col . Count)
End Functi on

Public Sub d ear()

Set val Col = Not hi ng

Set val Col = New Col | ection
End Sub

Private Sub class_initialize()
Set val Col = New Col | ection
End Sub

The st art El ement method of the saxDeseri al i ze class calls the Col | ect method of this stack

implementation, which adds the value of the variable to the top of the val Col collection. This value
will then be available to the other methods of the Cont ent Handl er .

278

SAX — The Simple API for XML

We have tracked the root element <Ti cker Tape> in order to prime the pump on the state machine. If
we don't add an initial value, we won't be able to peek at the top-level value. That initial value is then
protected within the Del et € method in order to keep our calls to Peek valid.

The Character Handler

The real workhorse for this example is in the character handler. Because we are interested in the values
of the elements we have flagged above, we need to know here if we are looking at meaningful characters
or not. This is when we call to our state machine for its current value with the Peek method:

Private Sub | VBSAXCont ent Handl er _characters(sText As String)

Sel ect Case col Cont ext . Peek()
Case statePrice
curr_Price = sText
Case statePrev
curr_Prev = sText
Case st at eHi gh
curr_H gh = sText
Case stateRate
curr_Rating = sText

End Sel ect

End Sub

When we "peek" we get the value of the last member of the enumeration that was added to the
collection. The enumerated value we set in the st ar t El enent method flags our current state as
belonging to that element.

You can see how this "state machine" methodology is going to allow for a much more robust document
handler. Imagine how messy our original logic would have become if we internally set a variable to
handle every element. We wouldn't be able to perform our simple Sel ect Case statements. Instead,
we'd be forced to have an | f ... Then for every element we wanted to check.

Once we have identified character data from an element we are interested in, our global variables come
into play, being assigned their current value in the character method:

Case stateRate
curr_Rating = sText

Setting our variables with only the content of elements we are interested in, neatly cuts out the
whitespace associated with formatting a document. You can rid yourself of strings made up entirely of
whitespace if you place the following in the char act er s method:

sWiiteSpace =" " & Chr(9) & Chr(10) & Chr(13)
Dimi As I|nteger

For i =1 To Len(sChars)
If (InStr(switeSpace, Md(sChars, i, 1)) = 0) Then
Witelt(sChars)
End |f
Next

Exit Sub
Witelt(sChars)

textStream Wite sChars
'witten here to a text stream but do whatever with the content

279

Chapter 7

Of course, you can add other logical structures to work only on certain elements, or to leave whitespace
inside elements, or whatever you need to do in your implementation.

Having set the values for this run through the stock element, we can act on our data. We know we are
done with this group of <St ock> values because we have come to the endEl ement method:

Private Sub | VBSAXCont ent Handl er _endEl enent (sNamespaceURl As Stri ng,
sLocal Nane As String,
sQName As String)

Sel ect Case slLocal Nane

Case "Stock" 'If stock has ended, it is safe to update the price
quot es. addQuot e curr_Synbol, curr_Price
curr_Synbol = ""

curr_Price =0
Case "History" 'if history has ended, update in db.
quot es. updat eHi story curr_Synbol, curr_Prev, curr_Hi gh, curr_Rating
curr_Prev = 0
curr_H gh =0
curr_Rating =
End Sel ect

col Cont ext . Del et e

End Sub

Note that here we have two child elements we can act on. Because the history for a stock is stored
separately in the database, we can go ahead and call the updat eHi st or y method as soon as we have
the history element completed. While in this application there is really very little between the end of the
<Hi st or y> element and the end of the <St ock> element, our interest is speed, so we write to the
database as soon as we are able. When we do come to the end of the particular stock we are evaluating,
we write it, and clean up our context variables.

Don't leave out the delete call on the col Cont ext class, as thisrefreshes our state
machine for the next element.

Writing to the Database

To finish up with this application, we will write the values we have gathered to our database. We do this
in the st r eaniToDB class:

Option Explicit

Di m oCmd As ADODB. Conmand
Di m oConn As ADCODB. Connecti on

Private Sub class_initialize()

Di m sConnectne As String
Set oConn = New ADODB. Connecti on
sConnect me = "Provi der =SQLOLEDB; User | D=sa; Password=;" & _

"Initial Catal og=Ti cker; Data Source=(local)"
oConn. Connecti onString = sConnect ne

280

SAX — The Simple API for XML

End Sub

Publ i c Sub addQuote(ByVal sSymbol As String, ByVal cPrice As Currency)

Set oCmd = New ADODB. Conmand
oConn. Open

Wth oCmd

oCmd. Acti veConnecti on = oConn

' popul ate the command object's paraneters collection

. Paranet ers. Append . Creat ePar anet er (" @ynbol ", adVar Char,

adPar am nput, 8, sSymnbol)

. Paranet ers. Append . Creat eParaneter (" @rice", adCurrency,
adPar aml nput, , cPrice)

'"Run stored procedure on specified oConnection

. CommandText = "addQuot e"

. CommandType = adCndSt or edPr oc

. Execut e

End Wth

oConn. O ose

End Sub

We do something similar with the history along the way:

Publ i ¢ Sub updat eHi story(ByVal sSynmbol As String, ByVal cPrev As Currency,

ByVal cHi gh As Currency, ByVal sRating As String)

Set oCmd = New ADODB. Conmand
oConn. Open

Wth oCmd

. Acti veConnection = oConn

' popul ate the command object's paraneters collection

. Paranet ers. Append . Creat ePar anet er (" @ynbol ", adVar Char,
adPar am nput, 8, sSynbol)

. Paranet ers. Append . Creat ePar anet er (" @revd ose", adCurrency,
adPar am nput, , cPrev)

. Paranet ers. Append . Cr eat ePar anet er (" @4 gh52", adCurrency,
adPar am nput, , cHigh)

. Paranet ers. Append . Creat eParaneter (" @Rati ng", adVarChar,
adPar am nput, 20, sRating)

'Run stored procedure on specified oConnection

. CommandText = "updateH story"
. CommandType = adCndSt or edProc
. Execut e

End Wth

oConn. C ose

End Sub

281

Chapter 7

Then clean up:

Private Sub class_Term nate()
Set oCmd = Not hi ng
Set oConn = Not hi ng

End Sub

The Result

When we query the database at any given point we can produce the following output:

=. Parse Me =10] %]

||::"~tin:ker.:-:ml

E xit |

Some Company iz currently trading at $1712.251
and started at $112.2344

Today's range iz $0.0166

The 52 week high for this stock iz $154

Thiz stock currently rated az HOLD

Another Company iz cunrently trading at $13.4321
and started at $14.8434

Today's range iz $-1.4163

The 52 week high for thiz stock iz $70

Thiz stock currently rated az BLIM Ay

Thiz Campary iz currently rading at $57.00144
and ztarted at $56.2144

Today's range iz $0.8

The 52 week high for this stock, iz $58

Thiz stock currently rated az STROMG BLY

This example is helpful in giving an idea of what is required of a large SAX application. In order to
handle the XML document as a series of parts, we have to build the packages of information that relate
to one another. Each time we get a package together, we can do something with it. In this case, we have
a number of variables that work together in a function call. As soon as we have all of the related items,
we call a separate class that can use those values intelligently, writing them to the database in a
particular stored procedure.

282

SAX — The Simple API for XML

Summary

In this chapter, we've seen how SAX can be used to:

0 Cut data down to size
O Reformat data on the fly
0 Pick out values from a large stream of data

The recurrent theme with SAX is its efficient nature, as it does not require an entire document to be
stored, but can run through the values, and let you decide what is important.

We should not look to SAX to solve every XML issue — the DOM still plays a major role. However, as
you gain more experience with SAX, you will find it to be an effective tool in your toolbox. If you want
to know more, try the following resources:

O Microsoft's XML SDK for the preview release of MSXML v3.0 contains a complete reference
to the VB implementation of the SAX API interfaces and classes. Download it at
http://msdn.microsoft.com/xml/general/msxmlprev.asp.

O Chapter 6 of Professional XML, ISBN 1-861003-11-0, and Chapter 7 of Beginning XML, ISBN 1-
867003-41-2, both from Wrox, provide introductions to SAX.

O XML.COM - An excellent and in-depth site hosted by the O'Reilly publishing group.
Thankfully it bears no strong marketing allegiance to its owner, and is packed with white-
papers, reviews, and tutorials on everything XML.

283

Chapter 7

284

,.—-‘
R —

XSLT and XPath

This chapter is designed to give you enough information about XSLT, the XML transformation
language, to enable you to write useful stylesheets; and about XPath, the query language used by XSLT
stylesheets to access XML data.

We haven't got room here for a complete description of these languages or a detailed guide showing
how to take advantage of them: for that see the Wrox Press book XSLT Programmer's Reference, written by
Michael Kay (ISBN 1861003129). The aim is, instead, to cover enough to give a useful working
knowledge.

In this chapter, we'll go through the following:

O We'll start with an overview of the XSLT language: what it's for, and how it works

O Then we'll take a detailed look at the XPath query language, which is used in XSLT
stylesheets to access data in the source document

O Having done that, we'll look at the role of template rules and match patterns in an XSLT
stylesheet, and review all the instructions you can use within a template

O Finally, we'll look at the top-level elements you can use in a stylesheet to define

processing options

That's a lot of technical detail, so at the end we'll relax with some soccer; using XSLT to display soccer
scores from an XML file.

Chapter 8

What is XSLT?

XSLT is a high-level language for defining XML transformations. In general, a transformation takes one
XML document as input, and produces another XML (or indeed, HTML, WML, plain text, etc.)
document as output.

In this sense it's a bit like SQL, which transforms source tables into result tables, and it uses similar
declarative queries to express the processing required. The obvious difference is that the data (both the
input and the output) is arranged as a hierarchy or tree, rather than as tables.

XML transformations have many possible roles in the architecture of a system. For example:

O The most familiar application of XSLT is to format information for display. Here, the
transformation is from "pure data" (whatever that means) to data with formatting information:
usually the target will be HTML or XHTML, though it might be other formats such as SVG,
PDF, or Microsoft's RTF. Of course these aren't all XML-based formats, but that doesn't
matter, because as we'll see they can be modeled as XML trees, and that's all that is needed.

O XSLT is also very useful when managing data interchange between different computer
systems. This might be as part of an eCommerce exchange with customers or suppliers, or
simply application integration within the enterprise. The increasing use of XML doesn't mean
that data conversion will be outdated. What it does mean is that in future, data conversions
will often be translating one XML message format into another XML message format.

O XSLT can perform some of the roles traditionally carried out by report writers and 4GLs. As
well as pure formatting, this can include tasks such as information selection, aggregation, and
exception highlighting. For example, if your web-shopping site generates a transaction log in
XML format, it is quite possible to use XSLT to produce a report highlighting which areas of
the site were most profitable and which category of customers visited that area.

A program written in XSLT is referred to as a stylesheet. This reflects the original role of the language
as a way of defining rules for presenting XML on screen. XSLT grew out of a bigger project called XSL
(eXtensible Stylesheet Language), which aimed to provide this support, not only for on-screen display
but for every kind of output device including high-quality print publication. XSLT was separated out
into a sub-project of its own, because it was recognized that transformation of the input was an essential
part of the rendering process, and that the language for transformation was usable in many other
contexts. The other part of XSL, which handles the formatting specifications, is currently still under
development.

XSLT transformations can be carried out on the server or on the client. They can be done just before
the user sees the data, or early on while it is being authored. They can be applied to tiny XML files a
few bytes long, or to large datasets. There are no rights and wrongs here: like SQL, the XSLT language
is a versatile tool that can be applied in many different ways.

XSLT processors are available from a number of vendors, and in this chapter, we'll stick to describing
the language, as defined by W3C, rather than any specific product. There are open source products
available (Saxon and Xalan are popular choices), as well as closed source free products from Microsoft
and Oracle, and some development tools available commercially. Many of these are written in Java, so
they will run on any platform, but processors are also available written in C++ and Python. Here are
some pointers to the web sites:

286

XSLT and XPath

Microsoft (MSXML3): http://msdn.microsoft.com/xml
Oracle (Oracle XML parser): http://technet.oracle.com/
Saxon: http://users.iclway.co.uk/mhkay/saxon/

O 0o o o

Xalan: http://xml.apache.org/xalan/overview.html

A good place to look for information about XSLT, including pointers to other products available, is
http://www.xslinfo.com/.

One word of warning: when Microsoft shipped Internet Explorer 5, back in 1998, they included a
processor that handled a language based on an early draft of XSLT, with many omissions and Microsoft
extensions. Microsoft refers to this language as XSL, but it is a distant cousin of XSLT as eventually
standardized by W3C. The language is now dated, and Microsoft themselves have a conformant XSLT
processor, but millions of copies have shipped and are still being shipped with every copy of IE5 and
IE5.5, so it won't go away in a hurry. This chapter is about XSLT, not about Microsoft's 1998 XSL
dialect: don't get confused between the two.

Many readers will probably find it simplest to start with the Microsoft XSLT processor (MSXML3). At
the time of writing, this is available for download from the MSDN web site, but it is expected to become
part of Internet Explorer 6 in due course. In the meantime, do read the installation instructions very
carefully, because it is easy to find yourself trying to run XSLT stylesheets through the old 1998 XSL
processor, and wondering why nothing happens. Note that MSXMLS3 also includes a conversion utility
for old stylesheets: it's only 90% of the job, but that's still easier than doing it all yourself.

The Transformation Process

We described XSLT as a way of transforming one XML document into another, but that's a
simplification. The diagram below illustrates what is really going on:

Tree

:5)\O Stylesheet

Source Result
Tree Tree

> o Rl g

Transformation
Process

Result

Source Document

Document

287

Chapter 8

There are three separate stages of processing here:

0 An XML Parser takes the source XML document and turns it into a tree representation

O The XSLT Processor, following the rules expressed in a stylesheet, transforms this tree into
another tree

O A Serializer takes the result tree and turns it into a XML document

Very often these three bits of software will be bundled together into a single product, so the joins may
not be obvious, but it's useful to understand these three stages because it affects what a transformation
can and can't do.

On the input side, this means the stylesheet isn't in control of the XML parsing process, and it can't do
processing based on distinctions that are present in the source document but not in the tree produced by
the parser. For example, you can't write logic in the stylesheet that depends on whether an attribute in
the XML was written in single quotes or double quotes. Perhaps less obviously, and on occasions more
frustratingly:

O You can't tell what order the attributes in a start tag were written in.

0O You can't discover if the source document contained entities or character references: these will
all have been expanded by the time the XSLT processor sees them. Whether the user
originally wrote © or & 0py; makes no difference; by the time the XSLT processor sees it, the
distinction has disappeared.

O You can't tell whether the user wrote an empty element as <a></ a> or as <a/ >.

In all these cases the distinctions are simply different ways of expressing the same information, so you
shoudn't need to know which way the input was written. The only frustration is that if you want the
output to be physically the same as the input, there is no way of achieving this, which can be irritating if
the output XML is to be further edited.

Equally, on the output side, you can't control these details. You can't tell the serializer to write the
attributes in a particular order, or to use & opy; in preference to ©, or to generate empty elements as
<a></ a> rather than <a/ >. These constructs are supposed to be equivalent, so you aren't supposed to
care. XSLT is about transforming the information held in documents, not about transforming their
lexical representation.

Actually, on the output side, the designers of the language were a little pragmatic, and provided a few
language features that let you give hints to the serializer. However, they made it very clear that these are
hints only, and no processor is obliged to take notice of them.

The fact that stylesheets are reading and writing trees has another important consequence: you read and
write elements as a unit, rather than processing each tag separately. There is simply no way of writing a
start tag without a matching end tag, because writing an element node to the tree is an atomic operation.

The tree structure used by XSLT is very similar to the DOM model (described in Chapter 6) but it has
some important differences, which we'll see later. Many products do in fact use a DOM representation,
because this allows standard parsers and serializers to be used, but there are inefficiencies in this
approach, so other products have chosen to represent the XSLT tree structure more directly. It's
important to understand this structure so we'll describe it in detail later.

288

XSLT and XPath

XSLT as a Programming Language

You can teach a simple subset of XSLT to HTML authors with no programming knowledge, by
pretending that it's just a way of writing the HTML you want to generate with some simple extra tags to
insert variable data from an input file. But XSLT is actually much more powerful than this, and as this
book is written for programming professionals, it makes more sense to treat XSLT as a programming
language and to compare and contrast it with other languages you may have used in the past. In this
section, we'll draw out a few of its more striking features.

XML Syntax

Firstly, an XSLT stylesheet is an XML document. Instead of the braces and semicolons of most
programming languages, it uses the angle brackets and tags of XML. Therefore, you can write things
like this:

<xsl:if test="title="Introduction'">
SUMVARY</ b>
</xsl:if>

In a conventional language, you might write something like this:

if (title="Introduction')

{
}

write(' lntroduction");

There are a number of reasons for this. One is that you can write the output XML that you want to
generate as part of the stylesheet, as with the SUMVARY</ b> in the example above. In fact, some
stylesheets consist mainly of fixed output text with a few XSLT instructions mixed in. Another reason is
that you can easily write stylesheets that transform other stylesheets, which sounds like a strange thing
to do but can actually be extremely useful. Pragmatically, it also means that stylesheets are very
consistent with XML in things such as handling of character encodings, name syntax, white space, and
the like.

The downside is that it's verbose! Typing out hundreds of angle brackets is no-one's idea of fun. Some
people like to use specialized editors to make the job easier; but when it comes down to it, typing effort
has very little to do with the true ease of use of a language.

Rule-based

There's a strong tradition in text processing languages, like Perl and awk, of expressing the processing
you want to do as a set of rules: when the input matches a particular pattern, the rule defines the
processing to be performed. XSLT follows this tradition, but extends it to the processing of a hierarchy
rather than a sequential text file.

In XSLT the rules are called template rules, and are written in the form of <xsl : t enpl at e> elements
in the stylesheet. Each rule has a match pattern that defines what kind of nodes in the tree it applies to,
and a template body that defines what to do when the rule is fired. The template body can consist of a
mixture of result nodes to be copied directly to the output tree, and XSLT instructions that can do
things such as reading data from the current position in the source tree, or writing calculated results to
the output tree. So a simple template rule might say:

289

Chapter 8

<xsl:tenplate match="price">
$<xsl : val ue- of sel ect="format-nunber(., '#0.00')" />
</ xsl:tenpl at e>

The pattern here is "pri ce", which matches any <pr i ce> element; the action is to output the value of
the <pri ce> element, formatted as a number with two decimal digits, preceded by a $ sign and
enclosed in a element.

One particularly important XSLT instruction is <xsl : appl y-t enpl at es>, which tells the processor
where to go next; whereas in a text processing language, each line can be processed in sequence, with a
hierarchy it is possible to process nodes in any order. Normally, however, the template rule for an
element will contain an <xsl : appl y- t enpl at es> instruction to process its children. When it does
this, each of the children will be processed by finding the template rule in the stylesheet that matches
that node.

Here is an example of a collection of template rules that process <i t en> elements within <r ecor d>
elements. The rule for <r ecor d> elements outputs a <t r > element, and within it outputs the results of
finding and applying the appropriate rule for each of its child elements. There are two template rules for
<i t en> elements depending on whether the element has any text content or not. If it has, it outputs a
<t d> element containing the string value of the element; otherwise, it outputs a <t d> element
containing a non-breaking space character (which is familiar to HTML authors as the value of the
 entity reference, but is written here as a numeric Unicode character reference).

<xsl:tenpl ate mat ch="record">
<tr><xsl:apply-tenplates /></tr>
</ xsl : tenpl at e>

<xsl:tenplate match="itenf.!=""]">
<t d><xsl : val ue-of select="." /></td>
</ xsl : tenpl at e>

<xsl:tenplate match="iten{.=""]">
<t d> </t d>
</ xsl : tenpl at e>

XPath Queries

When you write an XSLT stylesheet you are actually using two different languages. You use XSLT itself
to describe the logic of the transformation process, and within it, you use embedded XPath expressions
or queries to fetch the data you need from the source document. It's comparable to using Visual Basic

with SQL.

Although its role is similar, the syntax of XPath is not at all like SQL. This is because it's designed to
process hierarchic data (trees) rather than tables. A lot of the syntax in SQL is there to handle
relationships or joins between different tables. In a hierarchic XML document or tree, most of the
relationships are implicit in the hierarchy, so the syntax of XPath has been designed to make it easy to
reference data by its position in the hierarchy. In fact, the most obvious resemblance is the way
filenames are written to access files in a hierarchic filestore.

290

XSLT and XPath

It's easiest to show this by some example XPath expressions:

Expression M eaning

/invoice/billing-address/postcode Starting at the root of the document, get the
invoice element, then within that the billing-
address element, then within that the
postcode element.

l@itle Starting at the current node, get the title
attribute of this node's parent element.

/ book/ chapter[3]/section[2]/paral1] Get the first <par a> element, that is a child
of the second <sect i on> element, that is a
child of the third <chapt er > element, which
is itself, a child of the root of the tree.

Functional Programming

Most programming languages are sequential in nature: the program carries out a sequence of
instructions, modified by testing conditions and looping. They can create variables to hold values, and
later in their execution, they can access the variables to retrieve results that were calculated earlier.

At one level XSLT looks quite similar. It has constructs like <xsl : i f > to test conditions and

<xsl : f or - each> to do looping, and you can write a sequence of instructions, and the stylesheet then
looks very much like a conventional sequential program. However, below the surface, it's not like that at
all. XSLT is carefully designed so that the instructions can be executed in any order. The innocuous
<xsl : f or - each> instruction, for example, may look like a loop that processes a list of nodes, one at a
time, in a particular order, but it's carefully designed so that the processing of each node doesn't depend
at all on how the previous node was handled, which means it's actually possible to do them in any order
or even in parallel.

To achieve this, the theory underlying XSLT is that of functional programming, more often found in
rather academic languages such as Lisp and Scheme. The idea is that each piece of the output is defined
as a function of a particular piece of the input. These functions are all independent of each other, so
they can be done in any order: in theory at least this means that if only a small piece of the input
changes, you can work out how to change the output without executing the whole stylesheet again from
scratch. Another benefit of this approach is that it's much easier to stop a stylesheet being stuck in an
infinite loop.

What this means in practice is that, although a stylesheet may look superficially like a sequential
program, it has no working storage. As we'll see, XSLT does have variables, but they aren't like the
variables in sequential programming languages, because they are effectively "write-once". You can't
update variables, so you can't use them to accumulate a running total and read them later, or count how
many times you've been round a loop, because that would only work if things were done in a particular
order. For simple stylesheets you probably won't notice the difference, but for more complex
transformations you'll find you need to get used to a rather different style of programming. It may be
frustrating at first, but it's worth persevering, because once you have learnt to think in functional
programming terms, you'll find that it's a very elegant and concise way of expressing solutions to
transformation problems.

291

Chapter 8

Data Types

Many of the different properties of different programming languages are determined by their type
system. In XSLT, the type system is defined largely by the query language, XPath.

The characteristic data type of XPath is the node-set. Just as SQL queries return a set of table rows,
XPath queries like those shown in the previous section return a set of nodes from the input tree. Even if
a query returns only a single node, it is always treated as a node-set that just happens to have only one
member. A node-set behaves like a mathematical set: there's no intrinsic order to the nodes in the set,
and there can't be any duplicates (the same node can't appear more than once).

Many instructions that process node-sets actually handle the nodes in document order. This is,
essentially, the order in which the nodes appeared in the original XML document. For example, an
element appears in document order before its children, and its children appear before the next sibling
of their parent element. Document order in some cases isn't fully defined, for example there is no
guarantee what the order of the attributes for a particular element will be. The fact that there is a natural
ordering to nodes doesn't prevent node-sets being unordered sets, any more than the natural ordering of
numbers prevents {1,2,3,5,11} being a pure set.

XPath queries aren't the only data type that node-sets can return; they can also return character strings,
numbers, or Boolean values. For example, you can ask for the name of a node (a character string), the
number of children it has (a number), or whether it has any attributes (a Boolean):

0 Character strings in XPath follow the same rules as character strings in XML. They can be of
any length (from zero upwards), and the characters they may contain are the Unicode
characters that you can use in an XML document.

0 Numbers in XPath are in general floating point numbers: of course, this includes integers.
Integers will usually behave the way you expect, with the possible exception of rounding
errors; for example, percentages may not add up to exactly 100. The floating-point arithmetic
follows the same rules as Java and JavaScript (specifically, the rules defined in IEEE 754). You
don't need to understand these rules in detail, except to know that there is a special value NaN
(not a number), which you will get when you try to convert a non-numeric character string
(such as "Unknown") to a number. NaN behaves very much like Null in SQL. If you do almost
any operation on NaN, the result is NaN. For example, totaling a set of values in which one is
the character string "Unknown" will return a total of NaN.

O Booleans are just the two values t r ue and f al se. XPath doesn't have three-valued logic as in
SQL - absent values in the source data are represented not by a special Null value, but by an
empty node-set. Like SQL Nulls, empty node-sets sometimes give counter-intuitive results, for
example an empty node-set is not equal to itself.

An XSLT stylesheet can declare variables. These variables can hold the result of any XPath query, that
is, a node-set, a string, a number, or a Boolean. A variable can also hold a temporary tree constructed
by the stylesheet itself: for most purposes, this variable is equivalent to a node-set containing a single
node, namely the root of this tree. These trees are referred to as result tree fragments.

As we mentioned earlier, XSLT variables are "write-once" variables; they are just names for values.
Some people have suggested they should really be called constants, but that wouldn't be accurate, since
variables can hold different values on different occasions. For example, within a template rule that is
processing a <chapt er > element, you might set a variable to hold the number of paragraphs in the
chapter. The variable will have a different value for each chapter that you process, but for a given
chapter, its value will not change during the course of processing.

292

XSLT and XPath

Here are some examples of variables of each kind:

Variable Declar ation Explanation

<xsl :vari abl e name="x

The value is a node-set containing all the
select="//item />

<i t enP elements in the source document

<xsl :variabl e name="y" The value is a number containing the number of
sel ect="count (@)" /> attributes of the current node. «@ » is an XPath
expression that selects all the attributes.

<xsl :vari abl e name="z" The value is true if the current node has a type
select="@ype="T"" /> attribute whose value is 'T', false if it does not.

<xsl:variabl e nane="tree"> The value is a tree (or result tree fragment)

:E aE' e> whose root contains the table structure as
<t :j> written.
<ing src="buttonl.gif"/>
</td>
<t d>
<ing src="button2.gif"/>
</td>
</tr>
</t abl e>
</ xsl:vari abl e>

Although values have different data types, the data types don't have to be declared in variable
declarations. XSLT is therefore a dynamically typed language, like JavaScript.

In general, type conversions happen automatically when required, for example if you write

<xsl :val ue- of sel ect="@ane" /> then the node-set returned by the expression @ane (it will
contain zero or one attribute nodes) is converted automatically to a string. There are some situations
where explicit conversions are useful, and these are provided by the XPath functions bool ean(),
nurber (), and string(), described later in this chapter.

The XPath Data Model

Understanding the XPath tree model is crucial to stylesheet programming.

The tree structure used in XSLT and XPath is similar in many ways to the DOM, but there are some
important differences. For example, in the DOM, every node has a nodeVal ue property, while in
XPath every node has a st ri ng- val ue property. But the nodeVal ue of an element node in the DOM
is null, while in XSLT and XPath, the st ri ng- val ue property of an element is the concatenation of all
its descendant text nodes.

The properties available for every type of node in an XSLT tree are the same. Each node has a name
and a string-value. You can also ask for the node's children, its parent, its attributes, and its namespaces.
Where the property is inapplicable (for example comments don't have names) you can still ask for the
information, you'll just get an empty result.

293

Chapter 8

There are seven types of node in an XSLT tree:

Node Type

Usage

Root

Element

Represents the root of the tree, corresponding to the Document node in the
DOM. This is not the same as the "document element" (the outermost element in
the tree). In fact, an XSLT tree does not always represent a well-formed
document, so the root may contain several element nodes as well as text nodes.
In a well-formed document, the outermost element is represented by an element
node, which will be a child of the root node.

The root node's properties are as follows:

0 Its name is an empty string

O Its string-value is the concatenation of all the text nodes in the
document

0 Its parent is always null

O Its children may be any collection of elements, text nodes, processing
instructions, and comments

0 It has no namespaces or attributes

Each element node corresponds to an element in the source document: that is,
either to a matching start tag and end tag, or to an empty element tag such as
<Al >.

An element node's properties are as follows:

0 Its name is derived from the tag used in the source document,
expanded using the namespace declarations in force for the element

O Its string-value is the concatenation of all the text between the start
and end tags

O Its parent is either another element, or if it is the outermost element,
it parent is the root node

O Its children may be any collection of elements, text nodes, processing
instructions, and comments

O Its attributes are the attributes written in the element's start tag, plus
any attributes given default values in the DTD, but excluding any
xm ns attributes that serve as namespace declarations

O Its namespaces are all the namespace declarations in force for the
element, whether they are defined on this element itself or on an
outer element

294

XSLT and XPath

Node Type

Usage

Attribute

Text

There will be an attribute node for each attribute explicitly present in an element
tag in the source document, or derived from a default value in the DTD.
However, the xml ns attributes used as namespace declarations are not
represented as attribute nodes in the tree. An attribute will always have a name,
and its string-value will be the value given to the attribute in the source XML.

An attribute node's properties are as follows:

O Its name is derived from the attribute name used in the source
document, expanded using the namespace declarations in force for
the containing element

O Its string-value is the attribute value

O Its parent is the containing element (even though the attribute is not
considered to be a child of this parent)

0 An attribute node has no children, attributes, or namespaces

Text nodes are used to represent the textual (PCDATA) content of the
document. Adjacent text nodes are always merged, so the tree can never contain
two text nodes next to each other. It is possible, however, for two text nodes to
be separated only by a comment.

The properties of a text node are as follows:

O Its name is Null

O Its string-value is the text content, after expanding all character
references, entity references, and CDATA sections

O Its parent is the containing element (or in the case of a result tree
fragment, a text node can also be a child of the root node)

0 A text node has no children, attributes, or namespaces

Any entity references, character references, and CDATA sections occurring
within the source XML document are expanded by the XML parser, and the
XSLT tree contains no trace of them. All that is present on the tree is the string
of characters that these constructs represent.

Text nodes that consist only of whitespace can be treated specially: the XSLT
stylesheet can indicate that such nodes should be removed from the tree. By
default, however, whitespace that appears between elements in the source
document, will be present as text nodes on the tree and may affect operations
such as numbering of nodes.

Table continued on following page

295

Chapter 8

Node Type Usage
Processing Processing instruction nodes on the tree represent processing instructions in the
Instruction XML source document. Processing instructions in XML are written as <?t ar get
dat a?>, where the target is a simple name and the data is everything that
follows.
The properties of a processing-instruction node are:
0 Its name is the target part of the source instruction
O Its string-value is the data part
0 Its parent is the containing node, always either an element node or
the root
O It has no children, attributes, or namespaces
Note that the XML declaration at the start of a document, for example <?xni
versi on="1. 0" ?>, looks like a processing instruction, but technically it isn't
one, so it doesn't appear on the XPath tree.
Comment Comment nodes on the tree represent comments in the source XML.
The properties of a comment node are:
O Its name is Null
O Its string-value is the text of the comment
O Its parent is the containing node, always either an element node or
the root
O It has no children, attributes, or namespaces
Namespace Namespace declarations are increasingly used in XML processing, however you

will very rarely need to make explicit reference to namespace nodes in the XPath
tree, because the namespace URI that applies to a particular element or attribute
is automatically incorporated in the name of that node. Namespace nodes are
included in the model for completeness: for example, they allow you to find out
about namespace declarations that are never referred to in an element or
attribute name.

An element has one namespace node for every namespace that is in scope for
that element, whether it was declared on the element itself or on some containing
element.

The properties of a namespace node are:

0 Its name is the namespace prefix

O Its string-value is the namespace URI
0 Its parent is the containing element
O

It has no children, attributes, or namespaces

296

XSLT and XPath

Names and Namespaces

Namespaces play an important role in XPath and XSLT processing, so it's worth understanding how
they work. Unlike the base XML standards and DOM, where namespaces were bolted on as an
afterthought, they are integral to XPath and XSLT.

In the source XML, an element or attribute name is written with two components: the namespace prefix
and the local name. Together these constitute the qualified name or QName. For example in the
QName f 0: bl ock, the prefix is f 0 and the local name is bl ock. If the name is written without a
prefix, the prefix is taken as an empty string.

When a prefix is used, the XML document must contain a namespace declaration for that prefix.

The namespace declaration defines a namespace URI corresponding to the prefix. For example, if the
document contains a <f 0: bl ock> element, then either on that element, or on some containing element,
it will contain a namespace declaration in the form xm ns: fo="htt p: // ww. w3. or g/ XSL/ ". The
value "ht t p: // www. W3. or g/ XSL/ " is the namespace URI, and it is intended to uniquely distinguish
<bl ock> elements defined in one document type or schema from <bl ock> elements defined in

any other.

The namespace URI is derived by finding the appropriate namespace declaration for any prefix used in
the QName. In comparing two names, it is the local name and the namespace URI that must match; the
prefix is irrelevant. The combination of local name and namespace URI is known as the expanded
name of the node. In the XPath tree model, the name of a node is its expanded name (namespace URI
plus local name). Namespace prefixes will usually be retained intact, but the system is allowed to change
them if it wants, so long as the namespace URIs are preserved.

Where a qualified name includes no namespace prefix, the XML rules for forming the expanded name
are slightly different for element names and for attribute names. For elements, the namespace URI will
be the default namespace URI, obtained by looking for a namespace declaration of the form

«xm ns="..."». For attributes, the namespace URI will be the empty string. Consider the example
shown below:

<tenpl ate match="para" xm ns="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or n'/ >

Here the expanded name of the element has local name "t enpl at " and namespace URI
"http://ww. w3. or g/ 1999/ XSL/ Tr ansf or m'. However, the expanded name of the attribute has
local name "mat ch" and a null namespace URI. The default namespace URI affects the element name,
but not the attribute name.

XPath expressions frequently need to select nodes in the source document by name. The name as
written in the XPath expression will also be a qualified name, which needs to be turned into an
expanded name so that it can be compared with names in the source document. This is done using the
namespace declarations in the stylesheet, specifically those that are in scope where the relevant XPath
expression is written.

If a name in an XPath expression uses no namespace prefix, the expanded name is formed using the
same rule as for attribute names: the namespace URI will be Null.

297

Chapter 8

In the example above, which might be found in an XSLT stylesheet, "par a" is the name of an element
type that this template rule is designed to match. Because "par a" is written without a namespace prefix,
it will only match elements whose expanded name has a local name of "par a", and a null namespace
URI. The default namespace URI does not affect the name written within the match pattern. If you
wanted to match elements with a local name of "par a" and a namespace URI of "ur n: somre-
nanmespace" you would have to assign an explicit prefix to this namespace in the stylesheet, for example:

<t enpl at e mat ch="ny: para"
xm ns="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni'
xm ns: my="ur n: some- nanespace" />

XSLT uses many names to identify things other than XML elements and attributes; for example, it uses
names for templates, variables, modes, keys, decimal formats, attribute sets, and system properties. All
these names follow the same conventions as XML attribute names. They are written as qualified names;
any namespace prefix they use must be declared in a namespace declaration; the equivalence of two
names depends on the namespace URI, not the prefix; and if there is no prefix, the namespace URI is
null (the default namespace declaration is not used).

Controlling namespace declarations in the output document can sometimes prove troublesome. In
general, a namespace declaration will automatically be added to the output document whenever it is
needed, because the output document uses a prefixed element or attribute name. Sometimes it may
contain namespace declarations that are surplus to requirements. These don't usually cause a problem,
although they might do so if you want the result document to be valid against a DTD. In such cases you
can sometimes get rid of them by using the attribute excl ude-resul t - prefi xes on the

<xsl : styl esheet > element.

In very rare cases, you may want to find out what namespace declarations are present in the source
document (even if they aren't used). This is the only situation in which you need to explicitly find the
namespace nodes in the tree, which you can do using an XPath query that follows the namespace axis.

XPath Expressions

To write an XSLT stylesheet you'll need to write XPath expressions. At the risk of finding you impatient
to see a stylesheet in action, we'll talk about XPath expressions first, and then describe the way they are
used by XSLT in a stylesheet. Although XPath was designed primarily for use within an XSLT context,
it was separated into its own specification because it was seen as being useful in its own right, and in
fact, it's increasingly common to see XPath being used as a freestanding query language independently
of XSLT.

In this section, we will summarize the rules for writing XPath expressions. We can't hope to give the full
syntax, let alone all the rules for how the expressions are evaluated, because of the limited scope of the
book, but we'll try to cover all the common cases and also warn you of some of the pitfalls.

Context

The result of an XPath expression may depend on the context in which it is used. The main aspects of
this context are the context node, the context size, and the context position. The context node is the
node on the source tree for which the expression is being evaluated. The context position is the position
of that node in the list of nodes currently being processed, and the context size is the number of nodes
in that list. The context node can be accessed directly using the expression, ". " (period), while the
context position and context size are accessible using the functions posi ti on() and | ast ().

298

XSLT and XPath

Other aspects of the context of an XPath expression, obtained from the containing XSLT stylesheet,
include the values of variables, the definitions of keys and decimal formats, the current node being
processed by the stylesheet (usually the same as the context node, but different within an XPath
predicate), the Base URI of the stylesheet, and the namespace declarations in force.

Primaries

The basic building blocks of an XPath expression are called primaries. There are five of them, listed in

the table below:

Function call

Parenthesized
expression

is always written with a
preceding $ sign.

A call on either a system-
supplied function, or an
extension function provided by
the vendor or the user, together
with its arguments if any. Each
argument is an XPath expression
in its own right.

An XPath expression contained
in parentheses. Brackets may be
used to control operator
precedence as in other languages

Construct M eaning Examples
String literal A string constant, written ' London’
between single or double quotes Paris
(these must be different from the
quotes used around the
containing XML attribute).
Number A numeric constant, written in 12
decimal notation. Although gogggéo
XPath numbers are floating
point, you can't use scientific
notation.
Variable A reference to a variable defined $x]
Reference elsewhere in the stylesheet. This $ny: vari abl e- nane

position()

contains($x, ';')
ns: extension('Bill', 'Gates')

3% ($x + 1)
(/1item[1]

Operators

Many of the operators used in XPath will be familiar, but some are more unusual. The table below lists
the operators in order of precedence: those that come first in the table are evaluated before those that

come lower down.

299

Chapter 8

Operator

Meaning

Al B]

>
w

* B
div B
nod B

>> >

> >

>>>>r

> >

A and B

AorB

A filter expression. The first operand (A) must be a node-set. The second operand
(B), known as the predicate, is an expression that is evaluated once for each node in
the node-set, with that node as the context node. The result of the expression is a
node-set containing those nodes from A where the predicate succeeds.

If the predicate is a number, it succeeds if it equals the position of the node in the
node-set, counting from one. So $par a[1] selects the first node in the $par a
node-set.

If it is not a number, then it succeeds if the value, after converting to a Boolean
using the rules of the bool ean() function, is true. So $par a[@ane] selects all
nodes in the $par a node-set that have a nanme attribute.

A location path. Location paths are discussed in detail below. The first operand, A,
defines a starting node or node-set; the second, B, describes a step or navigation
route from the starting node to other nodes in the tree.

A union expression. Both operands must be node-sets. The result contains all nodes
that are present in either A or B, with duplicates eliminated.

Unary minus. The value of Ais converted if necessary to a number (using the
nunber () function) and the sign is changed.

Multiply, divide, and modulus (remainder after division). Both arguments are
converted to numbers using the nunber () function, and the result is a floating-
point number. These operators are often useful in formatting tables: for example
<xsl:if test="position() nod 2 = 1"> will be true for the odd-numbered
rows in a table, and false for the others.

Addition and subtraction. Both arguments are converted to numbers using the
nurber () function. Because hyphens can be included in names, there must be a
space or other punctuation before a minus sign.

Tests whether one operand is numerically greater or smaller than the other one.
When the XPath expression is written in a stylesheet, remember to use XML
entities: & t; for <, &yt ; for >. Special rules apply when either or both operands
are node-sets: see the section on Comparing Node-sets below.

If the operands are strings or Booleans, they are converted to numbers using the
rules of the nunber () function. If either operand cannot be converted to a number,
the result will always be false.

Tests whether the two operands are equal or not equal. Special rules apply when
either or both operands are node-sets: see the section on Comparing Node-sets
below.

In other cases, if one operand is a Boolean, the other is converted to a Boolean;
otherwise if one is a number, the other is converted to a number; otherwise they are
compared as strings. Comparison of strings is case-sensitive: 'Paris' is not equal to

'PARIS'.

Boolean AND. Converts both arguments to Booleans, and returns true if both are
true.

Boolean OR. Converts both arguments to Booleans, and returns true if either
is true.

300

XSLT and XPath

Comparing Node-sets

When you use the comparison operators =, | =, <, >, <=, or >=, then if either or both of the operands is
a node-set, the comparison is made with every member of the node-set, and returns true if any of them
succeeds. For example, the expression // @ecur e=' yes' will return true if there is an attribute
anywhere in the document with the name secur e and the value "yes" . Similarly,

/'l @ecure! =" yes' will return true if there is an attribute anywhere in the document with the name
secur e and a value other than "yes".

If you compare two node-sets, then every possible pair of nodes is compared. For example,

[laut hor =/ / arti st returns true if there is at least one <aut hor > element in the document that has
the same string-value as some <arti st > element in the document. In relational terms, it returns true if
the join of the two sets is not empty. (Depending how clever the processor is at optimizing, this could of
course be a very expensive query to run on a large document).

This rule has consequences that may not be intuitive:

O Comparing anything with an empty node-set (even another empty node-set) always returns
false, regardless of the comparison operators you use. The only exception is when you
compare an empty node-set with the Boolean value false: this returns true.

O When either Aor Bis a node-set, testing Al =B doesn't give the same result as testing
not (A=B) . Usually you want the latter.

O The expression: . =/, doesn't test whether the context node is the root, it tests whether the
string-value of the context node is the same as the string-value of the root node. This is likely
to be true, for example, if the context node is the outermost element in the document. To
compare nodes for identity, use the gener at e-i d() function.

Location Paths

Location paths are the cornerstones of the XPath expression language, the construct that gave the
language its name.

Because location paths are frequently used, the language provides many shorthand abbreviations for
common cases. It's useful to know when you're using a shorthand form, so I'll present the full verbose
syntax first, then show the abbreviations.

I'll start with some examples, and then describe the rules.

Example Location Paths

Some examples are given in the table below:

Location Path M eaning

para Select the <par a> elements that are children of the context
node. Short for . / chi | d: : par a.

@itle Select the ti t | e attribute of the current node (if it has
one). Short for . /attribute::title.

Table continued on following page

301

Chapter 8

L ocation Path

M eaning

../ headi ng

/litem

section[1]/cl ause[2]

headi ng
[starts-with(title,'A)]

Select the <headi ng> elements that are children of the
parent of the context node. Short for
./ parent::node()/child:: heading.

Select all the <i t en> elements in the document. Short for
/ descendant - or - sel f: : node()/
item

Select the second <cl ause> child element of the first

<sect i on> child element of the context node.

Select all the <headi ng> child elements of the context node
that have a <ti t| e> child element whose string-value starts
with the character 'A'.

Syntax Rules for Location Paths

A full location path takes one of the following forms:

Format

Meaning

/
/ step

E / step

step

Selects the root node.

Selects nodes that can be reached from the root by taking the
specified step. Steps are defined in the next section.

For example, / conment () selects any top-level comment
nodes, that is, comments that are not contained in any
element.

Selects nodes that can be reached from nodes in E by taking
the specified step. E can be any expression that returns a
node-set; it can be another location path, for example (but
not the root expression /), or a variable reference, or a call
on a function such as docurment (), i d(), or key(),ora
union expression (A| B) in parentheses.

For example, . ./ @i t| e selects the ti t| e attribute of the
parent node.

Selects nodes that can be reached from the context node by
taking the specified step. For example,

descendant : : fi gur e selects all <f i gur e> elements that
are descendants of the context node.

Steps

In these constructs, a step defines a route through the tree representation of the source document. A

step has three components:

O An axis, which defines the relationship of the required nodes to the starting nodes; for
example, whether child nodes, following sibling nodes, or ancestor nodes are required. If no
axis is specified explicitly, the child axis is assumed.

302

XSLT and XPath

0 A node test, which defines two things: the type of nodes that are to be selected, for example
elements, text nodes, or comments, and the names of the nodes to be selected. It is also
possible to select nodes regardless of their type. There are three kinds of name test: a full
name test, which selects only nodes with that name; a namespace test, which selects all nodes
in a particular namespace, and an any-name test, which selects nodes regardless of their name.
The node-test is always present in some form.

O Zero or more predicates, expressions that further restrict the set of nodes selected by the step.
If no predicates are specified, all nodes on the axis that satisfy the node test will be selected.

The full syntax for a step is:
axi s-name «::» node-test («[» predicate «]»)*

We'll look separately at the axis-name, the node-test, and the predicates, and then describe the various
ways in which the full syntax can be abbreviated.

Axis Names

XPath defines the following axes that you can use to navigate the tree structure.

Axis Name Contents

ancest or Contains the parent of the starting node, its grandparent, and so on
up to the root

ancestor-or-self Contains the node itself plus all its ancestors

attribute For any node except an element, this axis is empty. For an element,

it contains the attributes of the element, including any that were
given default values in the DTD. Namespace declarations are not
treated as attributes.

child Contains the children of the starting node. The only nodes that have
children are the root and element nodes; in all other cases, this axis
is empty. The children of an element include all the nodes directly
contained within the element: they don't include attributes or

namespaces.

descendant Contains the children of the starting node, their children, and so on,
recursively.

descendant - or - sel f Contains the starting node itself, plus all its descendants.

fol | owi ng Contains all nodes in the document that follow the starting node in

document order, other than its own descendants. In source XML
terms, this means all nodes that begin after the end tag of the
starting element.

fol | owi ng-sibling Contains all the nodes that are children of the same parent as the
starting node, and follow it in document order.

namespace Contains nodes representing all the namespace declarations that are
in scope for an element. Nodes other than elements have no
namespace nodes.

Table continued on following page

303

Chapter 8

pr ecedi ng-si bl i ng

sel f

Axis Name Contents

par ent Contains the parent of the starting element. This axis is
empty if the starting element is the root.

precedi ng Contains all nodes in the document that precede the starting

node in document order, other than its own ancestors. In
source XML terms, this means all nodes that end before the
start tag of the starting element.

Contains all nodes that are children of the same parent as the
starting node, and that precede it in document order.

Contains the starting node itself.

Node-tests

The node-test within a step appears after the «: : », and is used to select the type of nodes you are
interested in, and to place restrictions on their names. It must be one of the following:

ONarre

prefix:*

*

node()

text ()

conment ()

processi ng-instruction()

processi ng-
instruction(' name')

A name optionally qualified with a namespace prefix, for
example "par a" or "f 0: bl ock". Selects nodes with this name
that are of the principal node type for the axis. For the
attribute axis, the principal nodes are attributes; for the
namespace axis, they are namespace nodes; and in all other
cases, they are elements.

Selects nodes of the principal node type for the axis, which
belong to the namespace defined by the given prefix.

Selects all nodes of the principal node type for the axis.
Selects all nodes, regardless of their name and type.
Selects all text nodes.

Selects all comment nodes.

Selects all processing instruction nodes.

Selects all processing instructions with the given name. Note
that the name must be in quotes.

Predicates

A step can optionally include a list of predicates, which define further conditions that the nodes must
satisfy if they are to be selected. Each predicate is an XPath expression in its own right, written in
square brackets. Each predicate acts as a filter on the node-set, the node-set is passed through each filter
in turn, and only those nodes that satisfy all the predicates are selected.

For example the predicate [@i t| e=' I ntroduction'] selects a node only if it has a title attribute
whose value is | nt r oduct i on; the predicate [posi ti on() != 1] selects a node only if it is not the
first node in the node-set passed through from any previous filter.

304

XSLT and XPath

The predicate is evaluated for each node in turn. The context for evaluating the predicate is different
from the context of the containing expression: specifically, the context node is the node being tested,
the context size is the number of nodes left over from the previous filtering operation, and the context
position is the position of the context node in this list of remaining nodes. So the predicate

[position()=last()] will be true only if the node being tested is the last one in the list.

If the axis is a forward axis, then posi ti on() gives the position of each node within the node-set
considered in document order; if it is a reverse axis, then the nodes are taken in reverse document
order. The only reverse axes are ancest or, ancest or - or - sel f, precedi ng, and pr ecedi ng-
si bl i ng.

A predicate can be either numeric or Boolean. If the value is a number N, this is interpreted as a
shorthand for the expression posi tion() = N Sofollow ng-sibling::*[1] selects the
immediately following sibling element (because this is a forward axis) while pr ecedi ng-
sibling::*[1] selects the immediately preceding sibling element (this is a reverse axis, so [1] means
the last element in document order).

The syntaxes for predicates within a step, and predicates within a filter expression are extremely similar,
and the two can easily be confused. In the following examples, the predicate is part of a step:

itenf1]
precedi ng-sibling::*[@ype='"D][1]

In the following example, the predicate is part of a filter expression:

$itenf 1]
(preceding-sibling::*)[@ype='D][1]

The only real difference is that in a filter expression, the nodes are always considered in forward
document order, while in a step, they are taken in axis order. This means that in the second example
above, the last sibling having @ ype=' D' is taken, whereas in the fourth example, the first sibling with
this attribute is used. It only makes a difference if the predicate is numeric, or uses the posi ti on()
function.

Abbreviations
We've already been using some shortcut notations for location paths, but it's time to describe them more
formally.

O The symbol . (period) is an abbreviation for the step sel f: : node() . It refers to the context
node itself. You can't follow it with any predicates; if you want to test whether the context
node is a <par a> element, write <xsl : i f test="self::para">.

The symbol . . is short for the step par ent : : node() . The same considerations apply.

The child axis is the default axis, so you can always omit chi | d: : from a step. For example,
/ section/itemisshortfor/child::section/child::item

O The symbol @can be used to indicate the attribute axis, it is short for att ri but e: : . So
@itl e meansthesameasattribute::title.

O The operator // is short for / descendant - or - sel f: : node()/, and is a useful short-cut
when searching for all the descendants of a node. For example / /i t emretrieves all the
<i t e elements in the document. Take care when using positional predicates: / /i t enf 1]
does not select the first <i t en® in the document (for that, use (//iten)[1], but rather it
selects every <i t en® element that is the first child of its parent element. This is because the
predicate only applies to the final step in the expanded location path, which implicitly uses
the child axis.

305

Chapter 8

XPath Functions

We've used a number of XPath functions in examples: it's time now to give a complete list. Most of
these functions are defined in the XPath specification itself. A few of them are added in the XSLT
specification, which means that these functions are only available when you use XPath in the context of
an XSLT stylesheet.

Vendors are allowed to add more functions of their own, or to provide mechanisms for users to
implement their own functions, typically in an external language such as Java or JavaScript. These
external functions will always use a namespace prefix to distinguish them from the built-in functions.
For details of these extensions, see the vendor's documentation.

In the descriptions of the functions, I often say that a particular argument should be a string, or a
number, or a Boolean. In nearly all cases this means that you can supply a value of any type, and it will
be automatically converted to the type required: the conversion rules are those described under the
functions bool ean(), nunmber (), and st ri ng(), which can be called directly if you want to make the
conversion explicit.

Because of space limitations, these descriptions of the functions are very brief. If you want a full
explanation of the behavior, or more examples of how to make use of each function, you'll find it in the
Wrox Press book XSLT Programmer's Reference.

boolean(argl)

The bool ean() function converts its argument to a Boolean value.

The argument may be of any data type. The rules for conversion are as follows:

Argument Data Type Conversion Rules

Boolean No conversion

Number 0 is false, anything else is true

String A zero length string is false, anything else is true
Node-set An empty node-set is false, anything else is true
Tree Always true

ceiling(argl)

The argument ar g1 is a number. The cei | i ng() function returns the smallest integer that is greater
than or equal to the numeric value of ar g1. For example, cei | i ng(1. 2) returns 2.

concat(argl, arg2, ...)

The concat () function takes two or more arguments. Each of the arguments is converted to a string,
and the resulting strings are concatenated.

contains(argl, arg2)

The cont ai ns() function tests whether ar g1 contains ar g2 as a substring (in which case true is
returned, otherwise false). Both arguments are strings. Like all other string comparisons in XPath, this is
case-sensitive: cont ai ns(' Paris', 'A') isfalse.

306

XSLT and XPath

count(argl)

The count () function takes a node-set as its argument, and returns the number of nodes present in the
node-set. The argument must be a node-set. (Avoid using count () to test if a node-set is empty: you
can do this more efficiently by converting the node-set to a Boolean, either explicitly using the

bool ean() function, or implicitly by using the node-set in a context where a Boolean is expected, such
as a predicate.)

current()

The current () function has no arguments, and it returns a node-set containing a single node, the
current node. This is the node currently being processed by the most recent <xsl : f or - each> or
<xsl : appl y-t enpl at es> instruction. Usually this will be the same as the context node, which is
referenced simply as . : but within a predicate the two are generally different. This allows you to write,
for example:

//iten] @ode=current()/ @ode]
to find all <i t enP elements with the same code as the current element.

This is an XSLT function: it can only be used in XPath expressions contained in an XSLT stylesheet.

document(argl [, arg2])

The docunent () function finds an external XML document by resolving a URI reference, and returns
its root node.

In the most common usage, ar g1 is a string and ar g2 is omitted. For example

docurent ("I ookup. xm ") finds the file called | ookup. xm in the same directory as the stylesheet,
parses it, and returns a node-set containing a single node, the root of the resulting tree. When argl is a
string, relative URIs are resolved relative to the location of the stylesheet. As a special case,

docurent ("") retrieves the stylesheet itself.

It is also possible for ar g1 to be a node-set. For example docunent (@ir ef) finds an external XML
file using the URI contained in the hr ef attribute of the context node. Because the URI is now obtained
from the source document, any relative URI is resolved relative to the source document rather than the
stylesheet. If the node-set supplied as an argument contains more than one node, the docunent ()
function will load all the referenced documents and return a node-set containing the root node of each
one.

The second argument is optional, and is rarely used. It can be used to provide a base URI other than
the source document or the stylesheet URI for resolving relative URIs contained in the first argument.

A document loaded using the docunent () function can be processed by the stylesheet in just the same
way as the original source document.

docurent () is an XSLT function: it can only be used in XPath expressions contained in an XSLT
stylesheet.

element-available(argl)
This function is used to test whether a particular XSLT instruction or extension element is available for
use. Vendors are allowed to provide proprietary extensions to the XSLT language, provided they use
their own namespace. Some vendors also allow users to implement their own extensions. This function
allows the stylesheet author to test whether a particular vendor extension is available before using it.

307

Chapter 8

The argument is a string containing the name of an element, and the result is true if the processor
recognizes this as the name of an XSLT instruction or extension element.

This is an XSLT function: it can only be used in XPath expressions contained in an XSLT stylesheet.

false()

This function returns the Boolean value false. There are no arguments. This function is needed because
XPath provides no literal constant for the value false.

floor(argl)

The argument ar g1 is a number. The f | oor () function returns the largest integer that is less than or
equal to the value of ar g1. For example, f | oor (3. 6) is 3.

format-number(argl, arg2 [, arg3])

The f or mat - nunber () function is used to convert numbers into formatted strings, usually for display
to a human user, but also to meet the formatting requirements of legacy data standards, such as a need
for a fixed number of leading zeroes. The format of the result is controlled using the <xsl : deci nmal -
f or mat > element. The first argument ar g1 is the number to be converted. The second argument is a
string containing format pattern that indicates the required output format.

The third argument ar g3 is optional, and if present it is a string containing the name of an

<xsl : deci mal - f or mat > element in the stylesheet which defines the formatting rules. A summary of
<xsl : deci mal - f or mat > is given on later in the section on top-level elements, but the details are
outside the scope of this chapter. It allows you, for example, to change the characters that are used to
represent a decimal point and the thousands separator. If ar g3 is omitted, the system looks for an
unnamed <xsl : deci mal - f or mat > element in the stylesheet, or uses a built-in default otherwise.

The most commonly used characters in the format pattern are:

Character M eaning

0 Always include a digit at this position, even if it isn't significant
Include a digit at this position if it is significant

. (period) Marks the position of the decimal point

, (comma) Marks the position of a thousands separator

% Show the number as a percentage

For example, the following table shows how the number 1234.56 will be displayed using some different
format patterns.

Format Pattern Output

1235

#.# 1234.6

A 1234.56
#,##4.000 1,234.560
0,000,000.### 0,001,234.56

308

XSLT and XPath

format - nunber () is an XSLT function: it can only be used in XPath expressions contained in an
XSLT stylesheet

function-available(argl)

This function is used to test whether a particular function is available for use. Vendors are allowed to
add their own functions to those defined in the standard, provided they use their own namespace, and
many vendors also allow users to define extension functions of their own. f uncti on- avai | abl e()
can be used to test the availability both of standard system functions and of extension functions. The
argument is a string containing the function name. For an extension function this will always have a
namespace prefix.

The result is the Boolean value true if the named function is available to be called, or false otherwise.

This is an XSLT function: it can only be used in XPath expressions contained in an XSLT stylesheet.

generate-id([argl])

The gener at e-i d() function generates a string, in the form of an XML name, that uniquely identifies
a node. The argument is optional; if supplied, it must be a node-set. The i d returned is that of the node
that comes first in the node-set, in document order. If the node-set is empty, gener at e-i d() returns
the empty string. If the argument is omitted, the context node is assumed.

Each XSLT processor will have its own way of generating unique identifiers for nodes. Different
processors will return different answers. If you call the function twice for the same node during a
particular transformation, you will get the same answer, but the next time you run the same stylesheet
the answers may be different. The result is a made-up identifier; it bears no relationship to any ID
values that might be present in the source document. The only constraints on the value are that the
identifier must be syntactically a valid XML Name, and that it must be different for every node: this
allows it to be used as the value of an ID attribute in the output document. This can be useful if you are
generating an HTML document and want to generate internal cross references of the form .

Testing gener at e-i d($A) = gener at e-i d($B) is a good way of testing whether $A and $B are the
same node, assuming both node-sets contain singleton nodes. Don't use $A=$B to do this: that compares
the string-values of the nodes, which might be the same even if $A and $B are different nodes.

gener at e-i d() is an XSLT function: it can only be used in XPath expressions contained in an XSLT
stylesheet.

id(argl)

The i d() function returns a node-set containing the node or nodes from the source document that have
a given ID attribute. This relies on there being a DTD that identifies particular attributes as being of
type ID. If the document contains such attributes, they must be unique (assuming the document is
valid).

The argument may be a string, in which case it is treated as a whitespace-separated list of ID values.
Alternatively, it may be a node-set, in which case the string-value of each node in the node-set is
considered as a whitespace-separated list of ID values. All these ID values are assembled, and the result
of the function is the set of elements having ID values that are present in this list. Of course, the most
common case is that ar g1 is a single ID value, and the result will then contain exactly one node, if the
ID value is present in the document or none if it is absent.

309

Chapter 8

key(argl, arg2)

The key() function is used to find the nodes with a given value for a named key. The first argument is
a string containing the name of a key: this must match the name of an <xsl : key> element in the
stylesheet, as described in the later section on top-level elements. The second argument supplies the key
value or values you are looking for. It may be a string, containing a single key value, or a node-set,
containing a set of key values, one in each node. The result of the function is a node-set containing all
the nodes in the source document that have a key which is present in this list.

This is an XSLT function: it can only be used in XPath expressions contained in an XSLT stylesheet.

lang(argl)

The | ang() function tests whether the language of the context node, as defined by the xm : | ang
attribute, corresponds to the language supplied as an argument. xm : | ang is one of the few attributes
whose meaning is defined in the XML specification itself.

The argument is a string that identifies the required language, for example "en" for English, "de" for
German, or "cy" for Welsh. The result is true if the context node is in a section of the source document
that has an xnl : | ang attribute identifying the text as being in this language, and is false otherwise. The
actual rules for testing the language code are quite complex (to cater for complexities such as US
English versus British English) and are outside the scope of this chapter: you will find them in the Wrox
Press book XSLT Programmer's Reference.

last()

The | ast () function returns the value of the context size. When processing a list of nodes, if the nodes
are numbered from one, | ast () gives the number assigned to the last node in the list.

The test posi ti on() =l ast () is often used to test whether the context node is the last one in the list.

local-name([argl])

The | ocal - nane() function returns the local part of the name of a node, that is, the part of the QNane
after the colon if there is one, or the full QName otherwise. For example, if the element name was written
as <par a> the local name will be par a; if it was written as <f 0: bl ock> it will be " bl ock". If the
argument is omitted, the function returns the local name of the context node. If the argument is
supplied, it must be a node-set, and the result is the local name of the first node in this node-set, taking
them in document order. If the node-set is empty, the result is an empty string.

name([argl])

The name() function returns a string containing the qualified name of a node, that is, the name as
written in the XML source document, including any namespace prefix. If the argument is omitted, the
function returns the name of the context node; if the argument is supplied, it must be a node-set, and
the result is the name of the first node in this node-set, taking them in document order. If the node-set is
empty, the result is an empty string.

The name() function is useful to display the name of a node. Try to avoid using it in a context such as
[nane()="ny: el enent'] to test the name of a node, because this won't work if a different namespace
prefix has been used. Instead, test [sel f: : ny: el ement], which actually tests the namespace URI
corresponding to the prefix " ny", rather than the prefix itself.

310

XSLT and XPath

namespace-uri([argl])

The namespace- uri () function returns a string that represents the URI of the namespace in the
expanded name of a node. This will be a URI used in a namespace declaration, that is, the value of an
xm ns or xm ns: * attribute.

If the argument is omitted, the function returns the namespace URI of the context node; if the argument
is supplied, it must be a node-set, and the result is the namespace URI of the first node in this node-set,
taking them in document order. If the node-set is empty, the result is an empty string.

normalize-space([argl])

The argument ar g1 is a string; if it omitted, the string-value of the context node is used. The
nor mal i ze- space() function removes leading and trailing whitespace from the argument, and
replaces internal sequences of whitespace with a single space character. The result is a string.

not(argl)

The argument ar g1 is a Boolean. If the argument is true, the not () function returns false, and vice
versa.

number([argl])

The nunber () function converts its argument to a number. If the argument is omitted, it converts the
string-value of the context node to a number.

The conversion rules are as follows:

Source Data Type Conversion Rules

Boolean False converts to zero, true to one.

String The string is parsed as a decimal number. Leading and trailing whitespace
is allowed, as is a leading minus (or plus) sign. If the string cannot be
parsed as a number, the result is NaN (Not a Number). The rules for
converting a string to a number are essentially the same as the rules for
writing a number in an XPath expression: conversion will fail, for example,
if the number uses scientific notation or contains a leading "$" sign.

Node-set Takes the string-value of the first node in the node-set, in document order,
and converts this to a string using the rules for string-to-number
conversion. If the node-set is empty, the result will be NaN.

Tree Treats the tree as a node-set containing the root node of the tree, and
converts this node-set to a number.

position()

The posi tion() function returns the value of the context position. When processing a list of nodes, if
the nodes are numbered from one, posi tion() gives the number assigned to the current node in the
list. There are no arguments.

311

Chapter 8

round(argl)

The argument ar g1 is a number. The r ound() function returns the closest integer to the numeric value
of ar g1. For example, round(1. 8) returns 2 and r ound(3. 1) returns 3. A value midway between
two integers will be rounded up.

starts-with(argl, arg2)

The starts-wi th() function tests whether the string ar g1 starts with another string ar g2. Both
arguments are strings, and the result is a Boolean. Like all other string comparisons in XPath, this is
case-sensitive: starts-with(' Paris', 'p') is false.

string([argl])

The string() function converts its argument to a string value. If the argument is omitted, it returns the
string-value of the context node. This depends on the type of node: see the table in the earlier section
on The XPath Data Model for more details.

The conversion rules are as follows:

Source Data Type Conversion Rules
Boolean Returns the string "true" or "false".
Number Returns a string representation of the number, to as many decimal places

as are needed to capture its precision.

Node-set If the node-set is empty, returns the empty string "". Otherwise, the
function takes the first node in document order, and returns its string-
value. Any other nodes in the node-set are ignored. The string-value of a
node is defined for each type of node in the table under 7%e XPath Data
Model earlier in this chapter.

Tree Returns the concatenation of all the text nodes in the tree.

string-length(argl)

The argument ar g1 is a string. The st ri ng-| engt h() function returns the number of characters
in ar g1.

substring(argl, arg2 [, arg3])

The substring() function returns part of the string supplied as ar g1, determined by character
positions within the string.

ar g2 is a number giving the start position of the required sub-string. Character positions are counted

from one. The supplied value is rounded, using the rules of the r ound() function. The function doesn't
fail if the value is out of range, it will adjust the start position to either the beginning or end of the string.

ar g3 gives the number of characters to be included in the result string. The value is rounded in the
same way as ar g2. If ar g3 is omitted, you get all the characters up to the end of the string. If the value
is outside the range, it is adjusted so you get either no characters, or all the characters up to the end of
the string.

312

XSLT and XPath

substring-after(argl, arg2)

The arguments ar g1 and ar g2 are strings. The subst ri ng-after () function returns a string
containing the characters from ar g1 that occur after the first occurrence of ar g2. If ar g2 is not a sub-
string of ar g1, the function returns the empty string.

substring-before(argl, arg2)

The arguments ar g1 and ar g2 are strings. The subst ri ng- bef or e() function returns a string
containing the characters from ar g1 that occur before the first occurrence of ar g2. If ar g2 is not a sub-
string of ar g1, the function returns the empty string.

sum(argl)

The argument, ar g1, must be a node-set. The sum() function calculates the total of a set of numeric
values contained in the nodes of this node-set. The function takes the string-value of each node in the
node-set, converts this to a number using the rules of the nunber () function, and adds this value to the
total. If any of the values cannot be converted to a number, the result of the sun() function will be
NaN (Not a Number).

system-property(argl)

The syst em property() function returns information about the processing environment. The
argument ar g1 is a string containing a QName; a qualified name that identifies the system property
required. Three system properties are defined in the XSLT standard, but others may be provided by
individual vendors. The three standard properties are:

xsl :version The version of the XSLT specification implemented by this processor, for
example 1.0 or 1.1.

xsl : vendor Identifies the vendor of this XSLT processor

xsl : vendor - url The URL of the vendor's web site

If you supply a property name that the processor doesn't recognize, the function returns an empty
string.

This is an XSLT function: it can only be used in XPath expressions contained in an XSLT stylesheet.

translate(argl, arg2, arg3)

The transl at e() function substitutes characters in a supplied string with nominated replacement
characters. It can also be used to remove nominated characters from a string.

All three arguments are strings: ar g1 is the string to be translated. ar g2 gives a list of characters to be
replaced, and ar g3 gives the replacement characters.

For each character in ar g1 the following processing is applied:

O If the character appears at position n in the list of characters in ar g2, then if there is a
character at position n in ar g3, it is replaced with that character, otherwise it is removed from
the string.

O If the character doesn't appear in ar g2, then it is copied unchanged to the result string.

313

Chapter 8

For example, t ransl at e(" ABC- 123", "0123456789-", "9999999999") returns " ABC999",
because the effect is to translate all digits to a " 9", remove all hyphens, and leave other characters
unchanged.

true()

This function returns the Boolean true value. It takes no arguments. The function is needed because
XPath provides no constant representing the value true.

unparsed-entity-uri(argl)

The unpar sed-entity-uri () function gives access to declarations of unparsed entities in the DTD of
the source document. The argument is evaluated as a string containing the name of the unparsed entity
required. The function returns a string containing the URI (the system identifier) of the unparsed entity
with the given name, if there is one. Otherwise, an empty string.

This is an XSLT function: it can only be used in XPath expressions contained in an XSLT stylesheet.

Stylesheets, Templates, and Patterns

We've now finished our tour of XPath expressions. Let's return now to XSLT and look at the structure
of a stylesheet and the templates it defines. We'll be using examples of XPath expressions throughout
this section.

The <xsl:stylesheet> Element

A stylesheet is usually an XML document in its own right, and its outermost element will be an
<xsl : styl esheet > element (you can also use <xsl : t r ansf or m> as a synonym). The
<xsl : styl esheet > element will usually look something like this:

<xsl : styl esheet
xm ns: xsl ="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or nf'
versi on="1.0">

</ xsl : styl esheet >

The namespace URI must be exactly as written, or the processor won't recognize it as an XSLT
stylesheet. You can use a different prefix if you like (some people prefer to use "xslt") but you must then
use it consistently. The version attribute is mandatory, and indicates that this stylesheet is using facilities
only from XSLT version 1.0.

If you see a stylesheet that uses the namespace htt p: // www. w3. or g/ TR/ WD- sl , then it is not an
XSLT stylesheet, but one that uses the old Microsoft dialect of the language shipped with IE5 and IE5.5.
There are so many differences between these dialects that they are best regarded as separate languages:
in this chapter, we are only describing XSLT. As part of the Microsoft XSLT processor, MSXML3
(currently available at http://msdn.Microsoft.com/xml), there is a tool to convert stylesheets from the old
Microsoft dialect to XSLT.

The <xsl : styl esheet > element will often carry a number of other namespace declarations; for
example, to define the namespaces for any extension functions you are using, or the namespaces of
elements in your source document that you want to match. There are several other attributes you can
have on this element:

314

XSLT and XPath

Attribute Name Usage

id An identifying name for the stylesheet. Not used by XSLT
itself.

ext ensi on- el ement - A list of namespace prefixes (separated by whitespace) that

prefixes

are being used for vendor-defined or user-defined stylesheet
instructions (so-called extension elements).

excl ude-resul t-prefixes A list of namespace prefixes (separated by whitespace) that
are not to be included in the result document unless they are
actually referenced.

In a typical stylesheet, most of the elements immediately within the <xsl : st yl esheet > element
(which are known, rather inaccurately, as top-level elements) are likely to be <xsl : t enpl at e>
elements. We'll discuss these now, and return to the other kinds of top-level element in a later section.

The <xsl:template> Element

Templates are the building blocks of an XSLT stylesheet, like the procedures and functions in a
conventional program. When a template is triggered (or "instantiated", in the jargon of the standard), it
generally causes things to be written to the result tree. The contents of a template in the stylesheet
consist of two kinds of node: instructions and data. When the template is triggered, any instructions are
executed, and any data nodes (referred to as literal result elements and text nodes) are copied directly to
the output.

For example, when the following template is triggered, it writes a <par a> element to the result tree,
containing the text of the current node in the source document:

<xsl : tenpl at e mat ch="aut hor">
<par a>By: <xsl:val ue-of select="."/></para>
</ xsl: tenpl at e>

This little template contains a literal result element (the <par a> element), literal result text «By: », and
an instruction (the <xsl : val ue- of > element).

There are two ways of triggering a template: it can be invoked explicitly, using the <xsl : cal | -
t enpl at e> instruction, or implicitly, using <xsl : appl y-t enpl at es>.

The <xsl : cal | -t enpl at e> instruction is very like a conventional subroutine call. It has a name
attribute, which must match the namne attribute of an <xsl : t enpl at e> element somewhere in the
stylesheet. When the instruction <xsl : cal | -t enpl at e name="t abl e- of -contents"/ > is
executed, the template declared as <xsl : t enpl at e name="t abl e- of - cont ent s" > springs into life.

The other mechanism, using <xsl : appl y-t enpl at es>, is more subtle. This instruction has a sel ect
attribute whose value is an XPath expression that selects the set of nodes to be processed. The default is
sel ect="chi |l d:: node()" which selects all the children of the current node. For each of these nodes,
the system searches all the templates in the stylesheet to find one that best matches that node. This
search is based on the mat ch attribute of the <xsl : t enpl at e> element, which defines a pattern that
the node must match in order to qualify.

315

Chapter 8

We'll look in a moment at the detail of how match patterns work. First let's look at a complete stylesheet
that uses template rules to define its processing.

Our example will be a very simple kind of transformation: subsetting of a file of records to include only
those that satisfy certain criteria. The input will be a product file such as:

<?xm version="1.0"?>
<pr oduct s>
<product code="Z123-888" category="tool s">
<descri pti on>Large cl aw hanmmer </ descri pti on>
<wei ght units="gns" >850</ wei ght >
<price>12.99</ pri ce>
</ pr oduct >
<pr oduct code="X853-122" cat egory="books">
<title>Plunbi ng for beginners</title>
<| SBN>0- 123- 456- 9876</ | SBN>
<pri ce>10. 95</ pri ce>
</ pr oduct >
<product code="S14-8532" category="tool s">
<descri pti on>Adj ust abl e spanner </ descri pti on>
<wei ght units="gns" >330</ wei ght >
<pri ce>5. 25</ pri ce>
</ pr oduct >
</ product s>

The requirement is to produce another product file, with the same structure, but selecting only those
products whose price exceeds ten dollars, and omitting the price from the output.

The following stylesheet achieves this:

<?xm version="1.0"?>
<xsl : styl esheet xm ns: xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf orn' versi on="1.0">
<xsl:tenplate match="*">
<xsl : copy>
<xsl:copy-of select="@" />
<xsl : appl y-tenpl ates />
</ xsl : copy>
</ xsl : tenpl at e>
<xsl:tenplate match="product[price & t; 10.00]" />
<xsl :tenpl ate match="price" />
</ xsl : styl esheet >

How does it work?

There are three template rules. The first one matches all elements (mat ch="*"). This template rule uses
the <xsl : copy> instruction to copy the element node from the source tree to the result tree. It also
copies the attributes of the element using <xsl| : copy- of >: the expression sel ect =" @" selects all the
attribute nodes of the current element. It then calls <xsl : appl y-t enpl at es/ > to process the children
of the current element, each one using the appropriate rule for that element.

The next two template rules are empty: they match an input element and produce no output, thus
effectively removing that element and its contents from the file. The first of these two matches

<pr oduct > elements that have a child <pri ce> element, whose value is less than 10.00; the second
matches <pri ce> elements. Because these two rules have match patterns that are more specific than the
first template rule, they take priority over it when the relevant conditions are satisfied.

316

XSLT and XPath

The other nodes in the tree (for example the root node and text nodes) are handled by the built-in
template rules used when no explicit rule is provided. For the root, this built-in template rule just calls
<xsl : appl y-tenpl ates /> to process the children of the root node. For a text node, it copies the
text to the result tree.

The output of the stylesheet looks like this (whitespace added for clarity).

<?xm version="1.0" encodi ng="utf-8"?>
<pr oduct s>
<product code="Z123-888" category="tool s">
<descri pti on>Large claw hamer </ descri pti on>
<wei ght units="gns">850</ wei ght >
</ pr oduct >
<product code="X853-122" category="books">
<title>Plunbing for beginners</title>
<| SBN>0- 123- 456- 9876</ | SBN>
</ pr oduct >
</ pr oduct s>

If you want to try this example out for yourself, follow the steps below:

Download the sample files for this book from http://www.wrox.com
Download Instant Saxon from http://users.iclway.co.uk/mhkay/saxon/
Extract the executable saxon. exe into a suitable directory, say c:\ saxon
Open an MS-DOS console

Change directory to the folder containing the Wrox examples, and then run the processor, as
follows:

O o o o g

cd pat h- of - wr ox- downl oad
c: \ saxon\ saxon. exe products. xm products. xs

Of course, if you already have another XSLT processor installed, such as Xalan or Oracle XSL, you can
equally well run the example with that, changing the command line as required.

Patterns

The patterns that you can write in the mat ch attribute of <xsl : t enpl at e> are very similar to XPath
expressions. In fact, they are a subset of XPath expressions and every pattern is a valid XPath
expression. The converse is not true however.

By far the most common kind of pattern is a simple element name, for example aut hor in the example
above. This will match all <aut hor > elements (but remember to include a namespace prefix if the
element has a namespace URI).

Instead of a name, you can use any node test. The different kinds of node test were listed in an earlier
section. For example, you can write t ext () to match all text nodes, or svg: * to match all elements in
the svg namespace.

You can also add one or more predicates after the name. The predicate can be any XPath expression so
long as it doesn't use variables or the cur rent () function (which would be meaningless). For example,
you could write section[@i tle="Introduction'] to match a <secti on> element having a

titl e attribute with the value | nt r oduct i on. Or you could use par a[1] to match any <par a>
element that is the first <par a> child of its parent element.

317

Chapter 8

You can also qualify the pattern by specifying the names of parent or ancestor elements, using the same
syntax as a location path in an XPath expression. For example, scene/ ti t| e matches any <titl e>
element whose parent is a <scene> element, and chap// not e matches any <not e> element provided
it is a descendant of a <chap> element.

If you want to define a single template that matches several different patterns, you can use the union
operator | to separate them. For example, the pattern scene | prol ogue | epil ogue, matches
<scene>, <pr ol ogue>, and <epi | ogue> elements.

The full rules for patterns are a bit more complex than this, but it's good practice to keep patterns
reasonably simple, so the examples described here should be more than adequate for most stylesheets.

Selecting a Template Rule

When <xsl : appl y-t enpl at es> is used to process a set of nodes, it won't necessarily happen that
there's exactly one template rule that matches each node. There may be none, and there may be
several.

It's possible to steer the process by using modes. If the <xsl : appl y-t enpl at es> instruction has a
node attribute, the selected <xsl : t enpl at e> element must have a matching node attribute. If there's
no node attribute on the <xsl| : appl y-t enpl at es> element, it will only match <xsl : t enpl at e>
elements with no node attribute. Modes are useful when there are several different ways of processing
the same input nodes, for example you may want to process them one way while generating the body of
the document, and another way when generating an index.

Here's an example that outputs all the sections in a chapter, preceded by a table of contents. The entries
in the table of contents are hyperlinks to the relevant sections, with the identifiers for the links
constructed using the XPath gener at e-i d() function:

<xsl :tenpl ate mat ch="chapter">
<h2>Tabl e of Contents</h2>
<xsl : appl y-tenpl at es sel ect ="secti on" nbde="toc"/>
<xsl : appl y-tenpl at es sel ect ="secti on" node="body"/>
</ xsl : tenpl at e>
<xsl:tenpl ate mat ch="secti on" node="toc">
<p>
<xsl :val ue-of select="title"/>
</ a></ p>
</ xsl : t enpl at e>
<xsl :tenpl ate match="secti on" node="body" >
<h2>
<xsl:val ue-of select="title"/>
</ a></ h2>
<xsl : appl y-tenpl at es sel ect ="para"/>
</ xsl : tenpl at e>

If there's no matching template rule for a node, a default rule is invoked. The default processing
depends on the node type, as follows:

O For the root node and element nodes, it invokes <xsl : appl y-t enpl at es /> to process the
children of this node. This may find explicit rules for these children, or it may again invoke
the default rule.

For text nodes and attribute nodes, it copies the string-value of the node to the result tree.

0 For other nodes, it does nothing.

318

XSLT and XPath

If there's more than one rule, a priority scheme comes into play. This works as follows:

O The processor must first see if the matching rules have different import precedence, and if so,
reject any that have lower precedence than others. This will only happen if one template is in
a separate stylesheet imported using <xsl : i mpor t >, which we'll describe in the later section
on top-level elements within templates.

O Then the processor must look at the priorities of the rules. You can set a priority explicitly on
a rule by using its pri ori ty attribute, for example a rule with pri ority="2" will be chosen
in preference to one with pri ority="1".If there's no explicit priority, the system allocates a
default priority based on the syntax you use in the match pattern. This tries to ensure that
highly selective patterns like section[@i tl e="Introduction'] geta higher priority
than catch-all patterns like node(), but it's a hit-and-miss process, and it's safer to allocate
priorities explicitly.

O If, after all this, there are still several possible candidates, the specification says it's an error.
However, it gives the processor a choice of what to do about this. A strict processor is allowed
to report the error and terminate processing. A more lenient processor is allowed to choose
whichever rule comes last in the stylesheet, and use that. Some processors actually adopt a
middle course, of continuing after a warning message.

Parameters

Whether a template rule is called using <xsl : cal | -t enpl at e> or <xsl : appl y-t enpl at es>, it's
possible to supply parameters with the call. The calling instruction uses <xsl : wi t h- par an® to set a
value for a parameter; the called template uses <xsl : par an® to receive the value. If the caller sets a
parameter that the called template isn't expecting, it is simply ignored; if the caller fails to set a
parameter that's expected, it will take a default value, which can be specified in the <xsl : par an>
element.

The <xsl : par am® and <xsl : wi t h- par am> elements have identical syntax: a nane attribute to give
the name of the parameter, and a sel ect attribute containing an XPath expression to give its value. (In
the case of <xsl : par an®, this is the default value.) They can also have content, to express the value as
a tree, in the same way as <xsl : vari abl e> which we'll describe later in this Chapter.

Here's an example of a template that copies a node and its descendants, down to a specified depth. The
template calls itself recursively: this is very much part of the programming style when you want to do
anything complex with XSLT. Each time the template calls itself, it reduces the depth by one, until it
reaches zero and the template does nothing, and returns immediately.

<xsl:tenplate match="/ | * | text()" node="shal | ow copy">
<xsl : param nane="dept h"/ >
<xsl:if test="%depth > 0">
<xsl : copy>

<l-- copy all the attributes -->
<xsl:copy-of select="@"/>
<l-- process all the children -->

<xsl : appl y-tenpl at es node="shal | ow copy" >
<xsl :wi t h- param nane="dept h" sel ect ="$depth - 1"/>
</ xsl : appl y-t enpl at es>
</ xsl : copy>
</xsl:if>
</ xsl : tenpl at e>

319

Chapter 8

You can call this to copy the root node to a depth of three with a call such as:

<xsl : appl y-tenpl ates sel ect="/" npde="shal | ow copy" >
<xsl : wi t h- par am nane="dept h" sel ect="3"/>
</ xsl : appl y-tenpl at es>

The match pattern on the template uses a union pattern to specify that the template will match the root
node /, any element *, or any text node t ext () . If comments or processing instructions are
encountered, the built-in template kicks in, which for these types of node causes them to be ignored.

The Contents of a Template

The contents of an <xsl : t enpl at e> element (after any <xsl : par anm® elements, which must come
first) form a template body.

A template body consists of a sequence of element and text nodes. The stylesheet may also contain
comments and processing instructions, but these are ignored completely, so we won't consider them.
Any text nodes that consist entirely of whitespace will also have been removed.

The element nodes in a template body can be further categorized:

0 Elements in the XSLT namespace are instructions. These are conventionally prefixed "xsl : "
but you can use any prefix you like.

O Elements in a namespace designated as an extension element namespace are instructions. The
meaning of these instructions is vendor-dependent.

O Any other elements are literal result elements. These are copied to the result tree.

Text nodes appearing within a template body are also copied to the result tree.

Extension elements are outside the scope of this chapter: see the vendor's documentation if you want to
use them. In this section, we'll review the XSLT-defined instructions, and then look more closely at
literal result elements.

We've introduced the template body as the contents of an <xsl : t enpl at e> element, but in fact many
other elements, such as <xsl : i f > and <xsl : el ement >, have content that follows the same rules and
is handled the same way as a template body contained directly in an <xsl : t enpl at e> element. So, the
term template body is used generally to describe the content of all these elements.

Attribute Value Templates

Some attributes in an XSLT stylesheet are designated as attribute value templates. Examples are the
nane attribute of the <xsl : attri but > and <xsl : el enent > instructions. In these attributes, instead
of writing a fixed value, such as «<nane="descri pti on"», you can parameterize the value by writing
XPath expressions within curly brackets, for example name="{$pr ef i x}: { $| ocal nanme} ". When the
instruction is executed, these XPath expressions will be evaluated, and the resulting attribute value will
be substituted into the attribute value in place of the expression.

If the XML source document uses curly braces within the attribute value and you don't want it to trigger
this mechanism, write it twice, for example val ue="{{not an AVT}}".

320

XSLT and XPath

The most common mistake with attribute value templates is to assume you can use them anywhere. You
can't; they are allowed in only a few specific places. These are indicated in the descriptions of each
XSLT element below. Don't attempt, for example, to write <xsl| : cal | -t enpl at e

nanme="{$t nane}" />:it won't work.

One particular point is that you never use curly brackets inside an XPath expression, only to surround
an XPath expression within an attribute that would otherwise be interpreted as a text value.

XSLT Instructions

XSLT instructions are a subset of XSLT elements: essentially, those that can be used directly as part of a
template body.
The instructions defined in XSLT 1.0 are as follows:

<xsl : appl y-i nport s> <xsl : fal | back>

<xsl : appl y-tenpl at es> <xsl : for-each>
<xsl:attribute> <xsl:if>

<xsl:call-tenpl ate> <xsl : nessage>

<xsl : choose> <xsl : nunber >

<xsl : conment > <xsl : processi ng-i nstruction>
<xsl : copy> <xsl:text>

<xsl : copy- of > <xsl : val ue- of >

<xsl : el emrent > <xsl :vari abl e>

In the following sections, we'll look briefly at each one.

<xsl:apply-imports>

This is a very rarely used instruction. It has no attributes and is always empty. It is used while
processing a particular node to invoke template rules from an imported stylesheet, overriding the
normal rules for template selection based on import precedence.

<xsl:apply-templates>

We have already described this instruction earlier in the chapter. It causes a selected set of nodes to be
processed, each one using the appropriate template rule based on match patterns and priorities.

The instruction takes two attributes, both optional. The sel ect attribute is an XPath expression that
defines the set of nodes to be processed: by default, the children of the current node are processed. The
node attribute gives the name of a processing mode: only those <xsl : t enpl at e> elements with the
same mode name are candidates for matching.

Within the invoked templates, any XPath expressions are evaluated with the context set by the

<xsl : appl y-t enpl at es> instruction. Specifically, the context node will be the node currently being
processed, the context position (the result of the posi ti on() function) will be 1 for the first node
processed, 2 for the second, and so on, and the context size (the result of the | ast () function) will be
the total number of nodes to be processed.

The <xsl : appl y-t enpl at es> instruction is often written as an empty element, but there are two
other elements it may optionally contain: <xsl| : Wi t h- par an®, to define any parameters to be passed
to the called template, and <xsl : sort >, which defines the sort order of the nodes to be processed. In
the absence of <xsl : sort >, the nodes are processed in document order. <xsl : sort > is described
later in the section titled Sorting.

321

Chapter 8

<xsl:attribute>

The effect of <xsl : attri but e> is to write an attribute node to the result tree. This is only possible if
the last thing written was an element or another attribute. The <xsl : at t ri but &> instruction has two
attributes, name and namespace. The name attribute gives the name of the new attribute (this is
mandatory), and the namespace attribute gives the namespace URI. If no namespace is specified, the
namespace is taken from the prefix of the nane, if this has one.

Both the name and nanespace attributes are interpreted as Attribute Value Templates. The value of
the new attribute is constructed from the content of the <xsl : at t ri but e> element. This is another
template body, but it should generate only text nodes. For example:

<xsl :attri bute nane="col or">
<xsl : val ue-of sel ect="concat('#', $bgcolor)"/>
</ xsl:attribute>

<xsl:call-template>

This instruction has already been discussed, in the earlier section on the <xsl : t enpl at e> element. It
takes a mandatory narme attribute, which names the template to be called. There must be a template
with this name in the stylesheet.

The only elements permitted in the content of <xsl : cal | -t enpl at e> are <xsl : wi t h- par am>
elements. These set the values of any parameters to be passed to the called template. The names used in
the <xsl : wi t h- par an® elements should match the names used in the <xsl : par an® elements of the
called template.

<xsl:choose>

In a similar manner to If-else in Visual Basic, this instruction is used to perform conditional processing.
The <xsl : choose> element itself has no attributes. It contains a sequence of one or more

<xsl : when> elements, optionally followed by an <xsl : ot her wi se> element. Each <xsl : when>
element specifies a condition, and the first one whose condition is satisfied is executed. If none of the
conditions is satisfied, the <xsl : ot her wi se> element is used. For example:

<xsl : choose>
<xsl:when test="1ang(' en')">Wel cone</ xsl : when>
<xsl : when test="lang(' de')">W /I | kommen</ xsl : when>
<xsl:when test="lang(' fr')">Bi envenue</ xsl : when>
<xsl : ot herwi se>System error! </ xsl: ot herw se>

</ xsl : choose>

The t est attribute of <xsl : when> is an XPath expression, whose result is converted to a Boolean. The
content of the <xsl : when> and <xsl : ot her wi se> elements need not be simple text as in this
example, it can be any template body.

<xsl:comment>

This instruction is used to output a comment node to the result tree. It takes no attributes. The content
of the <xsl : conment > element is a template body, but this should generate nothing other than text
nodes. For example:

<xsl : commrent >
Generated with paraml=<xsl:val ue-of sel ect="$parantl"/>
</ xsl : conment >

322

XSLT and XPath

<xsl:copy>

This instruction performs a shallow copy of the current node: that is, it copies the current node, but not
its children. When the current node is a root or element node, the content of the <xsl : copy>
instruction is taken as a template body, which is instantiated to create the content of the copied output
node. When the current node is an attribute node, text node, comment, or processing instruction, the
content of the <xsl : copy> element is ignored.

The <xsl : copy> instruction has an optional attribute use- at t ri but e- set s. This is relevant only
when copying an element. It has the same effect as the use- at t ri but e- set s attribute of
<xsl : el ement >, which is described later.

<xsl:copy-of>

This instruction performs a deep copy of all the nodes selected by the XPath expression in its sel ect
attribute. That is, it copies those nodes and all their descendants, as well as their attributes and
namespaces, to the result tree.

If the result of evaluating the expression in the sel ect attribute is a simple string, number, or Boolean,
the <xsl : copy- of > instruction has the same effect as <xsl : val ue- of >: it converts the value to a
string and writes it to the result tree as a text node. For example:

<xsl:copy-of select="@" />

This copies all the attributes of the current node to the result tree.

The following instruction (which might be the only thing a stylesheet does) copies all the news items
with a status of "current” to the result tree, together with all their content:

<xsl:copy-of select="/news/iten]f @tatus="current']" />

The <xsl : copy- of > instruction is always empty.

<xsl:element>

The <xsl : el emrent > instruction writes an element node to the result tree. The content of the
<xsl : el enent > instruction is a template body, which is instantiated to construct the content of the
generated element.

The <xsl : el ement > instruction has attributes name and nanespace. The nane attribute gives the
name of the new element (this is mandatory), and the namespace attribute gives the namespace URIL. If
no namespace is specified, it is taken from the prefix of the supplied element name, if this has one.

Both the name and nanespace attributes are interpreted as Attribute Value Templates. The following
example creates an <ht ml > element using a namespace URI that is passed in as a parameter:

<xsl : el ement nanme="htm " namespace="{$ht nl - nanespace}" >
<head>
<title><xsl:value-of select="title"/></title>
</ head>
<body>
<xsl :call -tenpl at e nane="gener at e- body"/ >
</ body>
</ xsl : el ement >

323

Chapter 8

The <xsl : el enment > instruction may also have an attribute use- at t ri but e- set s. If present, this is
a whitespace-separated list of names, each of which must be the name of an <xsl : attri but e-set >
element at the top level of the stylesheet. The effect is that the new element will be given all the
attributes defined in these attribute sets.

<xsl:fallback>

This is a rarely encountered instruction. It is used within the content of a vendor extension element to
define the processing that should take place if the extension element is not available. It can also be used
if your stylesheet specifies ver si on="2. 0", say, (because it uses features defined in XSLT version 2.0),
to define what should happen if the stylesheet is run using an XSLT processor that does not support
version 2.0 features.

<xsl:for-each>

The <xsl : f or - each> instruction is used to define processing that should be carried out for each
member of a node-set. The node-set to be processed is defined by an XPath expression in the sel ect
attribute, which is mandatory. The processing itself is defined by the template body contained within
the <xsl : f or - each> element.

The following example creates one attribute node in the result tree corresponding to each child element
of the current node in the source tree:

<xsl : for-each select="*">
<xsl:attribute name="{nane()}">
<xsl : val ue-of select="."/>
</ xsl:attribute>
</ xsl : for-each>

The node-set is normally processed in document order. To process the nodes in a different order,
include one or more <xsl : sort > elements immediately within the <xsl : f or - each> instruction. For
more details, see the section on Sorting.

The <xsl : f or - each> instruction changes the current node: each node in the node-set becomes the
current node in turn, for as long as the template body is active. Sometimes <xsl : f or - each> is used
solely for this purpose, to set the current node for an instruction such as <xsl : nunber > or

<xsl : copy> that only works on the current node. For example:

<xsl:for-each select="..">
<xsl : nunber/ >
</ xsl : for-each>

This outputs the sequence number of the parent node. There is no iteration here: there is only one
parent node, so the template body is only instantiated once.

While the <xsl : f or - each> instruction is active, any XPath expressions are evaluated with the context
set by the <xsl : f or - each>. Specifically, the context node will be the node currently being processed,
the context position will be 1 for the first node processed, 2 for the second, and so on, and the context
size will be the total number of nodes to be processed. A common error is to write:

<xsl :for-each select="itenl>
<xsl :val ue-of select="itenl />
</ xsl : for-each>

324

XSLT and XPath

This fails (or rather, it produces no output) because the XPath expression in the <xsl : val ue- of >
instruction is evaluated with an <i t e as its context node, and the expression i t emis short for

chil d::item but the context <i t em> has no <i t en> elements as its children. Use <xsl : val ue- of
sel ect ="."/ > instead.

The two instructions <xsl : appl y-t enpl at es> and <xsl : f or - each> are the only instructions that
change the current node in the source tree. They represent two different styles of processing, sometimes
called push and pull respectively. Push processing (using <xsl : appl y- t enpl at es>) relies on pattern
matching, and it works best when the structure of the input is highly variable, for example where
elements may be found in many different contexts. Pull processing (using <xsl : f or - each>) works

better where the structure of the source is very rigid and predictable. It's a good idea to become familiar
with both.

<xsl:if>

The <xsl : i f > instruction performs an action if a condition is true. There is no else branch: if you need
one, use <xsl : choose> instead. <xsl : i f > has a mandatory t est attribute which defines the
condition to be tested, as an XPath expression whose result is automatically converted to a Boolean.
The <xsl : i f > element contains a template body which is instantiated if and only if the condition is
true.

This example outputs a message containing the word "errors" unless there was only one, when it uses
the singular "error". It also uses an <xsl : choose> to :

There <xsl:choose><xsl : when test="count($errors)=1">was

</ xsl| : when><xsl : ot herwi se>were </ xsl : ot herw se></xsl : choose>
</ <xsl:val ue-of select="count($errors)" />

error<xsl:if test="count($errors)!=1">s</xsl:if>

<xsl:message>

The <xsl : nessage> instruction is used to output a message. The specification isn't very precise about
what happens to the message; this depends on the implementation. The <xsl| : nessage> element
contains a template body which is instantiated to construct the message. This may contain any kind of
XML markup, though text messages are likely to behave more predictably.

There is an optional attribute t er m nat e="yes" which causes execution of the stylesheet to terminate
at once. For example:

<xsl:if test="not(/invoice)">
<xsl : message term nate="yes">
This stylesheet is only designed to handle invoice docunents
</ xsl : message>
</xsl:if>

<xsl:number>

The <xsl : nunber > instruction is designed to perform sequential numbering of nodes. It calculates a
number for the current node based on its position in the source tree, formats this number as required,
and writes the result to the output tree as a text node.

325

Chapter 8

This is a complex instruction with many attributes to control how the number is calculated and
formatted. A detailed treatment is beyond the scope of this chapter: you can find full information in the
Wrox book XSLT Programmers Reference. (ISBN 1861003129)

When used with no attributes, for example <xsl : nunber />, the result is obtained by counting the
number of preceding siblings of the current node that have the same node type and name, adding one
for the node itself, and formatting the result using the same rules as the st ri ng() function. Therefore,
if the current node is the fifth <par a> element within a <sect i on>, the output will be 5.

The way nodes are counted may be modified using a number of attributes:

Attribute Meaning

I evel The default value is "si ngl e", which counts preceding siblings of the current
node. The value "any" counts preceding nodes anywhere in the document,
which is useful for example to number figures or equations. The value
"mul tipl e" produces a multi-level number such as "10.1.3" or "17a(iv)".

count This pattern defines which nodes are to be counted. For example
count ="*" causes all elements to be counted, not only those with the same
name as the current node. For multi-level numbering, specify all the levels
you want counted, for example count ="chapter | section |
cl ause”.

from This is a pattern which indicates where counting is to start. For example,
count ="p" fron¥"h2" counts the number of <p> elements since the last
<h2> element.

The formatting of the result may also be modified using a number of attributes. The main one is

f or mat , which defines a format pattern (this is an attribute value template, so it can be constructed
dynamically if you want). The following examples show how the number 4 might be formatted with
various format patterns:

Format Pattern Output

1 4
(a) (d)

—i- — v -

For multi-level numbering, you can use a format pattern such as "1.1(a)" to request an output sequence

such as 1.1(a), 1.1(b), 1.1(c), 1.2(a), 1.2(b), 2.1(a).
The <xsl : nunber > instruction also has a val ue attribute. This can be used to supply the value

directly, as a way of using the formatting capabilities of <xsl| : number > without the node-counting
features. It is often used in the form:

<xsl : nunber val ue="position()" format="(a)" />
The posi tion() function gives the position of the current node in the sequence that the nodes are

being processed, rather than its position in the source tree. This option is particularly useful when
producing output in sorted order.

326

XSLT and XPath

<xsl:processing-instruction>

This instruction is used to output a processing instruction node to the result tree. It takes a mandatory
name attribute to define the name of the generated processing instruction. The data part of the
processing instruction is obtained by instantiating the template body that the <xsl : pr ocessi ng-

i nstruction> element contains.

<xsl:text>

The <xsl : t ext > instruction is used to output a text node to the result tree. This instruction may
contain a text node but it must not contain any child elements.

Text contained directly in the stylesheet is written to the result tree automatically, whether or not it is
contained in an <xsl : t ext > element. The reason for providing <xsl : t ext > is to give more control
over whitespace handling. Text contained within an <xsl : t ext > element will be output exactly as
written, even if it is all whitespace, whereas in other contexts whitespace that appears on its own
between element tags will be removed from the stylesheet before processing.

For example, to output two names with a space between them, write:

<xsl : val ue- of sel ect="gi ven-nane"/ >
<xsl:text> </ xsl:text>
<xsl : val ue-of sel ect="1Iast-nane"/>

The <xsl : t ext > element also has an optional attribute, di sabl e- out put - escapi ng="yes", which
suppresses the normal action of the serializer to convert special characters such as < and > into &l t ;
and > ; . This is a dirty feature that should be avoided, but it is sometimes useful if you want to
generate not-quite-XML formats, such as ASP, PHP, or JSP pages.

<xsl:value-of>

The <xsl : val ue- of > instruction is used to write computed text to the result tree. It takes a sel ect
attribute whose value is an XPath expression. This expression is evaluated, the result is converted to a
string (using the rules of the st ri ng() function), and written as a text node to the result tree. The most
common usage is:

<xsl:val ue-of select="." />
This simply writes the string-value of the current node.

There is an optional attribute, di sabl e- out put - escapi ng="yes", which has the same effect as with
<xsl :text>.

<xsl:variable>

The <xsl : vari abl e> element, when used as an instruction within a template body, declares a local
variable. (It can also be used as a top-level element in the stylesheet, to declare a global variable.)

The name of the variable is given by its nane attribute. This must be different from any other local
variable that is in scope at that point in the stylesheet, although it can override a global variable of the
same name.

327

Chapter 8

The scope of a local variable (that is, the part of the stylesheet where XPath expressions can refer to the
variable) comprises those elements in the stylesheet that are following-siblings of the <xsl : vari abl e>
element, or descendants of those following-sibling elements. Using XPath notation, if the

<xsl : vari abl e> element is the context node, the scope of the variable is the node-set defined by:

fol l owi ng-sibling::*/descendant-or-self::*

This means, for example, that if you declare a local variable within an <xsl : when> branch of an
<xsl : choose> instruction, you won't be able to access the variable outside the <xsl : when>.

The value of the variable can be determined in three ways:

O If the <xsl : vari abl e> element has a sel ect attribute, this attribute is an XPath
expression, which is evaluated to give the variable's value.

0 If the <xsl : vari abl e> element has content, the content is a template body. This is
instantiated to create a new tree (called a result tree fragment) and the value of the variable is
the node-set containing the root of this tree.

O Ifthe <xsl : vari abl e> element has no sel ect attribute and is empty, its value is the empty
string.

Here's an example using the sel ect attribute:

<xsl : vari abl e nanme="nunber-of -itens" select="count(//item" />

Here's one that creates a result tree fragment:

<xsl :vari abl e nane="result-tabl e">
<t abl e>
<xsl:for-each select="itenl>
<tr>
<t d><xsl : val ue- of sel ect="@lescri ption"/></td>
<t d><xsl : val ue-of sel ect="@rice"/></td>
</tr>
</ xsl : for-each>
</t abl e>
</ xsl : vari abl e>

With XSLT 1.0, there are restrictions on the way a result tree fragment can be used; in effect, the only
things you can do with it are to convert it to a string, or to copy it (by using <xsl : copy- of >) to the
final result tree. You can't actually process it using XPath queries. Many vendors have relaxed this
restriction by providing facilities to convert the result tree fragment to a node-set, and a standard way of
doing this is expected to come in the next version of the specification.

As we've already mentioned, variables can't be used in quite the same way as in ordinary programming
languages, because they are "write-once" — they can't be updated, because there is no assignment
statement. In effect, this means a variable is just a shorthand name for an expression that saves you from
using the same expression repeatedly. Variables can also be useful to avoid problems with changing
context. For example, if you write:

<xsl :vari abl e nane="thi s" select="."/>

328

XSLT and XPath

Then as the first thing within an <xsl : f or - each> loop, you will always be able to refer to the current
node of this loop even from within nested loops.

Literal Result Elements

Any element found within a template body that is not recognized as an instruction is treated as a literal
result element. The element is copied to the result tree, together with its attributes and namespaces. If
the element is not empty, its content is a template body, and this is instantiated to create the content of
the generated element in the result tree. For example:

<td valign="top"><xsl:val ue-of select="." /></td>

This is a literal <t d> result element, whose template body causes the string value of the current node in
the source document to be inserted into the <t d> element generated on the result tree.

The attributes of the literal result element are interpreted as attribute value templates, so they can be
generated using XPath expressions. For example:

<td val i gn="{%al i gn}"><xsl :val ue-of select="." /></td>
There are two other ways of generating attributes for the result element:

O Use the <xsl : attri but e> instruction within the template body.

O Useanxsl:use-attribute-sets attribute within the start tag of the literal result element.
This has the same effect as the use-att ri but e- set s attribute of <xsl : el enent >. It is
prefixed with "xsl " to distinguish it from attributes that you want to copy to the result.

A literal result element can also have attributes xsl : ver si on, xsl : ext ensi on- el enent - pr efi xes,
and xsl : excl ude-resul t - prefi xes. These override the similarly-named attributes on the

<xsl : styl esheet > element for the region of the stylesheet enclosed by the literal result element.
Again, the prefix "Xs| " is used to distinguish them from attributes intended for the result tree.

Sorting

There are two instructions for processing a set of nodes, <xsl : appl y-t enpl at es> and <xsl : f or -
each>, and they both allow the nodes to be sorted by specifying one or more <xsl : sort > elements. If
you don't specify a sort order, the nodes will be processed in document order, that is, in the order they
appear in the source document.

Each <xsl : sort > element specifies a sort key. If there is more than one <xsl : sort > element, they
specify the sort keys in major-to-minor order: for example if the first sort key is last-name, and the
second is given-name, you will process the data in the order of ascending given-name within ascending
last-name.

329

Chapter 8

The <xsl : sort > element has a number of attributes to control sorting:

Attribute Meaning

sel ect An XPath expression whose value represents the sort key. If
omitted, the nodes are sorted by their string-value.

or der This can be "ascendi ng" or "descendi ng". Specifying
descendi ng reverses the sort order. The default is ascendi ng.

data-type This can be "t ext " or "nunber ". Specifying nunber means that
the sort keys are converted to numbers and sorted numerically.
The default is t ext .

I ang A language code, for example "en" or "de". Allows the sort to
use national collating conventions. The default is
implementation-defined.

case- or der This can be "upper-first" or"l ower-first". Indicates
whether upper-case letters should precede their lower-case
equivalents, or vice versa. The default is implementation-

defined.

The expression giving the sort key is evaluated with the node being sorted as the context node. For
example, to sort a set of <book> elements according to their aut hor attribute, write:

<xsl:for-each sel ect ="book">
<xsl :sort sel ect="@uthor"/>
</ xsl : for-each>

<xsl : appl y-tenpl at es sel ect =" book" >
<xsl :sort sel ect="@uthor"/>
</ xsl : appl y-t enpl at es>

Top-level Elements

We've looked at all the XSLT elements that can be used inside a template body. Let's now return to the
top-level of the stylesheet and look at those elements that can be used as children of the
<xsl : styl esheet > or <xsl : t ransf or n> element. Here is a list of them:

<xsl:attribute-set> <xsl : out put >

<xsl : deci nmal - f or mat > <xsl : par ane»

<xsl :i nport> <xsl : preserve-space>
<xsl :incl ude> <xsl :strip-space>
<xsl : key> <xsl :tenpl at e>

<xsl : namespace- al i as> <xsl : vari abl e>

330

XSLT and XPath

We'll look at each one in turn, in alphabetical order. Within the stylesheet itself, the general principle is
that top-level elements can appear in any order, except that <xsl : i npor t > elements have to come
before any others.

A stylesheet can also contain user-defined elements at the top level, provided they are in their own
namespace. These will be ignored by the XSLT processor, but they can be useful for look-up tables and
other constant data. Within an XPath expression you can access the stylesheet contents by writing
document ("") to refer to the root of the stylesheet tree.

<xsl:attribute-set>

This element defines a named set of attributes. This is useful where you want to create many result
elements using the same attribute values, which sometimes happens when rendering documents for

display.

The <xsl : attri but e- set > element has a nane attribute, which provides a unique name for this
attribute set. Its content is a set of <xsl : at t ri but e> instructions to generate the attribute values. To
include this set of attributes in a result element, use the use-attri but e- set s attribute on

<xsl: copy> or <xsl : el enent >, or use t he xsl:use-attribute-sets attribute on a literal result
element.

<xsl:decimal-format>

This element defines a set of rules for formatting decimal numbers. These rules can be referenced from
the f or mat - nunber () function used in an XPath expression with the f or mat - nunber () function
elsewhere in the stylesheet. An <xsl : deci mal - f or mat > element may have a name attribute, in which
case it is used when the third argument of f or mat - nunber () uses this name, or it may be unnamed, in
which case it is used when the f or mat - nunber () function has no third attribute.

The <xsl : deci mal - f or mat > element allows characters and strings to be nominated for use in
formatted numbers, and also in the format pattern used by the f or mat - nunber () function. The ones
that are most likely to be used are deci mal - separ at or, which defines the character to be used as a
decimal point, and gr oupi ng- separ at or , which defines the character used as a thousands separator.
For example, if you want f or mat - nunber () to use the continental European convention of using . as
a thousands separator and , as a decimal point, write:

<xsl : deci nal - f ormat deci mal - poi nt =", " groupi ng-separator="." />

The other attributes are outside the scope of this chapter, and are fully described in the Wrox book
XSLT Programmers Reference (ISBN 1861003129).

<xsl:import>

The <xsl : i nport > element allows your stylesheet to incorporate definitions from another stylesheet.
The element has an hr ef attribute which contains the URI of the stylesheet to be imported. All the top-
level definitions from the imported stylesheet are incorporated into the importing stylesheet, except that
they have a lower precedence; which means that given a choice, the definitions in the importing
stylesheet are preferred.

331

Chapter 8

In many ways this is like sub-classing: the importing stylesheet inherits the definitions from the
imported stylesheet, overriding them where necessary; this reflects the way the facility should be used.
The imported stylesheet should contain general-purpose definitions for use in a wide range of
circumstances, and the importing stylesheet should override these with definitions that are applicable in
a narrower sphere.

The imported stylesheet may contain any top-level elements, but there are slight differences in the way
the precedence mechanism works for different elements. In most cases, an object in the imported
stylesheet is used only when there is no applicable object in the importing stylesheet. In some cases
(<xsl : key> definitions, <xs| : out put > definitions), the definitions in the two stylesheets are merged.

The imported stylesheet may contain further <xsl : i mpor t > elements, so there is a hierarchy just like a
class hierarchy in object-oriented programming.

<xsl:include>

The <xsl : i ncl ude> element is similar to <xsl : i npor t >, except that it incorporates definitions from
the included stylesheet with the same precedence as those in the including stylesheet. Again, the hr ef
attribute contains the URI of the stylesheet to be included. Whereas <xsl : i nport > allows the
importing stylesheet to override definitions in the imported stylesheet, <xsl : i ncl ude> is useful if the
definitions are not to be overridden.

The effect is, for all practical purposes, to copy the top-level elements from the included stylesheet into
the including stylesheet at the point where the <xsl : i ncl ude> statement occurs. This must, of course,
be at the top level, as an immediate child of the <xsl : st yl esheet > element.

Note, however, that the attributes on the <xsl : st yl esheet > element (such as excl ude-resul t -

pref i xes) apply only to elements that are physically within that stylesheet, not to elements brought in
using <xsl : i ncl ude>.

<xsl:key>

The <xsl : key> element is used to create a named key definition, which is referenced when the key()
function is used in an XPath expression.

The element has three attributes:

Attribute Name Meaning

Narme Defines the name of the key, corresponding to the first argument of
the key() function

mat ch Defines a pattern that determines which nodes in the source
document participate in this key

use Defines an XPath expression which establishes the value that will be
used to find these nodes, corresponding to the second argument of the
key() function

It would be appropriate to explain keys in SQL terms. Effectively the system maintains a table,
KEYTABLE, with four columns, DOC, KEY, NODE, and VALUE.

332

XSLT and XPath

The effect of an <xsl : key> definition is that for each source document (that is, the original input
document plus any document loaded using the document () function), entries are created in this table
for each node that matches the mat ch pattern in the <xsl : key> definition. These entries will have DOC
set to the identifier of the document, KEY set to the name of the key, and NODE set to the identifier of the
matching node. For each of these matching nodes, the use expression is evaluated. If the result is a
string, this string is entered in the VALUE column. If the result is a node-set, one row is added to the
table for each node in the node-set, with the VALUE column set to the string-value of that node.

The effect of the key() function is then to query this table as follows:

SELECT di stinct NODE FROM KEYTABLE WHERE DOC = current _docunent AND
KEY = argunmentl AND VALUE = ar gunent 2

Here current _docunent is the document containing the context node.
The resulting set of NODE identifiers forms the node-set returned by the key() function. Note that there
can be more than one <xsl : key> definition with the same name (they are additive); that there can be

several nodes with the same value for a key; and one node can have several values for the same key.

A simple example: to index books by author, write:

<xsl : key name="aut hor - key" mat ch="book" use="author" />

To retrieve all the books whose author is Milton, use this XPath expression:

key('author-key', 'Mlton")

Note that this works even if a book has multiple authors.

<xsl:namespace-alias>

This is a rarely used element; its main purpose is to enable you to write a stylesheet that generates
another stylesheet as output.

There are two attributes, st yl esheet - prefi x and resul t - prefi x. In both cases, the value is a
namespace prefix, which must correspond to a namespace declaration that is in scope.

The effect of this is that any literal result element that appears in the stylesheet using the namespace
URI corresponding to the st yl esheet - pref i x, will be written to the output document under the
namespace URI corresponding to the resul t - prefi x.

<xsl:output>

This element is used to influence the way that the result tree is serialized. As we saw earlier in the
chapter, serialization is not really part of the job of an XSLT processor, and for this reason processors
are allowed to ignore this element entirely. However, in practice most processors do include a serializer
and have done their best to honor the <xsl : out put > element: it will be ignored only if you choose to
handle the serialization yourself.

333

Chapter 8

The main attribute is met hod, which may be set to xrm , ht i , or t ext, or to a vendor-defined method
distinguished by a namespace prefix. The value xm indicates that the output should be in XML 1.0
format, ht ml that it should be an HTML document, and t ext that it should be a plain text file.

The meaning of the other attributes depends on which method is chosen, as shown in the following
table:

Attribute Appliesto M eaning

cdat a- secti on- xm A whitespace separated list of elements whose

el ements content is to be encoded using CDATA sections.

doct ype-public xm , htm The public identifier to be used in the DOCTYPE
declaration.

doct ype-system xm , htm The system identifier to be used in the DOCTYPE
declaration.

encodi ng xm , htm, text The character encoding to be used, e.g. ISO-
8859-1. The default is the Unicode UTF-8
encoding.

i ndent xm , htm Set to "yes" or "no" to indicate whether the
output is to be indented for readability.

medi a- t ype xm , htnl | text The media (or MIME) type of the output.

om t-xn - xm If set to "yes", indicates that the XML

decl aration declaration at the start of the file should be
omitted.

st andal one xm Indicates the value for "st andal one" in the
XML declaration.

version xm , ht m The version of XML or HTML to be used

(default for XML is 1.0, for HTML is 4.0).

There are many aspects of the final serialization over which you have no control; for example you can't
choose in HTML output whether accented letters will be output directly as themselves, or using numeric
character references, or using standard entity names such as &um ; . Different processors will do this
differently. It shouldn't matter, because it will look the same in the browser.

<xsl:param>

We have already met <xsl : par an® as an element that can be used inside <xsl : t enpl at e>, to
indicate the parameters to a template that may be supplied when it is called. It is also possible to use
<xsl : par an® as a top-level element to define parameters that may be supplied when the stylesheet as a
whole is invoked: the syntax is the same. The way parameters are supplied is not standardized: each
vendor has their own API or command line syntax, but within the stylesheet, parameters can be
accessed by means of a variable reference in an XPath expression, just like global variables.

If the <xsl : par am> element specifies a value, this is used as a default when no explicit value is
supplied when the stylesheet is invoked.

334

XSLT and XPath

<xsl:preserve-space> and <xsl:strip-space>

These two top-level elements are used to control how whitespace in the source document is handled. In
most data-oriented XML documents, whitespace between element tags is there for layout purposes only,
and it is best to eliminate it before processing starts, by specifying <xsl : stri p- space

el ement s="*" />. For markup-oriented XML documents, spaces between tags may well be
significant, and it is best to keep it in the document (which is the default).

Both <xsl : preserve-space> and <xsl : stri p- space> have an el enent s attribute, which is a
space-separated list of NameTests. A NaneTest is either *, meaning all elements, or prefi x: *,
meaning all elements in a particular namespace, or an element name indicating a specific element. If
you want spaces stripped from only a few elements, list these in <xsl : st ri p- space>. If you want
spaces stripped from most elements, specify <xsl| : stri p- space="*" />, and list any exceptions
using <xsl : pr eserve- space>.

Whitespace is only stripped from the source document when an entire text node consists of whitespace
(that is, of the four characters space, tab, carriage return, and line feed). Whitespace that is adjacent to
"real" text is never removed. So if you have a source file like this:

<presi dent >
<nane>
Bill dinton
</ name>
<addr ess>
The Wite House Washi ngton DC
</ addr ess>
</ presi dent >

The newline characters immediately before the <name> element, between the <nanme> and <addr ess>
elements, and after the <addr ess> element will be eligible for removal by whitespace stripping. But the
newline characters immediately before "Bill", immediately after "Clinton", and at the start and end of
the address, will always be retained because they form part of text nodes that are not whitespace-only. If
you want to remove these newline characters, you will have to do it during the course of the
transformation, using the nor nal i ze- space() function.

Note for Microsoft users: when you invoke XSL T transformations usingthe MSXML 3
processor, the normal procedureisfirst to construct a DOM representation of the
input document using the Docunent . Load() method, and then to transform the
DOM usingthetransf or mNode() method. By default, when you create the DOM, it
is created without whitespace nodes. This processis carried out without regard to
anything the stylesheet says about whitespace. If you want to preserve whitespace, set
the preser veWhi t espace property of the Document object to true.

<xsl:template>

We've already seen the <xsl : t enpl at e> element in action earlier in the chapter. Just to recap
(because it is about the most important element in XSLT), the <xsl : t enpl at e> element can have
either a nane attribute (to allow it to be called using <xsl : cal | - t enpl at e>, or a mat ch attribute

(to allow it to be called using <xsl : appl y-t enpl at es>, or both (in which case it can be called either
way). In addition, it may have a node attribute and a pri ori ty attribute.

It's an error to have two templates in the stylesheet with the same name and the same import
precedence.

335

Chapter 8

<xsl:variable>

We've seen <xsl : vari abl e> used within a template body to define a local variable; it can also be
used as a top-level element to define a global variable. A global variable can be referenced from
anywhere in the stylesheet: unlike local variables, there is no ban on forward references. Global
variables can even refer to each other, so long as the definitions aren't circular.

Apart from this, global variable definitions look the same as local variables. They are always evaluated
with the root node of the source document as the context node, and with the context position and size
both set to 1.

It's an error to have two global variables with the same name and import precedence. If you have two
with the same name and different precedence, the one with higher precedence (that is, the one in the
importing stylesheet, or the one that was imported last) always wins.

Some Working Examples

This brings us to the end of the technical specifications in this chapter. To get a reasonably complete
description of XSLT and XPath into limited space, we've included a lot of definitions and relatively few
examples. So to compensate, here are a couple of examples of complete and (almost) realistic
stylesheets.

Example: Displaying Soccer Results

We'll use an XML data file containing results of soccer fixtures, such as might be held in a database for
a World Cup web site, and we'll show two stylesheets that format this data in different ways.

Source

The source file is soccer . xm . If you're interested, it contains the results of the matches played in
Group A of the 1998 World Cup:

<?xm version="1.0"?>
<?xm -styl esheet type="text/xsl" href="soccerl.xsl" ?>

<results group="A">
<mat ch>
<dat €>1998- 06- 10</ dat e>
<t eam score="2">Brazil </t ean>
<t eam scor e="1">Scot | and</t ean»
</ mat ch>
<mat ch>
<dat €>1998- 06- 16</ dat e>
<t eam score="3">Brazi |l </t eanr
<t eam scor e="0">Mor occo</t eanr
</ mat ch>
<mat ch>
<dat €>1998- 06- 23</ dat e>
<t eam score="1">Brazil </t ean>
<t eam scor e="2">Nor way</ t eane
</ mat ch>

336

XSLT and XPath

<mat ch>
<dat €>1998- 06- 10</ dat e>
<t eam scor e="2">Mr occo</t eanr
<t eam scor e="2">Nor way</ t eanp
</ mat ch>
<mat ch>
<dat €>1998- 06- 16</ dat e>
<t eam scor e="1">Scot | and</t eanp
<t eam scor e="1">Nor way</ t ean
</ mat ch>
<mat ch>
<dat €>1998- 06- 23</ dat e>
<t eam scor e="0">Scot | and</ t ean»
<t eam scor e=" 3" >Mor occo</t eanp
</ mat ch>
</results>

The First Stylesheet

The first stylesheet, soccer 1. xsl , displays the results of the matches in a straightforward way.

First we'll give the standard stylesheet heading, and define a variable to hold the table heading that we'll
use to display each result:

<xsl : styl esheet version="1.0"
xm ns: xsl ="http://ww. wW3. or g/ 1999/ XSL/ Tr ansf or ni' >

<xsl :vari abl e nane="t abl e- headi ng" >
<tr>
<t d>Dat e</ b></t d>
<t d>Hone Teanx/b></td>
<t d>Away Teanx/b></td>
<t d>Resul t </ b></t d>
</tr>
</ xsl : vari abl e>

Now we'll define a named template to format dates. This takes an ISO-8601 date as a parameter (for
example "2000-10-11") and formats it for display as "11 Oct 2000". This involves some simple use of the
XPath string functions.

<xsl :tenpl ate nanme="for mat - dat e" >
<xsl : param nane="i so-date"/>
<xsl :vari abl e name="nont hs"
sel ect ="' JanFebMar Apr MayJunJul AugSepCct NovDec' " />
<xsl : val ue- of sel ect ="substring($i so-date, 9, 2)" />
<xsl:text> </xsl:text>
<xsl :variabl e nane="nont h" sel ect ="substring(%$i so-date, 6, 2)" />
<xsl : val ue- of sel ect ="substring($nmonths, ($nmonth - 1)*3 + 1, 3)" />
<xsl:text> </xsl:text>
<xsl:val ue-of sel ect="substring($i so-date, 1, 4)" />
</ xsl: tenpl at e>

For the main part of the processing, we define a template rule for the root node, which calls
<xsl : appl y-t enpl at es> to process all the <mat ch> elements, sorting them by date, and within the
same date, by the name of the first team listed.

337

Chapter 8

<xsl:tenplate match="/">
<ht m ><body>
<hl>Mat ches in G oup <xsl:val ue-of select="/*/@roup"/></hl>
<xsl :apply-tenpl ates select="/results/ match">
<xsl:sort select="date" />
<xsl :sort select="teani1]" />
</ xsl : appl y-t enpl at es>
</ body></ ht m >
</ xsl :tenpl at e>

Finally, we need to cover the logic to display details of a single soccer match. This first calls the named
template to format the date into a variable; then it constructs an HTML table, copying data into the
table either from the source documents or from variables, as required. (The mat ch="mat ch" attribute
may be confusing; it's a pure coincidence that one of the elements in our source document has the same
name as an XSLT-defined attribute).

<xsl :tenpl ate mat ch="match">
<xsl :vari abl e nanme="dat e- out" >
<xsl:call-tenpl ate nane="for nmat - dat e" >
<xsl : wi t h- param nane="i so- dat e" sel ect="date" />
</ xsl :call-tenpl at e>
</ xsl : vari abl e>

<h2><xsl : val ue- of sel ect="concat(tean{1], ' versus ', teanf2])"/></h2>

<t abl e bgcol or ="#cccccc" border="1" cel | paddi ng="5">
<xsl : copy- of sel ect="$t abl e- headi ng"/ >
<tr>
<t d><xsl : val ue- of sel ect ="$date-out"/></td>
<t d><xsl : val ue- of select="tean{1]"/></td>
<t d><xsl : val ue-of sel ect="teani2]"/></td>
<t d><xsl : val ue- of sel ect="concat (teanf 1]/ @core, '-',
tean 2]/ @core)"/></td>
</tr>
</t abl e>

</ xsl : t enpl at e>
</ xsl : styl esheet >

Running the Example

You can run this example using a processor such as Instant Saxon, as with the previous example, but
the simplest way to do it is directly in the browser.

Assuming you are using Internet Explorer 5 or 5.5, you can download and install MSXML3 from the
Microsoft web site at htt p: // msdn. mi crosoft. comf xm . Be sure to download and run the utility
xm i nst . exe which makes MSXML3 the default parser on your system. Don't try to run this example
with the old MSXML parser that came with IE5 or IE5.5: it won't work.

Once you have installed this software, just double-click on the file soccer. xm from Windows
Explorer: it's as simple as that. This loads the XML file into Internet Explorer, and because it starts with
an <?xm - st yl esheet ?> processing instruction, it invokes this stylesheet to convert the document to
HTML for display.

338

XSLT and XPath

Output

Here's what the output of the first stylesheet looks like in the browser (and yes, I do know that all the
matches were actually played in France):

3 C:Wtamp.html - Intermet Explorer - [Working O Fffline]

Fle Edt View Favotes Too: Help ‘.
Back | onc Stop Refmsh Home | Seach Favortss Histon

-

Matches in Group A

Brazil versus Scotland

| Date | Home Team | Away Team :Resnh

| 10 Tun 1998 | Brazi Scotiand |2-1

Morocco versus Norway

| Date ;Hme Team EAwayTeam !R.esn]l _

I [[
| 10 Jun 1998 EMO.IDI:EO lNoxway 52—2

Brazil versus Morocco

Dm ?Hﬂmn Team Awa:r Team ERe:u]t
| 16 Jun 1998 | Brazi Moroceo |30

| Seatland versng Norwav
@] Dare

Stylesheet 2

Now let's write another stylesheet to display the same data in a completely different way. One of the
motivations behind XSLT, after all, was to make information reusable by separating the information
from the logic for displaying it.

This stylesheet, soccer 2. xsl , does some calculation to create a league table. We'll start it with

<xsl : transf or n> this time, just to show that this works too, and we'll start by creating two global
variables, one for the set of all teams, and the other for the set of all matches. If we select all the <t eanm>
elements in the document, we'll get duplicates: to eliminate these, we have to select only those <t ean®
elements that are not the same as a previous team.

<xsl:transform
xm ns: xsl ="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or ni'
versi on="1.0">

<xsl:variabl e name="teans" select="//teaninot(.=preceding::team]" />
<xsl :vari abl e nane="mat ches" select="//match" />

The actual logic of the stylesheet will go in a single template rule, which we'll set up to be triggered
when the <r esul t s> element is processed. This starts by outputting a standard header:

339

Chapter 8

<xsl:tenplate match="resul ts">
<ht m ><body>
<hl>Resul ts of G oup <xsl:val ue-of sel ect="@roup"/></hl>
<t abl e cel | paddi ng="5">
<tr>
<t d>Teanx/t d>
<t d>Pl ayed</t d>
<t d>Wbn</td>
<t d>Dr awn</t d>
<td>Lost</td>
<t d>For </t d>
<t d>Agai nst </ t d>
</[tr>

Now the template processes each team in turn. We're only interested in getting totals for the number of
matches won and lost and the number of goals scored, so it doesn't matter what order we process them
in.

We'll start, for convenience, by setting up a variable called t hi s to refer to the current team.

<xsl : for-each sel ect =" $t eans" >
<xsl :vari abl e nane="t hi s" select="." />

The number of matches played is easy to work out: it's the number of nodes in the $nmat ches node-set
that have a team equal to this team:

<xsl :vari abl e name="pl ayed"
sel ect =" count ($mat ches[t ean$t hi s])"/ >

The number of matches won is a bit more difficult. It's the number of matches for which the score of
this team is greater than the score of the other team, which we can write as:

<xsl :vari abl e name="won"
sel ect =" count ($mat ches[t eanf . =$t hi s]/ @core >
teanf.!=$this]/ @core])"/>

The number of matches lost and drawn follows the same logic, just changing the test from greater-than
to less-than in the first case, and equals in the second:

<xsl :vari abl e nane="| ost"
sel ect =" count ($mat ches[t ean] . =$t hi s]/ @Gcore &l t;
teani.!=$this]/ @core])"/>

<xsl :vari abl e nane="dr awn"
sel ect =" count ($mat ches[t ean] . =$t hi s]/ @core =
teanf.!=$this]/ @core])"/>

The number of goals scored by this team can be obtained using the sun() function, applied to the
node-set consisting of all scores for this team in any match:

<xsl : vari abl e name="for"
sel ect ="sun($mat ches/ t ean{ . =$t hi s]/ @core)"/>

340

XSLT and XPath

And the simplest way of finding the number of goals scored against this team is to total the scores of all
teams in matches that this team participated in, and then subtract the previous total:

<xsl : vari abl e nane="agai nst"

sel ect =" sun($mat ches[t eanv$t hi s]/t eam @core) - $for" />

Having done the calculations, we can output the results:

<tr>
<t d><xsl
<t d><xsl
<t d><xsl
<t d><xsl
<t d><xsl
<t d><xsl
<t d><xsl

</tr>

:val ue- of
:val ue- of
:val ue- of
:val ue- of
:val ue- of
:val ue- of
:val ue- of

</ xsl : f or - each>

</t abl e>

</ body></htm >
</ xsl : tenpl at e>

</ xsl :transforms

Running the Example

select="."/></td>

sel ect =" $pl ayed"/ ></t d>
sel ect =" $won"/ ></t d>

sel ect =" $drawn"/ ></t d>
sel ect ="$l ost"/></td>
sel ect="$for"/></td>

sel ect =" $agai nst "/ ></t d>

You can run this stylesheet the same way as the previous one. Edit the <?xmi - st yl esheet ?>
processing instruction in soccer . xml to refer to soccer 2. xsl instead of soccer 1. xsl , and load

soccer . xnl into the browser again. (Or just click Refresh if IE5 is still open).

Of course, this isn't the way you would actually do things in practice. The <?xni - st yl esheet ?>
approach, which defines a default stylesheet for a particular XML document, only really works where
you always process an XML document using the same stylesheet. If you want to select different
stylesheets on different occasions, you'll have to create an HTML page that loads the source document
and stylesheet explicitly. We'll explain how to do that next.

Output

This is what the result looks like in the browser:

; C:\temp. html - Internet Explorer - [Working Offline]

‘Eib Edt View Favorke: Jook Help

‘ Bi:k S Slaup aﬁm lﬁs sg »‘H’»
=
Results of Group A
Team Flayed Weon Drawn Lost For Agamst
Erazil 3 2 0 1 & 3
Scotland 3] 1 2 2 6
Morocce 3 1 1 1 5 5
Norway 3 1 2 0 34
-

|&] Dane

g__lélhllyﬁurmubu

341

Chapter 8

Selecting a Stylesheet Dynamically

You can do XSLT transformations either on the server or in the browser: in fact, you might be using
XSLT as part of a batch application that is nothing to do with the Web at all. Therefore, the way in
which you invoke the transformation will vary depending on the circumstances, as well as on your
choice of XSLT processor.

However, converting XML to HTML in the browser is perhaps one of the most striking ways of using
XSLT, so we'll concentrate on that in our next example. Here we will include some simple logic on an
HTML page to invoke a transformation based on the user's selection.

The HTML page soccer . ht ml reads like this:

<htm >
<head>
<title>Results of Goup A</title>
<scri pt >
var source = null;
var style = null;
var transfornmer = null;

function init()

{
source = new ActiveXObject (" MSXM.2. Fr eeThr eadedDOVDocunent ") ;
source. async = fal se;
source. | oad(' soccer.xm");
}
function appl y(styl esheet)
{
styl e = new Acti veX(hj ect (" MSXM_2. Fr eeThr eadedDOVDocunent ") ;
styl e.async = fal se;
styl e. |l oad(styl esheet);
transformer = new ActiveXObj ect (" MSXM.2. XSLTenpl ate") ;
transforner. styl esheet = styl e. docunent El enent ;
var xslproc = transforner.createProcessor();
xsl proc. i nput = source;
xsl proc. transforn();
di spl ayar ea. i nner HTML = xsl proc. out put ;
}
</scri pt>
<script for="w ndow' event="onl oad">
init();
</scri pt>
</ head>
<body>

<button onclick="apply(' soccerl.xsl"')">Results</button>
<button onclick="appl y(' soccer2. xsl')">League tabl e</ button>
<di v i d="di spl ayar ea" ></di v>

</ body>

</htm >

342

XSLT and XPath

What this does is to display two buttons on the screen, as shown below:

3 Reszults of Group A - Internet Explorer - Pworking Offline] M= &=

] File Edit “iew Favortes Toole Help ‘

S S B A T = SR~ B

Back Frrard Stop Refresh Haome Search Favarites

J.-’-\gdless I@ C:\plavatwrondbhsoccer himl j o Go |J Links **

A

League table |

N

|@ Dione |_|_|_,%‘ fy Computer

When you click on Results, the XML file is shown using stylesheet soccer 1. xsl ; when you click on
League table, it is shown using soccer 2. xsl .

For more details about the APIs used in this example, see the Microsoft product documentation, or the
Wrox book XSLT Programmers Reference (ISBN1861003129).

XSLT and Databases

This is a chapter about XSLT and XPath, in a book about using XML with databases. Therefore, it
might seem odd that we've said very little about databases in this chapter. However, there's a good
reason for that; there's very little direct connection. Typically, your application gets XML out of the
database, and then puts that XML through an XSLT stylesheet for display. The application ties the
database and the stylesheet together, and neither the database nor the stylesheet knows about each
other.

Therefore, at the coding level, there's a clean separation of concerns. At the design level, however, you
have plenty of choices:

0 How much work should you do in the SQL logic to select exactly the data that's needed, and
how much should you do in the stylesheet?

O Should you grab a large amount of data from the database in one go, or keep going back for
more if the user asks for it?

0 Should you do the XSLT processing on the client or the server?

343

Chapter 8

There is no single right answer to these questions. Be aware that you have choices, and don't
automatically assume that the first solution that comes into your head is the best one. Some points to
bear in mind are:

O Transforming a large data file (anything over a megabyte) can be very expensive. Use the
SQL logic to restrict the amount of data you need to process.

O XSLT works well when the structure of the data is explicit, for example when sets of related
items are grouped within an element rather than being implicit through common values. Use
the SQL and application logic to generate an XML document in which the structure is as
explicit as possible.

O Remember that by processing data in the browser, you can take a lot of the processing load off
the server. In fact, you can sometimes dramatically reduce the number of visits the user makes
to the server by allowing them to navigate within a data set locally. However, be prepared to
explain the fall in your web site's hit rate to your management!

Summary

In this chapter, we've looked at the role of XSLT as a transformation language for XML documents, and
the role that XPath queries play within an XSLT stylesheet. We've given a lightning tour of XPath
syntax, noting in particular the important role played by location paths as the way of navigating around
the hierarchic structure of the source document.

Then we looked at how an XSLT stylesheet uses template rules and match patterns to define how each
part of the source document should be processed. We looked at all the different instructions you can use
inside a template body, and then came back to review the top-level elements you can use in a stylesheet
to control processing options.

Then we relaxed to watch some soccer; and finally we looked briefly at how XSLT technology and SQL
databases can work together.

344

XSLT and XPath

345

Chapter 8

346

-(

(

Relational References with XLink

The XML Linking Language (XLink) is a specification, which according to the W3C "allows elements to
be inserted into XML documents in order to create and describe links between resources". Xlink
provides six element types that can be used to create and describe characteristics of links. Only two
element types create XLink links:

O There are simple XLinks, which reproduce the functionality of HTML links

0 Also extended elements, which are far more powerful links, although their syntax is more
complex

These two types of XLink links may take several attributes or child XLink elements to further describe
the behavior and characteristics of the links. Before we proceed any further, there are a few things that
you should be aware of that illustrate the power of XLink:

0 You can use your own element names as links; you are not limited to using one tag like the
<a> tag in HTML, so any element can become a linking element.

O With extended links, your linking element does not have to reside in the document you are
linking from; imagine being able to add a link to a document that you do not own, or to link
from a read-only or non-XML resource.

O Extended links allow you to provide LinkBases, which provide a convenient database of
extended links that can be related to any other resource. It will be possible for example, to
store all of your favorite links to articles on XML in a | i nkbase, and in any document
reference all of those links with an extended link reference. You could then update or change
the links in all documents at once by updating the | i nkbase.

O XLinks can be used to describe relationships between several documents (rather like keys
used in a relational database).

Chapter 9

Shortly, we will look at the simple XLink syntax, gaining an understanding of the XLink namespace,
some common link attributes, and the difference between local and remote resources. We will then
spend the rest of the chapter understanding how to use the power of the Extended link. It is the
Extended link that allows us to create relationships outside the scope of anything possible with HTML
anchors, or other unidirectional links. We will see that with the multi-directional extended link it is
possible to create relational links that can associate different data sets.

One of the difficulties in looking at XLink is that the standard had not been completed at the time of
writing, which means that there are few implementations of XLink in programs to illustrate the
concepts. It is, nevertheless, well worth learning about because XLink will be used in the very near
future and the possibilities of this language are too rich to be ignored. Also, if you are reading this book,
you are trying to use XML with databases, and XLink provides a way for us to describe database style
relationships in an XML context. As an encore, XLink also provides a way to describe these
relationships between non-XML resources! As we will see in the next chapter, it can also work with
XPointer to allow you to create links between parts of a document.

The XLink specification asit standstoday isin what the W3C calls a Candidate
Recommendation. Thisis considered to be a stable recommendation stage with 2
stages left beforeit isa Full Recommendation. Thisis significant because most
softwar e developers are hesitant to write to a specification beforeit is stable, and most
will not consider serious efforts until a full recommendation has been made. Check out
theintro page to the specification at www.w3.org/XML/Linking for an updated list of
applications that implement the standard.

In this chapter we will look at:

O Understanding the XLink specification as it is today
0 How simple XLinks allow us to reproduce the linking capabilities of HTML on any element

O How extended XLinks allow us to offer far more complex relationships and links between
resources

0 Introduce the use of extended links for defining relationships that map to relational databases

The current W3C XLink work can be found at http://www.w3.0rg/TR/2000/CR-xlink-20000703/.

In the next chapter, we will look at other technologies that expand upon XLink including XPointer,
and Xinclude.

Resource Linking

The idea of linking resources in a document is a rather well covered topic. The primary virtue of the
Web is the ability to get from one resource to another via hyperlinks. As you will be aware, hyperlinks
are defined in an HTML document with the anchor tag <a>. When this is given an href resource
attribute with a URI value, it becomes a link.

Dl SPLAYED TEXT</ A>

348

Relational References with XLink

This is good, and has provided many an 18 year old with a way to skip college and make millions of
dollars. However, let's say you have the following tables in an order fulfillment database (as described in

Chapter 3):

Invoice

InvoiceK ey
187
188

Item

ItemK ey
13
14

Invoiceltem

InvoiceK ey ltemKey
187 13
188 13
187 14

The I nvoi ce and | t emkeys being the primary keys for their respective tables, and the | nvoi cel t em
table exercising foreign keys to each key shown, such that | nvoi cel t emallows us to find each invoice
containing each of the various items.

If we only had HTML anchor tags to work with, could we describe the relationship of these resources
(the data in each table) to one another? In practical terms, could we display links to the order details of
each order? No, at best, we are able to point from the current document to one of the resources in order
to show that item, but no relationship is defined. Therefore, in current practice, we can only have a
"show order detail" link that sends data to a server application that retrieves the desired output. As we
progress with this chapter, we'll see how XLink can be used to describe relationships like those in a
relational database. But for the moment, let's just look at how XLink implements simple links.

Simple XLink Elements

A simple XLink element is like the HTML anchor in that it describes a unidirectional link relationship;
we can add a linking element to our documents that will point to another resource.

Outbound Link

Local Remote

Traversal Path

Beginning Resource A

Linking Element

Ending Resource B

A

349

Chapter 9

In this diagram we have:

O The Local resource - The child of a linking element, or the actual linking element itself. In a
unidirectional HTML anchor, the local resource is the anchor tag (or the visible text which
provides a link to the user).

O The Remoteresource - The document, or document portion that is addressed by the linking
element. Any resource that is the target of a URI reference is considered remote. Again in
HTML, the bookmark style reference which points to a named anchor elsewhere in the same
document is still said to be pointing to a remote resource.

O A Traversal Path between the local and remote resources, which simply means you can get
from resource A to resource B by following the defined link.

With simple links, you can only link from a local resource to a remote resource, and the link can be
followed from the point it has been added into the document. This local to remote behavior is known as
an outbound link.

In order to get a feel for this, if we wanted to express the HTML link example from above in XLink
syntax, we would write it like this:

<nyLi nk
xm ns: x| i nk="http://ww.w3. org/ 1999/ xl i nk"
x| i nk: type="si npl e"
xlink: href="http://ww. nydomai n. conf r esource. htm ">
DI SPLAYED TEXT
</ myLi nk>

Using this syntax, our XLink application would exhibit the same behavior as the HTML anchor.
Though the simple XLink cannot really accomplish what we want to do with database relationships, we
can still use it as a way to introduce some common XLink concepts we'll develop more fully with
extended links later in the chapter.

The first thing to be aware of is the need for the required namespace declaration:

xm ns: xl i nk="http://ww. w3. or g/ 1999/ x| i nk"

This is the proper namespace to use for the XLink specification. Namespaces are used to declare to a
parser or application which XML vocabulary or specification a particular element or attribute is
implementing.

The first XLink attribute used is t ype:
x| ink:type="sinple"

As we said earlier there are simple links and extended links, and because we are looking at simple links
we will give it the value of si npl e.

The t ype attribute from the XLink namespace has a very special meaning in XLink, in that it defines
what an element's role in creating and describing a link will be. The t ype attribute is a required
attribute in all XLink elements. This typing of all elements is what denotes them as belonging to an
XLink link. Each element in an XML document that is XLink typed will be evaluated against the W3
recommendation by an XLink application.

350

Relational References with XLink

The locator attribute hr ef is used in exactly the same manner as in HTML, where it includes as its
value a URI for some resource:

xlink:href="http://my.domain/resouce. htm "

In XLink, the hr ef attribute is not required for a simple link. A simple link without an hr ef attribute is
acting as a resource only, which may contain properties about the document in which it resides.
Consider again the anchor tag in HTML that also has an optional hr ef attribute. The <a> tag using an
attribute of name provides a destination within a document, but does not itself provide an outbound
link. A simple link with no hr ef is simply non traversable, but may still contain any of the following
attributes to provide properties for the local resource:

role

Ther ol e attribute is an optional URI reference that describes how the link relates to the remote resource.
For example, alink referring to alist of authors may contain ther ol e attribute

xlink:role="http://nmy.domain/linkproperties/authors"

The resource identified by the URI will contain information describing the author list asit relates to the
document in which the link is defined. How an XLink application will use such information is yet to be seen,
but the intended use isto allow for greater detail about a resource than would be displayed viathe content of
thelink, or theti t | e attribute. This attribute would be used by an application, rather than by the user. The
reference could be used as a categorical identifier, to let an application know a particular link is, for instance,
about authors rather than titles. One such use may be for an application to categorize links in a search of
resources. Another use would be to display links of different types according to rules defined in ther ol e
resource. The W3C recommendation does not specify the nature of the contents to be found in the specified
role-describing resource.

arcrole

Arcsare used in XLink link structures to determine traversal rules, such as whether alink traverses from
resource A to resource B, or vice-versa. However, a simple link does not actually allow for the specification of
an arc, asit isexplicitly a one to one outbound link. Y et, because the simple link does have an implied arc, the
ar cr ol e attribute is carried over. The definition and use is the same as that of ther ol e attribute, but
presumably would apply to the nature of the traversal, rather than the resources involved. The W3C
recommendation does not specify the nature of the contents to be found in the specified role-describing
resource.

title

A single ti t| e attribute may be optionally defined to provide a human readable description of the link
on which it is given. A ti t| e attribute would be defined as follows

xlink:title="Go To Anot her Resource"

Such a title could either be used to display an available link if the linking element had no content, or to
provide information to a user when they initiated traversal of the given link.

show

This is an optional behavioral attribute which must take new, r epl ace, enbed, ot her, or none as its
value in order to describe for the XLink application how the link will be traversed by the user. If no
value is specified, no XLink specified default it given.

O Use newto open a new display window with the contents of the remote resource. This is
similar to the behavior of an HTML link with an unrecognizable, or "_bl ank" target
attribute value.

351

Chapter 9

actuate

Use r epl ace to replace the contents of the current resource in the display window. This is
similar to the default linking behavior of web browsers.

Use enbed to put the remote resource into the current resource at the location of the linking
element. This could be used to place non-XML content into a document, such as an image, or
an application.

Use ot her for user or application defined behaviors. In this case, the XLink application
would look for other related markup in the link definition to provide the behavior of this link.

Q Use none as a placeholder that may tell the application to behave differently than if the
attribute is simply empty. For instance, none may be used to override a default behavior
when you don't want the link to be traversable, and yet the hr ef attribute is available for
other reasons. Perhaps locator references in the document will be read by another
application, but the user interface should not provide a way to use the links. However, no
behavior is explicitly defined for this attribute value, so an individual application may
handle it differently.

This optional behavioral attribute describes when the link should be traversed, and must take either
onLoad, onRequest, ot her, or none as its value. If no value is supplied, no XLink specified default is

given.

0

O
O

onLoad would actuate the showlink behavior as the page is loaded, effectively working as a
redirect with x| i nk: show="r epl ace" or as an include with x| i nk: show="enbed".

onRequest would actuate the link on the users' action; acting as a standard hyperlink with
newor r epl ace, or a dynamic text area (or other yet unknown possibility) with enrbed.

Again, ot her would provide a way to offer customizable actuation behaviors.

Override an application default, by explicitly declaring there is no way to actuate the link.

We will see most of these again when we discuss the extended element.

Simplify the Simple Link with a DTD

Compared to the HTML <A> tag, the simple links we have just seen may seem incredibly complicated,
but we can make our lives much easier. Because we are dealing with XML, we can make use of a DTD
to generically describe the recurring attributes. Consider the following DTD fragment we could use with
simple links:

<l ELEMENT nyLi nk ANY>
<! ATTLI ST nyLi nk

352

xm ns: x| i nk CDATA #FI XED "http://www. w3. or g/ 1999/ xI i nk"
xli nk: type (sinple) #FI XED "si npl e"
x| i nk: hr ef CDATA #| MPLI ED
xlink:role NMIOKEN #FI XED "http://ww. nydonai n. com si npl el i nk. ht m "
xlink:arcrole CDATA #| MPLI ED
xlink:title CDATA #| MPLI ED
xl i nk: show (new
| repl ace
| embed
| ot her

Relational References with XLink

| none) #FI XED "r epl ace"
xlink: actuate (onLoad

| onRequest

| ot her

| none) #FI XED "onRequest " >

If our earlier document was validated with a DTD containing this definition for the element nyLi nk we
could then write our simple element:

<myLi nk xlink: href="http://ww. mydomai n. coni resour ce. ht M " >DI SPLAY TEXT</ nyLi nk>

We are using the DTD to supply default, or fixed values for commonly recurring attributes. This means
we don't have to write them in every time, and could write all of our links in a document using the
<nyLi nk> element the same way you would use <a> in an HTML document.

Only browsersthat offer some level of XLink conformance will be able to even display
the examples shown here. At the time of thiswriting, Microsoft Explorer 5.5 and
Netscape Communicator 4.6 cannot load an XML document with XLink namespaces
defined; Netscape 6 beta 2 can load the document but cannot display thelink.

We then have something more familiar to our HTML experience. Again, keep this lesson in mind as it
also applies to extended links.

It is helpful to understand that with XLink we are not constrained by the names of elements as we
are in HTML. The whole idea that we can define and extend links on our own, with a flexible
format, is one of the goals of the XLink editors. We have seen that we can name an element

<nyLi nk>, and then by assigning a namespace to the element along with a few prescribed
attributes, give it linking behaviors. In so doing we are not necessarily confining our <nmyLi nk>
element to be a linking element only. Any other content or attributes of the link element will merely
be ignored by the XLink application while retaining their meaning for other parsers or applications.

Extended XLink Elements

When I introduced the idea of linking with an HTML anchor tag, I asked if we could define any
relationships between the data with our links. The answer was no, and the same is true of the simple
XLink element. But we wouldn't have much to say in this chapter if it couldn't be done, so without
further ado, here are extended links.

The last look at resources A and B showed A as the resource that contained a link, and was by definition
local. It pointed in a uni-directional way to a single remote resource, B. With extended links, the
resources that participate in the link may be expanded both in number (a link can point to several
resources) and in traversal behavior (the links can indicate two-way traversal without expressly pointing
this out in all resources — remember I said earlier that it was possible to provide an inbound link from a
resource you do not own and/or is read-only on your local server).

353

Chapter 9

In contrast to the simple link, the extended link provides for the linking direction to be set with the

ar c-type element in conjunction with any number of resource and locator type elements. Whereas the simple
link is one element with several attributes, the extended link is a parent element with several child attributes
and elements.

Let's start off with an example where we want to create links between our homes and local shops that
describe a relationship. We will see in this example that we define remote resources with the | ocat or
element, and local resources with the r esour ce-t ype element. These resources are then given their
link direction, or traversal rules, by the ar ¢ element. This may look quite complicated at first, but it
will become clear shortly:

<ROUTE xm ns: xl i nk="http://ww. w3. org/ 1999/ xl i nk"
x| i nk: t ype="ext ended"
xlink:title="A sanpl e extended |ink">
<HOME xl i nk:type="resource"
x| i nk: href ="hone. xm "
xli nk: | abel =" nyhouse"
xlink:title="Directions to ny house" />
<STORE xl i nk:type="1ocator"
xlink: href="store.xm"
xlink: | abel ="t hestore" />
<GETM LK xl i nk: t ype="arc"
xli nk: from"t hest ore"
x| i nk: t o="nyhouse" />
</ ROUTE>

You might be surprised that it takes so much code to write one link, but it is quite powerful compared
with HTML linking.

Here ROUTE is the extended linking element. There are three child elements of the linking element:
HOVE, STORE and GETM LK:

0 HOVE represents details of directions to our house, stored in the home. xm file, and is the
local resource defined in a r esour ce-t ype element

0 STORE represents a store that we want to get milk from, and is the remote resource defined in
al ocator-type element

O GETMLK the arc-type el enent, defines a relationship from the STORE to our HOVE, so
that the store can know how to deliver the milk we want from the store. If you look at the t 0
and f r omattributes on this element you might be able to see that we will be creating a link
from the STORE to our HOVE.

Let's look at the syntax again. We have defined ROUTE as an extended-type linking element (using the
t ype attribute with the value of ext ended).

<ROUTE xm ns: x| i nk="http://ww. w3. org/ 1999/ xl i nk"
xl i nk: t ype="ext ended"
xlink:title="A sanpl e extended |ink">

If you were looking closely, you may have noticed that the child elements have different values for their

t ype attributes, and that these child elements inherit the namespace of the ROUTE element, so we do
not need to declare it again.

354

Relational References with XLink

Here we can see how extended XLinks use both elements and attributesto describe the
intended relationship between the data; here, their child elements within the link
element and their attributes on these child elements.

The child elements of the extended linking element (which remember is ROUTE) have different values
for their t ype attributes:

O The value of the HOVE element's t ype attribute is r esour ce
0 The value of the STORE element's t ype attribute is | ocat or

0 And we have declared a traversal behavior for our resources in GETM LK, by defining the
value of type asarc

The ar c is the key here, as it is describing a link from the HOVE to the STORE. Arcs tell the application
what should be done with each of the | ocat or and r esour ce-t ype elements found in the extended
link. In the simple link, the ar ¢ is implied, but some of its attributes were present. In an extended link,
it is inside the ar ¢ that you will not only set the direction, but also declare the show and actuate
behaviors as well. The ar ¢ uses the labels that have been defined on each participating resource.

<STORE x| ink:type="1ocator"
xlink:href="store.xm"
x|l ink: | abel ="thestore" />

The | abel attribute is optional for the | ocat or and r esour ce elements, but must be provided if the
element is going to participate in a link.

<GETM LK xl i nk:type="arc"
x| i nk: from="t hestore"
xl'i nk: t o="nmyhouse"/ >

We'll see later that labels can be reused on several resources in order to define several linking structures
with one ar c.

If we go to a diagram of resources A and B again, we will see that we have created an inbound link
because we have defined our local resource, "nyhouse" as the ending resource from "t hest ore", our
remote starting resource. It is the addition of the traversal element GETM LK, of type ar ¢, which makes
this possible.

Inbound Link
Local Remote
Ending Resource A | Traversal Path Beginning Resource B
myhouse thestore

Linking Element

This is a neat trick if you think about it, because we don't need to own the t hest or e resource in order
to suggest that it links to myhouse — meaning that the store could own the st ore. xm file, but we can
still link from it.

355

Chapter 9

If an XLink aware application were to parse an XML document with our example link, it would pre-
load the remote resource upon recognition of the | ocat or element in the extended link element on our
local resource. So, prior to displaying anything, the st or e. xm resource is read into memory and a
temporary file is created. Such a file may be created on the fly by a browser, or cached in a database
before being made available; the actual implementation would depend on the application. Either way,
you end up with a copy of the remote resource that now belongs to your application, and may have new
information written to it.

If the application were written to create links to the local resource at the end of the page under the
heading "Helpful Resources", you would get:

/23 Trying an Extended Link - Microsoft Internet E B] |
J File Edit View Faworites Tools Help |

J Back ~ = - (3 tat | Qhsearch [3Favorites = JLinks »
J.D.ddressl htkpe filocalhosttestingf<linkthestare, xml j @Go

The store is a great place in which to buy Milk!
Helpful Resources

Directions to my house

-
|&] pane l_ l_ Local intranet S

The remote resource, st or e. xm contained a simple sentence about the store. Our local resource
provides directions to our house, and the store document has now been enhanced with the ability to
provide those directions. Because the ar ¢ can be set with the showand actuate behavioral attributes,
the directions to my house could be embedded in the document instead of just having a link to the
hore. xm document.

The linking element is still maintained in our document, but now is not implicitly set to be only a one
way traversal. If you look at the structure of the extended link, and realize that there is no limit to the
resource, | ocat or, and ar ¢ elements you can define, you start to see the power of this linking
structure.

I imagine you may still have some confusion at this point, but I wanted to whet your appetite a bit
before getting into details. Now, let's hit some detail and apply it to what you have read already.

The Elements of Extended Style Links

As I noted above, the extended element is made up of the attributes the element contains, along with
the child elements that appear within it. Each element then has elements that define its own role within
the extended link, and its particular behavior. I think we will benefit from first looking at a diagram and
then explaining it.

356

Relational References with XLink

Extended-Type Element

Semantic Attributes
Role
Title

Child Elements

Locator-Type Element

Semantic Attributes Locator Attribute Traversal Attribute
Role HREF label
Title

Arc-Type Element

Semantic Attributes Behavior Attributes Traversal Attributes
Arcrole Show To
Title Actuate From

Resource-Type Element

Semantic Attributes Traversal Attribute
Role label
Title

Title-Type Element

Optional Language
Identifier

The entire box represents the extended linking element, with its child elements. As we saw in the last
example, the child elements can take different values for the t ype attribute than the parent linking
element. Each internal box represents one of the values for the type attribute that may appear within it:
| ocat or

arc

resource

title

O o o o

We shall look at each of these in turn shortly. Within each box, the available attributes are listed in a
column that corresponds with its attribute type.

357

Chapter 9

The t ype attribute is required on each child element, and describes the type of element. We have put
the other attributes in the following classifications:

Classification

Meaning

Semantic

Traversal
Behavior

Locator

Describes the meaning of resource in the context of the link (rol e, arcrol e,
andtitle)

These are used to write traversal rules (I abel , t 0, and f r om
Describe what happens upon traversal of an ar ¢ (showand act uat e)

The familiar hr ef attribute you recognize from HTML that takes a URI as its
value

Title can be both an attribute and an element, and both may be contained within an
XLink extended element and each of itschildren. Thisis a confusing point and the
W3C recommendation doesn't really help to clarify what applications should do when
they encounter different title values. One possible usefor ti t | e elementswould beto
declare several types of titlesfor one extended link, ideally one per language.

The titl e element has an additional attribute, xm : | ang. The W3C recommendation states that this
may be included to identify the current language choice in an application. The implementation of this
addition to the ti t| e element will be entirely up to the writer of an XLink application.

So, let's take a look at each of the types of element:

The arc-type Element

The element with a value of ar ¢ for the t ype attribute describes the linking behavior in an extended
link. In our last example, the ar ¢ defined where the link was between:

<GETM LK xl i nk: type="arc"
xlink:from="thestore"
x| i nk: t o="nyhouse" />

As we have just seen, an element whose t ype attribute has a value of ar ¢ can take the following

attributes:

Semantic attributes:

O arcrole
o title

Behavior attributes:

0O show
O actuate

Traversal attributes:

0 to
O from

358

Relational References with XLink

We discussed the ti t| e and the behavioral attributes when we talked about simple links. The new ones
are ar cr ol e (which we come back to later) and the traversal attributes.

The t 0 and f r omattributes are used within the arc itself to show directionality. As a value, these
attributes take the value of the | abel attribute of the resource or element type elements. In our last
example, we defined the resource that represented our home with a label of nmyhouse:

<HOMVE xlink:type="resource"
xlink: href ="home. xm "
x| i nk: | abel =" myhouse"/ >

Now, let's modify our earlier extended link so that we have to go to two different stores on our ROUTE:
the GROCERY store and another resource called BOOKSTORE. Because arcs are describing generic
behavior, if you use the same | abel on different resources, the ar ¢ will define a relationship between
all the elements with the same label. If we make the label for both stores a generic "st or " we can see
how the ar ¢ is extended. The changes have been highlighted here:

<ROQUTE xml ns: xl i nk="htt p://ww. w3. or g/ 1999/ xI i nk"
x| i nk: t ype="ext ended"
xlink:title="A sanple extended |ink">
<HOME xIl i nk:type="resource"
x| i nk: | abel =" nyhouse" address="123 Main St.">
I live in ny hone
</ HOVE>
<CGROCERY x| i nk: type="1I ocat or"
xli nk: href="food. xm "
x| i nk: | abel ="store"/>
<BOOKSTORE xI i nk:type="I|ocator"
x| i nk: hr ef ="books. xm "
xlink: | abel ="store"/>
<CETSTUFF xl i nk:type="arc"
xlink: from="store"
xl'i nk: t o="myhouse"/ >
</ ROUTE>

The traversal of links now defined allows both the bookstore and the grocery store to be linked into
"myhouse". We can see this in the following diagram:

Home
xlink:label="myhouse"

Bookstore Grocery
xlink:label="store" xlink:label="store"

When we define an arc with the t 0 and f r omattributes, this creates a traversal rule. Each traversal rule
will explicitly set the behavior for a set of resources. Thus, it is significant to note that each ar ¢ element
within an extended link must define a unique traversal rule. This makes sense, because once it is
possible to traverse a certain direction from one resource to another, there is no need to define that
traversal path again.

359

Chapter 9

If you need to set a rule that you can get from resource A to resour ce B, then you can
only set that rule once.

Remember though that directionality is explicit, so that if we switch the t 0 and the f r omattribute
values:

<RETURNSTUFF

xli nk: fron=" myhouse"
xlink"to="store" />

we have a different unique traversal rule, even though the same resources are in play.

If weneed to set arulethat you can go from Resource B to Resource A, thisis
different from before, and we would require a new rule.

Home
xlink:label="myhouse"

Bookstore Grocery
xlink:label="store" xlink:label="store"

However, if the f r omor t 0 attributes are absent from the ar ¢ element, then all resources in the
extended link are assumed to be in play. In other words:

<STUFF xl i nk:type="arc">

This would be a legitimate ar ¢ for our example above that would accomplish the same thing as the
<CGETSTUFF/ > and <RETURNSTUFF/ > arc elements, along with providing a traversal between the store
elements themselves.

Home
xlink:label="myhouse"

Bookstore Grocery
xlink:label="store" |~ "l xlink:label="store"

360

Relational References with XLink

It would be illegal according to the XLink rules to define <STUFF/ > in the same extended link as the
other two, because <STUFF/ > makes the other two repetitive.

If we have defined rules for getting from Resource A to Resource B, and for getting
from Resource B to Resource A, we cannot also define a rule which allows usto move
in both directions.

The resource-type Element

The resour ce-t ype element is used for local resources in the extended link.

Note here that there is a distinction between local and remote resources. Remembering back to the last
example, the t ype of our HOVE element was r esour ce, while the stores' t ype was | ocat or.

<ROUTE xml ns: xl i nk="http://ww. w3. or g/ 1999/ xI i nk"

<HOME xl i nk:type="resource" ...></HOVE>
<GROCERY xlink:type="locator" .../>
</ ROUTE>

HOVE represented a local resource, while the stores represented remote resources.

In the r esour ce element the link itself, along with any content of the link, is considered to be a local
resource. It takes the following attributes:

Semantic:
O rol e

o title

Traversal:
0O | abel

The local resource can be both a starting resource, and an ending resource in the same extended link. I
hinted before at the possibilities for inbound links, and their magic starts here. If we put some
meaningful content into our r esour ce element:

<HOME xl i nk:type="resource"
xlink: | abel =" nyhouse" address="123 Main St.">
Go west on 5th until you come to Main St. Go east on Main St. to 123.
I live on the 5th floor.

</ HOVE>

We can give our ar ¢ some behavior:

<CETSTUFF xI i nk:type="arc"
xlink: from="store"
xli nk: t o="nmyhouse"
xl'i nk: show=" embed"
xli nk: act uat e="onRequest" />

361

Chapter 9

We have now done something neat. We have told our XLink application to display the directions to my
house embedded in the current document when a person viewing a store resource clicks on the route.

Consider an application that is set to load an XML document called or der s. xml . The or ders
document contains a r out e element for every location contained in a database of customers.
Furthermore, the r out e elements have been written with the same arcs, to reference the order
information documents for each type of store. If a user were to request the or ders. xm document, our
application would load each st or e resource document into a temporary file either on disk, or in
memory. This would be based on the XLink aware application recognizing that f ood. xm and

books. xm are remote resources as defined by the | ocat or -t ype elements.

After each remote file has been loaded, its contents could be scanned for placeholders we have set. In

this case, we might be working with a document we own, and can structure any way we like, but it will
be read-only when parsed by our application. If we take one of the remote resources, f ood. xm , and

give it the following structure:

<Food>
<Store type="Gocery">
<Order id="383232" |ocation="nyhouse">
<Iltemid="232" name="mlk" />
<Itemi d="565" nane="cheese" />
</ Order >
</ St ore>
</ Food>

then we could build our application to key on the | ocat i on attribute in the <Or der > element of each
remote resource. The application can then insert the defined link at each place in each st or e resource
document where a match for the label myhouse occurred, effectively attaching directions to each store
order. Then, a final document containing all the information of the remote resources could be displayed
to the user.

This may be hard to visualize since we don't have such an application, but consider this possible
interpretation:

; C:'Wy Documents W oxProXML db\extlink him - Microsoft internet Explorg

| B0 B view Favortes Tocis Hep

e Bl

Back Eoesvard Stop Refrazh Search I}

| Aderesz 557 Cwty Documentstran ProXMLdbiendik Him

Route: A Sample Extended Link

Grocery
myhouse: 123 hMam St.
Boolistore

myhouse: 123 Mamn St

362

Relational References with XLink

This display would be possible if an application were to display the extended link element names and
attributes. As you can see, myhouse can be linked to from both st or e elements. If the user were to
click on the nyhouse element with the ar ¢ defined above they would get:

;I:'.'Mp Dacurme =4 ox'Pr o XML db'extlinkwilhembedbiim - Microsoft Inteonel Explorer
| Eie Edt ew Favotes Jook ek
”m [\ B o
|¢J_¢.@ B A G
Back [V otward to Copty Documems Wrow ProxLdb etk mtm | 2F00EE Heton
| Adkiress [C ey Documentshok o ProkbLdbletirkerihembed fin

Route: A Sample Extended Link
Grocery

myhouse: 123 Wan St

Bookstore

myhouse: 123 Main St

The document loaded for the user is not any one of the resources we have been working with. The user
has asked to view the or der s. xml document, which is nothing more than a placeholder for customer
information. This customer information has been made useful via inbound links from documents
containing order information. The or der s. xm document as displayed appears to contain all of this
information in one place. In actuality, it has loaded two read-only resources in the background, and
enhanced their display with the local customer information.

The locator-type Element

As we have seen, the | ocat or - t ype element is the remote resource being defined by the extended
link element. It can take four attributes:

Semantic:
O role
o title

Locator:
O href

Traversal:
O | abel

There is only one mandatory attribute, hr ef , which must have a URI value specified. However, the
mere presence of an hr ef attribute value does not give the | ocat or element linking behavior.

363

Chapter 9

Remember that it is the ar ¢ element that provides the linking behavior, and that the ar ¢ element uses
the value of the | abel attribute to define the link. If a locator is missing from the | abel attribute, it
simply cannot be identified in an ar c, although it may still be useful to an XLink application as a
descriptive element. However, it cannot participate in any XLink specified link..

It is the locator element that gives the extended link a lot of its power because it is able to identify
resources that may be outside the control, or scope, of the document defining the link.

If an ar c identifies a traversal rule between two locator elements, it is creating a third-party link. Third-
party links are two or more remote resources being linked by a local document's linking element. The
ability to describe links from remote resources provides a special ar ¢ called a linkbase.

Linkbases

Special collections of remote resources identified with locator elements can be defined with a locating
I i nkbase. Linkbases are a special type of ar ¢ definition, which allows for simplified management of
remote resources.

Y ou specify this special ar ¢ with the ar cr ol e attribute set to the following:
xlink:arcrol e="http://ww.w3. org/ 1999/ x| i nk/ properties/|inkbase"

If we have numerous remote resources we would like to relate to one another, it may be simpler to hold
each of these links in one document that can be loaded by our local documents.

This could be useful for:

O Creating a reference between documents you don't own
O Annotating documents written by others

0 Maintaining a central link repository for easier maintenance

For example, imagine we had a number of stores, and all of them should be able to link to or from a
shopping list. Rather than defining all of these stores inside of our particular extended element, we can
load a pre-set listing of stores with a traversal rule for getting from stores to myhouse. In order for the
XLink application to make use of these links, we define a | i nkbase arc that has the listing of links as
the ending resource.

A linkbase must be written as a well-formed XML document according to the W3C
candidate recommendation. This makes sense because the | i nkbase document will
be processed in order toretrieve the extended link information contained within.

In this way, if I have several remote resources that may all traverse to or from stores, not just my
shopping list, then I can re-use the St or e resources again and again without putting all the stores in
each extended linking element.

<ROUTE xm ns: xl i nk="http://ww. w3. org/ 1999/ xl i nk" xlink:type="extended">
<HOME address="123 Main St."
xlink:type="1ocator"
x| i nk: | abel =" myhouse"
x| i nk: href ="house. xm ">
Al Stores
</ HOVE>

364

Relational References with XLink

<STORES x| i nk: t ype="1ocat or"
xlink: href="storelinks. xm"
xlink: | abel ="al | stores"/>

<GROUPCLI NKS xI i nk:type="arc"
xlink:arcrol e="http://ww.w3. org/ 1999/ xl i nk/ properties/I|inkbase"

x| i nk: from=" myhouse"

xlink:to="all stores"

xl'i nk: act uat e="onRequest "/ >
</ ROUTE>

Here, within our ROUTE, we have:

O HOVE — which refers to a document that contains the directions to my house

O STORES - the | ocat or, which specifies list of stores that I might wish to shop from, which
points to the | i nkbase document. This is not a participating link resource. The document
that it specifies will provide the link participants.

O GROUPOLI NKS - which specifies the special ar cr ol e attribute. The ar ¢ with this special
ar crol e will load the extended links in the document specified by the labeled locator listed
as the ending resource in the ar c.

Consider the following diagram:

Orders.xml

Groupolinks arc
with linkbase
acrole loads

ending resource

on docment load

StoreLinks.xml

Whatever the contents of the st or el i nks. xni file, the extended links contained within will be pre-
loaded when the or ders. xm document is loaded. The links defined there are then available for the
orders. xm document to use. This is a convenient way to locate each resource required for processing
the orders. xm document before anything is displayed for the user. It also provides a way to keep the
stores listing separated from the or der s. xnl document.

365

Chapter 9

The st orel i nks. xm document, which is the | i nkbase document, may look like this:

<?xm version="1.0"?>
<LI NKS xm ns: xl i nk="http://ww. w3. org/ 1999/ xl i nk" xlink:type="extended">
<GROCERY xl i nk: type="1ocator" xlink:href="groceries.xm"
xl i nk: | abel ="store"/>
<BOOKSTORE xl i nk:type="locator" xlink:href="books.xm" xlink:|abel ="store"/>
<CLOTHI NG xl i nk: type="1ocator" xlink:href="clothes.xm" xlink:I|abel ="store"/>
<UTILITY xlink:type="locator" xlink:href="electricity.xnm"
xl i nk: | abel ="store"/>
<PLACESTCSHOP xl i nk:type="arc" xlink:from"store" xlink:show="new'
xl i nk: act uat e="onRequest "/ >
</ LI NKS>

in this case, a single extended link allowing all stores to traverse to the house. xm document. Notice
that in this case, the t 0 attribute has been left blank in order to relate all of these st or e locators to all
resources in the or der s document. However, the links within a linkbase can specify any traversal rule,
even if this requires re-processing the originating document (or der s. xm) to handle the links. When
orders. xn is loaded, the only item to show for the user may be a link that says "All Stores". It would
be upon selection of that link, that the stores information would become available. This would differ
from the earlier example, which would have loaded all of the St or e resources along with directions
right at load time.

Note that linkbases are not to betraversed. That is, they provide a document a list of
links that may betraversed, but when linkbases themselves ar e loaded, they are only
providing information to the document about the location of remote resources. This
means that the showattributeisirrelevant in alinkbase. The act uat e attributeis
still relevant because we may not want all the links to show up until the user has asked
for them.

Using Extended Links

Before we move on, let's be sure we have a good picture of extended links by looking at a full example.
We will look at the example of an invoice in XML.

The invoice document contains some standard elements such as i t em i nvoi cei d, cust oner s, and
directions to a particular customer's location. The attributes from the XLink namespace have been
added to the various elements such that we now have the following XLink types:

Invoices.xml Element Name XLink Type Link Location

I nvoi ce Extended Link

Description Title

i nvoi cei d local Resource resource local - in document

item remote Locator resource /inventory/itens.xm
cust oner remote Locator resource / cont act s/ cust onmer s. xm
directions local Resource resource local — in document
getdetai l Arc

366

Relational References with XLink

Here is the DTD for the XML invoice, so that we can work with a validated XML document, and get
the benefit of writing the actual elements in a more simplified manner as well (ch09_ex1. dt d):

<! ELEMENT i nvoi ce ((description]|invoiceid|iten custoner|directions|getdetail)*)>

<I ATTLI ST i nvoi ce
xlink: type
xlink:role
xlink:title

(ext ended)
CDATA
CDATA

<! ELEMENT descri pti on ANY>
<! ATTLI ST descri ption
xlink: type (title)

<! ELEMENT i nvoi cei d ANY>
<! ATTLI ST i nvoi cei d

xlink:type (resource)
xlink:role CDATA
xlink:title CDATA
xl i nk: | abel CDATA

<! ELEMENT item EMPTY>
<I ATTLI ST item

itemd CDATA
qty CDATA
xlink:type (l ocator)
xli nk: href CDATA
xlink:role CDATA
xlink:title CDATA
xl'i nk: | abel NMTOKEN

<! ELEMENT cust oner EMPTY>

<I ATTLI ST cust omer
custonerid CDATA
xlink:type (l ocator)
xli nk: href CDATA
xlink:role CDATA
xlink:title CDATA
xl'i nk: | abel NMTOKEN

<! ELEMENT di rections ANY>
<! ATTLI ST di rections

xlink: type (resource)

xlink:role CDATA

xlink:title CDATA

xl'i nk: | abel NMTIOKEN
<! ELEMENT getdetail EMPTY>
<I ATTLI ST get det ai

xlink: type (arc)

xlink:arcrole CDATA

xlink:title CDATA

xl'i nk: show (new repl ace| enbed| ot her | none)
x|l i nk: actuate (onLoad| onRequest | ot her | none)

xlink: from
xlink:to

NMTOKEN
NMTOKEN

#FI XED " ext ended"
#| MPLI ED
#| MPLI ED>

#FI XED "title">

#FI XED "resour ce”
#1 MPLI ED

#1 MPLI ED

#FI XED "i nvoi cei d">

#REQUI RED
#REQUI RED
#FI XED "1 ocat or"
#REQUI RED
#1 MPLI ED
#1 MPLI ED
#FI XED "itent >

#REQUI RED
#FI XED "1 ocat or "
#REQUI RED
#1 MPLI ED
#1 MPLI ED
#FI XED " cust oner " >

#FI XED "r esour ce"

#1 MPLI ED

#1 MPLI ED

#FI XED "di rections">

#FI XED "arc"
#1 MPLI ED
#| MPLI ED
#| MPLI ED
#1 MPLI ED
#| MPLI ED
#1 MPLI ED>

367

Chapter 9

Remember, you can type this in if you want the practice, or you can go and download it from the
web site for this book along with all of the other sample code: http://www.wrox.com.

The DTD provides the necessary structure, and gets some of the mundane details down in one place.
This will be more important as you go to implement this in the real world, because unlike our example
you would likely be generating numerous instances of the same element type. That being said, here is
the XML document (ch11l_ex1. xmi):

<?xm version="1.0"?>
<! DOCTYPE i nvoi ce SYSTEM " chl1l_ex1.dtd">

<i nvoi ce xm ns: x| i nk="http://ww.w3. org/ 1999/ xl i nk"
xlink:title="Invoice Detail for Order nunber 123456">

<description xlink:type="title">
Custoner Details for |nvoices</description>

<i nvoi cei d>123456</i nvoi cei d>

<itemitem d="9876" qty="500"
xl'ink: href="/inventory/itens.xm"
xlink:title="itens on custoner invoice"/>

<itemitem d="4321" qty="25"
xlink:href="/inventory/itens.xm"/>

<cust onmer custoneri d="765423"
x| i nk: href="/contacts/custoners. xm"
xl'ink:rol e="http://sanpl e. bi gwar ehouse. ex/ cust oner/i nvoi ceref"/>

<di rections>Turn | eft from warehouse, drive 5m. on route 3 to Johnson.
Turn left onto Johnson and continue to Main St.
</directions>

<getdetail arcrole="http://sanpl e. bi gwarehouse. ex/i nvoi ce/ detail s"
x| i nk: show="r epl ace"
xl i nk: act uat e="onRequest "
xl i nk: from="i nvoi cei d"/>
</invoi ce>

While this XML document is well formed and valid, it is not likely that such a document would stand-
alone in the real world. Rather, this would be a single invoice in a list of invoices in a document. As
we'll see in the next section, a document like this could easily represent the data in a table from a
relational database. Before we move on I would like to note a few features of this example.

Notice the use of the tit| e attribute as well as the ti t| e element.

<i nvoi ce xm ns: x| i nk="http://ww.w3. org/ 1999/ xl i nk"
xlink:title="Invoice Detail for Order nunber 123456">

<description xlink:type="title">
Custoner Details for |nvoices</description>

The proliferation of titles throughout XLink may seem like overkill, but consider that the attribute may

be rendered as something like a tool tip for the i nvoi ce link, while the ti t| e-type element may be
used for the entire resulting document.

368

Relational References with XLink

I would also like to draw attention to the addition of non-XLink attributes in the locator elements.
XLink is not a set of element names that only describe links; it is a set of element types declared
through the use of namespace-prefixed attributes. Other non-XLink attributes, child elements and
content of the elements used to create a link are not a hindrance for XLink to do its job.

Extended Link Summary

We have seen how to use the XLink language to create both simple and extended linking elements. In
looking at extended links, the usefulness of arcs was introduced to show the added feature of multi-
directional linking. Of particular importance was the notion of the in-bound link, which had a remote
link as a starting resource. In the next section we will look at how an extended link can be used in
conjunction with XPointer to create structures that describe relational data.

Extended Links and Relational Data

Okay, we have given a good coverage of the basics on writing extended links and they look cool and
seem useful, but why are they in a book about XML databases? Well, the reason is that they provide a
great way to describe relational data within an XML document. Let's see our simple database tables
from the beginning of this chapter written as XML. We'll call the database Or der s:

<Order s>
<l nvoi ce | nvoi ceKey="187">
<i nvoi ceitem | t enKey="13"/>
<i nvoi cei tem | t enKey="14"/>
</l nvoi ce>
<l nvoi ce | nvoi ceKey="188">
<i nvoi cei tem | t enKey="13"/>
</l nvoi ce>
</ Order s>

Tables are expressed as elements, with one for each row. I am showing each value from the table rows
as an attribute value, but each could be the text content value of the element if you like. In the
hierarchical way of XML we express the joining table, | nvoi cel t em by the appropriate nesting of
elements.

This particular view is invoice-centric. If we wanted to look at invoices by item, the nesting would
be reversed, and sorted by the item key. If you need to understand the XML to relational table
transfer more fully, see Chapter 2.

As we will see in Chapter 14, we could produce this output from SQL server 2000 using the new XML
aware processing features. If you want to produce this output with SQL Server 2000 you would use the
following query:

SELECT 1 AS Tag, Null AS Parent, invoice.invoicekey AS [Invoice!1l!lnvoi ceKey],
Null AS [invoiceitem 2!l tenKey] FROM i nvoice

UNI ON
SELECT 2, 1,invoi ce. i nvoi cekey, i nvoi ceitemitenkey FROM i nvoice,invoiceitem
WHERE i nvoi ce. i nvoi cekey = invoi ceiteminvoi cekey

ORDER BY [invoice! 1!invoi cekey], [invoiceitem 2!itenkey] FOR xm EXPLICT

369

Chapter 9

Making the Relationship with XLink

Now that we have the data-set defined in XML, we can take a look at the power of XLink to make it a
more useful document. First, we have to have a business case that makes sense. Let's consider the
following scenario:

0

We have built an XML application for a warehouse that receives order documents from a data
entry application. The order documents contain invoice information, tying customers to
invoices, and displaying items that will be needed to complete the order.

Our application then presents the information to a stock handler for processing; the stock
handler will need to know where in the warehouse to retrieve each item requested on the
invoice.

The document we have received is read-only, and the item location information is located in a
different document. In other words, we need some way to mark up the invoice with location
information to help the stock handlers, but we cannot edit the invoices directly.

In this example, we will relate the or der s documents with the proper locations from the locations
documents in order to mark up the invoice in such a way that stock handlers can look at just one
document for all the information they need.

If our item key is an SKU or other ID recognized by the order taker and our warehouse, we can mark
up our location document like this:

<?xm version="1.0"?>
<ItenlLocati ons

370

xm ns: x| i nk="http://ww.w3. org/ 1999/ xl i nk"
x| i nk: t ype="ext ended" >

<itenm ocation
x| i nk: type="resource"

xlink: | abel ="l ocati on"
itenkey="13">
R15L5

</item ocation>

<ltem
xl i nk: type="1ocat or"
xli nk: href ="acne. nfg. conii nvoi ce. xm #i t enkey(13)"
xlink:|abel ="itenm />
<item ocation
xli nk:type="resource"

xl i nk: | abel ="1 ocati on"
itenkey="14">
R3L1

</itenm ocation>

<Item
xlink:type="1ocator"
xli nk: href ="acne. nfg. conii nvoi ce. xm #i t enkey(14)"
xlink: 1l abel ="itent />

Relational References with XLink

<item ocation
xlink:type="resource"

xl'i nk: | abel =" ocati on"
i tenmkey="15">
R5L6

</item ocation>

<Item
xl'ink: type="1ocator"
xl i nk: href ="acne. nfg. conf i nvoi ce. xm #i t enkey(15)"
x| ink: | abel ="itent />

<iteml ocation
xlink:type="resource"

xli nk: | abel =" ocati on"
i tenkey="16">
R13L3

</item ocation>

<Item
xlink: type="1ocator"
xl i nk: href ="acne. nfg. conf i nvoi ce. xnm #i t enkey(16)"
x| ink: | abel ="itent />

<iteml ocation
x|l ink:type="resource"

xl'i nk: | abel =" ocati on"
itenkey="17">
R11L3

</item ocation>

<Item
xlink:type="1ocator"
xl i nk: href ="acne. nfg. conf i nvoi ce. xm #i t enkey(17)"
x| ink: | abel ="itent />

<getdetail
x|l ink:type="arc"
x| i nk: show="enbed"
x| i nk: act uat e=" onRequest "
x| i nk: to="1 ocati on"
xlink: from"item />

</ltemnmlocati ons>

The item location document has been declared an extended link, so each child element that has XLink
attributes can be understood to display some XLink behavior. This document is generic and presents
only two pieces of information, the bin location, and the name of the XML document we expect to
receive from the order application. As the warehouse, we control this document and can change the
information within. However, we do not want the stock handlers to view this document, but rather the
orders which have come in. The locator declaration:

<Item
x| i nk:type="l ocator"
xlink: href="acne. nfg. confi nvoi ce. xm #i t enkey(14)"
xlink:|abel ="itent />

points to the main document. This locator includes the very simple XPointer reference

371

Chapter 9

x| i nk: href="acne. nf g. conii nvoi ce. xm #i t enkey(14)"

which states: get a result set from i nvoi ce. xm where the i t enkey is 14. This will return a portion of
the invoice document, rather than the entire contents. This will allow us to retrieve only the location
information for our particular item to display at this point, rather than displaying all item locations. You
can read about XPointer in the next chapter on other XML technologies, or in the book Professional
XML, also by Wrox Press (ISBN18610031110).

We know that ch09_ex1. xm should be the starting document resource from the ar ¢ declaration:

<getdetail
xlink:type="arc"
xl i nk: show="enbed"
xl i nk: act uat e=" onRequest"
xlink:to="location" xlink:from"itent />

This shows the item-labeled element to be the x| i nk: f r omresource. In this way, our XLink aware
application is able to show the user the i nvoi ce. xm document, but provide the location information
as embedded in the document when the user requests the information (presumably by selecting a link).
It is also difficult to say how an application will handle the specific references to items. The application
may choose to aggregate all the links on the screen at one time because all are declared within the same
document, or it may choose to strictly display one at a time. If the latter is true, some mechanism will be
required to alert the application that the user is finished with one link, and prepare for the next.

Application developerswill haveto carefully consider how to handle a circumstance
where alocal resource contains more than one remote resource as the starting
resour ce for links contained within the document. One possible solution would beto
only display thefirst such link. Therefore, you should be careful not to depend on a
second inbound link, and really should avoid this situation altogether.

What has happened here? We owned a data source that was particular to our own warehouse, and made
a relationship with data coming from a third party. Because we only have control over our document, it
would not have been possible to create such links in HTML. Furthermore, we would have required
either an RDBMS to query for locations, or would have to process the XML document before display to
achieve similar results.

372

Relational References with XLink

Summary

In this chapter we have seen that XLink is a powerful new standard offering linking mechanisms beyond
HTML's one-way links. The multi-directional extended XLink element provides the greatest
opportunity to define meaningful relationships between documents. As XLink moves toward the end of
the W3C recommendation stage, we can be sure browser developers will move quickly to include this
powerful linking mechanism. Simple additions to existing documents, or new linking documents can be
created to take advantage of XLink in a relatively short time period. By the time you are reading this,
some applications may already be available. Experiment and enjoy!

Additional Resources

Check out the early Xlink application efforts of Fujitsu at:
http://www.fujitsu.co.jp/hypertext/free/xIp/en/sample.htmi

This application uses linkbases on a special server to create links in read-only documents. There is also
an extended link server implementation from Empolis UK called X2X at:
http://www.empolis.co.uk/products/prod_X2X.asp

This demo application gives an idea of what your links would do, but actually won't do much of

anything. It also does not support the use of DTDs. Neither application is a complete XLink
implementation, but are the best available examples, and will almost certainly be improved over time.

373

Chapter 9

374

—

10

Other Technologies
(XBase, XPointer, Xinclude,
XHTML, XForms)

In the first section of this book, many of the topics dealt directly with XML 1.0 and its use with
databases. In the second section, we have been looking at related specifications and how they have been
extended into their own technologies. As we saw in the last chapter, XLink is an example of such a
specification, although we are still waiting to see implementations of it. In this chapter we are going to
learn more about some other related technologies. Many of these technologies do not directly
manipulate data within a database, but they do provide different methods to present data:

Q

Q

Q

Q

Q

XBase — underpins linking technologies providing a base URL for relative URLSs to feed off so
that you only need change the base URL

XPointer — The XML pointing language, used with XLink, allowing you to point to a certain
part of an XML document

XInclude — The powerful inclusion method, to save replication of common data in several
places

XHTML - an existing standard that enforces XML syntax when writing HTML - ensuring that
it is well-formed and can be read by an XML processor

XForms — The next generation of XML based forms

We will not go into great depth with XBase, XPointer, and XInclude since they are still likely to evolve.
However, just like XLink, they are still important to understand so that you will be able to make use of
the power that they will offer. At first, because they are complementary technologies, and some extend
features offered by others, it can be difficult to see the exact difference or intended use of each, this
chapter will help clear up questions like this.

Chapter 10

XHTML is the latest reformulation of HTML. We'll be looking at how it differs from HTML, and why
HTML needed to be improved in the first place.

XForms are the next generation of web forms, and are aimed at enabling the creation of form structures
that are independent of the end user interface. XForms achieve this by separating the user interface
from the data model and logic layer. That means XForms are split into three different layers, which
allow a means to exchange data between a client and database.

We'll start by exploring the possibilities of XBase.

XBase

XLink, as we learned in the previous chapter, is the XML linking language that provides a way to
describe links between resources. These resources can be XML documents, data objects, a list of HTML
links, or any data source to be exposed to other technologies. One of the stated requirements set by the
W3C XLink Working Group (who create the XLink standard), is to support HTML linking constructs.
This has its pros and cons, but it does allow us to utilize a Base type construct like that of the <BASE>
element in HTML. This XML version is called XBase.

At the time of writing XBase is a candidate recommendation, so now is the time to give your input
to this technology via the W3C web site (http://www.w3.0rg/XML/Linking). Because there is still
a good chance that XBase will change, it is not widely supported at present.

In HTML the <BASE> element appears inside the <HEAD> element, and defines the base URL, or
original location of the document. If <BASE> is included, the URL it specifies is used to create absolute
addresses for any relative ones. This means that when a document is moved, we only need to update the
URL in the <BASE> element, and all of the relative links still work (links that do not include the entire
server and directory path). This is because the base URL is defined as the new, current URL for the
document.

In HTML, we declare the <BASE> element like so:

<BASE HREF="http://mnyserver.org/inthisdir/filename.htm">

So, when we use a link like this in our HTML document:

it would resolve to http://myserver.org/inthisdir/filename.html#section2.

XBase offers similar functionality in a single attribute xnl : base. With this simplicity comes flexibility.
It can be used in conjunction with XLink, to specify the base URI as something other than that of the
document. For example, if we wanted to resolve a link to several different resources, including images,
data objects, and XML documents, we can specify the relative URI while using xrl : base to define the
resource base URL

Let's see just how simple this is. Look at this list of XLinks:

376

Other Technologies (XBase, XPointer, Xinclude, XHTML, XForms)

<?xm version="1.0"?>

<lItenmlocati ons xml:base="http://acne. nfg.conlinvoice.xm/'
xm ns: xli nk="http://ww. w3. org/ 1999/ xl i nk"
x| i nk: t ype="ext ended" >

<item ocation xlink:type="resource"

xlink: | abel ="l ocati on"
itemkey="13">
R15L5

</item ocation>

<Item xlink:type="locator"
xli nk: href ="#i t enkey(13)"
xlink:|abel ="itent />

<item ocation xlink:type="resource"

xlink: | abel ="l ocation"
itenmkey="14">
R3L1

</item ocation>

<Item xlink:type="locator"
xli nk: href ="#i t enkey(14)"
xlink:|abel ="itent />

<item ocation xlink:type="resource"

xlink: | abel ="l ocation"
i temkey="15">
R5L6

</item ocation>

<Item xlink:type="locator"
xli nk: href ="#i t enkey(15) "
xlink: | abel ="iten{/>

<item ocation xlink:type="resource"
xlink: 1 abel =" ocati on"
i temkey="16">R13L3</itemnm ocati on>

<Item xlink:type="locator"
xli nk: href ="#i t enkey(16)"
xlink:|abel ="iten{/>

<item ocation xlink:type="resource"

xlink: | abel ="l ocation"
itenmkey="17">
R11L3

</item ocation>

<Item xlink:type="locator"
xli nk: href ="#i t enkey(17)"
xlink: | abel ="iten{/>

<getdetail xlink:type="arc"
x| i nk: show="enbed"
x| i nk: act uat e=" onRequest"
xlink:to="Ilocation"
xlink: from"itent/>

</Itemlocations>

377

Chapter 10

This is almost the same as one of our examples from the previous chapter, but we've made a few

changes. We are no longer explicitly stating the full URI as a resource. Originally we stated the XLink
with this form:

<ltem
xlink:type="1ocator"
x| i nk: href="acne. nfg. conii nvoi ce. xm #i t enkey(17)"
xlink:|abel ="item />

In our new example, we have used the XML attribute xn : base to identify the base or root URI:
xm : base="http://acne. nfg.conlinvoice.xm/"

Note the trailing / at the end. This is essential with XLink, but not with HTML. This allows our new
XLink:

xlink: href ="#i tenkey(17)"

to resolve to http://acme.mfg.com/invoice.xml#itemkey(17). This is the core of XBase.

"Advanced'" XBase

We have seen the principle behind XBase, and it doesn't get much more advanced than this. One thing
we can do is define several base URIs.

In the last example, we made all URIs resolve to the same file, i nvoi ce. xml , which was in
http://acme.mfg.com. However, if we wanted to supply links to other documents as well, we can use
containment to do this.

For example, say the path to our XML document for the ACME manufacturing division is
http://acme.mfg.com/manufacturing, and we also want to add links that resolve to
http://acme.mfg.com/supply, where our hypothetical XML document for the ACME supply division is
located. We could do something like this:

<?xm version="1.0"7?>

<lItenlocations xm :base="http://acne.nfg. cont
xm ns: x| i nk="http://ww.w3. org/ 1999/ xl i nk"
xl i nk: type="ext ended" >

<item ocation xlink:type="resource"
xl i nk: 1 abel ="1 ocati on"
i tenkey="13">R15L5</itenl ocati on>

<conpanyi nvoi ce conpanyi d="1"
xm : base="/ manuf act uri ng/ " >

<ltem xlink:type="Iocator"

xlink: href=" invoi ce.xm #i t enkey(13)"
xlink:label ="itenl/>

378

Other Technologies (XBase, XPointer, Xinclude, XHTML, XForms)

<getdetail xlink:type="arc"
xl i nk: show=" embed"
x| i nk: act uat e=" onRequest"
xl'ink:to="1ocation"
xlink:from"iteni/>
</ conpanyi nvoi ce>

<conpanyi nvoi ce conpanyi d="2" xmnl : base="/suppl y/">

<item ocation xlink:type="resource"
x| i nk: | abel ="| ocati on"
i temkey="16">R13L3</itenl ocati on>

<Item xlink:type="1ocator"
xli nk: href="i nvoi ce. xm #i t enkey(16)"
xlink: | abel ="item'/>

<item ocation xlink:type="resource"
x| i nk: | abel ="| ocati on"
i temkey="17">R11L3</itemnl ocati on>

<Item xlink:type="1ocator"
xlink: href=" invoi ce.xm #i t enkey(17)"
xlink: | abel ="item'/>

<getdetail xlink:type="arc"
x| i nk: show="enbed"
x| i nk: act uat e=" onRequest "
x| i nk: to="1 ocati on"
xlink: from"itent/>
</ conpanyi nvoi ce>

</ltenLocations>
We have made a few changes to the example, so let's break down what is happening.

The document base refers to http://acme.mfg.com, which is the parent base embedded in the parent
element of the document's content:

<lItemLocations xml:base="http://acme. nfg. cont
xm ns: x| i nk="http://wwmw. w3. or g/ 1999/ x| i nk"
xlink: type="ext ended" >

All other child elements referring to XBase then resolve to an extension of the parent base. We have
added child bases in the <conpanyi nvoi ce> elements. In the first <conpanyi nvoi ce> element we
point to the manufacturing section:

<conpanyi nvoi ce conpanyi d="1" xml : base="/nmanuf acturing/">

<Item x| ink:type="1ocator"
xlink: href="invoi ce. xm #i t enkey(13)"
xlink:label ="iteni/>

This address resolves to http://acme.mfg.com/manufacturing/invoice.xml#itemkey(13).

In the second <conpanyi nvoi ce> element, however, we are resolving to
http://acme.mfg.com/supply/invoice.xml#itemkey(16):

379

Chapter 10

<conpanyi nvoi ce conpanyi d="2" xm : base="/supply/">
<item ocation xlink:type="resource"

xl'i nk: |l abel ="l ocati on"
i tenkey="16">R13L3</itenl ocati on>

There are some simple rules that you should follow when using XBase.

Determining the Base URI and Relative URIs

In an XML document, the value of a relative URI is determined relative to either an element or the
document - the granularity doesn't get any finer than the element level.

The W3C recommendation specifies the following rules governing how the base URI of an element is
determined:

1. If the xni : base attribute is specified on the element, this is taken as the base URI of the
element

2. Ifno xnl : base attribute is specified on the element itself, but the element has a parent
element for which an xm : base attribute is specified, the element takes the base URI of
its ancestor

3. If the xm : base attribute is not specified, the base URI is the URI used to retrieve the
XML document (or in the case of XLINK or XPointer, which we'll learn about later, the
URI that the data is retrieved from)

For example, in our first example, there is no xn : base attribute specified for the | t emelement:

<Item x| i nk: type="1| ocator"
xlink: href="#i tenkey(13)"
xlink:label ="itent />
Following rule 2, this takes the base URI of its parent | t enLocat i ons:
<l tenlocations xn :base="http://acne.nfg.cominvoice.xm/"

Relative URIs are then related to their corresponding base URI as follows:

Ad. If the relative URI reference appears in text content, the base URI is that of the element
containing the text.

2. If the relative URI reference appears in the xm : base attribute of an element, the base
URI is that of the parent of that element. If no base URI is specified for the parent, the
base URI is that of the document containing the element.

3. If the relative URI reference appears in any other attribute value (including default
attribute values), the base URI is that of the element bearing the attribute.

4. If the relative URI reference appears in a processing instruction, the base URI is that of

the parent element of the processing instruction. If there isn't one, the base URI of the
document containing the processing instruction is taken.

380

Other Technologies (XBase, XPointer, Xinclude, XHTML, XForms)

So in our second example, where a relative URI is specified in the xni : base attribute of the
conpanyi nvoi ce element:

<conpanyi nvoi ce conpanyi d="2" xmnl : base="/supply/">
the base URI is that of the element's parent, | t emLocat i ons:

<lItenmlLocations xm :base="http://acne.nfg.cont

XBase Summary

As we have seen, XBase is really quite simple. It is there to support the requirement from the W3C
that XML Linking should support the functionality offered by HTML 4.0 linking constructs, and it can
be very useful despite its simplicity. We have also seen how we can specify several base documents,
and how containment can give us flexibility in where our links point to.

At the time of writing, XBase is a recommendation, and may be subject to change. The details on its
implementation are necessarily still sketchy, but keep an eye on the W3C site for the latest updates
(http://lwww.w3.org/XML/Linking and http://www.w3.0rg/TR/xmlbase).

XBase is best used in conjunction with XPointer and XLink. We've seen XLink in the previous
chapter, but what does this XPointer thing do?

XPointer

XPointer extends XPath and can be used in conjunction with XLink. It allowsyou to
identify specific data within a resource described in an XLink.

Imagine we have a set of large XML documents, perhaps a year's worth of invoices, with each
document holding the invoices for a calendar month. If we wanted to process individual invoices from
the month's records, we might not want to have to pull up the whole document. XLink allows us to
specify the document that holds a certain month's records. XPath goes a step further by allowing us to
point to the specific instance of the invoice (or any other part of the document) we want within that
document, so that an application can retrieve that section.

XPointer works by extending the XPath syntax. The power of XPointer lies in the fact that we can use it
to retrieve data on any scale from within documents: whole documents, elements, sections of character
data, or any valid part of an XML entity. We don't even have to retrieve whole nodes: we can, for
example, just select the first few characters in a text node, or the last few characters of the text node in
one element and the first few characters of the text node from the next element.

XPath was created for use in both linking and XSLT.

Note that XPointer only works with resources that have a media type of t ext/ xm or
application/xn.

381

Chapter 10

The XPointer specification will also allow documents to identify themselves, and allow alternative
addressing of such languages such as SVG or SMIL. Remember XPointer simply points to or
exposes a target.

Technology Status

At the time of writing, XPointer is a candidate recommendation. For the full specification, and latest
details as to the progress of the technology, check out http://www.w3.org/XML/Linking and
http://www.w3.0org/TR/xptr.

The W3C currently list the following implementations of XPointer:
Q Fujitsu XLink Processor: an implementation of XLink and XPointer, developed by Fujitsu

Laboratories Ltd (http://www.fujitsu.co.jp/hypertext/free/xIp/en/index.html)

O libxml: the Gnome XML library has a beta implementation of XPointer, which supports the
full syntax although not all aspects are covered (http://xmlsoft.org/)

QA 4XPointer: an XPointer processor written in Python by Fourthought, Inc
(http://fourthought.com/4Suite/4XPointer/)

Locations and Targets

XPointer allows us to examine the internal structure of XML data, and it calls these internal workings
location sets. More specifically, it defines how to expose an XML document to obtain targets -
elements, character strings, and other parts of an XML document - irrespective of whether or not they
bear an explicit ID attribute.

While using ID attributes within XML is desirable, it's not required. Yes, the desired targets could be
obtained using the DOM or SAX: but what if the desired target was a bit of data, such as that specific
invoice item located within our XML document? It would be overkill to link to the XML document,
load the document, and walk the DOM to the specific node or targ