

Professional XML Databases

Kevin Williams

Michael Brundage

Patrick Dengler

Jeff Gabriel

Andy Hoskinson

Michael Kay

Thomas Maxwell

Marcelo Ochoa

Johnny Papa

Mohan Vanmane

Wrox Press Ltd.

Professional XML Databases

© 2000 Wrox Press

All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case of

brief quotations embodied in critical articles or reviews.

The author and publisher have made every effort in the preparation of this book to ensure the accuracy
of the information. However, the information contained in this book is sold without warranty, either

express or implied. Neither the authors, Wrox Press nor its dealers or distributors will be held liable for
any damages caused or alleged to be caused either directly or indirectly by this book.

Published by Wrox Press Ltd,
Arden House, 1102 Warwick Road, Acocks Green,

Birmingham, B27 6BH, UK
Printed in the Canada

ISBN 1861003587

Trademark Acknowledgements

Wrox has endeavored to provide trademark information about all the companies and products
mentioned in this book by the appropriate use of capitals. However, Wrox cannot guarantee the
accuracy of this information.

Credits
Authors Technical Architect
Kevin Williams Jon Duckett

Michael Brundage, Technical Editors
Patrick Dengler Chris Mills
Jeff Gabriel, Andrew Polshaw
Andy Hoskinson, Lisa Stephenson
Michael Kay
Thomas Maxwell, Category Manager
Marcelo Ochoa Dave Galloway
Johnny Papa,
Mohan Vanmane Author Agent

Tony Berry

Technical Reviewers Project Manager
Danny Ayers Avril Corbin
David Baliles
Cary Beuershausen Production Manager
Matt Birbeck Simon Hardware
Maxime Bombadier
Bob Cherinka Production Project Coordinator
Michael Corning Mark Burdett
Jeremy Crosbie
Dino Esposito Indexing
Nazir Faisal Alessandro Ansa
Sam Ferguson
Constantinos Hadjisotiriou Figures
Scott Haley Shabnam Hussain
Alex Homer
Michael Kay Cover
Jim Macintosh Shelley Frazier
Craig McQueen
Thomas B. Passin Proof Readers
David Schult Diana Skeldon
Marc H. Simkin Agnes Wiggers
Dave Sussman
Dorai Thodla
Beverley Treadwell
Warren Wiltsie

About the Authors

Kevin Williams
Kevin's first experience with computers was at the age of 10 (in 1980) when he took a BASIC class at a
local community college on their PDP-9, and by the time he was 12, he stayed up for four days straight
hand-assembling 6502 code on his Atari 400. His professional career has been focussed on Windows
development – first client-server, then onto Internet work. He's done a little bit of everything, from VB
to Powerbuilder to Delphi to C/C++ to MASM to ISAPI, CGI, ASP, HTML, XML, and any other
acronym you might care to name; but these days, he's focusing on XML work. Kevin is currently
working with the Mortgage Bankers' Association of America to help them put together an XML standard
for the mortgage industry.

Michael Brundage
Michael Brundage works as a software developer on Microsoft's WebData Internet team, where he
develops XML features for SQL Server 2000. Michael participates actively in the design of the XML
Query Language, producing Microsoft's prototype for the W3C Working Group. Before Microsoft,
Michael was the Senior Software Engineer for NASA's Interferometry Science Center at Caltech, where
he developed networked collaborative environments and a simulation of radiative transfer.

Michael would like to thank his wife Yvonne for her patience; Dave Van Buren, friend and mentor, for
starting it all; Microsoft for allowing him to write; Chris Suver and Paul Cotton for reviewing early
drafts; and everyone at Wrox Press for their help, humor, and flexibility.

Patrick Dengler
Patrick is busily growing Internet startups throughout the "Silicon Forest" area. His interests include
building companies by creating frameworks for Internet architectures. He has received several patents in
stateless Internet database architectures.

I want to thank my lovely, graceful and beautiful wife Kelly for simply putting up with me.
Without her and my family, Devin, Casey, and Dexter, I wouldn't be whole.

Jeff Gabriel
Jeff Gabriel currently works as a developer for eNationwide, the e-commerce arm of Nationwide
Insurance Systems. Jeff is an MCSE, and was formerly a Webmaster before finding the call to be true
geek too strong. He enjoys spending time with his wife Meredith and two children; Max and
Lily. He also likes to read books about technology and computers when not working on same."

Thanks to my family for understanding the long hours it took to write for this book, and my great
desire to do it. I also thank God, who has answered my prayers with many great opportunities.

Finally, thanks to the guys at ATGI Inc. Thanks to Matt for your excellent direction and support
over the years, and to Jason, an incomparable source for all things Java.

Andy Hoskinson
Andy Hoskinson is a senior technical director for a leading Internet professional services firm. He
develops enterprise-class Internet solutions using a variety of technologies, including Java and XML.
Andy is a co-author of Professional Java Server Programming, J2EE Edition (Wrox Press,
Sept. 2000). He is also a co-author of Microsoft Commerce Solutions (Microsoft Press, April 1999), and
has contributed to several different technical publications, including Active Server Developer's Journal
and Visual J++ Developer's Journal.

Andy is a Sun Certified Java Programmer and Microsoft Certified Solution Developer, and lives in
Northern Virginia with his wife Angie. Andy can be reached at andy@hoskinson.net.

Michael Kay
Michael Kay has spent most of his career as a software designer and systems architect with ICL, the IT
services supplier. As an ICL Fellow, he divides his time between external activities and mainstream
projects for clients, mainly in the area of electronic commerce and publishing. His background is in
database technology: he has worked on the design of network, relational, and object-oriented database
software products – as well as a text search engine. In the XML world he is known as the developer of
the open source Saxon product, the first fully-conformant implementation of the XSLT standard.

Michael lives in Reading, Berkshire with his wife and daughter. His hobbies include genealogy and
choral singing.

Thomas Maxwell
Thomas Maxwell has worked the last few years for eNationwide, the Internet arm of one of the world's
largest insurance companies, developing advanced internet/intranet applications – Many of which
utilized XML databases. He also continues to work with his wife Rene to develop cutting edge Internet
applications, such as the XML based Squirrel Tech Engine, for Creative Squirrel Solutions – a technical
project implementation firm. Tom's technical repertoire includes such tools as Visual Basic, ASP,
COM+, Windows DNA and of course XML. Tom can be reached at tmaxwell@creativesquirrel.com

During the writing of this book I became the proud father of my wife's and my first child. So I
would like to thank, firstly my wife for being understanding of my desire to meet the book's
deadlines. And secondly to the staff of Wrox for understanding that a new baby sometimes makes it
difficult to meet deadlines. I would also like to thank the understanding people who helped with the
non-book things that allowed me the time to contribute to this book, including Tom Holquist, who
understands why one may be a little late to the office once in a while and my family including
Marlene and Sharon for helping with Gabrielle in the first few weeks.

Marcelo Ochoa
Marcelo Ochoa works at the System Laboratory of Facultad de Ciencias Exactas, of the Universidad
Nacional del Centro de la Provincia de Buenos Aires and as an external consultant and trainer for Oracle
Argentina. He divides his time between University jobs and external projects related to Oracle web
technologies. He has worked in several Oracle related projects like translation of Oracle manuals and
multimedia CBTs. His background is in database, network, Web and Java technologies. In the XML
world he is known as the developer of the DB Producer for the Apache Cocoon project, the framework
that permits generate XML in the database side.

Summary of Contents

Introduction 1
Chapter 1: XML Design for Data 11
Chapter 2: XML Structures for Existing Databases 47
Chapter 3: Database Structures for Existing XML 67
Chapter 4: Standards Design 111
Chapter 5: XML Schemas 143
Chapter 6: DOM 191
Chapter 7: SAX – The Simple API for XML 241
Chapter 8: XSLT and XPath 285
Chapter 9: Relational References with XLink 347
Chapter 10: Other Technologies (XBase, XPointer, XInclude, XHTML, XForms) 375
Chapter 11: The XML Query Language 409
Chapter 12: Flat Files 431
Chapter 13: ADO, ADO+, and XML 481
Chapter 14: Storing and Retrieving XML in SQL Server 2000 533
Chapter 15: XML Views in SQL Server 2000 581
Chapter 16: JDBC 627
Chapter 17: Data Warehousing, Archival, and Repositories 669
Chapter 18: Data Transmission 701
Chapter 19: Marshalling and Presentation 723
Chapter 20: SQL Server 2000 XML Sample Applications 763
Chapter 21: DB Prism: A Framework to Generate Dynamic XML from a Database 807
Appendix A: XML Primer 863
Appendix B: Relational Database Primer 901
Appendix C: XML Schema Datatypes 915
Appendix D: SAX 2.0: The Simple API for XML 929
Appendix E: Setting Up a Virtual Directory for SQL Server 2000 975
Appendix F: Support, Errata and P2P.Wrox.Com 985
Index 991

Table of Contents

Introduction 1

Why XML and Databases 2

What This Book is About 3

Who Should Use This Book? 3
Data Analysts 3
Relational Database Developers 3
XML Developers 4

Understanding the Problems We Face 4
Structure of the Book 4

Design Techniques 5

Technologies 5
Data Access 6

Common Tasks 6
Case Studies 7

Appendices 7

Technologies Used in the Book 7

Conventions 8

Customer Support 8
Source Code and Updates 8
Errata 9

Chapter 1: XML Design for Data 11

XML for Text Versus XML for Data 12
XML for Text 12
XML for Data 12

Representing Data in XML 14
Element Content Models 14

Element-only Content 14

Mixed Content 14
Text-only Content 15

EMPTY Content 15
ANY Content 16

Using Attributes 16
Other Considerations 17

Audience 17
Performance 17

Data Modeling Versus Representation Modeling 18
XML Data Structures – A Summary 20

Table of Contents

ii

Mapping Between RDBMS and XML Structures 20
Structure 21

Elements 21
Attributes 22

Data Points 22
Our Invoice Using Elements 24
Our Invoice Using Attributes 25
Comparing the Two Approaches 26
Elements or Attributes – The Conclusion 30

Relationships 30
Containment 31
More Complex Relationships – Pointers 32
More Complex Relationships – Containment 34
Relationships – Conclusion 36

Sample Modeling Exercise 37
Before We Begin 37

What is the Scope of the Document? 38
Which Structures Are We Modeling? 38
What Are the Relationships Between Entities? 39
Which Data Points Need to be Associated with Each Structure? 39

Creating the XML DTD 40
Start With the Structures 41
Add the Data Points to the Elements 41
Incorporate the Relationships 41

Sample XML Documents 43

Summary 45

Chapter 2: XML Structures for Existing Databases 47

Migrating a Database to XML 48
Scoping the XML Document 49
Creating the Root Element 51
Model the Tables 51
Model the Nonforeign Key Columns 52
Adding ID Attributes 54
Handling Foreign Keys 55

Add Enumerated Attributes for Lookup Tables 55
Add Element Content to the Root Element 57
Walk the Relationships 58

Add Missing Elements to the Root Element 60
Discard Unreferenced ID attributes 61
An Example XML Document 62

Summary 63

Chapter 3: Database Structures for Existing XML 67

How to Handle the Various DTD Declarations 68
Element Declarations 68

The Element-only (Structured Content) Model 68
The Text-only Content Model 75
The EMPTY Content Model 78
The Mixed Content Model 80
The ANY Content Model 83

Table of Contents

iii

Attribute List Declarations 84
CDATA 84
Enumerated Lists 85
ID and IDREF 87
IDREFS 91
NMTOKEN and NMTOKENS 94
ENTITY and ENTITIES 95

Entity Declarations 96
Notation Declarations 96
Avoid Name Collisions! 96
Summary 97
Example 97
Modeling the Attributes 102

Summary 107

The Rules 107

Chapter 4: Standards Design 111

Scoping the Solution 111
Types of Standards 112

System Internal Standards 112
Cross-system Standards 112
Industry-level Standards 112

Document Usage 113
Archival Documents 113
Transactional Data Documents 115
Presentation Layer Documents 117

Before Diving In: Ground Rules 120
Implementation Assumptions 121
Elements vs. Attributes 121
Restricting Element Content 122

Don't Allow the ANY Element Type 122
Don't Allow the Mixed-content Element Type 123
Constrain Elements that have Structured Content 123

Capturing Strong Typing Information 124
Naming Conventions 125

Understanding the Impact of Design Decisions 126
Performance 126

Document Size 126
Overnormalization 127
Too Many Pointing Relationships 127

Coding Time 129
Document Complexity 130
Pointing Relationships 130
Levels of Abstraction 130

Developer Ramp-up Time 131
Extensibility 131

During the Development 131
Subdividing the Workload 131
Data issues 132

General vs. Specific 132
Required vs. Optional 133
"Tag soup" 133
Keeping the Structure Representation-Independent 133

Table of Contents

iv

Pulling it all Together 135
Peer Review 135
Resolving Disputes 135
The Implementation Guide 135

Statement of Purpose 135
Dictionary 136

Document Structure Diagram 138
Sample Documents 139

Summary 140

Chapter 5: XML Schemas 143

Introducing Schemas 144
A Note Before We Start – Other Schema Technologies 144

Jumping Right In 145
Schemas are Just XML Files 145
Our First Simple Schema 145

Why Schemas 147
XML Parsers with Schema Support 149
Learning the New Vocabulary 150
Datatypes 150
Structures 151

XML Schema Preamble – The <schema> Element 151
Attribute Declarations 152
Element Definitions 153
Complex Type Definitions 155
Content From Another Schema – <any> 157
Named Model Groups – <group> 157
Attribute Groups 158
Notation declarations 158
Annotations 159
Using Other Namespaces 160
Summary of Structures 161

Datatypes 162
Primitive Datatypes 162
Derived Datatypes 163

Built-in Derived Types for XML Schema 163
Atomic, List and Union Datatypes 164

Atomic Datatypes 164
List Datatypes 165
Union Datatypes 166

Aspects of Datatypes 166
Value Spaces 166
Lexical Spaces 167
Facets 167
Fundamental Facets 167
Constraining Facets 169
Simple Type Definitions 175

Scope of Simple Type Definitions 178
Global Scope of Simple Type Definitions 178
Local Scope of Simple Type Definitions 178

ID, IDREF and IDREFS 179
Using ID as a Primary Key and IDREF for Foreign Keys 179

Identity-Constraints 180
Unique Values 180

Key and KeyRef 181

Table of Contents

v

Example Schemas 181
Example 1 – Name Details 182
Example 2 – Using an Attribute Group to Represent Rows 185
Example 3 – Mixed Content Models 185
Example 4 – Enumeration 188

Summary 189

Chapter 6: DOM 191

What is the DOM? 192
How Does the DOM Work? 192

DOMString 193

DOM Implementations 193

DOM Interfaces 194
The Structure Model 195

Inheritance and Flattened Views 197
The DOM Core 197

Fundamental interfaces 198
Node 200

Getting Node Information 201

Traversing the Tree 203
Adding, Updating, and Removing Nodes 205

Document 208
DOMImplementation 210
DocumentFragment 211
NodeList 212
Element 213
NamedNodeMap 216
Attr 216
CharacterData and Text 217

Handling Complete Strings 217

Handling Substrings 218
Modifying Strings 218

Splitting Text 219
Comments 220
DOMException 220

Extended Interfaces 220
CData Sections 221
DocumentType 221
Notation 221
EntityReference 221
Entity 222
Processing Instructions 222

Working With Our Data 222
Accessing the DOM from JavaScript 222

Retrieving the Data from an XML Document using the DOM 223

Adding to the Contents of the Document Using the DOM 228
Adding Information from Another DOM Tree 230

Table of Contents

vi

When To Use or Not Use the DOM 232
Size of Document 233

How the DOM Processes a Document 234
The Task in Hand 235

Reading and Filtering 235

Add, Update, Delete 236
Transformations of Structure 236

Creating Documents 237

Summary 238

Chapter 7: SAX – The Simple API for XML 241

SAX Parsers 242
Understanding SAX 242

Example 1 – A Simple SAX Application 244
Preparing the XMLReader Class 245
Catching Events from the XMLReader 246

The Error Handler 248
The Result 249

A Moment with DOM 249
Choosing Between SAX and DOM 251

Best Uses of the DOM 252
Best Uses of SAX 252

The Stateless World of SAX 252
Example 2 – Creating Attribute Centric Content from Element Centric Content 253

The frmAttsCentric Form 254
The XML Document 255
The ContentHandler Class 256
The Error Handler Class 260
The Result 260

Context Summary 261

Handling Large Documents 261
Example 3 – Creating an Efficient XML Document from a Large Verbose One 262

Prepare the XMLReader Class 263
Begin Parsing Events 265
The Results 266

SAX Filters 267
Example 4 – Using an Implementation of the XMLFilter Class 267

Preparing to Use a Chain of XMLFilters 268
Using the XMLFilter Implementation Class 270
The saxContentHandler Class 273
The Result 274

Filters Summary 274

Take What You Need – Storing Result Data 275
Example 5 – Complex State 275

The XML 276
The ContentHandler 276
Writing to the Database 280
The Result 282

Summary 283

Table of Contents

vii

Chapter 8: XSLT and XPath 285

What is XSLT? 286

The Transformation Process 287

XSLT as a Programming Language 289
XML Syntax 289
Rule-based 289
XPath Queries 290
Functional Programming 291
Data Types 292

The XPath Data Model 293
Names and Namespaces 297

XPath Expressions 298
Context 298
Primaries 299
Operators 299
Comparing Node-sets 301
Location Paths 301

Example Location Paths 301
Syntax Rules for Location Paths 302

Steps 302

Axis Names 303
Node-tests 304

Predicates 304
Abbreviations 305

XPath Functions 306

Stylesheets, Templates, and Patterns 314
The <xsl:stylesheet> Element 314
The <xsl:template> Element 315
Patterns 317
Selecting a Template Rule 318
Parameters 319

The Contents of a Template 320
Attribute Value Templates 320
XSLT Instructions 321
Literal Result Elements 329
Sorting 329

Top-level Elements 330

Some Working Examples 336
Example: Displaying Soccer Results 336

Source 336
The First Stylesheet 337

Stylesheet 2 339
Selecting a Stylesheet Dynamically 342

XSLT and Databases 343

Summary 344

Table of Contents

viii

Chapter 9: Relational References with XLink 347

Resource Linking 348
Invoice 349
Item 349
InvoiceItem 349

Simple XLink Elements 349
role 351
arcrole 351
title 351
show 351
actuate 352

Simplify the Simple Link with a DTD 352

Extended XLink Elements 353
The Elements of Extended Style Links 356

The arc-type Element 358
The resource-type Element 361
The locator-type Element 363

Using Extended Links 366
Extended Link Summary 369

Extended Links and Relational Data 369
Making the Relationship with XLink 370

Summary 373

Additional Resources 373

Chapter 10: Other Technologies (XBase, XPointer, XInclude, XHTML, XForms) 375

XBase 376
"Advanced" XBase 378
Determining the Base URI and Relative URIs 380
XBase Summary 381

XPointer 381
Technology Status 382
Locations and Targets 382
Identifiers Using XPointer and XLink 382

Full Form 383
Bare Names 383
Child Sequences 384

Extensions to XPath 385
Points 385
Ranges 386
How Do We Select Ranges? 387

Querying with XPointer 389
Other Points 391

XPointer Function Extensions to XPath 391
Rules and Errors 393

XPointer Summary 393

XInclude 393
Modular Development 393
An XInclude Example 394

Syntax 395
XInclude Advantages 397
XInclude Summary 397

Table of Contents

ix

XHTML 398
How XHTML differs from HTML 398
XHTML Flavors 401

Transitional 401
Strict 402
Frameset 402

XHTML Summary 402

XForms 402
How Do XForms Differ from HTML Forms? 402
The Model 403

The Data Model 403
The Logic Layer 404
The Presentation Layer 404
Current Status 404

A Few More Features 404
DataTypes 404
Common Facets 405
Data Models 406

XForms Summary 407

Summary 407

Chapter 11: The XML Query Language 409

Requirements and Use Cases 410
Selection 410
Transformation 411
Data Centricity 412
Types and Operators 412

Data Model 413
Collections 413
References 413
Nodes 413
Scalars and ValueNodes 414
Node Constructors and Accessors 415
Information Items 415
Types 415
Implementation Issues 416

Algebra 416

Syntax 417
XPath 421

XPath Overview 421
Evaluating XPath as a Query Language 421
XPath Examples 422

XSLT 423
XSLT Overview 424
XSLT as a Query Language 424
XSLT Examples 424

Quilt 426
Quilt Overview 426
Quilt as a Query Language 427
Quilt Examples 427

XSQL 428
XSQL Overview 428
XSQL as a Query Language 428
XSQL Examples 428

Summary 429

Table of Contents

x

Chapter 12: Flat Files 431

Types of flat files 432
Delimited 432
Fixed-width 432
Tagged record 432

Issues 433
Level of Normalization 433
Data Formatting 433

Plan of Attack 433
Transform the XML Document to name-value Pairs 433
Transform the Flat File to name-value Pairs 436
Map the Transform 439

Transforming from Flat Files to XML 442
Programming Approaches 442

Manual Serialization 442
SAX 442
The DOM 442

Handling Different Flat File Types 442
Delimited 443
Fixed-width 448
Tagged Record 456

Transforming from XML to Flat Files 461
Programming Approaches 461

Parse and Serialize 461
XSLT 461

Handling Different File Types 461
Delimited 462
Fixed-width 470
Tagged Record 476

Summary 479

Chapter 13: ADO, ADO+, and XML 481

XML Support in ADO 2.6 and SQL Server 2000 482
What is a Stream? 482

Obtaining a Stream 483
Persistence of XML 484
Running XML Queries 484

Queries Using FOR XML 484
Queries Using Annotated Schema 485

Merging XML with Relational Data 485
New XML Properties 485

Mapping Schema 485
Base Path 486
Output Stream 486

XML Persistence 486
Persisting to a File 486

Opening a Recordset from a File 488
Persisting to a Stream 490

Opening a Recordset from a Stream 491
Persisting to the Response Object 492

Writing a Stream to a Client 493
Persisting a Stream to a Client 495

Table of Contents

xi

XML Queries via ADO 496
FOR XML Usage 497

FOR XML Template Queries 498
FOR XML URL Queries 498

FOR XML via ADO 499
Running a FOR XML Command 499

Non-SQL Queries via ADO 504
Mapping Schema File 504

Mapping Schema & Base Path Properties 506
Code Examples 506

Joining XML and SQL Data 509
The ASP Page 511

Returning XML 513
Inserting Data 515

ADO+ 517
Evolution 517

The Idea 517
The ADO+ Framework 518

DataSet 518

Connection 518
DataSetCommand 519

DataSet 519
Schema 519

The DataSetCommand and the Connection Objects 524
VB 524

Typeness of DataSet 528

Summary 530

Chapter 14: Storing and Retrieving XML in SQL Server 2000 533

Retrieving XML from SQL Server 2000: FOR XML 534
New SQL Server Query Support 535
FOR XML: General Syntax 536
The RAW Mode 537
The AUTO Mode 538
The Explicit Mode 540

Specifying Column Aliases 541
Specifying the Metadata Columns 542
Specifying the Directive in the Column Alias 542

Generating XML from the Rowset (Universal Table) 547
Hierarchy Generation 548

The First Rowset: Representing the <customer> Element 549
The Second Rowset: Representing the <order> Element 549
The SELECT Query 550
Processing the Rowset (Universal Table) 550

Further Examples 551
Example 1 – Using idrefs to Create Attributes 551
Example 2 – Producing XML Containing Siblings 555

Alternative Ways to Retrieve XML 556

Table of Contents

xii

Storing XML in SQL Server 2000: OPENXML 556
Using OPENXML in SQL Statements 557
Creating the In-Memory Representation of the Document 557
Understanding OPENXML 559

OPENXML: Attribute-centric and Element-centric Mapping 561
Additional Mapping Information for Specifying the Rowset Schema 562

The Edge Table Schema for the Rowset 566

Bulk Loading XML 572
How the Database is Generated from XML 574

Summary 578

Chapter 15: XML Views in SQL Server 2000 581
Fragments and Documents 582

XDR Schemas 582
The Default Mapping 584

Querying SQL Server 585
Names and Other Restrictions 586

Annotated XDR Schemas 586
Tables and Columns (sql:relation and sql:field) 586
Null Values 588
Join Relationships (sql:relationship) 588

Multi-column Joins 589
Link Tables 590
Qualified Joins (sql:limit-field and sql:limit-value) 591

Keys, Nesting and Ordering (sql:key-fields) 592
Alternative Mappings 593

Unmapped Data (sql:map-field) 593
Constant Elements (sql:is-constant) 594
XML Text (sql:overflow-field) 595

Data Types (sql:datatype, dt:type, sql:id-prefix) 596
Booleans and Binaries 597
Strings 598
Numbers 598
Identifiers 599
Dates and Times 600
Mapping Between XDR Types and SQL Types 601

CDATA Sections 601
Embedded Binary Values 602

Table 1. Annotation Summary 603

Templates 604

XPath 605
Introduction 607
Navigation 607
Predication 608
XPath Types 609
XPath Expressions 610
XPath and the XML View 611
Default Schema 612
XPath Parameters 612
Additional XPath Axes 613

Table of Contents

xiii

Updategrams 613
Introduction 614
Values, Absence and NULL 616
Insert/Update/Delete Heuristics 617
Parameters 618
Default Schema 618
Server-Generated Identities 619
Data Types 619
Overflow 620

Advanced Topics 620
Namespaces and External Schemas 620
Structural Recursion 622

Summary 624

Chapter 16: JDBC 627
How XML Enhances JDBC (and vice versa) 627
Software Needed for This Chapter 628

JDK 1.3 628
Xalan XSLT Processor for Java 628
Software Needed to Implement Rowsets 629
Tomcat 3.1 630
A JDBC Data Source and Driver (Oracle, SQL Server, etc.) 631

Generating XML from JDBC 632
Our Simple XML Gateway Architecture for JDBC 632
The JDBC2XML Class 634

Applying XML Encoding Rules to the Result Set Data 634
Serializing the Result Set's Metadata and Data as XML 635
Executing the Query 637

The XMLDataGateway Servlet 637
Implementing the Servlet 638
Developing an HTML Form Interface 639
Using the XMLDataGateway Servlet 640
Summary 646

The JDBC2HTML Servlet 646
Implementing the JDBC2HTML Servlet 647
Writing an XSL Stylesheet 649
Using the JDBC2HTML Servlet 651

Summary 652

Using XML for distributed JDBC Applications 652
The Rowset Interface 653
The sun.jdbc.rowset.WebRowSet Class 653
Implementing a Distributed JDBC Application Using the WebRowSet Class 654

Setting up the Sample Database 655
Fetching a Rowset Via HTTP: The WebRowSetFetchServlet Class 655
Performing a Batch Update Via HTTP: The WebRowSetUpdateServlet Class 658
Inserting, Updating, and Deleting Data at the Client: The WebRowSetHTTPClient Class 659

Packaging the Code for J2EE Deployment 664
The Web Application Deployment Descriptor 665
Building the Application 666

Compile the Java Classes 666
Package the Bytecode into a JAR 667
Package the Application into a WAR 667

Summary 667

Table of Contents

xiv

Chapter 17: Data Warehousing, Archival, and Repositories 669

Data Warehousing 670
The Two Roles of Data 670

Detailed Information Gathering 670
Information Querying and Summarization 671

The Traditional Solution 672
The Data Warehousing Solution 675

On-Line Transaction Processing (OLTP) 675
On-Line Analytical Processing (OLAP) 676

Parts of an OLAP Database 677

The Role of XML 683
Summary 691

Data Archival 692
Classical Approaches 692
Using XML for Data Archival 693
Summary 696

Data Repositories 696
Classical Approaches 696
Using XML for Data Repositories 697
Summary 698

Summary 699

Chapter 18: Data Transmission 701

Executing a Data Transmission 701
Agree on a Format 702
Transport 702
Routing 702
Request-Response Processing 702

Classic Strategies 702
Selecting on a Format 702

Delimited Files 703

Fixed-width Files 703
Proprietary/Tagged Record Formats 703

Problems with Classic Structures 705
Transport 706

Physical Media 706

E-mail 706

FTP 707
Socket Code 707

Virtual Private Network (VPN) 707
Leased-Line 707

How Can XML Help? 708
XML Documents are Self-Documenting 708
XML Documents are Flexible 709
XML Documents are Normalized 710
XML Documents can Utilize Off-The-Shelf XML Tools 710
Routing and Requesting 710

Table of Contents

xv

SOAP 712
The SOAP Envelope 713
The SOAP Header 713
The SOAP Body 714
The SOAP Fault Element 716

Transmission Over HTTP 717
HTTP SOAP Request 718
HTTP SOAP Response 718
An HTTP Transmission Example 718
Biztalk 720

Compressing XML 720

Summary 721

Chapter 19: Marshalling and Presentation 723

Marshalling 723
Custom Structures 724
Recordsets 725
XML 726
The Long-Term Solution: Built-In Methods 726
The Manual Approach 726

Example 727
Conclusion 737

Information Gathering 737
The long-term solution: XForms 737
Manual Approach 738

Example 1: Transforming Form Data to XML on the Client 738
Example 2: Transforming Form Submissions to XML on the Server 743
Example 3: Creating HMTL Forms with XSLT for Updates 744

Conclusion 753

Presentation 754
Why Use XML? 754
Example: XML Detail – HTML Detail 754
Example: XML Detail – WML Detail 756
Example: XML Detail – WML Summary 757
Summary 760

Conclusion 760

Chapter 20: SQL Server 2000 XML Sample Applications 763

Project 1 – Accessing SQL Server 2000 Directly Over HTTP 764
XML Templates – Getting XML from SQL Server Across the Web 764

Templates Featuring XPath Queries 767
Applying XSLT to a Template 768
Updategrams 769

Posting a Template Using an HTML Form 770
Posting a Template to the Server 771
Passing Parameters to the Query 773
Executing Template Files 774

Sample ASP Application 776
Creating the Application 778

Sample ADO Applications 781
Executing a Command 781
Executing an XML Template 782
Passing Parameters 784

Table of Contents

xvi

Building an Empire: an eLemonade Company 786
The Internet Lemonade Stand – Project Requirements 786
Database Design 787
External XML Sources 789

The Two Different Solutions 789
Prototyping with OpenXML and FOR XML 789

Displaying News and Expenses 790
Place Orders and Create Customer Accounts 791

Prototyping with XPath and Updategrams 792
Annotate a Schema 793
Improve the Schema 794
Display News and Expenses 798
Create and Edit Customer Accounts 800
Personalized Customer Page 803

Summary 805
Helpful Web Sites 805

Chapter 21: DB Prism: A Framework to Generate Dynamic XML from a Database 807

Cocoon Architecture 809

DB Prism Architecture 811
DB Prism Class Diagram 811
DB Prism: Benefits Provided to the Cocoon Framework 814

Part I. DB Prism Internals 814
Who is who? 814

Wrappers 814
Engine 815

Common Issues with Writing a New Adapter 818
Writing the New Adapter 818

DBPrism.java 819
DBConnection.java 822
DBFactory.java 825
SPProc.java 825

Part II: Putting DB Prism to Work 826
Before Start 826
Cocoon Setup 829

Downloading Cocoon 829
Create a Write-enabled Directory 829

DB Prism Setup 831
Downloading DB Prism 831

Database Setup 833
Configuring DB Prism to Access the Database 835
Making the Hello World Example 836

Making a Content Management System 838
Brief Introduction to a CMS 838
Design of the Meta Model 842

Writing the Java Code 844
Building Pages 844
Related Procedures for Making The Page 848
Installing the CMS 858
Deployment 859

Conclusions and Beyond 860

Summary 861

Table of Contents

xvii

Appendix A: XML Primer 863

What is a Markup Language? 863
Tags and Elements 864
Attributes 864

What is XML? 865
How XML Documents are Processed 869
The Basic Building Blocks of XML 869

The XML Declaration 870
Elements 871
Attributes 872
Character Data 873
CDATA Section 874
Entity References 875
Processing Instructions 876
Comments 877
Namespaces 877

Document Type Definitions 878
The Standalone Declaration 880
Element Declarations 880
Attribute Declarations 885
Notation Declarations 892
Entity Declarations 892
Conditional Sections 895

Thinking in Trees 896

Technology Overview 897
XML Schemas 897
The Document Object Model (DOM) 897
The Simple API for XML (SAX) 897
XSLT/XPath 898
XML Query 898
XLink 898
XPointer 898
XBase 898
XForms 898
XML Fragment Interchange 899
XInclude 899

Summary 899

Appendix B: Relational Database Primer 901

Types of Database 902

SQL 902

Designing Relational Databases 902
Logical Data Design 903

Entities 903
Attributes 903

Relationships 904
Physical Data Design 905

Tables 905

Columns 906

Table of Contents

xviii

Creating Our Tables 908
Primary Keys 909
Foreign Keys 910
Indexes 911
Triggers 912
Stored Procedures 913

Summary 913

References 913

Appendix C: XML Schema Datatypes 915

Primitive Types 915
string 916
boolean 916
decimal 916
float 917
double 917
timeDuration 917
recurringDuration 918
binary 919
uriReference 919
ID 920
Constraining Facets for Primitive Types 921

Built-in Derived Types 922
CDATA 923
token 923
language 923
NMTOKEN, NMTOKENS 924
ENTITIES 924
IDREFS 924
name, NCName 924
integer, negativeInteger, positiveInteger, nonNegativeInteger, nonPositiveInteger 925
byte, short, int, long 925
unsignedByte, unsignedShort, unsignedInt, unsignedLong 925
century, year, month, date 925
recurringDate, recurringDay 925
time, timeInstant, timePeriod 926
Constraining Facets for Derived Types 926

Appendix D: SAX 2.0: The Simple API for XML 929

Class org.xml.sax.SAXException 964

Appendix E: Setting Up a Virtual Directory for SQL Server 2000 975

Introduction 975

Setting up Your Virtual Directory 975

Appendix F: Support, Errata and P2P.Wrox.Com 985

Index 991

Table of Contents

xix

Introduction

In a very short space of time, XML has become a hugely popular format for marking up all kinds of
data, from web content to data used by applications. It is finding its way across all tiers of development:
storage, transport, and display - and it is being used by developers writing programs in many languages.

Meanwhile, relational databases are currently by far the most commonly used type of databases, and
can be found in most organizations. While there have been many formats for data storage in the past,
because relational databases can provide data for large numbers of users, with quick access, and security
mechanisms built in to the database itself, they are set to remain a central tool for programmers for a
long while yet.

There are rich and compelling reasons for using both XML and database technologies, however when
put side by side they can be seen as complimentary technologies – and like all good partnerships, when
working together the sum of what they can achieve is greater than their individual merits. If we think
about the strengths of relational databases, they provide strong management and security features. Large
numbers of people can connect to the same data source, and the integrity of the source can be ensured
through its locking mechanisms. Meanwhile, XML, being plain text, can easily be sent across a network
and is cross-platform (you can use XML in any programming language that you can write a parser for).
Furthermore, it can easily be transformed from one vocabulary to another.

With the strong hold relational databases have as a datea storage format, and with the flexibility offered
by XML as a data exchange mechanism, we have an ideal partnership to store and serve data when
creating loosely coupled, networked applications. The partnership easily allows us to securely share data
with clients of varying levels of sophistication, making the data more widely accessible.

Introduction

2

If you think about the structure of the two, however, there is a lot to learn when using these two
technologies side by side. The hierarchical structure of XML can be used to create models that do not
easily fit into the relational database paradigm of tables with relationships. There are complex nested
structures that cannot be represented in table creation scripts, and we can model constraints in DTDs
that cannot be represented between tables and keys. Then, when we provide data as XML, there are a
whole set of issues relating to its processing, and the technologies that have been built around XML that
we must be aware of in order to make use of the data.

Why XML and Databases
There are many reasons why we might wish to expose our database content as XML, or store our XML
documents in a database. In this book, we'll see how XML may be used to make our systems perform
better and require less coding time.

One obvious advantage to XML is that it provides a way to represent structured data without any
additional information. Because this structure is "inherent" in the XML document rather than needing to
be driven by an additional document that describes how the structure appears as you do with, say, a flat
file, it becomes very easy to send structured information between systems. Since XML documents are
simply text files, they may also be produced and consumed by legacy systems allowing these systems to
expose their legacy data in a way that can easily be accessed by different consumers.

Another advantage to the use of XML is the ability to leverage tools, either already available, or starting
to appear, that use XML to drive more sophisticated behavior. For example, XSLT may be used to style
XML documents, producing HTML documents, WML decks, or any other type of text document. XML
servers such as Biztalk allow XML to be encapsulated in routing information, which then may be used
to drive documents to their appropriate consumers in our workflow.

Data serialized in an XML format provides flexibility with regard to transmission and presentation.
With the recent boom in wireless computing, one challenge that many developers are facing is how to
easily reuse their data to drive both traditional presentation layers (such as HTML browsers) and new
technologies (such as WML-aware cell phones). We'll see how XML provides a great way to decouple
the structure of the data from the exact syntactical presentation of that data. Additionally, since XML
contains both data and structure, it avoids some of the typical data transmission issues that arise when
sending normalized data from one system to another (such as denormalization, record type discovery,
and so on).

One caveat to remember is that, at least at this time, relational databases will perform better than XML
documents. This means that for many internal uses, if there are no network or usage barriers, relational
databases will be a better "home" for our data than XML. This is especially important if we intend to
perform queries across our data – in this case a relational database is much better suited to the task than
XML documents would be. We'll look at where these approaches make sense later in the book, as well
as seeing how a hybrid structure can be created that combines the best of both the relational database
world and the XML world.

If we imagine that you are running an e-commerce system and that we take your orders as XML,
perhaps some of our information needs to be sent to some internal source (such as our customer service
department) as well as to some external partner (an external service department). In this case, we might
want to store past customer order details in a relational database but make them available to both
parties, and XML would be the ideal format for exposing this data. It could be read no matter what
language the application was written in or what platform it was running on. It makes the system more
loosely coupled and does not require us to write code that ties us to either part of the application.
Clearly, in the case where numerous users (especially external B2B and B2C) need different views of the
same data, then XML can provide a huge advantage.

Introduction

3

What This Book is About
This book teaches us how to integrate XML into our current relational data source strategies. Apart
from discussing structural concerns to aid us in designing our XML files, it covers how to store and
manage the data we have been working with. It will demonstrate how to store XML in its native format
and in a relational database, as well as how to create models that will allow quick and efficient access
(such as data-driven web pages). Then, we'll discuss the similarities and differences between relational
database design and XML design, and look at some algorithms for moving between the two.

Next, we'll look into the developer's XML toolbox, discussing such technologies as the DOM, SAX,
XLink, XPointer, and XML covers. We will also look at the most common data manipulation tasks and
discuss some strategies using the technologies we've discussed.

Whether we are using XML for storage, as an interchange format, or for display, this book looks at
some of the key issues we should be aware of, such as:

❑ Guidelines for how to handle translating an XML structure to a relational database model.

❑ Rules for modeling XML based upon a relational database structure.

❑ Common techniques for storing, transmitting, and displaying your content.

❑ Data access mechanisms that expose relational data as XML.

❑ How to use related technologies when processing our XML data.

❑ XML support in SQL Server 2000.

For those in need of a refresher in relational databases or XML, primers have been provided on both of
these topics in the appendices.

Who Should Use This Book?
While this book will discuss some conceptual issues, its focus is on development and implementation.
This is a book for programmers and analysts who are already familiar with both XML and using
relational databases. For those who do not have much knowledge of XML, it is advisable that you read
a title like Beginning XML Wrox Press (ISBN - 1861003412). There are really three groups of readers
that may benefit from the information in this book:

Data Analysts
Data analysts, those responsible for taking business data requirements and converting them into data
repository strategies, will find a lot of useful information in this book. Compatibility issues between
XML data structures and relational data structures are discussed, as are system architecture strategies
that leverage the strengths of each technology. Technologies that facilitate the marshalling of relational
data through XML to the business logic and/or presentation layer are also discussed.

Relational Database Developers
Developers who have good relational database skills and want to improve their XML skills will also find
the book useful. The first group of chapters specifically discusses relational database design and how it
corresponds to XML design. There is a chapter devoted to the problem of data transmission, and the
ways in which XML can make this easier to overcome. Some alternative strategies for providing data
services are also discussed, such as using XSLT to transform an XML document for presentation, rather
than processing the data through a custom middle tier.

Introduction

4

XML Developers
Developers who are already skilled in the use of XML to represent documents but want to move to
more of a data focused approach will find good information in this book as well. The differences
between the use of XML for document markup and the use of XML for data representation are clearly
defined, and some common pitfalls of XML data design are described (as well as strategies for avoiding
them). Algorithms for the persistence of XML documents in relational databases are provided, as well as
some indexing strategies using relational databases that may be used to speed access to XML documents
while retaining their flexibility and platform independence.

Understanding the Problems We Face
In the relatively short period of time that XML has been around, early adopters have learned some
valuable lessons. Two of the most important ones are:

❑ How to model their data for quick and efficient data access.

❑ How to retain flexibilityof data so that it meets ongoing business needs.

When exposing database content as XML, we need to look at issues such as how to create the XML
from the table structure, and then how to describe relationships between the XML representations of
this data.

When looking at storing XML in a database, we need to see how we reproduce models, which contain
hierarchical structures in tables with columns and rows. We need to see how to represent features such
as containment with relationships, and how to express complex forms in a structured fashion.

And in both cases we need to make sure that the XML we create is in a format that can be processed
and exchanged.

There have also been a number of technologies that have fallen into the toolboxes of developers, such
as the DOM, SAX, and XSLT, each of which has a part to play in data handling and manipulation.
There are important choices to be made when deciding which of these technologies to use. Some of
these technologies are still in development, but it is important to be aware of the features that they will
offer in the near future, and how they may help solve problems or influence design in the long run.

Structure of the Book
To help you navigate this book and it has been divided into four sections based on:

❑ Design techniques.

❑ Technologies.

❑ Data Access Technologies.

❑ Common Tasks.

This is rounded off with two case study chapters, which show the application of some of the concepts we
have learnt, and two appendices for those less familiar with the core topics of the book: XML and
Relational Databases.

Introduction

5

Design Techniques
The first section discusses best-practice design techniques that should be used when designing relational
databases and XML documents concurrently, and consists of chapters 1 through 4.

❑ Chapter 1, XML Design for Data, provides some good strategies for the design of XML
structures to represent data. It outlines the differences between an XML document to be used
for document markup and an XML document to be used for data. It also gives some design
strategies based on the audience for the documents and the performance that is required, as
well as defining how these designs map onto relational database designs and vice versa.

❑ Chapter 2, XML Structures for Existing Databases, contains some algorithmic strategies for
representing preexisting relational data in the form of XML. Common problems, such as the
modeling of complex relationships and the containment versus. pointing approach, are
discussed.

❑ Chapter 3, Database Structures for Existing XML, includes some algorithmic strategies for
representing preexisting XML documents in a relational database. Strategies for handling
predefined structures (DTDs or schemas) as well as unstructured documents are described. In
addition, challenging issues such as the handling of the ANY element content model and
MIXED element content model are tackled.

❑ Chapter 4, Standards Design, discusses the design of data standards, common representations
of data that may be used by many different consumers and/or producers. It covers common
problems encountered during standards development, including type agreement, enumeration
mapping, levels of summarization, and collaboration techniques.

Technologies
The second section mainly introduces the various XML technologies (either existing or emergent) that
developers will use to create XML data solutions. We also discuss flat file formats at the end of this
section. It is made up of Chapters 5 through 12.

❑ Chapter 5, XML Schemas, covers the new document definition language currently being
created by the W3C. It discusses the status of XML Schemas and provides a list of processors
that perform validation of documents against XML schemas. It also covers the (extensive) list
of advantages to using XML schemas for data documents as opposed to DTDs. It then
provides a reference to XML schema syntax, ending up with some sample schemas to
demonstrate their strengths.

❑ Chapter 6, DOM, discusses the XML Document Object Model. It includes a list of DOM-
compliant parsers, and discusses the syntax and usage of the DOM. The DOM's strengths are
summarized, and some sample applications of the DOM are demonstrated.

❑ Chapter 7, SAX, describes the Simple API for XML. It also includes a list of SAX-compliant
parsers, and discusses the syntax and usage of SAX. It then compares the strengths and
weaknesses of SAX, compared with the DOM to help us decide which API should be used in
different situations. Finally, there are some sample applications that use SAX.

❑ Chapter 8, XSLT andXPath, discusses the XML transformation technologies created by the
W3C. Itdiscusses the sytax ofboth XSLT and Xpath. Examples of the use of XSLT/XPath for
data manipulation and data presentation are also provided.

❑ Chapter 9, XLink, introduces information about the XML resource linking mechanism
defined by the W3C. The chapter covers the XLink specification (both simple and extended
links), and discusses some ways that XLink may be used to describe relationships between
data, with examples.

Introduction

6

❑ Chapter 10, Other technologies, covers some other XML technologies related to linking,
retrieving, and describing relationships between data. It discusses how these technologies
might be applied to data design and development. Technologies covered include XBase,
XPointer, XInclude, and XForms.

❑ Chapter 11, XML Query, introduces the new query language in development by the W3C. It
discusses the status of the XML Query specification(s), and describes how XML Query can be
used to facilitate access to XML documents. It then goes on to look at other ways of querying
XML documents, and compares the abilities of each.

❑ Chapter 12, Flat File formats, discusses flat files, and some of the issues encountered when
moving data between flat files and XML (for example, using the DOM). We'll also learn some
strategies for mapping XML to flat files (using XSLT) and some of the issues we may
encounter when doing so.

Data Access
In this third section we will start with a look at two specific data access technologies: JDBC and
ADO (we also provide a preview to ADO+). We will then look at the XML support offered in
SQL Server 2000..

❑ Chapter 13, ADO and ADO+, shows how we can use ADO to make data available as XML
and provide updates as XML. It builds upon the new functionality provided with SQL Server
2000, showing how to exploit it from the ADO object model. To finish with, ADO+ makes a
cameo appearance as we provide a preview of the capabilities of this new technology.

❑ Chapter 14, XML Support in SQL Server 2000, discusses the XML Support added to SQL
Server 2000. It shows us how you can write SQL queries that will return XML from SQL
Server, and how we can send SQL Server XML documents for it to store. It finishes off with
describing how to handle bulk loads from XML to SQL Server.

❑ Chapter 15, XML Views in SQL Server 2000, builds on what we saw in the last chapter,
looking at how we can use schemas to create views of the data held in SQL Server, and map
this to XML, so that we can run queries, as well as add, delete and update records. These
make use of two new features called templates and updategrams.

❑ Chapter 16, JDBC, looks at how XML (and associated technologies) can be used to enhance
the use of JDBC (and vice versa), to produce scalable and extensible architectures with the
minimum of coding. The two sections of this chapter specifically look at generation of XML
from a JDBC data source, and using XML to update a JDBC data source.

Common Tasks
The fourth section of the book discusses some common applications of XML to data implementations,
and provides some strategies for tackling each type of problem discussed. It is made up of Chapters 17
through 19.

❑ Chapter 17, Data Warehousing, covers strategies for near-line archival and retrieval of XML
documents. It describes strategies for indexing XML documents using a relational database,
and includes some samples of archival and near-line storage.

❑ Chapter 18, Data Transmission, discusses the ubiquitous problem of data transmission
between dissimilar data repositories and the use of XML to facilitate that transmission. Import
and export techniques are discussed, as well as ways to bypass corporate firewalls when
transmitting XML documents (using technologies such as XML-RPC or SOAP).

Introduction

7

❑ Chapter 19, Marshalling and Presentation, describes the use of XML as a driver, for the
marshalling of a more useful form of data from our relational databases, and for the
presentation layer. SQL script and VBScript examples are provided that drive these processes,
as well as the use of XForm's to move data in the other direction (from client to server).

Case Studies
We round off this book with two very different chapters as case studies:

❑ Chapter 20, SQL Server 2000 XML sample applications, is designed to introduce us to, and
show us how to get results from, some of the more advanced XML features in SQL Server
2000; and how to program them. We will do this by building up two separate projects, each of
which is designed to show us how to get the most out of specific features. The first one deals
with SQL Server 2000 data access over HTTP, and the second one looks at building a sample
e-commerce site - the eLemonade site.

❑ Chapter 21, DB Prism, looks at DB Prism, an open source tool for generating dynamic XML
from a database, either running as a stand-alone servlet, or by acting as an adapter to connect
any database with a publishing framework such as Cocoon (the particular framework used in
this chapter). This study shows how to implement and use this technology.

Appendices
We have also provided two primers in the appendices for those that are unfamiliar with, or need to
brush up on, XML, or relational databases.

❑ Appendix A, XML Basics Primer, contains a quick refresher on XML for those who aren't
familiar with basic XML concepts, or just needs to get back up to speed. It discusses the
origins of XML, the various pieces that go together to make up an XML document, elements,
attributes, text nodes, CDATA nodes, and so on, and discusses the use of DTDs (document
type definitions).

❑ Appendix B, Relational Database Primer, provides a similar refresher on relational
databases. It covers the building blocks of relational databases, tables, columns, relationships,
and so forth. It also discusses normalization (which will be important when we talk about
structuring XML documents later in the book) and the relationship between RDBMS
constructs and XML constructs.

These are followed by appendices on Schema datatypes, SAX, and Setting up virtual directories in
SQL Server

Technologies Used in the Book
This book demonstrates data access and manipulation in a number of languages. There are examples in
ECMAScript, Java, Visual Basic, and ASP. While some of us may not be familiar with the languages
used in all of the chapters, we have endeavoured to make the descriptions adequate enough us you to
transfer what you have learnt in the chapter to our language of choice. Also, in many cases, algorithms
are presented in a conceptual or pseudocoded way so that they may be applied to the any target
platform of choice.

We have intentionally focused most of our examples on the use of document type definitions (or DTDs),
rather than the technically superior XML Schemas. The reason for this should be obvious - until the
W3C reaches full recommendation status with the XML Schemas standard documents, there will be a
lack of processors that can actually validate against XML Schemas. This book is intended to get us up
and running fast - in other words, to provide us with real examples of code that we can adopt to our
own business solutions. All of the examples provided in this book (with the obvious exception of the
examples in the emergent technology chapters such as the XLink chapter and the XML Schemas
chapter) will work out-of-the-box with commonly used, widely available processors.

Introduction

8

Conventions
We have used a number of different styles of text and layout in this book to help differentiate between
the different kinds of information. Here are examples of the styles we used and an explanation of what
they mean:

Code has several fonts. If it's a word that we're talking about in the text – for example, when discussing
a For…Next loop, it's in this font. If it's a block of code that can be typed as a program and run, then it's
also in a gray box:

<?xml version 1.0?>

Sometimes we'll see code in a mixture of styles, like this:

<?xml version 1.0?>
<Invoice>

<part>
<name>Widget</name>
<price>$10.00</price>

</part>
</invoice>

In cases like this, the code with a white background is code we are already familiar with; the line
highlighted in grey is a new addition to the code since we last looked at it.

Advice, hints, and background information comes in this type of font.

Important pieces of information come in boxes like this.

Bullets appear indented, with each new bullet marked as follows:

❑ Important Words are in a bold type font.

❑ Words that appear on the screen, in menus like the File or Window, are in a similar font to
that which we would see on a Windows desktop.

❑ Keys that we press on the keyboard like Ctrl and Enter, are in italics.

Customer Support
We've tried to make this book as accurate and enjoyable as possible, but what really matters is what the
book actually does for you. Please let us know your views, either by returning the reply card in the back
of the book, or by contacting us via email at feedback@wrox.com.

Source Code and Updates
As we work through the examples in this book, we may decide that we prefer to type in all the code by
hand. Many readers prefer this because it's a good way to get familiar with the coding techniques that
are being used.

Introduction

9

Whether you want to type the code in or not, we have made all the source code for this book is
available at our web site at the following address:

http://www.wrox.com/

If you're one of those readers who likes to type in the code, you can use our files to check the results
you should be getting - they should be your first stop if you think you might have typed in an error. If
you're one of those readers who doesn't like typing, then downloading the source code from our web
site is a must!

Either way, it'll help you with updates and debugging.

Errata
We've made every effort to make sure that there are no errors in the text or the code. However, to err is
human, and as such, we recognize the need to keep you informed of any mistakes as they're spotted and
corrected. Errata sheets are available for all our books at http://www.wrox.com. If you find an error that
hasn't already been reported, please let us know.

Our web site acts as a focus for other information and support, including the code from all Wrox books,
sample chapters, previews of forthcoming titles, and articles and opinions on related topics.

Introduction

10

XML Design for Data

In this chapter, we will look at some of the issues and strategies that we need to think about when
designing the structure of our XML documents. The modeling approach we take in our XML
documents will have a direct and significant impact on performance, document size, readability, and
code size. We'll see some of the ramifications of certain design decisions, and recommend some best
practice techniques.

One of the key factors to understand when creating models for storing data in XML, is that there are
important differences between XML documents that represent marked up text, and XML documents
that represent data with a mixed content model. We'll start this chapter with an outline of these
differences, and see how the data we're modeling impacts our approach.

This chapter makes reference to relational database concepts to explain some of the issues likely to be
encountered when working with XML for data. If relational database concepts are unfamiliar, it is
advisable to look at Appendix B before tackling this chapter.

Finally, in this chapter, table creation scripts are written to run with SQL Server – if you are using a
relational database platform other than SQL Server, you may need to tweak the scripts to get them to
work properly.

In this chapter we will see:

❑ How the types of data we are marking up will affect the way we model the information.

❑ How to model data structures.

❑ How to model data points.

❑ How to model the relationships between the structures.

❑ A sample application illustrating some best practices.

First, though, we need to understand the difference between using XML to mark up text, and XML
for data.

Chapter 1

12

XML for Text Versus XML for Data
As I indicated, before we can start modeling our data, it is important that we understand just what it is
that we're trying to model. Let's take a look at two different uses of XML:

❑ for marking up text documents

❑ for the representation of raw data

and see how they differ.

XML for Text
XML grew from SGML, which was used for marking up documents in electronic format. That's why
much of the early literature on XML – and the work developers did with it – was concerned with the
use of XML for annotating blocks of text with additional semantic information about that text. For
example, if we were marking up a chapter of a book, we might do something like the following:

<paragraph>
<quote speaker="Eustace">"I don't believe I've seen that orange pie
plate before,"</quote>Eustace said. He examined it closely, noting
that <plotpoint>there was a purple stain about halfway around one
edge.</plotpoint><quote speaker="Eustace">"Peculiar,"</quote> he
declared.

</paragraph>

There are two important points to note in this example. Because we are marking up text:

❑ If the markup were removed, the text of the paragraph itself would still have the same
meaning outside the XML document.

❑ The order of the information is of critical importance to understanding its meaning – we
cannot start reordering the text we mark up and still expect it to have the same meaning.

This is typical of how XML has been used to mark up text; we can think of this as marking up content.

There is, however, a sharp contrast between marking up this sort of text and using XML to hold raw
data, as we will see next.

XML for Data
As this book's focus is XML and databases, the second type of information that we mark up is of greater
interest to us. Our databases hold all kinds of business information. For the rest of the chapter, we will
focus on how we should be looking at marking up this kind of information. As we will see, there are a
number of ways in which we could mark up this data without changing its meaning.

One of the key differences between marking up text and data is that text must usually stay in the order
in which it's presented, and the markup adds meaning to the text. However, data can be represented in
a number of different ways and still have the same functionality. Having seen an example of text that we
have marked up, let's look at an example of data to make this distinction clearer.

XML Design for Data

13

Here's an example of a document that is designed to hold data:

<Invoice
orderDate="7/23/2000"
shipDate="7/28/2000">
<Customer

name="Homer Simpson"
address="742 Evergreen Terrace"
city="Springfield"
state="KY"
postalCode="12345" />

<LineItem
productDescription="Widgets (0.5 inch)"
quantity="17"
unitPrice="0.10" />

<LineItem
productDescription="Grommets (2 inch)"
quantity="22"
unitPrice="0.05" />

</Invoice>

As you can see, this is an example of an invoice marked up in XML.

Now, if we were to show this data outside of the document, we could present it in a number of different
ways. For example, we might represent the data this way:

Invoice

Homer Simpson
742 Evergreen Terrace
Springfield, KY 12345

Ordered on: 7/23/2000
Shipped on: 7/28/2000

Product Quantity Price
Widgets (0.5 inch) 17 0.10
Grommets (2 inch) 22 0.05

Alternatively, it would be equally valid to represent the data this way:

Homer Simpson|742 Evergreen Terrace|Springfield|KY|12345
07232000|07282000
Widgets (0.5 inch)|17|0.10
Grommets (2 inch)|22|0.05

When we're looking at this type of data, the order in which it is stored does not matter as much to the
meaning of the document as it did to the previous section, where we were marking up the book.

For example, it does not change the meaning of the document if the order date is stored before or after
the ship date in the XML document – as long as they can be identified, and as long as they are
associated with the invoice to which they belong. Similarly, the order in which the line items are stored
is not meaningful – as long as they are associated with the appropriate invoice.

Chapter 1

14

So, we have already seen a clear distinction here between the different types of data that we are
marking up. When we are using XML to mark up data that does not have to follow a strict order we can
be more flexible in the way we store it, which in turn can impact upon how easy it is to retrieve or
process the data.

Representing Data in XML
Because XML allows us to be so flexible in the way that we can mark up our data, let's take a look at
some ways in which we should restrict our XML structure designs for data.

Element Content Models
We will start our discussion about how we can structure our XML vocabularies by looking at how to
model element content. When using a DTD to define the structure of an XML vocabulary, there are five
possible content models for elements:

❑ Element-only content.

❑ Mixed content.

❑ Text-only content (a special case of mixed content).

❑ The EMPTY model.

❑ The ANY model.

Let's take a look at each of these in turn and see how they might be used to represent data.

Element-only Content
Element-only content is used when elements may only contain other elements. For example, the
following content model is element-only:

<!ELEMENT Invoice (Customer, LineItem+)>

Here we have an Invoice element, as the root element, which can contain a Customer element,
followed by one or more LineItem elements. An example of a document that conforms to this
would be:

<Invoice>
<Customer />
<LineItem />
<LineItem />

</Invoice>

This structure provides the cleanest way to contain one structure inside another. This will be our
representation of choice for the nesting of elements.

Mixed Content
In the mixed content model, elements may contain zero or more instances of a list of elements, in any
order, along with any amount of text in any position. An example of the mixed content model might be:

<!ELEMENT Invoice (#PCDATA | LineItem | Customer)*>

XML Design for Data

15

A couple of example documents might be:

<Invoice>
This is the invoice for <Customer>Kevin Williams</Customer>

</Invoice>

or:

<Invoice>
<LineItem />
<Customer>Kevin Williams</Customer>
<LineItem />

</Invoice>

This model isn't good for modeling data because the allowable subelements might appear at any point
within the element, and any number of times. This makes it very difficult to map to data elements, and
makes writing code to handle the document (and move it to a data repository, such as a relational
database) a nightmare. We should avoid the use of the mixed content model for data.

Text-only Content
In the text-only content model, elements may only contain text strings. An example of the text-only
content model might be:

<!ELEMENT Customer (#PCDATA)>

and a sample document might be:

<Customer>Kevin Williams</Customer>

Using text-only elements is one way to include data points in our document.

When we refer to data points in this context, we mean single values, analogous to
columns in a relational database or fields in a flat file.

However, we could also use attributes, which can have advantages over this method – as we'll see a
little later in the chapter.

EMPTY Content
In the EMPTY content model, an element cannot contain anything at all; it must be expressed either as
the empty-element-tag, or as a start-tag followed immediately by an end-tag (the preferred notation
being an empty-element-tag). The following is an example of the empty content model:

<!ELEMENT Customer EMPTY>

A sample document might be:

<Customer />

Chapter 1

16

This content model will come in useful when we have a situation where the only additional information
associated with an element is at the data point level. For example, let's say we had a Customer element
that only had a FirstName and LastName associated with it. Since these pieces of information are data
points – that is, single values – we could use the empty content model for the Customer element and
represent the data points as attributes. We will see how that's done shortly.

ANY Content
The last content model we could use is the ANY content model. In this model, any element or text may
appear inside the element when defined this way, in any order. So, for this example:

<!ELEMENT Customer ANY>

we might have the following document:

<Customer>Kevin Williams</Customer>

or:

<Customer>
<Customer>

<Customer>Kevin Williams</Customer>
</Customer>

</Customer>

Like the mixed content model, this content model is too permissive for data. Without some idea of what
structures might appear, and in what order, leveraging and operating upon the data will be extremely
difficult. For this reason, we will avoid using the ANY content model in the structures we design.

Using Attributes
The other way to represent data points, and the recommended method for doing so in data documents,
is by using attributes. For example, in the following sample structure:

<!ELEMENT Customer EMPTY>
<!ATTLIST Customer

FirstName CDATA #REQUIRED
LastName CDATA #REQUIRED>

we would have a document that looks like the following:

<Customer
FirstName="Kevin"
LastName="Williams"/>

This approach has several inherent advantages over using text-only elements to represent data points.
We'll take a look at some of these later in the chapter.

XML Design for Data

17

Other Considerations
So far, we have looked at some of the obvious considerations to take into account when creating our
data model, but we should always be asking ourselves if all of the relevant data for the document is
being represented in as efficient and accessible a manner as possible. So, let's take a look at some of the
other considerations that we need to take into account when designing XML structures, namely:

❑ Audience.

❑ Performance.

❑ Data modeling versus representation modeling.

Audience
When designing XML structures, we should take into account the universe of producers and consumers
that might be manipulating documents based on those structures.

We need to ask ourselves the following questions:

❑ Does the document need to be human-readable?
Depending on the planned usage of our documents, they might only be read by automatic
processes, or they might need to be read by humans. If a document is not intended to be
human-readable, abbreviations and other modifications may be made to reduce document
size.

❑ Is the document intended primarily for display or for processing?
If our documents will most commonly be styled to flattened structures – for example, flat file
exports – we may want to flatten the structures in our XML so that the XSLT engine's
workload will be reduced.

❑ How many consumers will be processing the document?
If we want our data to be made available to as many consumers as possible – as we would
with an industrywide standard – we might try to keep the structure as flexible as possible. If it
is only to be read by one type of application, we can tune it specifically to the requirements of
that application.

❑ Is the document intended to operate under a standard that constrains the allowable structure?
If our structures are being designed to run under the BizTalk Framework (or another e-
commerce initiative), we may want to represent data points as text-only elements rather than
attributes – as that's the recommended structure for BizTalk messages.

Performance
Often, performance is the other side of the audience coin; the narrower the audience, the more finely
tuned the document structures may be for performance. For example, say we have an XML document,
stored in a file or streamed across the Web, that looks like the following:

<Invoice
customerName="Kevin Williams">
<LineItem

productName="Grommets (2 inch)"
quantity="17"
price="0.10" />

</Invoice>

Chapter 1

18

This document is mostly human-readable – the customer and product names are spelled out, and the
document has white space added to make it easy to comprehend. Now, let's suppose that human-
readability is not a factor, and instead the document has to perform as well as possible. The following
might be an alternative design:

<I c="c17"><L p="p22" q="17" pr=".1" /></I>

In this case:

❑ We've abbreviated the element and attribute names (because the document is being read by a
machine process).

❑ We've removed unnecessary whitespace (again, because readability is not a factor).

❑ We've used customer and product lookup codes rather than spelling out their names.

This document works very well if it is being passed between two known systems that understand the
cryptic abbreviations, but it doesn't work as well for documents that might have to be human-readable.
Which version we choose all comes down to the planned usage of the document, and the other design
factors that have to be taken into consideration.

Data Modeling Versus Representation Modeling
When designing XML structures for data, it's important to focus on the data itself and not the common
representation of the data in the real world. For example, say we have an invoice that looks like this:

Widgets, Inc.
Invoice

Customer: Kevin Williams
742 Evergreen Terrace
Springfield, KY 12345

Ship to: Kevin Williams
742 Evergreen Terrace
Springfield, KY 12345

Shipper: FedEx

Item Code Description Quantity Price Total
1A2A3AB Widget (3 inch) 17 $0.10 $1.70
2BC3DCB Grommet (2 inch) 22 $0.05 $1.10

Total $2.80

We might be tempted to construct an XML document that looks like this:

<Invoice>
Widgets, Inc.
Invoice

Customer: <customerName>Kevin Williams</customerName>
<orderAddress>742 Evergreen Terrace</orderAddress>
<orderCity>Springfield</orderCity>,
<orderState>KY</orderState>
<orderPostalCode>12345</orderPostalCode>

XML Design for Data

19

Ship to: <shipName>Kevin Williams</shipName>
<shipAddress>742 Evergreen Terrace</shipAddress>
<shipCity>Springfield</shipCity>,
<shipState>KY</shipState>
<shipPostalCode>12345</shipPostalCode>

Shipper: <shippingCompany>FedEx</shippingCompany>

Item Code Description Quantity Price Total
<LineItem>

<itemCode>1A2A3AB</itemCode>
<itemDescription>Widget (3 inch)</itemDescription>
<quantity>17</quantity>
<price>$0.10</price>
<linePrice>$1.70</linePrice>

</LineItem>
<LineItem>

<itemCode>2BC3DCB</itemCode>
<itemDescription>Grommet (0.5 inch)</itemDescription>
<quantity>22</quantity>
<price>$0.05</price>
<linePrice>$1.10</linePrice>

</LineItem>

Total
<totalPrice>$2.80</totalPrice>

</Invoice>

However, this is an example of modeling to the representation, not the data itself. Here are some of the
problems with this approach:

❑ Formatting information is retained in the XML document.
Information about the location of data in a particular representation, or text that always
appears in the representation of XML documents of this type, should not be retained in XML.
If we need to reconstruct the appearance of the representation later, we should use XSLT or
some other formatting mechanism to recreate it.

❑ Summary information is retained in the XML document.
Information such as the line item totals and grand total for the invoice should not be retained
in the XML document, unless there's a compelling reason to do so. This follows the same
argument as to why summary information shouldn't be retained in a relational database unless
there's a compelling reason to do so. Summary information may always be extrapolated from
the detail information provided, so it isn't strictly necessary in the XML document. If a value
included in an XML document cannot be brought into a nonXML representation for
manipulation, then the document has virtually no worth as a data medium. An exception
could be, for example, when the information needs to be accessible directly from the
document at a summary level, perhaps via XSLT.

❑ Field formatting information is retained.
The dollar symbol for the price element, for example, does not belong in the price field – it
is part of the formatting of the information for a particular representation, not part of the
actual information content.

Chapter 1

20

A much better structure would be:

<Invoice
customerName="Kevin Williams">
<Address
addressType="billing"
street="742 Evergreen Terrace"
city="Springfield"
state="KY"
postalCode="12345" />

<Address
addressType="shipping"
street="742 Evergreen Terrace"
city="Springfield"
state="KY"
postalCode="12345" />

<LineItem
itemCode="1A2A3AB"
itemDescription="Widget (3 inch)"
quantity="17"
price="0.10"
currency="USD" />

<LineItem
itemCode="2BC3DCB"
itemDescription="Grommet (0.5 inch)"
quantity="22"
price="0.05"
currency="USD" />

</Invoice>

In this sample, all formatting information has been discarded, and the XML document represents the
pure data representation of the document content.

XML Data Structures – A Summary
In this section, we've looked at some of the issues that should be taken into consideration when
developing our XML structures for data. We've learned that the mixed content and ANY content
elements should be avoided under most circumstances, and that the structures that we define should be
designed to carry the data, not any specific representation of the data. Beyond that, we should take into
account the audience for documents, and any performance constraints that producers or consumers may
impose.

Next, we'll take a look at the various structures in RDBMS systems and XML, and how they map to one
another.

Mapping Between RDBMS and XML Structures
In this section, we'll see how relational data may be moved into XML structures. We'll see how
structures, data points, and relationships are modeled in XML, and see some common pitfalls and how
to avoid them. We'll follow that discussion with an example modeling exercise, to see how the
techniques we have learned can be put into action.

XML Design for Data

21

Structure
Let's see how we can map information between tables in databases and elements in XML. We'll start
with a look at how we might model some sample data for a customer in a relational database. We'll then
look at two possible ways in which we might store the same data in XML.

In relational databases, groups of data points that together describe a larger concept are represented by
tables that are made up of columns. Here we can create a table to hold all the details about an address:

CREATE TABLE Customer (
firstName varchar(50),
lastName varchar(50),
mailingAddress varchar(50),
mailingCity varchar(60),
mailingState char(2),
mailingPostalCode varchar(10))

and the table would look like this:

In XML, groups of data points can be grouped together to describe a larger concept represented by an
element. Going back to our customer details, we might use a <Customer> element to represent the
same information as we had in our Customer table.

When moving data between XML form and a relational database, a table should
always become an element with element-only content, and an element with element-
only content should always become a table – unless we are performing additional
normalization or denormalization when we are moving the information.

Within our <Customer> element, the details about the customer can be represented in one of two
ways:

❑ Using text-only elements.

❑ Using attributes.

Elements
The first way data points are represented in XML documents is by using elements. For text-only
elements, we might define our <Customer> element like this:

<!ELEMENT Customer (firstName, lastName, mailingAddress, mailingCity,
mailingState, mailingPostalCode)>

<!ELEMENT firstName (#PCDATA)>
<!ELEMENT lastName (#PCDATA)>
<!ELEMENT mailingAddress (#PCDATA)>
<!ELEMENT mailingCity (#PCDATA)>
<!ELEMENT mailingState (#PCDATA)>
<!ELEMENT mailingPostalCode (#PCDATA)>

Chapter 1

22

which would result in details being nested in separate elements under the <Customer> element
like this:

<Customer>
<firstName>Kevin<firstName>
<lastName>Williams<lastName>
<mailingAddress>742 Evergreen Terrace <mailingAddress>
<mailingCity>Springfield<mailingCity>
<mailingState>KY<mailingState>
<mailingPostalCode>12345<mailingPostalCode>

</Customer>

When representing data in an XML document, any element that is defined as having
text-only content using the #PCDATA keyword will correspond to a column in a
relational database.

Attributes
Another way of representing data points in XML documents is with attributes. In this approach,
elements that represent tables have attributes associated with them that represent columns:

<!ELEMENT Customer EMPTY>
<!ATTLIST Customer

firstName CDATA #REQUIRED
lastName CDATA #REQUIRED
mailingAddress CDATA #REQUIRED
mailingCity CDATA #REQUIRED
mailingState CDATA #REQUIRED
mailingPostalCode CDATA #REQUIRED>

Here we are storing the details of the customer as attributes on the <Customer> element:

<Customer
firstName="Kevin"
lastName="Williams"
mailingAddress="742 Evergreen Terrace"
mailingCity "Springfield"
mailingState="KY"
mailingPostalCode="12345" />

Let's look in more detail at the two alternatives for the representation of data points.

Data Points
As we have just seen, there are two primary design strategies that may be used to represent columns as
XML structures:

❑ Elements, which are nested as children of the element that represents the grouping of
information.

❑ Attributes, which are added to the element that represents the grouping of information.

XML Design for Data

23

Each approach has its proponents, and they tend to be quite vocal about their opinions. So what are the
advantages and disadvantages of each of these two different approaches?

In order to compare the different ways we can represent data, let's use the invoice for a widget
manufacturing plant that we saw earlier. Here, again,is how the invoice looks:

Widgets, Inc.
Invoice

Customer: Kevin Williams
742 Evergreen Terrace
Springfield, KY 12345

Ship to: Kevin Williams
742 Evergreen Terrace
Springfield, KY 12345

Shipper: FedEx

Item Code Description Quantity Price Total
1A2A3AB Widget (3 inch) 17 $0.10 $1.70
2BC3DCB Grommet (0.5 inch) 22 $0.05 $1.10

Total $2.80

For this invoice, we're interested in the following data points:

❑ Customer name.

❑ Billing address.

❑ Billing city.

❑ Billing state.

❑ Billing postal code.

❑ Shipping address.

❑ Shipping city.

❑ Shipping state.

❑ Shipping postal code.

❑ Shipping company.

❑ Item code.

❑ Item description.

❑ Quantity purchased.

❑ Price per unit.

We'll assume that the consumer of our XML document will recalculate the line totals and invoice total,
if it requires them. As we saw earlier, our consumer should be able to calculate these kinds of values
from our XML data, otherwise our XML isn't worth a great deal!

Chapter 1

24

The invoice has the following data point groupings:

❑ Invoice.

❑ Line Item.

Notice that we're discussing structure internal to the invoice, and not as it relates to some external
system. For example, it's likely that this customer will order from us again (assuming we get him his
widgets and grommets in a timely manner), so in our invoice database we will probably keep a
Customer table that retains information about each of our customers. However, since each of our
documents represents one invoice, we will pass the customer information as part of the invoice
information, as there is a one-to-one relationship.

There are circumstances where we should break up a one-to-one relationship, but generally it's not a
good idea, as it will increase the document size and slow down processing. We will go into XML
design in much more detail in Chapter 4.

Our Invoice Using Elements
Now, back to the comparison. Using elements, our structure would look something like this
(ch02_ex1.dtd):

<!ELEMENT Invoice (customerName, billingAddress, billingCity, billingState,
billingPostalCode, shippingAddress, shippingCity,
shippingState, shippingPostalCode, shippingCompany,
LineItem+)>

<!ELEMENT customerName (#PCDATA)>
<!ELEMENT billingAddress (#PCDATA)>
<!ELEMENT billingCity (#PCDATA)>
<!ELEMENT billingState (#PCDATA)>
<!ELEMENT billingPostalCode (#PCDATA)>
<!ELEMENT shippingAddress (#PCDATA)>
<!ELEMENT shippingCity (#PCDATA)>
<!ELEMENT shippingState (#PCDATA)>
<!ELEMENT shippingPostalCode (#PCDATA)>
<!ELEMENT shippingCompany (#PCDATA)>
<!ELEMENT LineItem (itemCode, itemDescription, quantity, price)>
<!ELEMENT itemCode (#PCDATA)>
<!ELEMENT itemDescription (#PCDATA)>
<!ELEMENT quantity (#PCDATA)>
<!ELEMENT price (#PCDATA)>

and here's an example of data marked up using this model (ch02_ex1.xml):

<?xml version="1.0" ?>
<!DOCTYPE Invoice SYSTEM "http://myserver/xmldb/ch02_ex1_elements.dtd">

<Invoice>
<customerName>Kevin Williams</customerName>
<billingAddress>742 Evergreen Terrace</billingAddress>
<billingCity>Springfield</billingCity>
<billingState>KY</billingState>

XML Design for Data

25

<billingPostalCode>12345</billingPostalCode>
<shippingAddress>742 Evergreen Terrace</shippingAddress>
<shippingCity>Springfield</shippingCity>
<shippingState>KY</shippingState>
<shippingPostalCode>12345</shippingPostalCode>
<shippingCompany>FedEx</shippingCompany>
<LineItem>

<itemCode>1A2A3AB</itemCode>
<itemDescription>Widget (3 inch)</itemDescription>
<quantity>17</quantity>
<price>0.10</price>

</LineItem>
<LineItem>

<itemCode>2BC3DCB</itemCode>
<itemDescription>Grommet (0.5 inch)</itemDescription>
<quantity>22</quantity>
<price>0.05</price>

</LineItem>
</Invoice>

Our Invoice Using Attributes
Using attributes, rather than elements, the DTD would look like this (ch02_ex1_attributes.dtd):

<!ELEMENT Invoice (LineItem+)>
<!ATTLIST Invoice

customerName CDATA #REQUIRED
billingAddress CDATA #REQUIRED
billingCity CDATA #REQUIRED
billingState CDATA #REQUIRED
billingPostalCode CDATA #REQUIRED
shippingAddress CDATA #REQUIRED
shippingCity CDATA #REQUIRED
shippingState CDATA #REQUIRED
shippingPostalCode CDATA #REQUIRED
shippingCompany (FedEx | USPS | UPS) #REQUIRED>

<!ELEMENT LineItem EMPTY>
<!ATTLIST LineItem

itemCode CDATA #REQUIRED
itemDescription CDATA #REQUIRED
quantity CDATA #REQUIRED
price CDATA #REQUIRED>

and the corresponding XML would look like this (ch02_ex1_attributes.xml):

<?xml version="1.0" ?>
<!DOCTYPE Invoice SYSTEM "http://myserver/xmldb/ch02_ex1_elements.dtd">

<Invoice
customerName="Kevin Williams"
billingAddress="742 Evergreen Terrace"
billingCity="Springfield"

Chapter 1

26

billingState="KY"
billingPostalCode="12345"
shippingAddress="742 Evergreen Terrace"
shippingCity="Springfield"
shippingState="KY"
shippingPostalCode="12345"
shippingCompany="FedEx">
<LineItem

itemCode="1A2A3AB"
itemDescription="Widget (3 inch)"
quantity="17"
price="0.10" />

<LineItem
itemCode="2BC3DCB"
itemDescription="Grommet (0.5 inch)"
quantity="22"
price="0.05" />

</Invoice>

Having created two examples of the invoice – one that uses element content, and another that uses
attributes to store the information – let's take a look at how the two examples stack up based upon some
basic document metrics.

Comparing the Two Approaches
The things we will look at are:

❑ Readability.

❑ Compatibility with databases.

❑ Strong data typing.

❑ Programming complexity.

❑ Document size.

Readability

In both sample documents above, the documents are equally readable. All data points for a given
structural element are grouped together, and structures are clearly delineated.

Compatibility with Databases

In relational databases, content (data points), and structure are clearly disambiguated. Structure is
represented with tables and relationships, and data points are represented with columns. Since we're
probably going to be spending a lot of our time moving data in and out of relational databases, we
would like our XML documents to disambiguate content and structure as well.

Unfortunately, if we use text-only elements to represent data points, we lose this clear distinction –
sometimes elements represent structure, and other times they represent content. Any code that is
parsing these structures must be aware which element represents data and which represents structure,
and must handle it appropriately (or check to see whether text is contained in the element or not, before
deciding how to handle that element).

XML Design for Data

27

However, if we use attributes for data points, structure and content are separate and distinct – structure
is represented by the elements and the way they are nested, while content is represented in attributes.
This is possibly the strongest argument for using attributes.

In addition, attributes are unordered. Look at the following two documents:

<?xml version="1.0"?>
<Book Author="Ron Obvious" CreateDate="7/23/2000">
This is a simple XML document.

</Book>

and:

<?xml version="1.0"?>
<Book CreateDate="7/23/2000" Author="Ron Obvious">
This is a simple XML document.

</Book>

They are identical from the perspective of an XML parser – the parser doesn't attach any particular
importance to the order in which attributes are encountered in the original document. This is similar to
the way a relational database works, where the meaning of a data point is simply indicated by its name,
and not a combination of its name and location.

While element order has meaning for documents (for example, it's important to understand that the
second paragraph comes after the first one), it loses importance when representing data. Thus, the
ordering of elements just adds unnecessary complexity.

Strong Data Typing

When using DTDs to govern the content of XML structures, there is little scope for strong datatyping.
The one exception would be the ability to constrain attributes to a particular list of allowable values. For
example, the shippingCompany data point in our example might take one of the three values FedEx,
USPS, or UPS. If we describe the data point with an attribute, we can constrain the value of the attribute
to this list of three values (and in fact did so in the second DTD example). However, we have no similar
way to limit these allowable values for the data point if it is expressed as an element.

Programming Complexity

One of the most important concerns when designing XML documents, has to be the programming
complexity and parser speed for solutions implemented around the XML structures. To illustrate this,
let's look at retrieving some information from the two invoice examples we developed, using the
element and attribute models.

Parsing technologies – the DOM and SAX – are discussed in Chapters 6 and 7 respectively. Without
going into too much depth here, let's make some comparisons between the number of steps it take to
retrieve the quantity of the first lineItem for each of the data models. We will first compare the
element and attribute approaches when parsed by the DOM, and then look at the same two models
under SAX.

Chapter 1

28

The DOM

When an XML document is parsed using the Document Object Model, it is pulled into memory and
decomposed into a tree that may then be walked by code. In order to access the quantity of the first line
item ordered on an invoice, the following steps would be required for the element approach:

1. Get the root element (the Invoice element).

2. Go to the first LineItem child of the Invoice element.

3. Go to the quantity child of the LineItem element.

4. Go to the text node child of the quantity element and return its value.

On the other hand, the following steps would be required to access the document if the attribute
approach was used:

1. Get the root element (the Invoice element).

2. Get the first LineItem child of the Invoice element.

3. Iterate through the LineItem element for the attribute name-value pair list of the
quantity attribute, and return its value.

In other words, fewer steps are required to obtain the value of an attribute when using the DOM than to
retrieve the value of a text-only element. Since the DOM pulls everything into memory, the odds are
that we will see little to no performance difference between the two strategies, but the code will be
simpler when using attributes.

SAX

SAX is the Simple API for XML, and it is intended to be an event-driven alternative to the memory-
hungry DOM. SAX is covered in much more detail in Chapter 7, but suffice to say it has a much
smaller memory footprint than the DOM. However, when using SAX to handle documents, things get
more complicated. Because SAX is event driven, there are a few additional steps required when
obtaining the text value of an element as opposed to retrieving the value of an attribute.

Using the same example with elements, the steps for SAX for elements would be:

1. Before starting, set the Booleans bInInvoice, bInLineItem, and bInQuantity to false,
and also, set the value of the counter iLineItem to zero and the string sQuantity to a
blank string.

2. In the startElement event, when the Invoice start tag is encountered, set the value of
the Boolean variable bInInvoice to true.

3. In the startElement event, when the LineItem start tag is encountered, set the value of
the Boolean variable bInLineItem to true if bInInvoice is true, indicating that the
processor window is inside a LineItem tag. Also increment the iLineItem counter to
indicate which LineItem is being read.

XML Design for Data

29

4. In the startElement event, when the quantity start tag is encountered, if the Boolean
bInLineItem is true and the iLineItem counter is 1, set the value of the bInQuantity
Boolean variable to true.

5. In the characters event, if bInQuantity is true, append the received text to the
sQuantity string.

6. In the endElement event, if the quantity end tag is encountered, set the bInQuantity
Boolean to false. The value for the quantity is now available for use.

7. In the endElement event, if the LineItem end tag is encountered, set the bInLineItem
Boolean to false. In addition, if the Invoice end tag is encountered, set the
bInInvoice Boolean to false.

Whereas if we were using attributes, these would be the steps:

1. Before starting, set the Boolean bInInvoice to false, and also set the value of the
counter iLineItem to zero.

2. In the startElement event, when the Invoice start tag is encountered, set the value of
the Boolean variable bInInvoice to true.

3. In the startElement event, when the LineItem start tag is encountered, if bInInvoice
is true, increment the value of the iLineItem counter. If this value is 1, pull the value of
the quantity attribute from the attribute name-value pair set provided as a parameter to
the startElement event. The value for the quantity is now available for use.

4. In the endElement event, if the LineItem end tag is encountered, set the bInLineItem
Boolean to false.

5. In the endElement event, if the Invoice end tag is encountered, set the bInInvoice
Boolean to false.

As you can see, fewer event handlers are required when using attributes to represent data points, and
this results in simpler code. The code size improvement will be significant for handlers that are more
complex. From a performance perspective, there will probably be virtually no difference – the
additional event handlers are not particularly complex.

Document Size

When an element is used to describe a data point, three strings appear in the serialized XML document:
the start tag, the value of the data point, and the end tag:

<shippingAddress>742 Evergreen Terrace</shippingAddress>

However, when an attribute is used to describe a data point, the attribute name, the equals sign, the
quotes, and the attribute value are required:

shippingAddress="742 Evergreen Terrace"

Chapter 1

30

It should be obvious that repeating the name of the data point in the end element tag increases the size
of the document, compared with the size of the document when an attribute is used to represent the
data point. As a result, more network bandwidth will be consumed when transmitting files using
elements than when using attributes; more disk space will be consumed by the documents if they are
persisted to files, and so on. If these things are important to us, we should think about using attributes to
minimize our document size.

Elements or Attributes – The Conclusion
In the author's opinion, attributes are better suited to the representation of data points than text-only
elements are. In other words, attributes are best suited when only one value is to be expected (data
points) whereas elements are a necessity when multiple values are needed (like our lineItem in the
example above). When using attributes:

❑ Accessing the information is easier.

❑ Documents are smaller.

❑ The disambiguation of structure and data closely mirrors the way structure and data are
disambiguated in a relational database.

For the remainder of this book, we will be using attributes to represent data points in our sample
structures.

Relationships
When we need to associate groups of data points with other groups of data points in a relational
database, we do so by adding a relationship between the two tables in question. In order to see how we
can do this in XML, let's look at two sample tables Invoice and LineItem and the relationships
between them. Here is the SQL script to create the tables (ch02_ex3.sql):

CREATE TABLE Invoice (
invoiceID integer PRIMARY KEY,
customerID integer,
orderDate datetime,
shipDate datetime)

CREATE TABLE LineItem (
lineItemID integer,
invoiceID integer,
productDescription varchar(255),
quantity integer,
unitPrice float,
CONSTRAINT fk_LineItemInvoice

FOREIGN KEY (invoiceID)
REFERENCES Invoice (invoiceID))

Remember, the scripts in this chapter are for SQL Server – if you want to run them in a different
database you may have to modify them. For example, here you'll need to change float to number
to run the script in Oracle.

XML Design for Data

31

Here are the tables that this script will create, and their relationships:

Note that the arrow is used to show the relationship between the tables - how they are linked, by means
of keys. The arrow points from the foreign key on the LineItem table to the primary key on the Invoice
table. We could say that the LineItem table "refers back to" the Invoice table. We will encounter these
diagrams at numerous times as we progress through the book.

In the above table definitions, we have added a foreign key in the LineItem table , invoiceID , that
points back to the primary key in the Invoice table. This indicates that the invoiceID value in the
LineItem table must always correspond to an invoiceID value for a customer record.

Containment
In XML, one-to-one and one-to-many relationships (such as the one above between Invoice and
LineItem) are best represented by containment, as shown here (ch02_ex2.dtd):

<!ELEMENT Invoice (LineItem+)>
<!ATTLIST Invoice

orderDate CDATA #REQUIRED
shipDate CDATA #REQUIRED>

<!ELEMENT LineItem EMPTY>
<!ATTLIST LineItem

productDescription CDATA #REQUIRED
quantity CDATA #REQUIRED
unitPrice CDATA #REQUIRED>

An example of a document with this structure looks like this (ch02_ex2.xml):

<?xml version="1.0" ?>
<!DOCTYPE Invoice SYSTEM "http://myserver/xmldb/ch02_ex2.dtd">

<Invoice
orderDate="7/23/2000"
shipDate="7/28/2000">
<LineItem

productDescription="Widgets (3 inch)"
quantity="17"
unitPrice="0.10" />

<LineItem
productDescription="Grommets (0.5 inch)"
quantity="22"
unitPrice="0.05" />

</Invoice>

Chapter 1

32

Here, it is clear that the LineItem information is part of the Invoice. One-to-one and one-to-many
relationships (such as the relationship between Invoice and LineItem) are best represented by
containment. However, it is possible to have more complex relationships in relational databases than
can be represented with containment alone.

More Complex Relationships – Pointers
Let's extend our previous example by adding a Product table (ch02_ex3.sql):

CREATE TABLE Invoice (
invoiceID integer PRIMARY KEY,
customerID integer,
orderDate datetime,
shipDate datetime)

CREATE TABLE Product (
productID integer PRIMARY KEY,
productShortName varchar (50),
productDescription varchar(255))

CREATE TABLE LineItem (
lineItemID integer PRIMARY KEY,
invoiceID integer
CONSTRAINT fk_LineItemInvoice

FOREIGN KEY (invoiceID)
REFERENCES Invoice (invoiceID),

productID integer
CONSTRAINT fk_LineItemProduct

FOREIGN KEY (productID)
REFERENCES Product (productID),

quantity integer,
unitPrice float)

and here are the tables with their relationships:

In this case, there is a many-to-many relationship being expressed between Invoice and Product.
Many products may appear on one invoice, and one product may appear on many invoices. In a
relational database, this is expressed through the relating table LineItem. An invoice may have many
line items, and a product may appear on many line items.

XML Design for Data

33

Let's see how we could show this more complex relationship in XML. Here is another version of the
data model (ch02_ex3.dtd):

<!ELEMENT OrderData (Invoice+, Product+)>
<!ELEMENT Invoice (LineItem+)>
<!ATTLIST Invoice

orderDate CDATA #REQUIRED
shipDate CDATA #REQUIRED>

<!ELEMENT LineItem EMPTY>
<!ATTLIST LineItem

productIDREF IDREF #REQUIRED
quantity CDATA #REQUIRED
unitPrice CDATA #REQUIRED>

<!ELEMENT Product EMPTY>
<!ATTLIST Product

productID ID #REQUIRED
productShortName CDATA #REQUIRED
productDescription CDATA #REQUIRED>

In this case, we are using an ID/IDREF pair to indicate which product is indicated by which line item.
We do it this way because we're trying to avoid the repetition of information. If we nested Product
inside LineItem, we'd have to repeat the product information for every invoice where it appears.

An example document might look like this (ch02_ex3.xml):

<?xml version="1.0" ?>
<!DOCTYPE OrderData SYSTEM "http://myserver/xmldb/ch02_ex3.dtd">

<OrderData>
<Invoice

orderDate="7/23/2000"
shipDate="7/28/2000">
<LineItem

productIDREF="prod1"
quantity="17"
unitPrice="0.10" />

<LineItem
productIDREF="prod2"
quantity="22"
unitPrice="0.05" />

</Invoice>
<Invoice

orderDate="7/23/2000"
shipDate="7/28/2000">
<LineItem

productIDREF="prod2"
quantity="30"
unitPrice="0.05" />

<LineItem
productIDREF="prod3"
quantity="19"
unitPrice="0.15" />

</Invoice>
<Product

productID="prod1"
productShortName="Widgets (3 inch)"
productDescription="Rubberized Brown Widgets (3 inch)" />

Chapter 1

34

<Product
productID="prod2"
productShortName="Grommets (0.5 inch)"
productDescription="Vulcanized Orange Grommets (0.5 inch)" />

<Product
productID="prod3"
productShortName="Sprockets (1 inch)"
productDescription="Anodized Silver Sprockets (one inch)" />

</OrderData>

In this case, the first invoice is for widgets and grommets, while the second invoice is for grommets and
sprockets. However, we've only included the specific product information once for grommets; it's
pointed to by the two line items that use it.

Disadvantages of Pointers

While this layout seems better from a relational perspective, there are some problems with it:

❑ It can slow processing down. This is because neither the DOM nor SAX provide a way to
easily navigate ID/IDREF relationships. (Some implementations of the DOM, such as
Microsoft's MSXML parser, provide a way to look up an element by its ID value – but such
functions are extensions to the base DOM level 1 architecture as defined by the W3C. The
DOM level 2 has just been released, however, and may make this less of a problem once
compliant parsers start appearing).

❑ We might have to parse the document more than once. If our document is laid out in
such a way that the element with a particular ID may appear before the element with an
IDREF pointing to that ID, using SAX will be even more of a headache. We'll either need to
make multiple passes through the document to get the element to pass through the parse
window again, or we'll need to cache the element when it passes through the parse window
the first time.

❑ ID/IDREF (or ID/IDREFS) relationships are unidirectional. That is, it's easy to navigate
from an IDREF to the associated ID, but not as easy to navigate from an ID to any IDREFs
that point to that ID. The problem is compounded if the relationship is ID-IDREFS – in that
case, all the IDREFS need to be tokenized and each token compared against the ID currently
being examined.

More Complex Relationships – Containment
So let's look at an alternative structure for the same database tables, where the product data is contained
inside the LineItem element (ch02_ex4.dtd):

<!ELEMENT OrderData (Invoice+)>
<!ELEMENT Invoice (LineItem+)>
<!ATTLIST Invoice

orderDate CDATA #REQUIRED
shipDate CDATA #REQUIRED>

<!ELEMENT LineItem (Product)>
<!ATTLIST LineItem

quantity CDATA #REQUIRED
unitPrice CDATA #REQUIRED>

<!ELEMENT Product EMPTY>
<!ATTLIST Product

productShortName CDATA #REQUIRED
productDescription CDATA #REQUIRED>

XML Design for Data

35

and here is the new sample document (ch02_ex4.xml):

<?xml version="1.0" ?>
<!DOCTYPE OrderData SYSTEM "http://myserver/xmldb/ch02_ex4.dtd">

<OrderData>
<Invoice

orderDate="7/23/2000"
shipDate="7/30/2000">
<LineItem

quantity="17"
unitPrice="0.10">
<Product

productShortName="Widgets (3 inch)"
productDescription="Rubberized Brown Widgets (3 inch)" />

</LineItem>
<LineItem

quantity="22"
unitPrice="0.05">
<Product

productShortName="Grommets (0.5 inch)"
productDescription="Vulcanized Orange Grommets (half inch)" />

</LineItem>
</Invoice>
<Invoice

orderDate="7/23/2000"
shipDate="7/30/2000">
<LineItem

quantity="30"
unitPrice="0.05">
<Product

productShortName="Grommets (2 inch)"
productDescription="Vulcanized Orange Grommets (two inch)" />

</LineItem>
<LineItem

quantity="19"
unitPrice="0.15">
<Product

productShortName="Sprockets (1 inch)"
productDescription="Anodized Silver Sprockets (one inch)" />

</LineItem>
</Invoice>

</OrderData>

While this document does repeat information (the product info for the grommets), it is a superior
document to the first one for most applications. Only containment is used, so there are no issues with
the DOM or SAX. The document is slightly larger, but since XML is a fairly verbose language anyway,
this doesn't present that much of a problem (especially since SAX becomes a viable out of the box
solution again if this approach is adopted).

If the consuming system needs to know that the grommets referenced in the first invoice and the
grommets referenced in the second invoice are actually the same grommets, we can add a field to the
Product structure to make this clear:

Chapter 1

36

<OrderData>
<Invoice

orderDate="7/23/2000"
shipDate="7/30/2000">
<LineItem

quantity="17"
unitPrice="0.10">
<Product

productNumber="wid-b-1"
productShortName="Widgets (3 inch)"
productDescription="Rubberized Brown Widgets (3 inch)" />

</LineItem>
<LineItem

quantity="22"
unitPrice="0.05">
<Product

productNumber="gro-c-2"
productShortName="Grommets (0.5 inch)"
productDescription="Vulcanized Orange Grommets (half inch)" />

</LineItem>
</Invoice>
<Invoice

orderDate="7/23/2000"
shipDate="7/30/2000">
<LineItem

quantity="30"
unitPrice="0.05">
<Product

productNumber="gro-c-2"
productShortName="Grommets (0.5 inch)"
productDescription="Vulcanized Orange Grommets (half inch)" />

</LineItem>
<LineItem

quantity="19"
unitPrice="0.15">
<Product

productNumber="spr-d-3"
productShortName="Sprockets (1 inch)"
productDescription="Anodized Silver Sprockets (one inch)" />

</LineItem>
</Invoice>

</OrderData>

The consumer could then match the productNumber attributes between products to identify which
referenced products were exactly the same, allowing an RDBMS consumer, for example, to normalize
the product data out of the rest of the structure. This approach is better than leaving it to the consumer
to reconcile the products based on the product name and description (as the consumer would need to if
there was no productNumber attribute provided in the second scenario).

Relationships – Conclusion
When designing XML data structures we should exercise caution when setting up the relationships
between the elements in their DTDs. In particular, the use of pointers – IDREF(S)-ID attributes – can
have a profound impact on processing performance, especially when the processing engine is SAX.

In addition, the over use of pointing relationships can create difficulties for developers from a structure
comprehension and code complexity perspective. However, pointing relationships may be called for in
some cases, especially when document size is an issue. We should bear all of this in mind to ensure that
the structure we create is well tuned to its purpose.

XML Design for Data

37

Sample Modeling Exercise
Having seen several of the issues involved in creating a model for our XML, let's take a look at a
working example of a data structure we might want to model in XML.

To illustrate some of the points that we have learnt, we will take two invoices from a fictional widget
factory and move them to an XML model:

Widgets, Inc.
Invoice
Order Date: 7/23/2000
Ship Date: 7/28/2000

Customer: Kevin Williams
744 Evergreen Terrace
Springfield, KY 12345

Shipper: FedEx

Item Code Description Quantity Price Total
1A2A3AB Widget (3 inch) 17 $0.10 $1.70
2BC3DCB Grommet (0.5 inch) 22 $0.05 $1.10

Total $2.80

Widgets, Inc.
Invoice
Order Date: 7/23/2000
Ship Date: 7/28/2000

Customer: Homer J. Simpson
742 Evergreen Terrace
Springfield, KY 12345

Shipper: UPS

Item Code Description Quantity Price Total
1A2A3AB Widget (0.5 inch) 17 $0.10 $1.10
3D1F2GX Sprocket (2 inch) 22 $0.20 $1.80

Total $2.90

Before We Begin
When looking at the best way to model this information as XML, there are some questions that we need
to ask first:

❑ What is the scope of the document?

❑ Which structures are we modeling?

❑ What are the relationships between entities?

❑ Which data points need to be associated with each structure?

So, we shall start by addressing each of these in turn, and see what this leaves us in terms of a relational
database model. Then we can turn this into an XML DTD.

Chapter 1

38

What is the Scope of the Document?
The first thing we need to do is to decide what the scope of our XML document will be. This is
important because, based on the granularity of the XML documents, an XML repository could be very
flexible or very inflexible. So far, we have two invoices that we need to model, so the question here is
whether each XML document should represent just one invoice, or potentially more than one. Let's
look at the advantages and disadvantages of each:

Using One XML Document Per Invoice

❑ Advantages:

� Better control of the documents, locking and unlocking them, as necessary, and atomic
access to a single invoice will be reasonably fast.

❑ Disadvantages:

� Aggregating information from many different invoices will be time-consuming, as many
different documents will need to be accessed, parsed, and processed.

� If there is information that could be shared across many invoices (such as product
descriptions), it must instead be repeated in each document to maintain atomicity.

Using One XML Document to Represent Many Invoices

❑ Advantages:

� Aggregation and information sharing will be much better.

❑ Disadvantages:

� The load on the processor will be greater, as the size of the documents will be greater.

� Processors attempting to access single invoices will be likely to contend for access to the
same XML documents.

To make the decision, we need to think about the anticipated use of the documents. For our purposes,
let's assume that each XML document may contain many invoices.

Which Structures Are We Modeling?
Next, we need to identify the structures that are being modeled. These will correspond to the elements
we use in our XML structures. In our example, there are five different entities that need to be modeled:

❑ OrderData. This will be the root element we use for the document. Even though it may or
may not have semantic information associated with it, (we might pass the date range for which
the document applies, for example), we need to add this element because every XML
document needs a root element.

❑ Invoice. Each Invoice element will correspond to one physical invoice in our system.

❑ Customer. Each Customer element will correspond to one customer.

❑ Part. Each Part element will correspond to a part that may appear on an invoice.

❑ LineItem. This is important because it gives us a way to relate parts to an invoice while
adding additional information about the part's role in that invoice.

XML Design for Data

39

What Are the Relationships Between Entities?
Now let's take a look at the relationships between the various entities that we have identified. Looking at
the sample invoices, it becomes clear that the following relationships exist:

❑ OrderData consists of many Invoices. Each Invoice may be associated with only one
OrderData entity.

� Each Invoice entity has one Customer entity associated with it. Each Customer entity
may be associated with more than one Invoice.

� Each Invoice has one or more LineItem entities associated with it. Each LineItem
entity appears on exactly one Invoice.

❑ Each LineItem entity has one Part entity associated with it. Each Part entity may be
associated with more than one LineItem.

Which Data Points Need to be Associated with Each Structure?
Finally, we need to decide which data points are associated with each structure. Here is how the data
points map to the structures that we just defined, these will be elements:

❑ OrderData:

� startDate – the earliest invoice date found in this particular document.

� endDate – the latest invoice date found in this particular document.

❑ Invoice:

� orderDate – the date the invoice was submitted.

� shipDate – the date the order placed on the invoice was shipped to the customer.

� shipper – the firm used to ship the order.

❑ Customer:

� name – the customer's name.

� address – the customer's street address.

� city – the customer's city.

� state – the customer's state.

� postalCode – the customer's postal code.

❑ Part:

� itemCode – the alphanumeric code identifying the part to internal systems.

� description – the description of the part.

❑ lineItem:

� quantity – quantity of the part associated with the line item being ordered.

� price – price per unit of the part associated with this line item.

Note that we chose not to include the line item total prices, or the grand total price. This is a conscious
choice that needs to depend on the performance and compactness requirements of the producer and
consumer of this document. We decided that it was better to have the documents more compact than to
add redundant information for the totals. However, if we decide we need the totals later, we'll need to
calculate them.

Chapter 1

40

So, let's have a look at a diagram of the structure this would leave us with if we were still in the
relational database paradigm:

OrderData

startDate
endDate

Customer

name
address
city
state
postalCode

Invoice

orderDate
shipDate
shipper

LineItem

quantity
price

Part

itemCode
description

For more explanation of the notation used in this diagram see Appendix B.

Note that in our database, the relationship between Customer and Invoice (and LineItem and Part)
might be one-to-zero-or-more rather than one-to-one-or-more; we could have a customer or part that
isn't part of an invoice. However, for the purposes of our document, we'll assume that only the
customers and parts needed to describe the invoices in the document will be included.

Having answered some questions that help us define a model for this data, let's now translate this into
an XML DTD.

Creating the XML DTD
We will approach the writing of the DTD in a manner that reflects the choices we had to make. By
approaching the writing of the DTD methodically, it is easier to see our model build up. Here is the
order in which we will create the DTD:

❑ Add the defined entities.

❑ Add the elements to the entities.

❑ Create the relationships.

XML Design for Data

41

Start With the Structures
First, we defined five structures within the invoices. All of the structures we have identified become
elements in our XML DTD, so we start by adding those:

<!ELEMENT OrderData EMPTY>
<!ELEMENT Invoice EMPTY>
<!ELEMENT Customer EMPTY>
<!ELEMENT Part EMPTY>
<!ELEMENT LineItem EMPTY>

Add the Data Points to the Elements
Next, all of the data points we have defined become attributes of the elements with which they are
associated. We'll use the general type of CDATA for all our data points except shipper – we know all
the permissible values for this data point, so we'll use an enumeration. We also know that all the
information will be required, so all attributes will have the #REQUIRED specifier:

<!ELEMENT OrderData EMPTY>
<!ATTLIST OrderData

startDate CDATA #REQUIRED
endDate CDATA #REQUIRED>

<!ELEMENT Invoice EMPTY>
<!ATTLIST Invoice

orderDate CDATA #REQUIRED
shipDate CDATA #REQUIRED
shipper (FedEx | UPS | USPS) #REQUIRED>

<!ELEMENT Customer EMPTY>
<!ATTLIST Customer

name CDATA #REQUIRED
address CDATA #REQUIRED
city CDATA #REQUIRED
state CDATA #REQUIRED
postalCode CDATA #REQUIRED>

<!ELEMENT Part EMPTY>
<!ATTLIST Part

itemCode CDATA #REQUIRED
description CDATA #REQUIRED>

<!ELEMENT LineItem EMPTY>
<!ATTLIST LineItem

quantity CDATA #REQUIRED
price CDATA #REQUIRED>

Incorporate the Relationships
The final thing we need to do is to model the relationships we defined in our structure. This step
requires a certain amount of delicacy, as it's easy to handle this modeling incorrectly. The most
important thing to remember is to always use containment whenever possible, and only resort to
pointing when it is mandated by our business rules or performance requirements. For the purposes of
this exercise, let's assume that we want to keep our documents as small as possible – so we'll use
pointing relationships to avoid the repetition of data.

Chapter 1

42

You'll recall that we identified four relationships that needed to be modeled:

❑ OrderData consists of many Invoices. Each Invoice may be associated with only one
OrderData entity.

� Each Invoice entity has one Customer entity associated with it. Each Customer entity
may be associated with more than one Invoice.

� Each Invoice has one or more LineItem entities associated with it. Each LineItem
entity appears on exactly one Invoice.

❑ Each LineItem entity has one Part entity associated with it. Each Part entity may be
associated with more than one LineItem.

The OrderData to Invoice relationship is pretty straightforward; we'll add a child element to the
OrderData element, allowing it to contain one or more Invoices. Similarly, the relationship between
Invoices and LineItems is handled the same way. This gives us the following structure:

<!ELEMENT OrderData (Invoice+)>
<!ATTLIST OrderData

startDate CDATA #REQUIRED
endDate CDATA #REQUIRED>

<!ELEMENT Invoice (LineItem+)>
<!ATTLIST Invoice

orderDate CDATA #REQUIRED
shipDate CDATA #REQUIRED
shipper (FedEx | UPS | USPS) #REQUIRED>

<!ELEMENT Customer EMPTY>
<!ATTLIST Customer

name CDATA #REQUIRED
address CDATA #REQUIRED
city CDATA #REQUIRED
state CDATA #REQUIRED
postalCode CDATA #REQUIRED>

<!ELEMENT Part EMPTY>
<!ATTLIST Part

itemCode CDATA #REQUIRED
description CDATA #REQUIRED>

<!ELEMENT LineItem EMPTY>
<!ATTLIST LineItem

quantity CDATA #REQUIRED
price CDATA #REQUIRED>

For the Customer/Invoice one-to-many relationship, we could include a required Customer element
for each Invoice – but then if two invoices had the same customer we would have to repeat the data.
Instead, we'll create an IDREF attribute on the Invoice element, which points back to the Customer
element. Note that when we do this, we still need to have a place to contain the Customer element.

Typically, elements that are only pointed to should be promoted to children of the element for which
they will be in scope. This promotes the reusability of fragments of the master document. For example,
if the Customer element would only be pointed to from one particular Invoice element, it would
appear as a child of that Invoice element, and then the pointing relationship would be redundant. In
our case, it may be pointed to by any of the Invoice elements in the document, and thus should be a
child of the OrderData element.

XML Design for Data

43

Similarly, the Part/LineItem relationship should be modeled with an IDREF attribute, and the Part
element should appear as a child of the OrderData element.

Naturally, for each element that is pointed to, we need to add an ID attribute to be the target of the
pointer. (Remember, one of our design constraints was that the document needed to be kept as small as
possible, which is why we're using this approach instead of using repeated structures.)

So, we are left with the following final structure for our data model (ch03_ex5.dtd):

<!ELEMENT OrderData (Invoice+, Customer+, Part+)>
<!ATTLIST OrderData

startDate CDATA #REQUIRED
endDate CDATA #REQUIRED>

<!ELEMENT Invoice (LineItem+)>
<!ATTLIST Invoice

orderDate CDATA #REQUIRED
shipDate CDATA #REQUIRED
shipper (FedEx | UPS | USPS) #REQUIRED
customerIDREF IDREF #REQUIRED>

<!ELEMENT Customer EMPTY>
<!ATTLIST Customer

customerID ID #REQUIRED
name CDATA #REQUIRED
address CDATA #REQUIRED
city CDATA #REQUIRED
state CDATA #REQUIRED
postalCode CDATA #REQUIRED>

<!ELEMENT Part EMPTY>
<!ATTLIST Part

partID ID #REQUIRED
itemCode CDATA #REQUIRED
description CDATA #REQUIRED>

<!ELEMENT LineItem EMPTY>
<!ATTLIST LineItem

quantity CDATA #REQUIRED
price CDATA #REQUIRED
partIDREF IDREF #REQUIRED>

and that's all there is to it.

Sample XML Documents
We've covered our entities, our attributes, and our relationships, and built a structure suitable for our
needs. Let's see how those two sample invoices would be represented in an XML document based on
the structures we've defined (ch02_ex5.xml):

<?xml version="1.0" ?>
<!DOCTYPE OrderData SYSTEM "http://myserver/xmldb/ch02_ex5.dtd">

<OrderData
startDate="9/12/2000"
endDate="9/13/2000">
<Invoice

orderDate="9/12/2000"

Chapter 1

44

shipDate="9/13/2000"
shipper="FedEx"
customerIDREF="customer1">
<LineItem

quantity="17"
price="0.10"
partIDREF="part1" />

<LineItem
quantity="22"
price="0.05"
partIDREF="part2" />

</Invoice>
<Invoice

orderDate="9/12/2000"
shipDate="9/13/2000"
shipper="UPS"
customerIDREF="customer2">
<LineItem

quantity="11"
price="0.10"
partIDREF="part1" />

<LineItem
quantity="9"
price="0.20"
partIDREF="part3" />

</Invoice>
<Customer

customerID="customer1"
name="Kevin Williams"
address="742 Evergreen Terrace"
city="Springfield"
state="KY"
postalCode="12345" />

<Customer
customerID="customer2"
name="Homer J. Simpson"
address="742 Evergreen Terrace"
city="Springfield"
state="KY"
postalCode="12345" />

<Part
partID="part1"
itemCode="1A2A3AB"
description="Widget (3 inch)" />

<Part
partID="part2"
itemCode="2B3CDCB"
description="Grommet (0.5 inch)" />

<Part
partID="part3"
itemCode="3D1F2GX"
description="Sprocket (2 inch)" />

</OrderData>

As you can see, the structure is human-readable and straightforward. The use of human-readable IDs
makes it easy for someone to understand what part or customer each IDREF is pointing to. We have
captured the structure, the data points, and the relationships we identified in the first part of the
development process, and minimized the repetition of data through the use of the pointing relationships.

XML Design for Data

45

Summary
In this chapter, we've taken a look at some good strategies for the design of XML structures to support
data. We've seen how audience and performance considerations can influence our designs, and taken a
look at some ways in which we can standardize our XML structures for consistency and best behavior.

To begin with, we discussed the differences between XML used for marking up text documents, and
that used for the representation of raw data. In this book, we'll be concentrating on the latter. The main
difference is that the order in which content is presented is less important in the case of data, so we have
more flexibility when it comes to designing the structure.

We then moved on to look at XML representations of data in more detail, and saw how we can map
data between relational databases and XML:

❑ We've seen that the mixed content and ANY content models for elements are not suited to the
representation of data.

❑ The element-only model is useful for nesting elements (structures) – in general, relational
database tables become elements with element-only content.

❑ The text-only and EMPTY models can be used to include data points (single values) in our
documents. However, we can also use attributes when representing individual data points, and
we argue that there are good reasons to why (most of the time) using attributes is the best
method.

❑ One-to-one and one-to-many relationships between two elements are generally best
represented by containment.

❑ Relationships can also be represented by pointers (an ID/IDREF pair). This can be especially
useful in complex many-to-many relationships, and where document size is an issue.
However, caution should be exercised when using pointers, as they can have a profound
impact on processing performance and complexity.

Using the information presented in this chapter, we should be able to design an XML structure to model
any set of structured data we
 might encounter. We'll look at designing XML structures for existing databases in the next chapter.

Chapter 1

46

XML Structures for Existing
Databases

In this chapter, we will examine some approaches for taking an existing relational database and moving
it to XML.

With much of our business data stored in relational databases, there are going to be a number of reasons
why we might want to expose that data as XML:

❑ Sharing business data with other systems.

❑ Interoperability with incompatible systems.

❑ Exposing legacy data to applications that use XML.

❑ Business-to-business transactions.

❑ Object persistence using XML.

❑ Content syndication.

Relational databases are a mature technology, which, as they have evolved, have enabled users to
model complex relationships between data that they need to store. In this chapter, we will see how to
model some of the complex data structures that are stored in relational databases in XML documents.

To do this, we will be looking at some database structures, and then creating content models using
XML DTDs. We will also show some sample content for the data in XML to illustrate this. In the
process, we will come up with a set of guidelines that will prove helpful when creating XML
models for relational data.

Chapter 2

48

Note that there are some mechanisms out there already that provide a "default" way to derive XML
from existing relational database structures. ADO 2.5 will return a "flattened" recordset in an XML
representation, while SQL Server 2000 provides direct extraction of joined structures as XML.
However, these technologies are still maturing, and can't handle more complex situations, like many-to-
many relationships, that must be represented by IDREF-ID pointers. In this chapter, we'll see how
structures can be handcrafted to properly represent these types of relationships. We will tune our
structures to maximize performance, and minimize document size.

Migrating a Database to XML
In this chapter, we'll be using an example to see how the rules we are creating would be applied in a
real-world situation. The structure we'll be migrating to XML is an invoice tracking and reporting
system, and looks like this:

Customer

CustomerKey
Name
Address
City
State
PostalCode

LineItem

InvoiceKey
PartKey
Quantity
Price

ShipMethod

ShipMethodType
Description

Invoice

CustomerKey
InvoiceKey
InvoiceNumber
TrackingNumber
Orderdate
ShipDate
ShipMethodType

Part

PartKey
PartNumber
Name
Color
Size

MonthlyPartTotal

Month
Year
PartKey
VolumeShipped
PriceShipped

MonthlyTotal

Month
Year
VolumeShipped
PriceShipped

MonthlyCustomerTotal

Month
Year
CustomerKey
VolumeShipped
PriceShipped

Our invoice database maintains information about invoices submitted by customers, and the parts
ordered on those invoices, as well as some summary information about those parts. We'll create our
XML structure to hold this information.

Please note that as we're building up our structure over the course of the chapter, some processors
may balk at the resultant DTDs created – specifically those that detect orphan element declarations
– but the final product should be handled properly by any processor.

XML Structures for Existing Databases

49

Scoping the XML Document
The first rule when designing an XML structure to hold relational information is to decide what the
scope of the document is. The scope refers to the data and relationships that we want to reproduce when
creating our XML document – after all, when exposing the database content, we may not need all of the
data that the database stores.

If we think about executing a query against a database, we may only require a subset of the information
that it holds. For example, an e-commerce site stores data with relationships that model everything the
customer has bought in the past, as well as current orders being processed. If we were writing a CRM
application, we would not necessarily need to retrieve all of their past purchases – only those that had
recently been placed.

In short, the scope of the document that we are creating is driven by business requirements – what the
data is going to be used for, and how it is going to be used – and these business requirements may vary
widely.

For example, our business requirement could be to transmit information to our accounting office about
summarizing the monthly invoice totals, as well as a customer-by-customer breakdown so that billing
may be performed. In this case, we may want to send only a certain subset of the information to our
accounting office (the shaded tables):

Customer

CustomerKey
Name
Address
City
State
PostalCode

LineItem

InvoiceKey
PartKey
Quantity
Price

ShipMethod

ShipMethodType
Description

Invoice

CustomerKey
InvoiceKey
InvoiceNumber
TrackingNumber
Orderdate
ShipDate
ShipMethodType

Part

PartKey
PartNumber
Name
Color
Size

MonthlyPartTotal

Month
Year
PartKey
VolumeShipped
PriceShipped

MonthlyTotal

Month
Year
VolumeShipped
PriceShipped

MonthlyCustomerTotal

Month
Year
CustomerKey
VolumeShipped
PriceShipped

Chapter 2

50

An alternative business requirement might be to transmit an XML copy of an invoice to a customer
each time a new invoice is submitted, in which case the subset of the information we would be
transmitting might look like this:

Customer

CustomerKey
Name
Address
City
State
PostalCode

LineItem

InvoiceKey
PartKey
Quantity
Price

ShipMethod

ShipMethodType
Description

Invoice

CustomerKey
InvoiceKey
InvoiceNumber
TrackingNumber
Orderdate
ShipDate
ShipMethodType

Part

PartKey
PartNumber
Name
Color
Size

MonthlyPartTotal

Month
Year
PartKey
VolumeShipped
PriceShipped

MonthlyTotal

Month
Year
VolumeShipped
PriceShipped

MonthlyCustomerTotal

Month
Year
CustomerKey
VolumeShipped
PriceShipped

Additionally, we might want to control the specific columns that are transmitted. For example, say our
customer wanted to query a product they had ordered; they have their invoice number to identify their
purchase, but they aren't necessarily going to care about the invoice tracking number that our
application uses internally. The extra number may in fact confuse them more.

By identifying the specific set of tables and columns that are going to be transmitted, we can start to
get a feel for how the XML document needs to be laid out. If we happen to have access to a logical
data diagram of the database, such as an ErWIN model, it can also be very helpful when constructing
our XML.

Rule 1: Choose the Data to Include.
Based on the business requirement the XML document will be fulfilling, decide
which tables and columns from our relational database will need to be included in
our documents.

For the purposes of our example, we'll assume that all the information in our structure is relevant to the
process (with the exception of the system-generated keys, which we can discard).

XML Structures for Existing Databases

51

Creating the Root Element
Once we've clarified the scope of the document that we need to create, which may be driven by
business needs, we need to create the root element within which our XML representation of the data is
nested.

For our example, we'll create a root element called <SalesData> to hold the other elements we will
create:

<SalesData>
...other elements go here
</SalesData>

It's also possible that we may want to add some information to our XML document that isn't part of our
relational database. This information might be used to indicate transmittal, routing, or behavioral
information. For example, we might want to add a source attribute, so that the consuming process can
decide which custom handler needs to be run to parse the document being passed. If we choose to add
information about the document like this, it makes the most sense to add it as attributes of the root
element we create. As we'll see in Chapter 18, many of the emergent XML servers (such as BizTalk)
provide just such a mechanism, known as the envelope.

For our example, we'll add an attribute to our root element, to govern what the consuming processor
should do with the document when it is received. Specifically, we'll add a Status attribute. This
attribute will let the processor know whether the information in the document is new, an update to
existing data, or a courtesy copy.

So far then, we have the following structure:

<!ELEMENT SalesData EMPTY>
<!ATTLIST SalesData
Status (NewVersion | UpdatedVersion | CourtesyCopy) #REQUIRED>

Rule 2: Create a Root Element.
Create a root element for the document. Add the root element to our DTD, and
declare any attributes of that element that are required to hold additional semantic
information (such as routing information). Root element's names should describe
their content.

Model the Tables
Having defined our root element, the next step is to model the tables that we've chosen to include in
our XML document. As we saw in the last chapter, tables map directly to elements in XML.

Loosely speaking, these tables should either be:

❑ Content tables, which, for our purposes, simply contain a set of records (for example, all the
customer addresses for a certain company).

❑ Lookup tables, which contain a list of ID-description pairs, that are used to further classify
information, in a particular row of a table, by storing a description for each ID encountered in
a content table. Tables such as ShipMethod in our example are lookup tables.

Chapter 2

52

There is another type of table – a relating table – whose sole purpose is to express a many-to-many
relationship between two other tables. For our purposes, we shall model a table like this as a content
table.

At this stage we will only be modeling content tables. Lookup tables will actually be modeled as
enumerated attributes later in the process.

For each content table that we've chosen to include from our relational database, we will need to create
an element in our DTD. Applying this rule to our example, we'll add the <Invoice>, <Customer>,
<Part>, <MonthlyTotal>, and other elements to our DTD:

<!ELEMENT SalesData EMPTY>
<!ATTLIST SalesData
Status (NewVersion | UpdatedVersion | CourtesyCopy) #REQUIRED>

<!ELEMENT Invoice EMPTY>
<!ELEMENT Customer EMPTY>
<!ELEMENT Part EMPTY>
<!ELEMENT MonthlyTotal EMPTY>
<!ELEMENT MonthlyCustomerTotal EMPTY>
<!ELEMENT MonthlyPartTotal EMPTY>
<!ELEMENT LineItem EMPTY>

For the moment, we will just add the element definitions to the DTD. We'll come back to ensure that
they are reflected in the necessary element content models, (including those of the root element), when
we model the relationships between the tables.

Note that we didn't model the ShipMethod table, because it's a lookup table. We'll handle this table
in Rule 6.

Rule 3: Model the Content Tables.
Create an element in the DTD for each content table we have chosen to model. Declare
these elements as EMPTY for now.

Model the Nonforeign Key Columns
Using this rule, we'll create attributes on the elements we have already defined to hold the column
values from our database. In a DTD, these attributes should appear in the !ATTLIST declaration of the
element corresponding to the table in which the column appears.

If a column is a foreign key joining to another table, don't include it in this rule – we'll handle foreign
key columns later in the process, when we model the relationships between the elements we have
created.

Declare each attribute created this way as having the type CDATA. If the column is defined in your
database as not allowing NULL values, then make the corresponding attribute #REQUIRED; otherwise,
make the corresponding attribute #IMPLIED.

We have four choices here. #FIXED means the DTD provides the value. #REQUIRED means it
must appear in the document. #IMPLIED means that it may or may not appear in the document.
Finally, a value with these means that the processor must substitute that value for the attribute
if it is not provided in the document. #IMPLIED is the only way to legitimately leave off an
attribute value.

XML Structures for Existing Databases

53

If we choose to store table column values as the content of elements, rather than attributes, we can take
the same approach – create an element for each data point, and add it to the content list of the element
for the table in which the column appears. Use no suffix if the column does not allow nulls; or the
optional suffix (?) if the column allows nulls. Be aware that if we take this approach, we'll need to be on
the look out for possible name collisions between columns in different tables with the same name. This
is not an issue when using attributes.

To summarise:

Does the column allow NULLS? Elements Attributes

Allows NULLS Use the ? suffix Declare as #IMPLIED

Doesn't allow NULLS Use no suffix Declare as #REQUIRED

For our example, remember that we want to keep all the nonforeign key columns, with the exception of
the system-generated primary keys:

<!ELEMENT SalesData EMPTY>
<!ATTLIST SalesData
Status (NewVersion | UpdatedVersion | CourtesyCopy) #REQUIRED>

<!ELEMENT Invoice EMPTY>
<!ATTLIST Invoice

InvoiceNumber CDATA #REQUIRED
TrackingNumber CDATA #REQUIRED
OrderDate CDATA #REQUIRED
ShipDate CDATA #REQUIRED>

<!ELEMENT Customer EMPTY>
<!ATTLIST Customer

Name CDATA #REQUIRED
Address CDATA #REQUIRED
City CDATA #REQUIRED
State CDATA #REQUIRED
PostalCode CDATA #REQUIRED>

<!ELEMENT Part EMPTY>
<!ATTLIST Part

PartNumber CDATA #REQUIRED
Name CDATA #REQUIRED
Color CDATA #REQUIRED
Size CDATA #REQUIRED>

<!ELEMENT MonthlyTotal EMPTY>
<!ATTLIST MonthlyTotal

Month CDATA #REQUIRED
Year CDATA #REQUIRED
VolumeShipped CDATA #REQUIRED
PriceShipped CDATA #REQUIRED>

<!ELEMENT MonthlyCustomerTotal EMPTY>
<!ATTLIST MonthlyCustomerTotal

VolumeShipped CDATA #REQUIRED
PriceShipped CDATA #REQUIRED>

<!ELEMENT MonthlyPartTotal EMPTY>
<!ATTLIST MonthlyPartTotal

VolumeShipped CDATA #REQUIRED
PriceShipped CDATA #REQUIRED>

<!ELEMENT LineItem EMPTY>
<!ATTLIST LineItem

Quantity CDATA #REQUIRED
Price CDATA #REQUIRED>

Note that we left off Month and Year on the <MonthlyPartTotal> and <MonthlySummaryTotal>
structures, since these will be dictated by the <MonthlyTotal> element associated with these elements.

Chapter 2

54

Rule 4: Modeling Nonforeign Key Columns.
Create an attribute for each column we have chosen to include in our XML document
(except foreign key columns). These attributes should appear in the !ATTLIST
declaration of the element corresponding to the table in which they appear. Declare
each of these attributes as CDATA, and declare it as #IMPLIED or #REQUIRED
depending on whether the original column allowed nulls or not.

Adding ID Attributes
The next step is to create an ID attribute for each of the structural (nondata point) elements we have
defined so far in our XML database (with the exception of the root element). This is to uniquely identify
elements that need to be referred to by other elements.

For the name of the attribute, we use the element name followed by ID. This might cause name
collisions with other attributes that have already been added to the XML, in which case we need to
change the names of these as appropriate. These should be defined as being of type ID, and must be
declared as #REQUIRED. If we add these ID attributes to each element for now, we can optionally
remove some from the created XML structures when we come to model all of the relationships.

When populating these structures, a unique ID will need to be created for each instance of an element
that is generated. We need to ensure that these IDs are unique not only across all elements of a specific
type, but across all elements in our document. One way to do this programmatically (assuming that
we're using automatically incremented integers for the primary keys in our database) is to use the
primary key for the row being created, prefixed by the name of the table in which it appears.

For example, for the customer in our database with the ID number 17, we might use the string
Customer17 for the value of the CustomerID attribute on the Customer element. If we have
nonnumeric keys in our database, or similar table names with numeric suffixes (like Customer and
Customer1), this may cause name collisions – as always, be on the look out for these.

In our example, then, we have:

<!ELEMENT SalesData EMPTY>
<!ATTLIST SalesData
Status (NewVersion | UpdatedVersion | CourtesyCopy) #REQUIRED>

<!ELEMENT Invoice EMPTY>
<!ATTLIST Invoice

InvoiceID ID #REQUIRED
InvoiceNumber CDATA #REQUIRED
TrackingNumber CDATA #REQUIRED
OrderDate CDATA #REQUIRED
ShipDate CDATA #REQUIRED>

<!ELEMENT Customer EMPTY>
<!ATTLIST Customer

CustomerID ID #REQUIRED
Name CDATA #REQUIRED
Address CDATA #REQUIRED
City CDATA #REQUIRED
State CDATA #REQUIRED
PostalCode CDATA #REQUIRED>

<!ELEMENT Part EMPTY>
<!ATTLIST Part

PartID ID #REQUIRED
PartNumber CDATA #REQUIRED
Name CDATA #REQUIRED
Color CDATA #REQUIRED
Size CDATA #REQUIRED>

XML Structures for Existing Databases

55

<!ELEMENT MonthlyTotal EMPTY>
<!ATTLIST MonthlyTotal

MonthlyTotalID ID #REQUIRED
Month CDATA #REQUIRED
Year CDATA #REQUIRED
VolumeShipped CDATA #REQUIRED
PriceShipped CDATA #REQUIRED>

<!ELEMENT MonthlyCustomerTotal EMPTY>
<!ATTLIST MonthlyCustomerTotal

MonthlyCustomerTotalID ID #REQUIRED
VolumeShipped CDATA #REQUIRED
PriceShipped CDATA #REQUIRED>

<!ELEMENT MonthlyPartTotal EMPTY>
<!ATTLIST MonthlyPartTotal

MonthlyPartTotalID ID #REQUIRED
VolumeShipped CDATA #REQUIRED
PriceShipped CDATA #REQUIRED>

<!ELEMENT LineItem EMPTY>
<!ATTLIST LineItem

LineItemID ID #REQUIRED
Quantity CDATA #REQUIRED
Price CDATA #REQUIRED>

Rule 5: Add ID Attributes to the Elements.
Add an ID attribute to each of the elements we have created in our XML structure
(with the exception of the root element). Use the element name followed by ID for the
name of the new attribute, watching as always for name collisions. Declare the
attribute as type ID, and #REQUIRED.

Handling Foreign Keys
In relational database structures, the only way to show a relationship between data kept in different
tables is via a foreign key. As we saw in the previous chapter, there are two ways to show this
relationship in XML. We can create hierarchical structures, which allow us to use containment to show
relationships between data (where related information is nested inside a parent element). Alternatively,
if we want to keep the XML structures separate – like the tables of a database – we can use an ID to
point to a corresponding structure that has an IDREF attribute.

Each way has its benefits and drawbacks. Pointing is more flexible than containment, but pointing
relationships may only typically be navigated in one direction by the processor, and tend to be slower
than navigating parent-child relationships.

The next thing we need to decide is whether to use containment or pointing to represent the
relationships between our tables. In addition, we need to add the enumerated attributes that correspond
to the lookup tables we are using. Let's see how to do that first.

Add Enumerated Attributes for Lookup Tables
If we have a foreign key in a table that points to a lookup table, we need to add an enumerated attribute
to the element representing the table in which that foreign key appears.

Before we can do so with our example transformation, we need to identify the nature of the
relationships between the tables we have selected to include in our XML structures. For each
relationship, we need to identify:

❑ Whether it's a lookup or content relationship

❑ Whether it is a content relationship, and if so the direction in which it will be navigated

Chapter 2

56

This is important in larger structures because some relationships can be navigated in more than one
direction, depending on how the relationships are arrived at. As a general rule, relationships should be
navigated in the same direction that a program would most often navigate them. For example, in our
case we're much more likely to navigate from Invoice to LineItem than we are to navigate from
LineItem to Invoice.

We need to determine the direction we'll be navigating between our elements because it determines
where our ID-IDREF relationships should be. Remember that these are effectively unidirectional – it's
relatively easy to traverse a structure from an IDREF value to an ID value, but not the other way
around. Deciding how we will normally be traversing our structures helps us to determine how we
should structure them. If we need to navigate between two elements in either direction, we may need to
add an IDREF in each element pointing back to the other element in the relationship. However, this will
increase document creation time and size.

Since we want our document to support invoices and monthly summary information, we conclude that
we want our relationships to provide a way to navigate from invoices to associated information. For
example, we want to be able to go from an invoice, to its line items, to the part associated with each line
item; or from an invoice, to the customer who ordered it. Under other circumstances, we might order
our relationships differently – for example, if we wanted a customer-centric XML document.

After assessing all the relationships in our structure, we can conclude that the navigation between the
tables looks something like this:

Customer

CustomerKey
Name
Address
City
State
PostalCode

LineItem

InvoiceKey
PartKey
Quantity
Price

ShipMethod

ShipMethodType
Description

Invoice

CustomerKey
InvoiceKey
InvoiceNumber
TrackingNumber
Orderdate
ShipDate
ShipMethodType

Part

PartKey
PartNumber
Name
Color
Size

MonthlyPartTotal

Month
Year
PartKey
VolumeShipped
PriceShipped

MonthlyTotal

Month
Year
VolumeShipped
PriceShipped

MonthlyCustomerTotal

Month
Year
CustomerKey
VolumeShipped
PriceShipped

lookup

XML Structures for Existing Databases

57

We have a foreign key called ShipMethodType pointing to a table called ShipMethod, therefore we
need to add an enumerated value for ShipMethod to the <Invoice> element. Let's assume that in our
database, the ShipMethod table contains the following values:

ShipMethod Description

1 US Postal Service

2 Federal Express

3 UPS

The enumerated attribute should take the name of the lookup table, and should be declared as
#REQUIRED if the foreign key does not allow NULLS, or #IMPLIED otherwise. The determination of the
allowable values for the enumeration is a subjective process, and will depend on other design
constraints (such as size). The values allowed should typically be human-readable versions of the
description for each record.

So, creating an attribute with allowable enumerated values for the three possible lookup values, and
adding the attribute to the <Invoice> element, gives us this:

...
<!ELEMENT Invoice EMPTY>
<!ATTLIST Invoice

InvoiceID ID #REQUIRED
InvoiceNumber CDATA #REQUIRED
TrackingNumber CDATA #REQUIRED
OrderDate CDATA #REQUIRED
ShipDate CDATA #REQUIRED>
ShipMethod (USPS | FedEx | UPS) #REQUIRED>

<!ELEMENT Customer EMPTY>
...

Rule 6: Representing Lookup Tables.
For each foreign key that we have chosen to include in our XML structures that
references a lookup table:
1. Create an attribute on the element representing the table in which the foreign key is
found.
2. Give the attribute the same name as the table referenced by the foreign key, and
make it #REQUIRED if the foreign key does not allow NULLS or #IMPLIED otherwise.
3. Make the attribute of the enumerated list type. The allowable values should be some
human-readable form of the description column for all rows in the lookup table.

Add Element Content to the Root Element
When we created the root element for the DTD, and added child elements for tables, we did not define
the content models for the elements in the DTD – we said we would cover that when looking at
relationships, and here we are.

The next rule, therefore, is to add the content model for the root element to the DTD. We should add
element content that is appropriate for the type of information we are trying to communicate in our
documents.

Chapter 2

58

For our example, we decided that the primary concepts we want to convey are related to the Invoice
and MonthlyTotal. When we add the elements representing those contents as allowable element
content for the root element, we get the following:

<!ELEMENT SalesData (Invoice*, MonthlyTotal*)>
<!ATTLIST SalesData
Status (NewVersion | UpdatedVersion | CourtesyCopy) #REQUIRED>

<!ELEMENT Invoice EMPTY>
...

Rule 7: Adding Element Content to Root elements.
Add a child element or elements to the allowable content of the root element for each
table that models the type of information we want to represent in our document.

Walk the Relationships
The next rule is a little tricky. We need to walk the relationships between the table (or tables) to add
element content or ID-IDREF(S) pairs as appropriate. This process is similar to the process we would
use when walking a tree data structure – we navigate each of the relationships, then each of the
relationships from the children of the previous relationships, and so on, until all the relationships
contained in the subset of tables we have chosen to include in our XML document have been traversed.
Relationships that lead outside of the subset of tables we're representing do not need to be traversed.

Again, when we have a choice of directions in which a relationship may be followed, we do so in the
direction that makes the most business sense – for example, we'll probably need to go from Invoice to
LineItem pretty frequently, but much less often from LineItem to Invoice. On the other hand, a
relationship such as the one between Customer and Invoice may need to be walked in either
direction as frequently, making it necessary to define the relationship in both directions. We need to
determine the direction in which the relationships will be walked, in order to determine whether
pointing or containment should be used to represent the relationships.

One-to-One or One-to-Many Relationships

First consider the case where a relationship is one-to-one or one-to-many in the direction we selected for
the relationship traversal, and the relationship is the only one in the selected subset of tables where this
table is the destination of a relationship traversal. Then we should represent the relationship by adding
the child element as element content of the parent content.

Assign the multiplicity of the element according to the following table:

If the relationship is Set the multiplicity to

One-to-one ?

One-to-many *

For our example DTD, adding the containment relationships gives us the following:

<!ELEMENT SalesData (Invoice*, MonthlyTotal*)>
<!ATTLIST SalesData
Status (NewVersion | UpdatedVersion | CourtesyCopy) #REQUIRED>

<!ELEMENT Invoice (LineItem*)>

XML Structures for Existing Databases

59

<!ATTLIST Invoice
InvoiceID ID #REQUIRED
InvoiceNumber CDATA #REQUIRED
TrackingNumber CDATA #REQUIRED
OrderDate CDATA #REQUIRED
ShipDate CDATA #REQUIRED>
ShipMethod (USPS | FedEx | UPS) #REQUIRED>

...

<!ELEMENT MonthlyTotal (MonthlyCustomerTotal*, MonthlyPartTotal*)>
<!ATTLIST MonthlyTotal

MonthlyTotalID ID #REQUIRED
Month CDATA #REQUIRED
Year CDATA #REQUIRED
VolumeShipped CDATA #REQUIRED
PriceShipped CDATA #REQUIRED>

...

Rule 8: Adding Relationships through Containment.
For each relationship we have defined, if the relationship is one-to-one or one-to-many
in the direction it is being navigated, and no other relationship leads to the child
within the selected subset, then add the child element as element content of the parent
element with the appropriate cardinality.

Many-to-One or Multiple Parent Relationships

If the relationship is many-to-one, or the child has more than one parent, then we need to use pointing
to describe the relationship. This is done by adding an IDREF or IDREFS attribute to the element on
the parent side of the relationship. The IDREF should point to the ID of the child element. If the
relationship is one-to-many, and the child has more than one parent, we should use an IDREFS
attribute instead.

Note that if we have defined a relationship to be navigable in either direction, for the purposes of
this analysis it really counts as two different relationships.

Note that these rules emphasize the use of containment over pointing whenever it is possible. Because of
the inherent performance penalties when using the DOM and SAX with pointing relationships,
containment is almost always the preferred solution. If we have a situation that requires pointing,
however, and its presence in our structures is causing too much slowdown in our processing, we may
want to consider changing the relationship to a containment relationship, and repeating the information
pointed to wherever it would have appeared before.

Applying this rule to our example and adding IDREF/IDREFS attributes, we arrive at the following:

<!ELEMENT SalesData (Invoice*, MonthlyTotal*)>
<!ATTLIST SalesData
Status (NewVersion | UpdatedVersion | CourtesyCopy) #REQUIRED>

<!ELEMENT Invoice (LineItem*)>
<!ATTLIST Invoice

InvoiceID ID #REQUIRED
InvoiceNumber CDATA #REQUIRED
TrackingNumber CDATA #REQUIRED

Chapter 2

60

OrderDate CDATA #REQUIRED
ShipDate CDATA #REQUIRED
ShipMethod (USPS | FedEx | UPS) #REQUIRED
CustomerIDREF IDREF #REQUIRED>

<!ELEMENT Customer EMPTY>

...

<!ELEMENT MonthlyCustomerTotal EMPTY>
<!ATTLIST MonthlyCustomerTotal

MonthlyCustomerTotalID ID #REQUIRED
VolumeShipped CDATA #REQUIRED
PriceShipped CDATA #REQUIRED
CustomerIDREF IDREF #REQUIRED>

<!ELEMENT MonthlyPartTotal EMPTY>
<!ATTLIST MonthlyPartTotal

MonthlyPartTotalID ID #REQUIRED
VolumeShipped CDATA #REQUIRED
PriceShipped CDATA #REQUIRED
PartIDREF IDREF #REQUIRED>

<!ELEMENT LineItem EMPTY>
<!ATTLIST LineItem

LineItemID ID #REQUIRED
Quantity CDATA #REQUIRED
Price CDATA #REQUIRED
PartIDREF IDREF #REQUIRED>

Rule 9: Adding Relationships using IDREF/IDREFS.
Identify each relationship that is many-to-one in the direction we have defined it, or
whose child is the child in more than one relationship we have defined. For each of
these relationships, add an IDREF or IDREFS attribute to the element on the parent
side of the relationship, which points to the ID of the element on the child side of the
relationship.

We're getting close to our final result, but there are still a couple of things we need to do to finalize the
structure. We'll see how this is done in the next couple of sections.

Add Missing Elements to the Root Element
A significant flaw may have been noticed in the final structure we arrived at in the last section – when
building documents using this DTD, there's no place to add a <Customer> element. It's not the root
element of the document, and it doesn't appear in any of the element content models of any of the other
elements in the structure. This is because it is only pointed to, not contained.

Elements that turn out to only be referenced by IDREF(S) need to be added as allowable element
content to the root element of the DTD. Then, when creating the document, the orphaned elements are
created within the root element and then pointed to, where appropriate.

Applying this rule to our example, we see that we are missing the <Customer> and <Part> elements.
Adding these as allowable structural content to our root element gives us:

XML Structures for Existing Databases

61

<!ELEMENT SalesData (Invoice*, Customer*, Part*, MonthlyTotal*)>
<!ATTLIST SalesData
Status (NewVersion | UpdatedVersion | CourtesyCopy) #REQUIRED>

<!ELEMENT Invoice (LineItem*)>
...

Rule 10: Add Missing Elements.
For any element that is only pointed to in the structure created so far, add that
element as allowable element content of the root element. Set the cardinality suffix of
the element being added to *.

Discard Unreferenced ID attributes
Finally, we need to discard those ID attributes that we created in Rule 5 that do not have IDREF(S)
pointing to them. Since we created these attributes in the process of building the XML structures,
discarding them if they are not used does not sacrifice information, and saves developers the trouble of
generating unique values for the attributes.

Rule 11: Remove Unwanted ID Attributes.
Remove ID attributes that are not referenced by IDREF or IDREFS attributes
elsewhere in the XML structures.

Applying Rule 11 to our example gives us our final structure. On review, the InvoiceID,
LineItemID, MonthlyPartTotalID, MonthlyTotalID, and MonthlyCustomerTotalID attributes
are not referenced by any IDREF or IDREFS attributes. Removing them, we arrive at our final structure,
ch03_ex01.dtd:

<!ELEMENT SalesData (Invoice*, Customer*, Part*, MonthlyTotal*)>
<!ATTLIST SalesData
Status (NewVersion | UpdatedVersion | CourtesyCopy) #REQUIRED>

<!ELEMENT Invoice (LineItem*)>
<!ATTLIST Invoice

InvoiceNumber CDATA #REQUIRED
TrackingNumber CDATA #REQUIRED
OrderDate CDATA #REQUIRED
ShipDate CDATA #REQUIRED
ShipMethod (USPS | FedEx | UPS) #REQUIRED
CustomerIDREF IDREF #REQUIRED>

<!ELEMENT Customer EMPTY>
<!ATTLIST Customer

CustomerID ID #REQUIRED
Name CDATA #REQUIRED
Address CDATA #REQUIRED
City CDATA #REQUIRED
State CDATA #REQUIRED
PostalCode CDATA #REQUIRED>

<!ELEMENT Part EMPTY>
<!ATTLIST Part

PartID ID #REQUIRED
PartNumber CDATA #REQUIRED
Name CDATA #REQUIRED

Chapter 2

62

Color CDATA #REQUIRED
Size CDATA #REQUIRED>

<!ELEMENT MonthlyTotal (MonthlyCustomerTotal*, MonthlyPartTotal*)>
<!ATTLIST MonthlyTotal

Month CDATA #REQUIRED
Year CDATA #REQUIRED
VolumeShipped CDATA #REQUIRED
PriceShipped CDATA #REQUIRED>

<!ELEMENT MonthlyCustomerTotal EMPTY>
<!ATTLIST MonthlyCustomerTotal

VolumeShipped CDATA #REQUIRED
PriceShipped CDATA #REQUIRED
CustomerIDREF IDREF #REQUIRED>

<!ELEMENT MonthlyPartTotal EMPTY>
<!ATTLIST MonthlyPartTotal

VolumeShipped CDATA #REQUIRED
PriceShipped CDATA #REQUIRED
PartIDREF IDREF #REQUIRED>

<!ELEMENT LineItem EMPTY>
<!ATTLIST LineItem

Quantity CDATA #REQUIRED
Price CDATA #REQUIRED
PartIDREF IDREF #REQUIRED>

An Example XML Document
Finally, here's an example of an XML document (ch03_ex01.xml) that would be valid for this DTD:

<?xml version="1.0"?>
<!DOCTYPE SalesData SYSTEM "http://myserver/xmldb/ch03_ex01.dtd" >

<SalesData Status="NewVersion">
<Invoice InvoiceNumber="1"

TrackingNumber="1"
OrderDate="01012000"
ShipDate="07012000"
ShipMethod="FedEx"
CustomerIDREF="Customer2">

<LineItem Quantity="2"
Price="5"
PartIDREF="Part2" />

</Invoice>
<Customer CustomerID="Customer2"

Name="BobSmith"
Address="2AnyStreet"
City="Anytown"
State="AS"
PostalCode="ANYCODE" />

<Part PartID="Part2"
PartNumber="13"
Name="Winkle"
Color="Red"
Size="10" />

<MonthlyTotal Month="January"
Year="2000"
VolumeShipped="2"
PriceShipped="10">

XML Structures for Existing Databases

63

<MonthlyCustomerTotal VolumeShipped="5"
PriceShipped="25"
CustomerIDREF="Customer2" />

<MonthlyPartTotal VolumeShipped="8"
PriceShipped="40"
PartIDREF="Part2" />

</MonthlyTotal>
</SalesData>

Summary
In this chapter, we've seen some guidelines for the creation of XML structures to hold data from
existing relational databases. We've seen that this isn't an exact science, and that many of the decisions
we will make while creating XML structures will entirely depend on the kinds of information we wish to
represent in our documents.

If there's one point in particular we should come away with from this chapter, it's that we need to try to
represent relationships in our XML documents with containment as much as possible. XML is designed
around the concept of containment – the DOM and XSLT treat XML documents as trees, while SAX
and SAX-based parsers treat them as a sequence of branch begin and end events and leaf events. The
more pointing relationships we use, the more complicated the navigation of your document will be, and
the more of a performance hit our processor will take – especially if we are using SAX or a SAX-based
parser.

We must bear in mind as we create these structures that there are usually many XML structures that
may be used to represent the same relational database data. The techniques described in this chapter
should allow us to optimize our documents for rapid processing and minimum document size. Using the
techniques discussed in this chapter, and the next, we should be able to easily move information
between our relational database and XML documents.

Here are the eleven rules we have defined for the development of XML structures from relational
database structures:

❑ Rule 1: Choose the Data to Include.
Based on the business requirement the XML document will be fulfilling, we decide which
tables and columns from your relational database will need to be included in our documents.

❑ Rule 2: Create a Root Element.
Create a root element for the document. We add the root element to our DTD, and declare
any attributes of that element that are required to hold additional semantic information (such
as routing information). Root element's names should describe their content.

❑ Rule 3: Model the Content Tables.
Create an element in the DTD for each content table we have chosen to model. Declare these
elements as EMPTY for now.

❑ Rule 4: Modeling Non-Foreign Key Columns.
Create an attribute for each column we have chosen to include in our XML document (except
foreign key columns). These attributes should appear in the !ATTLIST declaration of the
element corresponding to the table in which they appear. Declare each of these attributes as
CDATA, and declare it as #IMPLIED or #REQUIRED depending on whether the original column
allows NULLS or not.

Chapter 2

64

❑ Rule 5: Add ID Attributes to the Elements.
Add an ID attribute to each of the elements you have created in our XML structure (with the
exception of the root element). Use the element name followed by ID for the name of the new
attribute, watching as always for name collisions. Declare the attribute as type ID, and
#REQUIRED.

❑ Rule 6: Representing Lookup Tables.
For each foreign key that we have chosen to include in our XML structures that references a
lookup table:
1. Create an attribute on the element representing the table in which the foreign key is found.
2. Give the attribute the same name as the table referenced by the foreign key, and make it
#REQUIRED if the foreign key does not allow NULLS or #IMPLIED otherwise.
3. Make the attribute of the enumerated list type. The allowable values should be some
human-readable form of the description column for all rows in the lookup table.

❑ Rule 7: Adding Element Content to Root elements.
Add a child element or elements to the allowable content of the root element for each table
that models the type of information we want to represent in our document.

❑ Rule 8: Adding Relationships through Containment.
For each relationship we have defined, if the relationship is one-to-one or one-to-many in the
direction it is being navigated, and no other relationship leads to the child within the selected
subset, then add the child element as element content of the parent element with the
appropriate cardinality.

❑ Rule 9: Adding Relationships using IDREF/IDREFS.
Identify each relationship that is many-to-one in the direction we have defined it, or whose
child is the child in more than one relationship we have defined. For each of these
relationships, add an IDREF or IDREFS attribute to the element on the parent side of the
relationship, which points to the ID of the element on the child side of the relationship.

❑ Rule 10: Add Missing Elements.
For any element that is only pointed to in the structure created so far, add that element as
allowable element content of the root element. Set the cardinality suffix of the element being
added to *.

❑ Rule 11: Remove Unwanted ID Attributes.
Remove ID attributes that are not referenced by IDREF or IDREFS attributes elsewhere in the
XML structures.

XML Structures for Existing Databases

65

Chapter 2

66

Database Structures for Existing
XML

So far, we have seen some general points on designing XML structures, and how best to design XML
documents to represent existing database structures. In this chapter, we'll take a look at how database
structures can be designed to store the information contained in an already existing XML structure.

There are a number of reasons why we might need to move data from an XML repository to a relational
database. For example, we might have a large amount of data stored in XML that needs to be queried
against. XML (at least with the tools currently available) is not very good at performing queries,
especially queries that require more than one document to be examined. In this case, we might want to
extract the data content (or some portion of it) from the XML repository and move it to a relational
database. Remember that XML's strengths are cross-platform transparency and presentation, while
relational databases are vastly better at searching and summarization. Another good reason why we
might want to move data into relational structures, would be to take advantage of the relational
database's built-in locking and transactional features. Finally, our documents might contain huge
amounts of data - more than we need to access when performing queries and/or summarizing data - and
moving the data to a relational database will allow us to obtain just the data that is of interest to us.

In this chapter, we will see how the various types of element and attribute content that can occur in
XML are modeled in a relational database. In the process of doing this, we will go on to develop a set of
rules that can be used to generically transform XML DTDs into SQL table creation scripts.

Chapter 3

68

How to Handle the Various DTD Declarations
As we are looking at creating database structures from existing XML structures, we will approach this
chapter by looking at the four types of declarations that may appear in DTDs:

❑ element declarations.

❑ attribute list declarations.

❑ entity declarations.

❑ notation declarations.

We can then see how each of these types of declaration can best be modeled in relational database
structures. To help us demonstrate this we will create examples that persist XML documents to a SQL
database and show the SQL create scripts. So, let's start with element declarations.

Element Declarations
As we have seen, in DTDs there are five types of element declaration:

❑ element-only.

❑ text-only.

❑ EMPTY.

❑ MIXED.

❑ ANY.

So, let's look at each of these in turn, and see how each element content model would be modeled in a
relational database.

The Element-only (Structured Content) Model
In this content model, the element may only contain other elements. Let's start with a simple example.

Simple Element Content

In the following DTD (ch03_ex01.dtd) we have a simple content model for an Invoice element:

<!ELEMENT Invoice (Customer, LineItem*)>
<!ELEMENT Customer (#PCDATA)>
<!ELEMENT LineItem (#PCDATA)>

The Invoice element can have two child elements, a Customer, and zero or more LineItem
elements. So, let's see some sample XML that this DTD describes (ch03_ex01.xml):

<?xml version="1.0"?>
<!DOCTYPE listing SYSTEM "ch03_ex01.dtd" >

<Invoice>
<Customer> </Customer>
<LineItem> </LineItem>
<LineItem> </LineItem>

</Invoice>

Database Structures for Existing XML

69

This type of element is naturally represented in a relational database by a set of tables.

We can model the relationships between the element and its child element(s) by including a reference
from the subelement table back to the element table, in ch03_ex01.sql, as follows:

CREATE TABLE Customer (
CustomerKey integer PRIMARY KEY
)

CREATE TABLE Invoice (
InvoiceKey integer PRIMARY KEY,
CustomerKey integer
CONSTRAINT FK_Invoice_Customer FOREIGN KEY (CustomerKey)

REFERENCES Customer (CustomerKey)
)

CREATE TABLE LineItem (
LineItemKey integer,
InvoiceKey integer
CONSTRAINT FK_LineItem_Invoice FOREIGN KEY (InvoiceKey)

REFERENCES Invoice (InvoiceKey)
)

When the above script is run, it creates the following set of tables:

Note that we've added key columns to each table; the relationship between the foreign keys in the
Customer and LineItem tables, and the primary key in the Invoice table, as indicated by the arrows.

It's good practice when developing relational databases to keep a "data-clear" ID (a value that does not
contain application data, but that uniquely identifies each record) on each table. Since XML doesn't
provide an ID per se (ID attributes are handled a little differently, as we'll see later), it makes sense to
generate one whenever a row is added to one of our relational database tables.

Rule 1: Always Create a Primary Key.
Whenever creating a table in the relational database:
1. Add a column to it that holds an automatically incremented integer.
2. Name the column after the element with Key appended.
3. Set this column to be the primary key on the created table.

Note that there isn't any way in the table creation script to specify that each invoice must have
exactly one customer, or each invoice may have zero or more line items. This means that it is
technically possible to populate the relational structures with data that could not be used to create a
valid XML document:

Chapter 3

70

So, while this data set is perfectly acceptable given the table structures we have defined, it is not valid
given the XML constraints we have defined - there are no line items associated with invoice 1. If we
want to enforce more strict rules such as this in our relational database, we'll need to add triggers or
other mechanisms to do so.

So, we have seen how we can transfer a simple content model to a relational structure, but that it is not
possible to enforce the rules of the DTD unless we use a trigger or some other code mechanism to
enforce those rules. Next, let's look at what happens with a more complex content model.

Elements That Contain One Element OR Another

We can have greater problems when defining more complex relationships in XML that cannot be
represented in table creation scripts. For example, say we had this hypothetical data model:

<!ELEMENT A (B | (C, D))>
<!ELEMENT B (...)>
<!ELEMENT C (...)>
<!ELEMENT D (...)>

Here element A can contain either element B or element C followed by element D. The best we can do
with this sample structure is something like this:

CREATE TABLE A (
AKey integer,
)

CREATE TABLE B (
BKey integer,
AKey integer,
)

CREATE TABLE C (
CKey integer,
AKey integer,
)

CREATE TABLE D (
DKey integer,
AKey integer,
)

The table structure produced by the above script looks like this:

Database Structures for Existing XML

71

Because there's no way we can enforce the "choice" mechanism in our relational database, there's no
way to specify that for an A row we might have a B row, or that we may have a C row and a D row, but
that we are not going to get both a B row, and a C and D row.

If we want to enforce more complex relationships like this in our database, we'll need to add triggers or
other logic that prevents nonvalidating cases from occurring. For example, we might add a trigger on
an insertion to the B table that removes the C and D rows for the A row referenced in the B row, and
vice versa.

Rule 2: Basic Table Creation.
For every structural element found in the DTD:
1. Create a table in the relational database.
2. If the structural element has exactly one allowable parent element (or is the root
element of the DTD), add a column to the table. This column will be a foreign key that
references the parent element.
3. Make the foreign key required.

Subelements That Can Be Contained By More Than One Element

An other problem we may run into is where a particular subelement may be contained in more
than one element. Let's take a look at an example (ch03_ex02.dtd) to see how to work around
the problem.

<!ELEMENT Invoice (Customer, LineItem*)>
<!ELEMENT Customer (Address)>
<!ELEMENT LineItem (Product)>
<!ELEMENT Product (Manufacturer)>
<!ELEMENT Manufacturer (Address)>
<!ELEMENT Address (#PCDATA)>

The interesting point to note here, is that the Address element can be a child of Customer or of
Manufacturer. Here is some sample XML that represents the structure in this DTD,
ch03_ex02.xml:

<?xml version="1.0"?>
<!DOCTYPE listing SYSTEM "ch03_ex02.dtd" >

<Invoice>

<Customer>
<Address> </Address>

</Customer>

<LineItem>
<Product>

<Manufacturer>
<Address> </Address>

</Manufacturer>
</Product>

</LineItem>

<LineItem>
...

</LineItem>

</Invoice>

Chapter 3

72

In this case, how do we represent the Address element? We can't simply add an Address table that
has both a ManufacturerKey and a CustomerKey (as we did in the first example when Customer
and LineItem were both foreign keys to Invoice). If we did this we would associate the manufacturer
with the same address as the customer – by enforcing the foreign keys, we would always have to
associate both records with a particular address.

To overcome this problem, we have to adopt a slightly different approach. There is more than one
solution to this problem, so let's start off by looking at what happens if we do not add a foreign key.

Don't Add the Foreign Key

The first way to get around this problem would be to create a structure where the Address table would
contain both the ManufacturerKey and CustomerKey fields, but the foreign key wouldn't be added,
as shown here, in ch03_ex02.sql:

CREATE TABLE Customer (
CustomerKey integer,
)

CREATE TABLE Manufacturer (
ManufacturerKey integer,
)

CREATE TABLE Address (
CustomerKey integer NULL,
ManufacturerKey integer NULL,
)

Here are the tables that this script would generate:

This would work, but could lead to performance degradation on most relational database platforms
(depending on the way joins are handled internally), and is not typically a good idea. So, let's look at
some other options.

Use an AddressKey Field in Customer and Manufacturer Instead

As another option, we could move the AddressKey into the Customer and Manufacturer tables, as
shown in the following script (ch03_ex03.sql):

CREATE TABLE Address (
AddressKey integer, PRIMARY KEY (AddressKey)
)

Database Structures for Existing XML

73

CREATE TABLE Customer (
CustomerKey integer,
AddressKey integer,

CONSTRAINT FK_Customer_Address FOREIGN KEY (AddressKey)

REFERENCES Address (AddressKey))

CREATE TABLE Manufacturer (
ManufacturerKey integer,
AddressKey integer,

CONSTRAINT FK_Manufacturer_Address FOREIGN KEY (AddressKey)

REFERENCES Address (AddressKey))

This script serves to create the following table structure:

This works very well when the Address subelement appears only once in each element. However,
what would happen if the Address subelement could appear more than once in a particular element,
for example maybe we have a separate invoice address and delivery address (in the DTD this could be
represented by the + or * modifier)? Here, one AddressKey would not then be sufficient, and the
design would not work.

Promote Data Points

If all of the relationships that the subelement participates in are one-to-one, promoting the data points to
the next higher structure is a good solution, as seen in the following, ch03_ex04.sql:

CREATE TABLE Customer (
CustomerKey integer,
CustomerAddress varchar(30),
CustomerCity varchar(30),
CustomerState char(2),
CustomerPostalCode varchar(10))

CREATE TABLE Manufacturer (
ManufacturerKey integer,
ManufacturerAddress varchar(30),
ManufacturerCity varchar(30),
ManufacturerState char(2),
ManufacturerPostalCode varchar(10))

Chapter 3

74

This script creates the following tables:

This solution works just as well as moving the foreign key to the parent elements. It may also make
more sense from a relational database perspective (improving query speed) as well. How many
databases have you worked on that stored general address information separate from the other
information about the addressee?

Add Intermediate Tables

This is the most general case, and will handle the situation where multiple addresses may appear for the
same customer or manufacturer - see ch03_ex05.sql, below:

CREATE TABLE Customer (
CustomerKey,
...)

CREATE TABLE Manufacturer (
ManufacturerKey,
...)

CREATE TABLE Address (
AddressKey,
...)

CREATE TABLE CustomerAddress (
CustomerKey,
AddressKey)

CONSTRAINT FK_CustomerAddress_Customer FOREIGN KEY (CustomerKey)
REFERENCES Customer (CustomerKey)

CONSTRAINT FK_CustomerAddress_Address FOREIGN KEY (AddressKey)
REFERENCES Address (AddressKey)

CREATE TABLE ManufacturerAddress (
ManufacturerKey,
AddressKey)

CONSTRAINT FK_ManufacturerAddress_Manufacturer FOREIGN KEY (ManufacturerKey)
REFERENCES Manufacturer (ManufacturerKey)

CONSTRAINT FK_ManufacturerAddress_Address FOREIGN KEY (AddressKey)
REFERENCES Address (AddressKey)

This creates the table structure shown below:

Database Structures for Existing XML

75

It is worth noting, however, that this will cause significant performance degradation when retrieving an
address associated with a particular customer or manufacturer, because the query engine will need to
locate the record in the intermediate table before it can retrieve the final result. However, this solution
is also the most flexible in terms of how items of data may be related to one another. Our approach will
vary depending on the needs of our particular solution.

Conclusion

We have seen several solutions for representing different element content models. When dealing with
element-only content, we have seen that we should create a table in our database for each element.
However, because of the constraints that a DTD can impose upon the XML it is describing, it can be
difficult to model these in the database.

Hopefully we should not have to encounter the last situation we looked at – where an element can be a
child of more than one element and that it can have different content – too often. But if we do have to
deal with it, when possible we should try to move the foreign key into the parent elements (the second
solution we presented) or promote the data points in the subelement (the third solution). If not, then we
should go with the intermediate table solution and be aware of the inherent performance consequences.

Rule 3: Handling Multiple Parent Elements.
If a particular element may have more than one parent element, and the element may
occur in the parent element zero times or one time:
1. Add a foreign key to the table representing the parent element that points to the
corresponding record in the child table, making it optional or required as makes
sense.
2. If the element may occur zero-or-more or one-or-more times, add an intermediate
table to the database that expresses the relationship between the parent element and
this element.

So, we've seen how to create tables that represent structural content for elements, and how to link them
to other structural content. But that only works for subelements that do not have the text-only content
model. Let's see how to handle text only next.

The Text-only Content Model
If we have an element that has text-only content, it should be represented by a column in our database
added to the table corresponding to the element in which it appears. Let's look at an example DTD
(ch03_ex06.dtd):

<!ELEMENT Customer (Name, Address, City?, State?, PostalCode)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Address (#PCDATA)>
<!ELEMENT City (#PCDATA)>
<!ELEMENT State (#PCDATA)>
<!ELEMENT PostalCode (#PCDATA)>

Here we are trying to store the customer details. For example, here is some sample XML
(ch03_ex06.xml):

<?xml version="1.0"?>
<!DOCTYPE listing SYSTEM "ch03_ex06.dtd" >

Chapter 3

76

<Customer>
<Name> </Name>
<Address> </Address>
<City> </City>
<State> </State>
<PostalCode> </PostalCode>

</Customer>

The corresponding table creation script (ch03_ex06.sql) might look like this:

CREATE TABLE Customer (
CustomerKey integer,
Name varchar(50),
Address varchar(100),
City varchar(50) NULL,
State char(2) NULL,
PostalCode varchar(10))

which would create the following table:

Note that we have arbitrarily assigned sizes to the various columns. Remember that DTDs are
extremely weakly typed - all we know is that each of these elements may contain a string of unknown
size. If we want to impose constraints like these on our database, we need to make sure that any XML
documents we store in these structures meet the constraints we have imposed. If we choose to use XML
Schemas (once they become available), this problem will disappear.

Since City and State are optional fields in our Customer structure, we've allowed them to be NULL
in our table – if the elements have no value in the XML document, set the appropriate columns to NULL
in the table.

Rule 4: Representing Text-Only Elements.
If an element is text-only, and may appear in a particular parent element once
at most:
1. Add a column to the table representing the parent element to hold the content
of this element.
2. Make sure that the size of the column created is large enough to hold the
anticipated content of the element.
3. If the element is optional, make the column nullable.

This covers elements that are specified with either no modifier or the ? modifier, but there will be cases
where we will have something more complex.

Multiple Text-Only Elements

There may be times when we have to deal with more than one text-only element. Let's look at an
example where we can have more than one customer name (ch4_ex07.dtd):

Database Structures for Existing XML

77

<!ELEMENT Customer (Name+, Address, City?, State?, PostalCode)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Address (#PCDATA)>
<!ELEMENT City (#PCDATA)>
<!ELEMENT State (#PCDATA)>
<!ELEMENT PostalCode (#PCDATA)>

Here, we actually need to add another table to represent the customer name:

CREATE TABLE Customer (
CustomerKey integer,
Address varchar(100),
City varchar(50) NULL,
State char(2) NULL,
PostalCode varchar(10),
PRIMARY KEY (CustomerKey))

CREATE TABLE CustomerName (
CustomerKey integer,
Name varchar(50)
CONSTRAINT FK_CustomerName_Customer FOREIGN KEY (CustomerKey)

REFERENCES Customer (CustomerKey))

This script gives us the following table structure:

For each instance of the child Name element under the Customer element, a new record is added to
the CustomerName table with a CustomerKey linking back to that Customer element.

Note that if this text-only element may appear in more than one parent element, we need to add an
intermediate table (similar to the one we used in Rule 3) to show the relationship between the parent
element and the child element.

Rule 5: Representing Multiple Text Only Elements
If an element is text-only, and it may appear in a parent element more than once:
1. Create a table to hold the text values of the element and a foreign key that relates
them back to their parent element.
2. And if the element may appear in more than one parent element more than once,
create intermediate tables to express the relationship between each parent element
and this element.

Chapter 3

78

Note that the three preceding rules will often need to be used at the same time. For example, in an
XML structure that uses text-only elements to represent data we might have the following:

<!ELEMENT Invoice (InvoiceDate, InvoiceNumber, Customer, LineItem*)>
<!ELEMENT Customer (...)>
<!ELEMENT LineItem (...)>
<!ELEMENT InvoiceDate (#PCDATA)>
<!ELEMENT InvoiceNumber (#PCDATA)>

In this case, applying both parts of rule 5 simultaneously yields the following structure,
(ch03_ex08.sql):

CREATE TABLE Invoice (
InvoiceKey integer,
InvoiceDate datetime,
InvoiceNumber integer,
PRIMARY KEY (InvoiceKey))

CREATE TABLE Customer (
CustomerKey integer,
InvoiceKey integer,

CONSTRAINT FK_Customer_Invoice FOREIGN KEY (InvoiceKey)

REFERENCES Invoice (InvoiceKey))

CREATE TABLE LineItem (
LineItemKey integer,
InvoiceKey integer,

CONSTRAINT FK_LineItem_Invoice FOREIGN KEY (InvoiceKey)

REFERENCES Invoice (InvoiceKey))

This script would generate the following tables:

Designing our structures with these intermediate tables, will allow us to express the multiple
occurrences of a text element, within a parent element, in our relational database.

The EMPTY Content Model
In a system where attributes are used to contain data points, the EMPTY content model will often be
encountered. An element with the EMPTY content model should be modeled as a table - columns in that
table will come either from this element's relationships with its parents (foreign keys) or any attributes
associated with this element (which we'll discuss a little later). For example, we might see the following
structure (ch03_ex09.dtd):

Database Structures for Existing XML

79

<!ELEMENT Customer EMPTY>
<!ATTLIST Customer

Name CDATA #REQUIRED
Address CDATA #REQUIRED
City CDATA #IMPLIED
State CDATA #IMPLIED
PostalCode CDATA #IMPLIED>

The following XML (ch03_ex09.xml) can be represented by such a DTD:

<?xml version="1.0"?>
<!DOCTYPE listing SYSTEM "ch03_ex09.dtd" >

<Customer Name="Bob"
Address="Somewhere"
City="Sometown"
State="Someplace"
PostalCode="SC" />

This would translate to the following script in a relational database (ch03_ex09.sql):

CREATE TABLE Customer (
CustomerKey integer,
Name varchar(50),
Address varchar(100),
City varchar(50) NULL,
State char(2) NULL,
PostalCode varchar(10))

which would produce the following table:

We'll see more examples of the EMPTY content model when we talk about the proper handling of
attributes.

Rule 6: Handling Empty Elements
For every EMPTY element found in the DTD:
1. Create a table in the relational database.
2. If the structural element has exactly one allowable parent element, add a column to
the table - this column will be a foreign key that references the parent element.
3. Make the foreign key required.

These three content models should be the ones we encounter the most often - especially in structures
that were designed to hold data. However, we might be unlucky enough to have to contend with the
mixed or ANY content models - so let's take a look at them next.

Chapter 3

80

The Mixed Content Model
We will remember that an element having the mixed content model provides a list of possible child
elements that may appear, along with text content, in any order and with any frequency. So, for
example, let's look at the model for the paragraph element in XHTML 1.0 (ch03_ex10.dtd):

<!ELEMENT p (#PCDATA | a | br | span | bdo | object | img | map | tt | i | b |
big | small | em | strong | dfn | code | q | sub | sup | samp |
kbd | var | cite | abbr | acronym | input | select | textarea |
label | button | ins | del | script | noscript)*>

Whew! What this means is that a <p> element, in XHTML 1.0, may contain any of the other elements
listed, or text data (#PCDATA), in any combination, in any order. This would not be fun to store in a
relational database, but it is not impossible either. Let's look at one possible solution (ch03_ex10.sql).

CREATE TABLE p (
pKey integer,
PRIMARY KEY (pKey))

CREATE TABLE TableLookup (
TableLookupKey integer,
TableName varchar(255),
PRIMARY KEY (TableLookupKey))

CREATE TABLE TextContent (
TextContentKey integer,
ElementName varchar(255) NULL,
TextContent varchar(255))

CREATE TABLE pSubelements (
pKey integer
CONSTRAINT FK_pSubelements_p FOREIGN KEY (pKey)

REFERENCES p (pKey),
TableLookupKey integer
CONSTRAINT FK_pSubelements_TableLookup FOREIGN KEY (TableLookupKey)

REFERENCES TableLookup (TableLookupKey),
TableKey integer,
Sequence integer

)

This gives us the following table structure:

Database Structures for Existing XML

81

How does this work? Well, the p table corresponds to the <p> element - each <p> element will
correspond to one row in the p table. Beyond that, it gets interesting. Let's see an example before we dig
deeper. Say we use our definition from before:

<!ELEMENT p (#PCDATA | a | br | span | bdo | object | img | map | tt | i | b |
big | small | em | strong | dfn | code | q | sub | sup | samp |
kbd | var | cite | abbr | acronym | input | select | textarea |
label | button | ins | del | script | noscript)*>

For the sake of argument, let's pretend that all the other elements have other structures embedded in
them. We'll discuss how to handle embedded text-only content in a mixed-content model a little later in
the chapter. So, take the following document fragment:

<p>This is some text. Here's something in bold, and something in
<i>italics</i>. And finally, here's the last of the text.</p>

How do we represent this? Well, we'll have a column in the p table, of course:

We will pre-populate the TableLookup table with one row for each element that corresponds to a table
in our database. We will also add a record with a key of 0 that corresponds to our generic text table,
called TextContent:

Chapter 3

82

Now, let's take a look at the pSubelements table. For each node contained in a particular <p>
element, we'll create a record in this table linking it to the particular bit of information associated with
it. If we decompose the <p> element in our example, we will see that it has the following children:

❑ Text node: "This is some text. Here's something in "

❑ A element

❑ Text node: ", and something in "

❑ An <i> element

❑ Text node: ". And finally, here's the last of the text."

We represent this in our tables like this:

The pSubelements table tells us that there are five pieces of information in the p element. The first,
third, and fifth ones are text - that's why the table lookup ID is 0. To discover the value of these text
strings, we take the TableKey and use it to look up the appropriate text string in the TextContent
table. For the second and fourth pieces of information, we use the value of the TableLookupKeys to
find out what kind of element was found in these positions - a element and an <i> element,
respectively. We can then go to the tables representing those elements to discover what further content
they hold.

Note that there's another column in TextContent that we haven't used yet - the ElementName
column. This column should be used if the subelement has a text-only content model. This keeps us
from needing to add another table that simply holds a text value, and is similar to the way we deal with
text-only content for subelements of structural elements.

So, if we take our previous example and assume that all of the possible subelements may only contain
text, we will represent the content in our data tables in this way:

Database Structures for Existing XML

83

The content definition for the element will tell us what the allowable values for ElementName and/or
TableLookupKey are. If we want to constrain this in the database, we'll need to add a trigger or some
other mechanism to prevent unacceptable values from appearing in these columns for p elements or
their text subelements.

Rule 7: Representing Mixed Content Elements.
If an element has the mixed content model:
1. Create a table called TableLookup (if it doesn't already exist) and add rows for
each table in the database. Also add a row zero that points to a table called
TextContent.
2. Create this table with a key, a string representing the element name for text only
elements, and a text value.
3. Next, create two tables - one for the element, and one to link to the various content
of that element - called the element name, and the element name followed by
subelement, respectively.
4. In the subelement table, add a foreign key that points back to the main element
table, a table lookup key that points to the element table for subelement content, a
table key that points to the specific row within that table, and a sequence counter that
indicates that subelement or text element's position within this element.

By now, it is probably becoming understandable jus why we should avoid this content model for the
representation of data - the resulting relational structures are difficult to navigate and search, and the
parse and store process is relatively complex. But before we steer back to calmer waters, we need to
briefly discuss the ANY content model.

The ANY Content Model
Fortunately (or unfortunately), the ANY content model is simply a more general case of the specific
mixed content case defined above. The same strategy may be employed to store an element with the
ANY content model - the only difference being that there is no constraint on the allowable values of the
ElementName and TableLookupKey. The ANY content model, by definition, allows any element
defined in the DTD to appear here. We won't bother with another example here, as the technique for
storing an element with the ANY content model is exactly the same as the technique for storing a mixed-
content element.

Chapter 3

84

Rule 8: Handling the "ANY" Content Elements.
If an element has the ANY content model:
1. Create a table called TableLookup (if it doesn't already exist) and add rows for
each table in the database.
2. Add a row zero that points to a table called TextContent.
3. Create this table with a key, a string representing the element name for text-only
elements, and a text value.
4. Create two tables - one for the element and one to link to the various content of that
element - name these after the element name and the element name followed by
subelement, respectively.
5. In the subelement table, add a foreign key that points back to the main element
table, a table lookup key that points to the element table for subelement content, a
table key that points to the specific row within that table, and a sequence counter that
indicates that subelement or text element's position within this element.

Next, let's take a look at attributes and how they are represented in a relational database.

Attribute List Declarations
There are six types of attribute that we will need to develop a handling strategy for if we are to store
them in our relational database. These types are:

❑ CDATA

❑ Enumerated lists

❑ ID

❑ IDREF/IDREFS

❑ NMTOKEN/NMTOKENS

❑ ENTITY/ENTITIES

We'll tackle each one in turn, as we did with the element content models, and see how we can build
structures to persist them.

CDATA
Attributes that are of type CDATA are the ones most commonly encountered. We'll recall, that these
attributes may take any string value. This makes them ideal candidates for columns associated with the
table that was created by the element to which they belong. For example, take this DTD
(ch03_ex11.dtd):

<!ELEMENT Customer EMPTY>
<!ATTLIST Customer

Name CDATA #REQUIRED
Address CDATA #REQUIRED
City CDATA #REQUIRED
State CDATA #REQUIRED
PostalCode CDATA #REQUIRED>

Database Structures for Existing XML

85

This would correspond to the following table script (ch03_ex11.sql):

CREATE TABLE Customer (
CustomerKey integer,
Name varchar(50),
Address varchar(100),
City varchar(50) NULL,
State char(2) NULL,
PostalCode varchar(10))

which looks like this when run:

Remember that the CDATA attribute can be specified as #REQUIRED, #IMPLIED, or #FIXED. As in the
example above, if a CDATA attribute is specified as #REQUIRED, then its value should be required in the
relational database. However, if it is specified as #IMPLIED, then its value should be allowed to be
NULL. Attributes that carry the #FIXED specification should probably be discarded, unless your
relational database needs that information for some other purpose (such as documents coming from
various sources, tagged with information on their routing that needs to be tracked).

Rule 9: CDATA Attributes.
For each attribute with a CDATA type:
1. Add a column to the table corresponding to the element that carries that attribute,
and give the table the name of the element.
2. Set the column to be a variable length string, and set its maximum size large enough
to handle expected values of the attribute without exceeding that size.

Rule 10: REQUIRED/IMPLIED/FIXED Attributes.
1. If an attribute is specified as #REQUIRED, then it should be required in the
database.
2. If the attribute is specified as #IMPLIED, then allow nulls in any column that is
created as a result.
3. If the attribute is specified as #FIXED, it should be stored as it might be needed by
the database, for example, as a constant in a calculation - treat it the same as
#REQUIRED attributes.

Enumerated Lists
When an attribute provides an enumerated list of possible values it may take, we can model that in our
relational database with a lookup table. Take this example where we are specifying the type of
customer:

<!ELEMENT Customer EMPTY>
<!ATTLIST Customer

CustomerType (Commercial | Consumer | Government) #REQUIRED>

Here, the CustomerType attribute must be one of three values: Commercial, Consumer, or
Government. The following example (ch03_ex12.sql) details the lookup table needed to add these
constraints to this attribute in our database:

Chapter 3

86

CREATE TABLE CustomerTypeLookup (
CustomerType smallint,
CustomerTypeDesc varchar(100)
PRIMARY KEY (CustomerType))

CREATE TABLE Customer (
CustomerKey integer,
CustomerType smallint
CONSTRAINT FK_Customer_CustomerTypeLookup FOREIGN KEY (CustomerType)

REFERENCES CustomerTypeLookup (CustomerType))

INSERT CustomerTypeLookup (CustomerType, CustomerTypeDesc)
VALUES (1, 'Commercial')

INSERT CustomerTypeLookup (CustomerType, CustomerTypeDesc)
VALUES (2, 'Consumer')

INSERT CustomerTypeLookup (CustomerType, CustomerTypeDesc)
VALUES (3, 'Government')

This script produces the following set of tables:

Now, any records that are added to the Customer table must map to CustomerType values found in
the CustomerTypeLookup table.

The only caveat when using this technique is to watch out for multiple attributes with the same name
but different allowable values. Take for example this DTD fragment:

<!ELEMENT Customer EMPTY>
<!ATTLIST Customer

CustomerType (Commercial | Consumer | Government) #REQUIRED>

<!ELEMENT Invoice EMPTY>
<!ATTLIST Invoice

CustomerType (FirstTime | Regular | Preferred) #REQUIRED>

Here, there are two attributes called CustomerType that have different meanings based on the context
of the element to which they are attached. For the Customer element, CustomerType represents the
type of business for the customer; for the Invoice element, CustomerType represents the type of
customer for pricing purposes. Obviously we can't just create one table called CustomerTypeLookup
that contains both lists; instead, two different lookup tables need to be created. One approach when this
happens is to prefix the attribute name with the element name for the purposes of the lookup table - so
CustomerTypeLookup would become CustomerCustomerTypeLookup and
InvoiceCustomerTypeLookup.

Database Structures for Existing XML

87

Rule 11: ENUMERATED Attribute Values.
For attributes with enumerated values:
1. Create a two byte integer field that will contain the enumerated value translated to
an integer.
2. Create a lookup table with the same name as the attribute and the word Lookup
appended.
3. Insert a row in this table corresponding to each possible value for the enumerated
attribute.
4. When inserting rows into the element table in which the attribute is found, translate
the value of the attribute to the integer value corresponding to it.

ID and IDREF
Attributes that are declared as having type ID are used to uniquely identify elements within an XML
document. Attributes declared with the IDREF type are used to point back to other elements with ID
attributes that match the token in the attribute. There are a couple of approaches we can take to store
ID information, based on the circumstances - here are some examples:

Example 1
In the first example, perhaps the CustomerID actually represents a key in the consumer's relational
database.

<!ELEMENT Customer EMPTY>
<!ATTLIST Customer

CustomerID ID #REQUIRED>

<Customer CustomerID="Cust3917" />

The information being passed as part of the XML document might be used to insert or update rows into
a relational database, based on whether a row matching the provided key (with CustomerID =
"Cust3917") is available. In this case, we should persist the ID value to the CustomerID column,
inserting or updating as necessary.

In the next case, the IDs (for whatever reason) have meaning outside the context of the XML document
- they indicate whether a particular customer was the billing or shipping customer for this invoice.

<!ELEMENT Customer EMPTY>
<!ATTLIST Customer
CustomerID ID #REQUIRED>

<Customer CustomerID="BillingCustomer" />
<Customer CustomerID="ShippingCustomer" />

In this case, the information should be persisted to a non key field as if it were of type CDATA, since the
value itself has meaning (in addition to anything it might point to).

Example 2
In the next example, the CustomerID may be intended only to allow ID-IDREF(S) relationships to
be expressed - the value CustomerOne has no intrinsic meaning outside of the context of the
particular XML document in which it appears:

<!ELEMENT Customer EMPTY>
<!ATTLIST Customer

CustomerID ID #REQUIRED>

<Customer CustomerID="CustomerOne" />

Chapter 3

88

In this case, we should store the ID in a lookup table to allow other data to be related back to this
record when IDREF(S) appear that reference it.

Let's expand this example, with the following DTD (ch03_ex12.dtd):

<!ELEMENT Order (Customer, Invoice)>

<!ELEMENT Customer EMPTY>
<!ATTLIST Customer

CustomerID ID #REQUIRED>

<!ELEMENT Invoice EMPTY>
<!ATTLIST Invoice

InvoiceID ID #REQUIRED
CustomerIDREF IDREF #REQUIRED>

and here is some corresponding XML (ch03_ex12.xml):

<?xml version="1.0"?>
<!DOCTYPE listing SYSTEM "ch03_ex12.dtd" >

<Order>
<Customer CustomerID="Cust3917" />
<Invoice InvoiceID="Inv19283" CustomerIDREF="Cust3917" />

</Order>

Here we can see how the ID corresponds to the IDREF within the document instance. The customer ID
corresponds with the invoice number. In a database, the IDREF attribute should be represented as a
foreign key pointing back to the row corresponding to the element that contained the ID value.

Let's see how this works in the database. In the following script, ch03_ex12.sql, we create a
Customer table and an Invoice table. The Invoice table contains the foreign key, which points
back to the Primary key in the Customer table:

CREATE TABLE Customer (
CustomerKey integer,
PRIMARY KEY (CustomerKey))

CREATE TABLE Invoice (
InvoiceKey integer,
CustomerKey integer
CONSTRAINT FK_Invoice_Customer FOREIGN KEY (CustomerKey)

REFERENCES Customer (CustomerKey))

and here is the table structure we have created:

Database Structures for Existing XML

89

When the Invoice element is parsed, we see that there's a reference to a Customer element; we then
set the CustomerKey of the newly created Invoice row to match the CustomerKey of the customer
whose ID matches the IDREF found in the Invoice element.

Again, we note that the Invoice element might appear in the document before the Customer element
it points to, so we must be careful when linking up the foreign keys - we may need to "remember" the
IDs we encounter (and the rows created as a result) while parsing the document so that we can set
foreign keys accordingly.

If we didn't design the XML structures, we should also be on the lookout for IDREF attributes that don't
make it clear what type of element they point back to. For example, the following structure is perfectly
acceptable in XML:

<!ELEMENT Customer EMPTY>
<!ATTLIST Customer

CustomerID ID #REQUIRED>

<!ELEMENT Invoice EMPTY>
<!ATTLIST Invoice

InvoiceID ID #REQUIRED
ClientIDREF IDREF #REQUIRED>

<Customer CustomerID="Cust3917" />
<Invoice InvoiceID="Inv19283" ClientIDREF="Cust3917" />

In this case, the ClientIDREF actually points back to a Customer element - but this would only be
revealed through some analysis.

Finally, it could be that the XML structure is designed so that an IDREF attribute actually points to
some unknown element type. Take this example (ch03_ex13.dtd):

<!ELEMENT Order (Business, Consumer, Invoice)>

<!ELEMENT Business EMPTY>
<!ATTLIST Business

BusinessID ID #REQUIRED>

<!ELEMENT Consumer EMPTY>
<!ATTLIST Consumer

ConsumerID ID #REQUIRED>

<!ELEMENT Invoice EMPTY>
<!ATTLIST Invoice

InvoiceID ID #REQUIRED
ClientIDREF IDREF #REQUIRED>

and here is some sample XML (ch03_ex13.xml):

<?xml version="1.0"?>
<!DOCTYPE listing SYSTEM "ch03_ex13.dtd" >

<Order>
<Business BusinessID="Bus281" />
<Consumer ConsumerID="Cons27615" />
<Invoice InvoiceID="Inv19283" ClientIDREF="Bus281" />
<Invoice InvoiceID="Inv19284" ClientIDREF="Cons27615" />

</Order>

Chapter 3

90

In this case, we need to add some sort of discriminator to indicate what element is being pointed to.
This is similar to the way mixed content elements are handled. First, we need to create a lookup table
that contains all the tables in the SQL structures. We then add a TableLookupKey to the Invoice
structure, making it clear which element is being pointed to by the foreign key. This gives us table
creation script (ch03_ex13.sql), as seen below:

CREATE TABLE TableLookup (
TableLookupKey integer,
TableName varchar(255),
PRIMARY KEY(TableLookupKey))

CREATE TABLE Business (
BusinessKey integer)

CREATE TABLE Consumer (
ConsumerKey integer)

CREATE TABLE Invoice (
InvoiceKey integer,
ClientKeyTableLookupKey integer,
ClientKey integer
CONSTRAINT FK_Invoice_TableLookup FOREIGN KEY (ClientKeyTableLookupKey)

REFERENCES TableLookup (TableLookupKey))

The resulting tables, when populated with some example values, would then look like this:

The Invoice table references the TableLookup table through the ClientKeyTableLookupKey
column to find the table name that holds the ClientKey it needs. The TableLookup table then
references the Business and Consumer tables, and returns the correct ClientKey value.

Rule 12: Handling ID Attributes.
1. If an attribute with type ID has meaning outside the context of the XML document,
store it in the database.
2. If it's a representation of the primary key value, we can use it to insert or update
records in the database as necessary.
3. Otherwise, we just hang on to it so that we can link up any IDREF or IDREFS that
point to it elsewhere in the document.

Database Structures for Existing XML

91

Rule 13: Handling IDREF Attributes.
1. If an IDREF attribute is present for an element and is known to always point to a
specific element type, add a foreign key to the element that references the primary key
of the element to which the attribute points.
2. If the IDREF attribute may point to more than one element type, add a table lookup
key that indicates to which table the key corresponds.

IDREFS
Attributes with the IDREFS type have to be handled a little differently, as they allow the expression of
many-to-many relationships. Let's look at an example (ch03_ex14.dtd):

<!ELEMENT Order (Invoice, Item)>

<!ELEMENT Invoice EMPTY>
<!ATTLIST Invoice

InvoiceID ID #REQUIRED>

<!ELEMENT Item EMPTY>
<!ATTLIST Item

ItemID ID #REQUIRED
InvoiceIDREFS IDREFS #REQUIRED>

We can use this to write some sample XML that illustrates a many-to-many relationship. The Item with
the ID Item1 is found on two different invoices, the invoice may contain many different items, and one
item may appear on many different invoices (ch03_ex14.dtd).

<?xml version="1.0"?>
<!DOCTYPE listing SYSTEM "ch03_ex14.dtd" >

<Order>
<Invoice InvoiceID="Inv1" />
<Invoice InvoiceID="Inv2" />
<Item ItemID="Item1" InvoiceIDREFS="Inv1 Inv2" />
<Item ItemID="Item2" InvoiceIDREFS="Inv1" />

</Order>

In order to represent this in a relational database, we need to create a join table to support the
relationship. Let's see how that would be done (ch03_ex14.sql):

CREATE TABLE Invoice (
InvoiceKey integer,
PRIMARY KEY (InvoiceKey))

CREATE TABLE Item (
ItemKey integer,
PRIMARY KEY (ItemKey))

CREATE TABLE InvoiceItem (
InvoiceKey integer

CONSTRAINT FK_InvoiceItem_Invoice FOREIGN KEY (InvoiceKey)
REFERENCES Invoice (InvoiceKey),

ItemKey integer
CONSTRAINT FK_InvoiceItem_Item FOREIGN KEY (ItemKey)

REFERENCES Item (ItemKey))

Chapter 3

92

Here, we've created a join table called InvoiceItem that contains foreign keys referencing the Invoice
and Item tables. This allows us to express the many-to-many relationship between the two tables, as
shown below:

Again, this strategy only works properly if the IDREFS attribute is known to point only to elements of a
specific type.

If the IDREFS attribute points to elements of more than one type, we need to add a table lookup key to
the join table to indicate which type of element is being referenced. For example, when modeling the
case shown below (ch03_ex15.dtd and ch03_ex15.xml):

<!ELEMENT Order (Invoice, POS, Item)>

<!ELEMENT Invoice EMPTY>
<!ATTLIST Invoice

InvoiceID ID #REQUIRED>

<!ELEMENT POS EMPTY>
<!ATTLIST POS

POSID ID #REQUIRED>

<!ELEMENT Item EMPTY>
<!ATTLIST Item

ItemID ID #REQUIRED
DeliveryIDREFS IDREFS #REQUIRED>

<?xml version="1.0"?>
<!DOCTYPE listing SYSTEM "ch03_ex15.dtd" >

<Order>
<Invoice InvoiceID="Inv1" />
<POS POSID="POS1" />
<Item ItemID="Item1" DeliveryIDREFS="Inv1 POS1" />
<Item ItemID="Item2" DeliveryIDREFS="Inv1" />

</Order>

The SQL table creation script to handle this case, (ch03_ex15.sql), looks like this:

CREATE TABLE TableLookup (
TableLookupKey integer,
TableName varchar(255),
PRIMARY KEY (TableLookupKey))

CREATE TABLE Invoice (
InvoiceKey integer)

Database Structures for Existing XML

93

CREATE TABLE POS (
POSKey integer)

CREATE TABLE Item (
ItemKey integer,
PRIMARY KEY (ItemKey))

CREATE TABLE InvoiceDelivery (
TableLookupKey integer

CONSTRAINT FK_DeliveryItem_TableLookup FOREIGN KEY (TableLookupKey)

REFERENCES TableLookup (TableLookupKey),
DeliveryKey integer,
ItemKey integer
CONSTRAINT FK_DeliveryItem_Item FOREIGN KEY (ItemKey)

REFERENCES Item (ItemKey))

The table lookup key column would then be populated (much as it was in the case where an IDREF
could point to more than one element type) as shown in the diagram below:

Rule 14: Handling IDREFS Attributes.
1. If an IDREFS attribute is present for an element, add a join table (with the names
of both the element containing the attribute and the element being pointed to
concatenated) that contains a foreign key referencing both the element containing the
attribute and the element being pointed to.
2. If the IDREFS attribute may point to elements of different types, remove the
foreign key referencing the element being pointed to and add a table lookup key that
indicates the type of element pointed to.
3. Add a foreign key relationship between this table and a lookup table containing the
names of all the tables in the SQL database.

Chapter 3

94

NMTOKEN and NMTOKENS
An attribute defined to have the type NMTOKEN must contain a value consisting of letters, digits,
periods, dashes, underscores, and colons. We can think of this as being similar to an attribute with the
type CDATA, but with greater restrictions on the possible values for the attribute. As a result, we can
store an attribute of this type in the same way that we would store an attribute of type CDATA, as
shown in the following DTD and XML fragments:

<!ELEMENT Customer EMPTY>
<!ATTLIST Customer

ReferenceNumber NMTOKEN #REQUIRED>

<Customer ReferenceNumber="H127X9Y57" />

This would correspond to the following table:

CREATE TABLE Customer (
ReferenceNumber varchar(50))

If the attribute takes the type NMTOKENS on the other hand, it must contain a sequence of whitespace
delimited tokens obeying the same rules as NMTOKEN attributes. For example, we might have this
definition, ch03_ex16.dtd and ch03_ex16.xml:

<!ELEMENT Customer EMPTY>
<!ATTLIST Customer

ReferenceNumber NMTOKENS #REQUIRED>

<?xml version="1.0"?>
<!DOCTYPE listing SYSTEM "ch03_ex16.dtd" >

<Customer ReferenceNumber="H127X9Y57 B235Z2X99" />

In this case, we need to create an additional table to hold the reference numbers, as many of them may
occur for the same Customer element. This is shown below, in ch03_ex16.sql:

CREATE TABLE Customer (
CustomerKey integer)

CREATE TABLE ReferenceNumber (
ReferenceNumberKey integer,
CustomerKey integer,
ReferenceNumber varchar(50))

This creates the following tables:

Database Structures for Existing XML

95

For the previous XML example, we'd create one Customer row and two ReferenceNumber rows -
one for each token in the NMTOKENS attribute.

Rule 15: NMTOKEN Attributes.
For each attribute with the NMTOKEN type, create a column in the table
corresponding to that element to hold the value for that attribute.

Rule 16: NMTOKENS Attributes.
1. For each attribute with the NMTOKENS type, create a table with an automatically
incremented primary key, a foreign key referencing the row in the table that
corresponds to the element in which the attribute is found, and a string that will
contain the value of each token found in the attribute.
2. Add a row to this table for each token found in the attribute for the element.

ENTITY and ENTITIES
Attributes declared with the ENTITY or ENTITIES type are used to specify unparsed entities associated
with an element. The attribute contains a token (or tokens, in the case of attributes declared as
ENTITIES) that match the name of an entity declared in the document's DTD. Let's see how we would
store this information.

<!NOTATION gif PUBLIC "GIF">
<!ENTITY BlueLine SYSTEM "blueline.gif" NDATA gif>
<!ELEMENT Separator EMPTY>
<!ATTLIST Separator

img ENTITY #REQUIRED>

<Separator img="BlueLine" />

We'll look at how we store the actual entity information later, when we talk about entity and notation
declarations. For now, what's important is that we should be able to identify which entity is being
referenced by the ENTITY attribute on the Separator element. For the purposes of this discussion,
we'll assume that the goal of the XML persistence is to store the information in the XML document, as
opposed to the definitions of entities in the DTD associated with it. To that end, we should simply store
the value of the attribute as if it were declared as NMTOKEN or NMTOKENS; Details about the unparsed
entity, and the notation associated with it, are found in the document's DTD and are outside the scope
of this process.

Rule 17: ENTITY and ENTITIES Attributes.
Attributes declared with the ENTITY or ENTITIES type should be handled as if
they were declared with the NMTOKEN or NMTOKENS types, respectively (see rules
15 and 16).

Chapter 3

96

Entity Declarations
Entity declarations appear in DTDs, and are called by references that appear in the XML document.
There are three ways a parser may handle a reference to an entity in an XML document. Let's look
at these:

1. If the entity is an internal parsed entity, or an external parsed entity, that the parser
chooses to expand, the reference to the entity will not be returned by the parser; instead,
the expanded content will be returned as if it were stated in-line in the document. In this
case, no special steps need to be taken to store the entity information - instead, the
content will be stored according to the content model expressed in the DTD.

2. If the entity is an unparsed entity, it will appear as an attribute of an element, as seen in
the above example.

3. If the entity is an external parsed entity, and the parser is nonvalidating, the parser may
choose not to expand the reference into the corresponding node set when returning
information about the document. However, we have intentionally limited our discussion
here to validating parsers, so external entities should always be parsed.

Because all of these possibilities result in either the entity disappearing (from the parser's perspective),
or being referenced from an attribute, entity declarations do not need to be modeled in our SQL
database.

Notation Declarations
Notation declarations are used to describe the way unparsed entities should be handled by the parser.
As such, they are aspects of the DTD, and not of the document itself; therefore, notation declarations do
not need to be modeled in our SQL database either.

Avoid Name Collisions!
With the aforementioned set of rules, it's fairly easy to anticipate a situation where a name collision
might occur. That is, a situation where two tables or columns dictated by the XML DTD have the same
name. For example, let's say we had the following DTD:

<!ELEMENT Customer (CustomerKey)>
<!ELEMENT CustomerKey (#PCDATA)>

According to the rules we've set out, this would translate to the following table definition:

CREATE TABLE Customer (
CustomerKey integer,
CustomerKey varchar(10))

Clearly, this is invalid. In a case like this, one of the column names must be changed to avoid colliding
with the other. It makes more sense to change the nonkey field name, as it will not be referenced in
other tables. So we might change the table definition to this:

CREATE TABLE Customer (
CustomerKey integer,
XMLCustomerKey varchar(10))

Database Structures for Existing XML

97

Rule 18: Check for Name Collisions.
After applying all the preceding rules, check the results of the process for name
collisions. If name collisions exist, change the names of columns or tables as necessary
to resolve the name collision.

Summary
In the preceding pages, we've devised 18 rules that may be used to create a relational database schema
from an XML DTD. Using these rules, we should be able to take any document type definition for any
document we have and build a relational database that can hold the contents of the document. Using
these rules will also abstract the data away from the structure as much as possible, making the data that
was found in the XML document available for querying or other processing by the relational database.
We have collated all the rules at the end of the chapter - now let's go through an example to see how to
use many of the rules together.

Example
Here's an example that uses many of the rules we have defined. This example corresponds to a simple
order data document containing multiple invoices, much like we will see used in other chapters
throughout the book. Let's see how we would apply these rules to transform this XML DTD
(ch03_ex17.dtd) into a relational database creation script.

<!ELEMENT OrderData (Invoice+, Customer+, Part+)>

<!ELEMENT Invoice (Address,
LineItem+)>

<!ATTLIST Invoice
invoiceDate CDATA #REQUIRED
shipDate CDATA #IMPLIED
shipMethod (FedEx | USPS | UPS) #REQUIRED
CustomerIDREF IDREF #REQUIRED>

<!ELEMENT Address EMPTY>
<!ATTLIST Address

Street CDATA #REQUIRED
City CDATA #IMPLIED
State CDATA #IMPLIED
PostalCode CDATA #REQUIRED>

<!ELEMENT LineItem EMPTY>
<!ATTLIST LineItem

PartIDREF IDREF #REQUIRED
Quantity CDATA #REQUIRED
Price CDATA #REQUIRED>

<!ELEMENT Customer (Address,
ShipMethod+)>

<!ATTLIST Customer
firstName CDATA #REQUIRED
lastName CDATA #REQUIRED
emailAddress CDATA #IMPLIED>

<!ELEMENT ShipMethod (#PCDATA)>

Chapter 3

98

<!ELEMENT Part EMPTY>
<!ATTLIST Part

name CDATA #REQUIRED
size CDATA #IMPLIED
color CDATA #IMPLIED>

This DTD is for a more detailed invoice than those examples we have seen so far. Let's look at a sample
XML document, ch03_ex17.xml:

<?xml version="1.0"?>
<!DOCTYPE listing SYSTEM "ch03_ex17.dtd" >

<OrderData>

<Invoice invoiceDate="05052000"
shipDate="05122000"
shipMethod="FedEx">

<Address Street="AnyStreet"
City="AnyTown"
State="AS"
PostCode="Any Code" />

<LineItem PartIDREF="2015"
Quantity="2"
Price="20.99" />

</Invoice>

<Customer>
<Address Street="AnyStreet"

City="AnyTown"
State="AS"
PostCode="Any Code" />

<ShipMethod> FedEx </ShipMethod>
</Customer>

<Part name="Winkle"
size="10.5"
color="Blue" />

</OrderData>

First, let's look at which tables we need to create in our database to represent these elements.

Applying Rule 2, we see that we need to create tables called OrderData, Invoice, LineItem,
Customer, and Part. OrderData is the root element, and each of the others only has one element
type that may be its parent. Rule 2 also tells us to create a foreign key back to each of these element's
parent element tables. This gives us ch03_ex17a.sql:

CREATE TABLE OrderData (
OrderDataKey integer,
PRIMARY KEY (OrderDataKey))

CREATE TABLE Invoice (
InvoiceKey integer,
PRIMARY KEY (InvoiceKey),
OrderDataKey integer

CONSTRAINT FK_Invoice_OrderData FOREIGN KEY (OrderDataKey)

REFERENCES OrderData (OrderDataKey))

Database Structures for Existing XML

99

CREATE TABLE LineItem (
LineItemKey integer,
InvoiceKey integer

CONSTRAINT FK_LineItem_Invoice FOREIGN KEY (InvoiceKey)
REFERENCES Invoice (InvoiceKey))

CREATE TABLE Customer (
CustomerKey integer,
OrderDataKey integer

CONSTRAINT FK_Customer_OrderData FOREIGN KEY (OrderDataKey)
REFERENCES OrderData (OrderDataKey))

CREATE TABLE Part (
PartKey integer,
OrderDataKey integer

CONSTRAINT FK_Part_OrderData FOREIGN KEY (OrderDataKey)
REFERENCES OrderData (OrderDataKey))

This gives us the following table structure:

But what do we do about the Address element? Well, since it may have more than one parent
(Customer or Invoice), we apply rule 3. Since the Address element may appear exactly once in
each of these parent elements, we can simply add a foreign key pointing to the Address element from
each of its parents. This gives us ch03_ex17b.sql:

CREATE TABLE OrderData (
OrderDataKey integer,
PRIMARY KEY (OrderDataKey))

CREATE TABLE Address (
AddressKey integer,

PRIMARY KEY (AddressKey))

CREATE TABLE Invoice (
InvoiceKey integer,
PRIMARY KEY (InvoiceKey),
OrderDataKey integer

CONSTRAINT FK_Invoice_OrderData FOREIGN KEY (OrderDataKey)

REFERENCES OrderData (OrderDataKey),
AddressKey integer

CONSTRAINT FK_Invoice_Address FOREIGN KEY (AddressKey)

REFERENCES Address (AddressKey))

Chapter 3

100

CREATE TABLE LineItem (
LineItemKey integer,
InvoiceKey integer,

CONSTRAINT FK_LineItem_Invoice FOREIGN KEY (InvoiceKey)

REFERENCES Invoice (InvoiceKey))

CREATE TABLE Customer (
CustomerKey integer,
OrderDataKey integer

CONSTRAINT FK_Customer_OrderData FOREIGN KEY (OrderDataKey)

REFERENCES OrderData (OrderDataKey),
AddressKey integer

CONSTRAINT FK_Customer_Address FOREIGN KEY (AddressKey)

REFERENCES Address (AddressKey))

CREATE TABLE Part (
PartKey integer,
OrderDataKey integer,

CONSTRAINT FK_Part_OrderData FOREIGN KEY (OrderDataKey)

REFERENCES OrderData (OrderDataKey))

The updated version of our creation script gives us this set of tables:

Looking at our original DTD, this covers all the elements except for ShipMethod. In our example,
we're going to use ShipMethod to hold all the various shipping methods that a customer can accept.
We can see that it's defined as #PCDATA, so we need to apply either rule 4 or rule 5. Since
ShipMethod may appear more than once in its only parent (Customer), we need to apply rule 5. It
states that we need to add a table for ShipMethod and a foreign key pointing back to the Customer
with which the ShipMethod is associated. Now, we have this script, ch03_ex17c.sql:

CREATE TABLE OrderData (
OrderDataKey integer,
PRIMARY KEY (OrderDataKey))

CREATE TABLE Address (
AddressKey integer,
PRIMARY KEY (AddressKey))

Database Structures for Existing XML

101

CREATE TABLE Invoice (
InvoiceKey integer,
PRIMARY KEY (InvoiceKey),
OrderDataKey integer

CONSTRAINT FK_Invoice_OrderData FOREIGN KEY (OrderDataKey)
REFERENCES OrderData (OrderDataKey),
AddressKey integer

CONSTRAINT FK_Invoice_Address FOREIGN KEY (AddressKey)
REFERENCES Address (AddressKey))

CREATE TABLE LineItem (
LineItemKey integer,
InvoiceKey integer,

CONSTRAINT FK_LineItem_Invoice FOREIGN KEY (InvoiceKey)
REFERENCES Invoice (InvoiceKey))

CREATE TABLE Customer (
CustomerKey integer,
PRIMARY KEY (CustomerKey),
OrderDataKey integer

CONSTRAINT FK_Customer_OrderData FOREIGN KEY (OrderDataKey)
REFERENCES OrderData (OrderDataKey),
AddressKey integer

CONSTRAINT FK_Customer_Address FOREIGN KEY (AddressKey)
REFERENCES Address (AddressKey))

CREATE TABLE ShipMethod (
ShipMethodKey integer,
CustomerKey integer,
ShipMethod varchar(10),

CONSTRAINT FK_ShipMethod_Customer FOREIGN KEY (CustomerKey)
REFERENCES Customer (CustomerKey))

CREATE TABLE Part (
PartKey integer,
OrderDataKey integer,

CONSTRAINT FK_Part_OrderData FOREIGN KEY (OrderDataKey)
REFERENCES OrderData (OrderDataKey))

The database table structure now looks like this:

Note that we arbitrarily assigned ShipMethod to have a length of ten bytes.

Chapter 3

102

Modeling the Attributes
Now, let's start looking at the attributes on each of the elements. We can skip the OrderData element,
since it doesn't have any attributes declared. Next, we have the Invoice element:

<!ATTLIST Invoice
invoiceDate CDATA #REQUIRED,
shipDate CDATA #IMPLIED,
shipMethod (FedEx | USPS | UPS) #REQUIRED,
CustomerIDREF IDREF #REQUIRED>

We need to use three different rules to handle the attributes listed here. Applying Rule 9 to the
invoiceDate and shipDate attributes, we see that we need to add two columns to the Invoice
table. Rule 11 tells us that we need to add a lookup value column to the Invoice table and create a
shipMethod table, and Rule 13 tells us that we need to add a foreign key pointing back to the
Customer table. We now have:

CREATE TABLE Invoice (
InvoiceKey integer,
OrderDataKey integer

CONSTRAINT FK_Invoice_OrderData FOREIGN KEY (OrderDataKey)
REFERENCES OrderData (OrderDataKey),
AddressKey integer,
invoiceDate datetime,
shipDate datetime,
shipMethodKey integer,
CustomerKey integer)

CREATE TABLE shipMethod (
shipMethodKey integer,
shipMethod varchar(5))

INSERT shipMethod (shipMethodKey, shipMethod) VALUES (1, "FedEx")
INSERT shipMethod (shipMethodKey, shipMethod) VALUES (2, "USPS")
INSERT shipMethod (shipMethodKey, shipMethod) VALUES (3, "UPS")

Again, we've added stronger typing that may need to be verified when storing valid documents in our
database.

Next, let's tackle Address:

<!ATTLIST Address
Street CDATA #REQUIRED,
City CDATA #IMPLIED,
State CDATA #IMPLIED,
PostalCode CDATA #REQUIRED>

Rule 9 works for all four of these:

CREATE TABLE Address (
AddressKey integer,
Street varchar(50),
City varchar(40) NULL,
State varchar(2) NULL,
PostalCode varchar(10))

Database Structures for Existing XML

103

Then, for LineItem:

<!ATTLIST LineItem
PartIDREF IDREF #REQUIRED,
Quantity CDATA #REQUIRED,
Price CDATA #REQUIRED>

One application of Rule 13 and two applications of Rule 9 yields this:

CREATE TABLE LineItem (
LineItemKey integer,
InvoiceKey integer

CONSTRAINT FK_LineItem_Invoice FOREIGN KEY (InvoiceKey)
REFERENCES Invoice (InvoiceKey),
PartKey integer

CONSTRAINT FK_LineItem_Part FOREIGN KEY (PartKey)
REFERENCES Part (PartKey),
Quantity integer,
Price float)

For this alteration to be complete of course, we must also add a PRIMARY KEY (PartKey) line to the
Part table creation script. Next, we look at Customer:

<!ATTLIST Customer
firstName CDATA #REQUIRED,
lastName CDATA #REQUIRED,
emailAddress CDATA #IMPLIED>

This requires, three applications of Rule 9 for handling CDATA attributes, giving us:

CREATE TABLE Customer (
CustomerKey integer,
OrderDataKey integer

CONSTRAINT FK_Customer_OrderData FOREIGN KEY (OrderDataKey)
REFERENCES OrderData (OrderDataKey),
AddressKey integer,
firstName varchar(30),
lastName varchar(30),
emailAddress varchar(100) NULL)

Finally we have Part, which looks like this:

<!ATTLIST Part
name CDATA #REQUIRED,
size CDATA #IMPLIED,
color CDATA #IMPLIED>

This, along with three applications of rule 9 gives:

CREATE TABLE Part (
PartKey integer,
OrderDataKey integer

CONSTRAINT FK_Part_OrderData FOREIGN KEY (OrderDataKey)
REFERENCES OrderData (OrderDataKey),
name varchar(20),
size varchar(10) NULL,
color varchar(10) NULL)

Chapter 3

104

Now that we've tackled all the elements and attributes, we have the following structure -
(ch03_ex17d.sql):

CREATE TABLE OrderData (
OrderDataKey integer,
PRIMARY KEY (OrderDataKey))

CREATE TABLE Address (
AddressKey integer,
PRIMARY KEY (AddressKey),
Street varchar(50),
City varchar(40) NULL,
State varchar(2) NULL,
PostalCode varchar(10))

CREATE TABLE Invoice (
InvoiceKey integer,
PRIMARY KEY (InvoiceKey),
OrderDataKey integer

CONSTRAINT FK_Invoice_OrderData FOREIGN KEY (OrderDataKey)
REFERENCES OrderData (OrderDataKey),
AddressKey integer

CONSTRAINT FK_Invoice_Address FOREIGN KEY (AddressKey)
REFERENCES Address (AddressKey),
invoiceDate datetime,
shipDate datetime,
shipMethodKey integer,
CustomerKey integer)

CREATE TABLE Part (
PartKey integer,
PRIMARY KEY (PartKey),
OrderDataKey integer,

CONSTRAINT FK_Part_OrderData FOREIGN KEY (OrderDataKey)
REFERENCES OrderData (OrderDataKey))

CREATE TABLE LineItem (
LineItemKey integer,
InvoiceKey integer,

CONSTRAINT FK_LineItem_Invoice FOREIGN KEY (InvoiceKey)
REFERENCES Invoice (InvoiceKey),
PartKey integer,

CONSTRAINT FK_LineItem_Part FOREIGN KEY (PartKey)
REFERENCES Part (PartKey),
Quantity integer,
Price float)

CREATE TABLE Customer (
CustomerKey integer,
PRIMARY KEY (CustomerKey),
OrderDataKey integer

CONSTRAINT FK_Customer_OrderData FOREIGN KEY (OrderDataKey)
REFERENCES OrderData (OrderDataKey),
AddressKey integer

CONSTRAINT FK_Customer_Address FOREIGN KEY (AddressKey)
REFERENCES Address (AddressKey),
firstName varchar(30),
lastName varchar(30),
emailAddress varchar(100) NULL)

Database Structures for Existing XML

105

CREATE TABLE ShipMethod (
ShipMethodKey integer,
CustomerKey integer,
ShipMethod varchar(10),

CONSTRAINT FK_ShipMethod_Customer FOREIGN KEY (CustomerKey)
REFERENCES Customer (CustomerKey))

INSERT shipMethod (shipMethodKey, shipMethod) VALUES (1, 'FedEx')
INSERT shipMethod (shipMethodKey, shipMethod) VALUES (2, 'USPS')
INSERT shipMethod (shipMethodKey, shipMethod) VALUES (3, 'USPS')

But we have one more problem - we've got a name collision on ShipMethod. Admittedly one of the
ShipMethod tables is upper camel case and the other is lower, but this will cause a problem if you're
running your relational database in case-insensitive mode. At any rate, having tables with extremely
similar names will cause no end of confusion when developers attempt to write code that accesses the
database. With that in mind, let's apply Rule 18 and change the second ShipMethod table (the one that
comes from the ShipMethod element) to be CustomerShipMethod. This gives us the following,
ch03_ex17final.sql:

CREATE TABLE OrderData (
OrderDataKey integer,
PRIMARY KEY (OrderDataKey))

CREATE TABLE Address (
AddressKey integer,
PRIMARY KEY (AddressKey),
Street varchar(50),
City varchar(40) NULL,
State varchar(2) NULL,
PostalCode varchar(10))

CREATE TABLE Invoice (
InvoiceKey integer,
PRIMARY KEY (InvoiceKey),
OrderDataKey integer

CONSTRAINT FK_Invoice_OrderData FOREIGN KEY (OrderDataKey)
REFERENCES OrderData (OrderDataKey),
AddressKey integer

CONSTRAINT FK_Invoice_Address FOREIGN KEY (AddressKey)
REFERENCES Address (AddressKey),
invoiceDate datetime,
shipDate datetime,
shipMethodKey integer,
CustomerKey integer)

CREATE TABLE Part (
PartKey integer,
PRIMARY KEY (PartKey),
OrderDataKey integer,

CONSTRAINT FK_Part_OrderData FOREIGN KEY (OrderDataKey)
REFERENCES OrderData (OrderDataKey))

CREATE TABLE LineItem (
LineItemKey integer,
InvoiceKey integer,

CONSTRAINT FK_LineItem_Invoice FOREIGN KEY (InvoiceKey)
REFERENCES Invoice (InvoiceKey),
PartKey integer,

CONSTRAINT FK_LineItem_Part FOREIGN KEY (PartKey)
REFERENCES Part (PartKey),
Quantity integer,
Price float)

Chapter 3

106

CREATE TABLE Customer (
CustomerKey integer,
PRIMARY KEY (CustomerKey),
OrderDataKey integer

CONSTRAINT FK_Customer_OrderData FOREIGN KEY (OrderDataKey)
REFERENCES OrderData (OrderDataKey),
AddressKey integer

CONSTRAINT FK_Customer_Address FOREIGN KEY (AddressKey)
REFERENCES Address (AddressKey),
firstName varchar(30),
lastName varchar(30),
emailAddress varchar(100) NULL)

CREATE TABLE ShipMethod (
ShipMethodKey integer,
CustomerKey integer,
ShipMethod varchar(10),

CONSTRAINT FK_ShipMethod_Customer FOREIGN KEY (CustomerKey)
REFERENCES Customer (CustomerKey))

INSERT shipMethod (shipMethodKey, shipMethod) VALUES (1,
'FedEx')
INSERT shipMethod (shipMethodKey, shipMethod) VALUES (2,
'USPS')
INSERT shipMethod (shipMethodKey, shipMethod) VALUES (3,
'USPS')

CREATE TABLE CustomerShipMethod (
CustomerShipMethodKey integer,
CustomerKey integer,
CustomerShipMethod varchar(10))

Our final table structure looks like this:

Database Structures for Existing XML

107

Summary
In this chapter, we've seen how to build relational structures to store XML content that conforms to a
known document type definition. We should be able to take any existing DTD and create a table
structure for it using the 18 rules we have defined. Remember that these rules are intended to allow us
to do two things: using them, the data is abstracted from the structure as much as possible to allow us to
perform queries and summarization against it; and we should be able to recreate our original XML
document from the information stored in the database. If our particular business problem has other
constraints (such as needing to have the XML document available without necessarily querying against
it), then we may need to take some other approach - such as persisting the serialized XML document
string to our database in a text field, rather than breaking it apart. Nevertheless, for most querying and
summarization problems, these rules present a good solution.

The Rules
❑ Rule 1: Always Create a Primary Key

Whenever creating a table in the relational database:
 1. Add a column to it that holds an automatically incremented integer.
 2. Name the column after the element with Key appended.
 3. Set this column to be the primary key on the created table.

❑ Rule 2: Basic Table Creation
For every structural element found in the DTD:
 1. Create a table in the relational database.
 2. If the structural element has exactly one allowable parent element (or is the root element
 of the DTD), add a column to the table. This column will be a foreign key that references
 the parent element.
 3. Make the foreign key required.

❑ Rule 3: Handling Multiple Parent Elements
If a particular element may have more than one parent element, and the element may occur in
the parent element zero or one times:
 1. Add a foreign key to the table representing the parent element that points to the
 corresponding record in the child element, making it optional or required as makes sense.
 2. If the element may occur zero-or-more or one-or-more times, add an intermediate table to
 the database that expresses the relationship between the parent element and this element.

❑ Rule 4: Representing Text Only Elements
If an element is text only, and may appear in a particular parent element once at most:
 1. Add a column to the table representing the parent element to hold the content of this
 element.
 2. Make sure that the size of the column created is large enough to hold the anticipated
 content of the element.
 3. If the element is optional, make the column nullable.

❑ Rule 5: Representing Multiple Text-Only Elements
If an element is text-only, and it may appear in a parent element more than once:
 1. Create a table to hold the text values of the element and a foreign key that relates them
 back to their parent element.
 2. If the element may appear in more than one parent element more than once, create
 intermediate tables to express the relationship between each parent element and this
 element.

Chapter 3

108

❑ Rule 6: Handling Empty Elements
For every EMPTY element found in the DTD:
 1. Create a table in the relational database.
 2. If the structural element has exactly one allowable parent element, add a column to the
 table - this column will be a foreign key that references the parent element.
 3. Make the foreign key required.

❑ Rule 7: Representing Mixed Content Elements
If an element has the mixed content model:
 1. Create a table called TableLookup (if it doesn't already exist) and add rows for each table
 in the database. Also add a row zero that points to a table called TextContent.
 2. Create this table with a key, a string representing the element name for text-only
 elements, and a text value.
 3. Next, create two tables - one for the element and one to link to the various content of that
 element - called the element name and the element name followed by subelement,
 respectively.
 4. In the subelement table, add a foreign key that points back to the main element table, a
 table lookup key that points to the element table for subelement content, a table key that
 points to the specific row within that table, and a sequence counter that indicates that
 subelement or text element's position within this element.

❑ Rule 8: Handling the "ANY" Content Elements
If an element has the ANY content model:
 1. Create a table called TableLookup (if it doesn't already exist) and add rows for each table
 in the database.
 2. Add a row zero that points to a table called TextContent.
 3. Create this table with a key, a string representing the element name for text-only
 elements, and a text value.
 4. Create two tables - one for the element and one to link to the various content of that
 element - called the element name and the element name followed by Subelement,
 respectively.
 5. In the subelement table, add a foreign key that points back to the main element table, a
 table lookup key that points to the element table for subelement content, a table key that
 points to the specific row within that table, and a sequence counter that indicates that
 subelement or text element's position within this element.

❑ Rule 9: CDATA Attributes
For each attribute with a CDATA type:
 1. Add a column to the table corresponding to the element that carries that attribute, and
 give the table the name of the element.
 2. Set the column to be a variable-length string, and set its maximum size large enough that
 expected values of the attribute won't exceed that size.

❑ Rule 10: REQUIRED/IMPLIED/FIXED Attributes
If an attribute is specified as #REQUIRED, then it should be required in the database.
 1. If an attribute is specified as #REQUIRED, then it should be required in the database.
 2. If the attribute is specified as #IMPLIED, then allow nulls in any column that is created as
 a result.
 3. If the attribute is specified as #FIXED, it should be stored as is it might be needed by the
 database, e.g. as a constant in a calculation - treat it the same as #REQUIRED attributes.

Database Structures for Existing XML

109

❑ Rule 11: ENUMERATED Attribute Values
For attributes with enumerated values:
 1. Create a two byte integer field that will contain the enumerated value translated to an
 integer.
 2. Create a lookup table with the same name as the attribute and the word Lookup
 appended.
 3. Insert a row in this table corresponding to each possible value for the enumerated
 attribute.
 4. When inserting rows into the element table in which the attribute is found, translate the
 value of the attribute to the integer value corresponding to it.

❑ Rule 12: Handling ID Attributes
 1. If an attribute with type ID has meaning outside the context of the XML document, store
 it in the database.
 2. If it's a representation of the primary key value, we can use it to insert or update records
 in the database as necessary.
 3. Otherwise, we just hang on to it so that we can link up any IDREF or IDREFS that point
to it
 elsewhere in the document.

❑ Rule 13: Handling IDREF Attributes
 1. If an IDREF attribute is present for an element and is known to always point to a specific
 element type, add a foreign key to the element that references the primary key of the
 element to which the attribute points.
 2. If the IDREF attribute may point to more than one element type, add a table lookup key
 as well that indicates which table the key corresponds to.

❑ Rule 14: Handling IDREFS Attributes
 1. If an IDREFS attribute is present for an element, add a join table (with the names of both
 the element containing the attribute and the element being pointed to concatenated) that
 contains a foreign key referencing both the element containing the attribute and the element
 being pointed to.
 2. If the IDREFS attribute may point to elements of different types, remove the foreign key
 referencing the element being pointed to and add a table lookup key that indicates the type
 of element pointed to.
 3. Add a foreign key relationship between this table and a lookup table containing the
 names of all the tables in the SQL database.

❑ Rule 15: NMTOKEN Attributes
 For each attribute with the NMTOKEN type, create a column in the table corresponding to
 that element to hold the value for that attribute.

❑ Rule 16: NMTOKENS Attributes
 1. For each attribute with the NMTOKENS type, create a table with an automatically
 incremented primary key, a foreign key referencing the row in the table that corresponds to
 the element in which the attribute is found, and a string that will contain the value of each
 token found in the attribute.
 2. Add a row to this table for each token found in the attribute for the element.

❑ Rule 17: ENTITY and ENTITIES Attributes
 Attributes declared with the ENTITY or ENTITIES type should be handled as if they were
 declared with the NMTOKEN or NMTOKENS types, respectively (see rules 15 and 16).

❑ Rule 18: Check for Name Collisions
 After applying all the preceding rules, check the results of the process for name collisions.
 If name collisions exist, change the names of columns or tables as necessary to resolve the
 name collision.

Chapter 3

110

Standards Design

One of the biggest challenges facing the XML designer in today's market is standards design. Whether
it's two machines sitting in a room next to one another, or a thousand enterprise-level solutions located
all around the planet, they need to have a way to communicate clearly and unambiguously with one
another. XML provides a grammar for this conversation, but we also need to have a vocabulary – and
that vocabulary is an XML standard.

In this chapter, we'll look at some of the issues that may arise when developing XML standards,
including:

❑ Approaches that you can use to streamline the standards design process

❑ How to make sure everyone involved in the standards design process is comfortable with
the outcome

❑ How to facilitate adoption and implementation once the standard has been created

Scoping the Solution
When the need for an XML standard is identified, the first step is to understand the purpose and
usage of the document structure(s) that are part of the standard. Who is the anticipated producer
(or producers) of the document? Who is the anticipated consumer (or consumers)? How will the
document be used? To convey information? To archive information? To drive a presentation layer?
The answers to all of these questions will help govern the approach you take to designing and
implementing your solution.

Chapter 4

112

Types of Standards
There are three types of standards that we'll be discussing here.

System Internal Standards
The easiest type of standard to design is one that is used internally for a particular system. For example,
we might decide that we want to maintain records of all invoices processed by our system as XML
documents, so that we can more easily present them (via HTML, WAP, or some other presentation
mechanism) and archive them (by storing atomic documents to some near-line medium such as DVD-
RAM).

In a standard with this scope, one person (or a very small group of people) will be tasked with creating
the document structure. All the people on the team will share the same goals for the structure, and will
probably be able to reach a consensus on its layout pretty quickly. Additionally, since systems often
have a relational database back-end, the database can be used to directly drive the XML structures to be
created (using some of the techniques we learned in Chapter 3).

Cross-system Standards
A more complex type of standard is one that is shared by more than one system. To continue our
example, perhaps the team responsible for the inventory system and the team responsible for the
accounting system decide that they want to create an XML standard that allows them to transmit
information from one system to another.

In this case, the systems that are communicating with one another may have very different internal
architectures – one might be a legacy system using an ISAM database, while the other is a Sparc
running Solaris with Oracle 8i as the database. In addition, the various platforms may have different
requirements with regards to performance, parser compatibility, and so on, that need to be taken into
account. The data teams responsible for each system participating in the standards development will
have to meet, share information about production and consumption requirements, haggle over data
formats and enumerated values, and reach some sort of common ground that all the participating
members can be happy with.

We'll see how a standards team leader can help to facilitate that process later in this chapter. We'll also
see more about data transmission in Chapter 28.

Industry-level Standards
The most complex type of standard development effort you are likely to encounter is an industry-level
standards effort. In this type of effort, the structures being developed are intended to be used by many
different participants in a particular type of business, or brokers in a particular type of information.
Examples of these structures include MISMO (www.mismo.org) for mortgage data, SMBXML
(www.smbxml.org) for small- to medium-sized application service providers, and the HR-XML
consortium that aims to provide a standard for job postings and resumes (see www.hr-
xml.org/channels/home.htm for more details).

Designing these structures is often a protracted and cumbersome process, involving dozens of
participants who all have very specific requirements for the structures being created. More often than
not, these requirements will be in conflict with one another, requiring some sort of mediation process to
continue moving forward. In efforts with this scope, defining ground rules and restrictions at the
beginning of the standards process is critical to ensuring that the effort proceeds smoothly and results in
a good compromise for all involved.

Standards Design

113

Many times when developing a standard of this scope, the adoption of the standard over competing
standards or legacy standards is an issue. Therefore, the simpler and more comprehensible the new
standard is, the more likely it is that it will be accepted by the industry at large. This can lead to some
counterintuitive design decisions, such as repeating information as children of different parent elements,
rather than creating the element containing the information once and pointing to it with IDREF
attributes.

An additional concern when designing an industry standard is that (in theory) many of the IT groups
that will ultimately be using the standard may not be directly involved with its creation. It is then
incumbent upon the developers who are creating the standard to try to think ahead and take the needs
of all the possible participants into account.

It may, however, be useful to look for existing standards before embarking on your own – for
example, a list can be obtained from http://www.xml.com.

Once we've decided who the target audience for the standard is, we need to take a look at how the
structures we are designing are intended to be used.

Document Usage
The role a particular type of document will be playing in the system, enterprise, or industry is also very
important when designing XML structures. If the document is being used to archive information, it
should have a different set of design goals to a document that is being used to drive a presentation layer,
or convey information from one system to another. Let's discuss how we would deal with each of these
situations.

Archival Documents
When designing documents that will be used for archiving data, the documents should be designed to
be as self-contained as possible. That is, the document should not rely on the use of system identifiers or
any other information that would make the document impossible to interpret without knowing the
context in which the document was created.

For example, let's say we wanted to create a document structure to hold invoices from our inventory
system, and we had the following structured data to store in our XML documents:

Invoice
invoiceKey: integer
orderDate: datetime
shipDate: datetime
shipMethod: enumeration

LineItem
lineItemKey: integer
quantity: numeric
price: numeric

Part
partKey: integer
name: string
color: string
size: string

Chapter 4

114

Our initial impulse might be to design the structures to reference the Part identifier – after all, if we
need to access the information in the archive, we could always refer it back to our relational database to
discover the details of the part being referenced. This would give us a structure such as the following
(ch05_ex01.dtd):

<!ELEMENT Invoice (Customer, LineItem+)>
<!ATTLIST Invoice

orderDate CDATA #REQUIRED
shipDate CDATA #REQUIRED
shipMethod CDATA #REQUIRED>

<!ELEMENT Customer EMPTY>
<!ATTLIST Customer

name CDATA #REQUIRED
address CDATA #REQUIRED
city CDATA #REQUIRED
state CDATA #REQUIRED
zip CDATA #REQUIRED>

<!ELEMENT LineItem EMPTY>
<!ATTLIST LineItem

partKey CDATA #REQUIRED
quantity CDATA #REQUIRED
price CDATA #REQUIRED>

However, what if the system were to be phased out five years later, and then a customer called
demanding to know detailed information about an invoice from the old system? With only an identifier
that was previously internal to the old system to track down the part, the person tasked with figuring out
just what parts were on the invoice is in for a long night. There are also other problems involved –
details can change over time, so customer and part numbers can disappear and/or be reissued.

The better representation would be to include all the part detail information you can, so that the
document will make sense independent of any other representation, as shown here in ch05_ex02.dtd:

<!ELEMENT Invoice (Customer, LineItem+)>
<!ATTLIST Invoice

orderDate CDATA #REQUIRED
shipDate CDATA #REQUIRED
shipMethod CDATA #REQUIRED>

<!ELEMENT Customer EMPTY>
<!ATTLIST Customer

name CDATA #REQUIRED
address CDATA #REQUIRED
city CDATA #REQUIRED
state CDATA #REQUIRED
zip CDATA #REQUIRED>

<!ELEMENT LineItem EMPTY>
<!ATTLIST LineItem

partNumber CDATA #REQUIRED
name CDATA #REQUIRED
color CDATA #REQUIRED
size CDATA #REQUIRED
quantity CDATA #REQUIRED
price CDATA #REQUIRED>

This way, the actual information (and not simply handles to the representation in some other context)
may be retrieved directly from the document, and hours of aggravation may be avoided when trying to
recover the meaning of the document later in its lifecycle.

Standards Design

115

However, as we said earlier the representation you choose depends on the purpose of the document. If
the purpose of the document is to send data to a target system that will never understand the system
keys (like partKey in the previous example), then the partKey is just unnecessary information. On the
other hand, if a document is created for the sole purpose of transferring information between two
systems that comprehend the same system identifiers, then it's OK to use those identifiers. Let's look at
this latter situation in more detail.

Transactional Data Documents
Documents designed to be used to transmit information between two processes require a very different
approach. These documents are usually discarded – the consumer tears the document apart, picks out
the bits of information it needs to handle the transaction, and discards the document itself – so the
documents don't need to be as atomic. If the scope of the standard permits it, the documents may
reference internal system identifiers or other information that has no meaning without context.

If we need to support a number of different transactions, we might also want to implement an
enveloping mechanism that describes the behavior we're expecting from the system receiving the XML
document. Let's see an example of this. Say we wanted to be able to use the same document to update a
part or request a current price on a part. We might design a structure that looks like the following
(ch05_ex03.dtd):

<!ELEMENT PartRequest (Part)>
<!ATTLIST PartRequest

requestType (UpdatePart | GetCurrentPrice) #REQUIRED
requestKey CDATA #REQUIRED>

<!ELEMENT Part EMPTY>
<!ATTLIST Part

partKey CDATA #REQUIRED
partNumber CDATA #IMPLIED
name CDATA #IMPLIED
color CDATA #IMPLIED
size CDATA #IMPLIED>

The response structure might look like this (ch05_ex04.dtd):

<!ELEMENT PartResponse EMPTY>
<!ATTLIST PartResponse

requestKey CDATA #REQUIRED
status (Success | Failure) #REQUIRED
price CDATA #IMPLIED>

The requestKey attribute is used so that we can perform an asynchronous request and response.
Passing the requestKey back in the response allows the requesting program to match it up with
information about the original request.

So to update the information on the part with the key 17, you would send this document
(ch05_ex03a.xml):

<?xml version="1.0"?>
<!DOCTYPE listing SYSTEM "ch05_ex03.dtd" >

<PartRequest
requestType="UpdatePart"
requestKey="1028">
<Part

partKey="17"

Chapter 4

116

partNumber="1A2A3AB"
name="Sprocket"
color="Blue"
size="2 in." />

</PartRequest>

In response, you might receive:

<PartResponse
requestKey="1028"
status="Failure" />

or:

<PartResponse
requestKey = "1028"
status="Success" />

The price attribute is omitted here because price is not part of the updatePart request-response
pair.

To request the price on the part with the key 17, you would send this document (ch05_ex03b.xml):

<?xml version="1.0"?>
<!DOCTYPE listing SYSTEM "ch05_ex03.dtd" >

<PartRequest
requestType="GetCurrentPrice"
requestKey="1028">
<Part

partKey="17" />
</PartRequest>

and you might receive:

<PartResponse
requestKey="1028"
status="Failure" />

or:

<PartResponse
requestKey = "1028"
status="Success"
price="0.10" />

There are two schools of thought on this strategy. One says that having fewer structures to maintain
makes extending the structures simpler. If you add an attribute called material to the Part element,
it will probably need to be added to each structure that contains the Part element. On the other hand,
a more flexible structure tends to be more difficult to use – witness the number of attributes that are
present or absent in the above examples depending on how the structures are being used. You should
use whichever method best suits your needs.

Standards Design

117

The other thing to keep in mind with transmitted documents is that they are usually intended for
machine eyes only, so they can be tuned for minimum document size at the expense of readability. For
example, take the PartRequest structure we were examining before (ch05_ex03.dtd):

<!ELEMENT PartRequest (Part)>
<!ATTLIST PartRequest

requestType (UpdatePart | GetCurrentPrice) #REQUIRED
requestKey CDATA #REQUIRED>

<!ELEMENT Part EMPTY>
<!ATTLIST Part

partKey CDATA #REQUIRED
partNumber CDATA #IMPLIED
name CDATA #IMPLIED
color CDATA #IMPLIED
size CDATA #IMPLIED>

If we tune this document for minimum document size, we could use the following structure instead
(ch05_ex05.dtd):

<!ELEMENT Q (P)>
<!ATTLIST Q

t (U | G) #REQUIRED
k CDATA #REQUIRED>

<!ELEMENT P EMPTY>
<!ATTLIST P

k CDATA #REQUIRED
n CDATA #IMPLIED
m CDATA #IMPLIED
c CDATA #IMPLIED
s CDATA #IMPLIED>

A sample request using this minimal DTD would look like this (ch05_ex05.xml):

<?xml version="1.0"?>
<!DOCTYPE listing SYSTEM "ch05_ex05.dtd" >

<Q t="U" k="1028"><P k="17" n="1A2A3AB" m="Sprocket" c="Blue" s="2 in." /></Q>

This document is 151 bytes as opposed to the original request sample which was 279 bytes – a
significantly smaller document (the difference will be greater, of course, the larger the document is). If
your systems are moving millions of these transaction documents back and forth, minimizing your
documents in this way can ease any network bandwidth concerns you might have. It's an especially
good idea if you are utilizing the DOM in your application, due to the DOM's memory hungry nature

However, there are additional ramp-up issues for developers (due to the obscure nature of the element
and attribute names) and code maintainability issues (documentation is a must) when working with
documents like these. As with pretty much anything else in programming, this decision involves a
tradeoff.

Presentation Layer Documents
Often, your systems may need to be able to easily render content in different contexts. The obvious
example in the emerging wireless age is handheld devices and cellular phones, which all have their own
markup languages for the representation of content. One good way to provide this functionality (and to
disambiguate content and presentation in the same step) is to first render information to XML, and then
style the XML with XSLT to produce the representation appropriate for the target platform.

Chapter 4

118

When designing structures that are only intended to support a specific presentation of content, the XML
should be designed to match the planned presentation layout as closely as possible to avoid slow XSLT
transformation of that data. For example, say you wanted to see the following general output layout for
a document containing multiple invoices for a particular customer from our sample data set:

Invoice
Order date: 12/1/2000
Ship date: 12/4/2000
Ship method: UPS

Part Quantity Unit Price Price

2 in. blue grommet 17 0.10 1.70

3 in. silver widget 22 0.20 4.40

Total 6.10

Invoice
Order date: 12/2/2000
Ship date: 12/5/2000
Ship method: USPS

Part Quantity Unit Price Price

1 in. red sprocket 13 0.30 3.90

2 in. blue grommet 11 0.10 1.10

Total 5.00

You might be tempted to design your structure to minimize the repetition of data, and to leverage the
way data is stored natively in your system, as is shown in the following examples (ch05_ex06.dtd and
ch05_ex06.xml):

<!ELEMENT InvoiceData (Invoice+, Part+)>
<!ELEMENT Invoice (LineItem+)>
<!ATTLIST Invoice

orderDate CDATA #REQUIRED
shipDate CDATA #REQUIRED
shipMethod (UPS | USPS | FedEx) #REQUIRED>

<!ELEMENT LineItem EMPTY>
<!ATTLIST LineItem

partIDREF IDREF #REQUIRED
quantity CDATA #REQUIRED
price CDATA #REQUIRED>

<!ELEMENT Part EMPTY>
<!ATTLIST Part

partID ID #REQUIRED
name CDATA #REQUIRED
size CDATA #REQUIRED
color CDATA #REQUIRED>

<?xml version="1.0"?>
<!DOCTYPE listing SYSTEM "ch05_ex06.dtd" >

Standards Design

119

<InvoiceData>
<Invoice

orderDate="12/1/2000"
shipDate="12/4/2000"
shipMethod="UPS">
<LineItem

partIDREF="p1"
quantity="17"
price="0.10" />

<LineItem
partIDREF="p2"
quantity="22"
price="0.20" />

</Invoice>
<Invoice

orderDate="12/2/2000"
shipDate="12/5/2000"
shipMethod="USPS">
<LineItem

partIDREF="p3"
quantity="13"
price="0.30" />

<LineItem
partIDREF="p1"
quantity="11"
price="0.10" />

</Invoice>
<Part

partID="p1"
name="grommet"
size="2 in."
color="blue" />

<Part
partID="p2"
name="widget"
size="3 in."
color="silver" />

<Part
partID="p3"
name="sprocket"
size="1 in."
color="red" />

</InvoiceData>

However, you'd be better off designing the structure to be similar to the output structure, like this
(ch05_ex07.dtd and ch05_ex07.xml):

<!ELEMENT InvoiceData (Invoice+)>
<!ELEMENT Invoice (LineItem+)>
<!ATTLIST Invoice

orderDate CDATA #REQUIRED
shipDate CDATA #REQUIRED
shipMethod (UPS | USPS | FedEx) #REQUIRED
total CDATA #REQUIRED>

<!ELEMENT LineItem EMPTY>
<!ATTLIST LineItem

partDescription CDATA #REQUIRED
quantity CDATA #REQUIRED
price CDATA #REQUIRED
linePrice CDATA #REQUIRED>

Chapter 4

120

<?xml version="1.0"?>
<!DOCTYPE listing SYSTEM "ch05_ex07.dtd" >

<InvoiceData>
<Invoice

orderDate="12/1/2000"
shipDate="12/4/2000"
shipMethod="UPS"
total="6.10">
<LineItem

partDescription="2 in. blue grommet"
quantity="17"
price="0.10"
linePrice="1.70" />

<LineItem
partDescription="3 in. silver widget"
quantity="22"
price="0.20"
linePrice="2.20" />

</Invoice>
<Invoice

orderDate="12/2/2000"
shipDate="12/5/2000"
shipMethod="USPS"
total="5.00">
<LineItem

partDescription="1 in. red sprocket"
quantity="13"
price="0.30"
linePrice="3.90" />

<LineItem
partDescription="2 in. blue grommet"
quantity="11"
price="0.10"
linePrice="1.10" />

</Invoice>
</InvoiceData>

The reason is simple: the first example requires the navigation of pointing relationships, the calculation
of values, and generally requires processing that XSLT is not adept at performing. Actually, base
implementations of XSLT cannot even calculate the final total for each invoice from the first structure!
However, XSLT can transform the second example to the planned output format(s) quickly and easily.

Once you've established the audience and usage intent of the designed XML structures, you should
make that information available to all the participants in the standard process. This will allow the
designers to constrain the structures they create to make sure that these desired end results are achieved.

Next, let's take a look at other preparatory work you can do to facilitate the standards design process.

Before Diving In: Ground Rules
Before starting on a standards design effort, it's important to agree on some ground rules about the
structures being designed. This is especially important on standards with larger scopes, as there tend to
be more people (both geographically and functionally diverse) working on the effort simultaneously.
XML is a quite flexible grammar, and there are myriad different ways of expressing the same semantic
content in an XML structure.

Standards Design

121

Let's take a look at some ways you can constrain the design direction and help to ensure a coherent final
outcome.

Implementation Assumptions
Before proceeding with the design of your structures, you first need to determine which platforms and
software are likely to be used to access the structures. Using this information, you can set limitations on
the way your structures are created, so that they work as harmoniously as possible with the software
used by the document producers and consumers.

Again, scope is a major factor here – if you are simply designing a structure to be used internally by one
system, it should be pretty easy to pin down the technologies used to create and consume documents for
that structure. If you're designing for the industry, however, you need to anticipate users accessing your
documents with any sort of hardware and software imaginable – and thus need to keep the complexity
of the structure as minimal as possible.

If you have any doubt what software and hardware will be used to access the documents, the worst-case
assumption should be that the documents are being accessed using baseline implementations of the
DOM, XSLT, and SAX as defined by the W3C and David Megginson (the lead developer of the SAX
toolset – visit his website for more on him and SAX at http://www.megginson.com).

A perfect example of this is the MSXML nodeFromID() extension function. This function is an
extension of the W3C DOM that allows a node to be quickly identified in the document tree based on a
given ID value. If you know that producers and consumers will be using the MSXML library to access
the documents, then the navigation of pointing relationships (IDREF(S) to ID) will be relatively easy.
However, if a process is accessing the document using an implementation of the DOM that does not
provide a helper function like this, the navigation of pointing relationships is a little more tricky (it
requires manual iteration of the elements in the tree looking for one that has an attribute of type ID that
matches the IDREF you're trying to locate).

Of course, this has a big impact on design. Design, performance, and code complexity are all
inextricably intertwined. If you have to take a huge performance hit for pointers, you need to avoid
them at all costs – but if there are helper functions on your anticipated platform(s), then you don't have
to worry quite so much

Elements vs. Attributes
This is the one issue that will probably cause the most heated debate among the participants in your
standards process. Everyone has an opinion on whether elements or attributes should be used for data
content, and in most cases those opinions are strongly held. There are other factors that may influence
your decision as well, such as code reuse or compliance with XML servers such as BizTalk.

Whether you choose to use elements or attributes for text content, you should decide before starting to
create the structures – and you should stick to one or the other throughout the structures you create.
Otherwise, element definitions like these will begin to appear (ch05_ex08.dtd and ch04_ex08.xml):

<!ELEMENT Invoice (orderDate, shipDate, shipMethod, LineItem+)>
<!ELEMENT orderDate (#PCDATA)>
<!ELEMENT shipDate (#PCDATA)>
<!ELEMENT shipMethod (#PCDATA)>
<!ELEMENT LineItem EMPTY>
<!ATTLIST LineItem

partID ID #REQUIRED
quantity CDATA #REQUIRED
price CDATA #REQUIRED>

Chapter 4

122

<?xml version="1.0"?>
<!DOCTYPE listing SYSTEM "ch05_ex08.dtd" >

<Invoice>
<orderDate>12/1/2000</orderDate>
<shipDate>12/4/2000</shipDate>
<shipMethod>UPS</shipMethod>
<LineItem

partID="p17"
quantity="11"
price="0.10" />

</Invoice>

Structures like this are difficult to learn and code for, making the time to implement them greater, and
increasing the amount of code necessary to support them. If you choose to use only elements or only
attributes to represent your data points, and enforce that decision, the resulting structures will be more
readily accessible and implementable.

We discussed the subject of elements versus attributes for data points more thoroughly in Chapter 3.

Restricting Element Content
Because XML has its origins in SGML, it allows many different types of structures. Some of the
allowable structures in XML are better suited to text markup purposes than data structures, and as such
should be avoided whenever possible. If you set the ground rule up front that these text-centric
structures should be avoided, it will make your generated structures more usable.

Let's see some recommended guidelines for restricting element content.

Don't Allow the ANY Element Type
As we've seen in the preceding chapters, the ANY element type allows a great deal of flexibility in what
the element may contain. Say we have the following DTD:

<!ELEMENT a ANY>
<!ELEMENT b (#PCDATA)>
<!ELEMENT c (#PCDATA)>

Then the following structures would all be perfectly legitimate:

<a>
<a>some string<c>some other string</c>
<a>This element has some text content
<a><c>foo</c>foofoofoo<c>foo</c>
<a><a><a><a />

As you can see, the freedom to mix text content and element content makes the processing of these
elements a nightmare. If you forbid the developers working on the standard to use this content type,
you can avoid the headaches documents like these can cause.

Standards Design

123

Don't Allow the Mixed-content Element Type
Structures of this type have the same sort of issues as structures of the ANY type. Text and elements may
be freely mixed in any combination allowed by the content specification. You should also specify that
this type of element content may not be used in your structures. The obvious exception is the element
that is only text (really a special case of the mixed-content element type): this type of element is used
when data points are being represented as elements.

Constrain Elements that have Structured Content
XML allows designers to specify complex structural content for elements using the grouping, choice,
and cardinality operators. While these complex structures allow fine control over the order and
frequency of elements appearing as children of the element being defined, they can be somewhat
problematic to code for.

In general, you should restrict structured content to sequential elements only, using commas to separate
the elements that may appear. The one situation where that doesn't strictly apply is when a true "either-
or" relationship is being modeled.

For example, let's say we had the following structure (ch05_ex09.dtd):

<!ELEMENT User (Supplier | Customer)>
<!ATTLIST User

login CDATA #REQUIRED
hashedPassword CDATA #REQUIRED>

<!ELEMENT Supplier EMPTY>
<!ATTLIST Supplier

name CDATA #REQUIRED
supplyFrequency CDATA #REQUIRED
partIDREFS IDREFS #REQUIRED>

<!ELEMENT Customer EMPTY>
<!ATTLIST Customer

name CDATA #REQUIRED
address CDATA #REQUIRED
city CDATA #REQUIRED
state CDATA #REQUIRED
postalCode CDATA #REQUIRED>

If the User could be a Supplier, a Customer, or both, then the correct content model for the user
element should be:

<!ELEMENT User (Supplier?, Customer?)>

The argument could then be made that the actual correct structure would be:

<!ELEMENT User ((Supplier, Customer) | Supplier | Customer)>

However, as you can imagine, the structures would become quite complex quickly if this sort of
structure were used often. Instead, it's better to ensure that at least one of Supplier or Customer is
provided in your code.

Chapter 4

124

Capturing Strong Typing Information
When gathering data points for the standard, it's important to capture strong typing information for that
data. Even though DTDs cannot enforce the strong typing, having it available in some form will help
implementers understand the exact format and purpose of each of the data points included in the
standard. Additionally, when XML Schemas become available, and it becomes possible to strongly type
the data points, the migration will be less painful, since you won't have to go through the additional step
of recapturing the typing for each of the data points.

Say you had the following structure:

<!ELEMENT Invoice EMPTY>
<!ATTLIST Invoice

orderDate CDATA #REQUIRED
shipDate CDATA #REQUIRED
shipMethod (USPS | UPS | FedEx) #REQUIRED>

It's important to specify the format of the date, especially if the company does business internationally;
some countries represent dates as MM/DD/YYYY and some as DD/MM/YYYY. In the United States,
for example, 07/04/2000 means July 4, 2000, while in Germany and England the same string would
indicate April 7, 2000. The best way to add this sort of information to your DTD is in the form of a
comment block:

<!-- Element: Invoice -->
<!-- Attributes: -->
<!-- orderDate -->
<!-- Data type: datetime -->
<!-- Format: YYYY-MM-DD -->
<!-- Description: This field contains the date the invoice was -->
<!-- submitted. -->
<!-- shipDate -->
<!-- Data type: datetime -->
<!-- Format: YYYY-MM-DD -->
<!-- Description: This field contains the date the parts ordered -->
<!-- on the invoice were shipped to the customer. -->
<!-- shipMethod -->
<!-- Data type: enumerated attribute -->
<!-- Format: USPS: United States Postal Service -->
<!-- UPS: United Parcel Service -->
<!-- FedEx: Federal Express -->
<!-- Description: This field indicates what shipper was used to -->
<!-- ship the parts to the customer. -->
<!ELEMENT Invoice EMPTY>
<!ATTLIST Invoice

orderDate CDATA #REQUIRED
shipDate CDATA #REQUIRED
shipMethod (USPS | UPS | FedEx) #REQUIRED>

While this will drastically increase the size of your DTD, many processors parse and cache DTDs,
making the extra comments irrelevant. If you find that your processor's performance is degraded when
using heavily commented DTDs, you might want to store the comments in some other medium (such as
the implementation guide, which we'll cover later).

Standards Design

125

Naming Conventions
In order for your standard to be internally coherent and comprehensible, a naming convention should
be used for all elements and attributes. The naming convention should be detailed enough that someone
who is implementing the standard may determine, at a glance, what a particular element or attribute
represents. For example, here's one possible naming convention you might use:

❑ Element names should be upper-camel-case (words concatenated, with the first letter of each
word capitalized).

❑ Attribute names should be lower-camel-case (words concatenated, with the first letter of each
word capitalized except for the first word in the attribute name).

❑ Attribute names should not repeat the element name in which they appear (for example, in
the Invoice element use the attribute name orderDate, not invoiceOrderDate).

❑ Attribute names should consist of (optionally) one or more prefixes describing the role of the
data point in the overall structure, followed by a main name describing the data point,
followed by a suffix describing the type of data that the data value may hold (including scaling
information, if any).

❑ Attributes that represent Boolean values take the prefix is.

So the following structure would agree with the above naming convention list:

<!ELEMENT SalesTax EMPTY>
<!ATTLIST SalesTax

stateText CDATA #REQUIRED
valuePercent CDATA #REQUIRED
isExempt (Y | N) #REQUIRED>

but this structure would not:

<!ELEMENT salestax EMPTY> (does not follow naming convention for
elements)

<!ATTLIST salestax
state CDATA #REQUIRED (does not indicate the type of

information)
percentValue CDATA #REQUIRED (does not have the type of data as a

suffix)
TaxExempt (Y | N) #REQUIRED (repeats the prefix, and does not begin

with "is")

The exact details of the naming convention aren't as important as the existence of the convention itself.
As long as the convention makes it easy to understand the role and meaning of each element and
attribute simply by looking at its name, you can choose the syntactical style that suits the standards
group best.

Of course, the decisions you make regarding these ground rules will affect the entire future project, so
it's important to get it right. Therefore, the next thing we need to assess is exactly what bearing these
decisions will have.

Chapter 4

126

Understanding the Impact of Design Decisions
There is a great temptation when designing XML structures to try to design the most elegant solution,
regardless of the implications for development of using the structures created. However, it's important
to take the development and production implications of your design decisions into account from the
outset. Let's look at some common metrics that can be adversely affected by design decisions.

Performance
The most obvious production metric is performance. With any XML implementation, careful attention
has to be paid to the way the documents are constructed, their size, and the way they are parsed to
avoid memory and network bottlenecks. Let's look at some common design decisions that can adversely
impact performance.

Document Size
If a developer is using the DOM, or some toolset or library that is based on the DOM, the entire XML
document is read into memory and parsed into the node tree before actions are taken on the document.
This creates an obvious memory bottleneck if the documents are too large, or if too many concurrent
sessions of the DOM (or DOM-dependent) parser are instantiated on a single machine.

If you are concerned about memory consumption, there are several approaches you can take to mitigate
the problem:

❑ Reduce the Tag Sizes.

As we saw earlier in the document, reducing the tag sizes on your elements can significantly
reduce the size of documents. This translates directly to a reduced footprint for each instance
of the DOM processor loaded and reading documents. This is probably the best approach to
the problem, but it has the significant downside of making the documents less human-
readable.

❑ Add more Memory/Hardware.

As with any production system bottleneck, you can improve the system performance if you
distribute the load across additional systems, or add more memory to the system that is
experiencing the memory bottleneck. Unfortunately, this has the obvious drawback of
requiring new hardware or memory to be purchased and installed.

❑ Reduce the Scope of the Structures.

If the XML documents cover a wide range of information, one way to reduce the memory
footprint is to remove information from your structures that is not accessed by your
consumers. Perhaps you elected to add some information to support theoretical future
consumers who might need it, or you tried to create a structure that was "one-size-fits-all." In
this case, consider breaking the structure into smaller structures, which may be used to satisfy
particular consumer requirements separately to control the system load.

Standards Design

127

❑ Use SAX Technology Instead.

SAX parsers, or processors that are based on SAX, have a significantly smaller footprint than
DOM parsers, since they stream the document through a parse window rather than loading
the entire document into memory. However, SAX parsers can be notoriously difficult to work
with, especially if your document has pointing relationships (ID-IDREF connections) that need
to be navigated. If a pointing relationship is a backward reference (i.e., the ID pointed to by
the IDREF appears earlier in the document), then either multiple passes or some sort of
memory caching mechanism will be required to navigate the relationship – which defeats the
whole purpose of the small memory footprint.

Overnormalization
Another factor that can affect performance is how normalized your structure is – in other words, how
many nodes deep the created tree is. Depending on the specific processor implementation, a deeper tree
can take longer to navigate. If you think that your structures might be overnormalized, look for one-to-
one relationships between elements and their element content. These can typically be denormalized
easily, and the attributes of the child element brought into the parent.

Too Many Pointing Relationships
An overabundance of pointing relationships in your structures can have serious performance
implications for processors. As we mentioned earlier in the chapter, most implementations of the DOM
don't have a built-in way to navigate ID-IDREF relationships. Those that do still have to iterate through
the entire element node list looking for the element whose ID matches the IDREF you have.

The problem is only compounded if you are using the SAX processor. The more pointing relationships
that are in your structures, the more likely it is that one of the relationships will point backwards in the
document, forcing implementers to write caching schemes or perform multiple parse passes on
documents.

If you find that the number of pointing relationships is having performance implications for you, you
might try transforming some of the pointers to containment relationships. This may cause your
document to be slightly larger, but it will in fact be processed faster than one containing the pointing
relationships. Let's see an example of this.

Recall the sample invoice DTD we used to show how XML might be used to drive a presentation layer
(ch05_ex06.dtd and ch05_ex06.xml):

<!ELEMENT InvoiceData (Invoice+, Part+)>
<!ELEMENT Invoice (LineItem+)>
<!ATTLIST Invoice

orderDate CDATA #REQUIRED
shipDate CDATA #REQUIRED
shipMethod (UPS | USPS | FedEx) #REQUIRED>

<!ELEMENT LineItem EMPTY>
<!ATTLIST LineItem

partIDREF IDREF #REQUIRED
quantity CDATA #REQUIRED
price CDATA #REQUIRED>

<!ELEMENT Part EMPTY>
<!ATTLIST Part

partID ID #REQUIRED
name CDATA #REQUIRED
size CDATA #REQUIRED
color CDATA #REQUIRED>

Chapter 4

128

<InvoiceData>
<Invoice

orderDate="12/1/2000"
shipDate="12/4/2000"
shipMethod="UPS">
<LineItem

partIDREF="p1"
quantity="17"
price="0.10" />

<LineItem
partIDREF="p2"
quantity="22"
price="0.20" />

</Invoice>
<Invoice

orderDate="12/2/2000"
shipDate="12/5/2000"
shipMethod="USPS">
<LineItem

partIDREF="p3"
quantity="13"
price="0.30" />

<LineItem
partIDREF="p1"
quantity="11"
price="0.10" />

</Invoice>
<Part

PartID="p1"
name="grommet"
size="2 in."
color="blue" />

<Part
PartID="p2"
name="widget"
size="3 in."
color="silver" />

<Part
PartID="p3"
name="sprocket"
size="1 in."
color="red" />

</InvoiceData>

In this example, an ID-IDREF navigation is required – taking the PartIDREF value and navigating to
the appropriate information about the part. We can improve the performance of the document by
changing this relationship to a containment relationship, denormalizing it into the LineItem structure,
and repeating the part data where necessary (ch05_ex10.dtd and ch05_ex10.xml):

<!ELEMENT InvoiceData (Invoice+)>
<!ELEMENT Invoice (LineItem+)>
<!ATTLIST Invoice

orderDate CDATA #REQUIRED
shipDate CDATA #REQUIRED
shipMethod (UPS | USPS | FedEx) #REQUIRED>

<!ELEMENT LineItem EMPTY>
<!ATTLIST LineItem

name CDATA #REQUIRED
size CDATA #REQUIRED
color CDATA #REQUIRED
quantity CDATA #REQUIRED
price CDATA #REQUIRED>

Standards Design

129

<?xml version="1.0"?>
<!DOCTYPE listing SYSTEM "ch05_ex10.dtd" >

<InvoiceData>
<Invoice

orderDate="12/1/2000"
shipDate="12/4/2000"
shipMethod="UPS">
<LineItem

name="grommet"
size="2 in."
color="blue"
quantity="17"
price="0.10" />

<LineItem
name="widget"
size="3 in."
color="silver"
quantity="22"
price="0.20" />

</Invoice>
<Invoice

orderDate="12/2/2000"
shipDate="12/5/2000"
shipMethod="USPS">
<LineItem

name="sprocket"
size="1 in."
color="red"
quantity="13"
price="0.30" />

<LineItem
name="grommet"
size="2 in."
color="blue"
quantity="11"
price="0.10" />

</Invoice>
</InvoiceData>

If the consuming system needs to know that the grommet referenced in the first invoice is the same as
the grommet referenced in the second invoice, it will need to reconcile that information by comparing
the name, size, and so on. The ch05_ex06 version will be smaller, while the ch05_ex10 version parses
more quickly – it all depends on your specific performance requirements.

Coding Time
Another important factor to take into consideration when developing XML structures is the time it will
take for code processors to produce and consume them. There are several ways that your structure
design can influence the time it takes to write code against it.

Chapter 4

130

Document Complexity
One pretty obvious way that your structure can influence the coding time required to build against it is
its complexity. The more complex a document structure, the more lines of code will need to be written
to produce or consume it.

While there's no way around a certain level of complexity – after all, the XML document needs to
contain all the information relevant to the task at hand – you can avoid document complexity by
avoiding overnormalization. If an element has a one-to-one relationship with another element, and
there's no compelling reason to keep the two separate, pulling the attributes of the child into the parent
and discarding the child will make the document tighter and easier to parse.

Pointing Relationships
The more pointing relationships your document uses, the more difficult it will be to write code that
produces or consumes it. Producers will need to generate identifiers and make sure all the references
properly link back to the identifiers, while consumers will need to hop around the tree pursuing
pointing relationships to extract the information they need. Removing pointing relationships where
possible will help to shorten the coding cycle.

Levels of Abstraction
When designing data structures, the developer can choose the level of abstraction to which the
structures will be taken. While additional abstraction can produce real benefits in a relational model, it
only introduces unnecessary processing for a producer or consumer of an XML document, as the level
of abstraction has to be rectified before the information can be accessed.

Let's see an example. Say we have this structure for the Invoice element:

<!ELEMENT Invoice (Date+)>
<!ELEMENT Date EMPTY>
<!ATTLIST Date

dateType (orderDate | shipDate) #REQUIRED
dateValue CDATA #REQUIRED>

<Invoice>
<Date dateType="orderDate" dateValue="12/1/2000" />
<Date dateType="shipDate" dateValue="12/4/2000" />

</Invoice>

Many developers are drawn to this type of implementation, as it seems more backward-compatible: if
you want to add a different kind of date for the invoice, just add a possible value to the enumerated
value and you're done. However, there are some issues with this type of structure in XML.

First, there's no way to state that only one orderDate and one shipDate date may appear. Thus, the
following document would be perfectly legal:

<Invoice>
<Date dateType="orderDate" dateValue="12/1/2000" />
<Date dateType="orderDate" dateValue="12/4/2000" />

</Invoice>

Standards Design

131

Additionally, a consumer now has to retrieve all the child Date elements of the Invoice element, look
at the dateType to figure out what type of Date each is, and then act accordingly. A much better
structure, and one that is much easier to code to, is one that explicitly states each date type:

<!ELEMENT Invoice EMPTY>
<!ATTLIST Invoice

orderDate CDATA #REQUIRED
shipDate CDATA #REQUIRED>

<Invoice
orderDate="12/1/2000"
shipDate="12/4/2000" />

Developer Ramp-up Time
Another issue to consider when designing your structures is the developer ramp-up time; in other
words, how long it will take the developer to understand the representation of the data found in the
XML structure you have created. This concern is similar to the concern over coding time, and naturally
may be addressed in similar ways. The main issues that will extend developer ramp-up time are the
document complexity, the number of pointing relationships used in the document, and the abstractness
of the document.

Extensibility
One thing to keep in mind when developing your XML structures is that they are likely to change over
time. While true backward compatibility is a difficult goal to attain with XML, you can at least design
your structures so that old documents may be migrated upward with a minimum of effort.

Again, one major thing you can do to make this easier is to avoid too many pointing relationships –
these will make understanding the impact of any changes you choose to make difficult at best. You
should also think about whether elements and attributes should be required or optional. If you are
striving for backward compatibility, any elements and attributes you add should be optional. However,
be aware that you lose a certain level of ability to perform business rule enforcement if you choose
to do so.

During the Development
Next, we need to look at some issues that are likely to arise during the development of your documents.

Subdividing the Workload
Since standards design efforts are typically collaborative efforts, there need to be some clearly-defined
ways to control who is working on what portion of the document. Typically, the best approach is to
subdivide the work and allow the domain experts to concentrate their efforts (initially, at least) on the
areas of the document that pertain to their skills.

Chapter 4

132

For example, say you were developing the invoice system we have been using as an example. You
might assign the design of the parts structures to your inventory control data developer, the invoice
structures to your point-of-sale data developer, and the summary tables to your accounting developer. A
good rule of thumb is to assign each part of the workload to the person or team that has the greatest
vested interest in the way that part of the structure is designed.

One good approach to subdividing the effort is to first meet as a team to map out the overall structure of
the document. For example, you might all agree that a document contains invoices, each of which
reference parts, and are summarized in a monthly element. Once consensus has been reached on this,
then each individual element (or group of elements) should be doled out to the developer who will be
working on it (or them). Once everyone has finished their own designs, you should meet again to bring
the structures together (and we'll see how this is done later in the chapter).

Data issues
While developing the structures, there are some common data issues you are likely to encounter. These
issues may stem from a disagreement among participants, or from issues associated with the resultant
structures. We'll look at the following issues, and how they may be addressed:

❑ General vs. specific

❑ Required vs. optional

❑ "Tag soup"

❑ Keeping the Structure "Representation Independent"

General vs. Specific
This problem is the one that tends to crop up more often than any other, especially in standards with
wider scope. Let's say that we are designing an invoice and summary document to be passed back and
forth between the point-of-sale system and the accounting system. From the point-of-sale perspective,
the natural way to reference prices is going to be at the line item level – the customer paid a certain
price for each unit of a certain part, and a certain quantity of parts were ordered. However, from the
accounting perspective, the natural way to reference prices is at the invoice level – that way, accounting
can ensure that all customers are billed properly without having to recalculate totals for every invoice.
Which representation is correct in the structures we're creating?

One way to resolve this issue is to state that both the general and the specific representations are
correct, but that they should be declared as optional. This allows all producers of the document to
simply store whatever information is available. However, this introduces a problem: what if the
accounting system produces a document, and the point-of-sale system tries to consume it? It will not
have the information necessary (the line item information), and so the point-of-sale system cannot
recreate the line items for the invoice. Typically, a producer that includes the specific information can
create a document that can be consumed by a consumer looking for the general information, but not
vice-versa.

Another place where this crops up is in the discussion of enumerated values. For example, say the point-
of-sale designers propose the following structure for shipMethod:

<!ATTLIST Invoice
shipMethod (USPS | UPS | FedEx) #REQUIRED>

Standards Design

133

However, the fulfillment designer proposes this structure:

<!ATTLIST Invoice
shipMethod (USPSGround |

USPSPriority |
UPSGround |
UPSOvernight |
FedExGround |
FedExOvernight) #REQUIRED>

Again, we have the case of one designer proposing the general values, and one designer proposing more
specific values. Similar techniques must be used to determine what the representation used in the
standard should be. In this case, the ideal structure probably looks something like this:

<!ATTLIST Invoice
shipper (USPS |

UPS |
FedEx) #REQUIRED

shipMethod (Ground |
Overnight) #OPTIONAL>

Required vs. Optional
Another issue that often arises is debate over whether a particular element or attribute should be
required or optional. For example, the point-of-sale designer might insist that the LineItem child
element of the Invoice element is required – after all, you can't have an invoice without line items,
right? On the other hand, the accounting designer insists that the LineItem child element should be
optional – by the time the invoice reaches the accounting system, all they care about is the customer
and the amount due.

This decision is usually a toss-up – either you make the element optional, losing some of your ability to
control the content of the XML document (because a point-of-sale system could now leave off the
LineItem elements in the Invoice element), or you make the element required (meaning that the
Accounting system now has to remember the line items for every invoice). Typically, the wider scope an
XML standards effort has, the more likely that items will be optional rather than required.

"Tag soup"
Developers familiar with relational database design, but unfamiliar with XML design, often tend to
overuse pointing relationships, as pointing relationships are highly reminiscent of foreign key
relationships in relational databases. However, using too many pointing relationships causes the
document to degenerate into "tag soup" in other words, rather than being a tree structure, the document
is simply a large pile of leaves with pointers connecting back and forth between them.

We've already seen some of the perils of a document that has too many pointing relationships. It's
important that issues of incipient tag soup are addressed and resolved during the peer reviews (which
we'll discuss later).

Keeping the Structure Representation-Independent
A common mistake that new XML developers often make is to tie their structures too closely to a
specific representation of the data contained in those structures. The greatest benefit of XML is its
ability to abstract the data away from the specific representation of that data.

Chapter 4

134

Here's an example. Say we had the following printed invoice document, which has been our standard
document for the past twenty years:

Invoice
Order date: 12/1/2000
Ship date: 12/4/2000
Ship method: UPS

Part Quantity Unit Price Price

2 in. blue grommet 17 0.10 1.70

3 in. silver widget 22 0.20 4.40

Total 6.10

A developer might be tempted to design a structure that looked like this (ch05_ex11.dtd):

<!ELEMENT Invoice (orderDate, shipDate, shipMethod, Line1, Line2, Line3)>
<!ELEMENT orderDate (#PCDATA)>
<!ELEMENT shipDate (#PCDATA)>
<!ELEMENT shipMethod (#PCDATA)>
<!ELEMENT Line1 EMPTY>
<!ATTLIST Line1

partDescription CDATA #REQUIRED
quantity CDATA #REQUIRED
price CDATA #REQUIRED>

<!ELEMENT Line2 EMPTY>
<!ATTLIST Line2

partDescription CDATA #REQUIRED
quantity CDATA #REQUIRED
price CDATA #REQUIRED>

<!ELEMENT Line3 EMPTY>
<!ATTLIST Line3

partDescription CDATA #REQUIRED
quantity CDATA #REQUIRED
price CDATA #REQUIRED>

The problem is that now the tag names in the XML refer back to a specific representation of the data –
the printed invoice – not the data itself. This problem tends to crop up more frequently when discussing
commonly used forms across an industry, such as a mortgage application form or an income tax form.
You should avoid making reference to specific aspects of a single representation of data, such as line
numbers, whenever possible. The only exception to this rule would be if your XML was intended only
to drive a presentation layer, and all planned representations of the data followed the same general
layout

Obviously, the better structure to use here would be this (ch05_ex11a.dtd):

<!ELEMENT Invoice (orderDate, shipDate, shipMethod, Line+)>
<!ELEMENT orderDate (#PCDATA)>
<!ELEMENT shipDate (#PCDATA)>
<!ELEMENT shipMethod (#PCDATA)>
<!ELEMENT Line EMPTY>
<!ATTLIST Line

partDescription CDATA #REQUIRED
quantity CDATA #REQUIRED
price CDATA #REQUIRED>

Standards Design

135

Pulling it all Together
Once the developers have all produced their portions of the XML structures, it's time to pull it all
together into one coherent standard. However, as you might imagine, problems often arise when
attempting to do so. Let's see some of the ways you can deal with these problems and prepare associated
information to make the adoption of the standard as painless as possible.

Peer Review
It's important that the entire structure be subject to peer review. This helps ensure that the work done
by each team member is accurate and consistent with work done by the others on the team. In this step,
issues such as too many pointing relationships and too implementation-specific designs can be identified
and resolved.

In addition to the structure being reviewed by the team who developed it, it should be reviewed by
developers who did not work on the structure. These don't necessarily need to be XML designers, but
they should have a good working understanding of the data that drives the structures. As issues are
identified by the peer review, they should be addressed and resolved, either by the developer
responsible or the team as a whole.

Resolving Disputes
When everyone meets to discuss the structures, inevitably some disputes will arise that cannot be
resolved through a simple discussion. Most data developers have strongly-held opinions about the way
data should be represented (all interest rates should be shown as ratios, for example, or all data points
with similar types should be grouped together). No amount of debate is likely to create a consensus on
these types of issues. When arbitration fails, the way to resolve a dispute is to put it to a vote. If the team
consists of an even number of participants, the lead developer can decide ties. This way, the resultant
structures will be satisfactory to the majority of the participants in the process.

The Implementation Guide
When you deliver the XML structures you have created to the developers who will be using them, you
should also provide an implementation guide. This document should include:

❑ A brief statement of the purpose of the structure

❑ A dictionary describing the elements and attributes in the structure

❑ A diagram of the structure

❑ A few sample documents that exercise the various permutations of the structure that are
allowed

Let's see how each part of the guide should be created.

Statement of Purpose
The first part of the document should talk about the purpose of the document. It should describe:

❑ The scope of the structure (who will be using it)

❑ The type of data described in the structure

❑ The purpose to which documents using the structure will be put

❑ Any other considerations you took into account when designing the structure

Chapter 4

136

This should help identify the role of the document, and deter developers from using the document for a
purpose for which it was not originally intended (although you can pretty much guarantee that someone
will do this anyway – and then complain about the fact that it doesn't suit their needs perfectly).

Dictionary
Next, you should describe the various elements and attributes in the document in a human-readable
way. In this dictionary, you should provide detailed definitions, as well as describing the structure in
terms of "this-points-to-that" or "this-contains-one-or-more-of-those".

Let's see a sample dictionary for a structure we've been working with in this chapter (ch05_ex06.dtd):

<!ELEMENT InvoiceData (Invoice+, Part+)>
<!ELEMENT Invoice (LineItem+)>
<!ATTLIST Invoice

orderDate CDATA #REQUIRED
shipDate CDATA #REQUIRED
shipMethod (UPS | USPS | FedEx) #REQUIRED>

<!ELEMENT LineItem EMPTY>
<!ATTLIST LineItem

partIDREF IDREF #REQUIRED
quantity CDATA #REQUIRED
price CDATA #REQUIRED>

<!ELEMENT Part EMPTY>
<!ATTLIST Part

partID ID #REQUIRED
name CDATA #REQUIRED
size CDATA #REQUIRED
color CDATA #REQUIRED>

Our dictionary might look like this:

Element Details

InvoiceData Contains: Invoice (one or more), followed by Part (one or more)

Is contained by: None

Is pointed to by: None

Description: This element is the root element of the document

Attributes: None

Invoice Contains: LineItem (one or more)

Is contained by: InvoiceData

Is pointed to by: None

Description: This element represents one physical invoice

Attributes:

orderDate
Data type: Datetime
Format: MM/DD/YYYY

Standards Design

137

Element Details

Invoice (continued) Description: This is the date the invoice was submitted (the date the
order was placed)

shipDate
Data type: Datetime
Format: MM/DD/YYYY
Description: This is the date the parts on this invoice shipped, or are
anticipated to ship

shipMethod
Data type: Enumerated
Format: USPS: United States Postal Service

 UPS: United Parcel Service

 FedEx: Federal Express

Description: This is the method used to ship the parts on this
invoice, or the anticipated shipping method for the parts on this
invoice

LineItem Contains: None

Is contained by: Invoice

Is pointed to by: None

Description: This element represents one detail line on an invoice

Attributes:

partIDREF
Data type: IDREF (points to a Part element)
Format: N/A
Description: This attribute points to the Part element that describes
the part ordered on this line of the invoice

quantity
Data type: Numeric
Format: #####
Description: This attribute indicates how many of the specific parts
were ordered on this line of the invoice

price
Data type: Numeric
Format: #####.##
Description: This attribute indicates the unit price paid by the
customer for the part ordered on this line of the invoice

Part Contains: None

Is contained by: InvoiceData

Is pointed to by: LineItem

Description: This element describes a particular part referenced on
one or more of the invoices in this document

Table continued on following page

Chapter 4

138

Element Details

Part (continued) Attributes:

partID
Data type: ID (uniquely identifies this element within the document)
Format: N/A
Description: This attribute identifies this element within the
document, so that it may be pointed to from the LineItem element

name
Data type: String
Format: Maximum length 50 characters
Description: This attribute contains the name of the part being
described in this Part element

color
Data type: String
Format: Maximum length 10 characters
Description: This attribute describes the color of the part being
described in this Part element

size
Data type: String
Format: Maximum length 20 characters
Description: This attribute describes the size of the part being
described in this Part element

Document Structure Diagram
It's important to create a diagram of the XML structures you create. You can either do this as an aid to
development during the design process, or at the end of the process to identify problems such as
orphaned mislinked elements. In addition, this model should be distributed along with the structures to
the developers that must use them – this will help the developers ramp up on the structures and
improve their time-to-delivery.

The W3C provides an example of "Elm tree" diagramming for XML structures
(http://www.w3.org/XML/1998/06/xmlspec-report-v21.htm). However, it does not go far enough in
addressing pointing relationships. We recommend that you use a modified form of the W3C
diagramming proposal, with an additional connector type to indicate pointing relationships. We also
recommend that you list the data points associated with an element, whether they are text elements or
attributes, inside the box representing that element (much as you might for a relational database
diagram).

Let's see an example of a diagram using this method for our example:

<!ELEMENT InvoiceData (Invoice+, Part+)>
<!ELEMENT Invoice (LineItem+)>
<!ATTLIST Invoice

orderDate CDATA #REQUIRED
shipDate CDATA #REQUIRED
shipMethod (UPS | USPS | FedEx) #REQUIRED>

<!ELEMENT LineItem EMPTY>

Standards Design

139

<!ATTLIST LineItem
partIDREF IDREF #REQUIRED
quantity CDATA #REQUIRED
price CDATA #REQUIRED>

<!ELEMENT Part EMPTY>
<!ATTLIST Part

partID ID #REQUIRED
name CDATA #REQUIRED
size CDATA #REQUIRED
color CDATA #REQUIRED>

For this sample structure, the corresponding diagram would be:

InvoiceData

LineItem
partIDREF: IDREF
quantity: numeric
price: numeric

Invoice
orderDate: datetime
shipDate: datetime
shipMethod: enumeration

Part
partID: ID
name: string
color: string
size: string

+

+

+

Sample Documents
Finally, you should include some sample documents in your implementation guide. These documents
should cover all of the anticipated uses of the structures you have designed, and exercise as many
variations of the structures as possible. You should annotate each sample document with a description
of what it represents, as well as any comments on less-clear parts of the structure (such as how pointing
relationships are used).

Chapter 4

140

Summary
As XML becomes increasingly pervasive, the need for XML standards to be developed will grow. These
standards may be as simple as a way for two systems in your enterprise to communicate with one
another, or complex enough to support a worldwide industry with thousands of participating companies.

In this chapter, we've taken a look at some things to keep in mind when designing your structures,
including:

❑ Understanding how the type of standard and document usage will determine the structure of
our designs

❑ Understanding the need to assess the way our design decisions will affect the finished solution

❑ Some of the factors we should take into consideration during the development process

❑ How to ensure that the final standard can be implemented as painlessly as possible

Using the techniques covered in this chapter, you should be able to create standards that will be both
easy to understand and well-suited to the tasks at hand.

This chapter brings us to the end of the Design Techniques section of this book. We'll now move on to
look at some of the specific technologies we'll need to use in more detail, starting with XML Schemas.

Standards Design

141

Chapter 4

142

DOM

Having seen how to model our XML data, we now need to know how to work with that data. In the
next two chapters, we are going to learn how to manipulate, add, update, and delete that data while it is
still in its XML document, and make it available to processing applications.

The Document Object Model (DOM) provides a means for working with XML documents (and other
types of documents) through the use of code, and a way to interface with that code in the programs we
write. In a sentence, the Document Object Model provides standardized access to parts of an XML
document. For example, the DOM enables us to:

❑ Create documents and parts of documents.

❑ Navigate through the document.

❑ Move, copy, and remove parts of the document.

❑ Add or modify attributes.

In this chapter, we'll discuss how to work with the DOM to achieve such tasks, as well as seeing:

❑ What the DOM is.

❑ What interfaces are, and how they differ from objects.

❑ What XML related interfaces exist in the DOM, and what we can do with them.

❑ How to use exceptions.

The DOM specification is being built level-by-level. That is, when the W3C produced the first DOM
Recommendation, it was DOM Level 1. Level 1 was then added to, to produce Level 2. At the time
of writing, DOM Level 3 was in its development stages, so in this chapter, we'll be discussing the
DOM Level 2.

Chapter 6

192

You can find the DOM Level 2 specification at:
http://www.w3.org/TR/DOM-Level-2/, and there's more information at:
http://www.w3.org/TR/1999/CR-DOM-Level-2-19991210/core.html.

What is the DOM?
As we are able to create our own XML vocabularies, and document instances that conform to these
vocabularies, we need a standard way to interact with this data. The DOM provides us with an object
model that can model any XML document – regardless of how it is structured – giving us access to its
content. So, as long as we create our documents according to the rules laid down in the XML 1.0
specification, the DOM will be able to represent them and give us interfaces to work with them
programmatically.

While the DOM is an object model, the model is abstract – the DOM is not a program itself, and the
specification does not tell us how to implement the interfaces it exposes. In actual fact, the DOM
specification just declares a set of Application Programming Interfaces, or APIs, that define how a
DOM compliant piece of software would allow us to access a document and manipulate its contents.

When we looked at how we use XML in association with databases, we saw that it is a powerful device
in any developer's toolkit. It provides methods for our XML documents to be updated, and created,
records added, elements removed, attributes changed, etc.

How Does the DOM Work?
As we said, the DOM specification defines interfaces that a program can implement to be DOM
compliant. It does so in a programming language independent manner, so implementations of the DOM
can be written in our language of choice. Rather than writing the implementations of the interfaces
specified by the DOM, however, there are many pieces of software that implement it for us.

The DOM is usually added as a layer between the XML parser and the
application that needs the information in the document, meaning that the parser
reads the data from the XML document and then feeds that data into a DOM.
The DOM is then used by a higher-level application. The application can do
whatever it wants with this information, including putting it into another
proprietary object model, if so desired.

Application

DOM

XML Parser

>>

XML
Document

So, in order to write an application that will be accessing an XML document through the DOM, we
need to have an XML parser and a DOM implementation installed on our machine. Some DOM
implementations, such as MSXML (http://msdn.microsoft.com/downloads/default.asp), have the parser
built right in, while others can be configured to sit on top of one of many parsers.

DOM

193

Most of the time, when working with the DOM, the developer will never even have to know that an
XML parser is involved, because the parser is at a lower level than the DOM, and will be hidden away.
Here are some other implementations that we may be interested in:

Xerces Part of the Apache Project, Xerces provides fully-validating
parsers available for Java and C++, implementing the W3C XML
and DOM (Level 1 and 2) standards. See http://xml.apache.org.

4DOM 4DOM was designed to provide Python developers with a tool that
could help them rapidly design applications for reading, writing,
or otherwise manipulating HTML and XML documents.

ActiveDOM ActiveDOM is an Active-X control that enables XML files to be
loaded and created based upon the W3C DOM 1.0 specification.

Docuverse DOM SDK Docuverse DOM SDK is a full implementation of the W3C DOM
(Document Object Model) API in Java.

PullDOM and MiniDOM PullDOM is simple Application Programming Interface (API) for
working with Document Object Model (DOM) objects in a
streaming manner with Python.

TclDOM TclDOM is a language binding for the DOM to the Tcl scripting
language.

XDBM XDBM is an XML Database Manager provided as an embedded
database for use within other software applications through the use
of a DOM-based API.

DOMString
In order to ensure that all DOM implementations work in the same way, the DOM specifies a data type
called DOMString. This is a sequence of 16-bit units (characters) which is used anywhere that a string is
expected.

In other words, the DOM specifies that all strings must be UTF-16. Although the DOM specification
uses this DOMString type anywhere it's talking about strings, this is just for the sake of convenience; a
DOM implementation doesn't actually need to make any type of DOMString object available.

Many programming languages, such as Java, JavaScript, and Visual Basic, work with strings in 16-bit
units natively, so anywhere a DOMString is specified, these programming languages could use their
native string types. On the other hand, C and C++ can work with strings in 8-bit units or in 16-bit units,
so care must be taken to ensure that we are always using the 16-bit units in these languages.

DOM Implementations
Because there are different types of DOM implementations, the DOM provides the DOM Core – a core
set of interfaces for working with basic documents – and a number of optional modules for working
with other documents. For example, the DOM can also be used for working with HTML documents
cascading style sheets (CSS). These modules are sets of additional interfaces that can be implemented
as required.

Chapter 6

194

The DOM Level 2 specification defines the following optional modules:

DOM Views Allows programs and scripts to dynamically access and
update the content of a representation of a document
(http://www.w3.org/TR/DOM-Level-2-Views)

DOM Events Gives programs and scripts a generic event system
(http://www.w3.org/TR/DOM-Level-2-Events)

DOM HTML Allows programs and scripts to dynamically access and
update the content and structure of HTML documents
(http://www.w3.org/TR/DOM-Level-2-HTML)

DOM Style Sheets and
Cascading Style Sheets (CSS)

Allows programs and scripts to dynamically access and
update the content and structure of style sheet documents
(http://www.w3.org/TR/DOM-Level-2-Style)

DOM Traversal and Range Allows programs and scripts to dynamically traverse and
identify a range of content in a document.
(http://www.w3.org/TR/DOM-Level-2-Traversal-Range)

For the rest of this chapter, we're going to be concentrating on the DOM Core.

DOM Interfaces
The name "Document Object Model" clearly has the word "object" in it. This is because the
implementation of the DOM creates an in-memory tree that represents the document as objects. These
objects are just the internal representation, which we refer to as Nodes. So when thinking about the
DOM's representation of a document, we talk in terms of nodes.

These objects, or nodes, expose a set of interfaces, and the DOM specification tells us what these
interfaces are, and what we can expect in return when calling a method or property on them. So, when
we are programming, we manipulate the objects through the interfaces. For example, using the
interfaces supplied, we can say "go get the Customer object [of the document that is loaded] and tell me its
properties". Then we can manipulate the properties for that object.

Since that's the case, we'd better take a look at what these interfaces are, and what they're good for. To
get an idea of what interfaces are involved in the DOM, let's take a very simple XML document, such as
this one:

<parent>
<child id="123">text goes here</child>

</parent>

When loaded into an implementation of the DOM, it would create the following set of nodes:

DOM

195

Document
Node

NodeList

Element
Node

NodeList

Element
Node

NamedNodeMap

Attr
Node

NodeList

Text
CharacterData

Node

Document Root

<parent>

<child>

id="123"

text goes here

As we can see from this diagram, the in-memory representation that is created is a hierarchical structure
(that reflects the document), and each of the boxes represents a Node object that will be created. Some
of these nodes have child nodes, others are leaf nodes, which means that they do not have any children.

The names in the boxes are the interfaces that will be implemented by each object. For example, we
have nodes to represent the whole document, and nodes to represent each of the elements. Each object
implements a number of appropriate interfaces, such as Text, CharacterData, and Node for the
object that represents the "text goes here" character data. Let's look at what these interfaces signify in
more detail.

The Structure Model
When the document is loaded into the DOM, it creates the representation of the document in memory
so that we can alter and work with it. While it is held in memory, it is the interfaces that the DOM
exposes that allow us to manipulate the document's content.

In our previous example there are four key items of information that we may want to work with, which
have to be represented:

❑ The <parent> element.

❑ The <child> element.

❑ The id attribute on the child and its value.

❑ The text content of the <child> element.

Chapter 6

196

However, in the diagram there are clearly more than the four nodes that represent each piece of
information from the document – the grayed out nodes. The other nodes do have a purpose, as we
shall see.

Each Node object created implements the Node interface.

Firstly, there is a node to represent the whole document, known as the Document node. We can see this
at the root of this tree. This is required because it is the conceptual root of the tree. It has to be there in
order to create the rest of the object model that represents the document, because elements, text nodes,
comments, etc. cannot appear outside the context of a document. The Document node implements the
methods to create these objects, and it will create nodes for all of the types of content we have in the
document. Because the first node in this example is the document element, this Node object also
supports the Document interface.

There are two other types of important interface that we can see in this hierarchy – NodeList and
NamedNodeMap – which are also shown in the white boxes:

❑ NodeList: this Node object implements the NodeList interface. The NodeList is created to
handle lists of Nodes. This is necessary, even though we have only one child element here,
because we may want to use the DOM to add another element at this level. Although the
NodeList handles Nodes it does not actually support the Node interface itself – we can think
of it as being more like a handler. These are automatically inserted before elements and other
markup, and would be used to handle other nodes at the same level.

❑ NamedNodeMap: this is required to handle unordered sets of nodes referenced by their name
attribute, such as the attributes of an element. Again, these are automatically inserted.

Both NodeLists and NamedNodeMaps change dynamically as the document changes. For example, if
another child element is added to a NodeList, it is immediately reflected in the NodeList.

Because XML documents need to have a unique root tag, the Document node can only have one
element as a child. In this case we have the <parent> element. It could, however, also have other legal
XML markup (a processing instruction, comment, document type declaration), which is why we need
the NodeList object in there.

The root element of this document is <Parent>. As we can see from the diagram, this node supports
the Element interface as well as the Node interface, because it represents an element.

Next we have another NodeList node, followed by the <child> element. Again we need the
NodeList object to handle other types of markup that could be at the same level, and to give us the
ability to handle other elements that we may want to add at this level.

The <child> element – like the <parent> element – is represented as an element node object, and
implements the Node and Element interfaces.

Next we have NamedNodeMap and NodeList node objects. In this example, the NamedNodeMap
handles the id attribute and its value, while the NodeList handles the element content.

Then, the id attribute is represented as a child of the NamedNodeMap, and implements the Node and
Attribute interfaces. The element content is represented as a child of NodeList and implements the
Text, CharacterData, and Node interfaces.

As we have seen, each node implements the Node interface. As we head down the tree, we see more
specialized interfaces that are inherited from the Node interface.

DOM

197

Inheritance and Flattened Views
When we come to look at the Node interface in a moment, we will see that it is, in fact, quite powerful.
We could do a lot with each object if it just implemented the Node interface. However, as we have seen,
nodes can implement other more specific interfaces that inherit from parent interfaces. The DOM does,
in fact, allow two different sets of interfaces to a document:

❑ A "simplified" view that allows all manipulation to be done via the Node interface.

❑ An "object oriented" approach with a hierarchy of inheritance.

The DOM allows for these two approaches because the object oriented approach requires casts in Java
and other C-like languages, or query interface calls in COM environments, and both of these techniques
are resource intensive. To allow us to work with documents without having this memory overhead, it is
possible to use a document with the Node interface alone, which is the simplified or flattened view.
However, because the inheritance approach is easier to understand than thinking of everything as a
node, the higher level interfaces were added to give more object orientation.

This means that there may appear to be a lot of redundancy in the API. For example, as we shall see,
the Node interface allows things such as a nodeName attribute, whereas the Element interface will be
more specific and use a tagName attribute. While the value of both may be the same, it was considered
a worthwhile addition.

In this chapter, we will look at the Node interface, so we will get a feel for the simplified or flattened
view, although we will cover the full DOM Core interfaces that are available to us.

The DOM Core
In all, the DOM Core provides the following interfaces:

DOMImplementation

NodeList

Node

NamedNodeMap

DocumentFragment

Document

Element

Attr

CharacterData

DocumentType

Notation

Entity

EntityReference

ProcessingInstruction

Text

Comment

CDATASection

Chapter 6

198

These core interfaces are further broken down into Fundamental Interfaces and Extended Interfaces.

❑ The Fundamental Interfaces must be implemented by all DOM implementations, even ones
that will only be working with non XML documents (such as HTML documents and CSS style
sheets).

❑ The Extended Interfaces only need to be implemented by DOM implementations that will be
working with XML – they are not needed to work with HTML.

We might wonder why the Extended Interfaces were included in the DOM Core, instead of being in an
optional XML module. That may be to do with the move of HTML syntax towards XHTML.

Remember, there are several optional modules that build on the core implementation of the DOM, for
working with other types of documents – DOM HTML, DOM CSS, etc. Since this is a book on XML,
we will only study the DOM Core interfaces here. However, many of the concepts we learn will be
useful if we ever need to learn one of the optional modules.

Fundamental interfaces
The fundamental interfaces are so named because they are considered fundamental to all applications
that wish to be DOM compliant, so all such applications must implement these interfaces. In this section
we will quickly review each of the fundamental:

❑ Node

❑ Document

❑ DOMImplementation

❑ DocumentFragment

❑ NodeList

❑ Element

❑ NamedNodeMap

❑ Attr

❑ CharacterData

❑ Text

❑ Comments

❑ DOMException

To get us started, in this section we will demonstrate examples of how to use the DOM in IE5.x with
MSXML (we used MSXML 3 but the code presented here will generally work just as well with earlier
versions)– that is, using client-side HTML and JavaScript. To keep it simple, we'll look at some template
code here, and then use some snippets that can be added to this template to demonstrate some of the
features.

DOM

199

In order to work with this template we need to save the following document in the same folder as the
template (ch06_ex1.xml):

<root>
<DemoElement DemoAttribute="stuff">This is the PCDATA</DemoElement>

</root>

Here is the template that we will be using (ch06_ex1.html):

<HTML>
<HEAD><TITLE>DOM Demo</TITLE>

<SCRIPT language="JavaScript">

var objDOM;
objDOM = new ActiveXObject("MSXML3.DOMDocument");
objDOM.async = false;
objDOM.load("ch06_ex1.xml");

//our code will go here...

</SCRIPT>

</HEAD>
<BODY>
<P>This page demos some of the DOM capabilities.</P>

</BODY>
</HTML>

If we're using an old version of MSXML, we may need to change MSXML2.DOMDocument to
MSXML.DOMDocument.

The HTML page itself doesn't actually do anything, except display the text, This page demos some of
the DOM capabilities. All of the work is actually done in that <SCRIPT> block, and any results we want
to see are displayed in message boxes.

Note that the DOM specification does not supply instructions on how a document should be loaded. In
this example, we load the XML document into Microsoft's DOM implementation, MSXML, using two
of the extensions Microsoft added to the DOM: the async property, and the load method. The load
method takes in a URL to an XML file, and loads it. The async property tells the parser whether it
should load the file synchronously or asynchronously.

If we load the file synchronously, load won't return until the file has finished loading. Loading the
file asynchronously would allow our code to do other things while the document is loading, which
isn't necessary in this case.

So let's start with the Node interface.

Chapter 6

200

Node
Node is the most fundamental interface in the DOM. Almost all of the objects we will be dealing with
will extend this interface, which makes sense, since any part of an XML document is a node.

Although Node is implemented in all DOM objects, some of its properties and methods may not be
appropriate for certain node types. These methods and properties are just included for the sake of
convenience, so that if we're working with a variable of type Node, we will have access to some of the
functionality of the other interfaces, without having to cast to one of those types.

There are three key things that the Node object allows us to do:

❑ Traverse the Tree. In order to interrogate the tree, or make any adjustments to it, we need to
be in the correct place on the tree.

❑ Get information about the Node. By interrogating the Node object using the available methods
on this interface, we can get information such as the type of node, attributes of the node, it's
name, and its value.

❑ Add, remove, and update nodes. If we want to alter the structure of a document, we need to be
able to add, remove, or replace nodes – for example, we might want to add another line item
to an invoice.

Here are the properties that are available on the Node object. As we can see, some of the attributes –
such as nodeName and nodeValue – allow us to get information about a node without casting down to
the specific derived interface:

Property Description

nodeName The name of the node. Will return different values depending on the
nodeType, as listed in Appendix C.

nodeValue The value of the node. Will return different values depending on the
nodeType, as listed in Appendix C.

nodeType The type of node. Will be one of the values from the table in Appendix C.
parentNode The node that is this node's parent.
childNodes A NodeList containing all of this node's children. If there are no children,

an empty NodeList will be returned – not NULL.
firstChild The first child of this node. If there are no children, this returns NULL.
lastChild The last child of this node. If there are no children, this returns NULL.
previousSibling The node immediately preceding this node. If there is no preceding node,

this returns NULL.
nextSibling The node immediately following this node. If there is no following node,

this returns NULL.
attributes A NamedNodeMap containing the attributes of this node. If the node is not

an element, this returns NULL.
ownerDocument The document to which this node belongs.
namespaceURI The namespace URI of this node. Returns NULL if a namespace is not

specified.
prefix The namespace prefix of this node. Returns NULL if a namespace is not

specified.
localName Returns the local part of this node's QName.

DOM

201

The value of the nodeName and nodeValue properties depends on the value of the nodeType
property, which can return a constant.

Here are the methods that are exposed by the node object:

Method Description

insertBefore(newChild,
refChild)

Inserts the newChild node before the existing refChild. If
refChild is NULL, it inserts the node at the end of the list.
Returns the inserted node.

replaceChild(newChild,
oldChild)

Replaces oldChild with newChild. Used to update existing
records. Returns oldChild.

removeChild(oldChild) Removes oldChild from the list, and returns it.

appendChild(newChild) Adds newChild to the end of the list, and returns it.

hasChildNodes() Returns a Boolean; true if the node has any children, false
otherwise.

cloneNode(deep) Returns a duplicate of this node. If the Boolean deep parameter is
true, this will recursively clone the subtree under the node,
otherwise it will only clone the node itself.

normalize() If there are multiple adjacent Text child nodes (from a previous
call to Text.splitText – which we'll see more of later) this
method will combine them again. It doesn't return a value.

supports(feature,
version)

Indicates whether this implementation of the DOM supports the
feature passed. Returns a Boolean, true if it supports the
feature, false otherwise.

Getting Node Information
As we can see, the Node interface has several properties that let us get information about the node in
question. To demonstrate showing information on a node, we have to navigate to that node in the tree.
We'll see how to do this next. To navigate in these examples we use a simple dot notation.

The nodeType Property

If we're ever not sure what type of node we're dealing with, the nodeType property can tell you (all of
the possible values for nodeType are listed in Appendix C). For example, we could check to see if we're
working with an Element like so:

if(objNode.nodeType == 1)

Luckily for us, most DOM implementations will include predefined constants for these node types. For
example, a constant might be defined called NODE_ELEMENT, with the value of 1, meaning that we could
write code like this:

if(objNode.nodeType == NODE_ELEMENT)

This makes it easier to tell what it is we are checking for, without having to remember that nodeType
returns 1 for an element.

Chapter 6

202

The attributes Property

A good example of a property of Node that doesn't apply to every node type is the attributes
property, which is only applicable if the node is an element with attributes. The attributes property
returns a NamedNodeMap containing any attributes of the node. If the node is not an element, or is an
element with no attributes, the attributes property returns null.

The nodeName and nodeValue Properties

Two pieces if information that we will probably want from any type of node are its name and its value,
and Node provides the nodeName and nodeValue attributes to retrieve this information. nodeName is
read-only, meaning that we can get the value from the property but not change it, and nodeValue is
read-write, meaning that we can change the value of a node if desired.

The values returned from these properties differ from nodetype to nodetype. For example, for an
element, nodeName will return the name of the element, but for a text node, nodeName will return the
string "#text", since PCDATA nodes don't really have a name.

If we have a variable named objNode referencing an element like <name>John</name>, then we can
write code like this:

alert(objNode.nodeName);
//pops up a message box saying "name"

objNode.nodeName = "FirstName";
//will raise an exception! nodeName is read-only

alert(objNode.nodeValue);
//pops up a message box saying "null"

The result of that second alert may surprise us; why does it return "null", instead of "John"? The
answer is that the text inside an element is not part of the element itself; it actually belongs to a text
node, which is a child of the element node.

If we have a variable named objText, which points to the text node child of this element, we can write
code like this:

alert(objText.nodeName);
//pops up a message box saying "#text"

alert(objText.nodeValue);
//pops up a message box saying "John"

objText.nodeValue = "Bill";
//this is allowed, the element is now <name>Bill</name>

Accessing Element Information with Node

We can navigate down the nodes in the tree, in this case using the documentElement and
firstChild, and display the nodeName and nodeValue in an alert box.

To show how this works, we open the template HTML file that we created, and enter the following code
after the comment //our code will go here.

DOM

203

To display the nodeName we use the following code (ch06_ex2.html):

//our code will go here...
var objMainNode;
objMainNode = objDOM.documentElement.firstChild;
alert(objMainNode.nodeName);

Here is the result:

If we want to display its value, we change it to this:

var objMainNode;
objMainNode = objDOM.documentElement.firstChild;
alert(objMainNode.nodeValue);

and again, here is the result:

Remember that this is an element we're talking about. The text in that element is contained not in the
element itself, but in a Text child. Therefore, an element doesn't have any values of its own, only
children.

Traversing the Tree
XML documents can be represented as trees of information because of their hierarchical nature. We
tend to express relationships between these nodes like those in a family tree, in terms such as
parent/child, ancestor/descendent etc. The DOM exposes properties that allow us to navigate through
the tree using this kind of terminology. These properties are parentNode, firstChild, lastChild,
previousSibling, and nextSibling properties, all of which return a Node, or the childNodes
property, which returns a NodeList.

Being able to traverse the tree is vital so that we can get to the node that we want to operate on, whether
we just want to retrieve some value, update its content, add something in at that position in the
document/structure, or indeed delete it.

Chapter 6

204

Not all nodes can have children (attributes, for example), and even if a node can have children, it might
not. When that happens, any properties that are supposed to return children will just return NULL. Or,
in the case of childNodes, will return a NodeList with no nodes.

The following diagram shows a node (in the grayed
out box), and the relationships of the other nodes in
the tree to this node. It indicates the node that would
be returned from each of these properties:

parentNode

previousSibling

Node

childNodes

firstChild

lastChild

nextSibling

This diagram shows the relationships using the DOM terminology. If we want to get at the children of
the node with the gray background, we access the childNodes property. Or, if we want the first or the
last child, there are properties which directly return these nodes. That's easier than having to navigate
through the childNodes property. (If a node has only one child, firstChild and lastChild will
both return that node.)

The parentNode property returns the node to which this node belongs in the tree, and
previousSibling and nextSibling return the two nodes that are children of that parent node, and
are on either side of the node we're working with.

The hasChildNodes Method

If we just want to check if the node has any children, there is a method named hasChildNodes, which
returns a Boolean value indicating whether or not it does. (Note that this includes text nodes, so even if
an element contains only text, hasChildNodes will return true.)

For example, we could write code like the following, so that if a node has any children, a message box
will pop up with the name of the first one:

if(objNode.hasChildNodes())
{
alert(objNode.firstChild.nodeName);

}

DOM

205

The ownerDocument Property

Since every node must belong to a document, there's also a property called ownerDocument, which
returns an object implementing the Document interface to which this node belongs. Almost all of the
objects in the DOM implement the Node interface, so this allows us to find the owner document from
any object in the DOM.

Navigating the Tree with Node

Let's show an example of this working. Open up our template file and add the following code beneath
the comment:

//our code will go here...
var objMainNode;
objMainNode = objDOM.selectSingleNode("/root/DemoElement");
alert(objMainNode.firstChild.nodeName);
alert(objMainNode.firstChild.nodeValue);

This navigates to the DemoElement of the root, and generates two alert boxes with the nodeName and
nodeValue. As mentioned before, Text nodes always return #text from nodeName, since PCDATA
nodes don't have names. nodeValue returns the value of the PCDATA in the element.

Adding, Updating, and Removing Nodes
All of the above properties for traversing the tree are read-only, meaning that we can get at the existing
children, but can't add new ones or remove old ones. To do that, there are a number of methods
exposed from the Node interface.

The appendChild Method

The simplest is the appendChild method, which takes an object implementing Node as a parameter,
and just appends it to the end of the list of children. We might append one node to another like this:

objParentNode.appendChild(objChildNode);

The objChildNode node is now the last child node of objParentNode, regardless of what type of
node it is.

The insertBefore Method

To have more control over where the node is inserted, we can call insertBefore. This takes two
parameters: the node to insert and the "reference node", which is the one before which we want the new
child inserted. (If the reference value is NULL, this produces a result like appendChild.)

Chapter 6

206

The following will add the same objChildNode to the same objParentNode as the previous example,
but the child will be added as the second from last child:

objParentNode.insertBefore(objChildNode, objParentNode.lastChild);

If we try an insertBefore and it finds the same node already exists, it will just update it (mimicking
replaceChild which we'll see shortly) rather than adding a new node.

The removeChild Method

To remove a child, we would call the removeChild method, which takes a reference to the child we
want to remove, and returns that object back to us in case we want to use it somewhere else. Even
though the node is removed from the tree, it still belongs to the document. However, if we were to
remove the child and then save the document, it would be lost.

So we could remove the last child of any node, and keep it in a variable, like this:

objOldChild = objParent.removeChild(objParent.lastChild);

The replaceChild Method

There is also a timesaving method, replaceChild, which can remove one node, and replace it with
another. This is quicker than calling removeChild, and then appendChild or insertBefore.
(Although if we just call insertBefore and the node already exists, we get the same result as calling
replaceChild). Again, the child that's removed is returned from the method, in case we want to use it
somewhere else.

To replace the first child of a node with another node, we would do this:

objOldChild = objParent.replaceChild(objNewChild, objParent.firstChild);

The cloneNode Method

Finally, there is a method to create a copy of the node as a new separate node: cloneNode. cloneNode
takes a Boolean parameter that indicates whether this should be a deep clone (true) or a shallow clone
(false). If it's a deep clone, the method will recursively clone the subtree under the node (in other
words all of the children will also be cloned), otherwise only the node itself will be copied.

If the node is an element, a shallow clone will not copy the PCDATA content of the node, since the
PCDATA is a child. However, attributes and their values will be copied. So if we have a node object,
called objNode, which contains an element like <name id="1">John</name>", we could do this:

objNewNode = objNode.cloneNode(false);
//objNewNode is now <name id="1"/>

objNewNode = objNode.cloneNode(true);
//objNewNode is now <name id="1">John</name>

Again, notice that the attribute is copied, even when we do a shallow clone.

Nodes that are created using cloneNode can only be used in the same document as the original node;
we can't clone a node from one document, and insert it into another one.

DOM

207

Modifying the Tree with Node

Let's go back to our simple HTML file and see how we can modify the tree structure (ch06_ex4.xml):

var objMainNode;
objMainNode = objDOM.documentElement.firstChild;

var objNewNode;
objNewNode = objMainNode.cloneNode(false);
objMainNode.appendChild(objNewNode);

alert(objDOM.xml);

In this example, we copy our node, and then append it back into the XML tree. We're performing a
shallow clone, meaning that none of the children of the node is copied.

Note that the xml property we call in that last line is a Microsoft-specific extension to the DOM,
which displays the XML that is held in a node. Here we've used it to return the entire XML document
as a string and display it easily. This property is very useful when debugging applications, and when
we want to retrieve the content of a fragment. We just add the xml property to the node that we have in
memory.

Here is the result:

Notice that although not one of the child elements of <DemoElement> gets cloned, the attribute and its
value does.

We can also attach that element before our text, by modifying our code as shown here:

//our code will go here...
var objMainNode;
objMainNode = objDOM.selectSingleNode("/root/DemoElement");

var objNewNode;
objNewNode = objMainNode.cloneNode(false);
objMainNode.insertBefore(objNewNode, objMainNode.firstChild);

alert(objDOM.xml);

For the reference node, we just use the firstChild property. The XML now looks like this:

Chapter 6

208

By simply changing the parameter of cloneNode to true, we can copy all of the node's children:

var objNewNode;
objNewNode = objMainNode.cloneNode(true);
objMainNode.insertBefore(objNewNode, objMainNode.firstChild);

alert(objDOM.xml);

In this case, that's just the one Text node. Our XML now looks like this:

Document
The Document interface represents an entire XML document. It extends the Node interface, so any
Node properties and methods will also be available from a Document object. For Document, the node
will be the document root – not the root element. All nodes must belong to one, and only one,
document.

Remember that for an XML document, the document root is a conceptual node which
contains everything else in the document, including the root element.

In addition to the properties and methods provided by Node for navigating the tree, the Document
interface provides some additional navigational functionality. This is especially useful in finding
elements in a document and creating XML documents.

One of the most commonly used properties is documentElement, which returns an Element object
corresponding to the root element. Two other very helpful functions of note are:

❑ getElementsByTagName to find elements in the document based on their name. It takes the
name of the element we are looking for as a string, and returns a NodeList containing all of
the matching elements. (We'll be studying the NodeList interface in a later section.)

❑ getElementsByID which allows us to find elements by their ID attributes.This again returns
a NodeList containing all of the matching elements. This is useful if we have used IDs to
model relationships.

The Document object is also important when we want to create an XML document from scratch.

We cannot create a Node object without first creating the Document object. Once the
Document has been created, we can use other methods to add nodes to it.

DOM

209

The Document interface provides factory methods that can be used to create other objects. These
methods are named createNodeType, where NodeType is the type of node you want to create, for
example, createElement or createAttribute. When creating an element or attribute, however,
because we are creating them from the Document node, we also need to append them to the tree where
we want them to appear:

❑ First, create the node using one of the Document factory methods.

❑ Second, append the child in the appropriate spot (using the appendxxxx methods inherited
from the Node interface).

The alternative is to navigate to that part of the tree, and then use one of the Node interfaces methods.

An interesting point to note here is that, until we append the node to the tree, it will belong to the
document that created it, although it will not be part of the tree-structure until it has been
appended.

Let's see how we would create an XML document from scratch. Open the template file again, and
delete the lines:

objDOM.async = false;
objDOM.load("ch06_ex1.xml");

First, we need to create a Document object called objDom. Once that has been created, we can use the
document object to create an element and a text node. Here is the code for doing this:

//our code will go here...
var objNode, objText;
objNode = objDOM.createElement("root");
objText = objDOM.createTextNode("root PCDATA");

The createElement method takes the name of the element to be created as its parameter, and
createTextNode takes as its parameter, the text we want to go into the node.

With these objects created, we can now perform the second required step of adding the element to our
document. We will make it the root element, and add the text node to that element. Add the following
code right after the code we've already entered:

objDOM.appendChild(objNode);
objNode.appendChild(objText);
alert(objDOM.xml);

The first command adds the tags, and the second the PCDATA.

If we save the HTML as ch06_ex5.html, and view it with IE5, the following message box will appear:

Chapter 6

210

If we then want to add an attribute to that node, it is as simple as this (ch06_ex6.html):

objNode.appendChild(objText);

var objAttr;
objAttr = objDOM.createAttribute("id");

//set the attribute's value
objAttr.nodeValue = "123";

//append the attribute to the element
objNode.attributes.setNamedItem(objAttr);

alert(objDOM.xml)

The createAttribute method takes the name of the attribute as its parameter, so we've created an
attribute named id, given it the value 123, and then added that attribute to the node. (In the examples
at the end of the chapter we'll see an easier way of doing this, using the setAttribute method.

Our XML now looks like this:

and thus, we have created an entire XML document, all from code.

DOMImplementation
The DOMImplementation interface provides methods that apply to any document from this DOM
implementation. Just like most of the other types of DOM objects, we can't directly create a
DOMImplementation object. Instead, we retrieve it from the implementation property of the
Document interface.

The first method we'll look at is createDocument, which works just like the createNodeType
methods of the Document interface. We probably won't use createDocument very often, though,
since we can't directly create a DOMImplementation object. We would first have to create a
Document, and access its implementation property to get a DOMImplementation object, before we
could even use this method. However, if we're creating multiple documents, meaning that we already
have one or more Document objects in existence, it might come in handy.

A more important method is the hasFeature method, which we can use to find out if the current
DOM implementation supports a certain feature (for example, for MSXML 3 the candidates are XML,
DOM, and MS-DOM). The method takes two parameters: a string representing the feature we're looking for,
and a string representing the version of the feature we need. If we don't pass the second parameter, then
hasFeature will indicate whether this DOM supports any version of the feature. This can be useful for
finding out whether a particular browser supports certain features – so we can run different code for
different browsers, for example.

DOM

211

Say we want to know if a DOM implementation implements the Extended Interfaces, and is based on
version 2.0 or later of the DOM specification:

❑ hasFeature("XML", "2.0") would then return true if it did. (Note that this would refer to
the DOM specification rather than a second version of the XML specification.)

❑ hasFeature("XML") would return true if this DOM implementation implements the
Extended Interfaces from any version of the DOM specification.

Most of the time we won't need to create a separate DOMImplementation object, but will instead just
call its methods directly from the Document interface's implementation property, like this:

objDoc.implementation.hasFeature("XML", "2.0")

DocumentFragment
As we all know by now, an XML document can have only one root element. However, when working
with XML information, it might be handy sometimes to have a few not-so-well-formed fragments of
XML gathered together, in a temporary holding place.

For example, if we think back to the invoice that we used in earlier chapters this is particularly useful
when dealing with line items. Maybe we want to create a number of nodes, and then insert them into
the document tree in one bunch. Alternatively we might want to remove a number of nodes from the
document and keep them around to be inserted back later, like a cut and paste type of operation. This is
what the DocumentFragment interface provides.

As far as the interface itself, there are no added properties or methods to those provided by the Node
interface.

For its children, a DocumentFragment has zero or more nodes. These are usually element nodes, but a
DocumentFragment could even contain just a text node. DocumentFragment objects can be passed to
methods which are used to insert nodes into a tree; for example, the appendChild method of Node. In
this case, all of the children of the DocumentFragment are copied to the destination Node, but the
DocumentFragment itself is not.

To demonstrate the DocumentFragment interface in action, we'll write some quick code, which will
use one as a temporary holding place.

First off, we'll create our root element, as usual. Modify the HTML template as follows:

<HTML>
<HEAD><TITLE>DOM Demo</TITLE>

<SCRIPT language="JavaScript">
var objDOM;
objDOM = new ActiveXObject("MSXML2.DOMDocument");

var objNode;
objNode = objDOM.createElement("root");
objDOM.appendChild(objNode);

</SCRIPT>

Chapter 6

212

</HEAD>
<BODY>
<P>This page demos some of the DOM capabilities.</P>

</BODY>
</HTML>

We'll then create a DocumentFragment, and store a couple of elements in it:

var objFrag;
objFrag = objDOM.createDocumentFragment();

objNode = objDOM.createElement("child1");
objFrag.appendChild(objNode);
objNode = objDOM.createElement("child2");
objFrag.appendChild(objNode);

Notice that we are reusing our objNode variable numerous times, instead of creating various node
variables for all of the nodes we're dealing with. This just makes it easier to code, rather than declaring a
number of variables for all of the nodes. Note that the nodes in this fragment have no root element –
this isn't a well-formed XML document, it's just a number of nodes that we want to keep together for the
moment.

Since our elements aren't much fun without any text in them, let's add a text child node to each one:

objFrag.firstChild.appendChild(objDOM.createTextNode("First child node"));
objFrag.lastChild.appendChild(objDOM.createTextNode("Second child node"));

In this case, we don't bother to create a variable to hold the Text node, we just create it and
immediately append it to the element.

Finally, we'll add the elements in our DocumentFragment to the root element of our document:

objDOM.documentElement.appendChild(objFrag);
alert(objDOM.xml);

As mentioned earlier, this appends the children of the DocumentFragment, not the
DocumentFragment itself. If we save the file as ch06_ex7.html, our final XML looks like this:

NodeList
We've already touched on it a couple of times, so let's talk about the NodeList interface. Many of the
properties and methods in the DOM will return an ordered collection of Nodes instead of just one,
which is why the NodeList interface was created.

DOM

213

It's actually a very simple interface. There is only one property and one method:

❑ The length property returns the number of items in the NodeList.

❑ The item method returns a particular item from the list. As a parameter, it takes the index of
the Node we want.

Items in a NodeList are numbered starting at 0, not at 1. That means that if there are five items in a
NodeList, the length property will return 5, but to get at the first item we would call item(0),
and to get the fifth item we would call item(4). So the last Node in the NodeList is always at
position (length – 1). If we call item with a number that's out of the range of this NodeList, it will
return null.

A node list is always "live"; that means that if we add some nodes to, and remove nodes from the
document, a node list will always reflect those changes. For example, if we got a node list of all elements
in the document with a name of first, then appended an element named first, the node list would
automatically contain this new element, without us having to ask it to recalculate itself.

Element
When we're not just referring to every item in an XML document as a "node", one of the pieces we're
going to be accessing most will be elements, so of course the DOM provides an Element interface. As
we saw in the earlier chapters, we will often be selecting an element to represent a table or a row of
information from a database.

In addition to the properties and methods available from the Node interface, Element also provides a
tagName property and a getElementsByTagName method. The tagName property returns exactly the
same results as the nodeName property of Node, and getElementsByTagName works exactly the same
as the method of the same name on the Document interface.

However, note that getElementsByTagName on the Element interface will only return elements that
are children of the one from which the method is called. Of course, that applies to the
getElementsByTagName on the Document interface as well, but the Document happens to include all
of the elements in the document anyway. This means that we can use these methods on a specific table
if we have two elements by the same name in the document as a whole.

All of the rest of the methods on the Element interface are concerned with attributes. Firstly, there are
getAttribute and getAttributeNode methods. Both methods take the name of the attribute we
want as a parameter, but getAttribute returns the value of that attribute in a string, whereas
getAttributeNode returns an object implementing the Attr interface. We might use these to retrieve
data points for processing.

If we want to alter values of data points or other attributes, there is also a setAttribute method and a
setAttributeNode method. setAttribute takes two string parameters: the name of the attribute we
want to set, and the value we want to give it. If an attribute of that name doesn't exist, it is created, but if
the attribute already exists, it is replaced. setAttributeNode takes one parameter, an object
implementing the Attr interface. Again, if an attribute with the same name already exists, it is replaced
by the new attribute, but in this case, the old attribute is returned from the method, in case we need it
for something else.

Finally, there's a removeAttribute method and a removeAttributeNode method.
removeAttribute takes a string parameter, specifying the name of the attribute we wish to remove,
and removeAttributeNode takes as a parameter an Attr object, which is the attribute we want to
remove. removeAttributeNode returns the Attr object that was removed.

Chapter 6

214

Since most of the functionality of the Element interface revolves around attributes, all we'll really need
to use to demonstrate it is a small XML document.

We will save the following to our hard drive as ch06_ex8.xml:

<?xml version="1.0"?>
<root first='John' last='Doe'/>

then use the following modification to our template HTML file to load the document into MSXML, and
create an Element variable to point to the documentElement (ch06_ex8.html):

<HTML>
<HEAD><TITLE>DOM Demo</TITLE>

<SCRIPT language="JavaScript">

var objDOM;
objDOM = new ActiveXObject("MSXML2.DOMDocument");
objDOM.async = false;
objDOM.load("ch06_ex8.xml");

//our code will go here...
var objElement;
objElement = objDOM.documentElement;
alert(objElement.getAttribute("first"));

</SCRIPT>

</HEAD>
</HTML>

Getting the value of an attribute is easy – we just need the following:

alert(objElement.getAttribute("first"));

This gets the value of the first attribute. We will save the page as domelement.htm and view it: the
resulting message box contains the word John:

We can change the value of the first attribute by adding the following line of code:

var objElement;
objElement = objDOM.documentElement;

objElement.setAttribute("first", "Bill");

alert(objElement.getAttribute("first"));

DOM

215

Our message box will then read:

But, as we learned earlier, we can also do this using an Attr object. Let's try replacing the previous line
of code with the following:

objElement = objDOM.documentElement;

var objAttr;
objAttr = objElement.getAttributeNode("first");
objAttr.nodeValue = "Bill";

alert(objElement.getAttribute("first"));var objAttr;

Alternatively, we can use the Element object like this:

objElement.getAttributeNode("first").nodeValue = "Bill";

Both of these methods will return the same result: a message box containing the name Bill.

Finally, we have two ways to add a middle attribute to our element. We can add the following code to
append an Attr object (ch06_ex9.html):

objElement.getAttributeNode("first").nodeValue = "Bill";

alert(objElement.getAttribute("first"));

var objAttr;
objAttr = objDOM.createAttribute("middle");
objAttr.nodeValue = "Fitzgerald Johansen";
objElement.setAttributeNode(objAttr);

alert(objDOM.xml);

The resulting XML looks like this:

Chapter 6

216

We can get exactly the same result by just using the setAttribute method, like this:

objElement.getAttributeNode("first").nodeValue = "Bill";

alert(objElement.getAttribute("first"));

objElement.setAttribute("middle", "Fitzgerald Johansen");

alert(objDOM.xml);

There isn't any way to arrange the middle attribute between the first and last attributes, but we
don't really mind, since the order of attributes on an XML element is insignificant. This is because
attributes are usually accessed by name.

NamedNodeMap
In addition to the NodeList interface, there's also a NamedNodeMap interface, which is used to
represent an unordered collection of nodes. Items in a NamedNodeMap are usually retrieved by name.

Like NodeList objects, objects contained in a NamedNodeMap are live, which means that the
contents dynamically reflect changes.

It is possible to access objects implementing NamedNodeMap using an ordinal index, but since the
collection is unordered (and particularly because attributes are unordered in XML documents) it is not
wise to use this method for retrieving or setting values of objects in a NamedNodeMap, it is more for the
enumeration of the contents.

It should come as no surprise to us, then, that there is a getNamedItem method, which takes a string
parameter specifying the name of the node, and returns a Node object. This is particularly useful if we
wish to perform some operation on a particular attribute of the XML document, and because it is
specific to an element, we can think of this as finding the data point in a particular row.

There is also a removeNamedItem method, which takes a string parameter specifying the name of the
item we wish to remove, and returns the Node that was removed; and, to round out the functionality,
there's a setNamedItem method, which takes a parameter for the Node we want to insert into the
NamedNodeMap.

Even though the items in a NamedNodeMap are not ordered, we still might want to iterate through them
one by one. For this reason, NamedNodeMap provides a length property and an item method, which
work the same as length and item on the NodeList interface. The item can refer to the node at any
position in the range 0 to length-1 inclusive; but the DOM specification is clear that this "does not
imply that the DOM specifies an order to these Nodes". (We can see this for ourselves at
http://www.w3.org/TR/1999/CR-DOM-Level-2-19991210/core.html#ID-1780488922).

Attr
Although most of the interfaces in the DOM are spelled out in full, for some reason, the interface for
attributes was abbreviated to Attr.

DOM

217

The Attr interface extends the Node interface, but it is good to keep in mind the differences between
attributes and other items in the XML document. For one thing, attributes are not directly part of the
tree structure in a document; that is, attributes are not children of elements, they are just properties of
the elements to which they are attached. That means that the parentNode, previousSibling, and
nextSibling properties for an attribute will always return null: but, since parentNode returns
null, Attr provides instead an ownerElement property, which returns the Element to which this
attribute belongs.

Attr also supplies name and value attributes, which return the name and value of the attribute. These
properties have the same values as the nodeName and nodeValue properties of Node.

The final property supplied by the Attr interface is the specified property. The specified
property indicates whether this attribute is really a physical attribute on the element, with a real value,
or whether it is just an implied attribute, with the default value supplied.

CharacterData and Text
As we're well aware, working with XML documents involves a lot of work with text: sometimes in
PCDATA in the XML document, and sometimes in other places, like attribute values, or comments.
The DOM defines two interfaces for this purpose:

❑ A CharacterData interface, which has a number of properties and methods for working
with text.

❑ A Text interface, which extends CharacterData, and is used specifically for PCDATA in
the XML document.

Because CharacterData extends Node, both CharacterData objects and Text objects are also Node
objects. CharacterData nodes, like Attr nodes, can't have children, so the same rules for Attr's
handling of child properties also apply to CharacterData objects.

Handling Complete Strings
The simplest way to get or set the PCDATA in a CharacterData object is to simply get it from the
data property. This sets or returns the whole string, in one chunk.

There is also a length property, which returns the number of Unicode characters in the string.

When we are dealing with strings in CharacterData objects, we should note that the characters
in the string are numbered starting at 0, not 1. So in the string "Hi", "H" would be letter 0, and
"i" would be letter 1.

So, if we have a Text node object named objText containing the string "John", then:

alert(objText.length);

pops-up a message box saying 4, and :

alert(objText.data);

pops-up a message box saying John.

Chapter 6

218

Handling Substrings
If we only want a part of the string, there is a substringData method, which takes two parameters:

❑ The offset at which to start taking characters.

❑ The number of characters to take.

If we specify more characters than are available in the string, substringData just returns the number
of characters up until the end, and stops.

For example, if we have a CharacterData object named objText, and the contents of that object are
This is the main string, then:

alert(objText.substring(12, 4));

would pop-up a message box saying main, and:

alert(objText.substringData(12, 2000));

would pop-up a message box saying main string.

Modifying Strings
Adding text to the end of a string is done with the appendData function, which takes a single string
parameter containing the text to add to the end of the existing text.

If we used the same objText node as above, then:

objText.appendData(".");

would change the contents to "This is the main string." with the period added.

Since we sometimes need to add data to the middle of a string, there is also the insertData method,
which takes two parameters:

❑ The offset at which to start inserting characters (like the other parameters for this method, the
numbering starts at 0).

❑ The string we wish to insert.

The following code would change the data to "This is the groovy main string.":

objText.insertData(12, "groovy ");

Deleting characters from the string is done via the deleteData method, which we use exactly the same
as the substringData method. So calling:

objText.deleteData(12, 7);

DOM

219

on the CharacterData node we've been working with, would change the string back to "This is the
main string." removing the text "groovy".

Finally, if we want to replace characters in a string with other characters, instead of calling deleteData
and then insertData, we can simply use replaceData. This method takes three arguments:

❑ The offset position at which to start replacing.

❑ The number of characters to replace.

❑ The string to replace them with.

Note that the number of characters we're inserting doesn't have to be the same as the number of
characters we're replacing.

If we still have the same objText node containing "This is the main string.", we can do the
following:

objText.replaceData(8, 8, "a");

which will replace "the main" with "a", thus changing the string to "This is a string.".

Splitting Text
The Text interface only adds one method to the ones inherited from CharacterData, which is the
splitText method. This takes one Text object and splits it up into two, which are siblings of each
other. The method takes one parameter, which is the offset at which to make the split.

The result is that the first Text node will contain the text from the old node up until (but not including)
the offset point, and the second Text node will contain the rest of the text from the old node. If the
offset is equal to the length of the string, the first Text node will contain the old string as it was, and the
new node will be empty; and if the offset is greater than the string's length, a DOMException will be
raised.

We could, therefore, write code like this:

objText.splitText(11);

and the result would look something like this:

splitText(12)
<element>

This is the main string

<element>

This is the

main string

Chapter 6

220

Of course, if we were to save this XML document like that, our change would be lost, since the
PCDATA would then just become one string again. splitText() comes in most handy when we are
going to be inserting other elements in the middle of the text.

Comments
The Comment interface is one of the easiest interfaces we'll be studying in this chapter. Comment
extends the CharacterData interface, but it does not add any properties or methods! Working with a
comment in the DOM is just like working with any other text.

In fact, the only benefit we get from working with this interface is that when we create a Comment
object and append it to the document, the DOM automatically adds the "<!-- -->" markup.

DOMException
DOM operations raise an exception when a requested operation cannot be performed, either because
the data is lost or because the implementation has become unstable. DOM methods tend to return a
specific error value in ordinary situations, such as out-of-bound errors when using NodeList.

Some languages and object systems (such as Java) require that exceptions be caught for a program to
continue functioning, while others (such as VB or C) do not support the concept of exceptions. If a
language does not support error handling, it can be indicated using native error reporting mechanisms
(a method may return the error code for example).

Beyond this, an implementation may raise other errors if they are needed for the implementation, such
as if a null argument is passed.

Here are some examples of the exceptions that can be raised (you'll find more in Appendix C):

NOT_FOUND_ERR If an attempt is made to reference a node in a context
where it does not exist.

DOMSTRING_SIZE_ERR If the specified range of text does not fit into a
DOMString.

HIERARCHY_REQUEST_ERR If any node is inserted somewhere it doesn't belong.

INDEX_SIZE_ERR If index or size is negative, or greater than the allowed
value.

NOT_SUPPORTED_ERR If the implementation does not support the type of object
requested.

Extended Interfaces
The Extended Interfaces form part of the DOM Core specification, but the objects that expose these
interfaces will only be encountered in a DOM implementation of an XML document.

To work out whether a DOM application implements these interfaces, we can use the hasFeature
method of the DOMImplementation interface. The feature string for all the interfaces listed in this
section is "XML" and the version is "2.0".

DOM

221

The Extended Interfaces are:

❑ CDATA Section.

❑ DocumentType.

❑ Notation.

❑ Entity.

❑ EntityReference.

❑ ProcessingInstruction.

We will cover these a lot more quickly than the previous ones, because we should now have more of an
idea of the interfaces supported by the DOM.

CData Sections
The CDATASection interface is just as simple as the Comment interface we met earlier. CDATASection
extends Text, but does not add any properties or methods. Working with a CDATA section in the
DOM is just like working with any other text.

In fact, the only benefit we get from working with this interface is that when we create a
CDATASection and append it, the DOM automatically adds the "<![CDATA[]]>" markup.

DocumentType
The DocumentType interface only provides a list of entities that are defined for the document, which
are not editable.

Notation
The Notation interface represents a notation declared in the DTD. This could either be the format of
an unparsed entity by name, or the formal declaration of processing instruction targets. The nodeName
attribute inherited from Node is set to the declared name of the notation. They are read-only values and
do not have a parent.

EntityReference
EntityReference objects may only be inserted into the structure model when an entity reference is in
the source document, or when the user wishes to insert an entity reference. EntityReference nodes
and all their descendants are read-only.

Note, however, that the XML processor may completely expand references to entities while building the
structure model, instead of providing EntityReference objects. Even if it does provide such objects,
then for a given EntityReference node, it may be that there is no Entity node representing the
referenced entity.

Chapter 6

222

Entity
This interface represents an entity, either parsed or unparsed, in an XML document (though not its
declaration). The nodeName attribute contains the name of the entity.

Note that if the DOM is implemented on top of an XML processor that expands
entities before passing the structure model to the DOM, there will be no
EntityReference nodes in the document tree.

Entity nodes and all their descendants are read-only. This means that if we want to change the
contents of the Entity, we will have to clone each EntityReference, and replace the old ones with
the new one.

Processing Instructions
Finally, no DOM would be complete without a method for adding processing instructions. The
ProcessingInstruction interface extends Node, and adds two properties of its own: target and
data.

The target property is the name of the target to which we want to pass the PI, and the data is the
instruction itself. The data property can be changed, but target is read-only.

Working With Our Data
Let's go back now and look at the invoice record that we have been working with throughout the book,
and see what the DOM allows us to do with it.

Accessing the DOM from JavaScript
In this section we will use some simple client-side pages to show how we can manipulate an XML
document in the DOM. These will generate simple alerts, like those earlier in the chapter, but will
show us:

❑ How to access values in the DOM.

❑ How to update documents in the DOM.

Here is the document that we will be accessing (salesData.html):

<?xml version="1.0"?>
<SalesData Status="NewVersion">

<Invoice InvoiceNumber="1"
TrackingNumber="1"
OrderDate="01012000"
ShipDate="07012000"
ShipMethod="FedEx"
CustomerIDREF="Customer2">

<LineItem Quantity="2"
Price="5"
PartIDREF="Part2" />

DOM

223

</Invoice>
<Customer ID="Customer2"

firstName="Bob"
lastName="Smith"
Address="2AnyStreet"
City="Anytown"
State="AS"
PostalCode="ANYCODE" />

<Part PartID="Part2"
PartNumber="13"
Name="Winkle"
Color="Red"
Size="10" />

</SalesData>

We have a root element, SalesData, with children of Invoice, Customer, and Part. We will mainly
be working with the Customer element. The customer element has the following attributes:

❑ Customer ID.

❑ firstName.

❑ lastName.

❑ Address.

❑ City.

❑ State.

❑ PostalCode.

Let's start by looking at how we retrieve data from the document.

Retrieving the Data from an XML Document using the DOM
In this example, we will retrieve values from a document loaded into memory. It will demonstrate a
number of the methods that we can use to retrieve different values, and will write them to a browser.
We'll be retrieving:

❑ An element.

❑ An attribute.

❑ An attribute value.

❑ The tag name of an element.

With this information, we will be creating a page that displays the customer's first and last names and
their customer ID.

Here is the page that we will be using (ch06_ex11.html):

<HTML>
<HEAD>
<TITLE>DOM Demo</TITLE>

<SCRIPT language="JavaScript">

Chapter 6

224

var objDOM;
objDOM = new ActiveXObject("MSXML2.DOMDocument");
objDOM.async = false;
objDOM.load("salesData.xml");

//Get to the root element
document.write("We have found the root element: ");

varSalesData = objDOM.documentElement;
alert(varSalesData.tagName);
document.write(varSalesData.tagName);

//Find the Customer elements and select the first one
document.write

("<P>We have found the first Customer Element, its name is: ");

varElemCust1 = varSalesData.getElementsByTagName("Customer").item(0);
alert(varElemCust1.xml);
document.write(varElemCust1.tagName);

//Find the Customer ID Attribute
document.write

("<P>Now we can retrieve the Customer ID attribute, it is: ");

varAttrCustID = varElemCust1.getAttribute("ID");
alert(varAttrCustID);
document.write(varAttrCustID);

//Find the next attribute of Name
document.write("<P>The customer's name is: ");

varAttrFirstName = varElemCust1.getAttribute("firstName");
alert(varAttrFirstName);
document.write(varAttrFirstName);

varAttrLastName = varElemCust1.getAttribute("lastName");
alert(varAttrLastName);
document.write(varAttrLastName);

//Now let's write out the address
document.write("<P>Their address is: ");
varAttrAddr = varElemCust1.getAttribute("Address");
alert(varAttrAddr);
document.write(varAttrAddr);

//Find the next attribute of City
varAttrCity = varElemCust1.getAttribute("City");
alert(varAttrCity);
document.write(varAttrCity);

</SCRIPT>

</HEAD>
<BODY>
<P>We have retrieved a lot<P>
</BODY>
</HTML>

Let's see what this is doing. We start with a simple HTML page. All of the real work for this page is
done in the <script>:

DOM

225

<HTML>
<HEAD>
<TITLE>DOM Demo</TITLE>

<SCRIPT language="JavaScript">

We start by creating an instance of the Microsoft MSXML parser. Because the DOM does not specify
how a document should be loaded into an instance of a parser, we use the load method of MSXML.
The document is then held in a variable called objDOM, so that we can work with it:

var objDOM;
objDOM = new ActiveXObject("MSXML2.DOMDocument");
objDOM.async = false;
objDOM.load("salesData.xml");

We can now retrieve the document element (or root element of the document instance) using the
documentElement attribute, and write it out using the tagName attribute. We show this in an alert
dialog – as we do with the other values that we retrieve – so that we can see what is happening. We'll
also write it to the page using the write method of the browser object model:

//Get to the root element
document.write("We have found the root element: ");

varSalesData = objDOM.documentElement;
alert(varSalesData.tagName);
document.write(varSalesData.tagName);

We saved the document element in a variable so that we can use this same reference later. Here is the
alert that it displays:

Remember that the document had three children. We want to find the middle one: Customer. If we
have a mixed content model, or we're not sure of how many child elements there are before Customer,
we can make use of the getElementByTagName method. This is how we'll retrieve Customer, to
illustrate the point:

//Find the Customer elements and select the first one
document.write

("<P>We have found the first Customer Element, its name is: ");

varElemCust1 = varSalesData.getElementsByTagName("Customer").item(0);
alert(varElemCust1.xml);
document.write(varElemCust1.tagName);

Chapter 6

226

We again hold a reference to this child element in a new variable – varElemCust1 – which will allow
us to use it again later in the document. This time, we have written the value of the Customer element
to the alert box.

We can also see this in the following screenshot. Here, we have also written out the document element
we just met, and we're prepared to write the name of the tag we are currently on:

Next we want to find the ID attribute of the Customer. To do this, we will be using the getAttribute
method:

//Find the Customer ID Attribute
document.write

("<P>Now we can retrieve the Customer ID attribute, it is: ");

varAttrCustID = varElemCust1.getAttribute("ID");
alert(varAttrCustID);
document.write(varAttrCustID);

Again, we create a new variable to hold this, and we write it to an alert box, as well as illustrating it on
the screen.

The remaining tasks involve getting the remaining attribute values out of their nodes. We do this using
the same method we just met:

//Find the next attribute of Name
document.write("<P>The customer's name is: ");

varAttrFirstName = varElemCust1.getAttribute("firstName");
alert(varAttrFirstName);
document.write(varAttrFirstName);

varAttrLastName = varElemCust1.getAttribute("lastName");
alert(varAttrLastName);
document.write(varAttrLastName);

DOM

227

//Now let's write out the address
document.write("<P>Their address is: ");
varAttrAddr = varElemCust1.getAttribute("Address");
alert(varAttrAddr);
document.write(varAttrAddr);

//Find the next attribute of City
varAttrCity = varElemCust1.getAttribute("City");
alert(varAttrCity);
document.write(varAttrCity);

</SCRIPT>

</HEAD>
<BODY>
<P>We have retrieved a lot<P>
</BODY>
</HTML>

Having finished off the page, we can see that we have retrieved all of the information from the attributes
of the Customer element, as well as retrieving the document element and one of its children:

This may not be the most visually enticing presentation that we could come up with, but it illustrates
getting values out of the DOM. Next, let's go on to looking at updating the contents of the DOM.

Chapter 6

228

Adding to the Contents of the Document Using the DOM
In this section, will be demonstrated the following useful techniques:

❑ Adding elements to a document.

❑ Adding text to the new element.

❑ Adding attributes to a document.

❑ Setting the value of the new attribute.

Here is the code we'll use to do this (ch06_ex11.htm):

<HTML>
<HEAD>
<TITLE>DOM Demo</TITLE>

<SCRIPT language="JavaScript">

var objDOM;
objDOM = new ActiveXObject("MSXML2.DOMDocument");
objDOM.async = false;
objDOM.load("salesData.xml");

//Get to the root element
varSalesData = objDOM.documentElement;

//show the original XML document
alert(varSalesData.xml);

//Find the Customer elements and select the first one
varElemCust1 = varSalesData.getElementsByTagName("Customer").item(0);

<!-- adding an element -->
document.write("<HR><H1>Updates appear in alert boxes:</H1>");

//create a new element
varNewElem = objDOM.createElement("MonthlySalesData");

//append the element
varNewElem = varSalesData.insertBefore(varNewElem, varElemCust1);

//create a new text-type node and append it
newText = objDOM.createTextNode

("Can you see that we have created a new element?");
varNewElem.appendChild(newText);

alert(objDOM.xml);

<!-- adding an attribute -->

//create a new attribute and give it a value
varElemCust1.setAttribute("telephoneNo", "3591765524");

alert(objDOM.xml);

</SCRIPT>

</HEAD>
<BODY>
<HR>
</BODY>
</HTML>

DOM

229

In this example we will be writing all of the results to alert boxes. The first part of the example simply
loads the XML document into the DOM, just as we did before, and displays the original XML
document. We then retrieve a couple of useful values using the techniques we saw in the last example.
After that, we get onto the interesting part.

We will start by adding a new element to the document. Remember that this is a two-stage process:

❑ First we need to create this node off the document element.

❑ Then we append it to the tree in the place that we want.

The new element will be called MonthlySalesData. We have chosen to append this to the tree in
front of the Customer element:

//create a new element
varNewElem = objDOM.createElement("MonthlySalesData");

//append the element
varNewElem = varSalesData.insertBefore(varNewElem, varElemCust1);

Now we need to put some content into this element. To do this, we again create a new node and append
it to the tree in two separate stages. This requires a Text node, whose value is written as a parameter to
the method. We then append this to the new element:

//create a new text-type node and append it
newText = objDOM.createTextNode

("Can you see that we have created a new element?");
varNewElem.appendChild(newText);

Finally, we will write the content of the file to an alert box:

alert(objDOM.xml);

Here we can see the result. We have created the new MonthlySalesData element with a value in front
of the Customer element:

Chapter 6

230

Next let's see how we add an attribute. We will be adding a telephoneNo attribute to the Customer
element. We use setAttribute to do this, giving it the name (telephoneNo) and value of the
attribute we want to include:

//create a new attribute and give it a value
varElemCust1.setAttribute("telephoneNo", "3591765524");

alert(objDOM.xml);

and here is the resulting attribute shown in the XML document:

Adding Information from Another DOM Tree
Next, we're going to try merging information from two different XML sources. This time, we will be
pulling in customer data from a second file called salesData2.xml:

<?xml version="1.0"?>
<SalesData Status="NewVersion">

<Invoice InvoiceNumber="1"
TrackingNumber="1"
OrderDate="01012000"
ShipDate="07012000"
ShipMethod="FedEx"
CustomerIDREF="Customer2">

<LineItem Quantity="2"
Price="5"
PartIDREF="Part2" />

</Invoice>
<Customer ID="Customer1"

firstName="Tom"
lastName="Boswell"
Address="39BrownhillCrescent"
City="Anothertown"
State="IN"
PostalCode="OTHERCODE" />

<Part PartID="Part2"
PartNumber="13"
Name="Winkle"
Color="Red"
Size="10" />

</SalesData>

DOM

231

The page that does this is called ch06_ex12.html:

<HTML>
<HEAD>
<TITLE>DOM Demo</TITLE>

<SCRIPT language="JavaScript">

var objDOM;
objDOM = new ActiveXObject("MSXML2.DOMDocument");
objDOM.async = true;
objDOM.load("salesData.xml");

//Get to the root element
varSalesData = objDOM.documentElement;

//second instance of the DOM
var objSecondDOM;
objSecondDOM = new ActiveXObject("MSXML2.DOMDocument");
objSecondDOM.async = true;
objSecondDOM.load("salesData2.xml");

//Get to the root element
varSalesDataB = objSecondDOM.documentElement;

varImportCust1 = varSalesDataB.getElementsByTagName("Customer").item(0);

<!-- adding an element -->
document.write("<HR><H1>Updates appear in alert boxes:</H1>");

//clone the node from the second DOM
varClone = varImportCust1.cloneNode(true);

//append node to the first DOM
varSalesData.appendChild(varClone);

alert(objDOM.xml);

</SCRIPT>

</HEAD>
<BODY>
<HR>
</BODY>
</HTML>

We start as we did in the other two examples: loading up the XML document into the parser. This time,
however, we add a second instance of the DOM to hold the document that we want to retrieve more
information from. We need to collect the element that we want to insert into the first tree from this
second DOM tree, so we do this now, and store it in varImportCust1:

//second instance of the DOM
var objSecondDOM;
objSecondDOM = new ActiveXObject("MSXML2.DOMDocument");
objSecondDOM.async = true;
objSecondDOM.load("salesData2.xml");

//Get to the root element
varSalesDataB = objSecondDOM.documentElement;

varImportCust1 = varSalesDataB.getElementsByTagName("Customer").item(0);

Chapter 6

232

In order to add the Customer element from the second document into the first document, we clone it.
This is why we just stored it. We do this using the cloneNode method. We use a shallow clone, which
will still collect the attributes of this element:

//clone the node from the second DOM
varClone = varImportCust1.cloneNode(true);

If Customer had child attributes, we could make sure that the clone cloned these as well by setting the
parameter of the cloneNode method to true, creating a deep (rather than shallow) clone.

Having cloned the node, we simply append it to the tree representing the first document, and write the
new document to an alert box:

//append node to the first DOM
varSalesData.appendChild(varClone);

alert(objDOM.xml);

and here is the result:

When To Use or Not Use the DOM
As we have seen, the Document Object Model presents a standardized interpretation of an XML
document that makes the contents of the document available for processing, along with a set of
interfaces that expose properties and methods that will be useful when integrating XML into our
programs and data strategies. Because DOM implementations have been written for most major
programming and scripting languages, the programming language we wish to use in creating our
applications is not a major consideration.

Rather the two major considerations are:

❑ The size of the document with which we are working.

❑ What type of processing we want to do with the document that we load.

DOM

233

We shall look at each of these in turn, although we should think about the issues surrounding both when
deciding how to process our documents. Once we have looked at some of the major issues in deciding
whether the DOM is an appropriate technology, we will look at some of the alternative technologies
that we may wish to consider.

Size of Document
When deciding whether the DOM is an appropriate technology for our programming endeavors, we
should consider the size of the documents that we are likely to be dealing with. This is because of the
way in which DOM implementations expose the contents of XML documents.

Remember that the DOM creates an in-memory representation of the XML Document in order to work
with it. A DOM representation can need 5-10 times as much memory as the corresponding XML file
itself. This means that we can end up with some pretty memory intensive situations when dealing with
large amounts of data. In order to make a large document available, the DOM implementation must
load it into memory so that we can work with it.

It can also take more time to load a large file into memory, which is important if performance is a major
concern; and as well as the sheer size of the file, the number of nodes can have an effect performance.

On the other side of the coin, if we are creating documents using the DOM, we must consider the size of
documents that we want to create.

Because the DOM is so memory intensive there are some strategies that we can consider employing to
help reduce system load:

Will it Prevent Others From Using Other Information?

If we are loading the whole document into memory so that we can only change one record, we will
need to lock other users out, so that they cannot change the same records and risk the integrity of our
documents. The longer it takes to load a whole document into memory and work with it, the longer it
locks other users out. If we do not have a locking mechanism in place, then other users who may want
the same information may get incorrect records or may try to update the same data – and if we perform
our persistence after them, their changes will be lost.

Using Document Fragments to Reduce Bandwidth Demands

Can we afford to keep passing the whole document over the network? Can we just open a fragment, or
set of, what would be the whole document, so that we can work with a smaller subsection rather than
the whole document? For example, if we are only editing one record, then there is no point in retrieving
the whole document and loading it into memory. Rather we could just select the fragment that we want.

Luckily, as we have seen, we can just work with fragments of a document using the DOM. It is always
worth trying to limit the granularity of the document to the information that we want to actually work
with. If we just want to work with one invoice, we just collect that one invoice rather than opening a file
of invoices for a whole month.

Of course, we still need the whole document in memory before we can access a fragment. We'll have to
collect that fragment ahead separately, before we start working with it from the DOM.

Chapter 6

234

How the DOM Processes a Document
We have already seen that the DOM implementation sits on top of a parser (or is built in). The XML
document is read into the parser: this either exposes the XML document as a DOM tree, or an
implementation of the DOM implementation can sit on top of the parser. For the duration of the time
that the application wants to work with this document, the DOM representation remains in memory.
Once we have finished with the document it can then be persisted in some form.

XML Document Parser

Read Access

Write Access

Application

Dom Tree

Root
Element

Child
Element

Child
Element

Value Attribute Value Attribute

New Saved XML
document

For large documents this means that the resources required to hold a document as a DOM tree can be
very intensive.

Alternatives to the DOM

An alternative to this approach would be to allow the document to be passed through as a stream, rather
than holding it in memory. This stream could then be used to raise events to the processing
applications. This is, in fact, the model that the Simple API for XML (SAX) uses, as we shall see in the
next chapter.

XML Document Parser
Parsing

Content
Reporting

SAX Event Reporting Event Stream Application

Using this approach we do not need to hold the document in memory, meaning that it takes up fewer
resources. However, it makes it far more difficult to do much more than read the document as it is
streamed through. If we want to add, update, modify, or create documents, we may require that the
document be streamed through the parser several times. We will learn more about how SAX processes a
document, and what tasks it is suited to, in the next chapter.

This shows how the size can affect the choice of how we process our documents. Of course, if we are
only dealing with small XML documents, then we do not need to worry too much about the memory
that will be taken up by the in memory tree that allows the DOM to process documents. When the
documents get larger, however, we need to think about the number and size of the files that we want to
process, and whether we could build our solution based on SAX instead, or whether there are other
strategies we could use.

DOM

235

The Task in Hand
Having seen that the size of the document will affect our choice of which processor to use, let's look at
how the task that we wish to achieve can affect the choice we make as well. Keep in mind that size is
still a consideration here.

When integrating XML into our database strategies, there are a range of tasks that we may want to
perform on the XML data. If we think about our XML invoice example, that we have been looking at in
the book so far, we may want to:

❑ Read values from the invoice into a processing application.

❑ Edit the values in the document, such as a customer address.

❑ Add or remove records, such as line items.

❑ Generate new documents programmatically:

� From scratch, such as new invoices.

� From existing documents, creating a summary of invoices that represent
customer records.

❑ Display the invoice in a browser.

❑ Display the invoice in a program using a custom front-end, say in Visual Basic.

❑ Transform the invoice from the XML vocabulary we use to another vocabulary, perhaps for
an order fulfillment house.

When working with the XML, the tool we use to make it available to other applications depends upon
the task in hand. We can split these sorts of tasks into four general groups:

❑ Add, update, modify.

❑ Transformations of structure.

❑ Reading and filtering.

❑ Creating documents.

We shall look at each of these in turn.

Reading and Filtering
Imagine that we only want to read values from an XML document into a processing application, and
then let it get on with what it has found, rather than making any changes to the document. In that case,
creating an in-memory representation of the document just to read values out of it, may not be as
efficient as catching events as the document is streamed through a processor.

Furthermore, if we wanted a subsection of the document, then we could also use a stream based
approach. We could take the items that we want, and write them to a new file or destination, rather than
loading the entire document into memory just to retrieve a subset of it.

Both of these are especially true if we want to read values from, or filter, large documents. If the
documents are only small and there is not a large load on the system, then it may not be such a problem
– it depends on the granularity of information that we are dealing with. For reading and filtering large
documents, the DOM is not always the best choice.

Chapter 6

236

Add, Update, Delete
What if we want to do more with the document than just read it into an application? Having got our
information in XML format, we might want to keep it up-to-date, meaning that we could need to add
records, update existing entries, or delete entries. As we have seen, the DOM provides a rich set of
interfaces for manipulating and updating the content of an XML document, so it is a natural candidate.
The DOM approach allows developers to take advantage of the logic built into a DOM implementation
for managing XML content, rather than having to create their own.

One of the key advantages to the DOM when modifying records is exactly that it holds the document
representation in memory. Remember when we were talking about creating new nodes and appending
them to the tree, we saw that we can do all of this while the DOM is in memory. However, when
working with a stream based approach to processing, we would need to have the content that we wanted
to add/change in memory in the processing application, so that we could make our modifications as the
document is streamed through.

Of course, we could just delete records as they are passed through a stream, by passing everything that
was not to be deleted to a new output. However, applications that perform these kinds of operations
usually perform more than just deletion. If we think about a customer call center, we will want to allow
operators to update records as well as delete them or add them.

Therefore the DOM is the better choice for modifying an XML document and holding the changed
document in memory, because it allows us to update the source, or if we need to browse to the records
we want to update.

Transformations of Structure
As far as transformation of documents goes, the main purposes are:

❑ To transform the XML for presentation to a web client (say using HTML).

❑ To transform the data into another XML vocabulary for a trading partner's application to
make use of, or for insertion into a database.

❑ To assemble data from selected bits and pieces of the overall data repository held in separate
smaller XML files.

The DOM may not always be the most appropriate solution for these transformations. If we think about
how the DOM would approach transformation, we would have to tell the DOM which nodes to remove
and append elsewhere – perhaps we might need to tell it to change the element and attribute names. In
fact, there are a lot of things that we would have to tell it to do in such a program. A popular alternative
would be to consider using XSLT instead of the DOM. We will meet XSLT in Chapter 8.

It is worth noting that most XSLT processors do actually use a DOM representation to perform their
transformation, so the concerns over document size still apply here. In fact, they are amplified, because
an XSLT processor generates three representations of the document to work with:

❑ The source tree.

❑ The result tree.

❑ The style sheet tree.

DOM

237

So, the memory footprint can be very high when transforming large documents. This has been a
criticism levelled at using XSLT to process transformations since its inception, and some suggest that it
is not suitable for transforming large documents. However, its adoption in the developer community
seems to suggest that XSLT will be around for a while, and the language is still sometimes used in other
implementations of transformation engines.

The advantages of XSLT, however, lie in the fact that it is a declarative language. This means that we
tell an XSLT processor how we want the resulting document to appear, and let the XSLT processor
implement the transformation for us. We do not need to tell it which nodes to remove and then append
elsewhere, we can just specify the format that we want the tree to appear in and let it get on with the
job. While there is a learning curve to getting used to the new language and way of working, it can be
more useful in the long run. Especially when we consider that we can use one style sheet to transform
multiple documents that may not have exactly the same structure, although they conform to the same
DTD or schema.

Creating Documents
Another task that we may wish to achieve is the programmatic creation of a new XML document. For
example:

❑ If we wanted to create a totally new invoice.

❑ To create a monthly summary of invoices from all the invoices of one month.

Rather like when we were considering whether to use DOM for adding, updating and deleting records,
this would depend on how we built the document. If we want to build a document whose structure we
don't yet know, then we need to take the in-memory approach.

Maintaining the document in memory is a lot more helpful here, as we are able to traverse through it.
We can use the structure as it is in memory, as well as dealing with incoming data. We could even hold
different representations of documents in memory and append them to a new document.

We might want to merge several documents – say we wanted to create one document that contained a
month's invoices. To do so, we could create a new document in the DOM, then add a new root node
with any necessary summary information, and then append the other instances of invoice documents.

Alternatively, if we wanted to merge invoice data and other customer information, we could load the
invoice document, then append the second document, and perform the necessary operations to create
the merged document (such as moving or reordering of nodes).

Again, this feeds back to the question of the size of the document that we are creating, but there are few
easier ways to create a document programmatically. If we were to look to a stream based approach for
creating new documents, we would have to hold the parts of the document that we wanted to append in
memory so that they could be added as the document streams through, and these would have to be
persisted to a different location.

Chapter 6

238

Summary
In this chapter, we have explored the Document Object Model, which gives us an API to work with our
XML documents. We've seen how an implementation of the DOM works with a parser, which loads an
XML document into memory, allowing us to access and change values of the XML document.

We have seen how to:

❑ Use the interfaces that the DOM API exposes.

❑ Change values from a DOM representation of an XML document.

❑ Use the methods of the DOM's interfaces to add, remove, clone, and update elements.

❑ Set different attributes.

❑ Tell when it is appropriate to use the DOM.

❑ Create some simple examples of using the DOM with JavaScript.

The examples we have seen, illustrated how we can load a document into memory and access it
programmatically. Because the DOM is an API reference, and because there are implementations of the
DOM in many programming languages, we will now be able to work with it to integrate it into our
applications – whatever language they may be written in.

In addition, although we have been focusing on the Level 2 Core, we should now be able to work with
future versions, and other extensions the DOM provides.

We also looked at some of the times when the DOM isn't the best answer to our problems. In
conclusion we decided that:

❑ Developers who need to build applications for specific purposes may find it more efficient to
use SAX to read the document, and then manage the information in their internal data
structures.

❑ Developers who need to transform the structure of a document, either into another vocabulary
or for the purposes of presentation, may be better off using XSLT.

We'll cover XSLT in Chapter 8. Before that, though, we'll take a look at SAX.

DOM

239

Chapter 6

240

SAX – The Simple API for XML

SAX, the Simple API for XML, is slightly different from many of the other technologies in the XML
programmer's toolkit. Rather than being a specification developed by a standards body, it was created
by members of a mailing list called XML-Dev (under the guidance of David Megginson). If you are
interested, you can find out more about its history at http://www.megginson.com/SAX/index.html.

In addition to its name's claim to be simple, what else is there about SAX that makes it worth taking a
good look at? In a sentence, SAX is an alternative to the DOM as a method of accessing XML
documents – or at least, a complement to the DOM. As we will see later in the chapter, there are
advantages to using the two different approaches provided by the DOM and SAX to access and
manipulate data in XML, depending on what sort of document we are working with, and what sort of
things we want to do with it.

This chapter assumes familiarity with the DOM.

When we say that SAX is an alternative to the DOM, it's best not to think in terms of one or the other.
Rather, you will find SAX to be another weapon in your arsenal for attacking XML-related problems. A
complete SAX reference is beyond the scope of this book, but we will be looking at:

❑ What SAX is

❑ What it allows us to do

❑ How we can use it, with examples in Java and Visual Basic

❑ Guidelines of when it is better to use SAX rather than the DOM

If you need to learn more about using SAX, there are some references at the end of the chapter.

Chapter 7

242

SAX Parsers
It is helpful to understand that SAX is an API, just like the DOM, and can be implemented in a parser.
This means that SAX itself does nothing more than provide interfaces and classes to be implemented by
a parser or application. It also means that when we talk about a "SAX parser", we are talking about a
particular implementation of a SAX-compliant parser, not the standard itself.

There are several freely available SAX parsers around for you to use (so you do not need to write an
implementation yourself). The following table provides a list of parsers, and where to get them.

Parser
Name

Creator SAX
Version
Supported

Location Language(s)
Supported

Aelfred David
Megginson
(this version
by David
Brownell)

2.0 http://home.pacbell.net/
david-b/xml/#utilities

Java

Saxon Michael Kay 2.0 http://users.iclway.co.uk/
mhkay/saxon/index.html

(Saxon uses an implementation of
Aelfred, and is not itself strictly a
parser.)

Java

MSXML3 Microsoft 2.0 http://msdn.microsoft.com/
downloads/default.asp

C++, VB and
any COM-
compliant
language

Xerces C++
Parser

Apache XML
Project

2.0 http://xml.apache.org/
xerces-c/index.html

C++

Xerces Java Apache 2.0 http://xml.apache.org/
xerces-j/index.html

Java

JAXP Sun 2.0 http://java.sun.com/
xml/download.html

Java

XP James Clark 1.0 http://www.jclark.com/
xml/xp/index.html

Java

SAX is currently in version 2, and all the examples in this chapter will implement this version.
We'll be using Saxon's implementation of Aelfred and MSXML3.

Understanding SAX
The biggest difference between SAX and the DOM is that SAX is an event driven interface that requires
certain methods to be declared that can "catch" events from the parser.

When a DOM-based parser parses an XML document, it stores a tree-based representation of the
document in memory. SAX, on the other hand, streams the document through from start to finish,
looking at the different items it encounters as the document passes. For each structural item in the
document, SAX calls a method you have made available.

SAX – The Simple API for XML

243

For example, when the parser encounters an element's start tag, it can say, "Hey, I have a start tag
named 'X'", but it then leaves you to do what you like with that information. From there, it moves on
and will not concern itself with this element again. What this means to you is that you must maintain
state, or context, while working with a SAX parser.

So, if we had this XML fragment parsed by a content handler:

<Start>
<here>This is some text</here>
</Start>

We would have the following events:

Event Returns Value

startElement localName "Start"

startElement localName "here"

characters text "This is some text"

endElement localName "here"

endElement localName "Start"

Each of the events raised requires an implementation of the SAX interface to work with the information
provided by the parser. The beginning of an element is "caught" by the startElement method, the
end by the endElement method, and so on, as we'll explain below. These methods are usually grouped
together in a class that implements the ContentHandler class.

One implication of the event-based approach is that the application you build will have to keep track of
the element names and other data caught by the content handler. For instance, imagine that we need to
connect the character data "This is some text" with its element <here>. Then, the startElement
method will need to set a variable of some kind that can be checked in the characters method, as in
this pseudo-code:

declare variable – boolean bInElement
//Start receiving events
startElement � localName = "Start"
startElement � localName = "here"
if localName = "here" then bInElement = True

characters � text = "This is some text"
if bInElement then this character data belongs to the "here" element

We'll introduce the issue of context in the second example that we'll look at in this chapter, and work
with it in detail in the final example.

If we consider a few implications of this approach, we can start to build an idea of where we can use
SAX. We've been given a way to parse a document without the overhead of building an in-memory
tree. We can also avoid processing the entire document, because any one of the event-catching methods
can return control to the application before the whole document is read. These features mean that SAX
is going to be a very practical way to parse large XML documents. We can also ignore, change, or pass
along any item that the parser tells us about at runtime. This gives us an excellent opportunity to keep
only the parts of a document we want.

SAX will not be great for everything. As we mentioned above, it does not allow us to traverse the tree,
and it's not adept at moving backwards and forwards through a document – we only get one shot as it
goes through the parser – so it is best understood as an additional tool. We'll start with a look at a basic
approach for working with SAX.

Chapter 7

244

Example 1 – A Simple SAX Application
If SAX is simple, let's see if we can't get an example up and running quickly just to demonstrate it. This
simple example will be written in Java, and will utilize a SAX2 compliant parser.

This application is called SaxApp, and you can download the saxapp.jar file, or each of the
separate application files, from the Wrox web site at http://www.wrox.com

In this example, we will look at how to implement three interfaces:

❑ XMLReader – the interface for reading an XML document using callbacks

❑ ContentHandler – the interface to receive notification of the logical content of a document

❑ ErrorHandler – the basic interface for SAX error handlers

All SAX parsers should implement these, as they are three of the standard interfaces in the
org.xml.sax package. (There is only one other package: org.xml.sax.helpers.)

Our application is going to locate a small XML document from a command line argument, and pass it
to the SAX parser specified in the XMLReader class. As the document is parsed, the XMLReader will
alert the ContentHandler of the events it has been registered to receive. The event handlers are
simply going to write the name of the event they have handled, and the name of the element (or type of
character data) they have received. The output will be written to the console.

When you have completed this example, you should be able to understand:

❑ How to implement a basic XMLReader and ContentHandler

❑ What the role of the XMLReader is in relation to the ContentHandler

❑ How you can use the different methods in the ContentHandler class to respond to specific
events from the parser

We're going to work out the first example in Java, using the Aelfred parser as provided by Michael
Kay's Saxon. That way, we'll see how SAX was originally implemented, and the basics of working with
SAX in the Java language. However, the rest of the examples in this chapter will be written with Visual
Basic and MSXML3 (the September 2000 release of MSXML from Microsoft).

In order to run this example, you will need to have SAX2 and SAX2-ext, both of which
are available from http://www.megginson.com/SAX/, as well as Saxon, which is
available from http://users.iclway.co.uk/mhkay/saxon/index.html.

We need to create an application class that will contain the XMLReader, and allow us to set the
document content and error handlers. It is possible to do all of this in one class, but we will use different
classes for the XMLReader, the ContentHandler, and ErrorHandler implementations. We'll also use
DefaultHandler, the default base class for SAX2 event handlers, which is in the
org.xml.sax.helpers package.

SAX – The Simple API for XML

245

Preparing the XMLReader Class
The XMLReader class (SAXApp.java) begins as follows:

import com.icl.saxon.*; // The classpath for the SAXON implementation of
// Aelfred, the SAX parser chosen for this example.
// Our table above contained several possible
// choices for this.

import java.io.*;
import org.xml.sax.InputSource;
import org.xml.sax.XMLReader;
import org.xml.sax.SAXException;

public class SAXApp
{

SAX is an API, and in order to work with it we need a parser that implements SAX. In this example we
are using the Aelfred parser, as provided by Saxon. So, we require a new instance of our chosen parser
within the main class to create our parser. We need to set XMLReader to use this parser when our
simple application loads the document, so that the parser can raise events to the application.

public static void main (String args[]) throws SAXException
{

XMLReader xr = new com.icl.saxon.aelfred.SAXDriver();

Because the parser is going to send messages about what it finds in the XML document it's parsing, we
have to tell the parser where it can find the event handlers. We will use the content handler to receive
notification of events the parser raises while working through the document, and the error handler will
catch exceptions thrown by the parser when something has gone wrong.

SaxHandler handler = new SaxHandler();
SAXErrors errHandler = new SAXErrors();
xr.setContentHandler(handler);
xr.setErrorHandler(errHandler);

All that's left for this class is to figure out what to parse, and call the parse method of the XMLReader.
Here is the whole SAXApp class, with the parse method included:

import com.icl.saxon.*;
import java.io.*;
import org.xml.sax.InputSource;
import org.xml.sax.XMLReader;
import org.xml.sax.SAXException;

public class SAXApp
{

public static void main (String args[]) throws SAXException
{

XMLReader xr = new com.icl.saxon.aelfred.SAXDriver();
SaxHandler handler = new SaxHandler();
SAXErrors errHandler = new SAXErrors();
xr.setContentHandler(handler);
xr.setErrorHandler(errHandler);

Chapter 7

246

// Parse each file provided on the command line.
for (int i = 0; i < args.length; i++) {

try {
FileReader r = new FileReader(args[i]);
xr.parse(new InputSource(r));

} catch (SAXException se) {
System.err.println("Error parsing file: " + se);

} catch(FileNotFoundException fnfe) {
System.err.println("Error, file not found: " +

args[i] + ": " + fnfe);
} catch(IOException ioe) {

System.out.println("Error reading file: " +
args[i] + ": " + ioe);

}
}

}
}

The InputSource wrapper is a SAX class that resolves the type of XML input being received by the
parser. We will take each document provided on the command line in turn, and parse it. There are also
some very simple error handlers in order to catch exceptions from the file reader and the parser. The
application will simply write some information to the screen as it receives events from the parser.

Of course, this application will not work yet, because it will alert non-existent classes about SAX events.
So, let's create the classes to take the messages from the parser.

Complete API documentation is available at http://www.megginson.com/
SAX/Java/javadoc/index.html

Catching Events from the XMLReader
There are several events that can be caught as a document runs through SAX, but for now we will see
the startDocument, endDocument, startElement, endElement, and characters methods. These
are the methods we will deal with most often.

Notice the pairs of "startElement" and "endElement" methods. As we said above, SAX is going to
report on events in document order, so the opening and closing of elements will occur as separate
events.

In our example, the events will be passed to SAXHandler, which extends the methods of the
DefaultHandler class. This class will only implement the methods for events we want our application
to be aware of. If we were not interested in the endDocument event, we could simply drop that method
from the class.

By the way, this should tip you off to another difference from the DOM. If you refer to a non-
existent node on the tree created by a DOM parser, you will get an error. With a SAX parser, nodes
you don't want are simply ignored, and you won't get any messages about nodes that don't exist.

SAX – The Simple API for XML

247

Each method that is declared must take certain arguments, as defined by the API.

Information on DefaultHandler from the API is instructive on its use. This class is available as
a convenience base class for SAX2 applications. It provides default implementations for all of the
callbacks in the four core SAX2 handler classes: EntityResolver, DTDHandler,
ContentHandler, and ErrorHandler. Application writers can extend this class when they
need to implement only part of an interface. Parser writers can instantiate this class to provide
default handlers when the application has not supplied its own.

As application writers, then, our objective is to override the methods provided by the
ContentHandler interface through the DefaultHandler class. By default, these methods do nothing,
so if we don't override them, no harm is done. The SaxHandler class begins as follows:

import org.xml.sax.helpers.DefaultHandler;
import org.xml.sax.Attributes;

//
// Event handlers.
//

public class SaxHandler extends DefaultHandler
{

public void startDocument()
{

System.out.println("Start document");
}

public void endDocument()
{

System.out.println("End document");
}

Notice the all-important extends DefaultHandler modifier on the class declaration. This lets our
compiler know we that are overriding the methods of the imported class of that name.

Additionally, because we have implemented the startDocument and endDocument methods from the
ContentHandler interface, we will be notified by our parser of these events. What we do with that
information is entirely up to us. While this method could be as complicated as we like, our current
example is just going to alert the user by writing a message to the console using
System.out.println.

The rest of the class's methods are similar:

public void startElement(String uri, String name,
String qName, Attributes atts)

{
System.out.println("Start element: {" + qName + "}" + name);

}

public void endElement(String uri, String name, String qName)
{

System.out.println("End element: {" + uri + "}" + qName);
}

Chapter 7

248

public void characters(char ch[], int start, int length)
{

System.out.print("Characters: \"");
for(int i = start; i < start + length; i++) {

switch (ch[i]) {
case '\\':

System.out.print("\\\\");
break;

case '"':
System.out.print("\\\"");
break;

case '\n':
System.out.print("\\n");
break;

case '\r':
System.out.print("\\r");
break;

case '\t':
System.out.print("\\t");
break;

default:
System.out.print(ch[i]);
break;

}
}
System.out.print("\"\n");

}
}

We see a bit more action in the characters method due to the way whitespace has been handled. Any
whitespace characters occurring within elements are going to be reported to the characters method.
Because the goal of this application is to write all events to the console, it is more useful to print the
escape characters for whitespace, rather than the whitespace itself.

The Error Handler
Finally, we have a SAXErrors class to deal with the three kinds of errors we might come across: fatal
errors, parse errors, and parse warnings:

import org.xml.sax.SAXParseException ;

public class SAXErrors implements org.xml.sax.ErrorHandler
{

public void fatalError(SAXParseException spe){
system.err.println ("Fatal error has occurred: " + spe);

}

public void error(SAXParseException spe){
system.err.println ("A parse error has occurred: " + spe);

}

public void warning(SAXParseException spe){
system.err.println ("Parse warning were issued: " + spe);

}
}

SAX – The Simple API for XML

249

The Result
In order to run this simple application, open a command console and enter the location of the compiled
application, with any XML document as an argument. If you are using a Microsoft OS, be sure to
include quotation marks around the application location:

C:\>"c:\compiled_directory_location\saxapp" sample.xml

If we use the simple XML document we met earlier:

<?xml version="1.0"?>

<Start>
<Here>
This is some text
</Here>
</Start>

and call it example.xml, we should see the following result:

Admittedly, this is not very useful, but it shows us that the parser is indeed reading the document we
specified. Once you have this application running, you can try playing with the methods to see what
you can do in response to the events firing from the parser.

A Moment with DOM
Just to drive the point home, consider what would have happened if we had used the DOM instead of
SAX. First, using Microsoft's MSXML parser and Visual Basic, the XML document would be loaded
into memory, so the entire document would be available for inspection.

Dim xmlDoc As MSXML2.DOMDocument30
Set xmlDoc = New MSXML2.DOMDocument30

Dim nodes As MSXML2.IXMLDOMNodeList
Dim node As MSXML2.IXMLDOMNode
Dim sXML As String
Dim i As Integer

'Load the text as an XML document
xmlDoc.loadXML ("<Start> <Here> This is some text </Here> </Start>")

Chapter 7

250

Once loaded into memory, if we wanted to write the name of all elements to the screen, we would
manipulate the document held in memory using:

Set nodes = xmlDoc.selectNodes("//")

For i = 0 To (nodes.length - 1)
Set node = nodes.Item(i)
If node.nodeType = NODE_TEXT Then
sXML = sXML & "Node" & node.parentNode.nodeName & _

" value = " & node.Text & vbCrLf
Else
sXML = sXML & "Node" & i & " name = " & node.nodeName & vbCrLf

End If
Next

MsgBox "XML: " & vbCrLf & sXML, vbOKOnly, "XML through DOM"

Giving us the message box:

When we use the MSXML selectNodes method, we get an entire node list, as specified by the XPath
expression. We can then step through that list one at a time and get the names or values of the elements
within the result set. Again, this can be done because the entire document is loaded and available to the
parser. We can step through the document, rather than collect parts of the document as they are
announced.

If we wanted to, and without reloading the document, we could select one node of an element whose
name we already knew using this syntax:

xmlDoc.selectSingleNode("Start").text

The point is that you think about the document in entirely different ways when using the different APIs.

With the DOM, we consider what we have, and how we can get hold of the
values.

With SAX, we have to consider what we might receive, and how we want to
handle those events.

SAX – The Simple API for XML

251

Choosing Between SAX and DOM
Before we get to some less trivial examples, let's point out a few of the ways SAX might be more helpful
than the DOM. We'll pay special attention to each of these issues during the examples:

❑ Handling large XML documents. There can be no doubt that the SAX method of parsing a
document shines over DOM when it comes to large documents. "Large" is a relative term,
but consider that a DOM-parsed document may take up to ten times its own size in RAM.
If you're dealing with a 2-3MB file, that might not be so important. However, if you're
dealing with large data sources of 100MB or more, the performance gains with SAX will
be staggering.

❑ Creating your own document as subset of the whole. SAX can be helpful in preparing a
document for the DOM or for another parser, by creating a new smaller document that
contains only the pieces we want. Because you're responding to events, you can keep what
you want, and let the rest fall to the cutting room floor.

❑ Filtering documents in an event stream. SAX provides the XMLFilter interface for defining
classes that intercept parsing events as they pass from the XMLReader to a ContentHandler.
Setting up a string of filters, with different processing functions, could allow document
transformations to occur at several levels.

❑ Aborting processing. Again, this is related to large document savings: you can escape from
SAX processing during any event handler. When you have what you want from the data
source, you get out.

It is important to note that SAX parsers are only going to reap the memory reward if
they are pure, SAX-only implementations. Some parsers may build the tree in memory
anyway, eliminating this benefit of the SAX event-driven model, so look carefully into
the SAX parser you choose.

Next, it's only fair to consider some of the areas where the DOM is more adept:

❑ Modifying and saving the original document. SAX cannot really modify an XML document –
it is considered to be read-only. You can make SAX appear to modify the original by creating
a new document, and even write one by sending your own events to the event handlers, but
this is not nearly as simple as actually writing to the in-memory document with the DOM.

❑ Changing document structure. Here again, you change document structure in SAX by writing
a new document. The DOM allows you to make such changes explicitly.

❑ Random access; the problem of context. If you are going to be rooting around the XML
document, moving back and forth and working with different nodes at different times, SAX
could be very difficult to use. Because SAX doesn't bother with the details of the entire
document it is processing, or how the elements relate to one another (apart from document
order), you must maintain context programmatically. While you will be working to maintain
some context no matter how you use SAX, you will want to use the DOM for complicated
document handling. In order to simulate going back and forth in a document, you have
several challenges with SAX. You would have to know what you were looking for on the first
pass, get it, and then parse the document again in a second pass, getting some other value, and
so on.

In short, you can do anything with either API, but you should regard the two APIs as complementary.
Each has strengths and weaknesses that you can use to your best advantage depending upon the task in
hand. Let's consider a few ways we may want to use each approach.

Chapter 7

252

Best Uses of the DOM
❑ Use the DOM to modify an XML document based on user input to an application, and save

the XML in memory before moving to another part of the application.

❑ The DOM is a better fit for retaining complex structures, as the structure is held in memory
for you by the tree representation of the document.

Best Uses of SAX
❑ When handling a very large document with only a small amount of relevant data, SAX is a

better choice, as you don't have to deal with the elements you don't need.
❑ SAX is the better method in situations where you will make only one pass through the

document retaining values.
❑ When you can get out of the document after a certain node or value has been retrieved, SAX

is an excellent choice. Any event handler method can be used to end parsing if you have
identified the item you need.

❑ You should consider SAX when you have limited resources on the server parsing your
document. A very large document could easily overwhelm a computer's memory resources
when using the DOM.

The Stateless World of SAX
Although context is important, we do not have any context in SAX. While we may, for example, want
to know the current document context (such as which element we are at), in order to determine which
element a certain block of PCDATA belongs to, SAX parsers will only raise events in the order it finds
them in the document as it is streamed through.

Recall that if we have the XML fragment from the beginning of the chapter:

<Start>
<here>This is some text</here>
</Start>

we get the opportunity to respond to the following events:

Event Returns Value
startElement localName "Start"

startElement localName "here"

characters text "This is some text"

endElement localName "here"

endElement localName "Start"

In order to do anything intelligent with this information, we'll need to know that the here element is in
scope when we encounter the character data. Otherwise, the text will be reported without any qualifiers.
Let's look at an example in which we'll turn the elements of an element-centric XML document into an
attribute-centric document. This could be useful in a situation where we are receiving a document of the
one type, and need to feed it to an application that only understands the other.

In this example, we will maintain context with flags and counters that are declared at a global level and
referenced in the methods of the ContentHandler class. Each flag is a Boolean value that can be
turned "on" or "off" during execution by setting the variable to True or False. This is valuable when
some rule or value has been evaluated in one method that we want to know about in another. While we
don't need to know the specific outcome, we do need to know that it has occurred. The counters, we will
be using to find the depth of the current element within the document.

SAX – The Simple API for XML

253

We'll be using Microsoft Visual Basic 6 for all of the remaining examples in this
chapter. Each project, with all of its supporting code and XML documents, is
available from the Wrox web site. The only additional item you will need is a version
of MSXML, version 3.0 or higher. The code in this chapter is designed to work with
the October 2000 release, which you can download from
http://msdn.microsoft.com/downloads/default.asp.

Example 2 – Creating Attribute Centric Content from
Element Centric Content

In this example we will be looking at how to create a document that uses an attribute-centric content
model from a document that uses an element-centric one. This will demonstrate how SAX can be used
to make some transformations to the original document as it writes a new document on the fly. We will
also see one technique of maintaining context within the ContentHandler class, using flags and
counters.

To do this:

❑ Start a new Visual Basic Standard EXE project called saxSample. Add a reference to the
most recent version of the MSXML parser by selecting Project | References... from the
toolbar, and checking Microsoft XML, v3.0. If msxml.dll has not been registered on your
system, there is a Browse... feature that will allow you to point to the file itself.

❑ Create a Visual Basic form named frmAttsCentric that houses the application. This
form needs:

� A textbox, txtInputDoc, with Text property c:\groceries.xml. This contains the
name of the XML document that we want to convert.

� A command button, cmdParse, with Caption property Parse. When this button is
clicked, the specified XML document will be loaded.

� A command button, cmdExitSub, with Caption property Exit. This button will close
the application.

� A textbox, txtResults, with blank Text. This is where the result will be displayed.

The simple form will look something like this:

Make sure that the Multiline property of the text box is set to True, otherwise you will see marks
inbetween the record.

Chapter 7

254

Now for the code. We need to:

❑ Set up the XMLReader instance within the cmdParse_Click() method.

❑ Call the setContentHandler() and setErrorHandler() methods of the XMLReader to
assign the saxElemstoAtts and saxErrorHandler classes respectively.

❑ Create the saxElemstoAtts class implementing the IVBSAXContentHandler interface,
and the saxErrorHandler class implementing the IVBSAXErrorHandler interface.

❑ Create code within handler methods to generate the desired result document.

The frmAttsCentric Form
First, we need to instantiate the XMLReader, tell it where to send its parsing events, and where to send
error messages. Add the following code to the form:

Option Explicit

Private Sub cmdParse_Click()

Dim reader As SAXXMLReader
Dim contentHandler As saxElemstoAtts
Dim errorHandler As saxErrorHandler

txtResults.Text = ""
Set reader = New SAXXMLReader

Set contentHandler = New saxElemstoAtts
Set errorHandler = New saxErrorHandler

' Equivalent to setContentHandler() and setErrorHandler() methods in
' Java API. Tells the reader which classes will receive the events,
' and which will receive error messages.
Set reader.contentHandler = contentHandler
Set reader.errorHandler = errorHandler

Setting the XMLReader's contentHandler and errorHandler properties points the reader at the
correct classes for this particular application. The reader must have these properties set before the
parseURL() method can be called. Otherwise, nothing will happen, because the reader has nothing to
report events to.

Having done this, we are ready to have the reader parse the document:

On Error GoTo HandleError

reader.parseURL(txtInputDoc.Text)

Exit Sub

HandleError:
txtResults.Text = txtResults.Text & "*** Error *** " & Err.Number & _

" : " & Err.Description

End Sub

SAX – The Simple API for XML

255

The parseURL() method of the SAXXMLReader object is a straightforward way of specifying a
document's location. This application will take the location from the form's txtInputDoc text box.

Notice that the Java API defined class names are present throughout, but with the addition of
prefixes to the classes and interfaces.

Now that we have an XML reader available to raise events, we define the event handlers. When we
look at the contentHandler class, we'll pay attention to the context in order to transform the structure
of the XML document.

Before we look more closely at what each event is going to do, though, we should look at the document
that will be parsed by the application.

The XML Document
This application assumes a well-formed document that has a document level element, and then a
recurring top-level element that contains all other element types. This would have the generic format:

<DocumentElement>
<TopLevelElement1>

<QualifierA/>
...

<QualifierN/>
</TopLevelElement1>
...
<TopLevelElementN>

...
</TopLevelElementN>

</DocumentElement>

For example, this could be a document from an inventory database that has repetitive nodes for each
item in stock, like the groceries.xml document that we'll be using in this example:

<?xml version="1.0"?>
<Groceries>

<Item>
<ItemKey>1</ItemKey>
<Name type="dairy" calories="200">Milk</Name>
<Cost>$2.0000</Cost>
<PercentVitaminA>75%</PercentVitaminA>
<IntakeRecommendation>16oz.</IntakeRecommendation>

</Item>

<Item>
<ItemKey>2</ItemKey>
<Name type="dairy" calories="150">Cheese</Name>
<Cost>$1.5000</Cost>
<Origin>Wisconsin</Origin>
<PercentVitaminA>75%</PercentVitaminA>
<IntakeRecommendation>5oz.</IntakeRecommendation>

</Item>

Chapter 7

256

<Item>
<ItemKey>3</ItemKey>
<Name type="grains" calories="50">Bread</Name>
<Cost>$2.1500</Cost>
<Origin>Iowa</Origin>
<PercentVitaminA>15%</PercentVitaminA>
<IntakeRecommendation>2 slices</IntakeRecommendation>

</Item>

<Item>
<ItemKey>4</ItemKey>
<Name type="junkfood" calories="350">Pastries</Name>
<Cost>$4.2500</Cost>
<PercentVitaminA>Less than 1%</PercentVitaminA>
<IntakeRecommendation>none</IntakeRecommendation>

</Item>
</Groceries>

The ContentHandler Class
We will look first at the ContentHandler class. Add a class module called saxElemstoAtts to the
application, and add the following code to it:

Option Explicit

Implements IVBSAXContentHandler

' Set some module-level variables for maintaining context
' from one parse event to the next
Private bContext As Boolean
Private iCounter As Integer
Private sCurrentName, sTopName, sTopChar As String

' Initialize module-level variables
Private Sub class_Initialize()

bContext = False
iCounter = 0
sCurrentName = ""
sTopName = ""
sTopChar = ""

End Sub

We get started with some variable declarations that can be set on initialization. These variables will help
the application maintain context as parse events fire one method after another. The Boolean flag
bContext will be the primary context variable for this application, and tells the application whether or
not a child element that should become an attribute is in scope at any given time. This flag is set to
False initially, to indicate that no such element is in scope.

The iCounter variable will be used to indicate that the document element is in scope, and when
top-level elements, are in scope. The remaining string variables will hold the values of particular
elements during the course of the application. This enables the application to write values to the result
document, even after the next event has fired. Without such variables, we must either write information
to the result document during a particular event, or lose the value forever.

SAX – The Simple API for XML

257

Flags, counters, and value-holders are a good jumping off point for the discussion of imlpementing
context. We'll look at a more complex state mechanism for larger applications in a later example.

The ContentHandler class must include a method for each of the events the parser
might send. In Java, methods that the application will not respond to can be left out of
the content handler. In Visual Basic, however, the Implements keyword forces the
class to implement each method defined in the interface specified.

The startElement Method

Next, we'll add some code for the startElement() method:

Private Sub IVBSAXContentHandler_startElement(_
sNamespaceURI As String, _
sLocalName As String, _
sQName As String, _
ByVal attributes As MSXML2.IVBSAXAttributes)

Notice the use of the SAX attributes class within the startElement() method. Attributes of each
element are actually sent as a separate object containing the type, URI, qualified name, local name, and
value of each attribute. Each of these values can be accessed from the attributes object while within
the startElement() method.

Now we'll start to parse our groceries.xml document. This application will output a document
fragment that focuses on the Item element as the top-level element, and treats each of its children as
qualifying attributes. Each child element will be added to the Item element as an attribute:

Dim i As Integer
Dim sVal
iCounter = iCounter + 1
If iCounter > 2 And sLocalName <> sTopName Then

sCurrentName = sLocalName
bContext = True
frmAttsCentric.txtResults.Text = frmAttsCentric.txtResults.Text & _

" " & sCurrentName & "="""

Right away, we check the iCounter and the sLocalName because we want to isolate the Item element
during subsequent calls, but we also need to skip the root. The iCounter is simply incremented each
time we enter the startElement method, so we can ignore the first element and catch the second.
Again, this application is dealing with a certain type of XML document structure. If we wanted to
capture the fifth element, we could check the iCounter differently. Alternatively, we could change the
application to check by element name.

We also set the context to True inside the If statement, so that when we look at character data later,
we can generically decide if it should be written as an attribute.

The next order of business is to check the counter again, to see if the current node is now the second:

ElseIf iCounter = 2 Then
' This is the main element node (the second one encountered by the
' parser). There is an assumption that there is a top level element
' to be ignored, and the next element will be our 'main' element.
sTopName = sLocalName

End If

Chapter 7

258

When the iCounter is 2, we have the name of our repetitive top element, and so we store this in the
sTopName variable as a way to change our processing for this special element on subsequent parser
events:

If sLocalName = sTopName Then
' Every time we come to this element, we will start the process over
frmAttsCentric.txtResults.Text = frmAttsCentric.txtResults.Text & _

vbCrLf & "<" & sLocalName

Now, if our top-level element already has attributes, we want to preserve them, so we roll through the
attributes collection:

If attributes.length > 0 Then
For i = 0 To (attributes.length - 1)

frmAttsCentric.txtResults.Text = _
frmAttsCentric.txtResults.Text & " " & _
attributes.getLocalName(i) & "="

frmAttsCentric.txtResults.Text = _
frmAttsCentric.txtResults.Text & """" & _
attributes.getValue(i) & """"

Next
End If

End If
End Sub

Attribute values can be referenced either by name or index number. Here we are getting the values by
sequential index number. We don't write out the end parenthesis for the top element here, because we
want to write future startElement events inside this same element. After closing up the logical
structures, we are ready to move on to the characters() method.

The characters Method

With character data, this application should seek to retain everything except for text that occurs outside
of <Item> elements. All character data inside the top level <Item> element must be stored for later
use, as it will have to be printed to the result document only after all other elements inside <Item> have
been written.

If the text currently being parsed is for an element that should now be an attribute (as noted by
bContext), it is written directly to the results:

Private Sub IVBSAXContentHandler_characters(sText As String)

sText = strip(sText)
If bContext Then

' If this is the root then any character data will be ignored
frmAttsCentric.txtResults.Text = _

frmAttsCentric.txtResults.Text & sText
ElseIf sTopName <> "" Then

sTopChar = sTopChar & sText & " "
End If

End Sub

As the text is passed in, we send it to the strip() function, which simply removes any newline
whitespace characters for the sake of readability in the txtResults window:

SAX – The Simple API for XML

259

Private Function strip(sText As String)
Select Case sText

Case vbCrLf
sText = Replace(sText, vbCrLf, "")

Case vbCr
sText = Replace(sText, vbCr, "")

Case vbLf
sText = Replace(sText, vbLf, "")

End Select
strip = sText

End Function

When using MSXML, all of the text inside a particular element will be returned in one call to the
characters() method. In general, however, each parser implementation is free to return the
characters in any grouping it chooses.

The endElement Method

Next, we will work with the element end tags. Add the following code to the class:

Private Sub IVBSAXContentHandler_endElement(sNamespaceURI As String, _
sLocalName As String, _
sQName As String)

If sLocalName = sTopName Then
frmAttsCentric.txtResults.Text = frmAttsCentric.txtResults.Text & _

">" & vbCrLf & Trim(sTopChar) & "</" & sLocalName & ">" & vbCrLf
sTopChar = ""

ElseIf bContext Then
' Close the attribute value quotes
frmAttsCentric.txtResults.Text = _

frmAttsCentric.txtResults.Text & """" ' Ends the element value

' Reset for processing next element
bContext = False

End If
End Sub

The actions we need to take inside the endElement() method can be somewhat less intuitive than the
others we have seen so far. Basically, it is at the end of an element that the application should clean up
the output to the result document, and prepare the variables for the next run of parser events. In this
case, we have two possible end element events that are important.

First, if this is the top-level element, the start element tag itself should be closed with the "greater than"
angled bracket, and the characters we have been holding on to in the sTopChar variable can finally be
written to the result. At this time, it is also appropriate to write the end element tag as well, and clear
out the sTopChar variable ready for the next <Item> element:

If sLocalName = sTopName Then
frmAttsCentric.txtResults.Text = frmAttsCentric.txtResults.Text & _

">" & vbCrLf & Trim(sTopChar) & "</" & sLocalName & ">" & vbCrLf
sTopChar = ""

Chapter 7

260

The second case we are interested in is for the ending of those elements that have now been written as
attributes of <Item>. The handy bContext variable is ready to help us determine if the current end
element belongs to such an element. After checking if bContext is true, we can simply write the ending
quotes for the new attribute value:

ElseIf bContext Then
frmAttsCentric.txtResults.Text = _

frmAttsCentric.txtResults.Text & """"
bContext = False

It is also important to reset bContext, as the next element that is parsed may be a top-level element. If
the bContext flag is not reset here, character events sent between elements will not be able to tell
whether the text should be written as attribute text, or as top-level element text.

Remember, you'll also need to implement empty procedures for the remaining
IVBSAXContentHandler methods in order to be able to compile the project. These are:
documentLocator, endDocument, endPrefixMapping, ignorableWhitespace,
skippedEntity, startDocument, and startPrefixMapping.

The Error Handler Class
This project also includes the following error handling code. MSXML treats all errors as fatal, so we
only need to deal with the fatalError() method:

Option Explicit

Implements IVBSAXErrorHandler

Private Sub IVBSAXErrorHandler_fatalError(ByVal lctr As IVBSAXLocator, _
msg As String, _
ByVal errCode As Long)

frmAttsCentric.txtResults.Text = frmAttsCentric.txtResults.Text & _
"*** error *** " & msg

End Sub

'Nothing for error() and warning(), MSXML treats all errors as fatal.
Private Sub IVBSAXErrorHandler_error(ByVal lctr As IVBSAXLocator, _

msg As String, _
ByVal errCode As Long)

End Sub

Private Sub IVBSAXErrorHandler_ignorablewarning(_
ByVal lctr As IVBSAXLocator, _
msg As String, ByVal errCode As Long)

End Sub

The Result
Now compile the application, and point it at the inventory example groceries.xml. You should see
this result:

SAX – The Simple API for XML

261

Context Summary
In order to make intelligent decisions about what to do with the data from the XMLReader, we have to
maintain document context within our application. The general idea is that we need values outside of
the event methods to use within each event. We can maintain context with the name of a particular
element, an index number, or a counter, or we can use a Boolean to turn a more generalized context on
or off at will. This type of document scanning is well suited to the SAX methodology, as we can move
easily in a linear fashion, and don't need to change values within the original document. If the example
inventory document included hundreds of thousands of items, the resource savings would be immense.

Handling Large Documents
It is often the case that an XML file may contain irrelevant data for a particular use or need. In a
database, all the columns of a data set are not relevant in all situations. We could selectively choose
columns in the SELECT statement of a SQL query. In XML, the equivalent of SQL has been said to be
XSLT.

XSLT takes an input document, and transforms it into a result document. SAX can be used in a similar
fashion by virtue of its nature of passing every item in an XML document through a function before
writing the result document. SAX can be ruthless, taking only what it needs from an XML document,
and dropping the rest without another thought. Fortunately, in the world of data, ruthless can also mean
efficient.

In this section we'll consider the ability of SAX to work with a very large document that may contain
only a small amount of relevant data. We will look at a simple transformation example first, utilizing
much of the implementation we've already seen, and then introduce SAX filters.

Chapter 7

262

Example 3 – Creating an Efficient XML Document from a
Large Verbose One

In this example, we'll use a simple interface to tell the application which document will be our source
document, and specify a location for the resulting document. There are two options available: one that
produces another XML document, and one that produces a new document with HTML markup added.

This project is called saxTransformExample. The interface is a form called frmTransform, which
looks like this:

The code behind this form is quite straightforward:

Private Sub Frame1_DragDrop(Source As Control, X As Single, Y As Single)

End Sub

Private Sub cmdCreateFile_Click()

Dim retval
If optXML.Item(0) Then
Dim xOutput As New saxTransformXML
Call xOutput.StartitUp(txtInputFile.Text, txtOutputFile.Text)

Else
Dim hOutput As New saxXMLtoHTML
Call hOutput.StartitUp(txtInputFile.Text, txtOutputFile.Text)

End If

End Sub

Private Sub cmdExit_Click()
End

End Sub

The buttons simply call user-defined functions, StartitUp, to set the document input and output
variables with the XMLReader.

We won't cover the option for HTML output here, but it is implemented in the downloadable
support files. It simply demonstrates another way to filter an XML document. Expanded slightly, it
could serve as a way to produce XHTML. And the same methodology could be used to produce a
document of any type, including a simple CSV file.

SAX – The Simple API for XML

263

For this example, the input document will be the groceries.xml file we saw in Example 2. The goal
of this application will be to retain only the <Name>, <Cost>, and <IntakeRecommendation>
elements, and wrap them in a new generic document level element called <MYXML>. Additionally, the
type attribute of the <Name> element will be converted to a child element, with its value being
displayed as the text value of the <Name> element.

The original XML as displayed by the Microsoft XMLReader has the following form:

Once the application has been run, the resultant outfile.xml document will have this form:

When you have completed this example you should be able to:

❑ Understand how SAX can be used as an alternative method of transforming XML documents
from XSLT

❑ Write functions inside the ContentHandler class for additional functionality

❑ Change document types from XML to any other

Prepare the XMLReader Class
Our content handler class is called saxTransformXML, and begins with the usual variable declarations
for maintaining context:

Chapter 7

264

Option Explicit
Implements IVBSAXContentHandler

Private ts As TextStream
Private fso As FileSystemObject
Private iElementCounter As Integer
Private sFfirstelement As String
Private bContext As Boolean

The TextStream and FileSystemObject will be used to generate our output file. Notice also the
bContext variable of Example 2 has returned. This will be our only state mechanism, because again
our goal is to run through this document, and write to the result document as quickly as possible. We
are not really interested in collecting anything.

This particular handler class has a user-defined function called StartitUp that will be called by the
form to set the document input and output variables with the XMLReader:

Public Sub StartitUp(infile As String, outfile As String)

Set fso = New FileSystemObject

On Error Resume Next
fso.DeleteFile (outfile) 'clear out the file.

Set ts = fso.OpenTextFile(outfile, ForWriting, True)

Dim reader As SAXXMLReader30
Dim errorhandler As saxErrorHandler

Set reader = New SAXXMLReader30
Set errorhandler = New saxErrorHandler

Set reader.contentHandler = Me
Set reader.errorhandler = errorhandler

reader.parseURL (infile) ' Parse it

End Sub

For this example, we have written our reader right into the handler class, and set the reader property
using Me. This is the reserved word used by VB to indicate the current class:

Set reader.contentHandler = Me

There is nothing about SAX that requires different classes for any of the class implementations –
separation of duties is simply a code practice choice. In this case, we want to open a TextStream
object with variables from our form, and have the object available throughout the class. We don't want
to start parsing until we know our output file, so it is convenient to instantiate the reader at this time.

SAX – The Simple API for XML

265

Begin Parsing Events
The goal of this particular transformation is to produce a smaller XML document that fits our particular
data needs, not to change the document type. Therefore, we want to make sure the XML document
fragment that comes out of the other end can be used as well-formed XML by the next consumer. We
use the startDocument and endDocument methods to insert the proper tags for the beginning and
ending of the new result document:

Private Sub IVBSAXContentHandler_startDocument()
ts.Write ("<?xml version='1.0'?><MYXML>")
bContext = False

End Sub

Private Sub IVBSAXContentHandler_endDocument()
ts.Write ("</MYXML>")

End Sub

The content handler is being used to save only certain elements we have chosen: <Name>, <Cost>,
and <IntakeRecommendation>. The process of eliminating the other elements begins in the
startElement method. The desired elements are selected by name to be written to the stream.
Elements that are not named are simply ignored, and do not really have to be "handled" at all:

Private Sub IVBSAXContentHandler_startElement(sNamespaceURI As String, _
sLocalName As String, _
sQName As String, _

ByVal Attributes As MSXML2.IVBSAXAttributes)

Select Case sLocalName
Case "Name"
ts.Write ("<" & caseChange(sLocalName, 1) & ">")
If Attributes.length <> 0 Then
ts.Write ("<" & Attributes.getValueFromName(sNamespaceURI, "type") _

& "/>")
bContext = True

End If
Case "Cost"
ts.Write ("<" & caseChange(sLocalName, 2) & ">")
bContext = True

Case "IntakeRecommendation"
ts.Write ("<" & sLocalName & ">")
bContext = True

End Select

End Sub

In order to demonstrate some simple on the fly transformations, we are changing the case of different
elements with the caseChange function, which changes either to proper or lower case based on an
integer input identifier, iChangeType:

Private Function caseChange(sText As String, iChangeType As Integer) _
As String

Select Case iChangeType
Case 1
caseChange = StrConv(sText, vbProperCase)

Case 2
caseChange = StrConv(sText, vbLowerCase)

End Select

End Function

Chapter 7

266

Of course, the functions you implement to filter the values sent by the SAX parser can be as elaborate
as you like.

If we have run into an element we want, we not only write the element name, we also need to set our
simple state mechanism:

bContext = True

This state of True for bContext lets the application know that, for the time being, the parser is
throwing events related to an element we are interested in. Now, when we come to the characters
method, we can discard the characters of unwanted elements by simply checking the current bContext
value:

Private Sub IVBSAXContentHandler_characters(sChars As String)

If bContext Then
ts.Write (sChars)

End If

End Sub

Ending the elements is very similar to the start. We have to run the element names through
caseChange again, so our resulting XML will be well-formed, and reset our state mechanism:

Private Sub IVBSAXContentHandler_endElement(sNamespaceURI As String, _
sLocalName As String,
sQName As String)

Select Case sLocalName
Case "Name"
ts.Write ("</" & caseChange(sLocalName, 1) & ">" & vbCrLf)
bContext = False

Case "Cost"
ts.Write ("</" & caseChange(sLocalName, 2) & ">" & vbCrLf)
bContext = False

Case "IntakeRecommendation"
ts.Write ("</" & sLocalName & ">" & vbCrLf)
bContext = False

End Select

End Sub

That's it: we have a new document that is still well formed, is less than half the size, and meets the
specifications of our input or retrieval mechanism.

In the downloadable project, we've also included an extra class – saxXMLtoHTML – to deal with the
HTML output, as well as an error handler class similar to the one we saw in the previous example.

The Results
If you use groceries.xml, the output file should now look like this:

SAX – The Simple API for XML

267

<?xml version='1.0'?><MYXML><Name><dairy/>Milk</Name>
<cost>$2.0000</cost>
<IntakeRecommendation>16oz.</IntakeRecommendation>
<Name><dairy/>Cheese</Name>
<cost>$1.5000</cost>
<IntakeRecommendation>5oz.</IntakeRecommendation>
<Name><grains/>Bread</Name>
<cost>$2.1500</cost>
<IntakeRecommendation>2 slices</IntakeRecommendation>
<Name><junkfood/>Pastries</Name>
<cost>$4.2500</cost>
<IntakeRecommendation>none</IntakeRecommendation>
</MYXML>

You should be able to see how this would be useful when dealing with documents that are either more
verbose than necessary, or more importantly, those that do not meet the guidelines of your DTD or
Schema. SAX offers a great way to force data into a format you want, and it can do it on the fly.

SAX Filters
It is actually quite common to use a ContentHandler class as an interceptor between the XMLReader
and the ContentHandler which will write the document. The contributors to the SAX API advanced
this usage as an extension to the XMLReader called XMLFilter.

The XMLFilter class takes a reference to a parent XMLReader class. The parent property is set to
another instance of an XMLReader, whether it is a base XMLReader, or an implementation of an
XMLFilter. In this way, the events of the parsing XMLReader are sent first to the highest level parent,
which will (at least) respond to each event by sending another SAX event to the child XMLReader. This
may sound a bit confusing, but we'll at look some code in just a moment.

In order to use a filter, we actually want to implement the methods and properties of an XMLFilter in
a new class.

The SAX API provides a helper class called XMLFilterImpl that was not provided
with MSXML. A VB translation of this helper class has been provided with the
downloadable files for this example. It is called VBXMLFilterImpl.cls, and
contains only the default methods that will pass the XML document on to the next
reader unchanged.

Example 4 – Using an Implementation of the XMLFilter
Class

For this example, we will build an application that implements a rather trivial XMLFilter. A user
interface will collect the location of an input document, and the name of two elements which should be
removed from the XML document before it is finally passed to the ContentHandler.

Chapter 7

268

What is implemented in the filters, or whether or not they are separate classes in this example, is not
really important. Having the XMLFilterImpl, and seeing how the filters are chained, will make it
possible to create any filter based application. The content handler class – saxConentHandler – will
simply write the XML document to the txtResults text box on the application's user interface. The
application allows you to choose whether the result document should be shown with the filter or without
for easy comparison of the output. The interface looks like this:

When you have completed this example you should be able to:

❑ Implement the XMLFilter interface in a class that can be used to filter SAX events before
passing them on to a ContentHandler

❑ Instantiate a reader that is used as a parent for an XMLFilter implementation

❑ Understand how a chain of filters could be used together in one application

The way that the filters are called is the most important lesson in this example, as we've seen how to
actually respond to events in the filters, and the ContentHandler, in previous examples.

Preparing to Use a Chain of XMLFilters
The XMLReader and XMLFilter implementations will be set up in the code for the form
(frmReadtoFilter). The XMLFilterImpl is created in one class called saxXMLFilterImpl, and the
content handler is created as another class called saxContentHandler.

SAX – The Simple API for XML

269

Our form gives us two options. The one we're really interested in here is where we filter our XML:

Private Sub cmdUseFilter_Click()
Dim reader As SAXXMLReader
Dim filterImpl1 As saxXMLFilterImpl
Dim filterImpl2 As saxXMLFilterImpl
Dim xmlFilter1 As IVBSAXXMLFilter
Dim xmlFilter2 As IVBSAXXMLFilter

Right away, we see a new interface declaration being used for the filter interface definitions:
IVBSAXXMLFilter. The IVBSAXXMLFilter type is the XMLFilter interface, not the implementation
of that interface. xmlFilter1 and 2 will be set to the filter class created based on the
saxXMLFilterImpl template. filterImpl1 and 2 are instantiated as objects of the type
saxXMLFilterImpl, which will actually do the work. Notice that the first filter sets an actual instance
of an XMLReader as its parent. This must be done for the top-level filter to end the chain:

Set reader = New SAXXMLReader

Set filterImpl1 = New saxXMLFilterImpl
filterImpl1.setIgnorableElement (txtIgnore.Text)

Set xmlFilter1 = filterImpl1
Set xmlFilter1.parent = reader

Set filterImpl2 = New saxXMLFilterImpl
filterImpl2.setIgnorableElement (txtIgnoreMore.Text)

Set xmlFilter2 = filterImpl2
Set xmlFilter2.parent = filterImpl1

The values of the two text boxes are passed to the filter implementations in turn to identify which
element name should be ignored for that particular run of the filter. The setIgnorableElement
procedure contained in the saxXMLFilterImpl class (more of that shortly) sets a variable value that
can be referenced during processing:

Public Sub setIgnorableElement(sElementLocalName)
sIgnoreElement = sElementLocalName

End Sub

After each filter has been set in the frmReadtoFilter's cmdUseFilter_Click method, the reader
variable is reset to the name of the last filter in the chain, in this case filterImpl2. Finally, the
ContentHandler class – saxContentHandler – is declared and instantiated as xmlHandler. The next
bit should be familiar by now – the reader property for contentHandler is set to the instance of
saxContentHandler. And the parseURL method is called to set the application in motion:

Set reader = filterImpl2
Dim xmlHandler As saxContentHandler
Set xmlHandler = New saxContentHandler
Set reader.contentHandler = xmlHandler

' parse and display output
reader.parseURL txtFileLoc.Text

End Sub

Chapter 7

270

In calling the parseURL method on the contentHandler, we are actually calling the parseURL
method of the second instance of the filter implementation. In saxXMLFilterImpl, that method looks
like this:

Private Sub IVBSAXXMLReader_parseURL(ByVal sURL As String)

setupParse
saxFilterParent.parseURL sURL

End Sub

saxFilterParent was declared as of type XMLReader in the declarations section of the class. The
setupParse method is going to set this reader instance to the parent of the filter, which in our case is
another filter, filterImpl1. Therefore, when the parseURL method of saxFilterParent is called,
the parse event is going to be handed up the chain to the first filter instance.

The other button on our form is much simpler. This just parses the document unfiltered:

Private Sub cmdParse_Click()

Dim reader As SAXXMLReader

Set reader = New SAXXMLReader
Dim xmlHandler As saxContentHandler
Set xmlHandler = New saxContentHandler
Set reader.contentHandler = xmlHandler

reader.parseURL txtFileLoc.Text ' Parse it

End Sub

Before we go further, we should look at the implementation class.

Using the XMLFilter Implementation Class
The actual filter implementation has a rather long introduction in the declarations section of
saxXMLFilterImpl, because it must account for each type of interface the XMLReader may
implement:

Option Explicit

'Visual Basic implementation of the helper class XMLFilterImpl
'class released as part of the SAX2 API.

Implements IVBSAXXMLFilter 'Special helper interface definition
Implements IVBSAXXMLReader
Implements IVBSAXContentHandler
Implements IVBSAXErrorHandler
Implements IVBSAXDTDHandler
Implements IVBSAXEntityResolver

Private saxFilterParent As IVBSAXXMLReader
Private saxErrorHandler As IVBSAXErrorHandler
Private saxContentHandler As IVBSAXContentHandler
Private saxDTDHandler As IVBSAXDTDHandler
Private saxEntityResolver As IVBSAXEntityResolver

SAX – The Simple API for XML

271

Private sBaseURL As String
Private sSecureBaseURL As String
Private saxLocator As IVBSAXLocator

'Allow filter caller to set the name of an element to be removed from XML
'results passed to next content handler. Use boolean value for context to
'also ignore chars for ignorable element
Private bIgnore As Boolean
Private bNextElem As Boolean
Private sIgnoreElement As String

With these declarations the filter will be able to receive any of the property, feature, and event calls that
could be sent to the XMLReader, allowing it to effectively sit between the reader and content handler
and listen in on all the messages bound for the other side.

So, the setupParse method has been called on the lowest level filter, filterImpl2. This method will
set the familiar XMLReader properties for the current filter class, but sets them on the parent of this
particular filter. Therefore, the contentHandler property set on the instance of filterImpl2, passes
a reference to itself to the instance of filterImpl1 and sets its contentHandler property:

Public Sub setupParse()

Set saxFilterParent.contentHandler = Me
Set saxFilterParent.errorHandler = Me
Set saxFilterParent.dtdHandler = Me
'EntityResolver not yet implemented in MSXML
'(September 2000 beta release)
'Set saxFilterParent.entityResolver = Me

End Sub

The same routine is used to set filterImpl2 as the errorHandler, dtdHandler, and
entityResolver for filterImpl1. Now, when the parseURL method of saxFilterParent is
called, it passes that URL up the chain to filterImpl1.

Private Sub IVBSAXXMLReader_parseURL(ByVal sURL As String)

setupParse
saxFilterParent.parseURL sURL

End Sub

Of course, filterImpl1 has the identical parseURL method as filterImpl2, and will also call
setupParse. However, this time, the saxFilterParent instance will be an actual XMLReader
implementation, and the chain will stop with that reader sending its events to the ContentHandler of
record for filterImpl1, which is filterImpl2. Thus, SAX parse events are passed back down the
chain until the ContentHandler of the last filter in the chain is reached, which is an actual
implementation of the ContentHandler, saxContentHandler in our case.

Confused? Well, in short, the application sets properties and calls parse up the chain, and the
XMLReader instance on the other end passes parse events back down the chain to the instance of the
content handler.

Chapter 7

272

Parse Events

The parse event handlers in the filters can behave just like the event handlers we have already seen in
the ContentHandler implementations themselves. However, each must pass the information it
receives along as a SAX parse event, just as it received it. Thus, the methods that do the work in this
example make the necessary changes, or judgment calls, and then pass the event down the chain to the
next ContentHandler:

Private Sub IVBSAXContentHandler_startDocument()

bIgnore = False 'initialize ignorable element context flag to false
bNextElem = True 'init element content context flag to true
saxContentHandler.startDocument

End Sub

Private Sub IVBSAXContentHandler_startElement(sNamespaceURI As String, _
sLocalName As String, _
sQName As String, _

ByVal oAttributes As MSXML2.IVBSAXAttributes)

'Pass the xmlReader events along except for the element name specified
'as ignorable
If sLocalName <> sIgnoreElement Then
bNextElem = True
'set/reset context flag to true for non-ignored elements.
saxContentHandler.startElement sNamespaceURI, sLocalName, _

sQName, oAttributes
Else
bIgnore = True 'context flag for characters method to

'ignore chars from ignorable element
End If

End Sub

Private Sub IVBSAXContentHandler_characters(sChars As String)

If Not bIgnore And bNextElem Then
saxContentHandler.characters sChars

Else
bNextElem = False
'continue to ignore chars until next element starts to strip whitespace
bIgnore = False 'reset context flag for ignorable element

End If

End Sub

Private Sub IVBSAXContentHandler_endElement(sNamespaceURI As String,_
sLocalName As String, _
sQName As String)

If sLocalName <> sIgnoreElement Then
saxContentHandler.endElement sNamespaceURI, sLocalName, sQName

End If

End Sub

Private Sub IVBSAXContentHandler_endDocument()
saxContentHandler.endDocument

End Sub

SAX – The Simple API for XML

273

Each method's interface is in fact an implementation of the ContentHandler interface methods – there
is really nothing new for you to notice here. The only change is the method call at the end of each
method. For instance, the endElement call:

saxContentHandler.endElement sNamespaceURI, sLocalName, sQName

Recall that in the declarations section, the saxContentHandler variable was set to be of the type
IVBSAXContentHandler. This variable is set in the Property Set statement of the filter:

Private Property Set IVBSAXXMLReader_contentHandler_
(ByVal handler As MSXML2.IVBSAXContentHandler)

Set saxContentHandler = handler
End Property

Again, this property was set for the first filter when we set everything up in frmReadtoFilter:

Set reader.contentHandler = xmlHandler

This property was sent up the chain for each filter in turn by the setupParse method inside the filter
implementation.

You'll find the complete code for this example in the download available from the
Wrox web site.

The saxContentHandler Class
The final ContentHandler in this example, will simply write what it receives from the filterImpl2
just as it comes in, but will add the angle brackets back to the start and end elements.

The code for this class is then trivial:

Option Explicit

Implements IVBSAXContentHandler

Dim sResult As String

Private Sub IVBSAXContentHandler_startElement(sNamespaceURI As String, _
sLocalName As String, _
sQName As String, _

ByVal attributes As MSXML2.IVBSAXAttributes)

sResult = sResult & "<" & sLocalName & ">"

End Sub

Private Sub IVBSAXContentHandler_endElement(sNamespaceURI As String, _
sLocalName As String, _
sQName As String)

sResult = sResult & "</" & sLocalName & ">"

Chapter 7

274

End Sub

Private Sub IVBSAXContentHandler_characters(sText As String)
sResult = sResult & sText

End Sub

Private Sub IVBSAXContentHandler_endDocument()
frmReadtoFilter.txtResults.Text = sResult

End Sub

The Result
When the groceries.xml document is parsed, with the <ItemKey> and <Cost> elements set as the
two ignorable elements, we see this result:

Filters Summary
In this section we have seen that large documents that contain data or nodes that are not needed for the
current situation can be transformed by the SAX ContentHandler to become more efficient and more
useful for our purpose. In addition to using a ContentHandler directly, we saw the implementation of
a SAX XMLFilter, which sits between the XMLReader and ContentHandler classes. The filter is an
ideal way to create XML transformations in separate logical blocks.

Transforming XML documents is an excellent way to prepare the result document for your application
to meet the needs of your situation. In the next section, we'll look at retrieving data out of the result
documents, and storing those values.

SAX – The Simple API for XML

275

Take What You Need – Storing Result Data
In the previous section, we worked the document we were given into a new file or structure that could
be used instead of the original. In the next example, we do not stop with an end document, but will pass
the transformed data directly to a database.

We will work with a fanciful stock quote reporting stream that contains numerous nodes for describing
each company. However, we are only interested in writing the company name, the current stock price,
opening price, and current rating along with minor analysis.

Example 5 – Complex State
Our final application will take the same basic shape as Example 2: in fact the UI is borrowed directly.
This time, though, we are going to be more explicit about what we expect to find, and we are going to
parse the XML string to get only pieces of data to write to our stock analysis database. The UI form has
a small application added inside it that will display the summarized information we wanted to see. Of
course, while we are going to use one form to hit both processes, in the real worlds, the
saxDeserialize class would be run behind the scenes.

When you have completed this example you should be able to:

❑ Create a complex state mechanism for tracking the value of several elements during the
execution of the parser

❑ List yourself among the known masters of SAX parsing

This example uses Microsoft SQL Server 7.0 (or 2000). The SQL command file used to
set up the database, and an Excel spreadsheet of the data, are both available with the
code download for this book. You'll also find the stored procedures you need defined
in the code package, and the VB project that contains everything else.

In order to try this yourself, you will need a database named Ticker with the following setup:

Chapter 7

276

The XML
The XML document we are looking at – ticker.xml – at is a series of stock elements, arbitrarily
contained within a TickerTape element. This represents a stream of stock information. Each stock
element has the following format:

<TickerTape>
<Stock symbol="LKSQW">
<Name>Some Company</Name>
<Price>112.1224</Price>
<PE>2.4</PE>
<R>0.7</R>
<History>
<PrevClose>111</PrevClose>
<High52>154</High52>
<Low52>98</Low52>
<Range52>56</Range52>
<SharesTraded>12,421,753</SharesTraded>
<SharesActive>981,420,932</SharesActive>
<Rating>HOLD</Rating>

</History>
<TradedOn>NYSE</TradedOn>
<QuoteTime>14:12:33</QuoteTime>

</Stock>

<Stock>
...

</Stock>

</TickerTape>

Our goal is to cut out several of the unwanted elements, and hold only the information we find useful. If
we had a result document, it would have the form of the following XML fragment:

<Name>Some Company</Name>
<Price>112.1224</Price>
<History>

<PrevClose>111</PrevClose>
<High52>154</High52>
<Rating>HOLD</Rating>

</History>
<QuoteTime>14:12:33</QuoteTime>

The ContentHandler
We start out with the declarations section of the ContentHandler class, this time called
saxDeserialize:

Option Explicit

'The next line is important – it says what is implemented
Implements IVBSAXContentHandler
Dim iCounter As Integer

SAX – The Simple API for XML

277

'Collection for context(state) variables
Dim colContext As valCollect
Dim quotes As New streamToDb

'Storage variables for element values
Dim curr_Symbol As String
Dim curr_Price As Currency
Dim curr_Prev As Currency
Dim curr_High As Currency
Dim curr_Rating As String

'Set Globals for element state
'enumerations number consecutively if no value is given
Private Enum TickerState

stateTicker = 1
stateStock = 2
statePrice = 3
stateHistory = 4
statePrev = 5
stateHigh = 6
stateRate = 7

End Enum

Private Sub class_initialize()
iCounter = 0
Set colContext = New valCollect

End Sub

We promised earlier that we would get into a more complex way of handling state. In this example,
we've set up a an enumeration of constants, in addition to some other global variables that hold values,
much like in Example 2. We are going to use this enumeration in concert with the context collection
colContext, declared above it. The enumeration values will be passed to the collection, and the
collection read during the execution of other methods. We will refer to this collection and enumeration
setup as a state machine.

We set up our state machine in the startElement method, by adding the value of the enumeration
variables to the collection for the current element, if it matches an element we are looking for:

Private Sub IVBSAXContentHandler_startElement(sNamespaceURI As String, _
sLocalName As String, _
sQName As String, _

ByVal oAttributes As MSXML2.IVBSAXAttributes)

Select Case sLocalName
Case "TickerTape"
colContext.Collect (stateTicker)

Case "Stock"
colContext.Collect (stateStock)

Case "Price"
colContext.Collect (statePrice)

Case "History"
colContext.Collect (stateHistory)

Case "PrevClose"
colContext.Collect (statePrev)

Chapter 7

278

Case "High52"
colContext.Collect (stateHigh)

Case "Rating"
colContext.Collect (stateRate)

Case Else
End Select

If sLocalName = "Stock" Then
If oAttributes.length > 0 Then
curr_Symbol = oAttributes.getValue(0)

End If

End If

End Sub

Not every element passed into the ContentHandler will be useful to us. This is where we can drop
whatever we don't want. It's really a matter of being proactive about the elements we do want to keep
track of, and just letting the others fall away silently. Each time we find the local name of an element we
want, we add the enumerated value to the collection, colContext. The collection object has been very
simply wrapped in its own class, valCollect.

The valCollect Class

Here is this class in its entirety:

Dim valCol As Collection

Public Sub Collect(ByVal var As Variant)
valCol.Add var

End Sub

Public Function Delete() As Variant
Delete = Peek()
If valCol.Count > 1 Then
valCol.Remove valCol.Count

End If
End Function

Public Function Peek() As Variant
Peek = valCol.Item(valCol.Count)

End Function

Public Sub Clear()
Set valCol = Nothing
Set valCol = New Collection

End Sub

Private Sub class_initialize()
Set valCol = New Collection

End Sub

The startElement method of the saxDeserialize class calls the Collect method of this stack
implementation, which adds the value of the variable to the top of the valCol collection. This value
will then be available to the other methods of the ContentHandler.

SAX – The Simple API for XML

279

We have tracked the root element <TickerTape> in order to prime the pump on the state machine. If
we don't add an initial value, we won't be able to peek at the top-level value. That initial value is then
protected within the Delete method in order to keep our calls to Peek valid.

The Character Handler
The real workhorse for this example is in the character handler. Because we are interested in the values
of the elements we have flagged above, we need to know here if we are looking at meaningful characters
or not. This is when we call to our state machine for its current value with the Peek method:

Private Sub IVBSAXContentHandler_characters(sText As String)

Select Case colContext.Peek()
Case statePrice
curr_Price = sText

Case statePrev
curr_Prev = sText

Case stateHigh
curr_High = sText

Case stateRate
curr_Rating = sText

End Select

End Sub

When we "peek" we get the value of the last member of the enumeration that was added to the
collection. The enumerated value we set in the startElement method flags our current state as
belonging to that element.

You can see how this "state machine" methodology is going to allow for a much more robust document
handler. Imagine how messy our original logic would have become if we internally set a variable to
handle every element. We wouldn't be able to perform our simple Select Case statements. Instead,
we'd be forced to have an If... Then for every element we wanted to check.

Once we have identified character data from an element we are interested in, our global variables come
into play, being assigned their current value in the character method:

Case stateRate
curr_Rating = sText

Setting our variables with only the content of elements we are interested in, neatly cuts out the
whitespace associated with formatting a document. You can rid yourself of strings made up entirely of
whitespace if you place the following in the characters method:

sWhiteSpace = " " & Chr(9) & Chr(10) & Chr(13)
Dim i As Integer

For i = 1 To Len(sChars)
If (InStr(sWhiteSpace, Mid(sChars, i, 1)) = 0) Then
WriteIt(sChars)

End If
Next

Exit Sub

WriteIt(sChars)
textStream.Write sChars
'written here to a text stream, but do whatever with the content

Chapter 7

280

Of course, you can add other logical structures to work only on certain elements, or to leave whitespace
inside elements, or whatever you need to do in your implementation.

Having set the values for this run through the stock element, we can act on our data. We know we are
done with this group of <Stock> values because we have come to the endElement method:

Private Sub IVBSAXContentHandler_endElement(sNamespaceURI As String, _
sLocalName As String, _
sQName As String)

Select Case sLocalName
Case "Stock" 'If stock has ended, it is safe to update the price
quotes.addQuote curr_Symbol, curr_Price
curr_Symbol = ""
curr_Price = 0

Case "History" 'if history has ended, update in db.
quotes.updateHistory curr_Symbol, curr_Prev, curr_High, curr_Rating
curr_Prev = 0
curr_High = 0
curr_Rating = ""

End Select

colContext.Delete

End Sub

Note that here we have two child elements we can act on. Because the history for a stock is stored
separately in the database, we can go ahead and call the updateHistory method as soon as we have
the history element completed. While in this application there is really very little between the end of the
<History> element and the end of the <Stock> element, our interest is speed, so we write to the
database as soon as we are able. When we do come to the end of the particular stock we are evaluating,
we write it, and clean up our context variables.

Don't leave out the delete call on the colContext class, as this refreshes our state
machine for the next element.

Writing to the Database
To finish up with this application, we will write the values we have gathered to our database. We do this
in the streamToDB class:

Option Explicit

Dim oCmnd As ADODB.Command
Dim oConn As ADODB.Connection

Private Sub class_initialize()

Dim sConnectme As String
Set oConn = New ADODB.Connection
sConnectme = "Provider=SQLOLEDB;User ID=sa;Password=;" & _

"Initial Catalog=Ticker;Data Source=(local)"
oConn.ConnectionString = sConnectme

SAX – The Simple API for XML

281

End Sub

Public Sub addQuote(ByVal sSymbol As String, ByVal cPrice As Currency)

Set oCmnd = New ADODB.Command
oConn.Open

With oCmnd
oCmnd.ActiveConnection = oConn
'populate the command object's parameters collection
.Parameters.Append .CreateParameter("@Symbol", adVarChar, _

adParamInput, 8, sSymbol)
.Parameters.Append .CreateParameter("@Price", adCurrency, _

adParamInput, , cPrice)
'Run stored procedure on specified oConnection
.CommandText = "addQuote"
.CommandType = adCmdStoredProc
.Execute

End With

oConn.Close

End Sub

We do something similar with the history along the way:

Public Sub updateHistory(ByVal sSymbol As String, ByVal cPrev As Currency, _
ByVal cHigh As Currency, ByVal sRating As String)

Set oCmnd = New ADODB.Command
oConn.Open

With oCmnd
.ActiveConnection = oConn
'populate the command object's parameters collection
.Parameters.Append .CreateParameter("@Symbol", adVarChar, _

adParamInput, 8, sSymbol)
.Parameters.Append .CreateParameter("@PrevClose", adCurrency, _

adParamInput, , cPrev)
.Parameters.Append .CreateParameter("@High52", adCurrency, _

adParamInput, , cHigh)
.Parameters.Append .CreateParameter("@Rating", adVarChar, _

adParamInput, 20, sRating)
'Run stored procedure on specified oConnection
.CommandText = "updateHistory"
.CommandType = adCmdStoredProc
.Execute

End With

oConn.Close

End Sub

Chapter 7

282

Then clean up:

Private Sub class_Terminate()
Set oCmnd = Nothing
Set oConn = Nothing

End Sub

The Result
When we query the database at any given point we can produce the following output:

This example is helpful in giving an idea of what is required of a large SAX application. In order to
handle the XML document as a series of parts, we have to build the packages of information that relate
to one another. Each time we get a package together, we can do something with it. In this case, we have
a number of variables that work together in a function call. As soon as we have all of the related items,
we call a separate class that can use those values intelligently, writing them to the database in a
particular stored procedure.

SAX – The Simple API for XML

283

Summary
In this chapter, we've seen how SAX can be used to:

❑ Cut data down to size

❑ Reformat data on the fly

❑ Pick out values from a large stream of data

The recurrent theme with SAX is its efficient nature, as it does not require an entire document to be
stored, but can run through the values, and let you decide what is important.

We should not look to SAX to solve every XML issue – the DOM still plays a major role. However, as
you gain more experience with SAX, you will find it to be an effective tool in your toolbox. If you want
to know more, try the following resources:

❑ Microsoft's XML SDK for the preview release of MSXML v3.0 contains a complete reference
to the VB implementation of the SAX API interfaces and classes. Download it at
http://msdn.microsoft.com/xml/general/msxmlprev.asp.

❑ Chapter 6 of Professional XML, ISBN 1-861003-11-0, and Chapter 7 of Beginning XML, ISBN 1-
861003-41-2, both from Wrox, provide introductions to SAX.

❑ XML.COM – An excellent and in-depth site hosted by the O'Reilly publishing group.
Thankfully it bears no strong marketing allegiance to its owner, and is packed with white-
papers, reviews, and tutorials on everything XML.

Chapter 7

284

XSLT and XPath

This chapter is designed to give you enough information about XSLT, the XML transformation
language, to enable you to write useful stylesheets; and about XPath, the query language used by XSLT
stylesheets to access XML data.

We haven't got room here for a complete description of these languages or a detailed guide showing
how to take advantage of them: for that see the Wrox Press book XSLT Programmer's Reference, written by
Michael Kay (ISBN 1861003129). The aim is, instead, to cover enough to give a useful working
knowledge.

In this chapter, we'll go through the following:

❑ We'll start with an overview of the XSLT language: what it's for, and how it works

❑ Then we'll take a detailed look at the XPath query language, which is used in XSLT
stylesheets to access data in the source document

❑ Having done that, we'll look at the role of template rules and match patterns in an XSLT
stylesheet, and review all the instructions you can use within a template

❑ Finally, we'll look at the top-level elements you can use in a stylesheet to define
processing options

That's a lot of technical detail, so at the end we'll relax with some soccer; using XSLT to display soccer
scores from an XML file.

Chapter 8

286

What is XSLT?
XSLT is a high-level language for defining XML transformations. In general, a transformation takes one
XML document as input, and produces another XML (or indeed, HTML, WML, plain text, etc.)
document as output.

In this sense it's a bit like SQL, which transforms source tables into result tables, and it uses similar
declarative queries to express the processing required. The obvious difference is that the data (both the
input and the output) is arranged as a hierarchy or tree, rather than as tables.

XML transformations have many possible roles in the architecture of a system. For example:

❑ The most familiar application of XSLT is to format information for display. Here, the
transformation is from "pure data" (whatever that means) to data with formatting information:
usually the target will be HTML or XHTML, though it might be other formats such as SVG,
PDF, or Microsoft's RTF. Of course these aren't all XML-based formats, but that doesn't
matter, because as we'll see they can be modeled as XML trees, and that's all that is needed.

❑ XSLT is also very useful when managing data interchange between different computer
systems. This might be as part of an eCommerce exchange with customers or suppliers, or
simply application integration within the enterprise. The increasing use of XML doesn't mean
that data conversion will be outdated. What it does mean is that in future, data conversions
will often be translating one XML message format into another XML message format.

❑ XSLT can perform some of the roles traditionally carried out by report writers and 4GLs. As
well as pure formatting, this can include tasks such as information selection, aggregation, and
exception highlighting. For example, if your web-shopping site generates a transaction log in
XML format, it is quite possible to use XSLT to produce a report highlighting which areas of
the site were most profitable and which category of customers visited that area.

A program written in XSLT is referred to as a stylesheet. This reflects the original role of the language
as a way of defining rules for presenting XML on screen. XSLT grew out of a bigger project called XSL
(eXtensible Stylesheet Language), which aimed to provide this support, not only for on-screen display
but for every kind of output device including high-quality print publication. XSLT was separated out
into a sub-project of its own, because it was recognized that transformation of the input was an essential
part of the rendering process, and that the language for transformation was usable in many other
contexts. The other part of XSL, which handles the formatting specifications, is currently still under
development.

XSLT transformations can be carried out on the server or on the client. They can be done just before
the user sees the data, or early on while it is being authored. They can be applied to tiny XML files a
few bytes long, or to large datasets. There are no rights and wrongs here: like SQL, the XSLT language
is a versatile tool that can be applied in many different ways.

XSLT processors are available from a number of vendors, and in this chapter, we'll stick to describing
the language, as defined by W3C, rather than any specific product. There are open source products
available (Saxon and Xalan are popular choices), as well as closed source free products from Microsoft
and Oracle, and some development tools available commercially. Many of these are written in Java, so
they will run on any platform, but processors are also available written in C++ and Python. Here are
some pointers to the web sites:

XSLT and XPath

287

❑ Microsoft (MSXML3): http://msdn.microsoft.com/xml

❑ Oracle (Oracle XML parser): http://technet.oracle.com/

❑ Saxon: http://users.iclway.co.uk/mhkay/saxon/

❑ Xalan: http://xml.apache.org/xalan/overview.html

A good place to look for information about XSLT, including pointers to other products available, is
http://www.xslinfo.com/.

One word of warning: when Microsoft shipped Internet Explorer 5, back in 1998, they included a
processor that handled a language based on an early draft of XSLT, with many omissions and Microsoft
extensions. Microsoft refers to this language as XSL, but it is a distant cousin of XSLT as eventually
standardized by W3C. The language is now dated, and Microsoft themselves have a conformant XSLT
processor, but millions of copies have shipped and are still being shipped with every copy of IE5 and
IE5.5, so it won't go away in a hurry. This chapter is about XSLT, not about Microsoft's 1998 XSL
dialect: don't get confused between the two.

Many readers will probably find it simplest to start with the Microsoft XSLT processor (MSXML3). At
the time of writing, this is available for download from the MSDN web site, but it is expected to become
part of Internet Explorer 6 in due course. In the meantime, do read the installation instructions very
carefully, because it is easy to find yourself trying to run XSLT stylesheets through the old 1998 XSL
processor, and wondering why nothing happens. Note that MSXML3 also includes a conversion utility
for old stylesheets: it's only 90% of the job, but that's still easier than doing it all yourself.

The Transformation Process
We described XSLT as a way of transforming one XML document into another, but that's a
simplification. The diagram below illustrates what is really going on:

Style
sheet

Stylesheet
Tree

Result
Tree

Result
Document

Transformation
Process

Source
Tree

Source
Document

Chapter 8

288

There are three separate stages of processing here:

❑ An XML Parser takes the source XML document and turns it into a tree representation

❑ The XSLT Processor, following the rules expressed in a stylesheet, transforms this tree into
another tree

❑ A Serializer takes the result tree and turns it into a XML document

Very often these three bits of software will be bundled together into a single product, so the joins may
not be obvious, but it's useful to understand these three stages because it affects what a transformation
can and can't do.

On the input side, this means the stylesheet isn't in control of the XML parsing process, and it can't do
processing based on distinctions that are present in the source document but not in the tree produced by
the parser. For example, you can't write logic in the stylesheet that depends on whether an attribute in
the XML was written in single quotes or double quotes. Perhaps less obviously, and on occasions more
frustratingly:

❑ You can't tell what order the attributes in a start tag were written in.

❑ You can't discover if the source document contained entities or character references: these will
all have been expanded by the time the XSLT processor sees them. Whether the user
originally wrote © or © makes no difference; by the time the XSLT processor sees it, the
distinction has disappeared.

❑ You can't tell whether the user wrote an empty element as <a> or as <a/>.

In all these cases the distinctions are simply different ways of expressing the same information, so you
shoudn't need to know which way the input was written. The only frustration is that if you want the
output to be physically the same as the input, there is no way of achieving this, which can be irritating if
the output XML is to be further edited.

Equally, on the output side, you can't control these details. You can't tell the serializer to write the
attributes in a particular order, or to use © in preference to ©, or to generate empty elements as
<a> rather than <a/>. These constructs are supposed to be equivalent, so you aren't supposed to
care. XSLT is about transforming the information held in documents, not about transforming their
lexical representation.

Actually, on the output side, the designers of the language were a little pragmatic, and provided a few
language features that let you give hints to the serializer. However, they made it very clear that these are
hints only, and no processor is obliged to take notice of them.

The fact that stylesheets are reading and writing trees has another important consequence: you read and
write elements as a unit, rather than processing each tag separately. There is simply no way of writing a
start tag without a matching end tag, because writing an element node to the tree is an atomic operation.

The tree structure used by XSLT is very similar to the DOM model (described in Chapter 6) but it has
some important differences, which we'll see later. Many products do in fact use a DOM representation,
because this allows standard parsers and serializers to be used, but there are inefficiencies in this
approach, so other products have chosen to represent the XSLT tree structure more directly. It's
important to understand this structure so we'll describe it in detail later.

XSLT and XPath

289

XSLT as a Programming Language
You can teach a simple subset of XSLT to HTML authors with no programming knowledge, by
pretending that it's just a way of writing the HTML you want to generate with some simple extra tags to
insert variable data from an input file. But XSLT is actually much more powerful than this, and as this
book is written for programming professionals, it makes more sense to treat XSLT as a programming
language and to compare and contrast it with other languages you may have used in the past. In this
section, we'll draw out a few of its more striking features.

XML Syntax
Firstly, an XSLT stylesheet is an XML document. Instead of the braces and semicolons of most
programming languages, it uses the angle brackets and tags of XML. Therefore, you can write things
like this:

<xsl:if test="title='Introduction'">
SUMMARY

</xsl:if>

In a conventional language, you might write something like this:

if (title='Introduction')
{

write('Introduction');
}

There are a number of reasons for this. One is that you can write the output XML that you want to
generate as part of the stylesheet, as with the SUMMARY in the example above. In fact, some
stylesheets consist mainly of fixed output text with a few XSLT instructions mixed in. Another reason is
that you can easily write stylesheets that transform other stylesheets, which sounds like a strange thing
to do but can actually be extremely useful. Pragmatically, it also means that stylesheets are very
consistent with XML in things such as handling of character encodings, name syntax, white space, and
the like.

The downside is that it's verbose! Typing out hundreds of angle brackets is no-one's idea of fun. Some
people like to use specialized editors to make the job easier; but when it comes down to it, typing effort
has very little to do with the true ease of use of a language.

Rule-based
There's a strong tradition in text processing languages, like Perl and awk, of expressing the processing
you want to do as a set of rules: when the input matches a particular pattern, the rule defines the
processing to be performed. XSLT follows this tradition, but extends it to the processing of a hierarchy
rather than a sequential text file.

In XSLT the rules are called template rules, and are written in the form of <xsl:template> elements
in the stylesheet. Each rule has a match pattern that defines what kind of nodes in the tree it applies to,
and a template body that defines what to do when the rule is fired. The template body can consist of a
mixture of result nodes to be copied directly to the output tree, and XSLT instructions that can do
things such as reading data from the current position in the source tree, or writing calculated results to
the output tree. So a simple template rule might say:

Chapter 8

290

<xsl:template match="price">
$<xsl:value-of select="format-number(., '#0.00')" />

</xsl:template>

The pattern here is "price", which matches any <price> element; the action is to output the value of
the <price> element, formatted as a number with two decimal digits, preceded by a $ sign and
enclosed in a element.

One particularly important XSLT instruction is <xsl:apply-templates>, which tells the processor
where to go next; whereas in a text processing language, each line can be processed in sequence, with a
hierarchy it is possible to process nodes in any order. Normally, however, the template rule for an
element will contain an <xsl:apply-templates> instruction to process its children. When it does
this, each of the children will be processed by finding the template rule in the stylesheet that matches
that node.

Here is an example of a collection of template rules that process <item> elements within <record>
elements. The rule for <record> elements outputs a <tr> element, and within it outputs the results of
finding and applying the appropriate rule for each of its child elements. There are two template rules for
<item> elements depending on whether the element has any text content or not. If it has, it outputs a
<td> element containing the string value of the element; otherwise, it outputs a <td> element
containing a non-breaking space character (which is familiar to HTML authors as the value of the
 entity reference, but is written here as a numeric Unicode character reference).

<xsl:template match="record">
<tr><xsl:apply-templates /></tr>

</xsl:template>

<xsl:template match="item[.!='']">
<td><xsl:value-of select="." /></td>

</xsl:template>

<xsl:template match="item[.='']">
<td> </td>

</xsl:template>

XPath Queries
When you write an XSLT stylesheet you are actually using two different languages. You use XSLT itself
to describe the logic of the transformation process, and within it, you use embedded XPath expressions
or queries to fetch the data you need from the source document. It's comparable to using Visual Basic
with SQL.

Although its role is similar, the syntax of XPath is not at all like SQL. This is because it's designed to
process hierarchic data (trees) rather than tables. A lot of the syntax in SQL is there to handle
relationships or joins between different tables. In a hierarchic XML document or tree, most of the
relationships are implicit in the hierarchy, so the syntax of XPath has been designed to make it easy to
reference data by its position in the hierarchy. In fact, the most obvious resemblance is the way
filenames are written to access files in a hierarchic filestore.

XSLT and XPath

291

It's easiest to show this by some example XPath expressions:

Expression Meaning

/invoice/billing-address/postcode Starting at the root of the document, get the
invoice element, then within that the billing-
address element, then within that the
postcode element.

../@title Starting at the current node, get the title
attribute of this node's parent element.

/book/chapter[3]/section[2]/para[1] Get the first <para> element, that is a child
of the second <section> element, that is a
child of the third <chapter> element, which
is itself, a child of the root of the tree.

Functional Programming
Most programming languages are sequential in nature: the program carries out a sequence of
instructions, modified by testing conditions and looping. They can create variables to hold values, and
later in their execution, they can access the variables to retrieve results that were calculated earlier.

At one level XSLT looks quite similar. It has constructs like <xsl:if> to test conditions and
<xsl:for-each> to do looping, and you can write a sequence of instructions, and the stylesheet then
looks very much like a conventional sequential program. However, below the surface, it's not like that at
all. XSLT is carefully designed so that the instructions can be executed in any order. The innocuous
<xsl:for-each> instruction, for example, may look like a loop that processes a list of nodes, one at a
time, in a particular order, but it's carefully designed so that the processing of each node doesn't depend
at all on how the previous node was handled, which means it's actually possible to do them in any order
or even in parallel.

To achieve this, the theory underlying XSLT is that of functional programming, more often found in
rather academic languages such as Lisp and Scheme. The idea is that each piece of the output is defined
as a function of a particular piece of the input. These functions are all independent of each other, so
they can be done in any order: in theory at least this means that if only a small piece of the input
changes, you can work out how to change the output without executing the whole stylesheet again from
scratch. Another benefit of this approach is that it's much easier to stop a stylesheet being stuck in an
infinite loop.

What this means in practice is that, although a stylesheet may look superficially like a sequential
program, it has no working storage. As we'll see, XSLT does have variables, but they aren't like the
variables in sequential programming languages, because they are effectively "write-once". You can't
update variables, so you can't use them to accumulate a running total and read them later, or count how
many times you've been round a loop, because that would only work if things were done in a particular
order. For simple stylesheets you probably won't notice the difference, but for more complex
transformations you'll find you need to get used to a rather different style of programming. It may be
frustrating at first, but it's worth persevering, because once you have learnt to think in functional
programming terms, you'll find that it's a very elegant and concise way of expressing solutions to
transformation problems.

Chapter 8

292

Data Types
Many of the different properties of different programming languages are determined by their type
system. In XSLT, the type system is defined largely by the query language, XPath.

The characteristic data type of XPath is the node-set. Just as SQL queries return a set of table rows,
XPath queries like those shown in the previous section return a set of nodes from the input tree. Even if
a query returns only a single node, it is always treated as a node-set that just happens to have only one
member. A node-set behaves like a mathematical set: there's no intrinsic order to the nodes in the set,
and there can't be any duplicates (the same node can't appear more than once).

Many instructions that process node-sets actually handle the nodes in document order. This is,
essentially, the order in which the nodes appeared in the original XML document. For example, an
element appears in document order before its children, and its children appear before the next sibling
of their parent element. Document order in some cases isn't fully defined, for example there is no
guarantee what the order of the attributes for a particular element will be. The fact that there is a natural
ordering to nodes doesn't prevent node-sets being unordered sets, any more than the natural ordering of
numbers prevents {1,2,3,5,11} being a pure set.

XPath queries aren't the only data type that node-sets can return; they can also return character strings,
numbers, or Boolean values. For example, you can ask for the name of a node (a character string), the
number of children it has (a number), or whether it has any attributes (a Boolean):

❑ Character strings in XPath follow the same rules as character strings in XML. They can be of
any length (from zero upwards), and the characters they may contain are the Unicode
characters that you can use in an XML document.

❑ Numbers in XPath are in general floating point numbers: of course, this includes integers.
Integers will usually behave the way you expect, with the possible exception of rounding
errors; for example, percentages may not add up to exactly 100. The floating-point arithmetic
follows the same rules as Java and JavaScript (specifically, the rules defined in IEEE 754). You
don't need to understand these rules in detail, except to know that there is a special value NaN
(not a number), which you will get when you try to convert a non-numeric character string
(such as "Unknown") to a number. NaN behaves very much like Null in SQL. If you do almost
any operation on NaN, the result is NaN. For example, totaling a set of values in which one is
the character string "Unknown" will return a total of NaN.

❑ Booleans are just the two values true and false. XPath doesn't have three-valued logic as in
SQL – absent values in the source data are represented not by a special Null value, but by an
empty node-set. Like SQL Nulls, empty node-sets sometimes give counter-intuitive results, for
example an empty node-set is not equal to itself.

An XSLT stylesheet can declare variables. These variables can hold the result of any XPath query, that
is, a node-set, a string, a number, or a Boolean. A variable can also hold a temporary tree constructed
by the stylesheet itself: for most purposes, this variable is equivalent to a node-set containing a single
node, namely the root of this tree. These trees are referred to as result tree fragments.

As we mentioned earlier, XSLT variables are "write-once" variables; they are just names for values.
Some people have suggested they should really be called constants, but that wouldn't be accurate, since
variables can hold different values on different occasions. For example, within a template rule that is
processing a <chapter> element, you might set a variable to hold the number of paragraphs in the
chapter. The variable will have a different value for each chapter that you process, but for a given
chapter, its value will not change during the course of processing.

XSLT and XPath

293

Here are some examples of variables of each kind:

Variable Declaration Explanation

<xsl:variable name="x"
select="//item" />

The value is a node-set containing all the
<item> elements in the source document

<xsl:variable name="y"
select="count(@*)" />

The value is a number containing the number of
attributes of the current node. «@*» is an XPath
expression that selects all the attributes.

<xsl:variable name="z"
select="@type='T'" />

The value is true if the current node has a type
attribute whose value is 'T', false if it does not.

<xsl:variable name="tree">
<table>
<tr>
<td>

</td>
<td>

</td>
</tr>
</table>

</xsl:variable>

The value is a tree (or result tree fragment)
whose root contains the table structure as
written.

Although values have different data types, the data types don't have to be declared in variable
declarations. XSLT is therefore a dynamically typed language, like JavaScript.

In general, type conversions happen automatically when required, for example if you write
<xsl:value-of select="@name" /> then the node-set returned by the expression @name (it will
contain zero or one attribute nodes) is converted automatically to a string. There are some situations
where explicit conversions are useful, and these are provided by the XPath functions boolean(),
number(), and string(), described later in this chapter.

The XPath Data Model
Understanding the XPath tree model is crucial to stylesheet programming.

The tree structure used in XSLT and XPath is similar in many ways to the DOM, but there are some
important differences. For example, in the DOM, every node has a nodeValue property, while in
XPath every node has a string-value property. But the nodeValue of an element node in the DOM
is null, while in XSLT and XPath, the string-value property of an element is the concatenation of all
its descendant text nodes.

The properties available for every type of node in an XSLT tree are the same. Each node has a name
and a string-value. You can also ask for the node's children, its parent, its attributes, and its namespaces.
Where the property is inapplicable (for example comments don't have names) you can still ask for the
information, you'll just get an empty result.

Chapter 8

294

There are seven types of node in an XSLT tree:

Node Type Usage

Root Represents the root of the tree, corresponding to the Document node in the
DOM. This is not the same as the "document element" (the outermost element in
the tree). In fact, an XSLT tree does not always represent a well-formed
document, so the root may contain several element nodes as well as text nodes.
In a well-formed document, the outermost element is represented by an element
node, which will be a child of the root node.

The root node's properties are as follows:

❑ Its name is an empty string

❑ Its string-value is the concatenation of all the text nodes in the
document

❑ Its parent is always null

❑ Its children may be any collection of elements, text nodes, processing
instructions, and comments

❑ It has no namespaces or attributes

Element Each element node corresponds to an element in the source document: that is,
either to a matching start tag and end tag, or to an empty element tag such as
<A/>.

An element node's properties are as follows:

❑ Its name is derived from the tag used in the source document,
expanded using the namespace declarations in force for the element

❑ Its string-value is the concatenation of all the text between the start
and end tags

❑ Its parent is either another element, or if it is the outermost element,
it parent is the root node

❑ Its children may be any collection of elements, text nodes, processing
instructions, and comments

❑ Its attributes are the attributes written in the element's start tag, plus
any attributes given default values in the DTD, but excluding any
xmlns attributes that serve as namespace declarations

❑ Its namespaces are all the namespace declarations in force for the
element, whether they are defined on this element itself or on an
outer element

XSLT and XPath

295

Node Type Usage

Attribute There will be an attribute node for each attribute explicitly present in an element
tag in the source document, or derived from a default value in the DTD.
However, the xmlns attributes used as namespace declarations are not
represented as attribute nodes in the tree. An attribute will always have a name,
and its string-value will be the value given to the attribute in the source XML.

An attribute node's properties are as follows:

❑ Its name is derived from the attribute name used in the source
document, expanded using the namespace declarations in force for
the containing element

❑ Its string-value is the attribute value

❑ Its parent is the containing element (even though the attribute is not
considered to be a child of this parent)

❑ An attribute node has no children, attributes, or namespaces

Text Text nodes are used to represent the textual (PCDATA) content of the
document. Adjacent text nodes are always merged, so the tree can never contain
two text nodes next to each other. It is possible, however, for two text nodes to
be separated only by a comment.

The properties of a text node are as follows:

❑ Its name is Null

❑ Its string-value is the text content, after expanding all character
references, entity references, and CDATA sections

❑ Its parent is the containing element (or in the case of a result tree
fragment, a text node can also be a child of the root node)

❑ A text node has no children, attributes, or namespaces

Any entity references, character references, and CDATA sections occurring
within the source XML document are expanded by the XML parser, and the
XSLT tree contains no trace of them. All that is present on the tree is the string
of characters that these constructs represent.

Text nodes that consist only of whitespace can be treated specially: the XSLT
stylesheet can indicate that such nodes should be removed from the tree. By
default, however, whitespace that appears between elements in the source
document, will be present as text nodes on the tree and may affect operations
such as numbering of nodes.

Table continued on following page

Chapter 8

296

Node Type Usage

Processing
Instruction

Processing instruction nodes on the tree represent processing instructions in the
XML source document. Processing instructions in XML are written as <?target
data?>, where the target is a simple name and the data is everything that
follows.

The properties of a processing-instruction node are:

❑ Its name is the target part of the source instruction

❑ Its string-value is the data part

❑ Its parent is the containing node, always either an element node or
the root

❑ It has no children, attributes, or namespaces

Note that the XML declaration at the start of a document, for example <?xml
version="1.0"?>, looks like a processing instruction, but technically it isn't
one, so it doesn't appear on the XPath tree.

Comment Comment nodes on the tree represent comments in the source XML.

The properties of a comment node are:

❑ Its name is Null

❑ Its string-value is the text of the comment

❑ Its parent is the containing node, always either an element node or
the root

❑ It has no children, attributes, or namespaces

Namespace Namespace declarations are increasingly used in XML processing, however you
will very rarely need to make explicit reference to namespace nodes in the XPath
tree, because the namespace URI that applies to a particular element or attribute
is automatically incorporated in the name of that node. Namespace nodes are
included in the model for completeness: for example, they allow you to find out
about namespace declarations that are never referred to in an element or
attribute name.

An element has one namespace node for every namespace that is in scope for
that element, whether it was declared on the element itself or on some containing
element.

The properties of a namespace node are:

❑ Its name is the namespace prefix

❑ Its string-value is the namespace URI

❑ Its parent is the containing element

❑ It has no children, attributes, or namespaces

XSLT and XPath

297

Names and Namespaces
Namespaces play an important role in XPath and XSLT processing, so it's worth understanding how
they work. Unlike the base XML standards and DOM, where namespaces were bolted on as an
afterthought, they are integral to XPath and XSLT.

In the source XML, an element or attribute name is written with two components: the namespace prefix
and the local name. Together these constitute the qualified name or QName. For example in the
QName fo:block, the prefix is fo and the local name is block. If the name is written without a
prefix, the prefix is taken as an empty string.

When a prefix is used, the XML document must contain a namespace declaration for that prefix.
The namespace declaration defines a namespace URI corresponding to the prefix. For example, if the
document contains a <fo:block> element, then either on that element, or on some containing element,
it will contain a namespace declaration in the form xmlns:fo="http://www.w3.org/XSL/". The
value "http://www.w3.org/XSL/" is the namespace URI, and it is intended to uniquely distinguish
<block> elements defined in one document type or schema from <block> elements defined in
any other.

The namespace URI is derived by finding the appropriate namespace declaration for any prefix used in
the QName. In comparing two names, it is the local name and the namespace URI that must match; the
prefix is irrelevant. The combination of local name and namespace URI is known as the expanded
name of the node. In the XPath tree model, the name of a node is its expanded name (namespace URI
plus local name). Namespace prefixes will usually be retained intact, but the system is allowed to change
them if it wants, so long as the namespace URIs are preserved.

Where a qualified name includes no namespace prefix, the XML rules for forming the expanded name
are slightly different for element names and for attribute names. For elements, the namespace URI will
be the default namespace URI, obtained by looking for a namespace declaration of the form
«xmlns="..."». For attributes, the namespace URI will be the empty string. Consider the example
shown below:

<template match="para" xmlns="http://www.w3.org/1999/XSL/Transform"/>

Here the expanded name of the element has local name "template" and namespace URI
"http://www.w3.org/1999/XSL/Transform". However, the expanded name of the attribute has
local name "match" and a null namespace URI. The default namespace URI affects the element name,
but not the attribute name.

XPath expressions frequently need to select nodes in the source document by name. The name as
written in the XPath expression will also be a qualified name, which needs to be turned into an
expanded name so that it can be compared with names in the source document. This is done using the
namespace declarations in the stylesheet, specifically those that are in scope where the relevant XPath
expression is written.

If a name in an XPath expression uses no namespace prefix, the expanded name is formed using the
same rule as for attribute names: the namespace URI will be Null.

Chapter 8

298

In the example above, which might be found in an XSLT stylesheet, "para" is the name of an element
type that this template rule is designed to match. Because "para" is written without a namespace prefix,
it will only match elements whose expanded name has a local name of "para", and a null namespace
URI. The default namespace URI does not affect the name written within the match pattern. If you
wanted to match elements with a local name of "para" and a namespace URI of "urn:some-
namespace" you would have to assign an explicit prefix to this namespace in the stylesheet, for example:

<template match="my:para"
xmlns="http://www.w3.org/1999/XSL/Transform"
xmlns:my="urn:some-namespace" />

XSLT uses many names to identify things other than XML elements and attributes; for example, it uses
names for templates, variables, modes, keys, decimal formats, attribute sets, and system properties. All
these names follow the same conventions as XML attribute names. They are written as qualified names;
any namespace prefix they use must be declared in a namespace declaration; the equivalence of two
names depends on the namespace URI, not the prefix; and if there is no prefix, the namespace URI is
null (the default namespace declaration is not used).

Controlling namespace declarations in the output document can sometimes prove troublesome. In
general, a namespace declaration will automatically be added to the output document whenever it is
needed, because the output document uses a prefixed element or attribute name. Sometimes it may
contain namespace declarations that are surplus to requirements. These don't usually cause a problem,
although they might do so if you want the result document to be valid against a DTD. In such cases you
can sometimes get rid of them by using the attribute exclude-result-prefixes on the
<xsl:stylesheet> element.

In very rare cases, you may want to find out what namespace declarations are present in the source
document (even if they aren't used). This is the only situation in which you need to explicitly find the
namespace nodes in the tree, which you can do using an XPath query that follows the namespace axis.

XPath Expressions
To write an XSLT stylesheet you'll need to write XPath expressions. At the risk of finding you impatient
to see a stylesheet in action, we'll talk about XPath expressions first, and then describe the way they are
used by XSLT in a stylesheet. Although XPath was designed primarily for use within an XSLT context,
it was separated into its own specification because it was seen as being useful in its own right, and in
fact, it's increasingly common to see XPath being used as a freestanding query language independently
of XSLT.

In this section, we will summarize the rules for writing XPath expressions. We can't hope to give the full
syntax, let alone all the rules for how the expressions are evaluated, because of the limited scope of the
book, but we'll try to cover all the common cases and also warn you of some of the pitfalls.

Context
The result of an XPath expression may depend on the context in which it is used. The main aspects of
this context are the context node, the context size, and the context position. The context node is the
node on the source tree for which the expression is being evaluated. The context position is the position
of that node in the list of nodes currently being processed, and the context size is the number of nodes
in that list. The context node can be accessed directly using the expression, "." (period), while the
context position and context size are accessible using the functions position() and last().

XSLT and XPath

299

Other aspects of the context of an XPath expression, obtained from the containing XSLT stylesheet,
include the values of variables, the definitions of keys and decimal formats, the current node being
processed by the stylesheet (usually the same as the context node, but different within an XPath
predicate), the Base URI of the stylesheet, and the namespace declarations in force.

Primaries
The basic building blocks of an XPath expression are called primaries. There are five of them, listed in
the table below:

Construct Meaning Examples

String literal A string constant, written
between single or double quotes
(these must be different from the
quotes used around the
containing XML attribute).

'London'
"Paris"

Number A numeric constant, written in
decimal notation. Although
XPath numbers are floating
point, you can't use scientific
notation.

12
0.0001
5000000

Variable
Reference

A reference to a variable defined
elsewhere in the stylesheet. This
is always written with a
preceding $ sign.

$x
$my:variable-name

Function call A call on either a system-
supplied function, or an
extension function provided by
the vendor or the user, together
with its arguments if any. Each
argument is an XPath expression
in its own right.

position()

contains($x, ';')
ms:extension('Bill', 'Gates')

Parenthesized
expression

An XPath expression contained
in parentheses. Brackets may be
used to control operator
precedence as in other languages

3 * ($x + 1)
(//item)[1]

Operators
Many of the operators used in XPath will be familiar, but some are more unusual. The table below lists
the operators in order of precedence: those that come first in the table are evaluated before those that
come lower down.

Chapter 8

300

Operator Meaning

A [B] A filter expression. The first operand (A) must be a node-set. The second operand
(B), known as the predicate, is an expression that is evaluated once for each node in
the node-set, with that node as the context node. The result of the expression is a
node-set containing those nodes from A where the predicate succeeds.

If the predicate is a number, it succeeds if it equals the position of the node in the
node-set, counting from one. So $para[1] selects the first node in the $para
node-set.

If it is not a number, then it succeeds if the value, after converting to a Boolean
using the rules of the boolean() function, is true. So $para[@name] selects all
nodes in the $para node-set that have a name attribute.

A / B
A // B

A location path. Location paths are discussed in detail below. The first operand, A,
defines a starting node or node-set; the second, B, describes a step or navigation
route from the starting node to other nodes in the tree.

A | B A union expression. Both operands must be node-sets. The result contains all nodes
that are present in either A or B, with duplicates eliminated.

– A Unary minus. The value of A is converted if necessary to a number (using the
number() function) and the sign is changed.

A * B
A div B
A mod B

Multiply, divide, and modulus (remainder after division). Both arguments are
converted to numbers using the number() function, and the result is a floating-
point number. These operators are often useful in formatting tables: for example
<xsl:if test="position() mod 2 = 1"> will be true for the odd-numbered
rows in a table, and false for the others.

A + B
A – B

Addition and subtraction. Both arguments are converted to numbers using the
number() function. Because hyphens can be included in names, there must be a
space or other punctuation before a minus sign.

A > B
A >= B
A < B
A <= B

Tests whether one operand is numerically greater or smaller than the other one.
When the XPath expression is written in a stylesheet, remember to use XML
entities: < for <, > for >. Special rules apply when either or both operands
are node-sets: see the section on Comparing Node-sets below.

If the operands are strings or Booleans, they are converted to numbers using the
rules of the number() function. If either operand cannot be converted to a number,
the result will always be false.

A = B
A != B

Tests whether the two operands are equal or not equal. Special rules apply when
either or both operands are node-sets: see the section on Comparing Node-sets
below.

In other cases, if one operand is a Boolean, the other is converted to a Boolean;
otherwise if one is a number, the other is converted to a number; otherwise they are
compared as strings. Comparison of strings is case-sensitive: 'Paris' is not equal to
'PARIS'.

A and B Boolean AND. Converts both arguments to Booleans, and returns true if both are
true.

A or B Boolean OR. Converts both arguments to Booleans, and returns true if either
is true.

XSLT and XPath

301

Comparing Node-sets
When you use the comparison operators =, !=, <, >, <=, or >=, then if either or both of the operands is
a node-set, the comparison is made with every member of the node-set, and returns true if any of them
succeeds. For example, the expression //@secure='yes' will return true if there is an attribute
anywhere in the document with the name secure and the value "yes". Similarly,
//@secure!='yes' will return true if there is an attribute anywhere in the document with the name
secure and a value other than "yes".

If you compare two node-sets, then every possible pair of nodes is compared. For example,
//author=//artist returns true if there is at least one <author> element in the document that has
the same string-value as some <artist> element in the document. In relational terms, it returns true if
the join of the two sets is not empty. (Depending how clever the processor is at optimizing, this could of
course be a very expensive query to run on a large document).

This rule has consequences that may not be intuitive:

❑ Comparing anything with an empty node-set (even another empty node-set) always returns
false, regardless of the comparison operators you use. The only exception is when you
compare an empty node-set with the Boolean value false: this returns true.

❑ When either A or B is a node-set, testing A!=B doesn't give the same result as testing
not(A=B). Usually you want the latter.

❑ The expression: .=/, doesn't test whether the context node is the root, it tests whether the
string-value of the context node is the same as the string-value of the root node. This is likely
to be true, for example, if the context node is the outermost element in the document. To
compare nodes for identity, use the generate-id() function.

Location Paths
Location paths are the cornerstones of the XPath expression language, the construct that gave the
language its name.

Because location paths are frequently used, the language provides many shorthand abbreviations for
common cases. It's useful to know when you're using a shorthand form, so I'll present the full verbose
syntax first, then show the abbreviations.

I'll start with some examples, and then describe the rules.

Example Location Paths
Some examples are given in the table below:

Location Path Meaning

para Select the <para> elements that are children of the context
node. Short for ./child::para.

@title Select the title attribute of the current node (if it has
one). Short for ./attribute::title.

Table continued on following page

Chapter 8

302

Location Path Meaning

../heading Select the <heading> elements that are children of the
parent of the context node. Short for
./parent::node()/child::heading.

//item Select all the <item> elements in the document. Short for
/descendant-or-self::node()/
item.

section[1]/clause[2] Select the second <clause> child element of the first
<section> child element of the context node.

heading
[starts-with(title,'A')]

Select all the <heading> child elements of the context node
that have a <title> child element whose string-value starts
with the character 'A'.

Syntax Rules for Location Paths
A full location path takes one of the following forms:

Format Meaning

/ Selects the root node.

/ step Selects nodes that can be reached from the root by taking the
specified step. Steps are defined in the next section.

For example, /comment()selects any top-level comment
nodes, that is, comments that are not contained in any
element.

E / step Selects nodes that can be reached from nodes in E by taking
the specified step. E can be any expression that returns a
node-set; it can be another location path, for example (but
not the root expression /), or a variable reference, or a call
on a function such as document(), id(), or key(), or a
union expression (A|B) in parentheses.

For example, ../@title selects the title attribute of the
parent node.

step Selects nodes that can be reached from the context node by
taking the specified step. For example,
descendant::figure selects all <figure> elements that
are descendants of the context node.

Steps
In these constructs, a step defines a route through the tree representation of the source document. A
step has three components:

❑ An axis, which defines the relationship of the required nodes to the starting nodes; for
example, whether child nodes, following sibling nodes, or ancestor nodes are required. If no
axis is specified explicitly, the child axis is assumed.

XSLT and XPath

303

❑ A node test, which defines two things: the type of nodes that are to be selected, for example
elements, text nodes, or comments, and the names of the nodes to be selected. It is also
possible to select nodes regardless of their type. There are three kinds of name test: a full
name test, which selects only nodes with that name; a namespace test, which selects all nodes
in a particular namespace, and an any-name test, which selects nodes regardless of their name.
The node-test is always present in some form.

❑ Zero or more predicates, expressions that further restrict the set of nodes selected by the step.
If no predicates are specified, all nodes on the axis that satisfy the node test will be selected.

The full syntax for a step is:

axis-name «::» node-test («[» predicate «]»)*

We'll look separately at the axis-name, the node-test, and the predicates, and then describe the various
ways in which the full syntax can be abbreviated.

Axis Names
XPath defines the following axes that you can use to navigate the tree structure.

Axis Name Contents

ancestor Contains the parent of the starting node, its grandparent, and so on
up to the root

ancestor-or-self Contains the node itself plus all its ancestors

attribute For any node except an element, this axis is empty. For an element,
it contains the attributes of the element, including any that were
given default values in the DTD. Namespace declarations are not
treated as attributes.

child Contains the children of the starting node. The only nodes that have
children are the root and element nodes; in all other cases, this axis
is empty. The children of an element include all the nodes directly
contained within the element: they don't include attributes or
namespaces.

descendant Contains the children of the starting node, their children, and so on,
recursively.

descendant-or-self Contains the starting node itself, plus all its descendants.

following Contains all nodes in the document that follow the starting node in
document order, other than its own descendants. In source XML
terms, this means all nodes that begin after the end tag of the
starting element.

following-sibling Contains all the nodes that are children of the same parent as the
starting node, and follow it in document order.

namespace Contains nodes representing all the namespace declarations that are
in scope for an element. Nodes other than elements have no
namespace nodes.

Table continued on following page

Chapter 8

304

Axis Name Contents

parent Contains the parent of the starting element. This axis is
empty if the starting element is the root.

preceding Contains all nodes in the document that precede the starting
node in document order, other than its own ancestors. In
source XML terms, this means all nodes that end before the
start tag of the starting element.

preceding-sibling Contains all nodes that are children of the same parent as the
starting node, and that precede it in document order.

self Contains the starting node itself.

Node-tests
The node-test within a step appears after the «::», and is used to select the type of nodes you are
interested in, and to place restrictions on their names. It must be one of the following:

QName A name optionally qualified with a namespace prefix, for
example "para" or "fo:block". Selects nodes with this name
that are of the principal node type for the axis. For the
attribute axis, the principal nodes are attributes; for the
namespace axis, they are namespace nodes; and in all other
cases, they are elements.

prefix:* Selects nodes of the principal node type for the axis, which
belong to the namespace defined by the given prefix.

* Selects all nodes of the principal node type for the axis.

node() Selects all nodes, regardless of their name and type.

text() Selects all text nodes.

comment() Selects all comment nodes.

processing-instruction() Selects all processing instruction nodes.

processing-
instruction('name')

Selects all processing instructions with the given name. Note
that the name must be in quotes.

Predicates
A step can optionally include a list of predicates, which define further conditions that the nodes must
satisfy if they are to be selected. Each predicate is an XPath expression in its own right, written in
square brackets. Each predicate acts as a filter on the node-set, the node-set is passed through each filter
in turn, and only those nodes that satisfy all the predicates are selected.

For example the predicate [@title='Introduction'] selects a node only if it has a title attribute
whose value is Introduction; the predicate [position() != 1] selects a node only if it is not the
first node in the node-set passed through from any previous filter.

XSLT and XPath

305

The predicate is evaluated for each node in turn. The context for evaluating the predicate is different
from the context of the containing expression: specifically, the context node is the node being tested,
the context size is the number of nodes left over from the previous filtering operation, and the context
position is the position of the context node in this list of remaining nodes. So the predicate
[position()=last()] will be true only if the node being tested is the last one in the list.

If the axis is a forward axis, then position() gives the position of each node within the node-set
considered in document order; if it is a reverse axis, then the nodes are taken in reverse document
order. The only reverse axes are ancestor, ancestor-or-self, preceding, and preceding-
sibling.

A predicate can be either numeric or Boolean. If the value is a number N, this is interpreted as a
shorthand for the expression position() = N. So following-sibling::*[1] selects the
immediately following sibling element (because this is a forward axis) while preceding-
sibling::*[1] selects the immediately preceding sibling element (this is a reverse axis, so [1] means
the last element in document order).

The syntaxes for predicates within a step, and predicates within a filter expression are extremely similar,
and the two can easily be confused. In the following examples, the predicate is part of a step:

item[1]
preceding-sibling::*[@type='D'][1]

In the following example, the predicate is part of a filter expression:

$item[1]
(preceding-sibling::*)[@type='D'][1]

The only real difference is that in a filter expression, the nodes are always considered in forward
document order, while in a step, they are taken in axis order. This means that in the second example
above, the last sibling having @type='D' is taken, whereas in the fourth example, the first sibling with
this attribute is used. It only makes a difference if the predicate is numeric, or uses the position()
function.

Abbreviations
We've already been using some shortcut notations for location paths, but it's time to describe them more
formally.

❑ The symbol . (period) is an abbreviation for the step self::node(). It refers to the context
node itself. You can't follow it with any predicates; if you want to test whether the context
node is a <para> element, write <xsl:if test="self::para">.

❑ The symbol .. is short for the step parent::node(). The same considerations apply.

❑ The child axis is the default axis, so you can always omit child:: from a step. For example,
/section/item is short for /child::section/child::item.

❑ The symbol @ can be used to indicate the attribute axis, it is short for attribute::. So
@title means the same as attribute::title.

❑ The operator // is short for /descendant-or-self::node()/, and is a useful short-cut
when searching for all the descendants of a node. For example //item retrieves all the
<item> elements in the document. Take care when using positional predicates: //item[1]
does not select the first <item> in the document (for that, use (//item)[1], but rather it
selects every <item> element that is the first child of its parent element. This is because the
predicate only applies to the final step in the expanded location path, which implicitly uses
the child axis.

Chapter 8

306

XPath Functions
We've used a number of XPath functions in examples: it's time now to give a complete list. Most of
these functions are defined in the XPath specification itself. A few of them are added in the XSLT
specification, which means that these functions are only available when you use XPath in the context of
an XSLT stylesheet.

Vendors are allowed to add more functions of their own, or to provide mechanisms for users to
implement their own functions, typically in an external language such as Java or JavaScript. These
external functions will always use a namespace prefix to distinguish them from the built-in functions.
For details of these extensions, see the vendor's documentation.

In the descriptions of the functions, I often say that a particular argument should be a string, or a
number, or a Boolean. In nearly all cases this means that you can supply a value of any type, and it will
be automatically converted to the type required: the conversion rules are those described under the
functions boolean(), number(), and string(), which can be called directly if you want to make the
conversion explicit.

Because of space limitations, these descriptions of the functions are very brief. If you want a full
explanation of the behavior, or more examples of how to make use of each function, you'll find it in the
Wrox Press book XSLT Programmer's Reference.

boolean(arg1)
The boolean() function converts its argument to a Boolean value.

The argument may be of any data type. The rules for conversion are as follows:

Argument Data Type Conversion Rules

Boolean No conversion

Number 0 is false, anything else is true

String A zero length string is false, anything else is true

Node-set An empty node-set is false, anything else is true

Tree Always true

ceiling(arg1)
The argument arg1 is a number. The ceiling() function returns the smallest integer that is greater
than or equal to the numeric value of arg1. For example, ceiling(1.2) returns 2.

concat(arg1, arg2, ...)
The concat() function takes two or more arguments. Each of the arguments is converted to a string,
and the resulting strings are concatenated.

contains(arg1, arg2)
The contains() function tests whether arg1 contains arg2 as a substring (in which case true is
returned, otherwise false). Both arguments are strings. Like all other string comparisons in XPath, this is
case-sensitive: contains('Paris', 'A') is false.

XSLT and XPath

307

count(arg1)
The count() function takes a node-set as its argument, and returns the number of nodes present in the
node-set. The argument must be a node-set. (Avoid using count() to test if a node-set is empty: you
can do this more efficiently by converting the node-set to a Boolean, either explicitly using the
boolean() function, or implicitly by using the node-set in a context where a Boolean is expected, such
as a predicate.)

current()
The current() function has no arguments, and it returns a node-set containing a single node, the
current node. This is the node currently being processed by the most recent <xsl:for-each> or
<xsl:apply-templates> instruction. Usually this will be the same as the context node, which is
referenced simply as .: but within a predicate the two are generally different. This allows you to write,
for example:

//item[@code=current()/@code]

to find all <item> elements with the same code as the current element.

This is an XSLT function: it can only be used in XPath expressions contained in an XSLT stylesheet.

document(arg1 [, arg2])
The document() function finds an external XML document by resolving a URI reference, and returns
its root node.

In the most common usage, arg1 is a string and arg2 is omitted. For example
document("lookup.xml") finds the file called lookup.xml in the same directory as the stylesheet,
parses it, and returns a node-set containing a single node, the root of the resulting tree. When arg1 is a
string, relative URIs are resolved relative to the location of the stylesheet. As a special case,
document("") retrieves the stylesheet itself.

It is also possible for arg1 to be a node-set. For example document(@href) finds an external XML
file using the URI contained in the href attribute of the context node. Because the URI is now obtained
from the source document, any relative URI is resolved relative to the source document rather than the
stylesheet. If the node-set supplied as an argument contains more than one node, the document()
function will load all the referenced documents and return a node-set containing the root node of each
one.

The second argument is optional, and is rarely used. It can be used to provide a base URI other than
the source document or the stylesheet URI for resolving relative URIs contained in the first argument.

A document loaded using the document() function can be processed by the stylesheet in just the same
way as the original source document.

document() is an XSLT function: it can only be used in XPath expressions contained in an XSLT
stylesheet.

element-available(arg1)
This function is used to test whether a particular XSLT instruction or extension element is available for
use. Vendors are allowed to provide proprietary extensions to the XSLT language, provided they use
their own namespace. Some vendors also allow users to implement their own extensions. This function
allows the stylesheet author to test whether a particular vendor extension is available before using it.

Chapter 8

308

The argument is a string containing the name of an element, and the result is true if the processor
recognizes this as the name of an XSLT instruction or extension element.

This is an XSLT function: it can only be used in XPath expressions contained in an XSLT stylesheet.

false()
This function returns the Boolean value false. There are no arguments. This function is needed because
XPath provides no literal constant for the value false.

floor(arg1)
The argument arg1 is a number. The floor() function returns the largest integer that is less than or
equal to the value of arg1. For example, floor(3.6) is 3.

format-number(arg1, arg2 [, arg3])
The format-number() function is used to convert numbers into formatted strings, usually for display
to a human user, but also to meet the formatting requirements of legacy data standards, such as a need
for a fixed number of leading zeroes. The format of the result is controlled using the <xsl:decimal-
format> element. The first argument arg1 is the number to be converted. The second argument is a
string containing format pattern that indicates the required output format.

The third argument arg3 is optional, and if present it is a string containing the name of an
<xsl:decimal-format> element in the stylesheet which defines the formatting rules. A summary of
<xsl:decimal-format> is given on later in the section on top-level elements, but the details are
outside the scope of this chapter. It allows you, for example, to change the characters that are used to
represent a decimal point and the thousands separator. If arg3 is omitted, the system looks for an
unnamed <xsl:decimal-format> element in the stylesheet, or uses a built-in default otherwise.

The most commonly used characters in the format pattern are:

Character Meaning

0 Always include a digit at this position, even if it isn't significant

Include a digit at this position if it is significant

. (period) Marks the position of the decimal point

, (comma) Marks the position of a thousands separator

% Show the number as a percentage

For example, the following table shows how the number 1234.56 will be displayed using some different
format patterns.

Format Pattern Output

1235

#.# 1234.6

#.##### 1234.56

#,###.000 1,234.560

0,000,000.### 0,001,234.56

XSLT and XPath

309

format-number() is an XSLT function: it can only be used in XPath expressions contained in an
XSLT stylesheet

function-available(arg1)
This function is used to test whether a particular function is available for use. Vendors are allowed to
add their own functions to those defined in the standard, provided they use their own namespace, and
many vendors also allow users to define extension functions of their own. function-available()
can be used to test the availability both of standard system functions and of extension functions. The
argument is a string containing the function name. For an extension function this will always have a
namespace prefix.

The result is the Boolean value true if the named function is available to be called, or false otherwise.

This is an XSLT function: it can only be used in XPath expressions contained in an XSLT stylesheet.

generate-id([arg1])
The generate-id() function generates a string, in the form of an XML name, that uniquely identifies
a node. The argument is optional; if supplied, it must be a node-set. The id returned is that of the node
that comes first in the node-set, in document order. If the node-set is empty, generate-id() returns
the empty string. If the argument is omitted, the context node is assumed.

Each XSLT processor will have its own way of generating unique identifiers for nodes. Different
processors will return different answers. If you call the function twice for the same node during a
particular transformation, you will get the same answer, but the next time you run the same stylesheet
the answers may be different. The result is a made-up identifier; it bears no relationship to any ID
values that might be present in the source document. The only constraints on the value are that the
identifier must be syntactically a valid XML Name, and that it must be different for every node: this
allows it to be used as the value of an ID attribute in the output document. This can be useful if you are
generating an HTML document and want to generate internal cross references of the form .

Testing generate-id($A) = generate-id($B) is a good way of testing whether $A and $B are the
same node, assuming both node-sets contain singleton nodes. Don't use $A=$B to do this: that compares
the string-values of the nodes, which might be the same even if $A and $B are different nodes.

generate-id() is an XSLT function: it can only be used in XPath expressions contained in an XSLT
stylesheet.

id(arg1)
The id() function returns a node-set containing the node or nodes from the source document that have
a given ID attribute. This relies on there being a DTD that identifies particular attributes as being of
type ID. If the document contains such attributes, they must be unique (assuming the document is
valid).

The argument may be a string, in which case it is treated as a whitespace-separated list of ID values.
Alternatively, it may be a node-set, in which case the string-value of each node in the node-set is
considered as a whitespace-separated list of ID values. All these ID values are assembled, and the result
of the function is the set of elements having ID values that are present in this list. Of course, the most
common case is that arg1 is a single ID value, and the result will then contain exactly one node, if the
ID value is present in the document or none if it is absent.

Chapter 8

310

key(arg1, arg2)
The key() function is used to find the nodes with a given value for a named key. The first argument is
a string containing the name of a key: this must match the name of an <xsl:key> element in the
stylesheet, as described in the later section on top-level elements. The second argument supplies the key
value or values you are looking for. It may be a string, containing a single key value, or a node-set,
containing a set of key values, one in each node. The result of the function is a node-set containing all
the nodes in the source document that have a key which is present in this list.

This is an XSLT function: it can only be used in XPath expressions contained in an XSLT stylesheet.

lang(arg1)
The lang() function tests whether the language of the context node, as defined by the xml:lang
attribute, corresponds to the language supplied as an argument. xml:lang is one of the few attributes
whose meaning is defined in the XML specification itself.

The argument is a string that identifies the required language, for example "en" for English, "de" for
German, or "cy" for Welsh. The result is true if the context node is in a section of the source document
that has an xml:lang attribute identifying the text as being in this language, and is false otherwise. The
actual rules for testing the language code are quite complex (to cater for complexities such as US
English versus British English) and are outside the scope of this chapter: you will find them in the Wrox
Press book XSLT Programmer's Reference.

last()
The last() function returns the value of the context size. When processing a list of nodes, if the nodes
are numbered from one, last() gives the number assigned to the last node in the list.

The test position()=last() is often used to test whether the context node is the last one in the list.

local-name([arg1])
The local-name() function returns the local part of the name of a node, that is, the part of the QName
after the colon if there is one, or the full QName otherwise. For example, if the element name was written
as <para> the local name will be para; if it was written as <fo:block> it will be "block". If the
argument is omitted, the function returns the local name of the context node. If the argument is
supplied, it must be a node-set, and the result is the local name of the first node in this node-set, taking
them in document order. If the node-set is empty, the result is an empty string.

name([arg1])
The name() function returns a string containing the qualified name of a node, that is, the name as
written in the XML source document, including any namespace prefix. If the argument is omitted, the
function returns the name of the context node; if the argument is supplied, it must be a node-set, and
the result is the name of the first node in this node-set, taking them in document order. If the node-set is
empty, the result is an empty string.

The name() function is useful to display the name of a node. Try to avoid using it in a context such as
[name()='my:element'] to test the name of a node, because this won't work if a different namespace
prefix has been used. Instead, test [self::my:element], which actually tests the namespace URI
corresponding to the prefix "my", rather than the prefix itself.

XSLT and XPath

311

namespace-uri([arg1])
The namespace-uri() function returns a string that represents the URI of the namespace in the
expanded name of a node. This will be a URI used in a namespace declaration, that is, the value of an
xmlns or xmlns:* attribute.

If the argument is omitted, the function returns the namespace URI of the context node; if the argument
is supplied, it must be a node-set, and the result is the namespace URI of the first node in this node-set,
taking them in document order. If the node-set is empty, the result is an empty string.

normalize-space([arg1])
The argument arg1 is a string; if it omitted, the string-value of the context node is used. The
normalize-space() function removes leading and trailing whitespace from the argument, and
replaces internal sequences of whitespace with a single space character. The result is a string.

not(arg1)
The argument arg1 is a Boolean. If the argument is true, the not() function returns false, and vice
versa.

number([arg1])
The number() function converts its argument to a number. If the argument is omitted, it converts the
string-value of the context node to a number.

The conversion rules are as follows:

Source Data Type Conversion Rules

Boolean False converts to zero, true to one.

String The string is parsed as a decimal number. Leading and trailing whitespace
is allowed, as is a leading minus (or plus) sign. If the string cannot be
parsed as a number, the result is NaN (Not a Number). The rules for
converting a string to a number are essentially the same as the rules for
writing a number in an XPath expression: conversion will fail, for example,
if the number uses scientific notation or contains a leading "$" sign.

Node-set Takes the string-value of the first node in the node-set, in document order,
and converts this to a string using the rules for string-to-number
conversion. If the node-set is empty, the result will be NaN.

Tree Treats the tree as a node-set containing the root node of the tree, and
converts this node-set to a number.

position()
The position() function returns the value of the context position. When processing a list of nodes, if
the nodes are numbered from one, position() gives the number assigned to the current node in the
list. There are no arguments.

Chapter 8

312

round(arg1)
The argument arg1 is a number. The round() function returns the closest integer to the numeric value
of arg1. For example, round(1.8) returns 2 and round(3.1) returns 3. A value midway between
two integers will be rounded up.

starts-with(arg1, arg2)
The starts-with() function tests whether the string arg1 starts with another string arg2. Both
arguments are strings, and the result is a Boolean. Like all other string comparisons in XPath, this is
case-sensitive: starts-with('Paris', 'p') is false.

string([arg1])
The string() function converts its argument to a string value. If the argument is omitted, it returns the
string-value of the context node. This depends on the type of node: see the table in the earlier section
on The XPath Data Model for more details.

The conversion rules are as follows:

Source Data Type Conversion Rules

Boolean Returns the string "true" or "false".

Number Returns a string representation of the number, to as many decimal places
as are needed to capture its precision.

Node-set If the node-set is empty, returns the empty string "". Otherwise, the
function takes the first node in document order, and returns its string-
value. Any other nodes in the node-set are ignored. The string-value of a
node is defined for each type of node in the table under The XPath Data
Model earlier in this chapter.

Tree Returns the concatenation of all the text nodes in the tree.

string-length(arg1)
The argument arg1 is a string. The string-length() function returns the number of characters
in arg1.

substring(arg1, arg2 [, arg3])
The substring() function returns part of the string supplied as arg1, determined by character
positions within the string.

arg2 is a number giving the start position of the required sub-string. Character positions are counted
from one. The supplied value is rounded, using the rules of the round() function. The function doesn't
fail if the value is out of range, it will adjust the start position to either the beginning or end of the string.

arg3 gives the number of characters to be included in the result string. The value is rounded in the
same way as arg2. If arg3 is omitted, you get all the characters up to the end of the string. If the value
is outside the range, it is adjusted so you get either no characters, or all the characters up to the end of
the string.

XSLT and XPath

313

substring-after(arg1, arg2)
The arguments arg1 and arg2 are strings. The substring-after() function returns a string
containing the characters from arg1 that occur after the first occurrence of arg2. If arg2 is not a sub-
string of arg1, the function returns the empty string.

substring-before(arg1, arg2)
The arguments arg1 and arg2 are strings. The substring-before() function returns a string
containing the characters from arg1 that occur before the first occurrence of arg2. If arg2 is not a sub-
string of arg1, the function returns the empty string.

sum(arg1)
The argument, arg1, must be a node-set. The sum() function calculates the total of a set of numeric
values contained in the nodes of this node-set. The function takes the string-value of each node in the
node-set, converts this to a number using the rules of the number() function, and adds this value to the
total. If any of the values cannot be converted to a number, the result of the sum() function will be
NaN (Not a Number).

system-property(arg1)
The system-property() function returns information about the processing environment. The
argument arg1 is a string containing a QName; a qualified name that identifies the system property
required. Three system properties are defined in the XSLT standard, but others may be provided by
individual vendors. The three standard properties are:

xsl:version The version of the XSLT specification implemented by this processor, for
example 1.0 or 1.1.

xsl:vendor Identifies the vendor of this XSLT processor

xsl:vendor-url The URL of the vendor's web site

If you supply a property name that the processor doesn't recognize, the function returns an empty
string.

This is an XSLT function: it can only be used in XPath expressions contained in an XSLT stylesheet.

translate(arg1, arg2, arg3)
The translate() function substitutes characters in a supplied string with nominated replacement
characters. It can also be used to remove nominated characters from a string.

All three arguments are strings: arg1 is the string to be translated. arg2 gives a list of characters to be
replaced, and arg3 gives the replacement characters.

For each character in arg1 the following processing is applied:

❑ If the character appears at position n in the list of characters in arg2, then if there is a
character at position n in arg3, it is replaced with that character, otherwise it is removed from
the string.

❑ If the character doesn't appear in arg2, then it is copied unchanged to the result string.

Chapter 8

314

For example, translate("ABC-123", "0123456789-", "9999999999") returns "ABC999",
because the effect is to translate all digits to a "9", remove all hyphens, and leave other characters
unchanged.

true()
This function returns the Boolean true value. It takes no arguments. The function is needed because
XPath provides no constant representing the value true.

unparsed-entity-uri(arg1)
The unparsed-entity-uri() function gives access to declarations of unparsed entities in the DTD of
the source document. The argument is evaluated as a string containing the name of the unparsed entity
required. The function returns a string containing the URI (the system identifier) of the unparsed entity
with the given name, if there is one. Otherwise, an empty string.

This is an XSLT function: it can only be used in XPath expressions contained in an XSLT stylesheet.

Stylesheets, Templates, and Patterns
We've now finished our tour of XPath expressions. Let's return now to XSLT and look at the structure
of a stylesheet and the templates it defines. We'll be using examples of XPath expressions throughout
this section.

The <xsl:stylesheet> Element
A stylesheet is usually an XML document in its own right, and its outermost element will be an
<xsl:stylesheet> element (you can also use <xsl:transform> as a synonym). The
<xsl:stylesheet> element will usually look something like this:

<xsl:stylesheet
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

</xsl:stylesheet>

The namespace URI must be exactly as written, or the processor won't recognize it as an XSLT
stylesheet. You can use a different prefix if you like (some people prefer to use "xslt") but you must then
use it consistently. The version attribute is mandatory, and indicates that this stylesheet is using facilities
only from XSLT version 1.0.

If you see a stylesheet that uses the namespace http://www.w3.org/TR/WD-xsl, then it is not an
XSLT stylesheet, but one that uses the old Microsoft dialect of the language shipped with IE5 and IE5.5.
There are so many differences between these dialects that they are best regarded as separate languages:
in this chapter, we are only describing XSLT. As part of the Microsoft XSLT processor, MSXML3
(currently available at http://msdn.Microsoft.com/xml), there is a tool to convert stylesheets from the old
Microsoft dialect to XSLT.

The <xsl:stylesheet> element will often carry a number of other namespace declarations; for
example, to define the namespaces for any extension functions you are using, or the namespaces of
elements in your source document that you want to match. There are several other attributes you can
have on this element:

XSLT and XPath

315

Attribute Name Usage

id An identifying name for the stylesheet. Not used by XSLT
itself.

extension-element-
prefixes

A list of namespace prefixes (separated by whitespace) that
are being used for vendor-defined or user-defined stylesheet
instructions (so-called extension elements).

exclude-result-prefixes A list of namespace prefixes (separated by whitespace) that
are not to be included in the result document unless they are
actually referenced.

In a typical stylesheet, most of the elements immediately within the <xsl:stylesheet> element
(which are known, rather inaccurately, as top-level elements) are likely to be <xsl:template>
elements. We'll discuss these now, and return to the other kinds of top-level element in a later section.

The <xsl:template> Element
Templates are the building blocks of an XSLT stylesheet, like the procedures and functions in a
conventional program. When a template is triggered (or "instantiated", in the jargon of the standard), it
generally causes things to be written to the result tree. The contents of a template in the stylesheet
consist of two kinds of node: instructions and data. When the template is triggered, any instructions are
executed, and any data nodes (referred to as literal result elements and text nodes) are copied directly to
the output.

For example, when the following template is triggered, it writes a <para> element to the result tree,
containing the text of the current node in the source document:

<xsl:template match="author">
<para>By: <xsl:value-of select="."/></para>

</xsl:template>

This little template contains a literal result element (the <para> element), literal result text «By: », and
an instruction (the <xsl:value-of> element).

There are two ways of triggering a template: it can be invoked explicitly, using the <xsl:call-
template> instruction, or implicitly, using <xsl:apply-templates>.

The <xsl:call-template> instruction is very like a conventional subroutine call. It has a name
attribute, which must match the name attribute of an <xsl:template> element somewhere in the
stylesheet. When the instruction <xsl:call-template name="table-of-contents"/> is
executed, the template declared as <xsl:template name="table-of-contents"> springs into life.

The other mechanism, using <xsl:apply-templates>, is more subtle. This instruction has a select
attribute whose value is an XPath expression that selects the set of nodes to be processed. The default is
select="child::node()" which selects all the children of the current node. For each of these nodes,
the system searches all the templates in the stylesheet to find one that best matches that node. This
search is based on the match attribute of the <xsl:template> element, which defines a pattern that
the node must match in order to qualify.

Chapter 8

316

We'll look in a moment at the detail of how match patterns work. First let's look at a complete stylesheet
that uses template rules to define its processing.

Our example will be a very simple kind of transformation: subsetting of a file of records to include only
those that satisfy certain criteria. The input will be a product file such as:

<?xml version="1.0"?>
<products>

<product code="Z123-888" category="tools">
<description>Large claw hammer</description>
<weight units="gms">850</weight>
<price>12.99</price>

</product>
<product code="X853-122" category="books">

<title>Plumbing for beginners</title>
<ISBN>0-123-456-9876</ISBN>
<price>10.95</price>

</product>
<product code="S14-8532" category="tools">

<description>Adjustable spanner</description>
<weight units="gms">330</weight>
<price>5.25</price>

</product>
</products>

The requirement is to produce another product file, with the same structure, but selecting only those
products whose price exceeds ten dollars, and omitting the price from the output.

The following stylesheet achieves this:

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:template match="*">
<xsl:copy>

<xsl:copy-of select="@*" />
<xsl:apply-templates />

</xsl:copy>
</xsl:template>
<xsl:template match="product[price < 10.00]" />
<xsl:template match="price" />

</xsl:stylesheet>

How does it work?

There are three template rules. The first one matches all elements (match="*"). This template rule uses
the <xsl:copy> instruction to copy the element node from the source tree to the result tree. It also
copies the attributes of the element using <xsl:copy-of>: the expression select="@*" selects all the
attribute nodes of the current element. It then calls <xsl:apply-templates/> to process the children
of the current element, each one using the appropriate rule for that element.

The next two template rules are empty: they match an input element and produce no output, thus
effectively removing that element and its contents from the file. The first of these two matches
<product> elements that have a child <price> element, whose value is less than 10.00; the second
matches <price> elements. Because these two rules have match patterns that are more specific than the
first template rule, they take priority over it when the relevant conditions are satisfied.

XSLT and XPath

317

The other nodes in the tree (for example the root node and text nodes) are handled by the built-in
template rules used when no explicit rule is provided. For the root, this built-in template rule just calls
<xsl:apply-templates /> to process the children of the root node. For a text node, it copies the
text to the result tree.

The output of the stylesheet looks like this (whitespace added for clarity).

<?xml version="1.0" encoding="utf-8"?>
<products>

<product code="Z123-888" category="tools">
<description>Large claw hammer</description>
<weight units="gms">850</weight>

</product>
<product code="X853-122" category="books">

<title>Plumbing for beginners</title>
<ISBN>0-123-456-9876</ISBN>

</product>
</products>

If you want to try this example out for yourself, follow the steps below:

❑ Download the sample files for this book from http://www.wrox.com

❑ Download Instant Saxon from http://users.iclway.co.uk/mhkay/saxon/

❑ Extract the executable saxon.exe into a suitable directory, say c:\saxon

❑ Open an MS-DOS console

❑ Change directory to the folder containing the Wrox examples, and then run the processor, as
follows:

cd path-of-wrox-download
c:\saxon\saxon.exe products.xml products.xsl

Of course, if you already have another XSLT processor installed, such as Xalan or Oracle XSL, you can
equally well run the example with that, changing the command line as required.

Patterns
The patterns that you can write in the match attribute of <xsl:template> are very similar to XPath
expressions. In fact, they are a subset of XPath expressions and every pattern is a valid XPath
expression. The converse is not true however.

By far the most common kind of pattern is a simple element name, for example author in the example
above. This will match all <author> elements (but remember to include a namespace prefix if the
element has a namespace URI).

Instead of a name, you can use any node test. The different kinds of node test were listed in an earlier
section. For example, you can write text() to match all text nodes, or svg:* to match all elements in
the svg namespace.

You can also add one or more predicates after the name. The predicate can be any XPath expression so
long as it doesn't use variables or the current() function (which would be meaningless). For example,
you could write section[@title='Introduction'] to match a <section> element having a
title attribute with the value Introduction. Or you could use para[1] to match any <para>
element that is the first <para> child of its parent element.

Chapter 8

318

You can also qualify the pattern by specifying the names of parent or ancestor elements, using the same
syntax as a location path in an XPath expression. For example, scene/title matches any <title>
element whose parent is a <scene> element, and chap//note matches any <note> element provided
it is a descendant of a <chap> element.

If you want to define a single template that matches several different patterns, you can use the union
operator | to separate them. For example, the pattern scene | prologue | epilogue, matches
<scene>, <prologue>, and <epilogue> elements.

The full rules for patterns are a bit more complex than this, but it's good practice to keep patterns
reasonably simple, so the examples described here should be more than adequate for most stylesheets.

Selecting a Template Rule
When <xsl:apply-templates> is used to process a set of nodes, it won't necessarily happen that
there's exactly one template rule that matches each node. There may be none, and there may be
several.

It's possible to steer the process by using modes. If the <xsl:apply-templates> instruction has a
mode attribute, the selected <xsl:template> element must have a matching mode attribute. If there's
no mode attribute on the <xsl:apply-templates> element, it will only match <xsl:template>
elements with no mode attribute. Modes are useful when there are several different ways of processing
the same input nodes, for example you may want to process them one way while generating the body of
the document, and another way when generating an index.

Here's an example that outputs all the sections in a chapter, preceded by a table of contents. The entries
in the table of contents are hyperlinks to the relevant sections, with the identifiers for the links
constructed using the XPath generate-id() function:

<xsl:template match="chapter">
<h2>Table of Contents</h2>
<xsl:apply-templates select="section" mode="toc"/>
<xsl:apply-templates select="section" mode="body"/>

</xsl:template>
<xsl:template match="section" mode="toc">

<p>
<xsl:value-of select="title"/>
</p>

</xsl:template>
<xsl:template match="section" mode="body">

<h2>
<xsl:value-of select="title"/>
</h2>
<xsl:apply-templates select="para"/>

</xsl:template>

If there's no matching template rule for a node, a default rule is invoked. The default processing
depends on the node type, as follows:

❑ For the root node and element nodes, it invokes <xsl:apply-templates /> to process the
children of this node. This may find explicit rules for these children, or it may again invoke
the default rule.

❑ For text nodes and attribute nodes, it copies the string-value of the node to the result tree.

❑ For other nodes, it does nothing.

XSLT and XPath

319

If there's more than one rule, a priority scheme comes into play. This works as follows:

❑ The processor must first see if the matching rules have different import precedence, and if so,
reject any that have lower precedence than others. This will only happen if one template is in
a separate stylesheet imported using <xsl:import>, which we'll describe in the later section
on top-level elements within templates.

❑ Then the processor must look at the priorities of the rules. You can set a priority explicitly on
a rule by using its priority attribute, for example a rule with priority="2" will be chosen
in preference to one with priority="1". If there's no explicit priority, the system allocates a
default priority based on the syntax you use in the match pattern. This tries to ensure that
highly selective patterns like section[@title='Introduction'] get a higher priority
than catch-all patterns like node(), but it's a hit-and-miss process, and it's safer to allocate
priorities explicitly.

❑ If, after all this, there are still several possible candidates, the specification says it's an error.
However, it gives the processor a choice of what to do about this. A strict processor is allowed
to report the error and terminate processing. A more lenient processor is allowed to choose
whichever rule comes last in the stylesheet, and use that. Some processors actually adopt a
middle course, of continuing after a warning message.

Parameters
Whether a template rule is called using <xsl:call-template> or <xsl:apply-templates>, it's
possible to supply parameters with the call. The calling instruction uses <xsl:with-param> to set a
value for a parameter; the called template uses <xsl:param> to receive the value. If the caller sets a
parameter that the called template isn't expecting, it is simply ignored; if the caller fails to set a
parameter that's expected, it will take a default value, which can be specified in the <xsl:param>
element.

The <xsl:param> and <xsl:with-param> elements have identical syntax: a name attribute to give
the name of the parameter, and a select attribute containing an XPath expression to give its value. (In
the case of <xsl:param>, this is the default value.) They can also have content, to express the value as
a tree, in the same way as <xsl:variable> which we'll describe later in this Chapter.

Here's an example of a template that copies a node and its descendants, down to a specified depth. The
template calls itself recursively: this is very much part of the programming style when you want to do
anything complex with XSLT. Each time the template calls itself, it reduces the depth by one, until it
reaches zero and the template does nothing, and returns immediately.

<xsl:template match="/ | * | text()" mode="shallow-copy">
<xsl:param name="depth"/>
<xsl:if test="$depth > 0">

<xsl:copy>
<!-- copy all the attributes -->
<xsl:copy-of select="@*"/>
<!-- process all the children -->
<xsl:apply-templates mode="shallow-copy">

<xsl:with-param name="depth" select="$depth – 1"/>
</xsl:apply-templates>

</xsl:copy>
</xsl:if>

</xsl:template>

Chapter 8

320

You can call this to copy the root node to a depth of three with a call such as:

<xsl:apply-templates select="/" mode="shallow-copy">
<xsl:with-param name="depth" select="3"/>

</xsl:apply-templates>

The match pattern on the template uses a union pattern to specify that the template will match the root
node /, any element *, or any text node text(). If comments or processing instructions are
encountered, the built-in template kicks in, which for these types of node causes them to be ignored.

The Contents of a Template
The contents of an <xsl:template> element (after any <xsl:param> elements, which must come
first) form a template body.

A template body consists of a sequence of element and text nodes. The stylesheet may also contain
comments and processing instructions, but these are ignored completely, so we won't consider them.
Any text nodes that consist entirely of whitespace will also have been removed.

The element nodes in a template body can be further categorized:

❑ Elements in the XSLT namespace are instructions. These are conventionally prefixed "xsl:"
but you can use any prefix you like.

❑ Elements in a namespace designated as an extension element namespace are instructions. The
meaning of these instructions is vendor-dependent.

❑ Any other elements are literal result elements. These are copied to the result tree.

Text nodes appearing within a template body are also copied to the result tree.

Extension elements are outside the scope of this chapter: see the vendor's documentation if you want to
use them. In this section, we'll review the XSLT-defined instructions, and then look more closely at
literal result elements.

We've introduced the template body as the contents of an <xsl:template> element, but in fact many
other elements, such as <xsl:if> and <xsl:element>, have content that follows the same rules and
is handled the same way as a template body contained directly in an <xsl:template> element. So, the
term template body is used generally to describe the content of all these elements.

Attribute Value Templates
Some attributes in an XSLT stylesheet are designated as attribute value templates. Examples are the
name attribute of the <xsl:attribute> and <xsl:element> instructions. In these attributes, instead
of writing a fixed value, such as «name="description"», you can parameterize the value by writing
XPath expressions within curly brackets, for example name="{$prefix}:{$localname}". When the
instruction is executed, these XPath expressions will be evaluated, and the resulting attribute value will
be substituted into the attribute value in place of the expression.

If the XML source document uses curly braces within the attribute value and you don't want it to trigger
this mechanism, write it twice, for example value="{{not an AVT}}".

XSLT and XPath

321

The most common mistake with attribute value templates is to assume you can use them anywhere. You
can't; they are allowed in only a few specific places. These are indicated in the descriptions of each
XSLT element below. Don't attempt, for example, to write <xsl:call-template
name="{$tname}" />: it won't work.

One particular point is that you never use curly brackets inside an XPath expression, only to surround
an XPath expression within an attribute that would otherwise be interpreted as a text value.

XSLT Instructions
XSLT instructions are a subset of XSLT elements: essentially, those that can be used directly as part of a
template body.
The instructions defined in XSLT 1.0 are as follows:

<xsl:apply-imports>
<xsl:apply-templates>
<xsl:attribute>
<xsl:call-template>
<xsl:choose>
<xsl:comment>
<xsl:copy>
<xsl:copy-of>
<xsl:element>

<xsl:fallback>
<xsl:for-each>
<xsl:if>
<xsl:message>
<xsl:number>
<xsl:processing-instruction>
<xsl:text>
<xsl:value-of>
<xsl:variable>

In the following sections, we'll look briefly at each one.

<xsl:apply-imports>
This is a very rarely used instruction. It has no attributes and is always empty. It is used while
processing a particular node to invoke template rules from an imported stylesheet, overriding the
normal rules for template selection based on import precedence.

<xsl:apply-templates>
We have already described this instruction earlier in the chapter. It causes a selected set of nodes to be
processed, each one using the appropriate template rule based on match patterns and priorities.

The instruction takes two attributes, both optional. The select attribute is an XPath expression that
defines the set of nodes to be processed: by default, the children of the current node are processed. The
mode attribute gives the name of a processing mode: only those <xsl:template> elements with the
same mode name are candidates for matching.

Within the invoked templates, any XPath expressions are evaluated with the context set by the
<xsl:apply-templates> instruction. Specifically, the context node will be the node currently being
processed, the context position (the result of the position() function) will be 1 for the first node
processed, 2 for the second, and so on, and the context size (the result of the last() function) will be
the total number of nodes to be processed.

The <xsl:apply-templates> instruction is often written as an empty element, but there are two
other elements it may optionally contain: <xsl:with-param>, to define any parameters to be passed
to the called template, and <xsl:sort>, which defines the sort order of the nodes to be processed. In
the absence of <xsl:sort>, the nodes are processed in document order. <xsl:sort> is described
later in the section titled Sorting.

Chapter 8

322

<xsl:attribute>
The effect of <xsl:attribute> is to write an attribute node to the result tree. This is only possible if
the last thing written was an element or another attribute. The <xsl:attribute> instruction has two
attributes, name and namespace. The name attribute gives the name of the new attribute (this is
mandatory), and the namespace attribute gives the namespace URI. If no namespace is specified, the
namespace is taken from the prefix of the name, if this has one.

Both the name and namespace attributes are interpreted as Attribute Value Templates. The value of
the new attribute is constructed from the content of the <xsl:attribute> element. This is another
template body, but it should generate only text nodes. For example:

<xsl:attribute name="color">
<xsl:value-of select="concat('#', $bgcolor)"/>

</xsl:attribute>

<xsl:call-template>
This instruction has already been discussed, in the earlier section on the <xsl:template> element. It
takes a mandatory name attribute, which names the template to be called. There must be a template
with this name in the stylesheet.

The only elements permitted in the content of <xsl:call-template> are <xsl:with-param>
elements. These set the values of any parameters to be passed to the called template. The names used in
the <xsl:with-param> elements should match the names used in the <xsl:param> elements of the
called template.

<xsl:choose>
In a similar manner to If-else in Visual Basic, this instruction is used to perform conditional processing.
The <xsl:choose> element itself has no attributes. It contains a sequence of one or more
<xsl:when> elements, optionally followed by an <xsl:otherwise> element. Each <xsl:when>
element specifies a condition, and the first one whose condition is satisfied is executed. If none of the
conditions is satisfied, the <xsl:otherwise> element is used. For example:

<xsl:choose>
<xsl:when test="lang('en')">Welcome</xsl:when>
<xsl:when test="lang('de')">Willkommen</xsl:when>
<xsl:when test="lang('fr')">Bienvenue</xsl:when>
<xsl:otherwise>System error!</xsl:otherwise>

</xsl:choose>

The test attribute of <xsl:when> is an XPath expression, whose result is converted to a Boolean. The
content of the <xsl:when> and <xsl:otherwise> elements need not be simple text as in this
example, it can be any template body.

<xsl:comment>
This instruction is used to output a comment node to the result tree. It takes no attributes. The content
of the <xsl:comment> element is a template body, but this should generate nothing other than text
nodes. For example:

<xsl:comment>
Generated with param1=<xsl:value-of select="$param1"/>

</xsl:comment>

XSLT and XPath

323

<xsl:copy>
This instruction performs a shallow copy of the current node: that is, it copies the current node, but not
its children. When the current node is a root or element node, the content of the <xsl:copy>
instruction is taken as a template body, which is instantiated to create the content of the copied output
node. When the current node is an attribute node, text node, comment, or processing instruction, the
content of the <xsl:copy> element is ignored.

The <xsl:copy> instruction has an optional attribute use-attribute-sets. This is relevant only
when copying an element. It has the same effect as the use-attribute-sets attribute of
<xsl:element>, which is described later.

<xsl:copy-of>
This instruction performs a deep copy of all the nodes selected by the XPath expression in its select
attribute. That is, it copies those nodes and all their descendants, as well as their attributes and
namespaces, to the result tree.

If the result of evaluating the expression in the select attribute is a simple string, number, or Boolean,
the <xsl:copy-of> instruction has the same effect as <xsl:value-of>: it converts the value to a
string and writes it to the result tree as a text node. For example:

<xsl:copy-of select="@*" />

This copies all the attributes of the current node to the result tree.

The following instruction (which might be the only thing a stylesheet does) copies all the news items
with a status of "current" to the result tree, together with all their content:

<xsl:copy-of select="/news/item[@status='current']" />

The <xsl:copy-of> instruction is always empty.

<xsl:element>
The <xsl:element> instruction writes an element node to the result tree. The content of the
<xsl:element> instruction is a template body, which is instantiated to construct the content of the
generated element.

The <xsl:element> instruction has attributes name and namespace. The name attribute gives the
name of the new element (this is mandatory), and the namespace attribute gives the namespace URI. If
no namespace is specified, it is taken from the prefix of the supplied element name, if this has one.

Both the name and namespace attributes are interpreted as Attribute Value Templates. The following
example creates an <html> element using a namespace URI that is passed in as a parameter:

<xsl:element name="html" namespace="{$html-namespace}">
<head>

<title><xsl:value-of select="title"/></title>
</head>
<body>

<xsl:call-template name="generate-body"/>
</body>

</xsl:element>

Chapter 8

324

The <xsl:element> instruction may also have an attribute use-attribute-sets. If present, this is
a whitespace-separated list of names, each of which must be the name of an <xsl:attribute-set>
element at the top level of the stylesheet. The effect is that the new element will be given all the
attributes defined in these attribute sets.

<xsl:fallback>
This is a rarely encountered instruction. It is used within the content of a vendor extension element to
define the processing that should take place if the extension element is not available. It can also be used
if your stylesheet specifies version="2.0", say, (because it uses features defined in XSLT version 2.0),
to define what should happen if the stylesheet is run using an XSLT processor that does not support
version 2.0 features.

<xsl:for-each>
The <xsl:for-each> instruction is used to define processing that should be carried out for each
member of a node-set. The node-set to be processed is defined by an XPath expression in the select
attribute, which is mandatory. The processing itself is defined by the template body contained within
the <xsl:for-each> element.

The following example creates one attribute node in the result tree corresponding to each child element
of the current node in the source tree:

<xsl:for-each select="*">
<xsl:attribute name="{name()}">

<xsl:value-of select="."/>
</xsl:attribute>

</xsl:for-each>

The node-set is normally processed in document order. To process the nodes in a different order,
include one or more <xsl:sort> elements immediately within the <xsl:for-each> instruction. For
more details, see the section on Sorting.

The <xsl:for-each> instruction changes the current node: each node in the node-set becomes the
current node in turn, for as long as the template body is active. Sometimes <xsl:for-each> is used
solely for this purpose, to set the current node for an instruction such as <xsl:number> or
<xsl:copy> that only works on the current node. For example:

<xsl:for-each select="..">
<xsl:number/>

</xsl:for-each>

This outputs the sequence number of the parent node. There is no iteration here: there is only one
parent node, so the template body is only instantiated once.

While the <xsl:for-each> instruction is active, any XPath expressions are evaluated with the context
set by the <xsl:for-each>. Specifically, the context node will be the node currently being processed,
the context position will be 1 for the first node processed, 2 for the second, and so on, and the context
size will be the total number of nodes to be processed. A common error is to write:

<xsl:for-each select="item">
<xsl:value-of select="item" />

</xsl:for-each>

XSLT and XPath

325

This fails (or rather, it produces no output) because the XPath expression in the <xsl:value-of>
instruction is evaluated with an <item> as its context node, and the expression item is short for
child::item, but the context <item> has no <item> elements as its children. Use <xsl:value-of
select="."/> instead.

The two instructions <xsl:apply-templates> and <xsl:for-each> are the only instructions that
change the current node in the source tree. They represent two different styles of processing, sometimes
called push and pull respectively. Push processing (using <xsl:apply-templates>) relies on pattern
matching, and it works best when the structure of the input is highly variable, for example where
elements may be found in many different contexts. Pull processing (using <xsl:for-each>) works
better where the structure of the source is very rigid and predictable. It's a good idea to become familiar
with both.

<xsl:if>
The <xsl:if> instruction performs an action if a condition is true. There is no else branch: if you need
one, use <xsl:choose> instead. <xsl:if> has a mandatory test attribute which defines the
condition to be tested, as an XPath expression whose result is automatically converted to a Boolean.
The <xsl:if> element contains a template body which is instantiated if and only if the condition is
true.

This example outputs a message containing the word "errors" unless there was only one, when it uses
the singular "error". It also uses an <xsl:choose> to :

There <xsl:choose><xsl:when test="count($errors)=1">was
</xsl:when><xsl:otherwise>were </xsl:otherwise></xsl:choose>
</ <xsl:value-of select="count($errors)" />
error<xsl:if test="count($errors)!=1">s</xsl:if>

<xsl:message>
The <xsl:message> instruction is used to output a message. The specification isn't very precise about
what happens to the message; this depends on the implementation. The <xsl:message> element
contains a template body which is instantiated to construct the message. This may contain any kind of
XML markup, though text messages are likely to behave more predictably.

There is an optional attribute terminate="yes" which causes execution of the stylesheet to terminate
at once. For example:

<xsl:if test="not(/invoice)">
<xsl:message terminate="yes">

This stylesheet is only designed to handle invoice documents
</xsl:message>

</xsl:if>

<xsl:number>
The <xsl:number> instruction is designed to perform sequential numbering of nodes. It calculates a
number for the current node based on its position in the source tree, formats this number as required,
and writes the result to the output tree as a text node.

Chapter 8

326

This is a complex instruction with many attributes to control how the number is calculated and
formatted. A detailed treatment is beyond the scope of this chapter: you can find full information in the
Wrox book XSLT Programmers Reference. (ISBN 1861003129)

When used with no attributes, for example <xsl:number />, the result is obtained by counting the
number of preceding siblings of the current node that have the same node type and name, adding one
for the node itself, and formatting the result using the same rules as the string() function. Therefore,
if the current node is the fifth <para> element within a <section>, the output will be 5.

The way nodes are counted may be modified using a number of attributes:

Attribute Meaning

level The default value is "single", which counts preceding siblings of the current
node. The value "any" counts preceding nodes anywhere in the document,
which is useful for example to number figures or equations. The value
"multiple" produces a multi-level number such as "10.1.3" or "17a(iv)".

count This pattern defines which nodes are to be counted. For example
count="*" causes all elements to be counted, not only those with the same
name as the current node. For multi-level numbering, specify all the levels
you want counted, for example count="chapter | section |
clause".

from This is a pattern which indicates where counting is to start. For example,
count="p" from="h2" counts the number of <p> elements since the last
<h2> element.

The formatting of the result may also be modified using a number of attributes. The main one is
format, which defines a format pattern (this is an attribute value template, so it can be constructed
dynamically if you want). The following examples show how the number 4 might be formatted with
various format patterns:

Format Pattern Output

1 4

(a) (d)

-- i -- -- iv --

For multi-level numbering, you can use a format pattern such as "1.1(a)" to request an output sequence
such as 1.1(a), 1.1(b), 1.1(c), 1.2(a), 1.2(b), 2.1(a).

The <xsl:number> instruction also has a value attribute. This can be used to supply the value
directly, as a way of using the formatting capabilities of <xsl:number> without the node-counting
features. It is often used in the form:

<xsl:number value="position()" format="(a)" />

The position() function gives the position of the current node in the sequence that the nodes are
being processed, rather than its position in the source tree. This option is particularly useful when
producing output in sorted order.

XSLT and XPath

327

<xsl:processing-instruction>
This instruction is used to output a processing instruction node to the result tree. It takes a mandatory
name attribute to define the name of the generated processing instruction. The data part of the
processing instruction is obtained by instantiating the template body that the <xsl:processing-
instruction> element contains.

<xsl:text>
The <xsl:text> instruction is used to output a text node to the result tree. This instruction may
contain a text node but it must not contain any child elements.

Text contained directly in the stylesheet is written to the result tree automatically, whether or not it is
contained in an <xsl:text> element. The reason for providing <xsl:text> is to give more control
over whitespace handling. Text contained within an <xsl:text> element will be output exactly as
written, even if it is all whitespace, whereas in other contexts whitespace that appears on its own
between element tags will be removed from the stylesheet before processing.

For example, to output two names with a space between them, write:

<xsl:value-of select="given-name"/>
<xsl:text> </xsl:text>

<xsl:value-of select="last-name"/>

The <xsl:text> element also has an optional attribute, disable-output-escaping="yes", which
suppresses the normal action of the serializer to convert special characters such as < and > into <
and >. This is a dirty feature that should be avoided, but it is sometimes useful if you want to
generate not-quite-XML formats, such as ASP, PHP, or JSP pages.

<xsl:value-of>
The <xsl:value-of> instruction is used to write computed text to the result tree. It takes a select
attribute whose value is an XPath expression. This expression is evaluated, the result is converted to a
string (using the rules of the string() function), and written as a text node to the result tree. The most
common usage is:

<xsl:value-of select="." />

This simply writes the string-value of the current node.

There is an optional attribute, disable-output-escaping="yes", which has the same effect as with
<xsl:text>.

<xsl:variable>
The <xsl:variable> element, when used as an instruction within a template body, declares a local
variable. (It can also be used as a top-level element in the stylesheet, to declare a global variable.)

The name of the variable is given by its name attribute. This must be different from any other local
variable that is in scope at that point in the stylesheet, although it can override a global variable of the
same name.

Chapter 8

328

The scope of a local variable (that is, the part of the stylesheet where XPath expressions can refer to the
variable) comprises those elements in the stylesheet that are following-siblings of the <xsl:variable>
element, or descendants of those following-sibling elements. Using XPath notation, if the
<xsl:variable> element is the context node, the scope of the variable is the node-set defined by:

following-sibling::*/descendant-or-self::*

This means, for example, that if you declare a local variable within an <xsl:when> branch of an
<xsl:choose> instruction, you won't be able to access the variable outside the <xsl:when>.

The value of the variable can be determined in three ways:

❑ If the <xsl:variable> element has a select attribute, this attribute is an XPath
expression, which is evaluated to give the variable's value.

❑ If the <xsl:variable> element has content, the content is a template body. This is
instantiated to create a new tree (called a result tree fragment) and the value of the variable is
the node-set containing the root of this tree.

❑ If the <xsl:variable> element has no select attribute and is empty, its value is the empty
string.

Here's an example using the select attribute:

<xsl:variable name="number-of-items" select="count(//item)" />

Here's one that creates a result tree fragment:

<xsl:variable name="result-table">
<table>

<xsl:for-each select="item">
<tr>

<td><xsl:value-of select="@description"/></td>
<td><xsl:value-of select="@price"/></td>

</tr>
</xsl:for-each>

</table>
</xsl:variable>

With XSLT 1.0, there are restrictions on the way a result tree fragment can be used; in effect, the only
things you can do with it are to convert it to a string, or to copy it (by using <xsl:copy-of>) to the
final result tree. You can't actually process it using XPath queries. Many vendors have relaxed this
restriction by providing facilities to convert the result tree fragment to a node-set, and a standard way of
doing this is expected to come in the next version of the specification.

As we've already mentioned, variables can't be used in quite the same way as in ordinary programming
languages, because they are "write-once" – they can't be updated, because there is no assignment
statement. In effect, this means a variable is just a shorthand name for an expression that saves you from
using the same expression repeatedly. Variables can also be useful to avoid problems with changing
context. For example, if you write:

<xsl:variable name="this" select="."/>

XSLT and XPath

329

Then as the first thing within an <xsl:for-each> loop, you will always be able to refer to the current
node of this loop even from within nested loops.

Literal Result Elements
Any element found within a template body that is not recognized as an instruction is treated as a literal
result element. The element is copied to the result tree, together with its attributes and namespaces. If
the element is not empty, its content is a template body, and this is instantiated to create the content of
the generated element in the result tree. For example:

<td valign="top"><xsl:value-of select="." /></td>

This is a literal <td> result element, whose template body causes the string value of the current node in
the source document to be inserted into the <td> element generated on the result tree.

The attributes of the literal result element are interpreted as attribute value templates, so they can be
generated using XPath expressions. For example:

<td valign="{$align}"><xsl:value-of select="." /></td>

There are two other ways of generating attributes for the result element:

❑ Use the <xsl:attribute> instruction within the template body.

❑ Use an xsl:use-attribute-sets attribute within the start tag of the literal result element.
This has the same effect as the use-attribute-sets attribute of <xsl:element>. It is
prefixed with "xsl" to distinguish it from attributes that you want to copy to the result.

A literal result element can also have attributes xsl:version, xsl:extension-element-prefixes,
and xsl:exclude-result-prefixes. These override the similarly-named attributes on the
<xsl:stylesheet> element for the region of the stylesheet enclosed by the literal result element.
Again, the prefix "xsl" is used to distinguish them from attributes intended for the result tree.

Sorting
There are two instructions for processing a set of nodes, <xsl:apply-templates> and <xsl:for-
each>, and they both allow the nodes to be sorted by specifying one or more <xsl:sort> elements. If
you don't specify a sort order, the nodes will be processed in document order, that is, in the order they
appear in the source document.

Each <xsl:sort> element specifies a sort key. If there is more than one <xsl:sort> element, they
specify the sort keys in major-to-minor order: for example if the first sort key is last-name, and the
second is given-name, you will process the data in the order of ascending given-name within ascending
last-name.

Chapter 8

330

The <xsl:sort> element has a number of attributes to control sorting:

Attribute Meaning

select An XPath expression whose value represents the sort key. If
omitted, the nodes are sorted by their string-value.

order This can be "ascending" or "descending". Specifying
descending reverses the sort order. The default is ascending.

data-type This can be "text" or "number". Specifying number means that
the sort keys are converted to numbers and sorted numerically.
The default is text.

lang A language code, for example "en" or "de". Allows the sort to
use national collating conventions. The default is
implementation-defined.

case-order This can be "upper-first" or "lower-first". Indicates
whether upper-case letters should precede their lower-case
equivalents, or vice versa. The default is implementation-
defined.

The expression giving the sort key is evaluated with the node being sorted as the context node. For
example, to sort a set of <book> elements according to their author attribute, write:

<xsl:for-each select="book">
<xsl:sort select="@author"/>

</xsl:for-each>

Or:

<xsl:apply-templates select="book">
<xsl:sort select="@author"/>

</xsl:apply-templates>

Top-level Elements
We've looked at all the XSLT elements that can be used inside a template body. Let's now return to the
top-level of the stylesheet and look at those elements that can be used as children of the
<xsl:stylesheet> or <xsl:transform> element. Here is a list of them:

<xsl:attribute-set> <xsl:output>

<xsl:decimal-format> <xsl:param>

<xsl:import> <xsl:preserve-space>

<xsl:include> <xsl:strip-space>

<xsl:key> <xsl:template>

<xsl:namespace-alias> <xsl:variable>

XSLT and XPath

331

We'll look at each one in turn, in alphabetical order. Within the stylesheet itself, the general principle is
that top-level elements can appear in any order, except that <xsl:import> elements have to come
before any others.

A stylesheet can also contain user-defined elements at the top level, provided they are in their own
namespace. These will be ignored by the XSLT processor, but they can be useful for look-up tables and
other constant data. Within an XPath expression you can access the stylesheet contents by writing
document("") to refer to the root of the stylesheet tree.

<xsl:attribute-set>
This element defines a named set of attributes. This is useful where you want to create many result
elements using the same attribute values, which sometimes happens when rendering documents for
display.

The <xsl:attribute-set> element has a name attribute, which provides a unique name for this
attribute set. Its content is a set of <xsl:attribute> instructions to generate the attribute values. To
include this set of attributes in a result element, use the use-attribute-sets attribute on
<xsl:copy> or <xsl:element>, or use the xsl:use-attribute-sets attribute on a literal result
element.

<xsl:decimal-format>
This element defines a set of rules for formatting decimal numbers. These rules can be referenced from
the format-number() function used in an XPath expression with the format-number() function
elsewhere in the stylesheet. An <xsl:decimal-format> element may have a name attribute, in which
case it is used when the third argument of format-number() uses this name, or it may be unnamed, in
which case it is used when the format-number() function has no third attribute.

The <xsl:decimal-format> element allows characters and strings to be nominated for use in
formatted numbers, and also in the format pattern used by the format-number() function. The ones
that are most likely to be used are decimal-separator, which defines the character to be used as a
decimal point, and grouping-separator, which defines the character used as a thousands separator.
For example, if you want format-number() to use the continental European convention of using . as
a thousands separator and , as a decimal point, write:

<xsl:decimal-format decimal-point="," grouping-separator="." />

The other attributes are outside the scope of this chapter, and are fully described in the Wrox book
XSLT Programmers Reference (ISBN 1861003129).

<xsl:import>
The <xsl:import> element allows your stylesheet to incorporate definitions from another stylesheet.
The element has an href attribute which contains the URI of the stylesheet to be imported. All the top-
level definitions from the imported stylesheet are incorporated into the importing stylesheet, except that
they have a lower precedence; which means that given a choice, the definitions in the importing
stylesheet are preferred.

Chapter 8

332

In many ways this is like sub-classing: the importing stylesheet inherits the definitions from the
imported stylesheet, overriding them where necessary; this reflects the way the facility should be used.
The imported stylesheet should contain general-purpose definitions for use in a wide range of
circumstances, and the importing stylesheet should override these with definitions that are applicable in
a narrower sphere.

The imported stylesheet may contain any top-level elements, but there are slight differences in the way
the precedence mechanism works for different elements. In most cases, an object in the imported
stylesheet is used only when there is no applicable object in the importing stylesheet. In some cases
(<xsl:key> definitions, <xsl:output> definitions), the definitions in the two stylesheets are merged.

The imported stylesheet may contain further <xsl:import> elements, so there is a hierarchy just like a
class hierarchy in object-oriented programming.

<xsl:include>
The <xsl:include> element is similar to <xsl:import>, except that it incorporates definitions from
the included stylesheet with the same precedence as those in the including stylesheet. Again, the href
attribute contains the URI of the stylesheet to be included. Whereas <xsl:import> allows the
importing stylesheet to override definitions in the imported stylesheet, <xsl:include> is useful if the
definitions are not to be overridden.

The effect is, for all practical purposes, to copy the top-level elements from the included stylesheet into
the including stylesheet at the point where the <xsl:include> statement occurs. This must, of course,
be at the top level, as an immediate child of the <xsl:stylesheet> element.

Note, however, that the attributes on the <xsl:stylesheet> element (such as exclude-result-
prefixes) apply only to elements that are physically within that stylesheet, not to elements brought in
using <xsl:include>.

<xsl:key>
The <xsl:key> element is used to create a named key definition, which is referenced when the key()
function is used in an XPath expression.

The element has three attributes:

Attribute Name Meaning

Name Defines the name of the key, corresponding to the first argument of
the key() function

match Defines a pattern that determines which nodes in the source
document participate in this key

use Defines an XPath expression which establishes the value that will be
used to find these nodes, corresponding to the second argument of the
key() function

It would be appropriate to explain keys in SQL terms. Effectively the system maintains a table,
KEYTABLE, with four columns, DOC, KEY, NODE, and VALUE.

XSLT and XPath

333

The effect of an <xsl:key> definition is that for each source document (that is, the original input
document plus any document loaded using the document() function), entries are created in this table
for each node that matches the match pattern in the <xsl:key> definition. These entries will have DOC
set to the identifier of the document, KEY set to the name of the key, and NODE set to the identifier of the
matching node. For each of these matching nodes, the use expression is evaluated. If the result is a
string, this string is entered in the VALUE column. If the result is a node-set, one row is added to the
table for each node in the node-set, with the VALUE column set to the string-value of that node.

The effect of the key() function is then to query this table as follows:

SELECT distinct NODE FROM KEYTABLE WHERE DOC = current_document AND

KEY = argument1 AND VALUE = argument2

Here current_document is the document containing the context node.

The resulting set of NODE identifiers forms the node-set returned by the key() function. Note that there
can be more than one <xsl:key> definition with the same name (they are additive); that there can be
several nodes with the same value for a key; and one node can have several values for the same key.

A simple example: to index books by author, write:

<xsl:key name="author-key" match="book" use="author" />

To retrieve all the books whose author is Milton, use this XPath expression:

key('author-key', 'Milton')

Note that this works even if a book has multiple authors.

<xsl:namespace-alias>
This is a rarely used element; its main purpose is to enable you to write a stylesheet that generates
another stylesheet as output.

There are two attributes, stylesheet-prefix and result-prefix. In both cases, the value is a
namespace prefix, which must correspond to a namespace declaration that is in scope.

The effect of this is that any literal result element that appears in the stylesheet using the namespace
URI corresponding to the stylesheet-prefix, will be written to the output document under the
namespace URI corresponding to the result-prefix.

<xsl:output>
This element is used to influence the way that the result tree is serialized. As we saw earlier in the
chapter, serialization is not really part of the job of an XSLT processor, and for this reason processors
are allowed to ignore this element entirely. However, in practice most processors do include a serializer
and have done their best to honor the <xsl:output> element: it will be ignored only if you choose to
handle the serialization yourself.

Chapter 8

334

The main attribute is method, which may be set to xml, html, or text, or to a vendor-defined method
distinguished by a namespace prefix. The value xml indicates that the output should be in XML 1.0
format, html that it should be an HTML document, and text that it should be a plain text file.

The meaning of the other attributes depends on which method is chosen, as shown in the following
table:

Attribute Applies to Meaning

cdata-section-
elements

xml A whitespace separated list of elements whose
content is to be encoded using CDATA sections.

doctype-public xml, html The public identifier to be used in the DOCTYPE
declaration.

doctype-system xml, html The system identifier to be used in the DOCTYPE
declaration.

encoding xml, html, text The character encoding to be used, e.g. ISO-
8859-1. The default is the Unicode UTF-8
encoding.

indent xml, html Set to "yes" or "no" to indicate whether the
output is to be indented for readability.

media-type xml, html, text The media (or MIME) type of the output.

omit-xml-
declaration

xml If set to "yes", indicates that the XML
declaration at the start of the file should be
omitted.

standalone xml Indicates the value for "standalone" in the
XML declaration.

version xml, html The version of XML or HTML to be used
(default for XML is 1.0, for HTML is 4.0).

There are many aspects of the final serialization over which you have no control; for example you can't
choose in HTML output whether accented letters will be output directly as themselves, or using numeric
character references, or using standard entity names such as ä. Different processors will do this
differently. It shouldn't matter, because it will look the same in the browser.

<xsl:param>
We have already met <xsl:param> as an element that can be used inside <xsl:template>, to
indicate the parameters to a template that may be supplied when it is called. It is also possible to use
<xsl:param> as a top-level element to define parameters that may be supplied when the stylesheet as a
whole is invoked: the syntax is the same. The way parameters are supplied is not standardized: each
vendor has their own API or command line syntax, but within the stylesheet, parameters can be
accessed by means of a variable reference in an XPath expression, just like global variables.

If the <xsl:param> element specifies a value, this is used as a default when no explicit value is
supplied when the stylesheet is invoked.

XSLT and XPath

335

<xsl:preserve-space> and <xsl:strip-space>
These two top-level elements are used to control how whitespace in the source document is handled. In
most data-oriented XML documents, whitespace between element tags is there for layout purposes only,
and it is best to eliminate it before processing starts, by specifying <xsl:strip-space
elements="*" />. For markup-oriented XML documents, spaces between tags may well be
significant, and it is best to keep it in the document (which is the default).

Both <xsl:preserve-space> and <xsl:strip-space> have an elements attribute, which is a
space-separated list of NameTests. A NameTest is either *, meaning all elements, or prefix:*,
meaning all elements in a particular namespace, or an element name indicating a specific element. If
you want spaces stripped from only a few elements, list these in <xsl:strip-space>. If you want
spaces stripped from most elements, specify <xsl:strip-space="*" />, and list any exceptions
using <xsl:preserve-space>.

Whitespace is only stripped from the source document when an entire text node consists of whitespace
(that is, of the four characters space, tab, carriage return, and line feed). Whitespace that is adjacent to
"real" text is never removed. So if you have a source file like this:

<president>
<name>
Bill Clinton
</name>
<address>
The White House Washington DC
</address>

</president>

The newline characters immediately before the <name> element, between the <name> and <address>
elements, and after the <address> element will be eligible for removal by whitespace stripping. But the
newline characters immediately before "Bill", immediately after "Clinton", and at the start and end of
the address, will always be retained because they form part of text nodes that are not whitespace-only. If
you want to remove these newline characters, you will have to do it during the course of the
transformation, using the normalize-space() function.

Note for Microsoft users: when you invoke XSLT transformations using the MSXML3
processor, the normal procedure is first to construct a DOM representation of the
input document using the Document.Load() method, and then to transform the
DOM using the transformNode() method. By default, when you create the DOM, it
is created without whitespace nodes. This process is carried out without regard to
anything the stylesheet says about whitespace. If you want to preserve whitespace, set
the preserveWhitespace property of the Document object to true.

<xsl:template>
We've already seen the <xsl:template> element in action earlier in the chapter. Just to recap
(because it is about the most important element in XSLT), the <xsl:template> element can have
either a name attribute (to allow it to be called using <xsl:call-template>, or a match attribute
(to allow it to be called using <xsl:apply-templates>, or both (in which case it can be called either
way). In addition, it may have a mode attribute and a priority attribute.

It's an error to have two templates in the stylesheet with the same name and the same import
precedence.

Chapter 8

336

<xsl:variable>
We've seen <xsl:variable> used within a template body to define a local variable; it can also be
used as a top-level element to define a global variable. A global variable can be referenced from
anywhere in the stylesheet: unlike local variables, there is no ban on forward references. Global
variables can even refer to each other, so long as the definitions aren't circular.

Apart from this, global variable definitions look the same as local variables. They are always evaluated
with the root node of the source document as the context node, and with the context position and size
both set to 1.

It's an error to have two global variables with the same name and import precedence. If you have two
with the same name and different precedence, the one with higher precedence (that is, the one in the
importing stylesheet, or the one that was imported last) always wins.

Some Working Examples
This brings us to the end of the technical specifications in this chapter. To get a reasonably complete
description of XSLT and XPath into limited space, we've included a lot of definitions and relatively few
examples. So to compensate, here are a couple of examples of complete and (almost) realistic
stylesheets.

Example: Displaying Soccer Results
We'll use an XML data file containing results of soccer fixtures, such as might be held in a database for
a World Cup web site, and we'll show two stylesheets that format this data in different ways.

Source
The source file is soccer.xml. If you're interested, it contains the results of the matches played in
Group A of the 1998 World Cup:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="soccer1.xsl" ?>

<results group="A">
<match>

<date>1998-06-10</date>
<team score="2">Brazil</team>
<team score="1">Scotland</team>

</match>
<match>

<date>1998-06-16</date>
<team score="3">Brazil</team>
<team score="0">Morocco</team>

</match>
<match>

<date>1998-06-23</date>
<team score="1">Brazil</team>
<team score="2">Norway</team>

</match>

XSLT and XPath

337

<match>
<date>1998-06-10</date>
<team score="2">Morocco</team>
<team score="2">Norway</team>

</match>
<match>

<date>1998-06-16</date>
<team score="1">Scotland</team>
<team score="1">Norway</team>

</match>
<match>

<date>1998-06-23</date>
<team score="0">Scotland</team>
<team score="3">Morocco</team>

</match>
</results>

The First Stylesheet
The first stylesheet, soccer1.xsl, displays the results of the matches in a straightforward way.

First we'll give the standard stylesheet heading, and define a variable to hold the table heading that we'll
use to display each result:

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:variable name="table-heading">
<tr>

<td>Date</td>
<td>Home Team</td>
<td>Away Team</td>
<td>Result</td>

</tr>
</xsl:variable>

Now we'll define a named template to format dates. This takes an ISO-8601 date as a parameter (for
example "2000-10-11") and formats it for display as "11 Oct 2000". This involves some simple use of the
XPath string functions.

<xsl:template name="format-date">
<xsl:param name="iso-date"/>
<xsl:variable name="months"

select="'JanFebMarAprMayJunJulAugSepOctNovDec'" />
<xsl:value-of select="substring($iso-date, 9, 2)" />
<xsl:text> </xsl:text>
<xsl:variable name="month" select="substring($iso-date, 6, 2)" />
<xsl:value-of select="substring($months, ($month - 1)*3 + 1, 3)" />
<xsl:text> </xsl:text>
<xsl:value-of select="substring($iso-date, 1, 4)" />

</xsl:template>

For the main part of the processing, we define a template rule for the root node, which calls
<xsl:apply-templates> to process all the <match> elements, sorting them by date, and within the
same date, by the name of the first team listed.

Chapter 8

338

<xsl:template match="/">
<html><body>

<h1>Matches in Group <xsl:value-of select="/*/@group"/></h1>
<xsl:apply-templates select="/results/match">

<xsl:sort select="date" />
<xsl:sort select="team[1]" />

</xsl:apply-templates>
</body></html>
</xsl:template>

Finally, we need to cover the logic to display details of a single soccer match. This first calls the named
template to format the date into a variable; then it constructs an HTML table, copying data into the
table either from the source documents or from variables, as required. (The match="match" attribute
may be confusing; it's a pure coincidence that one of the elements in our source document has the same
name as an XSLT-defined attribute).

<xsl:template match="match">
<xsl:variable name="date-out">

<xsl:call-template name="format-date">
<xsl:with-param name="iso-date" select="date" />

</xsl:call-template>
</xsl:variable>

<h2><xsl:value-of select="concat(team[1], ' versus ', team[2])"/></h2>

<table bgcolor="#cccccc" border="1" cellpadding="5">
<xsl:copy-of select="$table-heading"/>
<tr>

<td><xsl:value-of select="$date-out"/></td>
<td><xsl:value-of select="team[1]"/></td>
<td><xsl:value-of select="team[2]"/></td>
<td><xsl:value-of select="concat(team[1]/@score, '-',

team[2]/@score)"/></td>
</tr>

</table>

</xsl:template>
</xsl:stylesheet>

Running the Example

You can run this example using a processor such as Instant Saxon, as with the previous example, but
the simplest way to do it is directly in the browser.

Assuming you are using Internet Explorer 5 or 5.5, you can download and install MSXML3 from the
Microsoft web site at http://msdn.microsoft.com/xml. Be sure to download and run the utility
xmlinst.exe which makes MSXML3 the default parser on your system. Don't try to run this example
with the old MSXML parser that came with IE5 or IE5.5: it won't work.

Once you have installed this software, just double-click on the file soccer.xml from Windows
Explorer: it's as simple as that. This loads the XML file into Internet Explorer, and because it starts with
an <?xml-stylesheet?> processing instruction, it invokes this stylesheet to convert the document to
HTML for display.

XSLT and XPath

339

Output

Here's what the output of the first stylesheet looks like in the browser (and yes, I do know that all the
matches were actually played in France):

Stylesheet 2
Now let's write another stylesheet to display the same data in a completely different way. One of the
motivations behind XSLT, after all, was to make information reusable by separating the information
from the logic for displaying it.

This stylesheet, soccer2.xsl, does some calculation to create a league table. We'll start it with
<xsl:transform> this time, just to show that this works too, and we'll start by creating two global
variables, one for the set of all teams, and the other for the set of all matches. If we select all the <team>
elements in the document, we'll get duplicates: to eliminate these, we have to select only those <team>
elements that are not the same as a previous team.

<xsl:transform
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

<xsl:variable name="teams" select="//team[not(.=preceding::team)]" />
<xsl:variable name="matches" select="//match" />

The actual logic of the stylesheet will go in a single template rule, which we'll set up to be triggered
when the <results> element is processed. This starts by outputting a standard header:

Chapter 8

340

<xsl:template match="results">
<html><body>

<h1>Results of Group <xsl:value-of select="@group"/></h1>
<table cellpadding="5">

<tr>
<td>Team</td>
<td>Played</td>
<td>Won</td>
<td>Drawn</td>
<td>Lost</td>
<td>For</td>
<td>Against</td>

</tr>

Now the template processes each team in turn. We're only interested in getting totals for the number of
matches won and lost and the number of goals scored, so it doesn't matter what order we process them
in.

We'll start, for convenience, by setting up a variable called this to refer to the current team.

<xsl:for-each select="$teams">
<xsl:variable name="this" select="." />

The number of matches played is easy to work out: it's the number of nodes in the $matches node-set
that have a team equal to this team:

<xsl:variable name="played"
select="count($matches[team=$this])"/>

The number of matches won is a bit more difficult. It's the number of matches for which the score of
this team is greater than the score of the other team, which we can write as:

<xsl:variable name="won"
select="count($matches[team[.=$this]/@score >
team[.!=$this]/@score])"/>

The number of matches lost and drawn follows the same logic, just changing the test from greater-than
to less-than in the first case, and equals in the second:

<xsl:variable name="lost"
select="count($matches[team[.=$this]/@score <
team[.!=$this]/@score])"/>

<xsl:variable name="drawn"
select="count($matches[team[.=$this]/@score =
team[.!=$this]/@score])"/>

The number of goals scored by this team can be obtained using the sum() function, applied to the
node-set consisting of all scores for this team in any match:

<xsl:variable name="for"
select="sum($matches/team[.=$this]/@score)"/>

XSLT and XPath

341

And the simplest way of finding the number of goals scored against this team is to total the scores of all
teams in matches that this team participated in, and then subtract the previous total:

<xsl:variable name="against"
select="sum($matches[team=$this]/team/@score) - $for" />

Having done the calculations, we can output the results:

<tr>
<td><xsl:value-of select="."/></td>
<td><xsl:value-of select="$played"/></td>
<td><xsl:value-of select="$won"/></td>
<td><xsl:value-of select="$drawn"/></td>
<td><xsl:value-of select="$lost"/></td>
<td><xsl:value-of select="$for"/></td>
<td><xsl:value-of select="$against"/></td>

</tr>
</xsl:for-each>
</table>
</body></html>
</xsl:template>

</xsl:transform>

Running the Example

You can run this stylesheet the same way as the previous one. Edit the <?xml-stylesheet?>
processing instruction in soccer.xml to refer to soccer2.xsl instead of soccer1.xsl, and load
soccer.xml into the browser again. (Or just click Refresh if IE5 is still open).

Of course, this isn't the way you would actually do things in practice. The <?xml-stylesheet?>
approach, which defines a default stylesheet for a particular XML document, only really works where
you always process an XML document using the same stylesheet. If you want to select different
stylesheets on different occasions, you'll have to create an HTML page that loads the source document
and stylesheet explicitly. We'll explain how to do that next.

Output

This is what the result looks like in the browser:

Chapter 8

342

Selecting a Stylesheet Dynamically
You can do XSLT transformations either on the server or in the browser: in fact, you might be using
XSLT as part of a batch application that is nothing to do with the Web at all. Therefore, the way in
which you invoke the transformation will vary depending on the circumstances, as well as on your
choice of XSLT processor.

However, converting XML to HTML in the browser is perhaps one of the most striking ways of using
XSLT, so we'll concentrate on that in our next example. Here we will include some simple logic on an
HTML page to invoke a transformation based on the user's selection.

The HTML page soccer.html reads like this:

<html>
<head>

<title>Results of Group A</title>
<script>

var source = null;
var style = null;
var transformer = null;

function init()
{

source = new ActiveXObject("MSXML2.FreeThreadedDOMDocument");
source.async = false;
source.load('soccer.xml');

}

function apply(stylesheet)
{

style = new ActiveXObject("MSXML2.FreeThreadedDOMDocument");
style.async = false;
style.load(stylesheet);

transformer = new ActiveXObject("MSXML2.XSLTemplate");
transformer.stylesheet = style.documentElement;

var xslproc = transformer.createProcessor();
xslproc.input = source;
xslproc.transform();
displayarea.innerHTML = xslproc.output;

}
</script>
<script for="window" event="onload">

init();
</script>

</head>
<body>

<button onclick="apply('soccer1.xsl')">Results</button>
<button onclick="apply('soccer2.xsl')">League table</button>
<div id="displayarea"></div>

</body>
</html>

XSLT and XPath

343

What this does is to display two buttons on the screen, as shown below:

When you click on Results, the XML file is shown using stylesheet soccer1.xsl; when you click on
League table, it is shown using soccer2.xsl.

For more details about the APIs used in this example, see the Microsoft product documentation, or the
Wrox book XSLT Programmers Reference (ISBN1861003129).

XSLT and Databases
This is a chapter about XSLT and XPath, in a book about using XML with databases. Therefore, it
might seem odd that we've said very little about databases in this chapter. However, there's a good
reason for that; there's very little direct connection. Typically, your application gets XML out of the
database, and then puts that XML through an XSLT stylesheet for display. The application ties the
database and the stylesheet together, and neither the database nor the stylesheet knows about each
other.

Therefore, at the coding level, there's a clean separation of concerns. At the design level, however, you
have plenty of choices:

❑ How much work should you do in the SQL logic to select exactly the data that's needed, and
how much should you do in the stylesheet?

❑ Should you grab a large amount of data from the database in one go, or keep going back for
more if the user asks for it?

❑ Should you do the XSLT processing on the client or the server?

Chapter 8

344

There is no single right answer to these questions. Be aware that you have choices, and don't
automatically assume that the first solution that comes into your head is the best one. Some points to
bear in mind are:

❑ Transforming a large data file (anything over a megabyte) can be very expensive. Use the
SQL logic to restrict the amount of data you need to process.

❑ XSLT works well when the structure of the data is explicit, for example when sets of related
items are grouped within an element rather than being implicit through common values. Use
the SQL and application logic to generate an XML document in which the structure is as
explicit as possible.

❑ Remember that by processing data in the browser, you can take a lot of the processing load off
the server. In fact, you can sometimes dramatically reduce the number of visits the user makes
to the server by allowing them to navigate within a data set locally. However, be prepared to
explain the fall in your web site's hit rate to your management!

Summary
In this chapter, we've looked at the role of XSLT as a transformation language for XML documents, and
the role that XPath queries play within an XSLT stylesheet. We've given a lightning tour of XPath
syntax, noting in particular the important role played by location paths as the way of navigating around
the hierarchic structure of the source document.

Then we looked at how an XSLT stylesheet uses template rules and match patterns to define how each
part of the source document should be processed. We looked at all the different instructions you can use
inside a template body, and then came back to review the top-level elements you can use in a stylesheet
to control processing options.

Then we relaxed to watch some soccer; and finally we looked briefly at how XSLT technology and SQL
databases can work together.

XSLT and XPath

345

Chapter 8

346

Relational References with XLink

The XML Linking Language (XLink) is a specification, which according to the W3C "allows elements to
be inserted into XML documents in order to create and describe links between resources". Xlink
provides six element types that can be used to create and describe characteristics of links. Only two
element types create XLink links:

❑ There are simple XLinks, which reproduce the functionality of HTML links

❑ Also extended elements, which are far more powerful links, although their syntax is more
complex

These two types of XLink links may take several attributes or child XLink elements to further describe
the behavior and characteristics of the links. Before we proceed any further, there are a few things that
you should be aware of that illustrate the power of XLink:

❑ You can use your own element names as links; you are not limited to using one tag like the
<a> tag in HTML, so any element can become a linking element.

❑ With extended links, your linking element does not have to reside in the document you are
linking from; imagine being able to add a link to a document that you do not own, or to link
from a read-only or non-XML resource.

❑ Extended links allow you to provide LinkBases, which provide a convenient database of
extended links that can be related to any other resource. It will be possible for example, to
store all of your favorite links to articles on XML in a linkbase, and in any document
reference all of those links with an extended link reference. You could then update or change
the links in all documents at once by updating the linkbase.

❑ XLinks can be used to describe relationships between several documents (rather like keys
used in a relational database).

Chapter 9

348

Shortly, we will look at the simple XLink syntax, gaining an understanding of the XLink namespace,
some common link attributes, and the difference between local and remote resources. We will then
spend the rest of the chapter understanding how to use the power of the Extended link. It is the
Extended link that allows us to create relationships outside the scope of anything possible with HTML
anchors, or other unidirectional links. We will see that with the multi-directional extended link it is
possible to create relational links that can associate different data sets.

One of the difficulties in looking at XLink is that the standard had not been completed at the time of
writing, which means that there are few implementations of XLink in programs to illustrate the
concepts. It is, nevertheless, well worth learning about because XLink will be used in the very near
future and the possibilities of this language are too rich to be ignored. Also, if you are reading this book,
you are trying to use XML with databases, and XLink provides a way for us to describe database style
relationships in an XML context. As an encore, XLink also provides a way to describe these
relationships between non-XML resources! As we will see in the next chapter, it can also work with
XPointer to allow you to create links between parts of a document.

The XLink specification as it stands today is in what the W3C calls a Candidate
Recommendation. This is considered to be a stable recommendation stage with 2
stages left before it is a Full Recommendation. This is significant because most
software developers are hesitant to write to a specification before it is stable, and most
will not consider serious efforts until a full recommendation has been made. Check out
the intro page to the specification at www.w3.org/XML/Linking for an updated list of
applications that implement the standard.

In this chapter we will look at:

❑ Understanding the XLink specification as it is today

❑ How simple XLinks allow us to reproduce the linking capabilities of HTML on any element

❑ How extended XLinks allow us to offer far more complex relationships and links between
resources

❑ Introduce the use of extended links for defining relationships that map to relational databases

The current W3C XLink work can be found at http://www.w3.org/TR/2000/CR-xlink-20000703/.

In the next chapter, we will look at other technologies that expand upon XLink including XPointer,
and XInclude.

Resource Linking
The idea of linking resources in a document is a rather well covered topic. The primary virtue of the
Web is the ability to get from one resource to another via hyperlinks. As you will be aware, hyperlinks
are defined in an HTML document with the anchor tag <a>. When this is given an href resource
attribute with a URI value, it becomes a link.

DISPLAYED TEXT

Relational References with XLink

349

This is good, and has provided many an 18 year old with a way to skip college and make millions of
dollars. However, let's say you have the following tables in an order fulfillment database (as described in
Chapter 3):

Invoice
InvoiceKey

187

188

Item
ItemKey

13

14

InvoiceItem

InvoiceKey ItemKey

187 13

188 13

187 14

The Invoice and Item keys being the primary keys for their respective tables, and the InvoiceItem
table exercising foreign keys to each key shown, such that InvoiceItem allows us to find each invoice
containing each of the various items.

If we only had HTML anchor tags to work with, could we describe the relationship of these resources
(the data in each table) to one another? In practical terms, could we display links to the order details of
each order? No, at best, we are able to point from the current document to one of the resources in order
to show that item, but no relationship is defined. Therefore, in current practice, we can only have a
"show order detail" link that sends data to a server application that retrieves the desired output. As we
progress with this chapter, we'll see how XLink can be used to describe relationships like those in a
relational database. But for the moment, let's just look at how XLink implements simple links.

Simple XLink Elements
A simple XLink element is like the HTML anchor in that it describes a unidirectional link relationship;
we can add a linking element to our documents that will point to another resource.

Outbound Link

Local

Beginning Resource A
Traversal Path

Remote

Ending Resource B

Linking Element

Chapter 9

350

In this diagram we have:

❑ The Local resource – The child of a linking element, or the actual linking element itself. In a
unidirectional HTML anchor, the local resource is the anchor tag (or the visible text which
provides a link to the user).

❑ The Remote resource – The document, or document portion that is addressed by the linking
element. Any resource that is the target of a URI reference is considered remote. Again in
HTML, the bookmark style reference which points to a named anchor elsewhere in the same
document is still said to be pointing to a remote resource.

❑ A Traversal Path between the local and remote resources, which simply means you can get
from resource A to resource B by following the defined link.

With simple links, you can only link from a local resource to a remote resource, and the link can be
followed from the point it has been added into the document. This local to remote behavior is known as
an outbound link.

In order to get a feel for this, if we wanted to express the HTML link example from above in XLink
syntax, we would write it like this:

<myLink
xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:type="simple"
xlink:href="http://www.mydomain.com/resource.html">
DISPLAYED TEXT

</myLink>

Using this syntax, our XLink application would exhibit the same behavior as the HTML anchor.
Though the simple XLink cannot really accomplish what we want to do with database relationships, we
can still use it as a way to introduce some common XLink concepts we'll develop more fully with
extended links later in the chapter.

The first thing to be aware of is the need for the required namespace declaration:

xmlns:xlink="http://www.w3.org/1999/xlink"

This is the proper namespace to use for the XLink specification. Namespaces are used to declare to a
parser or application which XML vocabulary or specification a particular element or attribute is
implementing.

The first XLink attribute used is type:

xlink:type="simple"

As we said earlier there are simple links and extended links, and because we are looking at simple links
we will give it the value of simple.

The type attribute from the XLink namespace has a very special meaning in XLink, in that it defines
what an element's role in creating and describing a link will be. The type attribute is a required
attribute in all XLink elements. This typing of all elements is what denotes them as belonging to an
XLink link. Each element in an XML document that is XLink typed will be evaluated against the W3
recommendation by an XLink application.

Relational References with XLink

351

The locator attribute href is used in exactly the same manner as in HTML, where it includes as its
value a URI for some resource:

xlink:href="http://my.domain/resouce.html"

In XLink, the href attribute is not required for a simple link. A simple link without an href attribute is
acting as a resource only, which may contain properties about the document in which it resides.
Consider again the anchor tag in HTML that also has an optional href attribute. The <a> tag using an
attribute of name provides a destination within a document, but does not itself provide an outbound
link. A simple link with no href is simply non traversable, but may still contain any of the following
attributes to provide properties for the local resource:

role
The role attribute is an optional URI reference that describes how the link relates to the remote resource.
For example, a link referring to a list of authors may contain the role attribute

xlink:role="http://my.domain/linkproperties/authors"

The resource identified by the URI will contain information describing the author list as it relates to the
document in which the link is defined. How an XLink application will use such information is yet to be seen,
but the intended use is to allow for greater detail about a resource than would be displayed via the content of
the link, or the title attribute. This attribute would be used by an application, rather than by the user. The
reference could be used as a categorical identifier, to let an application know a particular link is, for instance,
about authors rather than titles. One such use may be for an application to categorize links in a search of
resources. Another use would be to display links of different types according to rules defined in the role
resource. The W3C recommendation does not specify the nature of the contents to be found in the specified
role-describing resource.

arcrole
Arcs are used in XLink link structures to determine traversal rules, such as whether a link traverses from
resource A to resource B, or vice-versa. However, a simple link does not actually allow for the specification of
an arc, as it is explicitly a one to one outbound link. Yet, because the simple link does have an implied arc, the
arcrole attribute is carried over. The definition and use is the same as that of the role attribute, but
presumably would apply to the nature of the traversal, rather than the resources involved. The W3C
recommendation does not specify the nature of the contents to be found in the specified role-describing
resource.

title
A single title attribute may be optionally defined to provide a human readable description of the link
on which it is given. A title attribute would be defined as follows

xlink:title="Go To Another Resource"

Such a title could either be used to display an available link if the linking element had no content, or to
provide information to a user when they initiated traversal of the given link.

show
This is an optional behavioral attribute which must take new, replace, embed, other, or none as its
value in order to describe for the XLink application how the link will be traversed by the user. If no
value is specified, no XLink specified default it given.

❑ Use new to open a new display window with the contents of the remote resource. This is
similar to the behavior of an HTML link with an unrecognizable, or "_blank" target
attribute value.

Chapter 9

352

❑ Use replace to replace the contents of the current resource in the display window. This is
similar to the default linking behavior of web browsers.

❑ Use embed to put the remote resource into the current resource at the location of the linking
element. This could be used to place non-XML content into a document, such as an image, or
an application.

❑ Use other for user or application defined behaviors. In this case, the XLink application
would look for other related markup in the link definition to provide the behavior of this link.

� Use none as a placeholder that may tell the application to behave differently than if the
attribute is simply empty. For instance, none may be used to override a default behavior
when you don't want the link to be traversable, and yet the href attribute is available for
other reasons. Perhaps locator references in the document will be read by another
application, but the user interface should not provide a way to use the links. However, no
behavior is explicitly defined for this attribute value, so an individual application may
handle it differently.

actuate
This optional behavioral attribute describes when the link should be traversed, and must take either
onLoad, onRequest, other, or none as its value. If no value is supplied, no XLink specified default is
given.

❑ onLoad would actuate the show link behavior as the page is loaded, effectively working as a
redirect with xlink:show="replace" or as an include with xlink:show="embed".

❑ onRequest would actuate the link on the users' action; acting as a standard hyperlink with
new or replace, or a dynamic text area (or other yet unknown possibility) with embed.

❑ Again, other would provide a way to offer customizable actuation behaviors.

❑ Override an application default, by explicitly declaring there is no way to actuate the link.

We will see most of these again when we discuss the extended element.

Simplify the Simple Link with a DTD
Compared to the HTML <A> tag, the simple links we have just seen may seem incredibly complicated,
but we can make our lives much easier. Because we are dealing with XML, we can make use of a DTD
to generically describe the recurring attributes. Consider the following DTD fragment we could use with
simple links:

<!ELEMENT myLink ANY>
<!ATTLIST myLink

xmlns:xlink CDATA #FIXED "http://www.w3.org/1999/xlink"
xlink:type (simple) #FIXED "simple"
xlink:href CDATA #IMPLIED
xlink:role NMTOKEN #FIXED "http://www.mydomain.com/simplelink.html"
xlink:arcrole CDATA #IMPLIED
xlink:title CDATA #IMPLIED
xlink:show (new

|replace
|embed
|other

Relational References with XLink

353

|none) #FIXED "replace"
xlink:actuate (onLoad

|onRequest
|other
|none) #FIXED "onRequest">

If our earlier document was validated with a DTD containing this definition for the element myLink we
could then write our simple element:

<myLink xlink:href="http://www.mydomain.com/resource.html">DISPLAY TEXT</myLink>

We are using the DTD to supply default, or fixed values for commonly recurring attributes. This means
we don't have to write them in every time, and could write all of our links in a document using the
<myLink> element the same way you would use <a> in an HTML document.

Only browsers that offer some level of XLink conformance will be able to even display
the examples shown here. At the time of this writing, Microsoft Explorer 5.5 and
Netscape Communicator 4.6 cannot load an XML document with XLink namespaces
defined; Netscape 6 beta 2 can load the document but cannot display the link.

We then have something more familiar to our HTML experience. Again, keep this lesson in mind as it
also applies to extended links.

It is helpful to understand that with XLink we are not constrained by the names of elements as we
are in HTML. The whole idea that we can define and extend links on our own, with a flexible
format, is one of the goals of the XLink editors. We have seen that we can name an element
<myLink>, and then by assigning a namespace to the element along with a few prescribed
attributes, give it linking behaviors. In so doing we are not necessarily confining our <myLink>
element to be a linking element only. Any other content or attributes of the link element will merely
be ignored by the XLink application while retaining their meaning for other parsers or applications.

Extended XLink Elements
When I introduced the idea of linking with an HTML anchor tag, I asked if we could define any
relationships between the data with our links. The answer was no, and the same is true of the simple
XLink element. But we wouldn't have much to say in this chapter if it couldn't be done, so without
further ado, here are extended links.

The last look at resources A and B showed A as the resource that contained a link, and was by definition
local. It pointed in a uni-directional way to a single remote resource, B. With extended links, the
resources that participate in the link may be expanded both in number (a link can point to several
resources) and in traversal behavior (the links can indicate two-way traversal without expressly pointing
this out in all resources – remember I said earlier that it was possible to provide an inbound link from a
resource you do not own and/or is read-only on your local server).

Chapter 9

354

In contrast to the simple link, the extended link provides for the linking direction to be set with the
arc-type element in conjunction with any number of resource and locator type elements. Whereas the simple
link is one element with several attributes, the extended link is a parent element with several child attributes
and elements.

Let's start off with an example where we want to create links between our homes and local shops that
describe a relationship. We will see in this example that we define remote resources with the locator
element, and local resources with the resource-type element. These resources are then given their
link direction, or traversal rules, by the arc element. This may look quite complicated at first, but it
will become clear shortly:

<ROUTE xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:type="extended"
xlink:title="A sample extended link">
<HOME xlink:type="resource"

xlink:href="home.xml"
xlink:label="myhouse"
xlink:title="Directions to my house" />

<STORE xlink:type="locator"
xlink:href="store.xml"
xlink:label="thestore" />

<GETMILK xlink:type="arc"
xlink:from="thestore"
xlink:to="myhouse" />

</ROUTE>

You might be surprised that it takes so much code to write one link, but it is quite powerful compared
with HTML linking.

Here ROUTE is the extended linking element. There are three child elements of the linking element:
HOME, STORE and GETMILK:

❑ HOME represents details of directions to our house, stored in the home.xml file, and is the
local resource defined in a resource-type element

❑ STORE represents a store that we want to get milk from, and is the remote resource defined in
a locator-type element

❑ GETMILK, the arc-type element, defines a relationship from the STORE to our HOME, so
that the store can know how to deliver the milk we want from the store. If you look at the to
and from attributes on this element you might be able to see that we will be creating a link
from the STORE to our HOME.

Let's look at the syntax again. We have defined ROUTE as an extended-type linking element (using the
type attribute with the value of extended).

<ROUTE xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:type="extended"
xlink:title="A sample extended link">

If you were looking closely, you may have noticed that the child elements have different values for their
type attributes, and that these child elements inherit the namespace of the ROUTE element, so we do
not need to declare it again.

Relational References with XLink

355

Here we can see how extended XLinks use both elements and attributes to describe the
intended relationship between the data; here, their child elements within the link
element and their attributes on these child elements.

The child elements of the extended linking element (which remember is ROUTE) have different values
for their type attributes:

❑ The value of the HOME element's type attribute is resource

❑ The value of the STORE element's type attribute is locator

❑ And we have declared a traversal behavior for our resources in GETMILK, by defining the
value of type as arc

The arc is the key here, as it is describing a link from the HOME to the STORE. Arcs tell the application
what should be done with each of the locator and resource-type elements found in the extended
link. In the simple link, the arc is implied, but some of its attributes were present. In an extended link,
it is inside the arc that you will not only set the direction, but also declare the show and actuate
behaviors as well. The arc uses the labels that have been defined on each participating resource.

<STORE xlink:type="locator"
xlink:href="store.xml"
xlink:label="thestore" />

The label attribute is optional for the locator and resource elements, but must be provided if the
element is going to participate in a link.

<GETMILK xlink:type="arc"
xlink:from="thestore"
xlink:to="myhouse"/>

We'll see later that labels can be reused on several resources in order to define several linking structures
with one arc.

If we go to a diagram of resources A and B again, we will see that we have created an inbound link
because we have defined our local resource, "myhouse" as the ending resource from "thestore", our
remote starting resource. It is the addition of the traversal element GETMILK, of type arc, which makes
this possible.

Inbound Link

Local

Ending Resource A
myhouse

Traversal Path

Remote

Beginning Resource B
thestore

Linking Element

This is a neat trick if you think about it, because we don't need to own the thestore resource in order
to suggest that it links to myhouse – meaning that the store could own the store.xml file, but we can
still link from it.

Chapter 9

356

If an XLink aware application were to parse an XML document with our example link, it would pre-
load the remote resource upon recognition of the locator element in the extended link element on our
local resource. So, prior to displaying anything, the store.xml resource is read into memory and a
temporary file is created. Such a file may be created on the fly by a browser, or cached in a database
before being made available; the actual implementation would depend on the application. Either way,
you end up with a copy of the remote resource that now belongs to your application, and may have new
information written to it.

If the application were written to create links to the local resource at the end of the page under the
heading "Helpful Resources", you would get:

The remote resource, store.xml contained a simple sentence about the store. Our local resource
provides directions to our house, and the store document has now been enhanced with the ability to
provide those directions. Because the arc can be set with the show and actuate behavioral attributes,
the directions to my house could be embedded in the document instead of just having a link to the
home.xml document.

The linking element is still maintained in our document, but now is not implicitly set to be only a one
way traversal. If you look at the structure of the extended link, and realize that there is no limit to the
resource, locator, and arc elements you can define, you start to see the power of this linking
structure.

I imagine you may still have some confusion at this point, but I wanted to whet your appetite a bit
before getting into details. Now, let's hit some detail and apply it to what you have read already.

The Elements of Extended Style Links
As I noted above, the extended element is made up of the attributes the element contains, along with
the child elements that appear within it. Each element then has elements that define its own role within
the extended link, and its particular behavior. I think we will benefit from first looking at a diagram and
then explaining it.

Relational References with XLink

357

Extended-Type Element

Semantic Attributes
Role
Title

Child Elements

Locator-Type Element

Semantic Attributes

Role
Title

Locator Attribute

HREF

Traversal Attribute

label

Title

Semantic Attributes

Arcrole
Title

Behavior Attributes Traversal Attributes

To
From

Title

Arc-Type Element

Show
Actuate

Role
Title

Traversal Attribute

label

Title

Resource-Type Element

Semantic Attributes

Title-Type Element

Optional Language
Identifier

xml:lang

The entire box represents the extended linking element, with its child elements. As we saw in the last
example, the child elements can take different values for the type attribute than the parent linking
element. Each internal box represents one of the values for the type attribute that may appear within it:

❑ locator

❑ arc

❑ resource

❑ title

We shall look at each of these in turn shortly. Within each box, the available attributes are listed in a
column that corresponds with its attribute type.

Chapter 9

358

The type attribute is required on each child element, and describes the type of element. We have put
the other attributes in the following classifications:

Classification Meaning

Semantic Describes the meaning of resource in the context of the link (role, arcrole,
and title)

Traversal These are used to write traversal rules (label, to, and from)

Behavior Describe what happens upon traversal of an arc (show and actuate)

Locator The familiar href attribute you recognize from HTML that takes a URI as its
value

Title can be both an attribute and an element, and both may be contained within an
XLink extended element and each of its children. This is a confusing point and the
W3C recommendation doesn't really help to clarify what applications should do when
they encounter different title values. One possible use for title elements would be to
declare several types of titles for one extended link, ideally one per language.

The title element has an additional attribute, xml:lang. The W3C recommendation states that this
may be included to identify the current language choice in an application. The implementation of this
addition to the title element will be entirely up to the writer of an XLink application.

So, let's take a look at each of the types of element:

The arc-type Element
The element with a value of arc for the type attribute describes the linking behavior in an extended
link. In our last example, the arc defined where the link was between:

<GETMILK xlink:type="arc"
xlink:from="thestore"
xlink:to="myhouse" />

As we have just seen, an element whose type attribute has a value of arc can take the following
attributes:

Semantic attributes:

❑ arcrole

❑ title

Behavior attributes:

❑ show
❑ actuate

Traversal attributes:

❑ to

❑ from

Relational References with XLink

359

We discussed the title and the behavioral attributes when we talked about simple links. The new ones
are arcrole (which we come back to later) and the traversal attributes.

The to and from attributes are used within the arc itself to show directionality. As a value, these
attributes take the value of the label attribute of the resource or element type elements. In our last
example, we defined the resource that represented our home with a label of myhouse:

<HOME xlink:type="resource"
xlink:href="home.xml"
xlink:label="myhouse"/>

Now, let's modify our earlier extended link so that we have to go to two different stores on our ROUTE:
the GROCERY store and another resource called BOOKSTORE. Because arcs are describing generic
behavior, if you use the same label on different resources, the arc will define a relationship between
all the elements with the same label. If we make the label for both stores a generic "store" we can see
how the arc is extended. The changes have been highlighted here:

<ROUTE xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:type="extended"
xlink:title="A sample extended link">
<HOME xlink:type="resource"

xlink:label="myhouse" address="123 Main St.">
I live in my home

</HOME>
<GROCERY xlink:type="locator"

xlink:href="food.xml"
xlink:label="store"/>

<BOOKSTORE xlink:type="locator"
xlink:href="books.xml"
xlink:label="store"/>

<GETSTUFF xlink:type="arc"
xlink:from="store"
xlink:to="myhouse"/>

</ROUTE>

The traversal of links now defined allows both the bookstore and the grocery store to be linked into
"myhouse". We can see this in the following diagram:

Home
xlink:label="myhouse"

Bookstore
xlink:label="store"

Grocery
xlink:label="store"

When we define an arc with the to and from attributes, this creates a traversal rule. Each traversal rule
will explicitly set the behavior for a set of resources. Thus, it is significant to note that each arc element
within an extended link must define a unique traversal rule. This makes sense, because once it is
possible to traverse a certain direction from one resource to another, there is no need to define that
traversal path again.

Chapter 9

360

If you need to set a rule that you can get from resource A to resource B, then you can
only set that rule once.

Remember though that directionality is explicit, so that if we switch the to and the from attribute
values:

<RETURNSTUFF
...

xlink:from="myhouse"
xlink"to="store" />

we have a different unique traversal rule, even though the same resources are in play.

If we need to set a rule that you can go from Resource B to Resource A, this is
different from before, and we would require a new rule.

Home
xlink:label="myhouse"

Bookstore
xlink:label="store"

Grocery
xlink:label="store"

However, if the from or to attributes are absent from the arc element, then all resources in the
extended link are assumed to be in play. In other words:

<STUFF xlink:type="arc">

This would be a legitimate arc for our example above that would accomplish the same thing as the
<GETSTUFF/> and <RETURNSTUFF/> arc elements, along with providing a traversal between the store
elements themselves.

Home
xlink:label="myhouse"

Bookstore
xlink:label="store"

Grocery
xlink:label="store"

Relational References with XLink

361

It would be illegal according to the XLink rules to define <STUFF/> in the same extended link as the
other two, because <STUFF/> makes the other two repetitive.

If we have defined rules for getting from Resource A to Resource B, and for getting
from Resource B to Resource A, we cannot also define a rule which allows us to move
in both directions.

The resource-type Element
The resource-type element is used for local resources in the extended link.

Note here that there is a distinction between local and remote resources. Remembering back to the last
example, the type of our HOME element was resource, while the stores' type was locator.

<ROUTE xmlns:xlink="http://www.w3.org/1999/xlink"
...

<HOME xlink:type="resource" ...></HOME>
<GROCERY xlink:type="locator" .../>

...
</ROUTE>

HOME represented a local resource, while the stores represented remote resources.

In the resource element the link itself, along with any content of the link, is considered to be a local
resource. It takes the following attributes:

Semantic:

❑ role

❑ title

Traversal:

❑ label

The local resource can be both a starting resource, and an ending resource in the same extended link. I
hinted before at the possibilities for inbound links, and their magic starts here. If we put some
meaningful content into our resource element:

<HOME xlink:type="resource"
xlink:label="myhouse" address="123 Main St.">
Go west on 5th until you come to Main St. Go east on Main St. to 123.
I live on the 5th floor.

</HOME>

We can give our arc some behavior:

<GETSTUFF xlink:type="arc"
xlink:from="store"
xlink:to="myhouse"
xlink:show="embed"
xlink:actuate="onRequest" />

Chapter 9

362

We have now done something neat. We have told our XLink application to display the directions to my
house embedded in the current document when a person viewing a store resource clicks on the route.

Consider an application that is set to load an XML document called orders.xml. The orders
document contains a route element for every location contained in a database of customers.
Furthermore, the route elements have been written with the same arcs, to reference the order
information documents for each type of store. If a user were to request the orders.xml document, our
application would load each store resource document into a temporary file either on disk, or in
memory. This would be based on the XLink aware application recognizing that food.xml and
books.xml are remote resources as defined by the locator-type elements.

After each remote file has been loaded, its contents could be scanned for placeholders we have set. In
this case, we might be working with a document we own, and can structure any way we like, but it will
be read-only when parsed by our application. If we take one of the remote resources, food.xml, and
give it the following structure:

<Food>
<Store type="Grocery">

<Order id="383232" location="myhouse">
<Item id="232" name="milk" />
<Item id="565" name="cheese" />

</Order>
</Store>
</Food>

then we could build our application to key on the location attribute in the <Order> element of each
remote resource. The application can then insert the defined link at each place in each store resource
document where a match for the label myhouse occurred, effectively attaching directions to each store
order. Then, a final document containing all the information of the remote resources could be displayed
to the user.

This may be hard to visualize since we don't have such an application, but consider this possible
interpretation:

Relational References with XLink

363

This display would be possible if an application were to display the extended link element names and
attributes. As you can see, myhouse can be linked to from both store elements. If the user were to
click on the myhouse element with the arc defined above they would get:

The document loaded for the user is not any one of the resources we have been working with. The user
has asked to view the orders.xml document, which is nothing more than a placeholder for customer
information. This customer information has been made useful via inbound links from documents
containing order information. The orders.xml document as displayed appears to contain all of this
information in one place. In actuality, it has loaded two read-only resources in the background, and
enhanced their display with the local customer information.

The locator-type Element
As we have seen, the locator-type element is the remote resource being defined by the extended
link element. It can take four attributes:

Semantic:

❑ role

❑ title

Locator:

❑ href

Traversal:

❑ label

There is only one mandatory attribute, href, which must have a URI value specified. However, the
mere presence of an href attribute value does not give the locator element linking behavior.

Chapter 9

364

Remember that it is the arc element that provides the linking behavior, and that the arc element uses
the value of the label attribute to define the link. If a locator is missing from the label attribute, it
simply cannot be identified in an arc, although it may still be useful to an XLink application as a
descriptive element. However, it cannot participate in any XLink specified link..

It is the locator element that gives the extended link a lot of its power because it is able to identify
resources that may be outside the control, or scope, of the document defining the link.

If an arc identifies a traversal rule between two locator elements, it is creating a third-party link. Third-
party links are two or more remote resources being linked by a local document's linking element. The
ability to describe links from remote resources provides a special arc called a linkbase.

Linkbases

Special collections of remote resources identified with locator elements can be defined with a locating
linkbase. Linkbases are a special type of arc definition, which allows for simplified management of
remote resources.

You specify this special arc with the arcrole attribute set to the following:

xlink:arcrole="http://www.w3.org/1999/xlink/properties/linkbase"

If we have numerous remote resources we would like to relate to one another, it may be simpler to hold
each of these links in one document that can be loaded by our local documents.

This could be useful for:

❑ Creating a reference between documents you don't own

❑ Annotating documents written by others

❑ Maintaining a central link repository for easier maintenance

For example, imagine we had a number of stores, and all of them should be able to link to or from a
shopping list. Rather than defining all of these stores inside of our particular extended element, we can
load a pre-set listing of stores with a traversal rule for getting from stores to myhouse. In order for the
XLink application to make use of these links, we define a linkbase arc that has the listing of links as
the ending resource.

A linkbase must be written as a well-formed XML document according to the W3C
candidate recommendation. This makes sense because the linkbase document will
be processed in order to retrieve the extended link information contained within.

In this way, if I have several remote resources that may all traverse to or from stores, not just my
shopping list, then I can re-use the store resources again and again without putting all the stores in
each extended linking element.

<ROUTE xmlns:xlink="http://www.w3.org/1999/xlink" xlink:type="extended">
<HOME address="123 Main St."

xlink:type="locator"
xlink:label="myhouse"
xlink:href="house.xml">
All Stores

</HOME>

Relational References with XLink

365

<STORES xlink:type="locator"
xlink:href="storelinks.xml"
xlink:label="allstores"/>

<GROUPOLINKS xlink:type="arc"
xlink:arcrole="http://www.w3.org/1999/xlink/properties/linkbase"
xlink:from="myhouse"
xlink:to="allstores"
xlink:actuate="onRequest"/>

</ROUTE>

Here, within our ROUTE, we have:

❑ HOME – which refers to a document that contains the directions to my house

❑ STORES – the locator, which specifies list of stores that I might wish to shop from, which
points to the linkbase document. This is not a participating link resource. The document
that it specifies will provide the link participants.

❑ GROUPOLINKS – which specifies the special arcrole attribute. The arc with this special
arcrole will load the extended links in the document specified by the labeled locator listed
as the ending resource in the arc.

Consider the following diagram:

Whatever the contents of the storelinks.xml file, the extended links contained within will be pre-
loaded when the orders.xml document is loaded. The links defined there are then available for the
orders.xml document to use. This is a convenient way to locate each resource required for processing
the orders.xml document before anything is displayed for the user. It also provides a way to keep the
stores listing separated from the orders.xml document.

Chapter 9

366

The storelinks.xml document, which is the linkbase document, may look like this:

<?xml version="1.0"?>
<LINKS xmlns:xlink="http://www.w3.org/1999/xlink" xlink:type="extended">

<GROCERY xlink:type="locator" xlink:href="groceries.xml"
xlink:label="store"/>

<BOOKSTORE xlink:type="locator" xlink:href="books.xml" xlink:label="store"/>
<CLOTHING xlink:type="locator" xlink:href="clothes.xml" xlink:label="store"/>
<UTILITY xlink:type="locator" xlink:href="electricity.xml"

xlink:label="store"/>
<PLACESTOSHOP xlink:type="arc" xlink:from="store" xlink:show="new"

xlink:actuate="onRequest"/>
</LINKS>

in this case, a single extended link allowing all stores to traverse to the house.xml document. Notice
that in this case, the to attribute has been left blank in order to relate all of these store locators to all
resources in the orders document. However, the links within a linkbase can specify any traversal rule,
even if this requires re-processing the originating document (orders.xml) to handle the links. When
orders.xml is loaded, the only item to show for the user may be a link that says "All Stores". It would
be upon selection of that link, that the stores information would become available. This would differ
from the earlier example, which would have loaded all of the store resources along with directions
right at load time.

Note that linkbases are not to be traversed. That is, they provide a document a list of
links that may be traversed, but when linkbases themselves are loaded, they are only
providing information to the document about the location of remote resources. This
means that the show attribute is irrelevant in a linkbase. The actuate attribute is
still relevant because we may not want all the links to show up until the user has asked
for them.

Using Extended Links
Before we move on, let's be sure we have a good picture of extended links by looking at a full example.
We will look at the example of an invoice in XML.

The invoice document contains some standard elements such as item, invoiceid, customers, and
directions to a particular customer's location. The attributes from the XLink namespace have been
added to the various elements such that we now have the following XLink types:

Invoices.xml Element Name XLink Type Link Location

Invoice Extended Link

Description Title

invoiceid local Resource resource local – in document

item remote Locator resource /inventory/items.xml

customer remote Locator resource /contacts/customers.xml

directions local Resource resource local – in document

getdetail Arc

Relational References with XLink

367

Here is the DTD for the XML invoice, so that we can work with a validated XML document, and get
the benefit of writing the actual elements in a more simplified manner as well (ch09_ex1.dtd):

<!ELEMENT invoice ((description|invoiceid|item|customer|directions|getdetail)*)>
<!ATTLIST invoice

xlink:type (extended) #FIXED "extended"
xlink:role CDATA #IMPLIED
xlink:title CDATA #IMPLIED>

<!ELEMENT description ANY>
<!ATTLIST description

xlink:type (title) #FIXED "title">

<!ELEMENT invoiceid ANY>
<!ATTLIST invoiceid

xlink:type (resource) #FIXED "resource"
xlink:role CDATA #IMPLIED
xlink:title CDATA #IMPLIED
xlink:label CDATA #FIXED "invoiceid">

<!ELEMENT item EMPTY>
<!ATTLIST item

itemid CDATA #REQUIRED
qty CDATA #REQUIRED
xlink:type (locator) #FIXED "locator"
xlink:href CDATA #REQUIRED
xlink:role CDATA #IMPLIED
xlink:title CDATA #IMPLIED
xlink:label NMTOKEN #FIXED "item">

<!ELEMENT customer EMPTY>
<!ATTLIST customer

customerid CDATA #REQUIRED
xlink:type (locator) #FIXED "locator"
xlink:href CDATA #REQUIRED
xlink:role CDATA #IMPLIED
xlink:title CDATA #IMPLIED
xlink:label NMTOKEN #FIXED "customer">

<!ELEMENT directions ANY>
<!ATTLIST directions

xlink:type (resource) #FIXED "resource"
xlink:role CDATA #IMPLIED
xlink:title CDATA #IMPLIED
xlink:label NMTOKEN #FIXED "directions">

<!ELEMENT getdetail EMPTY>
<!ATTLIST getdetail

xlink:type (arc) #FIXED "arc"
xlink:arcrole CDATA #IMPLIED
xlink:title CDATA #IMPLIED
xlink:show (new|replace|embed|other|none) #IMPLIED
xlink:actuate (onLoad|onRequest|other|none) #IMPLIED
xlink:from NMTOKEN #IMPLIED
xlink:to NMTOKEN #IMPLIED>

Chapter 9

368

Remember, you can type this in if you want the practice, or you can go and download it from the
web site for this book along with all of the other sample code: http://www.wrox.com.

The DTD provides the necessary structure, and gets some of the mundane details down in one place.
This will be more important as you go to implement this in the real world, because unlike our example
you would likely be generating numerous instances of the same element type. That being said, here is
the XML document (ch11_ex1.xml):

<?xml version="1.0"?>
<!DOCTYPE invoice SYSTEM " ch11_ex1.dtd">

<invoice xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:title="Invoice Detail for Order number 123456">

<description xlink:type="title">
Customer Details for Invoices</description>

<invoiceid>123456</invoiceid>

<item itemid="9876" qty="500"
xlink:href="/inventory/items.xml"
xlink:title="items on customer invoice"/>

<item itemid="4321" qty="25"
xlink:href="/inventory/items.xml"/>

<customer customerid="765423"
xlink:href="/contacts/customers.xml"
xlink:role="http://sample.bigwarehouse.ex/customer/invoiceref"/>

<directions>Turn left from warehouse, drive 5mi. on route 3 to Johnson.
Turn left onto Johnson and continue to Main St.

</directions>

<getdetail arcrole="http://sample.bigwarehouse.ex/invoice/details"
xlink:show="replace"
xlink:actuate="onRequest"
xlink:from="invoiceid"/>

</invoice>

While this XML document is well formed and valid, it is not likely that such a document would stand-
alone in the real world. Rather, this would be a single invoice in a list of invoices in a document. As
we'll see in the next section, a document like this could easily represent the data in a table from a
relational database. Before we move on I would like to note a few features of this example.

Notice the use of the title attribute as well as the title element.

<invoice xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:title="Invoice Detail for Order number 123456">

<description xlink:type="title">
Customer Details for Invoices</description>

The proliferation of titles throughout XLink may seem like overkill, but consider that the attribute may
be rendered as something like a tool tip for the invoice link, while the title-type element may be
used for the entire resulting document.

Relational References with XLink

369

I would also like to draw attention to the addition of non-XLink attributes in the locator elements.
XLink is not a set of element names that only describe links; it is a set of element types declared
through the use of namespace-prefixed attributes. Other non-XLink attributes, child elements and
content of the elements used to create a link are not a hindrance for XLink to do its job.

Extended Link Summary
We have seen how to use the XLink language to create both simple and extended linking elements. In
looking at extended links, the usefulness of arcs was introduced to show the added feature of multi-
directional linking. Of particular importance was the notion of the in-bound link, which had a remote
link as a starting resource. In the next section we will look at how an extended link can be used in
conjunction with XPointer to create structures that describe relational data.

Extended Links and Relational Data
Okay, we have given a good coverage of the basics on writing extended links and they look cool and
seem useful, but why are they in a book about XML databases? Well, the reason is that they provide a
great way to describe relational data within an XML document. Let's see our simple database tables
from the beginning of this chapter written as XML. We'll call the database Orders:

<Orders>
<Invoice InvoiceKey="187">

<invoiceitem ItemKey="13"/>
<invoiceitem ItemKey="14"/>

</Invoice>
<Invoice InvoiceKey="188">

<invoiceitem ItemKey="13"/>
</Invoice>

</Orders>

Tables are expressed as elements, with one for each row. I am showing each value from the table rows
as an attribute value, but each could be the text content value of the element if you like. In the
hierarchical way of XML we express the joining table, InvoiceItem, by the appropriate nesting of
elements.

This particular view is invoice-centric. If we wanted to look at invoices by item, the nesting would
be reversed, and sorted by the item key. If you need to understand the XML to relational table
transfer more fully, see Chapter 2.

As we will see in Chapter 14, we could produce this output from SQL server 2000 using the new XML
aware processing features. If you want to produce this output with SQL Server 2000 you would use the
following query:

SELECT 1 AS Tag, Null AS Parent, invoice.invoicekey AS [Invoice!1!InvoiceKey],
Null AS [invoiceitem!2!ItemKey] FROM invoice

UNION
SELECT 2,1,invoice.invoicekey,invoiceitem.itemkey FROM invoice,invoiceitem

WHERE invoice.invoicekey = invoiceitem.invoicekey
ORDER BY [invoice!1!invoicekey],[invoiceitem!2!itemkey] FOR xml EXPLICIT

Chapter 9

370

Making the Relationship with XLink
Now that we have the data-set defined in XML, we can take a look at the power of XLink to make it a
more useful document. First, we have to have a business case that makes sense. Let's consider the
following scenario:

❑ We have built an XML application for a warehouse that receives order documents from a data
entry application. The order documents contain invoice information, tying customers to
invoices, and displaying items that will be needed to complete the order.

❑ Our application then presents the information to a stock handler for processing; the stock
handler will need to know where in the warehouse to retrieve each item requested on the
invoice.

❑ The document we have received is read-only, and the item location information is located in a
different document. In other words, we need some way to mark up the invoice with location
information to help the stock handlers, but we cannot edit the invoices directly.

In this example, we will relate the orders documents with the proper locations from the locations
documents in order to mark up the invoice in such a way that stock handlers can look at just one
document for all the information they need.

If our item key is an SKU or other ID recognized by the order taker and our warehouse, we can mark
up our location document like this:

<?xml version="1.0"?>
<ItemLocations

xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:type="extended">

<itemlocation
xlink:type="resource"
xlink:label="location"
itemkey="13">
R15L5

</itemlocation>

<Item
xlink:type="locator"
xlink:href="acme.mfg.com/invoice.xml#itemkey(13)"
xlink:label="item" />

<itemlocation
xlink:type="resource"
xlink:label="location"
itemkey="14">
R3L1

</itemlocation>

<Item
xlink:type="locator"
xlink:href="acme.mfg.com/invoice.xml#itemkey(14)"
xlink:label="item" />

Relational References with XLink

371

<itemlocation
xlink:type="resource"
xlink:label="location"
itemkey="15">
R5L6

</itemlocation>

<Item
xlink:type="locator"
xlink:href="acme.mfg.com/invoice.xml#itemkey(15)"
xlink:label="item" />

<itemlocation
xlink:type="resource"
xlink:label="location"
itemkey="16">
R13L3

</itemlocation>

<Item
xlink:type="locator"
xlink:href="acme.mfg.com/invoice.xml#itemkey(16)"
xlink:label="item" />

<itemlocation
xlink:type="resource"
xlink:label="location"
itemkey="17">
R11L3

</itemlocation>

<Item
xlink:type="locator"
xlink:href="acme.mfg.com/invoice.xml#itemkey(17)"
xlink:label="item" />

<getdetail
xlink:type="arc"
xlink:show="embed"
xlink:actuate="onRequest"
xlink:to="location"
xlink:from="item" />

</ItemLocations>

The item location document has been declared an extended link, so each child element that has XLink
attributes can be understood to display some XLink behavior. This document is generic and presents
only two pieces of information, the bin location, and the name of the XML document we expect to
receive from the order application. As the warehouse, we control this document and can change the
information within. However, we do not want the stock handlers to view this document, but rather the
orders which have come in. The locator declaration:

<Item
xlink:type="locator"
xlink:href="acme.mfg.com/invoice.xml#itemkey(14)"
xlink:label="item" />

points to the main document. This locator includes the very simple XPointer reference

Chapter 9

372

xlink:href="acme.mfg.com/invoice.xml#itemkey(14)"

which states: get a result set from invoice.xml where the itemkey is 14. This will return a portion of
the invoice document, rather than the entire contents. This will allow us to retrieve only the location
information for our particular item to display at this point, rather than displaying all item locations. You
can read about XPointer in the next chapter on other XML technologies, or in the book Professional
XML, also by Wrox Press (ISBN18610031110).

We know that ch09_ex1.xml should be the starting document resource from the arc declaration:

<getdetail
xlink:type="arc"
xlink:show="embed"
xlink:actuate="onRequest"
xlink:to="location" xlink:from="item" />

This shows the item-labeled element to be the xlink:from resource. In this way, our XLink aware
application is able to show the user the invoice.xml document, but provide the location information
as embedded in the document when the user requests the information (presumably by selecting a link).
It is also difficult to say how an application will handle the specific references to items. The application
may choose to aggregate all the links on the screen at one time because all are declared within the same
document, or it may choose to strictly display one at a time. If the latter is true, some mechanism will be
required to alert the application that the user is finished with one link, and prepare for the next.

Application developers will have to carefully consider how to handle a circumstance
where a local resource contains more than one remote resource as the starting
resource for links contained within the document. One possible solution would be to
only display the first such link. Therefore, you should be careful not to depend on a
second inbound link, and really should avoid this situation altogether.

What has happened here? We owned a data source that was particular to our own warehouse, and made
a relationship with data coming from a third party. Because we only have control over our document, it
would not have been possible to create such links in HTML. Furthermore, we would have required
either an RDBMS to query for locations, or would have to process the XML document before display to
achieve similar results.

Relational References with XLink

373

Summary
In this chapter we have seen that XLink is a powerful new standard offering linking mechanisms beyond
HTML's one-way links. The multi-directional extended XLink element provides the greatest
opportunity to define meaningful relationships between documents. As XLink moves toward the end of
the W3C recommendation stage, we can be sure browser developers will move quickly to include this
powerful linking mechanism. Simple additions to existing documents, or new linking documents can be
created to take advantage of XLink in a relatively short time period. By the time you are reading this,
some applications may already be available. Experiment and enjoy!

Additional Resources
Check out the early Xlink application efforts of Fujitsu at:
http://www.fujitsu.co.jp/hypertext/free/xlp/en/sample.html

This application uses linkbases on a special server to create links in read-only documents. There is also
an extended link server implementation from Empolis UK called X2X at:
http://www.empolis.co.uk/products/prod_X2X.asp

This demo application gives an idea of what your links would do, but actually won't do much of
anything. It also does not support the use of DTDs. Neither application is a complete XLink
implementation, but are the best available examples, and will almost certainly be improved over time.

Chapter 9

374

Other Technologies
(XBase, XPointer, XInclude,

XHTML, XForms)

In the first section of this book, many of the topics dealt directly with XML 1.0 and its use with
databases. In the second section, we have been looking at related specifications and how they have been
extended into their own technologies. As we saw in the last chapter, XLink is an example of such a
specification, although we are still waiting to see implementations of it. In this chapter we are going to
learn more about some other related technologies. Many of these technologies do not directly
manipulate data within a database, but they do provide different methods to present data:

� XBase – underpins linking technologies providing a base URL for relative URLs to feed off so
that you only need change the base URL

� XPointer – The XML pointing language, used with XLink, allowing you to point to a certain
part of an XML document

� XInclude – The powerful inclusion method, to save replication of common data in several
places

� XHTML – an existing standard that enforces XML syntax when writing HTML – ensuring that
it is well-formed and can be read by an XML processor

� XForms – The next generation of XML based forms

We will not go into great depth with XBase, XPointer, and XInclude since they are still likely to evolve.
However, just like XLink, they are still important to understand so that you will be able to make use of
the power that they will offer. At first, because they are complementary technologies, and some extend
features offered by others, it can be difficult to see the exact difference or intended use of each, this
chapter will help clear up questions like this.

Chapter 10

376

XHTML is the latest reformulation of HTML. We'll be looking at how it differs from HTML, and why
HTML needed to be improved in the first place.

XForms are the next generation of web forms, and are aimed at enabling the creation of form structures
that are independent of the end user interface. XForms achieve this by separating the user interface
from the data model and logic layer. That means XForms are split into three different layers, which
allow a means to exchange data between a client and database.

We'll start by exploring the possibilities of XBase.

XBase
XLink, as we learned in the previous chapter, is the XML linking language that provides a way to
describe links between resources. These resources can be XML documents, data objects, a list of HTML
links, or any data source to be exposed to other technologies. One of the stated requirements set by the
W3C XLink Working Group (who create the XLink standard), is to support HTML linking constructs.
This has its pros and cons, but it does allow us to utilize a Base type construct like that of the <BASE>
element in HTML. This XML version is called XBase.

At the time of writing XBase is a candidate recommendation, so now is the time to give your input
to this technology via the W3C web site (http://www.w3.org/XML/Linking). Because there is still
a good chance that XBase will change, it is not widely supported at present.

In HTML the <BASE> element appears inside the <HEAD> element, and defines the base URL, or
original location of the document. If <BASE> is included, the URL it specifies is used to create absolute
addresses for any relative ones. This means that when a document is moved, we only need to update the
URL in the <BASE> element, and all of the relative links still work (links that do not include the entire
server and directory path). This is because the base URL is defined as the new, current URL for the
document.

In HTML, we declare the <BASE> element like so:

<BASE HREF="http://myserver.org/inthisdir/filename.html">

So, when we use a link like this in our HTML document:

it would resolve to http://myserver.org/inthisdir/filename.html#section2.

XBase offers similar functionality in a single attribute xml:base. With this simplicity comes flexibility.
It can be used in conjunction with XLink, to specify the base URI as something other than that of the
document. For example, if we wanted to resolve a link to several different resources, including images,
data objects, and XML documents, we can specify the relative URI while using xml:base to define the
resource base URI.

Let's see just how simple this is. Look at this list of XLinks:

Other Technologies (XBase, XPointer, XInclude, XHTML, XForms)

377

<?xml version="1.0"?>

<ItemLocations xml:base="http://acme.mfg.com/invoice.xml/"
xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:type="extended">

<itemlocation xlink:type="resource"
xlink:label="location"
itemkey="13">
R15L5

</itemlocation>

<Item xlink:type="locator"
xlink:href="#itemkey(13)"
xlink:label="item" />

<itemlocation xlink:type="resource"
xlink:label="location"
itemkey="14">
R3L1

</itemlocation>

<Item xlink:type="locator"
xlink:href="#itemkey(14)"
xlink:label="item" />

<itemlocation xlink:type="resource"
xlink:label="location"
itemkey="15">
R5L6

</itemlocation>

<Item xlink:type="locator"
xlink:href="#itemkey(15)"
xlink:label="item"/>

<itemlocation xlink:type="resource"
xlink:label="location"
itemkey="16">R13L3</itemlocation>

<Item xlink:type="locator"
xlink:href="#itemkey(16)"
xlink:label="item"/>

<itemlocation xlink:type="resource"
xlink:label="location"
itemkey="17">
R11L3

</itemlocation>

<Item xlink:type="locator"
xlink:href="#itemkey(17)"
xlink:label="item"/>

<getdetail xlink:type="arc"
xlink:show="embed"
xlink:actuate="onRequest"
xlink:to="location"
xlink:from="item"/>

</ItemLocations>

Chapter 10

378

This is almost the same as one of our examples from the previous chapter, but we've made a few
changes. We are no longer explicitly stating the full URI as a resource. Originally we stated the XLink
with this form:

<Item
xlink:type="locator"
xlink:href="acme.mfg.com/invoice.xml#itemkey(17)"
xlink:label="item" />

In our new example, we have used the XML attribute xml:base to identify the base or root URI:

xml:base="http://acme.mfg.com/invoice.xml/"

Note the trailing / at the end. This is essential with XLink, but not with HTML. This allows our new
XLink:

xlink:href="#itemkey(17)"

to resolve to http://acme.mfg.com/invoice.xml#itemkey(17). This is the core of XBase.

"Advanced" XBase
We have seen the principle behind XBase, and it doesn't get much more advanced than this. One thing
we can do is define several base URIs.

In the last example, we made all URIs resolve to the same file, invoice.xml, which was in
http://acme.mfg.com. However, if we wanted to supply links to other documents as well, we can use
containment to do this.

For example, say the path to our XML document for the ACME manufacturing division is
http://acme.mfg.com/manufacturing, and we also want to add links that resolve to
http://acme.mfg.com/supply, where our hypothetical XML document for the ACME supply division is
located. We could do something like this:

<?xml version="1.0"?>

<ItemLocations xml:base="http://acme.mfg.com"
xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:type="extended">

<itemlocation xlink:type="resource"
xlink:label="location"
itemkey="13">R15L5</itemlocation>

<companyinvoice companyid="1"
xml:base="/manufacturing/">

<Item xlink:type="locator"
xlink:href=" invoice.xml#itemkey(13)"
xlink:label="item"/>

...

Other Technologies (XBase, XPointer, XInclude, XHTML, XForms)

379

<getdetail xlink:type="arc"
xlink:show="embed"
xlink:actuate="onRequest"
xlink:to="location"
xlink:from="item"/>

</companyinvoice>

<companyinvoice companyid="2" xml:base="/supply/">

<itemlocation xlink:type="resource"
xlink:label="location"
itemkey="16">R13L3</itemlocation>

<Item xlink:type="locator"
xlink:href="invoice.xml#itemkey(16)"
xlink:label="item"/>

<itemlocation xlink:type="resource"
xlink:label="location"
itemkey="17">R11L3</itemlocation>

<Item xlink:type="locator"
xlink:href=" invoice.xml#itemkey(17)"
xlink:label="item"/>

<getdetail xlink:type="arc"
xlink:show="embed"
xlink:actuate="onRequest"
xlink:to="location"
xlink:from="item"/>

</companyinvoice>

</ItemLocations>

We have made a few changes to the example, so let's break down what is happening.

The document base refers to http://acme.mfg.com, which is the parent base embedded in the parent
element of the document's content:

<ItemLocations xml:base="http://acme.mfg.com"
xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:type="extended">

All other child elements referring to XBase then resolve to an extension of the parent base. We have
added child bases in the <companyinvoice> elements. In the first <companyinvoice> element we
point to the manufacturing section:

<companyinvoice companyid="1" xml:base="/manufacturing/">

<Item xlink:type="locator"
xlink:href="invoice.xml#itemkey(13)"
xlink:label="item"/>

This address resolves to http://acme.mfg.com/manufacturing/invoice.xml#itemkey(13).

In the second <companyinvoice> element, however, we are resolving to
http://acme.mfg.com/supply/invoice.xml#itemkey(16):

Chapter 10

380

<companyinvoice companyid="2" xml:base="/supply/">

<itemlocation xlink:type="resource"
xlink:label="location"
itemkey="16">R13L3</itemlocation>

There are some simple rules that you should follow when using XBase.

Determining the Base URI and Relative URIs
In an XML document, the value of a relative URI is determined relative to either an element or the
document – the granularity doesn't get any finer than the element level.

The W3C recommendation specifies the following rules governing how the base URI of an element is
determined:

1. If the xml:base attribute is specified on the element, this is taken as the base URI of the
element

2. If no xml:base attribute is specified on the element itself, but the element has a parent
element for which an xml:base attribute is specified, the element takes the base URI of
its ancestor

3. If the xml:base attribute is not specified, the base URI is the URI used to retrieve the
XML document (or in the case of XLINK or XPointer, which we'll learn about later, the
URI that the data is retrieved from)

For example, in our first example, there is no xml:base attribute specified for the Item element:

<Item xlink:type="locator"
xlink:href="#itemkey(13)"
xlink:label="item" />

Following rule 2, this takes the base URI of its parent ItemLocations:

<ItemLocations xml:base="http://acme.mfg.com/invoice.xml/"

Relative URIs are then related to their corresponding base URI as follows:

1. If the relative URI reference appears in text content, the base URI is that of the element
containing the text.

2. If the relative URI reference appears in the xml:base attribute of an element, the base
URI is that of the parent of that element. If no base URI is specified for the parent, the
base URI is that of the document containing the element.

3. If the relative URI reference appears in any other attribute value (including default
attribute values), the base URI is that of the element bearing the attribute.

4. If the relative URI reference appears in a processing instruction, the base URI is that of
the parent element of the processing instruction. If there isn't one, the base URI of the
document containing the processing instruction is taken.

Other Technologies (XBase, XPointer, XInclude, XHTML, XForms)

381

So in our second example, where a relative URI is specified in the xml:base attribute of the
companyinvoice element:

<companyinvoice companyid="2" xml:base="/supply/">

the base URI is that of the element's parent, ItemLocations:

<ItemLocations xml:base="http://acme.mfg.com"

XBase Summary
As we have seen, XBase is really quite simple. It is there to support the requirement from the W3C
that XML Linking should support the functionality offered by HTML 4.0 linking constructs, and it can
be very useful despite its simplicity. We have also seen how we can specify several base documents,
and how containment can give us flexibility in where our links point to.

At the time of writing, XBase is a recommendation, and may be subject to change. The details on its
implementation are necessarily still sketchy, but keep an eye on the W3C site for the latest updates
(http://www.w3.org/XML/Linking and http://www.w3.org/TR/xmlbase).

XBase is best used in conjunction with XPointer and XLink. We've seen XLink in the previous
chapter, but what does this XPointer thing do?

XPointer

XPointer extends XPath and can be used in conjunction with XLink. It allows you to
identify specific data within a resource described in an XLink.

Imagine we have a set of large XML documents, perhaps a year's worth of invoices, with each
document holding the invoices for a calendar month. If we wanted to process individual invoices from
the month's records, we might not want to have to pull up the whole document. XLink allows us to
specify the document that holds a certain month's records. XPath goes a step further by allowing us to
point to the specific instance of the invoice (or any other part of the document) we want within that
document, so that an application can retrieve that section.

XPointer works by extending the XPath syntax. The power of XPointer lies in the fact that we can use it
to retrieve data on any scale from within documents: whole documents, elements, sections of character
data, or any valid part of an XML entity. We don't even have to retrieve whole nodes: we can, for
example, just select the first few characters in a text node, or the last few characters of the text node in
one element and the first few characters of the text node from the next element.

XPath was created for use in both linking and XSLT.

Note that XPointer only works with resources that have a media type of text/xml or
application/xml.

Chapter 10

382

The XPointer specification will also allow documents to identify themselves, and allow alternative
addressing of such languages such as SVG or SMIL. Remember XPointer simply points to or
exposes a target.

Technology Status
At the time of writing, XPointer is a candidate recommendation. For the full specification, and latest
details as to the progress of the technology, check out http://www.w3.org/XML/Linking and
http://www.w3.org/TR/xptr.

The W3C currently list the following implementations of XPointer:

� Fujitsu XLink Processor: an implementation of XLink and XPointer, developed by Fujitsu
Laboratories Ltd (http://www.fujitsu.co.jp/hypertext/free/xlp/en/index.html)

� libxml: the Gnome XML library has a beta implementation of XPointer, which supports the
full syntax although not all aspects are covered (http://xmlsoft.org/)

� 4XPointer: an XPointer processor written in Python by Fourthought, Inc
(http://fourthought.com/4Suite/4XPointer/)

Locations and Targets
XPointer allows us to examine the internal structure of XML data, and it calls these internal workings
location sets. More specifically, it defines how to expose an XML document to obtain targets –
elements, character strings, and other parts of an XML document – irrespective of whether or not they
bear an explicit ID attribute.

While using ID attributes within XML is desirable, it's not required. Yes, the desired targets could be
obtained using the DOM or SAX: but what if the desired target was a bit of data, such as that specific
invoice item located within our XML document? It would be overkill to link to the XML document,
load the document, and walk the DOM to the specific node or target we were looking to expose.

Putting it in traditional RDBMS speak, imagine using an API to open a database system, then
programmatically opening the database, then selecting all of the fields, before finally arriving at the data
element you were after. In reality you would simply write one query. For example if we wanted to query
the database used in the previous chapter we would do something like this:

SELECT invoiceitem FROM invoice WHERE invoicekey = 187

With the help of XPath, we can accomplish this type of request with XPointer.

Keep in mind that XPointer does not query a document, it only points within the document

Identifiers Using XPointer and XLink
The W3C specification defines how identifiers, called fragment identifiers, can be used to point to
targets within XML documents, or any valid XML entity. The specification is complex, but does allow
the kind of flexibility that should really generate creativity in the use of XPointer in the future.

Other Technologies (XBase, XPointer, XInclude, XHTML, XForms)

383

As we will see, there are three types of fragment identifier:

� Full form

� Bare names

� Child sequences

Let's expand on an example from the previous chapter, using the Orders.xml document located at
http://www.orders.com/orders/:

<ORDERS>
...

<Invoice InvoiceKey="187">
<invoiceitem ItemKey="13"/>
<invoiceitem ItemKey="14"/>

</Invoice>

<Invoice InvoiceKey="188">
<invoiceitem ItemKey="13"/>

</Invoice>
...
</ORDERS>

We'll see how we can point to a section of it using the different types of fragment identifier.

Full Form
In this document we have several invoices. If our desired target is the invoice information with the
Invoicekey of 187, we can point to this information, along with its child elements, and disregard the
rest of the document.

In this first example, we will use a full form fragment identifier to target the part of the document we
want. To point to the invoice with a key of 187, we would add something like this to our referring XML
document:

xlink:href =
"http://www.orders.com/orders/orders.xml#xpointer(InvoiceKey("187"))"

This form of addressing starts with the schema name xpointer, followed by an expression identifying
the target. In this case the target is InvoiceKey("187"). We can use this in our XML in pretty much
the same way as we use normal xlink:href attributes: it's just that in this case we're pointing to a
specific section of orders.xml document.

Bare Names
We can also point to the invoice with an Invoicekey of 187 using a bare name fragment identifier. To
do so, we can simply state:

xlink:href = "http://www.orders.com/orders/orders.xml#187"

This just uses the id (187). It has shed its XPointer clothing for a shorter form. The idea behind bare
names is that they encourage the use of explicit, unique IDs (so in our example, the InvoiceKey would
have to be declared as a datatype of ID in our schema).

Chapter 10

384

However, using bare names instead of the full form leads to much less readable code – so for reasons of
code legibility, you might prefer to avoid them.

Child Sequences
The child sequence fragment identifier is often referred to as the tumbler identifier. These identifiers
allow us to tumble through a target tree, a little bit like walking the DOM. Let's look at the sample data
again:

<ORDERS>

<Invoice InvoiceKey="187">
<invoiceitem ItemKey="13"/>
<invoiceitem ItemKey="14"/>

</Invoice>
<Invoice InvoiceKey="188">

<invoiceitem ItemKey="13"/>
</Invoice>
<Invoice InvoiceKey="189">

<invoiceitem ItemKey="11"/>
</Invoice>

</ORDERS>

If the desired target is a single point, called a singleton, we could point to it with the following child
sequence fragment identifier. Let's see how we would point to a single invoiceitem from the invoice
with an invoicekey of 189:

xlink:href = "http://www.orders.com/orders/orders.xml#1/3/1"

This is not as foreign as it would appear, as it is indicating the positional number of the element. Let's
look at what is going on step by step:

ORDERS

Invoice
InvoiceItem

InvoiceItem

Invoice
InvoiceItem

Invoice
InvoiceItem

Other Technologies (XBase, XPointer, XInclude, XHTML, XForms)

385

#1/3/1 is used as the fragment identifier because we need to:

1. Go to the first element <ORDERS> (hence the 1 in #1/3/1)

2. Then go to the third child element of ORDERS, <Invoice InvoiceKey="189">
(hence the 3)

3. Then go to the first child element of the current element, <invoiceitem
ItemKey="11"/> (hence the 1)

Extensions to XPath
In the last example, we exposed a single target or point. These points can be any valid part of an XML
entity. This is very useful for pointing to a specific item of data, but we may also need to define a range
of content, which is not neatly nested within a particular element. For example, we may want a selection
of elements from a group that are at the same level from a parent element. In these cases, we can use a pair of
points to define a range.

Points

A point is simply a spot in the XML document. It is defined using the usual XPointer
expressions.

There are two pieces of information needed to define a point: a container node and an index. Points
are located between bits of XML; that is between two elements or between two characters in a
CDATA section. Whether the point refers to characters or elements depends on the nature of the
container node. An index of zero indicates the point before any child nodes, and a non-zero index n
indicates the point immediately after the nth child node. (So an index of 5 indicates the point right
after the 5th child node.)

When the container node is an element (or the document root), the index becomes an index of the child
elements, and the point is called a node-point. In the following diagram, the container node is the
<name> element, and the index is 2. This means the point indicates a spot right after the second child
element of <name>, which is the <middle> element:

<name>
<first> </first>
<middle> </middle>
<last> </last>

</name>

John
Fitzgerald Johansen

Doe

Container Node
Index = 2

Point

The XPointer expression for this would be:

#xpointer(/name[2])

If the container is any other node-type, the index refers to the characters of the string value of that node,
and the point is called a character-point.

Chapter 10

386

In the following diagram, the container node is the
PCDATA child of <middle>, and the index is 2,
indicating a point right after the i and right before the
t of Fitzgerald:

<name>
<first> </first>
<middle> </middle>
<last> </last>

</name>

John
Fitzgerald Johansen

Doe

Container Node Index = 2

Point

The XPointer expression for this would be:

#xpointer(/name/middle/text()[2])

Ranges

A range is defined by two points – a start point and an end point – and consists of all of
the XML structure and content between those two points.

The start point and end point must both be in the same document. If the start point and the end point
are equal, the range is a collapsed range. However, a range can't have a start point that is later in the
document than the end point.

If the container node of either point is anything other
than an element node, text node, or document root
node, then the container node of the other point must
be the same. For example, the following range is valid,
because both the start point and the end point are in
the same PI:

whereas this one is not, because the start point and end
point are in different PIs:

The concept of a range is the reason that the XPath usage of nodes and node-sets weren't good enough
for XPointer; the information contained in a range might include only parts of nodes, which XPath
can't handle.

Other Technologies (XBase, XPointer, XInclude, XHTML, XForms)

387

How Do We Select Ranges?
XPointer adds the keyword to, which we can insert in our XPointer expressions to specify a range. It's
used as follows:

xpointer(/order/name to /order/item)

This selects a range where the start point is just before the <name> element, and the end point is just
after the <item> element:

<?xml version="1.0" ?>
<order>

<name>
<first> </first>
<middle />
<last> </last>

</name>
<item> </item>
<quantity> </quantity>
<date>

<m> </m>
<d> </d>
<y> </y>

</date>
<customer> </customer>

</order>

John

Doe

Production-Class Widget
16

1
1
2000

Sally Finkelstein

Start point

End point

In other words, the <name> and <item> elements would both be part of this range, which would be
the only member in the location set.

Going back to our previous invoice example, we could point to the data within the range where our
itemkey element values are between 11 and 14. If you think about a SQL query like:

SELECT * FROM Invoiceitems WHERE itemkey between 11 AND 14

The XPointer equivalent using the full form identifier would be:

#xpointer(itemkey(11 to 14))

This allows us to just point to the data within our document from <itemkey="11"> to
<itemkey="14">.

Ranges with Multiple Locations

This is pretty easy when the expressions on either side of the to keyword return a single location, but
what about when the expressions return multiple locations in their location sets? Well then things get a
bit more complicated. Let's create an example, and work our way through it.

Chapter 10

388

Consider the following XML:

<people>
<person name="John">
<phone>(555)555-1212</phone>
<phone>(555)555-1213</phone>

</person>
<person name="David">
<phone>(555)555-1214</phone>

</person>
<person name="Andrea">
<phone>(555)555-1215</phone>
<phone>(555)555-1216</phone>
<phone>(555)555-1217</phone>

</person>
<person name="Ify">
<phone>(555)555-1218</phone>
<phone>(555)555-1219</phone>

</person>
<!--more people could follow-->

</people>

We have a list of people, and each person can have one or more phone numbers. Now consider the
following XPointer:

xpointer(//person to phone[1])

As you can see, the first expression will return a number of <person> elements, and the second
expression will return the first <phone> element. XPointer tackles this as follows:

1. It evaluates the expression on the left side of the to keyword, and saves the returned
location set. In this case, it will be a location set of all of the <person> elements.

<person name=" "/>
<person name=" "/>
<person name=" "/>
<person name=" "/>

John
David
Andrea
Ify

2. Using the first location in that set as the context location, XPath then evaluates the
expression on the right side of the to keyword. In this case, it will select the first
<phone> child of the first <person> element in the location set on the left.

<person name=" "/>
<person name=" "/>
<person name=" "/>
<person name=" "/>

John
David
Andrea
Ify

<phone> </phone>(555)555-1212

3. For each location in this second location set, XPointer adds a range to the result, with the
start point at the beginning of the location in the first location set, and the end point at
the end of the location in the second location set. In this case, only one range will be
created, since the second expression only returned one location.

Other Technologies (XBase, XPointer, XInclude, XHTML, XForms)

389

<person name=" "/>
<person name=" "/>
<person name=" "/>
<person name=" "/>

John
David
Andrea
Ify

<phone> </phone>(555)555-1212

Range

4. Steps 2 and 3 are then repeated for each location in the first location set, with all of the
additional ranges being added to the result. So, as a result of the XPointer above, we
would end up with the following pieces of XML selected in our document:

<person name="John">
<phone>(555)555-1212</phone>

<person name="David">
<phone>(555)555-1214</phone>

<person name="Andrea">
<phone>(555)555-1215</phone>

<person name="Ify">
<phone>(555)555-1218</phone>

Querying with XPointer
Throughout this section we have been explicitly stating our desired target and using a fragment
identifier to expose the target. However, the flexibility of the specification allows us to use other means
of stating our target.

For example we could dynamically identify our data set with the help of XLink and then query that
dataset using XML Query to expose our target. Let's look at an example from the previous chapter
again:

<?xml version="1.0"?>

<ItemLocations xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:type="extended">

<itemlocation xlink:type="resource"
xlink:label="location"
itemkey="13">
R15L5

</itemlocation>

<Item xlink:type="locator"
xlink:href="acme.mfg.com/invoice.xml#itemkey(13)"
xlink:label="item"/>

<itemlocation xlink:type="resource"
xlink:label="location"
itemkey="14">
R3L1

</itemlocation>

Chapter 10

390

<Item xlink:type="locator"
xlink:href="acme.mfg.com/invoice.xml#itemkey(14)"
xlink:label="item"/>

<itemlocation xlink:type="resource"
xlink:label="location"
itemkey="15">
R5L6

</itemlocation>

<Item xlink:type="locator"
xlink:href="acme.mfg.com/invoice.xml#itemkey(15)"
xlink:label="item"/>

<itemlocation xlink:type="resource"
xlink:label="location"
itemkey="16">
R13L3

</itemlocation>

<Item xlink:type="locator"
xlink:href="acme.mfg.com/invoice.xml#itemkey(16)"
xlink:label="item"/>

<itemlocation xlink:type="resource"
xlink:label="location"
itemkey="17">
R11L3

</itemlocation>

<Item xlink:type="locator"
xlink:href="acme.mfg.com/invoice.xml#itemkey(17)"
xlink:label="item"/>

<getdetail xlink:type="arc"
xlink:show="embed"
xlink:actuate="onRequest"
xlink:to="location"
xlink:from="item"/>

</ItemLocations>

The location set could look something like our earlier XML sample:

<ORDERS>

<Invoice InvoiceKey="187">
<invoiceitem ItemKey="13"/>
<invoiceitem ItemKey="14"/>

</Invoice>

<Invoice InvoiceKey="188">
<invoiceitem ItemKey="13"/>

</Invoice>

<Invoice InvoiceKey="189">
<invoiceitem ItemKey="11"/>

</Invoice>

</ORDERS>

Other Technologies (XBase, XPointer, XInclude, XHTML, XForms)

391

We are explicitly identifying the targets within our link, very much like an HTML pointer. Let's look at our
first XLink:

<Item xlink:type="locator"
xlink:href="acme.mfg.com/invoice.xml#itemkey(14)"
xlink:label="item"/>

We are using the link acme.mfg.com/invoice.xml to get our location set. By adding the XPointer
(#itemkey(14)) to the XLink we are exposing our target Invoiceitem.

What about if we cannot explicitly state the identifier? With a creative twist and the flexibility of the
specification, we could combine technologies and use XML Query to identify our target:

xlink:type="locator"
xlink:href="acme.mfg.com/invoice.xml#xpointer(//invoice.invoicekey="187")

to point to data with an InvoiceKey of 187. This is just one example of the many uses of XPointer that are
sure to come.

Other Points
As I mentioned before the W3C specification for XPointer is very complex and long – maybe overly so
on both counts – but it does present some useful uses for the technology. Let's explorer some of these:

XPointer Function Extensions to XPath
Of course, to deal with these new concepts, XPointer adds a few functions to the ones supplied by
XPath. We won't go into their details here, but the following is a brief description of the new functions.

Range Related Functions

As we discovered, ranges can be very powerful and the technology recognizes that with several
functions.

Function Description

location-set range-to
(expression)

Returns a range for each location in the location-set.
The start point of the range is the start of the context
location, and the end point of the range is the end of the
location found by evaluating the expression argument
with respect to that context location. For example:

xpointer(itemkey("11")/range-to(itemkey("14")))

location-set
string-range
(location-set,
string,
position,
number)

A more formal version of range-to, returning a set of
sub-strings matching the string argument. So:

string-range(/,"!",1,2)[5]

selects the fifth exclamation mark in any text node in the
document, and the character immediately following it.

Table continued on following page

Chapter 10

392

Function Description

The position is the position of the first character
to be in the resulting range, relative to the start of
the match. The default value of 1 makes the range
start immediately before the first character of the
matched string. number is the number of
characters in the range; the default is that the
range extends to the end of the matched string.

location-set
range(location-set)

The result returns ranges covering the locations in
the argument location set.

location-set
range-inside
(location-set)

This function returns ranges covering the contents
of the locations in the argument. This differs from
range in that the range it creates for each location
is only for the contents of the location, not the entire
thing.

Other Functions

Function Description

start-point() & end-point() These functions add a location of type point to the
result location set. For example, the start-
point function takes a location set as a parameter,
and returns a location set containing the start
points of all of the locations in the location set. So:

start-point(//child[1])

would return the start point of the first <child>
element in the document, and:

start-point(//child)

would return a set containing the start points of all
of the <child> elements in the document.

The end-point() function works exactly the
same, but returns end points.

here() The here function returns the element which
contains the XPointer. That is, if we define an
XPointer which points to a specific piece of an
XML document, here returns the element which
contains that piece, as a location set with a single
member.

origin() This function allows us to enable addresses relative
to out-of-line links, as we learned about in the
previous chapter about XLink. The origin
function returns the element from which a user or
program initiated traversal of a link.

Other Technologies (XBase, XPointer, XInclude, XHTML, XForms)

393

Function Description

unique() Returns true if and only if the location size is equal to
1.This is very much like the Unique key word in SQL
Server except that it returns a true if the context size of the
target is equal to 1.

Rules and Errors
We can't get away from them – XML and validity rules seem like synonyms. So as you would imagine,
a technology such as XPointer has both its own set of validity rules and errors. The best way to describe
both is to explain the errors. The understanding is that if you break a rule, then you get an error.

Errors

Errors Description

Syntax Error Simply stated, the syntax does not match that of the
document.

Resource Error This is bubbled when an identifier is valid but points to an
improper resource.

Sub-Resource Error This occurs when both the identifier and the resource are
valid but the result set is empty. Remember, XPointer is not
a query language, but is used to point within a document.

XPointer Summary
XPointer provides a way to point within a document as an extension of XPath, and is used with other
technologies like XLink. The flexibility of XPointer should allow creative uses of this straightforward
technology once the specification becomes a standard sometime in the next year. Again, keep an eye on
the W3C web site for up the minute information on XPointer status.

XInclude
Several of the technologies covered in this chapter are related to, extend, or overlap with XLink. The
relationship between XLink and XInclude could not be much closer.

At the time of writing, the October 2000 working draft of XInclude had just been published. As this
is likely to undergo some changes, you might like to investigate this fully at
http://www.w3.org/TR/2000/WD-xinclude-20001026/.

Modular Development
One of the core foundations of XML, and for that matter modern development, is the process of
developing in specific components, or modularity. As we'll learn later in this chapter, XHTML is
modular HTML. Many languages provide an inclusion method to support this modularity. This
development practice is the principal behind XInclude. At its simplest, XInclude allows a way to merge
XML documents by utilizing XML constructs – attributes and URI references.

Chapter 10

394

XInclude (or XInclusions) simply defines a processing model for merging
information sets.

So why do we need XInclude? Can't we do that with XLink combined with XPointer? Well, they each
have their own unique differences. XInclude does for XML what Server side includes do for ASP.

In the previous chapter, we learned that XLink simply facilitates the detection of links, it doesn't define
any particular processing model. XInclude is much more explicit, in that it does define a specific
processing model for merging information sets.

OK, so what does that mean in practice? Let's clarify things with an example.

An XInclude Example
Imagine that the information from our invoice example was contained in two separate XML documents,
and we needed to merge specific nodes into our primary document.

First let's look at a loosely formatted hypothetical primary document:

<?xml version="1.0"?>

<ItemLocations xmlns:xinclude="http://www.w3.org/1999/XML/xinclude"
xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:type="extended">

<Title>XInclude Invoice Items</Title>
<BODY>

<P>
<I>invoice from file invoiceA.xml</I>

</P>

<ORDERS ID="A">
<xinclude:include

href="http://acme.mfg.com/invoices.xml#InvoiceKey(187)" />
</ORDERS>

<ORDERS ID="B">
<xinclude:include

href="http://www.acme.com/supply/invoices.xml#InvoiceKey(200)" />
</ORDERS>

</BODY>
</ItemLocations>

This is the input for our inclusion transformation, known as a source infoset.

An XML Information Set (infoset) is a description of the information available in a well-formed
XML document. For the full specification see http://www.w3.org/TR/xml-infoset.

Other Technologies (XBase, XPointer, XInclude, XHTML, XForms)

395

The first document we reference is http://acme.mfg.com/invoices.xml. This contains the following data:

<ORDERS>

<Invoice InvoiceKey="187">
<invoiceitem ItemKey="13"/>
<invoiceitem ItemKey="14"/>

</Invoice>

<Invoice InvoiceKey="188">
<invoiceitem ItemKey="13"/>

</Invoice>

</ORDERS>

And our second document, http://www.acme.com/supply/invoices.xml, contains:

<ORDERS>

<Invoice InvoiceKey="10">
<invoiceitem ItemKey="1"/>

</Invoice>

<Invoice InvoiceKey="200">
<invoiceitem ItemKey="18"/>
<invoiceitem ItemKey="69"/>

</Invoice>

</ORDERS>

Once our primary page is loaded, our two invoice documents are identified with the URI identified in
the XInclude. With the help of XPointer, we are able to expose the specific data we are trying to merge
within our primary document.

So what happens next?

Syntax
An XInclude processor identifies the included items by the URI following the xinclude:include
clause in the href attribute:

<ORDERS ID="A">
<xinclude:include href="http://www.acme.mfg.com/invoices.xml#

InvoiceKey(187)" />
</ORDERS>

<ORDERS ID="B">
<xinclude:include href="http://www.acme.supply.com/invoices.xml#

InvoiceKey(200)" />
</ORDERS>

If the resource identified by the URI is unavailable, or if they don't contain well-formed XML, we'll get
an error.

Chapter 10

396

In the resulting document – or result infoset – the include element is replaced by the elements
matching the XPointer expression. This produces one XML tree, not two linked trees.

<?xml version="1.0"?>

<ItemLocations xmlns:xinclude="http://www.w3.org/1999/XML/xinclude"
xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:type="extended">

<Title>XInclude Invoice Items</Title>

<BODY>
<P>

<I>invoice from file invoiceA.xml</I>
</P>

<ORDERS ID="A">
Invoice InvoiceKey="187">

<invoiceitem ItemKey="13"/>
<invoiceitem ItemKey="14"/>

</Invoice>
</ORDERS>

<ORDERS ID="B">
<Invoice InvoiceKey="200">

<invoiceitem ItemKey="18"/>
<invoiceitem ItemKey="69"/>

</Invoice>
</ORDERS>

</BODY>
</ItemLocations>

Elements of three separate modules, or documents representing a database have been merged to
produce a fourth valid document. Our goal of modularization has been accomplished.

It is important to remember that XInclude only deals with infosets. So the primary document created by
XInclude is only an infoset within a document. It is also possible to include a complete XML document
as an inclusion, but only the elements of the document will replace the XInclude, not the document's
definition or schema.

Another point worth noting is that the base URI property of the included items is retained after
merging. That means relative URI references in the included infoset resolve to the same URI that would
have applied in the original documents, despite being included into a document with a potentially
different base URI. Other properties of the original infosets (including namespaces) are also preserved.

The parse Attribute and Other Considerations

As well as the href attribute, which specifies the location of the items we want to include, the include
element has an optional parse attribute. This specifies whether or not to include the resource as parsed
XML or as text:

� A value of xml indicates that the resource must be parsed as XML and the infosets merged

� A value of text indicates that the resource must be included as the contents of a text node

Other Technologies (XBase, XPointer, XInclude, XHTML, XForms)

397

If the parse attribute is not specified, xml is assumed. The value of this attribute can have
several effects.

For one thing, when parse="xml", the fragment part of the URI reference is interpreted as an
XPointer, indicating that only part of the included item is the target for inclusion. However, there is
currently no standard that defines fragment identifiers for plain text, so it's not allowed to specify a
fragment identifier when parse="text".

There are also a few points to be aware of when recursively processing an include element. Processing
an include element with an include location that has already been processed is not allowed. That gives
us the following rules:

� An inclusion with parse="text" or parse="cdata" may reference itself, although an
include element with parse="xml" (or no specified parse value) cannot

� An inclusion may identify a different part of the same resource

� Two non-nested inclusions may identify a resource which itself contains an inclusion

� An inclusion of the xinclude:include, its elements, or ancestors that have already been
parsed is not allowed

XInclude Advantages
Besides the obvious time saving qualities of XInclude, why else would we want to use it? Let's look why
XInclude compliments XML so well:

� Processing of an XML document occurs at parse time, while XInclude operates on information
sets not capable of being parsed by themselves.

� Because XInclude deals with information sets, it is also independent of XML validation.

� Because XInclude is free from XML validity tests, information sets can be included within a
parent document independently on the fly, without having to pre-declare inclusions.

� XInclude combined with XPointer can replace certain forms of XML altogether. In other
words, the desired data can be combined from several different databases without having to
validate any of them to form a XML-like document.

Why have the XInclude parsed by a different processor? Well, the problem is that if you use an XLink,
for example, to point towards some data, everything returned has to be parsed and validated as if it was
a self-contained XML document. With an XInclude, the document might not be valid until complete,
and possibly not even then. The XInclude allows parsing to occur at a low level, validating against any
DTDs, if specified, before returning the entire XML to the requestor.

XInclude Summary
XInclude allows the dynamic creation of infosets without the need for validation. This advance form of
XML modularity is very powerful, and will allow for rich interaction with XML databases when the
draft becomes a recommendation.

Chapter 10

398

XHTML
XHTML is a reformulation of HTML in XML. The main motivation is two-fold:

� There have been many new elements introduced within various specialized versions of HTML
that have led to cross-platform compatibility problems. XML allows us to introduce new
elements or additional element attributes to cope with the increasing need for new markup,
without compromising compatibility. XHTML allows extensions through XHTML modules,
which let developers combine existing and new feature sets.

� There's a growing need to provide a standard that encompasses the whole range of browser
platforms (cell phones, televisions, desktops, etc). XHTML is aimed at a broader range of end
user agents than HTML.

XHTML inherits some of the stricter rules of XML, including validity. XHTML will also allow simple
HTML type documents to use the technologies listed in this chapter.

XHTML 1.0 was the first reformulation of HTML 4.0 in XML (http://www.w3.org/TR/xhtml1/). One of
our stated aims is also to modularize the elements and attributes into collections, so that they can be
used in documents that combine HTML with other tag sets. These modules are defined in HTML
Modularization (http://www.w3.org/TR/xhtml-modularization/)

One of the cores to XHTML is this modular format, making it easy to use with other XML technologies.
This modularization is also extended to the other technologies mentioned in this chapter.

How XHTML differs from HTML
In this section, we'll look at the differences between XHTML and HTML 4. Bear these differences in
mind – there aren't that many of them, and to anyone who knows XML, they are all quite obvious.
However, if you're familiar with any HTML, they may catch you out if you've already slipped into any
'bad' coding habits with HTML.

Since XHTML is a reformulation of HTML in XML, everything we know about well-formed documents
in XML applies in XHTML. That means that, unlike in HTML, XHTML requires that:

� We must provide a DTD declaration at the top of the file:

PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

SYSTEM "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"

We didn't need this in HTML because the latest browsers came equipped able to decipher any
type of HTML. But now with extensibility there is no way a browser can second guess new
additions to XHTML.

� We must include a reference to the XML namespace in the <html> element:

<html xmlns="http://www.w3.org/TR/xhtml1">

Note that the above reads …XHTML1, ending with a number '1' and not two letter 'L's.

� XHTML like XML is case sensitive, and tag names and attribute names must be given in lower
case. In HTML, case wasn't important.

Other Technologies (XBase, XPointer, XInclude, XHTML, XForms)

399

� In HTML, we could get away with not including closing tags, and having elements overlap. In
XHTML, we must close tags and indicate empty elements, just like in XML. Tags must also
nest properly.

� <head> and <body> elements in HTML were optional. In XHTML, we may not omit <head>
and <body> elements, and the first element in the head must be the <title> element.

� All attribute values must be enclosed in quotation marks, and may not be 'minimized'; we must
write, for example:

<input checked="checked">

whereas in HTML we could get away with:

<input checked>

� To avoid < and & characters within <style> and <script> elements being interpreted as the
beginning of markup, they must contain a CDATA line:

<script>
<![CDATA[
... unescaped script content ...
]]>
</script>

These rules make it trivially easy for browsers to determine the hierarchical structure described by the
tags without knowing the exact tags beforehand. This is unlike HTML, which in practice demands an
expert system that embodies knowledge of what elements can include which tags, and knowledge of
how to deal with the real-world errors commonly found in HTML documents. XHTML makes it much
easier for browsers to support combinations of XHTML and other XML tag sets, like those we might
design ourselves. The parser will be able to completely parse the document without any external
information.

Let's see how these differences might affect us by comparing a bare-bones HTML page (full of 'bad
code') and its corresponding XHTML page.

First, the HTML page (ch11_ex01.html):

<TITLE>very lax<HTML>
<HEAD>
<TITLE>wrong</TITLE>
<META name="description"

content="Working, but really messy code, isn't it.">
<META name="keywords" content="many, many keywords">

</HEAD>
<BODY>
<CENTER>
<H1>HTML to XHTML</H1>
<P>
It is not that difficult to upgrade one's HTML to XHTML.

Just follow a few rules:

You need a DTD to validate against.
refer to namespaces.
Tags should be nested.
Elements should be in lower case.

Chapter 10

400

Quote all attributes.
Unminimize attributes.
Correctly tag empty elements.
White space handling.
Escape or externalize
script and style elements.

id instead of name.
Tags should be closed properly.
Handle layout with styles.

<HR width=60% size=1>

This is what the messy HTML looks like on IE 5:

When recast into XHTML this code becomes:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>

<title>Proper XHTML</title>
<meta name="description"

content="Working, but really messy code, isn't it." />
<meta name="keywords" content="many, many keywords" />

Other Technologies (XBase, XPointer, XInclude, XHTML, XForms)

401

</head>
<body>
<div style="text-align:center">
<h1>HTML to XHTML</h1>
<p>
It is not that difficult to upgrade one's HTML to XHTML.

Just follow a few rules:

</p>

You need a DTD to validate against.
refer to namespaces.
Tags should be nested.
Elements should be in lower case.
Quote all attributes.
Unminimize attributes.
Correctly tag empty elements.
White space handling.
Escape or externalize

script and style elements.
id instead of name.
Tags should be closed properly.
Handle layout with styles.

<hr width="60%" size="1" />

</div>
</body>
</html>

If you run both of these examples through an IE 5 browser the displayed results will look exactly the
same. Why is this? To decipher the example of bad code, IE 5 already contains the DTDs for all the old
versions of HTML. This is one of the reasons why your browser program needs so much space on your
hard drive and so many megabytes of RAM to run. Your browser does not, however, contain the DTD
for XHTML, so this is why you need to include it in the above example of valid XHTML code. The tags
used in both examples are the same, but the example of good code presents them according to the rules.

XHTML Flavors
XHTML currently has three flavors, making it a little looser than a true XML document. This will allow
for easier conversion between legacy HTML documents and XHTML. If you build client-independent
XML database applications in the future, it is most likely that your device front end will be one of the
flavors of XHTML.

We specify which flavor we're using in the DTD declaration at the top of the file. Let's briefly look at
each flavor.

Transitional
This flavor allows the advantage of many of the features mentioned within this chapter while making
only small changes to existing HTML practices. It ensures the bad practices we saw above can no longer
be used, but still lets you use formatting tags.

We need to specify the following in our DTD declaration:

PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
SYSTEM "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"

Chapter 10

402

Strict
This flavor forces the strict validation of XML upon the document. This type of XHTML is free of any
tags associated with layout, transferring the layout format to (CSS) style sheets.

PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
SYSTEM "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"

Frameset
This allows the partition of a browser into frames. We would suggest you stay away from this flavor.

PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
SYSTEM "http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd"

XHTML Summary
XHTML is the chosen vehicle to bring about change to HTML. The combination of the rigor of XML
with the flexibility to allow richer web pages on a range of devices – including pagers, cell phones,
televisions, and cars – is the next generation of modularized HTML.

XHTML is a currently a recommendation; while browser support is not widespread we do suggest you
gear up on it.

If you would like more of an introduction to XHTML, Wrox's Beginning XHTML, ISBN 1-
861003-43-9, is a great book for more information.

XForms
XForms are the next generation of web forms. The idea behind XForms is to separate the user interface
from the data model and logic layer. This will enable the same form to be used irrespective of the user
interface, be it a sheet of paper or a handheld device.

XForms should also reduce the need for scripting (although scripts can be used if necessary) –
validations, dependencies, and basic calculations will be possible without the use of a scripting language.
They will work by transferring form data as XML. So, as XForms are an application of XML, you'll be
able to combine them with other XML based languages, like XHTML.

How Do XForms Differ from HTML Forms?
We are all familiar with the most useful way to allow browsers to exchange data – HTML forms. A
typical HTML form might look something like this:

<FORM ACTION="process.asp" METHOD="GET" NAME="userform">
<P>What is your name?
<INPUT TYPE="text" NAME="namequery">
<P>What is your sex?
Male <INPUT TYPE="radio" NAME="optsex" VALUE="male">
Female <INPUT TYPE="radio" NAME="optsex" VALUE="female">
<P>Click if you don't want junk mail
<INPUT TYPE="checkbox" NAME="chkjunk" VALUE="no">

</FORM>

Other Technologies (XBase, XPointer, XInclude, XHTML, XForms)

403

As you can see from the code, this very basic HTML form has three different types of input encased by
FORM tags. The ACTION attribute of the FORM tag tells us that this form will be processed by an ASP page
called process.asp. The process.asp file would mostly likely provide some form validation, and insert
this information into a database.

Most HTML forms take on this basic idea in one way or another. This is great for desktop browsers, but what
about the other thin devices?

For example, if we sent this form to a pager via WML, it would be impossible for the pager to answer
the first question without a text interface. Some modern pagers do have a text interface, but we would
be limiting our device types. By splitting the presentation layer away from the backend, we could easily
adjust the way this question is presented depending on the type of user device being used.

That's the essence of XForms. We can just define the one data model, and this can be used via any interface to
interact with the user – handheld devices, television, accessibility devices, printers, and scanners. And
don't forget paper as well. Yes, I said paper. The aim is that XForms should allow a user to print a form,
fill it in by hand, and scan it back. Wow!

The Model
So how are XForms going to achieve all of this? Take a look at the following diagram:

User
Interface

Instance
Data

Datamodel
XML-encoded

Data

Model-View-Controller
Paradigm with getter
and setter methods

Datamodel
constrains data

For exchange
with Web Server

XForms comprise three layers, which allows us to clearly separate the purpose of the form from the
presentation.

Let's briefly look at each layer.

The Data Model
The purpose of the XForms data layer is to define the data model for the form. You can use built-in data
types or roll your own. Currently the data types are being built on top of XML Schema, although the
syntax is a light-weight version, simpler than XML Schema proper.

Chapter 10

404

The Logic Layer
This layer is where we specify dependencies between our fields (or data values), and define whatever
constraints are required. Although one of the aims of XForms is to reduce the need for scripting, you
will still be able to use other scripting languages such as JavaScript, if that's the way you want to go.
However, the XForms syntax itself will build on the familiar technologies of spread sheets and existing
forms packages. This is all part of the aim to make XForms easy for current HTML programmers to
understand.

The Presentation Layer
The presentation layer is where the data model is translated into the media-specific end product. This
layer basically consists of markup for form controls. The presentation is tailored to meet a particular
user's needs, while keeping the intended business logic of the form. We'll see the functions that allow us
to do this shortly.

Each form control is bound to a field in the data model, where this field can have more than one
presentation control bound to it. Two or more form controls will be able to be bound to the same data
value, so that if the data value is updated, then the related form controls indicate that value.

Current Status
At the time of writing, the W3C were preparing a new working draft of XForms. The data model is
likely to allow either XML Schema or the light-weight syntax to be used to define the data model. The
light-weight syntax for the data model and logic is largely designed to allow HTML users with no
knowledge of the complexities of XML Schema to take full advantage of XForms.

For news on the latest working draft, see http://www.w3.org/TR/xforms-datamodel.

A Few More Features
As you can see, XForms promises to be incredibly powerful, and an excellent progression from the old
inefficient HTML forms. Considering their current status, and the fact that the specification is likely to
undergo some change, we won't continue our discussion on them beyond a basic introduction. Like so
much else in this chapter, you would be advised to make regular visits to W3C web site if you want to
keep abreast of the latest situation.

However, there are a few more features we felt as though were important enough to mention here.

DataTypes
The data types of the form elements are where a lot of the strength of XForms is developed. They are
not limited to this small subset of built-in types, but this is a good starting point. Each datatype supports
several facets, which you can use to constrain data items:

Other Technologies (XBase, XPointer, XInclude, XHTML, XForms)

405

Type Description Facet

String The most basic of types,
similar to that of a string or
variant

Min (number of characters), max (number of
characters), mask (i.e. ddddd), pattern (a
regular expression)

Boolean True or false

Number A data type where numeric
calculation could be
performed in the data layer

Min (minimum value), Max (maximum value,
integer (if true only integer values are
permitted), decimals (digits after the decimal
points)

Money A monetary value Min, Max, currency (currency codes)

Date Specified in Years, Months,
and days

Min, Max, Precision

Time Used for such things as an
appointment time

Min, Max, Precision

Duration a duration represented in
years, months, hours,
minutes, days or seconds

Precision

URI Representation of a URI Schema

Binary Used for specific media types Type (mime types)

Common Facets
We can further constrain data types using the following facets:

Type Description Example

Default An explicit default value to a
form field.

<string name="city"
default="New York City"/>

Read-only A datatype that cannot be
edited. Specified with the use
of the range or fixed
attribute.

<string name="customerid"
range="closed"><value>CHOPS</value>

or

<string name="customerid"
fixed="CHOPS"/>

Required Requirement of a value to be
filled in.

<string name="city" required="true"/>

Calculated Computed values. <string name="billamount"
calc="sum(item,

orderamount * price)"/>

Validation To verify that a file has a
valid value.

<string name="zipcode"
validate="validzipcode(this.value)"/>

Chapter 10

406

Data Models
The latest working draft specifies the following data model structures:

Type Description Example

enumeration Specifies a set of values. <string name="billingmethod"
range="closed">

<value>Account</value>

<value>Credit Card

</value>

<value>Cash</value

<value>Check</value

</string>

Unions Similar to enumeration but as a
collection of data types.

<union name="days">

<string name="Monday">

<string name="Tuesday">

…

</union>

Groups Made up of several datatypes.
Groups are different from unions
as they can be nested.

<group name="customer">

<string
name="fullname"/>

<string name="street"/>

<string name="city"/>

<string name="state"/>

</group>

Variant Usually used in conjunction with
group to specify a unique users
grouping.

<variant name="address">

<case locale="us">

<string
name="street"/>

<string name="city"/>

<string name="state"/>

<string name="zip"/>

</case>

<case locale="uk">

<string
name="street"/>

<string name="town"/>

<string
name="county"/>

<string
name="postcode"/>

</case>

</variant>

Arrays A sequence of data types. Used
with <group> or <union> while
specifying minOccurs or
maxOccurs.

<group name="shoppingbasket"
minOccurs="1">

<integer

name="quantity">

<string name="product">

</group>

Other Technologies (XBase, XPointer, XInclude, XHTML, XForms)

407

XForms Summary
At the time of writing the latest XForms working draft is due for publication, and will probably under go
some changes before becoming a recommendation. However, XForms looks set to be a new and
exciting attribute for the future. Finally developers will be able to use XSL and style sheets to modify
and manipulate the presentation of forms for different clients. Developers will no longer be totally
dependent on outside scripting languages to catch input errors and validate user input while asking
different device types for input.

Summary
In this chapter we touched on several important technologies that are extensions of XML. Some of these
technologies don't necessarily manipulate data to and from a database, but rather present the data or
point to location-sets of data.

We have also discovered that these technologies can and do work best with each other, and as part of
XML. Some of the points we learned were how:

� XBase builds on the HTML 4.0 BASE element to allow us to specify a base URI for an XML
document

� XPointer provides a way to point within a document as an extension of XPath, and how it can
be used with other technologies like XLink

� XInclude allows the dynamic creation of infosets without the need for validation

� XHTML is the chosen leader to bring about change to HTML. It brings the rigor of XML,
while allowing richer web pages on a wide range of devices

� XForms are set to become the next generation of forms, extending and simplifying the
provision of user-interface independent forms

As we've said throughout the chapter, at the time of writing many of these technologies are a way from
being implemented, and will undergo changes from their current state. There's little doubt though that
all of these will have an impact on the future of how we develop XML applications. Make sure you stay
tuned to http://www.w3.org so you don't miss anything.

Chapter 10

408

The XML Query Language

The XML Query Language may be the most important XML standard the W3C produces, outside of
XML itself. It is to XML what SQL is to relational data, and all the major vendors are expected to
support it. We encourage every developer who uses XML and databases to follow its development
closely. The web address where you can find more information is http://www.w3.org/XML/Query.

Except for the language syntax, the W3C XML Query Language specification is focused more on
theoretical models than implementation details. The specification is divided into four parts, each
building on the one before it: requirements, data model, algebra, and syntax. The requirements describe
a set of use cases that the XML Query Language must support. The data model lays the foundation for
the query language by formally describing the set of information available to a query. These queries
have an abstract representation in the algebra, which describes the core operations of the XML Query
Language. Of course, the most visible aspect of the XML Query Language is its syntax (of which there
will be more than one).

The W3C XML Query Language Working Group is designing the XML Query Language. At the time
of this writing, the working group has published draft versions of the requirements and data model, and
is developing the algebra and syntax. Consequently, all the information in this chapter is subject to
change. It is too early to speculate what forms the components of the XML Query Language will
ultimately take, but we can already review the existing draft documentation and some proposals that we
expect will strongly influence the design of the XML Query Language.

In addition to the W3C, other standards bodies such as the ANSI SQL 99 committee are likely to
propose XML query languages. Also, we expect that XSLT and XPath will continue to be used widely
and separately from the XML Query Language. Because the XML Query Language will undoubtedly
influence all of these XML query languages, we will also highlight them in the context of the W3C XML
Query Language.

Chapter 11

410

Requirements and Use Cases
In every design, user scenarios are paramount. These scenarios, or use cases, set out the core
requirements that the design must fulfill, and also focus the design in a particular direction.

In the case of the XML Query Language, the primary use cases involve document-centric and data-
centric views of XML. The document-centric view includes scenarios such as generating indices and
other summary information about a document and searching a document for information. In contrast,
the data-centric view treats XML as a data representation layer (in which the XML may not really exist
as documents, but instead may be surfaced through an XML interface as virtual documents). Data-
centric scenarios include data mining and updating.

We will highlight some of the use cases that the XML Query Language must support. The description
given here purposely distills the formal document into its key points. For complete details on the formal
requirements of the XML Query Language, please read the XML Query Requirements Working Draft
at http://www.w3.org/TR/xmlquery-req. Our explanations are based on the 16 August, 2000 draft.

Selection
First, the XML Query Language must support selecting portions of a document based on certain
criteria, such as the values of elements and attributes. This requirement improves on the selection
capabilities of XPath in at least two noteworthy respects:

� a query can use any XSD data type, including date

� a query can follow inter- and intra-document links, including XLinks and ID/IDREF/IDREFS-
typed values

An XML ID is analogous to a SQL primary key, scoped to one document. Within the document, all the
ID values must be unique. Each IDREF is then like a foreign key; an IDREF refers to an ID value in the
document. (IDREFS are a space-separated list of IDREF values). For example, consider this XML
document, which describes employees grouped by job function but with an ID-typed attribute (ID) and
an IDREF-typed attribute (Manager) to indicate the organization reporting structure:

<Team>
<Developer>

<Employee ID="D1" Manager="M1"/>
<Employee ID="D2" Manager="D1"/>

</Developer>
<Tester>

<Employee ID="T1" Manager="T2"/>
<Employee ID="T2" Manager="M2"/>
<Employee ID="T3" Manager="T2"/>

</Tester>
<Manager>

<Employee ID="M1" Manager="M3"/>
<Employee ID="M2" Manager="M3"/>
<Employee ID="M3"/>

</Manager>
</Team>

The XML Query Language

411

Given an <Employee> element, an XPath that selects its <Manager> is id(./@Manager). Selecting an
Employee's direct reports (those <Employee> elements for which this <Employee> is their
<Manager>) using XPath is more awkward, but can be done with a query like
//Employee[@Manager=$this/@ID]. Given an Employee (stored in the parameter $this), this
XPath searches from the top of the document for all employee elements (//Employee) and then selects
only those whose Manager attribute equals the ID attribute of this <Employee> element.

The XML Query Language will be able to follow these relationships and others more easily.
Technically, this makes the XML Query Language a graph query language; however, we expect that
most implementations will optimize the XML Query Language for tree-like navigation. It is not clear at
this time how the XML Query Language will handle ID values in document fragments or in
intermediate XML data formed during the course of a query.

Other than better data type support, improved link chasing, and possibly some subtle differences in the
handling of sets and document ordering, the selection capabilities of the XML Query Language should
be functionally equivalent to those of XPath.

Transformation
A large number of the use cases amount to being able to rearrange XML into different shapes. Queries
will be able to flatten XML, promote children in the hierarchy, and create new XML content. Also,
queries will be able to select portions of XML while preserving the structure and order of the original.
This is useful if, for example, you have the text of a screen play in XML form, and you want to create a
list of all the actors in their order of appearance in the play.

An especially important scenario is projection. Projection, or pruning sub-trees, selects only part of an
element instead of all of the element's content (including all of its descendants). For example, examine
the following XML:

<Food>
<Fruits>

<Kiwi/>
<Lime/>
<Plum/>

</Fruits>
</Food>

There is no XPath that produces:

<Fruits>
<Kiwi/>
<Lime/>

</Fruits>

Nor any XML that produces <Plum/> as its result.

An XPath such as Food/Fruits or Food/Fruits[Kiwi or Lime] selects all of the <Fruits>
elements:

<Fruits>
<Kiwi/>
<Lime/>
<Plum/>

</Fruits>

Chapter 11

412

Also, an XPath such as (Food/Fruits/Kiwi | Food/Fruits/Lime) selects only the children, and not
the enclosing <Fruits> element:

<Kiwi/>
<Lime/>

To select the <Fruits> element and only some of its children requires some kind of projection, which
we will detail shortly. In general, the transformational capabilities of the XML Query Language will
probably correspond to many features of XSLT, which can already rearrange existing XML data and
inject new XML content into the results of a transformation. However, XSLT is like using SQL over a
single table, without the ability to join to other tables!

When completed, the XML Query Language will go a step beyond XSLT in allowing content from
multiple XML documents to be incorporated into a single result. Inter-document transformation is a
powerful feature that opens the door to many new applications of XML. For example, a web developer
might use a single XML query to easily produce tables of contents or localize the content of an entire
web site.

Data Centricity
In fact, the XML Query Language will be capable of operating not only on multiple documents, but also
on document fragments. A document fragment is to a document what a tree is to a forest. Unlike a
document, which always has one top-level element, a fragment need not have an enclosing root
element. This capability is especially useful for data-centric scenarios, in which an enclosing element is
often superfluous.

The XML Query Language also includes explicit support for relational data exposed as XML through
an XML View. (For a practical example of such views in a commercial product, see Chapter 19 XML
Views in SQL Server 2000). This capability will be especially intriguing to see in released products, as
relational database vendors find ways to optimize the XML Query Language for relational data, and not
for XML.

Types and Operators
The XML Query Language will support all of the XML Schema data types (XSD), and therefore
includes user-derived data types. See http://www.w3.org/TR/xmlschema-2 for complete details on the
XML Schema Data Types. We'll just remark here that at the time of this writing, XSD has 45 built-in
types (for more detail see Chapter 5). In addition, the XML Query Language will probably define a
generic type that is the ancestor of all other types, and some collection types to be used by intermediate
query expressions.

Additional requirements stipulate that the XML Query Language support the usual collection of
arithmetic, logic, and string operations – including various kinds of sorting and indexing. Many
operations, such as sorting, will probably be expressed syntactically in a query as functions (like
sort()).

The XML Query Language

413

Data Model
The XML Query Data Model provides a foundation for the XML Query Language. The current draft
recommendation is at http://www.w3.org/TR/query-datamodel (dated 11 May, 2000 at the time of
writing). Please note that the draft recommendation is a work in progress and not an official
specification.

The data model describes the set of information available to a query, as well as basic operations for
constructing this information from new (constructors) and accessing this information (accessors). The
syntax used to describe the data model is irrelevant; it is an abstract model, not an API. In this section,
we will give an overview of the data model and some of the implementation issues that arise.

Collections
The data model defines three collection types: ordered lists (allowing duplicates), unordered sets
(without duplicates), and unordered bags (allowing duplicates).The fourth kind of collection (ordered,
without duplicates) is currently not defined in the data model. All three collection types are
heterogeneous (meaning their members may have arbitrary types, including collection types).

It is interesting to note that the data model does not treat a tree hierarchy as a collection (like most
programming languages would), but rather as a separate Node type. Before exploring the node types,
however, we should explain node references.

References
The data model includes the concept of node identity. Every instantiation of a node has its own unique
identity. Copying a node creates a new node with a different identity. The query language uses node
references to point to the original node. Operations on node references change the original, rather than
a copy of the node.

The reference to a node N is denoted by Ref(N). The data model provides two functions, ref and
deref, to map from a node instance to its reference, and vice-versa. The special reference value NaR
(Not a Reference) is used to handle the case when a value does not represent a valid node reference (for
example, an IDREF value that names an ID not in the document).

Nodes
The data model defines eight node types. One of these, ValueNode, includes a separate type definition,
so we will consider it separately in the next section. Another, InfoItemNode corresponds to
information in the infoset, so we also describe it in a separate section.

The other six node types are DocNode, ElemNode, AttrNode, NSNode, PINode, and CommentNode.
As the names suggest, ElemNode corresponds to an element, AttrNode to an attribute, NSNode to a
namespace declaration, PINode to a processing-instruction, and CommentNode to a comment. These
are the usual XML document parts with which you are already familiar. The DocNode type is used to
represent document nodes; however, because the data model supports fragments a DocNode is not
required.

Chapter 11

414

In fact, a data model instance is a list, bag, or set of zero or more document, element, value, processing-
instruction, and comment node instances. Because of node identity, this means that a node cannot
belong to more than one data model instance.

Each of these node types has a constructor and zero or more accessors. The accessors return
information that was stored with the constructor. Together, the constructors and accessors suggest an
obvious, literal implementation of the data model; however, in practice other methods (such as
relational backing stores or edge tables) will likely prove to be more efficient representations.

We will describe the constructors and accessors of the node types after first explaining the scalar types
on which they depend.

Scalars and ValueNodes
In the XML Query Data Model, scalar values are exposed through the ValueNode type. Each value
node represents one of fourteen simple-type values (or a derivation of one of these simple-types). These
are binary, Boolean, decimal, double, ENTITY, float, ID, IDREF, QName, NOTATION,
recurringDuration, string, timeDuration, and uriReference.

As the names suggest, some of these are numeric types (double, decimal, float), some are date/time
types (timeDuration and recurringDuration are abstract types from which date, time, and other
traditional time types derive), and others are XML-related (ENTITY, ID, etc.). For a complete
description of these types, see the XML Schema Data Types specification at
http://www.w3.org/TR/xmlschema-2. Note that at the time of this writing, the Data Model and XML
Schema specifications are slightly out of sync (NOTATION has become a derived type in XML Schema).

The parameters to the constructors of these types, are the value and a reference to the node that defines
the type. In this way, ValueNode seamlessly supports sub-typing, because the reference can be to the
node defining the sub-type. The ValueNode type itself is a kind of abstract type; it defines no
constructor. The QName constructor (which constructs a qualified name, that is a local name possibly
with a namespace prefix) is unique among the value constructors in that it takes two values as
parameters: an optional namespace URI, and a local part. Its namespace prefix is not used, and is not
considered part of the data model.

Every ValueNode has two accessors, one to get the type reference node, and another to get a string
representation of the value. Every ValueNode also has fifteen Boolean-valued accessors to test its type:
isStringValue, isBoolValue, and more as detailed in the Schema Data Type specification.

In addition, specific sub-types of ValueNode may have their own accessors. String values have an
infoItems accessor that returns a (possibly empty) list of references to any associated
InfoItemNodes (see description of InfoItemNode later in this section). A QName value has the
accessors uriPart and localPart to retrieve the namespace-uri and local-name of the qualified
name. Finally, IDREF and uriReference both have a referent accessor that returns a reference to
the ElemNode referred to, or else NaR if no such element exists.

The various types of value nodes (or references to them) are used as parameters to the constructors for
the other node types.

The XML Query Language

415

Node Constructors and Accessors
We will now describe the other six node constructors and accessors:

The DocNode constructor takes as parameters a location and a non-empty list of child nodes. The
location is a uriReference value node, and the children are references to elements, processing-
instructions, or comments; or in other words, the usual contents of an XML document. The DocNode
provides accessors for both its location and its child list.

The ElemNode constructor takes the following parameters: a reference to a QName value node that is its
name; a set of namespace node references corresponding to namespace declarations on the element; a
set of attribute node references; a list of child node references; and a reference to a node defining the
(schema) type of the element. When there is no schema, then the type of the element is the XSD ur-
type. The children are references to element, value, processing-instruction, comment, or information
item nodes. The accessors of ElemNode correspond to these items (name, namespaces, attributes,
children, and type), plus an accessor returning a reference to the parent element of the ElemNode.

The AttrNode constructor has two parameters; one is the attribute name (a reference to a QName), and
the other is its value (a reference to a ValueNode). Like ElemNode, AttrNode provides accessors for
both of these and its parent element.

The NSNode constructor has two parameters, one a reference to the string value node that is the
namespace prefix (if any) the other a reference to a uriReference value node that is the namespace
URI (if any). Like AttrNode, NSNode provides accessors for both of these and its parent element.

The PINode constructor also takes two arguments, both references to string value nodes. The first
argument is the processing-instruction target, and the other is its string value. PINode defines accessors
for both of these and the parent node of the PINode. Unlike NSNode and AttrNode, however, PINode
can have a parent, which is a DocNode; or no parent at all if the PINode is directly part of the data
model instance.

Finally, the CommentNode constructor takes a single argument, a reference to a string value, which
contains the contents of the comment. This value reference is accessible through an accessor, and so is a
reference to the comment's parent, which, like PINode, may be a DocNode or NaR.

Information Items
The InfoItemNode type is a special, opaque node type corresponding to one of the ten infoItems in
the infoset. Because it is opaque, it cannot be queried; therefore, implementations are free to disregard it
(provided of course that they do not need to implement the infoset). For more details on
InfoItemNode, please see the infoset specification at http://www.w3.org/TR/xml-infoset, or Appendix
A of the data model specification.

Types
The data model working draft identifies a number of open issues. One in particular is the handling of
types.

For example, the data model defines the schema type of a node at the time of the node's construction.
This restriction can be unnecessarily limiting. Not only might one want to view a node as a different
type during a query (for instance, a float value as an integer), but also transformational queries will want
to alter a node's shape (and therefore its type) without altering its identity.

Chapter 11

416

Also, the data model currently does not yet handle the XSD simple types list and union. We expect
the type issues of the data model, and the XML Query Language, more generally to change before the
final specification.

Implementation Issues
From an implementer's point of view, the data model specification is primarily useful as a requirements
document. Any implementation that includes all the functionality of the data model will be able to
implement the XML Query Language on top of it. Thus the XML Query Language achieves theoretical
closure.

An implementation must provide all the functionality of the data model to support the algebra.
However, in practice, many algebraic operations will be implemented differently than suggested by the
formal data model. For example, the current data model specification requires one to have constructed
all of a node's children first (for example, a DOM-like implementation) in order to construct the node.
In practice, implementations either will not have this information (for example, SAX-like
implementation) or else will find this construction method inefficient, and will therefore not use the
formal node constructors of the data model.

Although the data model is described in a node-centric way (in which the data model is represented as
nodes in a tree, like the DOM), this does not prevent an edge-centric implementation (in which the data
model is represented as nodes in a graph). In fact, some algebraic operations may be more conveniently
expressed over an edge-centric model than a node-centric one.

Algebra
The XML Query Algebra describes the core set of operations that make up the XML Query Language.
The query algebra does not describe an implementation, but rather the abstract capabilities of the XML
Query Language. In some cases, the implementation falls out naturally from the algebra, and in other
cases there is plenty of room for experimentation.

The algebra has not yet crystallized into even a draft recommendation, so we are not permitted to
describe the algebra in any detail at this time. The query working group is expected to produce a
working draft of the algebra soon after I write this, so keep an eye on the W3C XML Query web site.

Additional background material for the interested reader is provided in the proposed algebra by
Fernández, Siméon, Suciu, and Wadler (see http://cm.bell-labs.com/cm/cs/who/
wadler/xml/index.html#algebra). From public remarks and presentations made by working group
members over the past months, we expect this paper will strongly influence the design of the XML
Query Algebra. In their paper, the authors propose a strongly-typed query algebra (in which every
expression has a known compile-time type). This algebra supports structural recursion, simple for
loops, local variables, function definitions, and all the usual features of an XML query language:
arithmetic, node construction, and an equivalent of XPath predicates or SQL WHERE clauses.

Whatever form and function the algebra finally presents, most users will interact with it through a
higher-level query language. Although the algebra constitutes the formal basis for the XML Query
Language, the most visible facet of the XML Query Language will be its syntax. In the next section, we
explore the syntax of several popular XML Query Languages, many of which have implementations
available already today.

The XML Query Language

417

Syntax
It is interesting to note that one XML Query Language requirement is that at least one syntax be
expressed using XML. We expect that the XML version(s) will be essentially XML representations of
the abstract syntax tree for the usual version(s). For instance, to represent the sum: 2+2=4, something
along the lines of the following may be used:

<equal>
<add>

<number>2</number>
<number>2</number>

</add>
<number>4</number>

</equal>

The primary benefit of an XML syntax, is that it can be operated on and transformed using XML tools,
such as the XML Query Language itself.

Although some people will claim that there should be only one method of performing a task, we tend to
agree with the Perl community and say that there's more than one way to do it. We fully expect that
there will be multiple languages supporting queries over XML, even if only one is chosen as the
standard. Some of these languages will share common technical foundations with the official XML
Query Language (such as its data model or algebra), and others will diverge completely. One can also
reasonably predict there will be small, special-purpose XML query languages, designed for particular
needs.

There are numerous languages that can query XML. A great deal of research has also gone into graph
query languages. In this section, we will review four examples the XML community has produced in
recent years, all of which will influence the design of the XML Query Language:

� XPath already a first-version standard

� XSLT already a first-version standard

� Quilt still under development

� XSQL still under development

All are subject to changes and improvements as the XML community gains greater experience with
them.

For each language, we give a brief overview, followed by a critical evaluation of its merits and
shortcomings as a query language. For comparison purposes, in each language we will express four
sample queries over the same original XML data. We base these sample queries on use case "R", as
described in the XML Query Requirements document.

The XML fragment we use for the sample queries is called ch10_ex1.xml and is as follows:

<users>
<user_tuple>

<userid>U01</userid><name>Tom Jones</name><rating>B</rating>
</user_tuple>
<user_tuple>

<userid>U02</userid><name>Mary Doe</name><rating>A</rating>
</user_tuple>

Chapter 11

418

<user_tuple>
<userid>U03</userid><name>Dee Linquent</name><rating>D</rating>

</user_tuple>
<user_tuple>

<userid>U04</userid><name>Roger Smith</name><rating>C</rating>
</user_tuple>
<user_tuple>

<userid>U05</userid><name>Jack Sprat</name><rating>B</rating>
</user_tuple>
<user_tuple>

<userid>U06</userid><name>Rip Van Winkle</name><rating>B</rating>
</user_tuple>

</users>
<items>

<item_tuple>
<item>1001</item><desc>Red Bicycle</desc>
<offered_by>U01</offered_by><reserve_price>40</reserve_price>
<start>1999-01-05</start><end>1999-01-20</end>

</item_tuple>
<item_tuple>

<item>1002</item><desc>Motorcycle</desc>
<start>1999-02-11</start><end>1999-03-15</end>
<offered_by>U02</offered_by><reserve_price>500</reserve_price>

</item_tuple>
<item_tuple>

<item>1003</item><desc>Old Bicycle</desc>
<start>1999-01-10</start><end>1999-02-20</end>
<offered_by>U02</offered_by><reserve_price>25</reserve_price>

</item_tuple>
<item_tuple>

<item>1004</item><desc>Tricycle</desc>
<start>1999-02-25</start><end>1999-03-08</end>
<offered_by>U01</offered_by><reserve_price>15</reserve_price>

</item_tuple>
<item_tuple>

<item>1005</item><desc>Tennis Racket</desc>
<start>1999-03-19</start><end>1999-04-30</end>
<offered_by>U03</offered_by><reserve_price>20</reserve_price>

</item_tuple>
<item_tuple>

<item>1006</item><desc>Helicopter</desc>
<start>1999-05-05</start><end>1999-05-25</end>
<offered_by>U03</offered_by><reserve_price>50000</reserve_price>

</item_tuple>
<item_tuple>

<item>1007</item><desc>Racing Bike</desc>
<start>1999-01-20</start><end>1999-02-20</end>
<offered_by>U04</offered_by><reserve_price>200</reserve_price>

</item_tuple>
<item_tuple>

<item>1008</item><desc>Broken Bike</desc>
<start>1999-02-05</start><end>1999-03-06</end>
<offered_by>U01</offered_by><reserve_price>25</reserve_price>

</item_tuple>
</items>
<bids>
<bid_tuple>

<userid>U02</userid><item>1001</item><bid>35</bid><date>1999-01-07</date>
</bid_tuple>

The XML Query Language

419

<bid_tuple>
<userid>U04</userid><item>1001</item><bid>40</bid><date>1999-01-08</date>

</bid_tuple>
<bid_tuple>

<userid>U02</userid><item>1001</item><bid>45</bid><date>1999-01-11</date>
</bid_tuple>
<bid_tuple>

<userid>U04</userid><item>1001</item><bid>50</bid><date>1999-01-13</date>
</bid_tuple>
<bid_tuple>

<userid>U02</userid><item>1001</item><bid>55</bid><date>1999-01-15</date>
</bid_tuple>
<bid_tuple>

<userid>U01</userid><item>1002</item><bid>400</bid><date>1999-02-14</date>
</bid_tuple>
<bid_tuple>

<userid>U02</userid><item>1002</item><bid>600</bid><date>1999-02-16</date>
</bid_tuple>
<bid_tuple>

<userid>U03</userid><item>1002</item><bid>800</bid><date>1999-02-17</date>
</bid_tuple>
<bid_tuple>

<userid>U04</userid><item>1002</item><bid>1000</bid><date>1999-02-25</date>
</bid_tuple>
<bid_tuple>

<userid>U02</userid><item>1002</item><bid>1200</bid><date>1999-03-02</date>
</bid_tuple>
<bid_tuple>

<userid>U04</userid><item>1003</item><bid>15</bid><date>1999-01-22</date>
</bid_tuple>
<bid_tuple>

<userid>U05</userid><item>1003</item><bid>20</bid><date>1999-02-03</date>
</bid_tuple>
<bid_tuple>

<userid>U01</userid><item>1004</item><bid>40</bid><date>1999-03-05</date>
</bid_tuple>
<bid_tuple>

<userid>U03</userid><item>1007</item><bid>175</bid><date>1999-01-25</date>
</bid_tuple>
<bid_tuple>

<userid>U05</userid><item>1007</item><bid>200</bid><date>1999-02-08</date>
</bid_tuple>
<bid_tuple>

<userid>U04</userid><item>1007</item><bid>225</bid><date>1999-02-12</date>
</bid_tuple>
</bids>

Note this is an XML fragment, not a well-formed XML document.

The four sample queries we will demonstrate for this data are:

1. List the item number and description of all bicycles whose auction was in progress on 1
February, 1999, ordered by item number. For this query, the expected result is:

<item_tuple><item>1003</item><desc>Old Bicycle</desc></item_tuple>
<item_tuple><item>1007</item><desc>Racing Bike</desc></item_tuple>

Chapter 11

420

2. Create a warning for all users with rating worse than "C" offering an item with reserve
price exceeding 1000. For this query, the expected result is:

<warning>
<name>Dee Linquent</name><rating>D</rating>
<desc>Helicopter</desc><reserve_price>50000</reserve_price>

</warning>

3. Find all items having no bids; for each one, list its item number and description. For this
query, the expected result is:

<item_tuple><itemno>1005</itemno><desc>Tennis Racket</desc></item_tuple>
<item_tuple><itemno>1006</itemno><desc>Helicopter</desc></item_tuple>
<item_tuple><itemno>1008</itemno><desc>Broken Bike</desc></item_tuple>

4. List each user alphabetically by name, with a list of the items (if any) for which the user
has placed bids (in alphabetical order of description). For this query, the expected result
is:

<user>
<name>Dee Linquent</name>
<item>Motorcycle</item>
<item>Racing Bike</item>

</user>
<user>

<name>Jack Sprat</name>
<item>Old Bicycle</item>
<item>Racing Bike</item>

</user>
<user>

<name>Mary Doe</name>
<item>Motorcycle</item>
<item>Red Bicycle</item>

</user>
<user>

<name>Rip Van Winkle</name>
</user>
<user>

<name>Roger Smith</name>
<item>Motorcycle</item>
<item>Old Bicycle</item>
<item>Racing Bike</item>
<item>Red Bicycle</item>

</user>
<user>

<name>Tom Jones</name>
<item>Motorcycle</item>
<item>Tricycle</item>

</user>

Now let's consider some query languages, and their abilities to execute these queries.

The XML Query Language

421

XPath
The XML Path Language, more commonly known as XPath, is a prototypical special-purpose XML
query language. Originally designed as a helper language for XSL (for some history, see
http://www.w3.org/TandS/QL/QL98/pp/xql.html), XPath has enjoyed wider acceptance in part because
of its compact syntax and ease-of-use. XPath provides ways to select nodes in an XML document based
on simple criteria such as structure, position, or content. XPath is fully described in the W3C
Recommendation at http://www.w3.org/TR/xpath (dated 16 November, 1999 at the time of this writing)
and is also covered in Chapter 8 of this book.

XPath Overview
Each XPath query is built from two basic components: navigation (using location steps) and predication
(using filter expressions). The components can be combined in a variety of ways to provide a rich
expression language from only a few syntactic elements.

Navigation involves walking from one part of the XML document to another. For example, the XPath
/Customer/child::Order consists of two location steps: one absolute step /Customer which selects
all top-level elements named <Customer>, followed by a relative step child::Order that then selects
the child elements named <Order> of the current selection. Similarly, the XPath
/Customer/attribute::Name selects the set of all attributes named Name from the top-level
elements named <Customer>. Because these are common operations, XPath provides shorthand
versions /Customer/Order and /Customer/@Name for these two queries, respectively. There are
other forms to navigate to namespaces, comments, text nodes, parents, ancestors, descendents,
and so on.

Predication can be performed either by selecting one node based on its position in the current selection,
or (more commonly) by removing nodes from the current selection if they do not meet a Boolean
condition. For example, Customer[@Name='Penelope'] selects only those Customer elements
having an attribute Name whose string value is Penelope. We often read this as "select Customers
where Name equals Penelope." Customer[2] selects the second Customer element. XPath provides
the usual kinds of arithmetic and string operations, as well as functions for getting the current node's
position or finding a node by XML ID.

Evaluating XPath as a Query Language
Despite these features, XPath leaves a lot to be desired as a query language. Although XPath provides a
very compact syntax, that syntax is definitely strange. For example, there is no character escaping
mechanism for strings, and predicates cannot be applied to the shorthand forms for the parent (..)
and self (.) axes.

Aside from these arbitrary syntactic limitations, XPath also has strange semantics. Perhaps the greatest
inconsistency is in its handling of expressions involving node sets. Sometimes XPath uses "any"
semantics; for example, relational and equality comparisons operate on any member of the set. The rest
of the time, XPath operates only on the first node in the set; for example, conversions to string or
number – which occur implicitly in many expressions – operate on only the first member of the set.
Consequently, the XPath Customer[Order/@Number > 10] may produce different results than the
XPath Customer[0+Order/@Number > 10], in spite of their deceptive similarity.

Once you learn to avoid hazards like these, XPath becomes a very convenient way to select parts of an
XML document. XPath is so compact and its syntax so familiar, since it closely resembles the syntax of
file paths and URLs, that most of the XML query languages today incorporate at least part of its syntax.

Chapter 11

422

Beyond selection, however, XPath is very limited. XPath has only three simple data types (Boolean,
string, and number), with no provision for any others. XPath has numerous string manipulation
functions, but no convenient (or efficient) way to work with case-insensitive strings or to perform regular
expressions, which many programmers are keen on using. Also, XPath queries select entire nodes; they
cannot select part of a node, or produce results combined from disparate node sources.

Finally, XPath is not a general-purpose language; it cannot construct data that was not in the original
XML, and cannot modify the original XML. Consequently, XPath cannot perform any of the sample
queries listed previously in their entirety; however, as we shall see, it comes very close.

XPath Examples
1. List the item number and description of all bicycles whose auction was in progress on 1

February, 1999, ordered by item number.

XPath cannot selectively choose only the item number and description, and it cannot sort by
item number (although it will get this sorting because that was the original document order).
Unfortunately, XPath also is incapable of performing string or date relational comparisons, so
it cannot compare the start and end dates to Feb. 1 to obtain the desired result.

Many implementations of XPath incorrectly allow an expression such as @Name > 'M' to select all
attributes Name that are greater than 'M' in the usual string order. However, the XPath
specification actually says that in such comparisons, both sides must be converted to number, and
then the numbers compared.

If XPath supported string comparisons, then this XPath:

/items/item_tuple[(contains(desc, 'Bike') or contains(desc, 'Bicycle')) and

start<='1999-02-01' and end >= '1999-02-01']

would select the entire item_tuple for the two items matching the query criteria:

<item_tuple>
<item>1003</item><desc>Old Bicycle</desc>
<start>1999-01-10</start><end>1999-02-20</end>
<offered_by>U02</offered_by><reserve_price>25</reserve_price>

</item_tuple>
<item_tuple>

<item>1007</item><desc>Racing Bike</desc>
<start>1999-01-20</start><end>1999-02-20</end>
<offered_by>U04</offered_by><reserve_price>200</reserve_price>

</item_tuple>

2. Create a warning for all users with rating worse than "C" offering an item with reserve
price exceeding 1000.

Again, XPath cannot create elements that were not in the original document, and cannot
merge portions of two different elements into a single result. However, XPath can select the
user_tuple elements matching the query:

/users/user_tuple[rating > 'C' and
userid = /items/item_tuple[reserve_price > 1000]/offered_by]

The XML Query Language

423

This produces the result:

<user_tuple>
<userid>U03</userid><name>Dee Linquent</name><rating>D</rating>

</user_tuple>

3. Find all items having no bids; for each, list its item number and description.

The following XPath:

/items/item_tuple[not(item = /bids/bid_tuple/item)]

selects all items having no bids:

<item_tuple>
<item>1005</item><desc>Tennis Racket</desc>
<start>1999-03-19</start><end>1999-04-30</end>
<offered_by>U03</offered_by><reserve_price>20</reserve_price>

</item_tuple>
<item_tuple>

<item>1006</item><desc>Helicopter</desc>
<start>1999-05-05</start><end>1999-05-25</end>
<offered_by>U03</offered_by><reserve_price>50000</reserve_price>

</item_tuple>
<item_tuple>

<item>1007</item><desc>Racing Bike</desc>
<start>1999-01-20</start><end>1999-02-20</end>
<offered_by>U04</offered_by><reserve_price>200</reserve_price>

</item_tuple>
<item_tuple>

<item>1008</item><desc>Broken Bike</desc>
<start>1999-02-05</start><end>1999-03-06</end>
<offered_by>U01</offered_by><reserve_price>25</reserve_price>

</item_tuple>

4. List each user alphabetically by name, with a list of the items (if any) for which the user
has placed bids (in alphabetical order of description).

Unable to sort alphabetically and unable to combine items with users; XPath cannot perform
any meaningful likeness of this query.

XSLT
XSLT, the eXtensible Stylesheet Language: Transformations is a language for transforming existing
XML documents into new shapes. To achieve this goal, XSLT provides a way (XPath) to easily select
parts of an XML document, and then ways to reformat or otherwise operate on that selection. For more
information about XSLT, please see the W3C specification at http://www.w3.org/TR/xslt or XSLT
Programmer's Reference, from Wrox Press ISBN 1861003129.

Chapter 11

424

XSLT Overview
XSLT uses an XML-based syntax that is declarative and inherently recursive. XSLT expresses
transformations using rules, or templates, having no side effects (meaning each template affects no
global variables or other state outside of itself). Instead of using explicitly described operations to be
carried out in a particular order, XSLT executes rules by matching them with data content. In this way,
XSLT is a data-driven query language.

XSLT provides a wide variety of transformational capabilities. By design, XSLT has no mechanism for
modifying the original XML; instead, an XSLT query results in a copy of the data (often transformed
into another representation, such as HTML). A style sheet can also create a new XML document from
fresh (by embedding it in the style sheet) and delete an XML document (by producing no output),
although these are interesting only as theoretical exercises.

A typical XSLT style sheet contains one or more templates that match elements by name. When a
template is matched by the input data, the template's rules are executed. All XPath selections are made
relative to the current context, which is that matching element.

Ordinary XML in the template is output directly, but more importantly, elements in the XSLT
namespace describe operations on the input data. These operations include copying the input data
directly to the output, or using some portion of the input data in the output. We will see examples of
these operations later in this section. Finally, a default rule is applied to input data that is not matched
by any rule; the default rule copies the values of attribute and text nodes to the output.

XSLT as a Query Language
Overall, XSLT is a very flexible language, capable of performing all four of our example queries. Using
include, XSLT can even operate on multiple documents. However, XSLT does suffer from a few
drawbacks. One is that it is not currently XSD-aware, and has the same limited data type support as
XPath. A few features are noticeably absent in XSLT; for example, there is no (standard) method for
getting the current date or time.

Also, XSLT is not prepared to operate on XML fragments, but instead requires well-formed XML
documents. Finally, XSLT is very hard to optimize; in fact, every XSLT implementation at the time of
this writing requires the entire document to be loaded into memory before the XSLT can be executed.
Obviously, this limitation must be solved before XSLT can be applied effectively to large XML datasets
(with many millions of nodes).

XSLT Examples
All of these examples require that we wrap the instance data with an enclosing top-level element, say
<root>. Otherwise, XSLT is capable of performing all four queries; in fact, we will use the XPath
partial solutions previously described in constructing these XSLT queries.

1. List the item number and description of all bicycles whose auction was in progress on 1
February, 1999, ordered by item number.

XSLT solves this query very effectively:

<xsl:transform version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="root">

<xsl:apply-templates select="items/item_tuple[(contains(desc, 'Bike') or

contains(desc, 'Bicycle')) and start <= '1999-02-01' and end >=
'1999-02-01']">

The XML Query Language

425

<xsl:sort select="item"/>
</xsl:apply-templates>

</xsl:template>
<xsl:template match="item_tuple">

<item_tuple>
<item><xsl:value-of select="item"/></item>
<desc><xsl:value-of select="desc"/></desc>

</item_tuple>
</xsl:template>

</xsl:transform>

2. Create a warning for all users with rating worse than "C" offering an item with reserve
price exceeding 1000.

Joins are somewhat more difficult in XSLT (just like in XPath), but they can be done. In this
example, we cannot reuse the XPath query used previously without modification, because the
results must contain data from several parts of the XPath. Also, we must use variables or some
other workaround that allows us to select values from both side of the join.

<xsl:transform version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="root">

<xsl:apply-templates select="items/item_tuple[reserve_price > 1000]"/>

</xsl:template>
<xsl:template match="item_tuple">

<xsl:variable name="desc" select="desc"/>
<xsl:variable name="price" select="reserve_price"/>
<xsl:variable name="by" select="offered_by"/>
<xsl:for-each select="/root/users/user_tuple[rating > 'C' and userid =

$by]">
<warning>

<name><xsl:value-of select="name"/></name>
<rating><xsl:value-of select="rating"/></rating>
<desc><xsl:value-of select="$desc"/></desc>
<reserve_price><xsl:value-of select="$price"/></reserve_price>

</warning>
</xsl:for-each>

</xsl:template>
</xsl:transform>

3. Find all items having no bids; for each, list its item number and description.

<xsl:transform version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="root">

<xsl:apply-templates select="items/item_tuple[not(item =
/root/bids/bid_tuple/item)]"/>

</xsl:template>
<xsl:template match="item_tuple">

<item_tuple>
<itemno><xsl:value-of select="item"/></itemno>
<desc><xsl:value-of select="desc"/></desc>

</item_tuple>
</xsl:template>

</xsl:transform>

Chapter 11

426

4. List each user alphabetically by name, with a list of the items (if any) for which the user
has placed bids (in alphabetical order of description).

<xsl:transform version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="root">

<xsl:apply-templates select="users/user_tuple">
<xsl:sort select="name"/>

</xsl:apply-templates>
</xsl:template>
<xsl:template match="user_tuple">

<user>
<name><xsl:value-of select="name"/></name>
<xsl:variable name="id" select="userid"/>
<xsl:apply-templates select="/root/bids/bid_tuple[userid=$id]" />

</user>
</xsl:template>
<xsl:template match="bid_tuple">

<xsl:variable name="item" select="item"/>
<xsl:apply-templates select="//item_tuple[item = $item]">

<xsl:sort select="desc"/>
</xsl:apply-templates>

</xsl:template>
<xsl:template match="item_tuple">

<item><xsl:value-of select="desc"/></item>
</xsl:template>

</xsl:transform>

Quilt
Created by Don Chamberlain, Dana Florescu, and Jonathan Robie, Quilt is one of many proposed
XML Query Languages. See http://www.almaden.ibm.com/cs/people/chamberlin/quilt.html for more
details and prototype implementations. In this section, we describe the version of Quilt outlined in the
document "Quilt: An XML Query Language for Heterogeneous Data Sources" which can be found on
the Web at the site above.

Quilt Overview
Named for its patchwork heritage, Quilt includes concepts from many other languages. Like XSLT,
Quilt uses path expressions based on XPath to refer to parts of the document. Quilt adds to this a
function document() to load XML from a URL, and a dereference operator -> similar to the id()
function in XPath to follow ID references.

A typical Quilt query consists of a so-called "flower" expression, named after the initials FLWR that
stand for the individual parts of the query: FOR, LET, WHERE, RETURN. The FOR clause binds variables to
the members of a nodeset-valued expression, similar to iterators in other languages. The LET clause
binds variables to expressions, possibly formed from the variables bound in the FOR clause. The WHERE
clause filters the variable expressions like an SQL WHERE clause, or XPath predicate. Finally, the
RETURN clause generates the output of the query.

Every query contains one or more FOR clauses, zero or more LET clauses, an optional WHERE clause,
and one RETURN clause. Quilt also supports NAMESPACE clauses for binding namespace prefixes to
URIs and FUNCTION clauses for user-defined functions.

The XML Query Language

427

Quilt as a Query Language
As a proposed syntax, Quilt is intended to satisfy every requirement of the XML Query Language
except one: an XML-based syntax. However, this last requirement is not an onerous one. Overall, Quilt
provides solid capabilities for selecting and creating XML, and appears to be one of the most "mature"
XML query languages after XSLT.

Quilt queries are also very compact. As you'll see in the examples later, Quilt can express the same
functionality as XSLT, in about half the space. This is partly because Quilt makes good use of variables,
and partly because Quilt is a human-readable syntax instead of an XML one.

At the time of this writing, Quilt is deficient in two respects: It has essentially no typing rules, and it
does not provide means for accessing the XML schema information associated with an XML instance.
Consequently, the computational capabilities of Quilt are less well defined than its navigation and
transformation capabilities.

Quilt Examples
It should come as no surprise that Quilt is capable or executing all four of the example queries. In fact,
there are several possible answers for each; we chose solutions to demonstrate features of Quilt, not
necessarily optimally. In each query, we refer to the original XML data as ch10_ex1.xml.

1. List the item number and description of all bicycles whose auction was in progress on 1
February, 1999, ordered by item number.

FOR $i IN document("ch10_ex1.xml")//item_tuple
WHERE (contains($i/desc, "Bike") OR contains($i/desc, "Bicycle"))

AND $i/start <= "1999-02-01" AND $i/end >= "1999-02-01"
RETURN <item_tuple>$i/item, $i/desc</item_tuple> SORTBY(item)

2. Create a warning for all users with rating worse than "C" offering an item with reserve
price exceeding 1000.

FOR $u IN document("ch10_ex1.xml")//user_tuple[rating > "C"],
$i IN document("ch10_ex1.xml")//item_tuple[reserve_price > 1000]

WHERE $u/userid = $i/offered_by
RETURN <warning>$u/name, $u/rating, $i/desc, $i/reserve_price</warning>

3. Find all items having no bids; for each, list its item number and description.

FOR $bid_items IN distinct(document("ch10_ex1.xml")/bids/bid_tuple/item)
LET $i := document("ch10_ex1.xml")//item_tuple[not(item = $bid_items/item)]
RETURN <item_tuple><itemno>$i/item/text()</itemno>,$i/desc</item_tuple>

4. List each user alphabetically by name, with a list of the items (if any) for which the user
has placed bids (in alphabetical order of description).

FOR $u IN document("ch10_ex1.xml")//user_tuple
RETURN
<user>$u/name,

FOR $b IN document("ch10_ex1.xml")//bid_tuple[userid = $u/userid]
LET $i := document("ch10_ex1.xml")//item_tuple[item = $b/item]
RETURN <item>$i/desc/text()</item> SORTBY(.)

</user> SORTBY(name)

Chapter 11

428

XSQL
Created by David Beech at Oracle, the XML Structured Query Language (XSQL) takes a different tack.
Designed to be fully compatible with SQL-99 and SQL/MM Full-Text, XSQL has as much or more in
common with SQL than with other XML query languages.

XSQL Overview
XSQL extends SQL with two important syntactic expressions. A FOR clause replaces the standard FROM
clause with iteration over a collection; this is similar in function to Quilt's FOR clause, but with a
different syntax. An AS clause names a collection. In practical terms, this wraps the results of a SELECT
(which would otherwise be an unnamed collection) with a tag element (AS tag SELECT …).

XSQL also makes use of existing features of SQL-99, such as the dereference operator -> to follow
intra-document links and WITH RECURSIVE to define recursive queries. XSQL also uses a path syntax
that is a combination of XPath and SQL-99, using . instead of / to separate steps.

XSQL as a Query Language
XSQL has the mixed blessing of building on the well-defined relational algebra and SQL syntax. It
inherits all of the benefits of SQL-99, with only small modifications to the SQL syntax and semantics.
This means XSQL is likely to see rapid adoption among SQL-99 vendors, whether or not it is chosen as
the W3C XML Query Language syntax. Developers familiar with SQL-99 will be able to transfer much
of their knowledge to XSQL.

However, this also means that XSQL carries with it all of the baggage of SQL, including many features
that are not necessary for an XML query language. By requiring implementers to support most of SQL-
99 and SQL/MM Full-text, XSQL raises the barrier to entry for new implementations from scratch.
Also, developers unfamiliar with SQL-99 may find the XSQL syntax more difficult to learn than that of
other XML query languages.

XSQL works very well for XML that is somewhat relational in structure (such as the examples we are
using to demonstrate each query language), but requires more contortions for less relational XML and
for complicated transformations. There are also places where the SQL and XML data models differ
greatly. In particular, it is not clear how XSQL will address the XSD type system.

XSQL Examples
1. List the item number and description of all bicycles whose auction was in progress on 1

February, 1999, ordered by item number.

SELECT (i.item, i.description) AS item_tuple
FOR i IN "example.xml".items
WHERE i.start <= '1999-02-01' AND i.end >= '1999-02-01'
AND (Contains(i.desc, "Bicycle" OR Contains(i.desc, "Bike"))

ORDER BY i.item

2. Create a warning for all users with rating worse than "C" offering an item with reserve
price exceeding 1000.

SELECT (u.name, u.rating, i.desc, i.reserve_price) AS warning

FOR i IN "example.xml".items, u IN "example.xml".users
WHERE u.rating > 'C' AND i.reserve_price > 1000 AND u.userid = i.offered_by

The XML Query Language

429

3. Find all items having no bids; for each, list its item number and reserve price.

SELECT (i.item AS itemno, i.desc) AS item_tuple
FOR i IN "example.xml"
WHERE NOT EXISTS
(

SELECT b
FOR b IN "example.xml".bids
WHERE b.item = i.item

)

4. List each user alphabetically by name, with a list of the items (if any) for which the user
has placed bids (in alphabetical order of description).

SELECT (u.name, (
SELECT i.desc AS item
FOR i IN "example.xml".items, b IN "example.xml".bids
WHERE b.userid = u.userid AND b.item = i.item
ORDER BY i.desc
)

) AS user
FOR u IN "example.xml".users
ORDER BY u.name

Summary
The XML Query Language consists of a data model, formal algebra, and one or more syntaxes. The
data model describes the information available to a query, including all XML node types, scalar types,
and ID/IDREF links. The algebra describes the operations that are supported over the data model, such
as navigating XML hierarchies, computing values, joining multiple XML sources, and constructing
XML results. The syntaxes are user-visible representations of the algebra; at least one will be expressed
using XML itself.

The XML Query Language should reach "candidate recommendation" status in late 2001. Many of the
technical underpinnings are already in place, and the rest of the details are being sorted out even as this
book goes to press. We expect the XML Query Language to significantly enhance the developer's
toolkit with great new ways to query XML.

Chapter 11

430

Flat Files

In this chapter, we are going to look at flat files and some of the issues encountered when moving data
between flat files and XML. We'll also learn some strategies for mapping XML to flat files and some of
the issues you may encounter when doing so; we'll also take a look at the technologies for actually
performing the mapping and see which ones best fit the bill.

Flat files store data in a way that is generally specific to the application using them and are commonly
encountered when working with legacy systems. Configuration files can often be flat files. On MS
Windows, system.ini and win.ini are examples of flat files; on UNIX, just about any configuration
file you will find is a flat file, as are the system mailboxes. Legacy systems store their data natively in a
flat-file format, or they already have mechanisms in place to import and export data in that form. One
advantage behind a flat file compared to a hash file, for instance, is that a developer can tweak settings,
or otherwise read and process data that would otherwise be in a proprietary file format. Learning to
accept data in this form and how to transform it to a more useful form in your new system can save you
from costly legacy code updates.

In this chapter, we will learn how to:

� Break flat files down into name-value pairs (to aid mapping)

� Transform delimited files to XML files

� Transform fixed-width files to XML files

� Transform tagged-record files to XML files

� Transform XML files to delimited files

� Transform XML files to fixed-width files

� Transform XML files to tagged-record files

Chapter 12

432

Types of flat files
There are three general types of flat files that are commonly used for data. If you learn how to
manipulate, create, and consume files in these three forms, you should be able to process just about any
flat file you receive, or create any flat file required by a client system.

Delimited
In a delimited file, data fields appear just as you might imagine – they are separated, or delimited, by
some predefined character (one that is not expected to appear in any of the data fields). Common
delimiters are commas, colons, tab characters, and pipe characters. Each record is typically terminated
by a hard return (a line feed-carriage return pair). If a hard return is the terminating character used,
then this causes problems when converting between UNIX and DOS/Windows, for instance. Below is
an example of a delimited file, using commas for the delimiting character. If a field is empty, there are
just two delimiting characters together, like on the second line of this example:

Kevin Williams,744 Evergreen
Terrace,Springfield,KY,12345,12/01/2000,12/04/2000
Homer Simpson,742 Evergreen Terrace,Springfield,KY,,12/02/2000,12/05/2000

Fixed-width
In a fixed-width file, each data field is allocated a particular number of bytes. This is the type of file you
are most likely to encounter if you work with COBOL legacy systems. There is often (but not always) a
hard return stored at the end of every record. Here is an example of a fixed-width file. This is a
contrived example. Typically, the length of each field will demand that the line is longer than the width
of a screen, but as long as there isn't a hard return, there is no problem.

Kevin Williams 744 Evergreen Terrace Springfield KY12345
12/01/200012/04/2000
Homer Simpson 742 Evergreen Terrace Springfield KY12345
12/02/200012/05/2000

Tagged record
Tagged-record files introduce a rudimentary form of structure into flat files. Tags may be used for
delimited or fixed width files, and serve to indicate what the rest of the record in which they appear
represents. They are typically the first field in a record. For example, we might have the first character
of our record be a tag indicating whether that record is an invoice (I), a customer (C), or an invoice line
item (L); the rest of the record's meaning would then depend on the type of record. Here is an example
of a tagged record file:

I,12/01/2000,12/04/2000
C,Kevin Williams,744 Evergreen Terrace,Springfield,KY,12345
L,blue,2 in. grommet,0001700000.10
L,silver,3 in. widget,0002200000.20
I,12/02/2000,12/05/2000
C,Homer Simpson,742 Evergreen Terrace,Springfield,KY,12345
L,red,1 in. sprocket,0001300000.30
L,blue,2 in. grommet,0001100000.10

Flat Files

433

Issues
There are a couple of common issues you will encounter when moving data from XML to flat files and
vice-versa. Let's look at those issues, and what you'll need to do to resolve them appropriately when
writing your code.

Level of Normalization
The most obvious difference between XML documents and flat files is the level of normalization – flat
files (with the exception of tagged record files) are usually completely de-normalized. Since a well-
designed XML structure will be fairly normalized, your code will have to de-normalize or normalize
data when moving to or from flat file structures. When we talk about the plan of attack for these sorts of
transformations later in the chapter, we'll see how you can perform this normalization or
denormalization with a minimum of effort.

To learn more about normalization and de-normalization, please look at Appendix B, which covers
relational databases.

Data Formatting
Another issue commonly encountered when working with flat files is the format of data. Many legacy
systems, due to size constraints or other concerns, use arcane formatting schemes that may not be
readily comprehensible to today's programmer. For example, say that a numeric field in a flat file
contains the following data:

D5417

To decipher this value, we look in the flat file description. It says that the field has two implied decimal
places, and that the first digit is replaced by the corresponding letter in the alphabet (A is 0, J is 9) if the
number represented is negative. Applying those rules to our data, we see that the human-readable value
of the field is -554.17.

If you are going to be doing a lot of work with legacy systems, you should build up a library of routines
that handle common transformations like this one.

Plan of Attack
Flat files can vary widely – there are just about as many ways to create a flat file, as there are
programmers to create them. In this section, we'll look at a process that almost always may be used to
map data from one form to another, making programming that much easier.

Transform the XML Document to name-value Pairs
The first thing you should do when attempting to transform between an XML document and a flat file is
to flatten the XML document into a list of name-value pairs. This helps to ensure that you understand
where each piece of information may appear in an XML document. Let's look at this flattening process
to see what's involved.

Chapter 12

434

Say we have the following XML structure:

<!ELEMENT InvoiceData (Invoice+, Part+, Customer+)>
<!ELEMENT Invoice (LineItem+)>
<!ATTLIST Invoice

customerIDREF IDREF #REQUIRED
orderDate CDATA #REQUIRED
shipDate CDATA #REQUIRED
shipMethod (USPS | UPS | FedEx) #REQUIRED>

<!ELEMENT LineItem EMPTY>
<!ATTLIST LineItem

partIDREF IDREF #REQUIRED
quantity CDATA #REQUIRED
price CDATA #REQUIRED>

<!ELEMENT Part EMPTY>
<!ATTLIST Part

partID ID #REQUIRED
name CDATA #REQUIRED
size CDATA #REQUIRED
color CDATA #REQUIRED>

<!ELEMENT Customer EMPTY>
<!ATTLIST Customer

customerID ID #REQUIRED
name CDATA #REQUIRED
address CDATA #REQUIRED
city CDATA #REQUIRED
state CDATA #REQUIRED
zip CDATA #REQUIRED>

In order to understand the information that may appear in this document, first we need to decompose it
into name-value pairs. To do this, we need to look at each data-level point in our XML document and
describe it in a name-value table. For each data element, we should describe what that point represents
and the format it takes. We should also describe where each data element might appear in the XML
document, using shorthand to indicate where more than one record may appear. In this notation, an
upper-case letter by itself indicates the instance of a particular element in our structure. For the example
DTD above, our name-value pair table looks like this:

Attribute Details

InvoiceData.Invoice[N].customerIDR
EF

Data type: IDREF

Description: A pointer to the customer associated
with invoice N

InvoiceData.Invoice[N].orderDate Data type: Datetime

Format: MM/DD/YYYY

Description: The date invoice N was submitted

InvoiceData.Invoice[N].shipDate Data type: Datetime

Format: MM/DD/YYYY

Description: The date invoice N was or will be
fulfilled

Flat Files

435

Attribute Details

InvoiceData.Invoice[N].shipMethod Data type: Enumerated list

Values: USPS: United States Postal Service; UPS:
United Parcel Service; FedEx: Federal Express

Description: The method used to ship the parts
ordered on invoice N

InvoiceData.Invoice[N].LineItem[M].
partIDREF

Data type: IDREF

Description: A pointer to the part ordered on line
M of invoice N

InvoiceData.Invoice[N].LineItem[M].
quantity

Data type: Numeric

Format: #####

Description: The quantity of the specified part
ordered on line M of invoice N

InvoiceData.Invoice[N].LineItem[M].
price

Data type: Numeric

Format: #####.##

Description: The price paid by the customer for
each part ordered on line M of invoice N

InvoiceData.Part[N].partID Data type: ID

Description: The identifier of part N

InvoiceData.Part[N].name Data type: String

Format: No more than 20 characters

Description: The name of part N

InvoiceData.Part[N].size Data type: String

Format: No more than 10 characters

Description: The size of part N

InvoiceData.Part[N].color Data type: String

Format: No more than 10 characters

Description: The color of part N

InvoiceData.Customer[N].name Data type: String

Format: No more than 20 characters

Description: The name of customer N

Table continued on following page

Chapter 12

436

Attribute Details

InvoiceData.Customer[N].address Data type: String

Format: No more than 30 characters

Description: The address of customer N

InvoiceData.Customer[N].city Data type: String

Format: No more than 30 characters

Description: The city of customer N

InvoiceData.Customer[N].state Data type: String

Format: No more than 30 characters

Description: The state of customer N

InvoiceData.Customer[N].postalC
ode

Data type: String

Format: No more than 30 characters

Description: The postal code of customer N

Transform the Flat File to name-value Pairs
A similar process needs to be performed on flat files. Often, if the flat file comes with the appropriate
documentation, this information will already be available in the form of a field list or some other
document. We'll see how to create name-value maps for all our example flat file documents later in the
chapter, but for now let's look at the example delimited file. A carriage return is the record delimiter as
expected. There aren't any spaces after each line, it is just where it wraps around to the next line.

Kevin Williams,744 Evergreen
Terrace,Springfield,KY,12345,12/01/2000,12/04/2000,blue 2 in.
grommet,17,0.10,silver 3 in. widget,22,0.20,,0,0.00,,0,0.00,,0,0.00
Homer Simpson,742 Evergreen
Terrace,Springfield,KY,12345,12/02/2000,12/05/2000,2,red 1 in.
sprocket,13,0.30,blue 2 in. grommet,11,0.10,,0,0.00,,0,0.00,,0,0.00

In this case, our name-value pair table would look something like this:

Value Details

record[N].fie
ld1

Data type: String

Format: No more than 20 characters

Description: The name of the customer on invoice N

record[N].fie
ld2

Data type: String

Format: No more than 30 characters

Description: The address of the customer on invoice N

Flat Files

437

Value Details

record[N].field3 Data type: String

Format: No more than 20 characters

Description: The city of the customer on invoice N.

record[N].field4 Data type: String

Format: Two characters

Description: The state of the customer on invoice N

record[N].field5 Data type: String

Format: No more than 10 characters

Description: The postal code of the customer on invoice N

record[N].field6 Data type: Datetime

Format: MM/DD/YYYY

Description: The order date for invoice N

record[N].field7 Data type: Datetime

Format: MM/DD/YYYY

Description: The ship date for invoice N.

record[N].field8 Data type: Enumerated value

Values: 1: United States Postal Service; 2: United Parcel Service; 3:
Federal Express

Description: The shipping method used to ship the parts ordered on
invoice N

record[N].field9 Data type: String

Format: No more than 30 characters

Description: The description of the part ordered in the first line item of
invoice N, in the form {color} {size} {name}

record[N].field10 Data type: Numeric

Format: #####

Description: The quantity of the part ordered in the first line item of
invoice N

record[N].field11 Data type: Numeric

Format: #####.##

Description: The price of the part ordered in the first line item of invoice N

Table continued on following page

Chapter 12

438

Value Details

record[N].field12 Data type: String

Format: No more than 30 characters

Description: The description of the part ordered in the second line item
of invoice N, in the form color size name

record[N].field13 Data type: Numeric

Format: #####

Description: The quantity of the part ordered in the second line item of
invoice N

record[N].field14 Data type: Numeric

Format: #####.##

Description: The price of the part ordered in the second line item of
invoice N

record[N].field15 Data type: String

Format: No more than 30 characters

Description: The description of the part ordered in the third line item of
invoice N, in the form color size name.

record[N].field16 Data type: Numeric

Format: #####

Description: The quantity of the part ordered in the third line item of
invoice N

record[N].field17 Data type: Numeric

Format: #####.##

Description: The price of the part ordered in the third line item of
invoice N

record[N].field18 Data type: String

Format: No more than 30 characters

Description: The description of the part ordered in the fourth line item
of invoice N, in the form color size name

record[N].field19 Data type: Numeric

Format: #####

Description: The quantity of the part ordered in the fourth line item of
invoice N

Flat Files

439

Value Details

record[N].field20 Data type: Numeric

Format: #####.##

Description: The price of the part ordered in the fourth line item of
invoice N

record[N].field21 Data type: String

Format: No more than 30 characters

Description: The description of the part ordered in the fifth line item of
invoice N, in the form color size name

record[N].field22 Data type: Numeric

Format: #####

Description: The quantity of the part ordered in the fifth line item of
invoice N

record[N].field23 Data type: Numeric

Format: #####.##

Description: The price of the part ordered in the fifth line item of
invoice N

Map the Transform
Next, we need to look at the way the data maps from our source format to our destination format. The
order in which we do this analysis is important; depending on the data we are working with, we may be
able to map the transform in one direction but not the other. Let's see an example. Say we have the
following fields in our XML structure:

InvoiceData.Invoice[N].subtotal Data type: Numeric

Format: ########.##

Description: The subtotal of the invoice (less any
applicable sales tax)

InvoiceData.Invoice[N].salestax Data type: Numeric

Format: ########.##

Description: The sales tax applied to this invoice

And this field in the flat file structure:

record[N].field23 Data type: Numeric

Format: ########.##

Description: The total of the invoice, including
applicable sales tax

Chapter 12

440

If we are transforming between these formats, we can take the data points in the XML structure and
map them to the field in the flat file structure by simply adding together the two XML data points.
However, we cannot take the field in the flat file and transform it to the two data points in the XML
structure. There's no way to reconstruct the subtotal and sales tax, given only the total (and assuming we
don't know what the sales tax rate for the invoice was, or for the purposes of this example the individual
line totals). If you are trying to move data from one format to another and it would involve the
generation of information (as in this case), you won't be able to do so without modifying either the input
or output structure.

You also need to pay attention to the formats of the data in the input and output structures. Often, you
will need to transform the data in some way to get it from the input format to the output format. It can
be useful if you derive a notation for referring to XML data points in this mapping. For example, you
might use a period (.) to indicate a contained child, and an arrow (->) to indicate a pointed-to element.

For the two samples we have been examining, the map from the delimited flat-file source to the XML
target looks something like this:

Source Target Comments

record[N].field1 InvoiceData.Invoice[N]-
>Customer.Name

Create a new customer
and link back to it from
the Invoice record created

record[N].field2 InvoiceData.Invoice[N]-
>Customer.Address

record[N].field3 InvoiceData.Invoice[N]-
>Customer.City

record[N].field4 InvoiceData.Invoice[N]-
>Customer.State

record[N].field5 InvoiceData.Invoice[N]-
>Customer.PostalCode

record[N].field6 InvoiceData.Invoice[N].orderDate

record[N].field7 InvoiceData.Invoice[N].shipDate

record[N].field8 InvoiceData.Invoice[N].shipMethod Enumerated transform:

1 to USPS
2 to UPS
3 to FedEx

record[N].field9 InvoiceData.Invoice[N].LineItem[1]-
>Part.Name,

InvoiceData. Invoice[N].LineItem[1]-
>Part.Size,

InvoiceData. Invoice[N].LineItem[1]-
>Part.Color

record[N].field10 InvoiceData.Invoice[N].LineItem[1]
.quantity

record[N].field11 InvoiceData.Invoice[N].LineItem[1]
.price

Flat Files

441

Source Target Comments

record[N].field12 InvoiceData.Invoice[N].LineItem[2]-
>Part.Name,

InvoiceData. Invoice[N].LineItem[2]-
>Part.Size,

InvoiceData. Invoice[N].LineItem[2]-
>Part.Color

Blank (all spaces) if no
line 2 appears on the
invoice.

record[N].field13 InvoiceData.Invoice[N].LineItem[2]
.quantity

record[N].field14 InvoiceData.Invoice[N].LineItem[2]
.price

record[N].field15 InvoiceData.Invoice[N].LineItem[3]-
>Part.Name,

InvoiceData. Invoice[N].LineItem[3]-
>Part.Size,

InvoiceData. Invoice[N].LineItem[3]-
>Part.Color

Blank (all spaces) if no
line 3 appears on the
invoice.

record[N].field16 InvoiceData.Invoice[N].LineItem[3]
.quantity

record[N].field17 InvoiceData.Invoice[N].LineItem[3]
.price

record[N].field18 InvoiceData.Invoice[N].LineItem[4]-
>Part.Name,

InvoiceData. Invoice[N].LineItem[4]-
>Part.Size,

InvoiceData. Invoice[N].LineItem[4]-
>Part.Color

Blank (all spaces) if no
line 4 appears on the
invoice.

record[N].field19 InvoiceData.Invoice[N].LineItem[4]
.quantity

record[N].field20 InvoiceData.Invoice[N].LineItem[4]
.price

record[N].field21 InvoiceData.Invoice[N].LineItem[5]-
>Part.Name,

InvoiceData. Invoice[N].LineItem[5]-
>Part.Size,

InvoiceData. Invoice[N].LineItem[5]-
>Part.Color

Blank (all spaces) if no
line 5 appears on the
invoice.

record[N].field22 InvoiceData.Invoice[N].LineItem[5]
.quantity

record[N].field23 InvoiceData.Invoice[N].LineItem[5]
.price

Chapter 12

442

Transforming from Flat Files to XML
First, let's look at how to approach transforming data from flat files into XML. We'll determine which
technology makes the most sense for this problem, and then see an example of each of the different file
types and code that processes them into XML.

Programming Approaches
When transforming flat files to XML, there are a couple of obvious approaches. To extract the data
from the flat file, you'll need to do traditional file parsing – reading the file a line at a time and breaking
it apart into its individual components. To produce XML output, either you can serialize the XML
structure into a string or file target manually, or you can use the XML DOM to do so. Let's look at the
advantages and disadvantages of each approach.

Manual Serialization
In this approach, the XML document, including all of the tags and other text that goes with an XML
document, is created on the fly by appending to a string. This approach has a relatively small memory
footprint, you don't need to allocate any more memory than is necessary, but tends to be error-prone (if
you accidentally write the start tag, but not the end tag, for example). The other problem with this
approach is it forces the information to be written to the target in the order prescribed by the target –
you can't append objects to the tree at will. This requires some more sophisticated parsing approaches
to obtain the desired output, especially if the target document has pointing relationships. Traditional
I/O functions can be used to generate the output string or file.

SAX
In this approach, a SAX handler is initialized and a stream of events are sent to it, causing it to generate
an XML document. Unfortunately, as you still need to manually generate start and end element events
to send to the SAX event handler, this approach is not much better than manual serialization. SAX also
requires that the document be serialized in the order mandated by its DTD. While this technique
doesn't afford much better control of XML document serialization than creating the document
manually, it is often the best choice when creating very large XML documents.

The DOM
Using this approach, a document tree is created using an implementation of the XML DOM. This
approach tends to consume more memory than a simple serialization approach, but is much less error
prone – there's no risk of accidentally omitting a start or end-tag. The random-access nature of the
DOM also allows elements to be added to the result document tree as natural processing obtains them,
rather than being required to be cached and written in the order required by the target document.
Unless you are expecting to have particular performance or memory requirements, for ease of coding
and fewer errors, you should always use the DOM to construct XML documents. We'll be using the
DOM in the examples that follow.

Handling Different Flat File Types
Let's see examples of processing for each of the file types we have discussed. For the purpose of these
examples, we'll be using VBScript and the Microsoft DOM (the technology preview version). However,
this processing approach should port equally well to any platform you choose. We'll see how to handle
delimited, fixed-width, and flat file mappings. In our examples, we'll assume that the files have specific
local filenames. Of course, you'll need to modify this code to correspond to your particular environment
and requirements.

Flat Files

443

Delimited
First, let's see how to read a delimited file and save the results to an XML document. We've already
seen examples of the delimited file and XML document that we'll be transforming. In this example, this
file is called ch12_ex1.txt

Kevin Williams,744 Evergreen
Terrace,Springfield,KY,12345,12/01/2000,12/04/2000,1,blue 2 in.
grommet,17,0.10,silver 3 in. widget,22,0.20,,0,0.00,,0,0.00,,0,0.00
Homer Simpson,742 Evergreen
Terrace,Springfield,KY,12345,12/02/2000,12/05/2000,2,red 1 in.
sprocket,13,0.30,blue 2 in. grommet,11,0.10,,0,0.00,,0,0.00,,0,0.00

This is mapping into the file ch12_ex1.xml:

<InvoiceData>
<Invoice

customerIDREF="c1"
orderDate="12/01/2000"
shipDate="12/04/2000"
shipMethod="UPS">
<LineItem

partIDREF="p1"
quantity="17"
price="0.10" />

<LineItem
partIDREF="p2"
quantity="22"
price="0.20" />

</Invoice>
<Invoice

customerIDREF="c2"
orderDate="12/02/2000"
shipDate="12/05/2000"
shipMethod="USPS">
<LineItem

partIDREF="p3"
quantity="13"
price="0.30" />

<LineItem
partIDREF="p1"
quantity="11"
price="0.10" />

</Invoice>
<Part

partID="p1"
name="grommet"
size="2 in."
color="blue" />

<Part
partID="p2"
name="widget"
size="3 in."
color="silver" />

<Part
partID="p3"
name="sprocket"
size="1 in."
color="red" />

Chapter 12

444

<Customer
customerID="c1"
name="Kevin Williams"
address="744 Evergreen Terrace"
city="Springfield"
state="KY"
postalCode="12345" />

<Customer
customerID="c2"
name="Homer Simpson"
address="742 Evergreen Terrace"
city="Springfield"
state="KY"
postalCode="12345" />

</InvoiceData>

First, we need to map from the delimited file to the XML document. We've already done this a couple
of pages earlier when we were discussing how transform maps are created.

Armed with this information, we can use the following VBScript code to open the flat file, break it
apart, and use the DOM to construct the XML equivalent. The entire listing can be found in the file,
ch12_ex1.vbs, but we'll analyze it here section by section:

Dim fso, ts, sLine
Dim el, dom, root

Dim sField(23)
Dim sThisName, sThisSize, sThisColor
Dim sSize, sColor, sName, sAddress
Dim iLineItem
Dim invoiceBucket, partBucket, customerBucket
Dim li, nl, iCust, iPart, cust, part, sDelimit

iCust = 1
iPart = 1
sDelimit = Chr(44) ' This sets the delimiter to be a comma

We're using the iCust and iPart variables to keep track of our customers and parts that we create, so
that we can generate a unique ID for each element created.

Set fso = CreateObject("Scripting.FileSystemObject")
Set dom = CreateObject("Microsoft.XMLDOM")
Set root = dom.createElement("InvoiceData")
dom.appendChild root

We create a FileSystemObject for reading the flat file and writing the XML output, and a DOM
object for building the XML output. We also go ahead, create the root element for the DOM output,
and add it to the document tree.

Set invoiceBucket = dom.createDocumentFragment()
Set partBucket = dom.createDocumentFragment()
Set customerBucket = dom.createDocumentFragment()

Flat Files

445

This is a common technique when building up an XML document with ordered elements. As we parse
the invoices from the flat file, we'll be generating Part and Customer elements, as we need them. The
above variables are going to act as buckets to hold the invoice, part, and customer information in three
different places so that they can be output consecutively as we require. Sorting them into groups as the
flat file is being parsed by using XMLDocumentFragment objects, allows us to easily build the final
output for the file – as our output structure requires us to write every Invoice element, then all the
Part elements, and then all the Customer elements to the document, in that order.

Set ts = fso.OpenTextFile("invoicedelim.txt")
do while ts.AtEndOfStream <> True

s = ts.ReadLine
for iField = 1 to 22

sField(iField) = left(s, InStr(s, sDelimit) - 1)
s = mid(s, InStr(s, sDelimit) + 1)

next
sField(23) = s

We know we have a comma-delimited file, so we break apart each line into fields based on the
delimiting character we are expecting. Naturally, if we can't do this (for example, if there aren't enough
delimiters in one record – or too many), we would add error handling to report this error to the user. At
this point, the sField() array contains all of the fields found on one record of the flat file.

Set el = dom.createElement ("Invoice")

Since each record in our flat file corresponds to one invoice, we can create that Invoice element now.
We add it to our Invoice document fragment so that we will be able to write all the invoices out as a
group to the main document at the end of the process.

' check to see if we have this customer yet
el.setAttribute "customerIDREF", "NOTFOUND"
Set nl = customerBucket.childNodes
for iNode = 0 to nl.length - 1

sName = nl.item(iNode).getAttribute("name")
sAddress = nl.item(iNode).getAttribute("address")
if sName = sField(1) and sAddress = sField(2) Then

' we presume we have this one already
el.setAttribute "customerIDREF", _

nl.item(iNode).getAttribute("customerID")
end if

next

Here, we're examining all the customers in our Customer document fragment to see if we already have
the customer referenced in this invoice. Since our XML document normalizes customers together, we
want to reuse a customer that matches the customer on this invoice if possible. For the purposes of this
analysis, we are assuming that a customer with the same name and address is a match. If we find a
match for the customer, we simply set the customerIDREF attribute of the invoice to point to it.

if el.getAttribute("customerIDREF") = "NOTFOUND" Then
' we need to create a new customer
Set cust = dom.createElement("Customer")
cust.setAttribute "customerID", "CUST" & iCust
cust.setAttribute "name", sField(1)

Chapter 12

446

cust.setAttribute "address", sField(2)
cust.setAttribute "city", sField(3)
cust.setAttribute "state", sField(4)
cust.setAttribute "postalCode", sField(5)
customerBucket.appendChild cust
el.setAttribute "customerIDREF", "CUST" & iCust
iCust = iCust + 1

end if

If we didn't find the customer, we create one and add it to the Customer document fragment, assigning
a new ID to the element. We then reference that ID from the customerIDREF attribute of the invoice
element we are creating.

el.setAttribute "orderDate", sField(6)
el.setAttribute "shipDate", sField(7)
if sField(8) = 1 Then el.setAttribute "shipMethod", "USPS"
if sField(8) = 2 Then el.setAttribute "shipMethod", "UPS"
if sField(8) = 3 Then el.setAttribute "shipMethod", "FedEx"
invoiceBucket.appendChild el

We continue to set attributes on the Invoice element, translating the values provided in the flat file to
their appropriate analogues, elements or attributes, depending on what we're using, in our XML
document as necessary. Once we've done this, we append the element to our Invoice document
fragment.

for iLineItem = 1 to 5
if sField(6 + iLineItem * 3) > "" Then

' this line item exists

Here, we iterate through each of the three-field sets that represent a line item. We know that if the
description for the item is present, the line item exists and needs to be represented in our XML target.

Set li = dom.createElement ("LineItem")
li.setAttribute "quantity", sField(6 + iLineItem * 3 + 1)
li.setAttribute "price", sField(6 + iLineItem * 3 + 2)

We create our line item element and set its attributes based on the contents of the flat file.

' break apart the description field
sWork = sField(6 + iLineItem * 3)
sThisColor = left(sWork, InStr(sWork, " ") - 1)
sWork = Mid(sWork, InStr(sWork, " ") + 1)
sThisSize = ""
While InStr(sWork, " ") > 0

sThisSize = sThisSize + left(sWork, InStr(sWork, " "))
sWork = Mid(sWork, InStr(sWork, " ") + 1)

Wend
sThisSize = Left(sThisSize, len(sThisSize) - 1)
sThisName = sWork

Flat Files

447

Here, we've decomposed the description of the part provided in the flat file into the name, size, and
color data points our XML document needs.

Set nl = partBucket.childNodes
li.setAttribute "partIDREF", "NOTFOUND"
for iNode = 0 to nl.length - 1

sName = nl.item(iNode).getAttribute("name")
sSize = nl.item(iNode).getAttribute("size")
sColor = nl.item(iNode).getAttribute("color")
If sThisName = sName And sThisSize = sSize And sThisColor = sColor _
Then

' we presume we have this one already
li.setAttribute "partIDREF", _

nl.item(iNode).getAttribute("partID")
end if

next
if li.getAttribute("partIDREF") = "NOTFOUND" Then

' we need to create a new part
Set part = dom.createElement("Part")
part.setAttribute "partID", "PART" & iPart
part.setAttribute "name", sThisName
part.setAttribute "size", sThisSize
part.setAttribute "color", sThisColor
partBucket.appendChild part
li.setAttribute "partIDREF", "PART" & iPart
iPart = iPart + 1

end if

This code is similar to the corresponding code for Customer – we check to see if we have a part in our
part list yet, and if not, we add it with a new ID. For the purposes of parts, we assume that if a part
shares the same name, size, and color with a part already created, it is the same part.

el.appendChild li

Finally, we add the line item to the Invoice element we created earlier.

end if
next

Loop
ts.Close

root.appendChild invoiceBucket
root.appendChild partBucket
root.appendChild customerBucket

Once the entire flat file has been processed and we have created all the appropriate elements, we need
to add them back to the document we are creating. We can do this by appending the document
fragments for each element type, to the root element of the XML document.

Set ts = fso.CreateTextFile("ch12_ex1.xml", True)

ts.Write dom.xml
ts.close
Set ts = Nothing

Chapter 12

448

Finally, we flush the XML to the output file, and we're done.

The output of the preceding script, when run against the sample delimited file we saw earlier, should be
the XML file detailed earlier, with the whitespace absent.

Fixed-width
You'll recall the fixed-width example we looked at earlier. Below is a similar example but with all of the
information from the last example included and a more realistic spacing between fields.

Kevin Williams 744 Evergreen Terrace Springfield
KY12345 12/01/200012/04/2000UPS blue 2 in. grommet
0001700000.10silver 3 in. widget 0002200000.20
0000000000.00 0000000000.00
0000000000.00
Homer Simpson 742 Evergreen Terrace Springfield
KY12345 12/02/200012/05/2000USPS red 1 in. sprocket
0001300000.30blue 2 in. grommet 0001100000.10
0000000000.00 0000000000.00
0000000000.00

The first thing we need to do is to map the contents of this file. Here is the map:

Value Details

record[N].field1 Data type: String

Position: 1-30

Description: The name of the customer on invoice N

record[N].field2 Data type: String

Position: 31-60

Description: The address of the customer on invoice N

record[N].field3 Data type: String

Position: 61-80

Description: The city of the customer on invoice N

record[N].field4 Data type: String

Position: 81-82

Description: The state of the customer on invoice N

record[N].field5 Data type: String

Position: 83-92

Description: The postal code of the customer on invoice
N.

Flat Files

449

Value Details

record[N].field6 Data type: Datetime

Position: 93-102

Format: MM/DD/YYYY

Description: The order date for invoice N

record[N].field7 Data type: Datetime

Position: 103-112

Format: MM/DD/YYYY

Description: The ship date for invoice N

record[N].field8 Data type: Enumerated value

Position: 113-117

Values: UPS: United States Postal Service; USPS:
United Parcel Service; FedEx: Federal Express

Description: The shipping method used to ship the parts
ordered on invoice N

record[N].field9 Data type: String

Position: 118-147

Format: No more than 30 characters

Description: The description of the part ordered in the
first line item of invoice N, in the form color size name

record[N].field10 Data type: Numeric

Position: 148-152

Format: #####

Description: The quantity of the part ordered in the first
line item of invoice N

record[N].field11 Data type: Numeric

Position: 153-160

Format: #####.##

Description: The price of the part ordered in the first
line item of invoice N

Table continued on following page

Chapter 12

450

Value Details

record[N].field12 Data type: String

Position: 161-190

Description: The description of the part ordered in the second
line item of invoice N, in the form color size name

record[N].field13 Data type: Numeric

Position: 191-195

Format: #####

Description: The quantity of the part ordered in the second line
item of invoice N

record[N].field14 Data type: Numeric

Position: 196-203

Format: #####.##

Description: The price of the part ordered in the second line
item of invoice N

record[N].field15 Data type: String

Position: 204-233

Format: No more than 30 characters

Description: The description of the part ordered in the third line
item of invoice N, in the form color size name

record[N].field16 Data type: Numeric

Position: 234-238

Format: #####

Description: The quantity of the part ordered in the third line
item of invoice N

record[N].field17 Data type: Numeric

Position: 239-246

Format: #####.##

Description: The price of the part ordered in the third line item
of invoice N

record[N].field18 Data type: String

Position: 247-276

Description: The description of the part ordered in the fourth
line item of invoice N, in the form color size name

Flat Files

451

Value Details

record[N].field19 Data type: Numeric

Position: 277-281

Format: #####

Description: The quantity of the part ordered in the fourth line item of
invoice N

record[N].field20 Data type: Numeric

Position: 282-289

Format: #####.##

Description: The price of the part ordered in the fourth line item of
invoice N

record[N].field21 Data type: String

Position: 290-319

Description: The description of the part ordered in the fifth line item of
invoice N, in the form color size name

record[N].field22 Data type: Numeric

Position: 320-324

Format: #####

Description: The quantity of the part ordered in the fifth line item of
invoice N

record[N].field23 Data type: Numeric

Position: 325-332

Format: #####.##

Description: The price of the part ordered in the fifth line item of invoice
N

Next, we map the fields back to the XML fields:

Source Target Comments

record[N].field1 InvoiceData.Invoice[N]->Customer.Name Create a new
customer and link
back to it from the
Invoice record
created

record[N].field2 InvoiceData.Invoice[N]-
>Customer.Address

record[N].field3 InvoiceData.Invoice[N]->Customer.City

record[N].field4 InvoiceData.Invoice[N]-
>Customer.State

record[N].field5 InvoiceData.Invoice[N]-
>Customer.PostalCode

Table continued on following page

Chapter 12

452

Source Target Comments

record[N].field6 InvoiceData.Invoice[N].orderDate

record[N].field7 InvoiceData.Invoice[N].shipDate

record[N].field8 InvoiceData.Invoice[N].shipMethod

record[N].field9 InvoiceData.Invoice[N].LineItem
[1]->Part.Name,

InvoiceData.
Invoice[N].LineItem[1]-
>Part.Size,

InvoiceData.
Invoice[N].LineItem[1]-
>Part.Color

record[N].field10 InvoiceData.Invoice[N].LineItem
[1].quantity

record[N].field11 InvoiceData.Invoice[N].LineItem
[1].price

record[N].field12 InvoiceData.Invoice[N].LineItem
[2]->Part.Name,

InvoiceData.
Invoice[N].LineItem[2]-
>Part.Size,

InvoiceData.
Invoice[N].LineItem[2]-
>Part.Color

Blank (all spaces) if no
line 2 appears on the
invoice.

record[N].field13 InvoiceData.Invoice[N].LineItem
[2].quantity

record[N].field14 InvoiceData.Invoice[N].LineItem
[2].price

record[N].field15 InvoiceData.Invoice[N].LineItem
[3]->Part.Name,

InvoiceData.
Invoice[N].LineItem[3]-
>Part.Size,

InvoiceData.
Invoice[N].LineItem[3]-
>Part.Color

Blank (all spaces) if no
line 3 appears on the
invoice.

record[N].field16 InvoiceData.Invoice[N].LineItem
[3].quantity

record[N].field17 InvoiceData.Invoice[N].LineItem
[3].price

record[N].field18 InvoiceData.Invoice[N].LineItem
[4]->Part.Name,

InvoiceData.
Invoice[N].LineItem[4]-
>Part.Size,

InvoiceData.
Invoice[N].LineItem[4]-
>Part.Color

Blank (all spaces) if no
line 4 appears on the
invoice.

Flat Files

453

Source Target Comments

record[N].field19 InvoiceData.Invoice[N].LineItem[4].quantity

record[N].field20 InvoiceData.Invoice[N].LineItem[4].price

record[N].field21 InvoiceData.Invoice[N].LineItem[5]-
>Part.Name,

InvoiceData. Invoice[N].LineItem[5]-
>Part.Size,

InvoiceData. Invoice[N].LineItem[5]-
>Part.Color

Blank (all
spaces) if no
line 5
appears on
the invoice.

record[N].field22 InvoiceData.Invoice[N].LineItem[5].quantity

record[N].field23 InvoiceData.Invoice[N].LineItem[5].price

We can now write the code to perform the transformation. This code can be found in the file
ch12_ex2.vbs:

Dim fso, ts, sLine
Dim el, dom, root
Dim sField(23)
Dim sThisName, sThisSize, sThisColor
Dim sSize, sColor, sName, sAddress
Dim iLineItem
Dim invoiceBucket, partBucket, customerBucket
Dim li, nl, iCust, iPart, cust, part

iCust = 1
iPart = 1

Set fso = CreateObject("Scripting.FileSystemObject")
Set dom = CreateObject("Microsoft.XMLDOM")
Set root = dom.createElement("InvoiceData")
dom.appendChild root

Set invoiceBucket = dom.createDocumentFragment()
Set partBucket = dom.createDocumentFragment()
Set customerBucket = dom.createDocumentFragment()

Set ts = fso.OpenTextFile("ch12_ex2.txt")
do while ts.AtEndOfStream <> True

s = ts.ReadLine
sField(1) = trim(mid(s, 1, 30))
sField(2) = trim(mid(s, 31, 30))
sField(3) = trim(mid(s, 61, 20))
sField(4) = trim(mid(s, 81, 2))
sField(5) = trim(mid(s, 83, 10))
sField(6) = trim(mid(s, 93, 10))
sField(7) = trim(mid(s, 103, 10))
sField(8) = trim(mid(s, 113, 5))
sField(9) = trim(mid(s, 118, 30))
sField(10) = trim(mid(s, 148, 5))
sField(11) = trim(mid(s, 153, 8))

Chapter 12

454

sField(12) = trim(mid(s, 161, 30))
sField(13) = trim(mid(s, 191, 5))
sField(14) = trim(mid(s, 196, 8))
sField(15) = trim(mid(s, 204, 30))
sField(16) = trim(mid(s, 234, 5))
sField(17) = trim(mid(s, 239, 8))
sField(18) = trim(mid(s, 247, 30))
sField(19) = trim(mid(s, 277, 5))
sField(20) = trim(mid(s, 282, 8))
sField(21) = trim(mid(s, 290, 30))
sField(22) = trim(mid(s, 320, 5))
sField(23) = trim(mid(s, 325, 8))
Set el = dom.createElement ("Invoice")
' check to see if we have this customer yet
el.setAttribute "customerIDREF", "NOTFOUND"
Set nl = customerBucket.childNodes
for iNode = 0 to nl.length - 1

sName = nl.item(iNode).getAttribute("name")
sAddress = nl.item(iNode).getAttribute("address")
if sName = sField(1) and sAddress = sField(2) Then

' we presume we have this one already
el.setAttribute "customerIDREF", _

nl.item(iNode).getAttribute("customerID")
end if

next
if el.getAttribute("customerIDREF") = "NOTFOUND" Then

' we need to create a new customer
Set cust = dom.createElement("Customer")
cust.setAttribute "customerID", "CUST" & iCust
cust.setAttribute "name", sField(1)
cust.setAttribute "address", sField(2)
cust.setAttribute "city", sField(3)
cust.setAttribute "state", sField(4)
cust.setAttribute "postalCode", sField(5)
customerBucket.appendChild cust
el.setAttribute "customerIDREF", "CUST" & iCust
iCust = iCust + 1

end if
el.setAttribute "orderDate", sField(6)
el.setAttribute "shipDate", sField(7)
el.setAttribute "shipMethod", sField(8)
invoiceBucket.appendChild el
for iLineItem = 1 to 5

if trim(sField(6 + iLineItem * 3)) > "" Then
' this line item exists
Set li = dom.createElement ("LineItem")
li.setAttribute "quantity", sField(6 + iLineItem * 3 + 1)
li.setAttribute "price", sField(6 + iLineItem * 3 + 2)
' break apart the description field
sWork = sField(6 + iLineItem * 3)
sThisColor = left(sWork, InStr(sWork, " ") - 1)
sWork = Mid(sWork, InStr(sWork, " ") + 1)
sThisSize = ""
While InStr(sWork, " ") > 0

sThisSize = sThisSize + left(sWork, InStr(sWork, " "))
sWork = Mid(sWork, InStr(sWork, " ") + 1)

Wend
sThisSize = Left(sThisSize, len(sThisSize) - 1)
sThisName = sWork
Set nl = partBucket.childNodes
li.setAttribute "partIDREF", "NOTFOUND"
for iNode = 0 to nl.length - 1

Flat Files

455

sName = nl.item(iNode).getAttribute("name")
sSize = nl.item(iNode).getAttribute("size")
sColor = nl.item(iNode).getAttribute("color")
If sThisName = sName And sThisSize = sSize And _

sThisColor = sColor Then
' we presume we have this one already
li.setAttribute "partIDREF", nl.item(iNode).getAttribute("partID")

end if
next
if li.getAttribute("partIDREF") = "NOTFOUND" Then

' we need to create a new part
Set part = dom.createElement("Part")
part.setAttribute "partID", "PART" & iPart
part.setAttribute "name", sThisName
part.setAttribute "size", sThisSize
part.setAttribute "color", sThisColor
partBucket.appendChild part
li.setAttribute "partIDREF", "PART" & iPart
iPart = iPart + 1

end if
el.appendChild li

end if
next

Loop
ts.Close

root.appendChild invoiceBucket
root.appendChild partBucket
root.appendChild customerBucket

set ts = fso.CreateTextFile("ch12_ex2.xml", True)
ts.Write dom.xml
ts.close
Set ts = Nothing

This code is virtually identical to the code used to create an XML document from a delimited file, so we
won't drill into it in too much depth here. One interesting thing to point out is the code used to create
the sField() array:

sField(1) = trim(mid(s, 1, 30))
sField(2) = trim(mid(s, 31, 30))
sField(3) = trim(mid(s, 61, 20))
sField(4) = trim(mid(s, 81, 2))
sField(5) = trim(mid(s, 83, 10))
sField(6) = trim(mid(s, 93, 10))
sField(7) = trim(mid(s, 103, 10))
sField(8) = trim(mid(s, 113, 5))
sField(9) = trim(mid(s, 118, 30))
sField(10) = trim(mid(s, 148, 5))
sField(11) = trim(mid(s, 153, 8))
sField(12) = trim(mid(s, 161, 30))
sField(13) = trim(mid(s, 191, 5))
sField(14) = trim(mid(s, 196, 8))
sField(15) = trim(mid(s, 204, 30))
sField(16) = trim(mid(s, 234, 5))
sField(17) = trim(mid(s, 239, 8))
sField(18) = trim(mid(s, 247, 30))
sField(19) = trim(mid(s, 277, 5))
sField(20) = trim(mid(s, 282, 8))
sField(21) = trim(mid(s, 290, 30))
sField(22) = trim(mid(s, 320, 5))
sField(23) = trim(mid(s, 325, 8))

Chapter 12

456

Here, we're simply taking the fields from their appropriate location in the source file line. The
extraction code could be separated into a separate subroutine that could be changed for different file
formats, while the rest of the code would stay the same for all formats. This increases the possibility of
code reuse, as the extraction process could be pulled out into a separate procedure independent of the
mapping process.

The output of this transformation, when applied to our sample, is the same as for ch12_ex1.xml
above.

Tagged Record
This is another example of a tagged record format. This one uses a fixed width as its delimiter:

I12/01/200012/04/2000UPS
CKevin Williams 744 Evergreen Terrace Springfield
KY12345
Lblue 2 in. grommet 0001700000.10
Lsilver 3 in. widget 0002200000.20
I12/02/200012/05/2000USPS
CHomer Simpson 742 Evergreen Terrace Springfield
KY12345
Lred 1 in. sprocket 0001300000.30
Lblue 2 in. grommet 0001100000.10

We need to create a mapping table for this format. For the purposes of showing how code may be
reused, we'll assume that no more than five parts may appear on one invoice (to make the tagged format
consistent with the other flat file formats we've examined). The mapping looks like this:

Value Details

Record[N].Customer.field1 Data Type: String

Position: 2-31

Description: The name of the customer on invoice N

Record[N].Customer.field2 Data Type: String

Position: 32-61

Description: The address of the customer on invoice N

Record[N].Customer.field3 Data Type: String

Position: 62-81

Description: The city of the customer on invoice N

Record[N].Customer.field4 Data Type: String

Position: 82-83

Description: The state of the customer on invoice N

Flat Files

457

Value Details

Record[N].Customer.field5 Data Type: String

Position: 84-93

Description: The postal code of the customer on invoice
N

Record[N].Invoice.field1 Data Type: Datetime

Position: 2-11

Format: MM/DD/YYYY

Description: The order date for invoice N

Record[N].Invoice.field2 Data Type: Datetime

Position: 12-21

Format: MM/DD/YYYY

Description: The ship date for invoice N

Record[N].Invoice.field3 Data Type: Enumerated value

Position: 22-26

Values: USPS: United States Postal Service; UPS: United
Parcel Service; FedEx: Federal Express

Description: The shipping method used to ship the parts
ordered on invoice N

Record[N].LineItem[M].field1 Data Type: String

Position: 2-31

Format: No more than 30 characters

Description: The description of the part ordered in the
Mth line item of invoice N, in the form color size name

Record[N].LineItem[M].field2 Data Type: Numeric

Position: 32-36

Format: #####

Description: The quantity of the part ordered in the Mth
line item of invoice N

record[N].LineItem[M].field3 Data Type: Numeric

Position: 37-44

Format: #####.##

Description: The price of the part ordered in the Mth
line item of invoice N

Chapter 12

458

Now, we map the fields back to the XML fields:

Source Target Comments

record[N].Customer.field1 InvoiceData.Invoice[N]->Customer.Name Create a new
customer and
link back to it
from the
Invoice record
created

record[N].Customer.field2 InvoiceData.Invoice[N]->Customer.Address

record[N].Customer.field3 InvoiceData.Invoice[N]->Customer.City

record[N].Customer.field4 InvoiceData.Invoice[N]->Customer.State

record[N].Customer.field5 InvoiceData.Invoice[N]-
>Customer.PostalCode

record[N].Invoice.field1 InvoiceData.Invoice[N].orderDate

record[N].Invoice.field2 InvoiceData.Invoice[N].shipDate

record[N].Invoice.field3 InvoiceData.Invoice[N].shipMethod

record[N].LineItem[M]
.field1

InvoiceData.Invoice[N].LineItem[M]-
>Part.Name,

InvoiceData.Invoice[N].LineItem[M]-
>Part.Size,

InvoiceData.Invoice[N].LineItem[M]-
>Part.Color

record[N].LineItem[M]
.field2

InvoiceData.Invoice[N].LineItem[M]
.quantity

record[N].LineItem[M]
.field3

InvoiceData.Invoice[N].LineItem[M].price

We can now write the code to perform the transformation:

Dim fso, ts, sLine
Dim el, dom, root

Dim sField(23)
Dim sThisName, sThisSize, sThisColor
Dim sSize, sColor, sName, sAddress
Dim iLineItem
Dim invoiceBucket, partBucket, customerBucket
Dim li, nl, iCust, iPart, cust, part
Dim bDone

iCust = 1
iPart = 1

Set fso = CreateObject("Scripting.FileSystemObject")
Set dom = CreateObject("Microsoft.XMLDOM")
Set root = dom.createElement("InvoiceData")
dom.appendChild root
Set invoiceBucket = dom.createDocumentFragment()
Set partBucket = dom.createDocumentFragment()
Set customerBucket = dom.createDocumentFragment()

Flat Files

459

Set ts = fso.OpenTextFile("ch12_ex3.txt")
bDone = False
If ts.AtEndOfStream Then

bDone = True ' we had an empty file
Else

sLine = ts.ReadLine
End If ' This checks to see if we have an empty file so as not to proceed

do while not bDone
If left(sLine, 1) <> "I" Then

' raise an error
End If
sField(1) = trim(mid(sLine, 2, 10))
sField(2) = trim(mid(sLine, 12, 10))
sField(3) = trim(mid(sLine, 22, 5))
Set el = dom.createElement ("Invoice")
el.setAttribute "orderDate", sField(1)
el.setAttribute "shipDate", sField(2)
el.setAttribute "shipMethod", sField(3)
invoiceBucket.appendChild el

If ts.AtEndOfStream Then
' raise an error

Else
sLine = ts.ReadLine

End If
If Left(sLine, 1) <> "C" Then

' raise an error
End If
sField(1) = trim(mid(sLine, 2, 30))
sField(2) = trim(mid(sLine, 32, 30))
sField(3) = trim(mid(sLine, 62, 20))
sField(4) = trim(mid(sLine, 82, 2))
sField(5) = trim(mid(sLine, 84, 10))
' check to see if we have this customer yet
el.setAttribute "customerIDREF", "NOTFOUND"
Set nl = customerBucket.childNodes
for iNode = 0 to nl.length - 1

sName = nl.item(iNode).getAttribute("name")
sAddress = nl.item(iNode).getAttribute("address")
if sName = sField(1) and sAddress = sField(2) Then

' we presume we have this one already
el.setAttribute "customerIDREF", _

nl.item(iNode).getAttribute("customerID")
end if

next
if el.getAttribute("customerIDREF") = "NOTFOUND" Then

' we need to create a new customer
Set cust = dom.createElement("Customer")
cust.setAttribute "customerID", "CUST" & iCust
cust.setAttribute "name", sField(1)
cust.setAttribute "address", sField(2)
cust.setAttribute "city", sField(3)
cust.setAttribute "state", sField(4)
cust.setAttribute "postalCode", sField(5)
customerBucket.appendChild cust
el.setAttribute "customerIDREF", "CUST" & iCust
iCust = iCust + 1

end if
If ts.AtEndOfStream Then

' raise an error

Chapter 12

460

Else
sLine = ts.ReadLine

End If
If Left(sLine, 1) <> "L" Then

' raise an error
End If
Do While Left(sLine, 1) = "L"

sField(1) = trim(mid(sLine, 2, 30))
sField(2) = trim(mid(sLine, 32, 5))
sField(3) = trim(mid(sLine, 37, 8))
Set li = dom.createElement ("LineItem")
li.setAttribute "quantity", sField(2)
li.setAttribute "price", sField(3)
' break apart the description field
sWork = sField(1)
sThisColor = left(sWork, InStr(sWork, " ") - 1)
sWork = Mid(sWork, InStr(sWork, " ") + 1)
sThisSize = ""
While InStr(sWork, " ") > 0

sThisSize = sThisSize + left(sWork, InStr(sWork, " "))
sWork = Mid(sWork, InStr(sWork, " ") + 1)

Wend
sThisSize = Left(sThisSize, len(sThisSize) - 1)
sThisName = sWork
Set nl = partBucket.childNodes
li.setAttribute "partIDREF", "NOTFOUND"
for iNode = 0 to nl.length - 1

sName = nl.item(iNode).getAttribute("name")
sSize = nl.item(iNode).getAttribute("size")
sColor = nl.item(iNode).getAttribute("color")
If sThisName = sName And sThisSize = sSize And sThisColor = sColor Then

' we presume we have this one already
li.setAttribute "partIDREF", nl.item(iNode).getAttribute("partID")

end if
next
if li.getAttribute("partIDREF") = "NOTFOUND" Then

' we need to create a new part
Set part = dom.createElement("Part")
part.setAttribute "partID", "PART" & iPart
part.setAttribute "name", sThisName
part.setAttribute "size", sThisSize
part.setAttribute "color", sThisColor
partBucket.appendChild part
li.setAttribute "partIDREF", "PART" & iPart
iPart = iPart + 1

end if
el.appendChild li
If ts.AtEndOfStream Then

bDone = True
sLine = "DONE"

Else
sLine = ts.ReadLine
If left(sLine, 1) <> "I" And left(sLine, 1) <> "L" Then

' raise an error
End If

End If
Loop

Loop
ts.Close

root.appendChild invoiceBucket
root.appendChild partBucket
root.appendChild customerBucket

set ts = fso.CreateTextFile("ch12_ex3.xml", True)
ts.Write dom.xml
ts.close

Flat Files

461

This code is very similar to code we have already seen. The major difference is that elements are
created as the document is read as necessary – so when an invoice line is read, an Invoice element is
created; when a customer line is read, a Customer element is created, and so on.

The result of this code when applied to our sample is again the same as the previous XML.

Transforming from XML to Flat Files
The other type of transformation, from XML to flat files, calls for a significantly different approach.
Let's look at the different programming techniques that may be used to transform an XML document to
a flat file, and then see some examples of our strategy in action.

Programming Approaches
Again, there are a couple of different ways you can tackle the conversion of XML to flat files. The most
obvious one is to parse the document and serialize it out to a flat file. However, another approach that
works a little better is to use XSLT to transform the XML document into the required output format.
Let's look at the advantages and disadvantages of each approach.

Parse and Serialize
One strategy would be to parse the XML document, using either SAX or the DOM, and then serialize
its contents to a flat file. This approach works perfectly well; however, whenever we add a new type of
flat file transformation, we need to write more code and potentially recompile it. It would be nice if we
could tweak these transforms without requiring significant code modifications.

XSLT
It's not widely used this way, yet, but XSLT is actually rather good at producing non-tagged results. It
can be used to generate tab-delimited files, or fixed-width files, or any other sort of result you might
want to produce. The extra benefit is that, to generate a different type of output for an XML document,
all you have to do is to add another style sheet. We'll be using XSLT for our examples.

Handling Different File Types
Let's take a look at an example of each of our different file types, and how we would go about
producing it from our XML document. These samples have all been tested using James Clark's XT. The
MS Windows executable can be downloaded from: ftp://ftp.jclark.com/pub/xml/xt-win32.zip. The
homepage can be found at: http://www.jclark.com/xml/xt.html.

Here is the input XML document we have been, and will continue, using:

<InvoiceData>
<Invoice

customerIDREF="c1"
orderDate="12/01/2000"
shipDate="12/04/2000"
shipMethod="UPS">
<LineItem

partIDREF="p1"
quantity="17"

Chapter 12

462

price="0.10" />
<LineItem

partIDREF="p2"
quantity="22"
price="0.20" />

</Invoice>
<Invoice

customerIDREF="c2"
orderDate="12/02/2000"
shipDate="12/05/2000"
shipMethod="USPS">
<LineItem

partIDREF="p3"
quantity="13"
price="0.30" />

<LineItem
partIDREF="p1"
quantity="11"
price="0.10" />

</Invoice>
<Part

partID="p1"
name="grommet"
size="2 in."
color="blue" />

<Part
partID="p2"
name="widget"
size="3 in."
color="silver" />

<Part
partID="p3"
name="sprocket"
size="1 in."
color="red" />

<Customer
customerID="c1"
name="Kevin Williams"
address="744 Evergreen Terrace"
city="Springfield"
state="KY"
postalCode="12345" />

<Customer
customerID="c2"
name="Homer Simpson"
address="742 Evergreen Terrace"
city="Springfield"
state="KY"
postalCode="12345" />

</InvoiceData>

Delimited
You remember our sample delimited file from earlier in the chapter? We've already performed the
mapping analysis on it. This time, however, we are going to use a tab character as the delimiter. Of
course, you can't see this character, but if you download the code from the Wrox web site, then you will
find this file as ch12_ex4.txt:

Flat Files

463

Value Details

Record[N].field1 Data type: String

Format: No more than 20 characters

Description: The name of the customer on invoice N
Record[N].field2 Data type: String

Format: No more than 30 characters

Description: The address of the customer on invoice N
record[N].field3 Data type: String

Format: No more than 20 characters

Description: The city of the customer on invoice N
record[N].field4 Data type: String

Format: Two characters

Description: The state of the customer on invoice N
record[N].field5 Data type: String

Format: No more than 10 characters

Description: The postal code of the customer on invoice N
record[N].field6 Data type: Datetime

Format: MM/DD/YYYY

Description: The order date for invoice N
record[N].field7 Data type: Datetime

Format: MM/DD/YYYY

Description: The ship date for invoice N
record[N].field8 Data type: Enumerated value

Values: 1: United States Postal Service; 2: United Parcel Service; 3:
Federal Express

Description: The shipping method used to ship the parts ordered on
invoice N

record[N].field9 Data type: String

Format: No more than 30 characters

Description: The description of the part ordered in the first line item
of invoice N, in the form color size name

record[N].field10 Data type: Numeric

Format: #####

Description: The quantity of the part ordered in the first line item of
invoice N

record[N].field11 Data type: Numeric

Format: #####.##

Description: The price of the part ordered in the first line item of
invoice N

Table continued on following page

Chapter 12

464

Value Details

record[N].field12 Data type: String

Format: No more than 30 characters

Description: The description of the part ordered in the second line
item of invoice N, in the form color size name

record[N].field13 Data type: Numeric

Format: #####

Description: The quantity of the part ordered in the second line item
of invoice N

record[N].field14 Data type: Numeric

Format: #####.##

Description: The price of the part ordered in the second line item of
invoice N

record[N].field15 Data type: String

Format: No more than 30 characters

Description: The description of the part ordered in the third line item
of invoice N, in the form color size name

record[N].field16 Data type: Numeric

Format: #####

Description: The quantity of the part ordered in the third line item of
invoice N

record[N].field17 Data type: Numeric

Format: #####.##

Description: The price of the part ordered in the third line item of
invoice N

record[N].field18 Data type: String

Format: No more than 30 characters

Description: The description of the part ordered in the fourth line
item of invoice N, in the form color size name

record[N].field19 Data type: Numeric

Format: #####

Description: The quantity of the part ordered in the fourth line item of
invoice N

record[N].field20 Data type: Numeric

Format: #####.##

Description: The price of the part ordered in the fourth line item of
invoice N

Flat Files

465

Value Details

record[N].field21 Data type: String

Format: No more than 30 characters

Description: The description of the part ordered in the fifth line item of
invoice N, in the form color size name

record[N].field22 Data type: Numeric

Format: #####

Description: The quantity of the part ordered in the fifth line item of
invoice N

record[N].field23 Data type: Numeric

Format: #####.##

Description: The price of the part ordered in the fifth line item of
invoice N

We now have to create a map in the opposite direction from the map we created earlier; that is, we
need to describe how each element in our XML document would map to the flat file.

Source Target Comments

InvoiceData.Invoice[N]->Customer.Name record[N].field1

InvoiceData.Invoice[N]->Customer.Address record[N].field2

InvoiceData.Invoice[N]->Customer.City record[N].field3

InvoiceData.Invoice[N]->Customer.State record[N].field4

InvoiceData.Invoice[N]->Customer.PostalCode record[N].field5

InvoiceData.Invoice[N].orderDate record[N].field6

InvoiceData.Invoice[N].shipDate record[N].field7

InvoiceData.Invoice[N].shipMethod record[N].field8 Enumerated
transform:

USPS to 1
UPS to 2
FedEx to 3

InvoiceData.Invoice[N].LineItem[1]-
>Part.Name,

InvoiceData.Invoice[N].LineItem[1]-
>Part.Size,

InvoiceData.Invoice[N].LineItem[1]-
>Part.Color

record[N].field9

InvoiceData.Invoice[N].LineItem[1].quantity record[N].field10

InvoiceData.Invoice[N].LineItem[1].price record[N].field11

Table continued on following page

Chapter 12

466

Source Target Comments

InvoiceData.Invoice[N].LineItem[2]-
>Part.Name,

InvoiceData. Invoice[N].LineItem[2]-
>Part.Size,

InvoiceData. Invoice[N].LineItem[2]-
>Part.Color

record[N].field12 Blank (all
spaces) if no
line 2 appears
on the invoice.

InvoiceData.Invoice[N].LineItem[2].quantity record[N].field13

InvoiceData.Invoice[N].LineItem[2].price record[N].field14

InvoiceData.Invoice[N].LineItem[3]-
>Part.Name,

InvoiceData.Invoice[N].LineItem[3]-
>Part.Size,

InvoiceData.Invoice[N].LineItem[3]-
>Part.Color

record[N].field15 Blank (all
spaces) if no
line 3 appears
on the invoice.

InvoiceData.Invoice[N].LineItem[3].quantity record[N].field16

InvoiceData.Invoice[N].LineItem[3].price record[N].field17

InvoiceData.Invoice[N].LineItem[4]-
>Part.Name,

InvoiceData. Invoice[N].LineItem[4]-
>Part.Size,

InvoiceData. Invoice[N].LineItem[4]-
>Part.Color

record[N].field18 Blank (all
spaces) if no
line 4 appears
on the invoice.

InvoiceData.Invoice[N].LineItem[4].quantity record[N].field19

InvoiceData.Invoice[N].LineItem[4].price record[N].field20

InvoiceData.Invoice[N].LineItem[5]-
>Part.Name,

InvoiceData. Invoice[N].LineItem[5]-
>Part.Size,

InvoiceData. Invoice[N].LineItem[5]-
>Part.Color

record[N].field21 Blank (all
spaces) if no
line 5 appears
on the invoice.

InvoiceData.Invoice[N].LineItem[5].quantity record[N].field22

InvoiceData.Invoice[N].LineItem[5].price record[N].field23

The style sheet that performs this translation follows. We'll include the entire style sheet first, then
dissect it afterwards. You can find the stylesheet below if you download the code from the Wrox web
site, in ch12_ex4.xsl

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:output method="text" />
<xsl:template match="InvoiceData">
<xsl:for-each select="Invoice">

<xsl:variable name="customerID" select="@customerIDREF" />
<xsl:value-of select="../Customer[@customerID=$customerID]/@name" />
<xsl:text>	</xsl:text>
<xsl:value-of select="../Customer[@customerID=$customerID]/@address" />
<xsl:text>	</xsl:text>
<xsl:value-of select="../Customer[@customerID=$customerID]/@city" />
<xsl:text>	</xsl:text>
<xsl:value-of select="../Customer[@customerID=$customerID]/@state" />
<xsl:text>	</xsl:text>

Flat Files

467

<xsl:value-of select="../Customer[@customerID=$customerID]/@postalCode" />
<xsl:text>	</xsl:text>
<xsl:value-of select="@orderDate" />
<xsl:text>	</xsl:text>
<xsl:value-of select="@shipDate" />
<xsl:text>	</xsl:text>
<xsl:choose>

<xsl:when test="@shipMethod='UPS'">
<xsl:text>1</xsl:text>

</xsl:when>
<xsl:when test="@shipMethod='USPS'">

<xsl:text>2</xsl:text>
</xsl:when>
<xsl:when test="@shipMethod='FedEx'">

<xsl:text>3</xsl:text>
</xsl:when>

</xsl:choose>
<xsl:text>	</xsl:text>
<xsl:for-each select="LineItem[position()<=5]">

<xsl:variable name="partID" select="@partIDREF" />
<xsl:variable name="partName"

select="../../Part[@partID=$partID]/@name" />
<xsl:variable name="partSize"

select="../../Part[@partID=$partID]/@size" />
<xsl:variable name="partColor"

select="../../Part[@partID=$partID]/@color" />
<xsl:value-of select="concat($partColor,' ', $partSize,' ',

$partName)" />
<xsl:text>	</xsl:text>
<xsl:value-of select="format-number(@quantity, '#####')" />
<xsl:text>	</xsl:text>
<xsl:value-of select="format-number(@price, '####0.00')" />
<xsl:text>	</xsl:text>

</xsl:for-each>
<xsl:if test="count(LineItem)<2">

<xsl:text>	0	0.00	</xsl:text>
</xsl:if>
<xsl:if test="count(LineItem)<3">

<xsl:text>	0	0.00	</xsl:text>
</xsl:if>
<xsl:if test="count(LineItem)<4">

<xsl:text>	0	0.00	</xsl:text>
</xsl:if>
<xsl:if test="count(LineItem)<5">

<xsl:text>	0	0.00	</xsl:text>
</xsl:if>
<xsl:text>
</xsl:text>

</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

Let's take a close look at our stylesheet to see how it works:

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:output method="text" />

It is important to declare the output method for the style sheet as text. In effect, this prevents XSLT
from making any assumptions about how you want the results formatted (specifically, it extracts all the
text nodes in the result tree without any escape characters like < and &.).

<xsl:template match="InvoiceData">

Chapter 12

468

InvoiceData is the root element, so the template will be executed once for the entire document.

<xsl:for-each select="Invoice">

We will process each Invoice element in our source document – these correspond to the records in
our output format. We'll navigate to the Customer and Part information as necessary.

<xsl:variable name="customerID" select="@customerIDREF" />
<xsl:value-of select="../Customer[@customerID=$customerID]/@name" />

This syntax is important, as it shows how the IDREF-ID relationships may be navigated in XSLT. In the
previous lines, we stored the customerIDREF attribute of the current invoice in the variable called
customerID; we then connect to the Customer element whose customerID attribute matches the
customerIDREF specified for the invoice, and obtain the name attribute from that element.

<xsl:text>	</xsl:text>

This is how we put in our tab delimiter. Notice that we don't need to disable output-escaping, since
we've already declared that the style sheet should output (unescaped) text. 	 is the UTF-8 Unicode
identifier for a tab character.

<xsl:value-of select="../Customer[@customerID=$customerID]/@address" />
<xsl:text>	</xsl:text>
<xsl:value-of select="../Customer[@customerID=$customerID]/@city" />
<xsl:text>	</xsl:text>
<xsl:value-of select="../Customer[@customerID=$customerID]/@state" />
<xsl:text>	</xsl:text>
<xsl:value-of select="../Customer[@customerID=$customerID]/@postalCode" />
<xsl:text>	</xsl:text>
<xsl:value-of select="@orderDate" />
<xsl:text>	</xsl:text>
<xsl:value-of select="@shipDate" />
<xsl:text>	</xsl:text>

We continue to put fields into our output, including the rest of the Customer fields and the Invoice
fields.

<xsl:choose>
<xsl:when test="@shipMethod='UPS'">

<xsl:text>1</xsl:text>
</xsl:when>
<xsl:when test="@shipMethod='USPS'">

<xsl:text>2</xsl:text>
</xsl:when>
<xsl:when test="@shipMethod='FedEx'">

<xsl:text>3</xsl:text>
</xsl:when>

</xsl:choose>

Using xsl:choose, we translate the XML enumerated value for the shipMethod attribute into the
desired format for the output.

<xsl:text>	</xsl:text>

Flat Files

469

Next, we need to process each LineItem child for the Invoice element. Note that we restrict this to five
elements, as our output format only allows five line items to be written to it.

<xsl:for-each select="LineItem[position()<=5]">
<xsl:variable name="partID" select="@partIDREF" />
<xsl:variable name="partName"

select="../../Part[@partID=$partID]/@name" />

Again, here we navigate to the appropriate part for the line item based on the partIDREF attribute of
the LineItem element.

<xsl:variable name="partSize"
select="../../Part[@partID=$partID]/@size" />

<xsl:variable name="partColor"
select="../../Part[@partID=$partID]/@color" />

<xsl:value-of select="concat($partColor,' ', $partSize,' ',
$partName)" />

We create the description field in the output by concatenating the color, size, and name attributes from
the source.

<xsl:text>	</xsl:text>
<xsl:value-of select="format-number(@quantity, '#####')" />

XSLT provides a number formatting function called format-number; we use it here to make sure our
number is in the format required by the target file.

<xsl:text>	</xsl:text>
<xsl:value-of select="format-number(@price, '####0.00')" />
<xsl:text>	</xsl:text>

</xsl:for-each>

Next, we have to do some de-normalization cleaning up. Since there are five line item slots, and we may
actually have less than five line items in our original document, we need to write blank information to
our destination file if less than five line items were found.

<xsl:if test="count(LineItem)<2">
<xsl:text>	0	0.00	</xsl:text>

</xsl:if>
<xsl:if test="count(LineItem)<3">

<xsl:text>	0	0.00	</xsl:text>
</xsl:if>
<xsl:if test="count(LineItem)<4">

<xsl:text>	0	0.00	</xsl:text>
</xsl:if>
<xsl:if test="count(LineItem)<5">
<xsl:text>	0	0.00	</xsl:text>

</xsl:if>
<xsl:text>
</xsl:text>

Chapter 12

470

Here, we write the characters for a carriage return and a line feed to ensure our target file has the hard
return at the end of the record. If the destination delimited file is intended for a UNIX system, you will
either have to change the order of the CR/LF pair being entered, or use a tool like dos2unix, or d2u to
convert the hard return character.

</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

That's all there is to it. The output from this style sheet when applied to our example should be as
follows:

Kevin Williams 744 Evergreen Terrace Springfield KY 12345 12/01/2000
12/04/2000 1 blue 2 in. grommet 17 0.10 silver 3 in. widget 22 0.20
0 0.00 0 0.00 0 0.00
Homer Simpson 742 Evergreen Terrace Springfield KY 12345 12/02/2000
12/05/2000 2 red 1 in. sprocket 13 0.30 blue 2 in. grommet 11 0.10
0 0.00 0 0.00 0 0.00

Note that we could actually take this one step further, and use the mapping tables we have created in
another document that could be used to drive the transforming document. This exercise is left to the
reader.

Fixed-width
Fixed-width files can be created in a similar fashion using XSLT. There are a couple of new tricks that
may be used to ensure that fields are the proper width – we'll see how these are done when we examine
the code. Remember that the map for our fixed-width sample file looks like this:

Value Details

record[N].field1 Data type: String

Position: 1-30

Description: The name of the customer on invoice N

record[N].field2 Data type: String

Position: 31-60

Description: The address of the customer on invoice N

record[N].field3 Data type: String

Position: 61-80

Description: The city of the customer on invoice N

record[N].field4 Data type: String

Position: 81-82

Description: The state of the customer on invoice N

Flat Files

471

Value Details

record[N].field5 Data type: String

Position: 83-92

Description: The postal code of the customer on invoice N.

record[N].field6 Data type: Datetime

Position: 93-102

Format: MM/DD/YYYY

Description: The order date for invoice N

record[N].field7 Data type: Datetime

Position: 103-112

Format: MM/DD/YYYY

Description: The ship date for invoice N

record[N].field8 Data type: Enumerated value

Position: 113-117

Values: UPS: United States Postal Service; USPS: United Parcel
Service; FedEx: Federal Express

Description: The shipping method used to ship the parts ordered on
invoice N

record[N].field9 Data type: String

Position: 118-147

Format: No more than 30 characters

Description: The description of the part ordered in the first line item
of invoice N, in the form color size name

record[N].field10 Data type: Numeric

Position: 148-152

Format: #####

Description: The quantity of the part ordered in the first line item of
invoice N

record[N].field11 Data type: Numeric

Position: 153-160

Format: #####.##

Description: The price of the part ordered in the first line item of
invoice N

Table continued on following page

Chapter 12

472

Value Details

record[N].field12 Data type: String

Position: 161-190

Description: The description of the part ordered in the second line
item of invoice N, in the form color size name

record[N].field13 Data type: Numeric

Position: 191-195

Format: #####

Description: The quantity of the part ordered in the second line item
of invoice N

record[N].field14 Data type: Numeric

Position: 196-203

Format: #####.##

Description: The price of the part ordered in the second line item of
invoice N

record[N].field15 Data type: String

Position: 204-233

Format: No more than 30 characters

Description: The description of the part ordered in the third line
item of invoice N, in the form color size name

record[N].field16 Data type: Numeric

Position: 234-238

Format: #####

Description: The quantity of the part ordered in the third line item
of invoice N

record[N].field17 Data type: Numeric

Position: 239-246

Format: #####.##

Description: The price of the part ordered in the third line item of
invoice N

record[N].field18 Data type: String

Position: 247-276

Description: The description of the part ordered in the fourth line
item of invoice N, in the form color size name

Flat Files

473

Value Details

record[N].field19 Data type: Numeric

Position: 277-281

Format: #####

Description: The quantity of the part ordered in the fourth line item
of invoice N

record[N].field20 Data type: Numeric

Position: 282-289

Format: #####.##

Description: The price of the part ordered in the fourth line item of
invoice N

record[N].field21 Data type: String

Position: 290-319

Description: The description of the part ordered in the fifth line item
of invoice N, in the form color size name

record[N].field22 Data type: Numeric

Position: 320-324

Format: #####

Description: The quantity of the part ordered in the fifth line item of
invoice N

record[N].field23 Data type: Numeric

Position: 325-332

Format: #####.##

Description: The price of the part ordered in the fifth line item of
invoice N

Next, we need to map from the XML data points to the target fields. The table detailing this mapping is
repeated below:

Source Target Comments

InvoiceData.Invoice[N]->Customer.Name record[N].field1

InvoiceData.Invoice[N]->Customer.Address record[N].field2

InvoiceData.Invoice[N]->Customer.City record[N].field3

InvoiceData.Invoice[N]->Customer.State record[N].field4

InvoiceData.Invoice[N]-
>Customer.PostalCode

record[N].field5

Table continued on following page

Chapter 12

474

Source Target Comments

InvoiceData.Invoice[N].orderDate record[N].field6

InvoiceData.Invoice[N].shipDate record[N].field7

InvoiceData.Invoice[N].shipMethod record[N].field8

InvoiceData.Invoice[N].LineItem[1]-
>Part.Name,

InvoiceData.Invoice[N].LineItem[1]-
>Part.Size,

InvoiceData.Invoice[N].LineItem[1]-
>Part.Color

record[N].field9

InvoiceData.Invoice[N].LineItem[1].quantity record[N].field10

InvoiceData.Invoice[N].LineItem[1].price record[N].field11

InvoiceData.Invoice[N].LineItem[2]-
>Part.Name,

InvoiceData.Invoice[N].LineItem[2]-
>Part.Size,

InvoiceData.Invoice[N].LineItem[2]-
>Part.Color

record[N].field12 Blank (all
spaces) if no
line 2 appears
on the
invoice.

InvoiceData.Invoice[N].LineItem[2].quantity record[N].field13

InvoiceData.Invoice[N].LineItem[2].price record[N].field14

InvoiceData.Invoice[N].LineItem[3]-
>Part.Name,

InvoiceData.Invoice[N].LineItem[3]-
>Part.Size,

InvoiceData.Invoice[N].LineItem[3]-
>Part.Color

record[N].field15 Blank (all
spaces) if no
line 3 appears
on the
invoice.

InvoiceData.Invoice[N].LineItem[3].quantity record[N].field16

InvoiceData.Invoice[N].LineItem[3].price record[N].field17

InvoiceData.Invoice[N].LineItem[4]-
>Part.Name,

InvoiceData.Invoice[N].LineItem[4]-
>Part.Size,

InvoiceData.Invoice[N].LineItem[4]-
>Part.Color

record[N].field18 Blank (all
spaces) if no
line 4 appears
on the
invoice.

InvoiceData.Invoice[N].LineItem[4].quantity record[N].field19

InvoiceData.Invoice[N].LineItem[4].price record[N].field20

InvoiceData.Invoice[N].LineItem[5]-
>Part.Name,

InvoiceData.Invoice[N].LineItem[5]-
>Part.Size,

InvoiceData.Invoice[N].LineItem[5]-
>Part.Color

record[N].field21 Blank (all
spaces) if no
line 5 appears
on the
invoice.

InvoiceData.Invoice[N].LineItem[5].quantity record[N].field22

InvoiceData.Invoice[N].LineItem[5].price record[N].field23

Flat Files

475

The style sheet that performs the translation is shown below and can be found in the code zipfile for this
book as ch12_ex5.xsl:

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:output method="text" />
<xsl:template match="InvoiceData">
<xsl:for-each select="Invoice">

<xsl:variable name="customerID" select="@customerIDREF" />
<xsl:value-of

select="substring(concat(../Customer[@customerID=$customerID]/@name,
' '), 1, 30)" />

<xsl:value-of
select="substring(concat(../Customer[@customerID=$customerID]/@address,
' '), 1, 30)" />

<xsl:value-of
select="substring(concat(../Customer[@customerID=$customerID]/@city,
' '), 1, 20)" />

<xsl:value-of select="../Customer[@customerID=$customerID]/@state" />
<xsl:value-of

select="substring(concat
(../Customer[@customerID=$customerID]/@postalCode, ' '),
1, 10)" />

<xsl:value-of select="substring(concat(@orderDate, ' '),
1, 10)" />

<xsl:value-of select="substring(concat(@shipDate, ' '),
1, 10)" />

<xsl:value-of select="substring(concat(@shipMethod, ' '), 1, 5)" />
<xsl:for-each select="LineItem[position()<=5]">

<xsl:variable name="partID" select="@partIDREF" />
<xsl:variable name="partName"

select="../../Part[@partID=$partID]/@name" />
<xsl:variable name="partSize"

select="../../Part[@partID=$partID]/@size" />
<xsl:variable name="partColor"

select="../../Part[@partID=$partID]/@color" />
<xsl:value-of select="substring(concat(

$partColor, ' ', $partSize, ' ', $partName,
' '), 1, 30)" />

<xsl:value-of select="format-number(@quantity, '00000')" />
<xsl:value-of select="format-number(@price, '00000.00')" />

</xsl:for-each>
<xsl:if test="count(LineItem)<2">

<xsl:text> 0000000000.00</xsl:text>
</xsl:if>
<xsl:if test="count(LineItem)<3">

<xsl:text> 0000000000.00</xsl:text>
</xsl:if>
<xsl:if test="count(LineItem)<4">

<xsl:text> 0000000000.00</xsl:text>
</xsl:if>
<xsl:if test="count(LineItem)<5">

<xsl:text> 0000000000.00</xsl:text>
</xsl:if>
<xsl:text>
</xsl:text>

</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

Chapter 12

476

Since the order in which fields appear in the fixed-width file is almost the same as the order in which
they appear in the delimited file, this style sheet is very similar to the previous one. We do introduce
one new technique in this style sheet that bears examination though:

xsl:value-of select="substring(concat(@orderDate, ' '), 1, 10)" />

The substring-concat pair is the easiest way to get a string of a particular length in XSLT. The
above select string will always return a string that is exactly ten characters long – if the attribute is more
than ten characters, only the first ten will be returned; if the attribute is less than ten characters, it will
be right-padded with spaces.

The output of the style sheet above, when applied to our sample XML, is this, the file we started with in
the earlier section:

Kevin Williams 744 Evergreen Terrace Springfield
KY12345 12/01/200012/04/2000UPS blue 2 in. grommet
0001700000.10silver 3 in. widget 0002200000.20
0000000000.00 0000000000.00
0000000000.00
Homer Simpson 742 Evergreen Terrace Springfield
KY12345 12/02/200012/05/2000USPS red 1 in. sprocket
0001300000.30blue 2 in. grommet 0001100000.10
0000000000.00 0000000000.00
0000000000.00

Tagged Record
Again, creating tagged record output files is no problem with XSLT. First, recall the map we created for
the tagged record format:

Value Details

record[N].Customer.field1 Data Type: String

Position: 2-31

Description: The name of the customer on invoice N

record[N].Customer.field2 Data Type: String

Position: 32-61

Description: The address of the customer on invoice N

record[N].Customer.field3 Data Type: String

Position: 62-81

Description: The city of the customer on invoice N

record[N].Customer.field4 Data Type: String

Position: 82-83

Description: The state of the customer on invoice N

Flat Files

477

Value Details

record[N].Customer.field5 Data Type: String

Position: 84-93

Description: The postal code of the customer on
invoice N

record[N].Invoice.field1 Data Type: Datetime

Position: 2-11

Format: MM/DD/YYYY

Description: The order date for invoice N

record[N].Invoice.field2 Data Type: Datetime

Position: 12-21

Format: MM/DD/YYYY

Description: The ship date for invoice N

record[N].Invoice.field3 Data Type: Enumerated value

Position: 22-26

Values: USPS: United States Postal Service; UPS:
United Parcel Service; FedEx: Federal Express

Description: The shipping method used to ship the
parts ordered on invoice N

record[N].LineItem[M].field1 Data Type: String

Position: 2-31

Format: No more than 30 characters

Description: The description of the part ordered in the
Mth line item of invoice N, in the form color size
name

record[N].LineItem[M].field2 Data Type: Numeric

Position: 32-36

Format: #####

Description: The quantity of the part ordered in the
Mth line item of invoice N

record[N].LineItem[M].field3 Data Type: Numeric

Position: 37-44

Format: #####.##

Description: The price of the part ordered in the Mth
line item of invoice N

Chapter 12

478

We need to map from the XML fields to the target file fields, as shown below:

Target Source

InvoiceData.Invoice[N]->Customer.Name record[N].Customer.field1

InvoiceData.Invoice[N]->Customer.Address record[N].Customer.field2

InvoiceData.Invoice[N]->Customer.City record[N].Customer.field3

InvoiceData.Invoice[N]->Customer.State record[N].Customer.field4

InvoiceData.Invoice[N]-
>Customer.PostalCode

record[N].Customer.field5

InvoiceData.Invoice[N].orderDate record[N].Invoice.field1

InvoiceData.Invoice[N].shipDate record[N].Invoice.field2

InvoiceData.Invoice[N].shipMethod record[N].Invoice.field3

InvoiceData.Invoice[N].LineItem[M]-
>Part.Name,

InvoiceData.Invoice[N].LineItem[M]-
>Part.Size,

InvoiceData.Invoice[N].LineItem[M]-
>Part.Color

record[N].LineItem[M].field1

InvoiceData.Invoice[N].LineItem[M]
.quantity

record[N].LineItem[M].field2

InvoiceData.Invoice[N].LineItem[M]
.price

record[N].LineItem[M].field3

Now that we have the mapping, we can create the stylesheet, ch12_ex6.xsl:

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:output method="text" />
<xsl:template match="InvoiceData">
<xsl:for-each select="Invoice">

<xsl:text>I</xsl:text>
<xsl:value-of select="substring(concat(@orderDate, ' '),

1, 10)" />
<xsl:value-of select="substring(concat(@shipDate, ' '),

1, 10)" />
<xsl:value-of select="substring(concat(@shipMethod, ' '), 1, 5)" />
<xsl:text>
C</xsl:text>
<xsl:variable name="customerID" select="@customerIDREF" />
<xsl:value-of select="substring(concat(

../Customer[@customerID=$customerID]/@name,
' '), 1, 30)" />

<xsl:value-of select="substring(concat(
../Customer[@customerID=$customerID]/@address,
' '), 1, 30)" />

<xsl:value-of select="substring(concat(
../Customer[@customerID=$customerID]/@city,
' '), 1, 20)" />

<xsl:value-of select="../Customer[@customerID=$customerID]/@state" />
<xsl:value-of select="substring(concat(

../Customer[@customerID=$customerID]/@postalCode,
' '), 1, 10)" />

Flat Files

479

<xsl:for-each select="LineItem[position()<=5]">
<xsl:text>
L</xsl:text>
<xsl:variable name="partID" select="@partIDREF" />
<xsl:variable name="partName"

select="../../Part[@partID=$partID]/@name" />
<xsl:variable name="partSize"

select="../../Part[@partID=$partID]/@size" />
<xsl:variable name="partColor"

select="../../Part[@partID=$partID]/@color" />
<xsl:value-of select="substring(concat(

$partColor, ' ', $partSize, ' ', $partName,
' '), 1, 30)" />

<xsl:value-of select="format-number(@quantity, '00000')" />
<xsl:value-of select="format-number(@price, '00000.00')" />

</xsl:for-each>
<xsl:text>
</xsl:text>

</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

This style sheet reflects some of the approaches we have taken in our previous examples. Note that we
don't have to worry about the number of line items present or absent, as each line item gets its own
record in our tagged format. To create the records, we simply insert the appropriate header marker and
the hard line feeds where necessary.

The output of the style sheet when applied to the sample XML is this:

I12/01/200012/04/2000UPS
CKevin Williams 744 Evergreen Terrace Springfield
KY12345
Lblue 2 in. grommet 0001700000.10
Lsilver 3 in. widget 0002200000.20
I12/02/200012/05/2000USPS
CHomer Simpson 742 Evergreen Terrace Springfield
KY12345
Lred 1 in. sprocket 0001300000.30
Lblue 2 in. grommet 0001100000.10

Summary
In this chapter, we've learned some techniques for working with flat files and moving data between flat
files and XML. We've seen that, to create a translator between the two, you should follow these steps:

� Map the source format to name-value pairs

� Map the target format to name-value pairs

� Correlate the source and target name-value pairs

� Write DOM code (for XML targets) or an XSLT stylesheet (for flat file targets)

Using this strategy will allow you to connect your systems to legacy systems or other platforms that
produce or consume flat files, resulting in less programming overhead.

Chapter 12

480

ADO, ADO+, and XML

Active Data Objects (ADO) first supported XML in version 2.1 with the ability to persist Recordset
objects to and from XML to the file system. The subsequent release of ADO 2.5 expanded on its XML
features by introducing support for loading XML to and from the Stream object (a stream of text or
binary bytes). Now, with the release of ADO 2.6 and SQL Server 2000, we have a lot more power.
ADO 2.6 allows us to retrieve XML results in streams instead of recordsets. This allows us to retrieve
XML data from any OLE DB data source that can send XML.

We'll see a lot of the functionality that SQL Server 2000 exposes in Chapters 14 and 15. Essentially,
we can use the FOR XML extensions to SQL, Open XML, and XML Views via ADO, to offer similar
functionality through ADO. This works with any data source that will return XML, not just SQL
Server 2000.

ADO can run queries via XML, join XML datasets to relational data, and even stream XML in and out
of stored procedures and ASP pages.

It's beyond the scope of this chapter to teach you ADO, so if you're not familiar with ADO, or you
just want to know more, we'd recommend you get hold of a copy of ADO 2.6 Programmer's
Reference, ISBN 1-861004-63-x, from Wrox Press.

In this chapter, we will discuss the following topics:

❑ How ADO has progressed to include a more robust XML feature set than in the past. Here we
will discuss what's supported in ADO 2.6, and its new XML properties.

❑ Different ways in which we can persist XML via ADO, and how the Stream makes some of
this possible, including a look at the ASP Response object.

❑ How we can query SQL Server and return XML data, both using extensions to the SQL
language, and querying using XPath and mapping schemas.

❑ How we can merge XML data sets with SQL data sets to retrieve and even modify SQL data.

Chapter 13

482

We'll also take a sneak preview look at what's coming in the future, by investigating ADO+.

As you can see already, we have a full agenda up ahead. So grab a comfy chair and kick back as we dive
right in to explore ADO and XML.

The code in this chapter relies on ADO 2.6 and SQL Server 2000. The XML in this
chapter is displayed in the Internet Explorer 5 browser. While other browsers may
not display the data in the same way, it is important to keep in mind that the same
XML can be passed to any client; whether or not that client can display the data
depends entirely on the client.

XML Support in ADO 2.6 and SQL Server 2000
We'll start out by discussing the features of ADO 2.6 that facilitate the integration between ADO and
XML:

❑ The Stream object

❑ The ability to persist data as XML

❑ Running queries against data in XML

❑ Annotated schemas that allow us to map an XML vocabulary to SQL Server tables

❑ Merging XML with relational data

The topics in this section will introduce you to the concepts and techniques, while the remaining
sections of this chapter will concentrate on showing you how to tackle XML integration with ADO and
SQL Server 2000 with plenty of code examples. First, however, we'll tackle what a stream is, and what
its role is with respect to ADO and XML. Then we'll discuss, at a high level, the different ways in which
we can use the stream and the other XML based features of ADO and SQL Server 2000.

What is a Stream?
The ADO Stream object provides the means to read, write, and manage the binary (or text) stream of
bytes that make up a file or message. In particular, we can use a Stream object to read a file, write to a
file, or read or write data to or from a binary stream (temporary memory). We can also send the
Stream over a network from a business object to a client. So what can the Stream object do for you?

❑ We can use a Stream as a means to save or persist data. For example we can take a
Recordset and save it in the XML format to a Stream object. Once the XML is in the
Stream, we can then save it to a string variable, or even load it into the XML DOM.

❑ If you remember that the ASP Response object supports an interface for the stream, you will
see that we can send XML directly to the Response object, thus writing it to a client's
browser.

❑ Last but not least, we can load different types of queries into a Stream object and execute
them against a SQL Server database. So, all the types of queries we'll meet in Chapters 14 and
15, whether they are in SQL or in XML, can be stored in the Stream object.

ADO, ADO+, and XML

483

OK, by now you're probably sold on the concept of a Stream object, so the next logical question is,
"Where can I get one of these Stream objects?" Well, you can't pick one up at the corner drug store,
but there are several ways in which you can get one.

Obtaining a Stream
So how do we get a Stream object and populate it with a stream? Here are a couple of different
methods that we can use to obtain a stream intended for use with XML:

Files

We can obtain a Stream from a file that contains text (or binary) data. When we open a Stream on a
file, we are opening the contents of that file. We can then directly manipulate those contents for reading
and writing. The following lines are examples to show how a Stream is opened:

Dim oStm
Set oStm = Server.CreateObject("ADODB.Stream")

oStm.Open "URL=http://localhost/XMLDB/customer.xml"

or:

Dim oStm
Set oStm = Server.CreateObject("ADODB.Stream")

oStm.Open "d:\customer.xml"

Roll Your Own

We can create an instance of the Stream object in code and write XML data to it. We can then add
XML data or an XML based query to the Stream. We could use this technique to open an empty
Stream and then fill it with any data we want. For example, the following code snippet fills an empty
Stream with a string of XML:

Dim oStm

sXML = "<customer CustID='123' CustName='XYZ Records'></customer>"
'--- Create the Stream
Set oStm = Server.CreateObject("ADODB.Stream")
'--- Open an empty Stream
oStm.Open
'--- Load the Stream from an XML string
oStm.WriteText sXML

We've just looked at some basic examples of how a Stream object can interact with XML. So using
ADO's Stream object we can

❑ Get the queries and updates into a Stream.

❑ Save the results of these queries into a Stream, which can then be persisted to:

� A file;
� SQL Server 2000;
� Sent across a network;
� ASP's Response object.

Chapter 13

484

Persistence of XML
Persisting our XML data can be explained as simply saving the contents of an XML dataset to some
storage area. That storage area can take on many forms, as we've discussed thus far. By using ADO's
new persistence techniques, we can open new doors to how we interact with our data centers. For
example, we can persist XML data to a Stream object, to a text file, or even to the ASP Response
object.

If we save our data to a Stream object, we can:

❑ Edit the XML inside of the Stream or even load the XML directly into the XML DOM.

❑ Save XML into a text file, so we can save this data permanently in the file and later use it as a
data source for a Recordset.

❑ Save XML data from a Recordset and send the XML via an ASP page directly to a client's
browser (or to another machine in a web service scenario). Once the XML is on the client it
can be stored in an XML data island, or even be used as the data source of an RDS
DataControl object.

Keep in mind that sending the XML to an XML Data Island or an RDS DataControl is only
intended to work in Internet Explorer. However, you can send the XML to a non-browser client,
such as a web service.

So as you can see, there are not only several ways in which we can save our data to XML, there are also
a number of ways in which we can take advantage of XML persistence.

Running XML Queries
There are two new ways that we can query SQL Server from ADO, both of which we discuss in
Chapters 14 and 15:

❑ Queries using FOR XML

❑ Queries using annotated XML Data schemas – XML Views

Queries Using FOR XML
SQL Server 2000's Transact SQL (T-SQL) language now supports the FOR XML clause. This offers
developers a way in which we can write standard SQL queries to a SQL Server database, and instead of
an ADO recordset being returned, we can get the data in an XML format. In other words, we can run
our queries against a SQL Server 2000 database and return XML directly to our application.

In fact, there are a few different choices we have in returning the data. For example, we can return the
data in its raw XML format, or in a hierarchical structure based on the underlying table relations (by the
use of the elements option, to specify element-centric XML over the default attribute-centric XML).
The bottom line is that the FOR XML clause opens the doors of relational data in SQL Server to XML
data. For a more thorough discussion of the FOR XML clause, refer to Chapter 14.

ADO, ADO+, and XML

485

Queries Using Annotated Schema
The concept of annotated schema, as developed by Microsoft, is an extension to the XML Data schema
specification. In short, annotated schemas allow applications to retrieve data from a database without
having to use SQL. All of this is accomplished using what is called a mapping schema, which acts as a
View of the data, mapping XML elements and attributes to tables and columns of a relational database.

Once we have created the schema, we can query the data it represents in the database using an XPath
statement, which means we can query SQL Server 2000 data without having to write any SQL queries.
For more detail see Chapter 15.

For more information on the XPath syntax for querying XML data and the XPath
version 1 W3C recommendation, see http://www.w3.org/TR/xpath.

Merging XML with Relational Data
Included in the new features of SQL Server 2000 is an extension to the T-SQL language: OpenXML. The
OpenXML function allows stored procedures (or any T-SQL batch) to process XML and generate rowsets
for use by T-SQL statements.

So where would we use this new feature? Well, for example, we could pass an XML document into a
stored procedure, and insert the data from the XML document into a table. The point is that we can
now, with the OpenXML T-SQL function, take XML data and convert it to a relational rowset. We can
then use this rowset as we would any other rowset inside of a T-SQL batch or stored procedure (that is,
to join to other data sets, insert, or update a table).

New XML Properties
To support further XML integration, ADO 2.6 features the addition of some new dynamic properties to
the mix:

❑ Mapping Schema

❑ Base Path

❑ Output Stream

The Mapping Schema and Base Path properties are used in conjunction with annotated schemas and
XPath as we'll see in Chapter 15 when discussing XML Views. The Output Stream property is used to
define where a Command object should send its data stream. The syntax of each property is shown
below.

Mapping Schema
The Mapping Schema property indicates a filename that points to the mapping schema used by the
provider to translate the XPath command:

oCmd.Properties("Mapping Schema") = "Orders.xml"

Chapter 13

486

Base Path
The Base Path property indicates the URL used for resolving relative paths in a template used to
translate an XPath command:

oCmd.Properties("Base Path") = "C:\Inetpub\wwwroot\XMLDB\"

Output Stream
The Output Stream property indicates to the Stream object where the Command.Execute method
will return its results. For example, we can return our results to the ASP Response object, which will
send the data back to the client. Or, we could send the data to an ADO Stream object.

oCmd.Properties("Output Stream") = Response

Now that we've outlined these features from the conceptual level, let's take a closer look at all of these
properties, as well as XML queries and the FOR XML clause.

XML Persistence
It's time to see some examples of what we can do to integrate XML into our strategies. As we discussed
previously, since ADO 2.1 we have been able to persist XML to a file, and since ADO 2.5 we've been
able to save XML to a Stream object. In this section we'll show how to persist our XML data in three
different formats. On the way, we'll also demonstrate some practical situations where persisting XML
data can come in handy, such as:

❑ Persisting to a file

� And then how to open a Recordset from the file

❑ Persisting to a Stream object

� And then how to open a Recordset from a stream

❑ Persisting to the ASP Response object

� And writing a stream to a client

� And persisting a stream to a client

Let's start out by examining how and when to persist to and from an XML file.

Persisting to a File
Persisting to a file is perhaps the most logical of places to begin, since it involves saving our data to a
tangible data store: a file on a hard drive. You might want to take this approach when you need to save
data between computer boots. For example, say a laptop user on your network is connected to your
database application, and you write the data to files (persist them) on the user's laptop. Then, when this
same user disconnects from the network and goes on the road, they can still use parts of the application,
since you persisted some of the data to their hard drive.

ADO, ADO+, and XML

487

ADO allows us to take a Recordset full of data and save it directly to a file in XML format. We can
then open that XML file directly into another Recordset and edit the data using the file as the data
source. This is one alternative to using the XML DOM to edit XML data. The code to save XML data
to a file is quite simple. All we have to do is use the Recordset object's Save method and pass it the
file name and the file format.

The ASP code below shows how to save a data set containing all of the customers in the Northwind
database that comes with SQL Server to a file, using an XML format (ch13_ex01.asp):

<%@ Language=VBScript %>
<HTML>
<HEAD>
<TITLE>ADO 2.6 persist to File Example: ch13_ex01.asp</TITLE>
<!-- #include file="adovbs.inc" -->
<%

Dim oCmd
Dim oCn
Dim oRs
Dim sConn
Dim sProvider

sConn = "Data Source=(local);Initial Catalog=Northwind;" & _
"User ID=sa;Password=;"

sProvider = "SQLOLEDB"

Set oCn = Server.CreateObject("ADODB.Connection")
oCn.Provider = sProvider
oCn.ConnectionString = sConn
oCn.CursorLocation = adUseClient
oCn.Open

Set oCmd = CreateObject("ADODB.Command")
Set oCmd.ActiveConnection = oCn
oCmd.CommandText = "SELECT CustomerID, CompanyName FROM Customers"
oCmd.CommandType = adCmdText

Set oRs = oCmd.Execute()
oRs.Save "c:\Customers.xml", adPersistXML
oRs.Close

%>
</HEAD>
<BODY>

<H2>ADO 2.6 persist to File Example: ch13_ex01.asp</H2>
File saved.

</BODY>
</HTML>

You may need to change the connection string in this example to point to your SQL Server, and
specify the path to adovbs.inc on your machine.

In this code example, we create a Recordset object and populate it with some data from the
Customers table – specifically the customer ID and company name. Then we save this data to a file
called Customers.xml, which looks something like this:

Chapter 13

488

<xml xmlns:s='uuid:BDC6E3F0-6DA3-11d1-A2A3-00AA00C14882'
xmlns:dt='uuid:C2F41010-65B3-11d1-A29F-00AA00C14882'
xmlns:rs='urn:schemas-microsoft-com:rowset'
xmlns:z='#RowsetSchema'>

<s:Schema id='RowsetSchema'>
<s:ElementType name='row' content='eltOnly'>

<s:AttributeType name='CustomerID' rs:number='1'
rs:writeunknown='true'>

<s:datatype dt:type='string' dt:maxLength='5'
rs:fixedlength='true' rs:maybenull='false'/>

</s:AttributeType>
<s:AttributeType name='CompanyName' rs:number='2'

rs:writeunknown='true'>
<s:datatype dt:type='string' dt:maxLength='40' rs:maybenull='false'/>
</s:AttributeType>
<s:extends type='rs:rowbase'/>

</s:ElementType>
</s:Schema>
<rs:data>

<z:row CustomerID='ALFKI' CompanyName='Alfreds Futterkiste'/>
<z:row CustomerID='ANATR'

CompanyName='Ana Trujillo Emparedados y helados'/>
<z:row CustomerID='ANTON' CompanyName='Antonio Moreno Taquería'/>
...
<z:row CustomerID='WOLZA' CompanyName='Wolski Zajazd'/>

</rs:data>
</xml>

Note that the Save method will not overwrite an existing file unless the recordset was opened from it.

We could follow this sample code up by saving the Recordset to a Stream, writing it out to the client
via the Response.Write technique or opening a Recordset object from it. Below are some code
samples that demonstrate these techniques.

Opening a Recordset from a File
Having saved the XML to the file in the previous example, what if we wanted to then open the file
containing this XML into a Recordset object? Of course, we can transform ADO into an HTML table
using XSLT, but sometimes we might not want to use XSLT: like if we want, say, a pure data stream.

The key to opening a recordset from XML is that the XML has to be derived from a
recordset. You can't take any old XML as only XML that came from a recordset can
be used to open a recordset.

The code to tackle this is shown below (ch13_ex02.asp).

<%@ Language=VBScript %>
<HTML>
<HEAD>
<TITLE>
ADO 2.6 Open Recordset from Persisted File Example: ch13_ex02.asp

</TITLE>
<!-- #include file="adovbs.inc" -->
<%

Dim i
Dim oRs
Dim sTable

ADO, ADO+, and XML

489

We could start by creating a Recordset object that has no data source connection. Since we aren't
planning to get our data from a database, we'll set the ActiveConnection property to Nothing in
this case:

Set oRs = Server.CreateObject("ADODB.Recordset")
Set oRs.ActiveConnection = Nothing

Then, we'll establish our Recordset as a client-side cursor whose source is an XML file on the local
drive:

oRs.CursorLocation = adUseClient
oRs.CursorType = adOpenStatic
oRs.LockType = adLockReadOnly
oRs.Source = "c:\Customers.xml"
oRs.Open

%>
</HEAD>

Finally, to prove that the XML was opened from the file, we will loop through the recordset and write
the contents out in a table:

<BODY>
<CENTER>
<HR>
<H2>
ADO 2.6 Open Recordset from Persisted File Example: ch13_02.asp

</H2>
<HR>

<%
sTable = "<table border='1'>"
sTable = sTable & "<tr>"

For i = 0 to oRs.Fields.Count - 1
sTable = sTable & "<td>" & oRs.Fields(i).Name & "</td>"
Next

oRs.MoveNext
sTable = sTable & "</tr>"
Do While Not oRs.EOF

sTable = sTable & "<tr>"
For i = 0 to oRs.Fields.Count - 1
sTable = sTable & "<td>" & oRs.Fields(i).Value & "</td>"

Next
oRs.MoveNext
sTable = sTable & "</tr>"

Loop

sTable = sTable & "</table>"
Response.Write sTable

%>
</center>

</BODY>
</HTML>
<%

oRs.Close
Set oRs = Nothing

%>

Chapter 13

490

This produces the following result:

Keep in mind that in a production enterprise environment you may not want a large
file containing XML to be passed around, thus jamming your network bandwidth.
XML solutions should be considered with this in mind. While XML is very flexible, its
one drawback is that its text data is not suited for large amounts of data.

Persisting to a Stream
Another way to save XML to a file is to use the Stream object. This technique doesn't involve the
Recordset object to save the XML to a file. The Stream object has its own method called
SaveToFile, which does just that. So, assuming you have an XML file or a string variable containing
XML, the code below (ch13_ex03.asp) reads that XML from a file (using the LoadFromFile
method) and saves it directly to a new file (here called test.xml):

<%@ Language=VBScript %>
<HTML>
<HEAD>
<TITLE>ADO 2.6 Stream to File Example: ch13_ex03.asp</TITLE>
<!-- #include file="adovbs.inc" -->
<%

Dim oStm
Dim sXML

'--- Create the Stream
Set oStm = Server.CreateObject("ADODB.Stream")
'--- Tell the Stream that we are opening standard Windows text
oStm.Charset = "Windows-1252"
'--- Open the Stream
oStm.Open
oStm.LoadFromFile "c:\customers.xml"
'--- Read the XML to a variable
'--– we'll use this to write to the stream later
sXML = oStm.ReadText(adReadAll)
'--- Close the Stream
oStm.Close

ADO, ADO+, and XML

491

'--- Create the Stream
Set oStm = Server.CreateObject("ADODB.Stream")
'--- Open an empty Stream
oStm.Open
'--- Load the Stream from an XML string
oStm.WriteText sXML
'--- Save the Stream to a local file
oStm.SaveToFile "c:\test.xml", adSaveCreateOverWrite
oStm.Close
Set oStm = Nothing %>

</HEAD>
<BODY>

<center>
<hr>
<H2>ADO 2.6 Stream to File Example: ch13_03.asp</H2>
<hr>
File saved.
</center>

</BODY>
</HTML>

Note that this method isn't specific to XML: it is a generic way to copy data using a stream.

Opening a Recordset from a Stream
We can also open a Recordset from a stream of XML. Assuming we had a file containing the XML
previously persisted from another Recordset, we could use the following code to read the stream and
write it out to a table (ch13_ex04.asp):

<%@ Language=VBScript %>
<HTML>
<HEAD>
<TITLE>ADO 2.6 Stream to Recordset Example: ch13_04.asp</TITLE>
<!-- #include file="adovbs.inc" -->
<%

Dim i
Dim oRs
Dim oStm
Dim sTable
Dim sXML

'--- Create the Stream
Set oStm = Server.CreateObject("ADODB.Stream")
'--- Tell the Stream that we are opening standard Windows text
oStm.Charset = "Windows-1252"
'--- Open the Stream
oStm.Open
oStm.LoadFromFile "c:\customers.xml"
'--- Read the XML to a variable
sXML = oStm.ReadText(adReadAll)
oStm.Position = 0

'--- Open the Recordset from the Stream of XML
Set oRs = Server.CreateObject("ADODB.Recordset")
Set oRs.ActiveConnection = nothing
oRs.CursorLocation = adUseClient
oRs.CursorType = adOpenStatic
oRs.LockType = adLockReadOnly
Set oRs.Source = oStm
oRs.Open

Chapter 13

492

'--- Close the Stream
oStm.Close
Set oStm = Nothing

%>
</HEAD>
<BODY>

<center>
<hr>
<H2>ADO 2.6 Stream to Recordset Example: ch13_04.asp</H2>
<hr>

<%
sTable = "<table border='1'>"
sTable = sTable & "<tr>"
For i = 0 to oRs.Fields.Count - 1

sTable = sTable & "<td>" & oRs.Fields(i).Name & "</td>"
Next
oRs.MoveNext
sTable = sTable & "</tr>"
Do while not oRs.EOF

sTable = sTable & "<tr>"
For i = 0 to oRs.Fields.Count - 1

sTable = sTable & "<td>" & oRs.Fields(i).Value & "</td>"
Next
oRs.MoveNext
sTable = sTable & "</tr>"

Loop
sTable = sTable & "</table>"
Response.Write sTable

%>
</center>

</BODY>
</HTML>
<%

oRs.Close
Set oRs = Nothing

%>

Persisting to the Response Object
Up until this point, we've shown several ways to move XML in and out of files. However, often files
aren't practical storage devices for our data. Consider a web solution that needs to pass XML to a client.
We wouldn't want to store the XML on the server in between calls to a file – we may end up with
hundreds or thousands of files, making for an awful mess to have to clean up, not to mention a great
burden on precious resources. So, for those times when we want to send our XML to the client, we have
a few alternatives to saving to a file, three of which are shown below:

❑ Send the XML data to the client to be embedded within an XML data island

❑ Send the XML data to the client to be used in an RDS application within Internet Explorer

❑ Send the XML data in its raw format (text) to the client application to be consumed as a
web service

An XML data island is an XML formatted set of data that resides within XML tags in HTML.
This data is not displayed in the browser, but can be used by client side code.

ADO, ADO+, and XML

493

Each of these persistence techniques has its own merits and purposes. By sending the XML to a data
island, we can then use that XML data in a client browser (such as IE5.5) through the XML DOM
object to interact with the user. Likewise, we could send the XML data to an RDS client, which could
read and/or update the data, and send it back to make any modifications to the database.

To create a Web Service, you don't need the .Net framework from Microsoft, but rather, you could
create a standard ASP page that accepts parameters and returns a stream of XML back to the client
application. It isn't as fancy as the .Net framework techniques, and doesn't involve SOAP, but in its
purest sense, you are accepting input and sending back a resultset via HTTP and XML: that's a service
you are providing via the web.

OK, so all of these techniques are useful, but now let's examine two different techniques to stream data
to a client using the Response object – after all, the whole key of these solutions is to stream the data
to the client:

❑ Loading a Stream object with an XML document and writing it to the browser directly

❑ Persisting a Recordset object directly to the Response object

Let's demonstrate both of these streaming techniques by giving a code example for each of them,
starting with loading a Stream object and writing it to the browser.

Writing a Stream to a Client
The example below (ch13_ex05.asp) shows how to load a Stream object from an XML file
(Territories.xml) and then write the XML to the client inside of a data island.

In case you were wondering what the source XML looks like, here it is, as displayed in IE5.5:

Here, we open a sample XML file containing a list of territories and load them into the Stream object.
Then, we read the Stream contents into a string variable sXML. Finally, we write the XML to the client,
embedded within an XML data island:

Chapter 13

494

<%@ Language=VBScript %>
<HTML>
<HEAD>
<TITLE>ADO 2.6 Stream to Data Island Example: ch13_ex05.asp</TITLE>
<!-- #include file="adovbs.inc" -->
<%

Dim oStm
Dim sXML

'--- Create the Stream
Set oStm = Server.CreateObject("ADODB.Stream")
'--- Tell the Stream that we are opening standard Windows text
oStm.Charset = "Windows-1252"
'--- Open the Stream
oStm.Open
oStm.LoadFromFile "c:\Territories.xml"
'--- Read the XML to a variable
sXML = oStm.ReadText(adReadAll)

oStm.Close
Set oStm = Nothing
Response.Write "<XML ID='MyDataIsle'>"
Response.Write sXML
Response.Write "</XML>"

%>

<SCRIPT language="VBScript" For="window" Event="onload">
Dim oXML
Dim oRoot
Dim oChild
Dim sOutputXML

Set oXML = MyDataIsle.XMLDocument
oXML.resolveExternals=false
oXML.async=false

Set oRoot = oXML.documentElement

For each oChild in oRoot.childNodes
sOutputXML = document.all("log").innerHTML
document.all("log").innerHTML = sOutputXML & "" & _

oChild.getAttribute("TerritoryDescription") & ""
Next

</SCRIPT>
</HEAD>
<BODY>

<center>
<hr>
<H2>ADO 2.6 Stream to Data Island Example: ch13_ex05.asp</H2>
<hr>

<H3>Client-side processing of XML Document MyDataIsle</H3>
</center>

<UL id=log>

</BODY>
</HTML>

ADO, ADO+, and XML

495

We have streamed XML down to the client browser, displayed it by using client-side VBScript to
bind the XML document to an instance of the DOM, and looped through each child node to build a
list in HTML:

Keep in mind that client-side VBScript code will only work in Internet Explorer
browsers. If you want to write client-side code that works in both Netscape and
Internet Explorer, you'll need to use JavaScript.

Persisting a Stream to a Client
So we've seen how to stream XML to a data island. Now let's examine how we can stream an XML
document, and only an XML document, to a client.

This example could be used as a web service, where applications could navigate to your URL via the
web, and get only an XML document in return. Of course, you could always return the data in an XML
data island or some other fashion as well, but we've already shown that, so let's look at how we can
return all of the territories in the Territories table in Northwind to the client (ch13_ex06.xml):

<%@ Language=VBScript %>
<!-- #include file="adovbs.inc" -->
<%

'--- ch13_ex06.asp
Dim oCmd
Dim oCn
Dim oRs
Dim sConn
Dim sProvider

sConn = "Data Source=(local);Initial Catalog=Northwind;" & _
"User ID=sa;Password=;"

sProvider = "SQLOLEDB"

Set oCn = Server.CreateObject("ADODB.Connection")
oCn.Provider = sProvider
oCn.ConnectionString = sConn
oCn.CursorLocation = adUseClient
oCn.Open

Chapter 13

496

Set oCmd = CreateObject("ADODB.Command")
Set oCmd.ActiveConnection = oCn
oCmd.CommandText = "SELECT * FROM Territories"
oCmd.CommandType = adCmdText

Set oRs = oCmd.Execute()
oRs.Save Response, adPersistXML
oRs.Close
oCn.Close
Set oRs = Nothing
Set oCmd = Nothing
Set oCn = Nothing

%>

Notice that we use the Recordset object's Save method once again. But this time, instead of saving to
a file, we're saving the contents of the Recordset to a type of stream: the ASP Response object:

oRs.Save Response, adPersistXML

Since the Response object is just another form of a stream, we can basically skip the steps of reading
the data into a Stream object from the Recordset and then into a variable before writing it to the
client.

Keep in mind that we could take advantage of the Command object's new features to persist XML data
to the client. However, let's save that discussion for the next section, when we get into the FOR XML
clause of SQL Server 2000.

XML Queries via ADO
The addition of the new FOR XML clause in SQL Server 2000 brings a new weapon to a developer's
arsenal. With this new weapon, we now have the ability to return XML data sets from SQL queries
simply by appending the FOR XML clause at the end of a SQL command. To better clarify the value of
this new feature, let's examine how we used to get XML out of databases prior to SQL Server 2000.

We'd start by sending a SQL query to SQL Server, for example via an ADO Command. The Command
would send the SQL to the database, and a data set would be returned to our application and put into
an ADO Recordset object. Then, if we wanted the data to be in a specific XML format, we would
have to loop through the Recordset and build a string of XML manually, either using the XML
DOM, or by using a custom built routine. We could have used the XML schema built by ADO's Save
method, but that restricts the format of the XML to a format that we may not want.

These techniques were not uncommon for those of us trying to integrate XML into our existing ADO
and SQL based applications – not too shabby a solution. However, this approach does have some
downfalls. For example, we get the data from SQL Server in a standard rowset, we convert it to a
Recordset then into XML. This process would obviously be better served if we could send the data
directly into XML, and skip the Recordset step altogether.

By running our queries against the SQL Server 2000 database and returning XML directly to our
application, we avoid the overhead of creating a Recordset object for the sole purpose of looping
through it and building our XML. This means we don't have to create the extra objects such as the
Recordset object or the XML DOM object. Nor do we have to loop through the returned data, which
can be very costly depending on how many rows we retrieve. So as you can clearly see, this new feature
of ADO and SQL Server truly opens the doors of our applications to XML.

Now that we've outlined its merits, let's look at how to use the FOR XML clause.

ADO, ADO+, and XML

497

FOR XML Usage
We cover the details of using FOR XML in Chapter 14, but we will briefly summarize it here. The basic
syntax can be quite simple, as depicted below:

sql_query FOR XML [RAW|AUTO|EXPLICIT]

Here, we see that the FOR XML clause can be appended to the end of any data retrieving SQL query. But
you do have a choice in how the data is returned. Actually, you have a choice of three modes, as shown
in the following table:

Mode Description

FOR XML RAW Generates generic row elements with column values as attributes.

FOR XML AUTO Generates a hierarchical tree with element names based on table names.

FOR XML EXPLICIT Generates a universal table with relationships fully described by meta data.

Let's take a look at how we could return a simple SQL query from the Northwind database using the
FOR XML RAW syntax:

SELECT * FROM PRODUCTS ORDER BY PRODUCTNAME FOR XML RAW

The results of this query return all of the products in an XML fragment:

<row ProductID="17" ProductName="Alice Mutton" SupplierID="7"
CategoryID="6" QuantityPerUnit="20 - 1 kg tins" UnitPrice="39.0000"
UnitsInStock="0" UnitsOnOrder="0" ReorderLevel="0" Discontinued="1"/>

<row ProductID="3" ProductName="Aniseed Syrup" SupplierID="1"
CategoryID="2" QuantityPerUnit="12 - 550 ml bottles" UnitPrice="10.0000"
UnitsInStock="13" UnitsOnOrder="70" ReorderLevel="25" Discontinued="0"/>

...

The nodes of the fragment are called row. Each row element contains an attribute that corresponds
directly to the name of each column in the SQL query.

If we run this same query using the FOR XML AUTO clause, as shown below:

SELECT * FROM PRODUCTS ORDER BY PRODUCTNAME FOR XML AUTO

we'll get similar results:

<PRODUCTS ProductID="17" ProductName="Alice Mutton" SupplierID="7"
CategoryID="6" QuantityPerUnit="20 - 1 kg tins"
UnitPrice="39.0000" UnitsInStock="0" UnitsOnOrder="0"
ReorderLevel="0" Discontinued="1"/>

<PRODUCTS ProductID="3" ProductName="Aniseed Syrup" SupplierID="1"
CategoryID="2" QuantityPerUnit="12 - 550 ml bottles"
UnitPrice="10.0000" UnitsInStock="13" UnitsOnOrder="70"
ReorderLevel="25" Discontinued="0"/>

...

We still get the rows from the resultset represented as XML elements, and each column as an attribute
of those elements. However, the row elements are now named to represent the hierarchical structure
that they are derived from. In this T-SQL example, the elements are named PRODUCTS.

Chapter 13

498

The EXPLICIT mode is a lot more complex, although it allows a lot greater flexibility. For detailed
usage of the EXPLICIT mode see Chapter 14.

FOR XML Template Queries
As long as you set the SQL Server database up as a virtual directory under IIS (see Appendix E), we can
also run these same queries from within an XML file. The previous query that retrieved the customer
and order data using the hierarchical format, could have been run from an XML file that might look like
this (ch13_ex07.xml):

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<sql:query>
SELECT

Customers.CustomerID,
Customers.CompanyName,
Orders.OrderID,
Orders.OrderDate

FROM Customers
INNER JOIN Orders ON Customers.CustomerID = Orders.CustomerID

ORDER BY
Customers.CompanyName

FOR XML AUTO
</sql:query>

</ROOT>

Notice that the additions to SQL are exactly the same as when using FOR XML in SQL statements. The
only difference in the code is that we now wrap the query within an XML document within <ROOT>
tags. The namespace indicates that we want the XML to be parsed using the Microsoft namespace for
XML SQL. Thus, the SQL query contained within the <sql:query> tags is executed and the results
are returned to the browser.

FOR XML URL Queries
We can even run a FOR XML query from a browser's URL. The syntax is pretty straightforward, as is
shown below:

http://localhost/northwind?sql=select%20'<root>';
select%20*%20from%20customers%20for%20xml%20auto;select%20'</root>';

If you run this query from within the URL, the XML results of this query are written to the browser.
Notice that that URL specified is the web server name (localhost) and the virtual directory for the
SQL Server database (my virtual directory is called northwind). Next, we pass a querystring
parameter to the virtual directory called sql. To this argument, we pass the SQL statement wrapped
within <root> tags.

You may notice that there are %20 expressions embedded throughout this XML URL
query example. The web doesn't always react to spaces well. Therefore the spaces are
converted to their hexadecimal URL representation (%20).

ADO, ADO+, and XML

499

FOR XML via ADO
OK, so we've seen how to retrieve XML via SQL queries on their own, via template queries and via
URL queries, but what about running these types of queries via ADO? ADO 2.6 introduced the ability
to execute a FOR XML query via a Command object with or without a Stream object.

Running a FOR XML Command
We can run a FOR XML query from a Command object by setting either one of the following two
properties:

❑ The CommandText property

❑ The CommandStream property

Regardless of which is used, we need to set the new Dialect property of the Command object, because
the Dialect indicates how the Command's query should be parsed. For example, here are some of the
different Dialect settings. As you can see, the Dialect settings take on the form of somewhat cryptic
GUIDs.

XML Template query dialect:

oCmd.Dialect="{5D531CB2-E6Ed-11D2-B252-00C04F681B71}" '--- XML Template

SQL query dialect:

oCmd.Dialect="{C8B522D7-5CF3-11CE-ADE5-00AA0044773D}" '--- T-SQL query

Unknown query dialect:

oCmd.Dialect="{C8B521FB-5CF3-11CE-ADE5-00AA0044773D}" '--- UNKNOWN query

XPath query dialect:

oCmd.Dialect="{EC2A4293-E898-11D2-B1B7-00C04F680C56}" '--- XPath query

We'll examine the template query dialect in this section, since it tells the provider to parse the incoming
command as a template query (FOR XML query wrapped in XML).

Specifically, the dialect tells the SQL Server OLE DB Provider how to interpret the command text it
receives from ADO. The dialect is specified by a GUID, and is set via the Command.Dialect
property. Keep in mind that all of the dialect settings are provider specific, as the dialects shown here
are specific to SQL Server.

Running FOR XML via CommandText

Let's jump right into an example of how we can run a template query via ADO by using some
properties of the Command object. Below you'll see the code to run a FOR XML query by setting the
CommandText of the Command to the FOR XML query document (ch13_ex08.asp):

<%@ LANGUAGE="VBScript"%>
<%Option Explicit%>
<HTML>
<HEAD>

Chapter 13

500

<TITLE>ADO 2.6 FOR XML via CommandText Example - ch13_ex08.asp</TITLE>
<!-- #include file="adovbs.inc" -->
<%

Dim oCmd
Dim oCn
Dim sConn
Dim sProvider
Dim sQuery

sProvider = "SQLOLEDB"
sConn = "Data Source=(local);Initial Catalog=Northwind;User ID=sa"
Set oCn = Server.CreateObject("ADODB.Connection")
oCn.Provider = sProvider
oCn.ConnectionString = sConn
oCn.CursorLocation = adUseClient
oCn.Open

Set oCmd = Server.CreateObject("ADODB.Command")
Set oCmd.ActiveConnection = oCn

We hard code the query into the string sQuery:

'--- The FOR XML query (hard coded)
sQuery = "<ROOT xmlns:sql='urn:schemas-microsoft-com:xml-sql'>" & _

"<sql:query>SELECT * FROM PRODUCTS ORDER BY PRODUCTNAME " & _
" FOR XML AUTO </sql:query></ROOT>"

And set the CommandText property to the value of the query:

oCmd.CommandText = sQuery
oCmd.CommandType = adCmdText

Then we set the dialect so that SQL Server will know this is an XML template query:

'--- XML Template query dialect
oCmd.Dialect = "{5D531CB2-E6Ed-11D2-B252-00C04F681B71}"

We wrap up by telling the Command where to stream the resulting dataset. We have to send the data to a
stream of some sorts. Our two obvious choices are either a Stream object or the Response object.
That's right, the ASP Response object is also a type of stream. By setting the Output Stream
dynamic property (Output Stream) to the Response object, we are telling the Command to send the
XML directly to the client:

'--- Output the XML to the Response object
oCmd.Properties("Output Stream") = Response
Response.Write "<XML ID=MyDataIsle>"
oCmd.Execute , , adExecuteStream
Response.Write "</XML>"
Set oCmd = Nothing
oCn.Close
Set oCn = Nothing

%>

ADO, ADO+, and XML

501

We wrap the response in data island tags, and write the response between them. This allows us to loop
through them later when we come to the results on the client where we want to display them.

The rest of the code loops through the XML DOM on the client to display the data in a bulleted list:

<SCRIPT language="VBScript" For="window" Event="onload">
Dim oXML
Dim oRoot
Dim oChild
Dim sOutputXML

Set oXML = MyDataIsle.XMLDocument
oXML.resolveExternals=false
oXML.async=false

Set oRoot = oXML.documentElement

For each oChild in oRoot.childNodes
sOutputXML = document.all("log").innerHTML
document.all("log").innerHTML = sOutputXML & "" & _

oChild.getAttribute("ProductName") & ""
Next
Set oXML = Nothing
Set oRoot = Nothing
Set oChild = Nothing

</SCRIPT>
</HEAD>
<BODY>

<center>
<hr>
<h2>ADO 2.6 FOR XML via CommandText Example - ch13_ex08.asp</h2>
<hr>
</center>
<UL id=log>

</BODY>
</HTML>

Of course, you could do whatever you want with the data once you stream it out of the Command.

Running FOR XML via CommandStream
OK, so we've seen how to run a template query via CommandText, so now let's look at how to tackle
this through the CommandStream property. The CommandStream property is new to ADO 2.6, and
specifies the stream from which the query is derived. This enables us to pass a template query from a
file, or any other source of the template query, into a Command via the Stream object. The following is
an example file that shows how this property is used to achieve this (ch13_ex09.asp):

<%@ LANGUAGE = "VBScript"%>
<% Option Explicit %>
<HTML>
<HEAD>
<TITLE>ADO 2.6 FOR XML via CommandStream Example - ch13_ex09.asp</TITLE>
<!-- #include file="adovbs.inc" -->
<%

Dim oCmd
Dim oCn
Dim oStm
Dim sConn
Dim sProvider
Dim sQuery

Chapter 13

502

sProvider = "SQLOLEDB"
sConn = "Data Source=(local);Initial Catalog=Northwind;User ID=sa"
Set oCn = Server.CreateObject("ADODB.Connection")
oCn.Provider = sProvider
oCn.ConnectionString = sConn
oCn.CursorLocation = adUseClient
oCn.Open

Set oCmd = Server.CreateObject("ADODB.Command")
Set oCmd.ActiveConnection = oCn
'--- The FOR XML query (hard coded)
sQuery = "<ROOT xmlns:sql='urn:schemas-microsoft-com:xml-sql'>" & _

"<sql:query>SELECT * FROM PRODUCTS ORDER BY PRODUCTNAME " & _
" FOR XML AUTO </sql:query></ROOT>"

We create and open the Stream object:

Set oStm = Server.CreateObject("ADODB.Stream")
'--- Open the Stream
oStm.Open

Write the XML to it:

oStm.WriteText sQuery, adWriteChar
oStm.Position = 0
set oCmd.CommandStream = oStm
oCmd.CommandType = adCmdText

Specify the dialect to be an XML template query:

oCmd.Dialect = "{5D531CB2-E6Ed-11D2-B252-00C04F681B71}"

And specify that we want to send the XML to the ASP Response object:

oCmd.Properties("Output Stream") = Response
Response.Write "<XML ID=MyDataIsle>"
oCmd.Execute , , adExecuteStream
Response.Write "</XML>"
oCn.Close
Set oStm = Nothing
Set oCmd = Nothing
Set oCn = Nothing

%>

Then iterate through the data and output it as in the previous example:

<SCRIPT language="VBScript" For="window" Event="onload">
Dim oXML
Dim oRoot
Dim oChild
Dim sOutputXML

Set oXML = MyDataIsle.XMLDocument
oXML.resolveExternals=false
oXML.async=false

ADO, ADO+, and XML

503

Set oRoot = oXML.documentElement

For each oChild in oRoot.childNodes
sOutputXML = document.all("log").innerHTML
document.all("log").innerHTML = sOutputXML & "" & _

oChild.getAttribute("ProductName") & ""
Next

Set oXML = Nothing
Set oRoot = Nothing
Set oChild = Nothing

</SCRIPT>
</HEAD>
<BODY>

<center>
<hr>
<h2>ADO 2.6 FOR XML via CommandStream Example - ch13_ex09.asp</h2>
<hr>
</center>
<UL id=log>

</BODY>
</HTML>

Notice here that we read an XML template query into a Stream object, then we set that Stream object
to the CommandStream property of the Command object. This is basically the same code we saw
earlier, with the exception that we are using a Stream object as the source of the template query
command, so why go this route?

It becomes more apparent when you consider that the Stream object can be used to house an XML
template query from a file rather easily. Simply load the Stream with the XML template query using
the LoadFromFile method, and we're ready to go!

As you can see, running template queries via ADO is not that different from running SQL queries.
Besides the template query syntax, we only have to indicate that the Command is a Stream and we
need to direct the XML output to a Stream as well.

So, retrieving XML from a SQL Server data source via ADO is well within our grasp. What you do with
the XML is another story. As we listed earlier, some possibilities are:

❑ Passing the XML data to the client to be used within an XML data island

❑ Passing the XML to an RDS client to be bound to an HTML table

❑ More intriguingly, passing the XML only to a remote client as some sort of web service that
your application provides

Now that we've explored how to write SQL queries against ADO, let's see how we could retrieve XML
from a SQL Server database – without writing any SQL!

Chapter 13

504

Non-SQL Queries via ADO
By combining XPath with Microsoft's Mapping Schema feature, we can now query SQL Server 2000
data without having to write any SQL queries. The concept is that we create a mapping schema that
translates a relational structure of a database schema to XML elements. Then, we use the XPath
language to query the XML elements to retrieve our data. So in a sense we are writing a query, but it is
not a SQL query. Rather, we are writing a query using XPath against an XML translation (or map). By
using XPath, we can query against any node in the XML document.

Using these two technologies together (XPath and a Mapping Schema) allows
applications to query SQL Server 2000 data without using SQL commands, and
without needing to know the underlying relational schema of the database (except to
build the mapping schema).

Before we begin, let's go over a few terms that are vital to querying the data via XPath:

❑ The Mapping Schema file

❑ The Mapping Schema property

❑ The Base Path property

❑ The XPath query

We'll also go on to look at some code examples.

Mapping Schema File
The concept of Mapping Schema is an extension to the XML data specification. The extensions map
XML elements and attributes to tables and columns of a relational database. For example, say we
wanted to represent the customer-to-order relationship that is defined in the Northwind database via a
mapping schema:

ADO, ADO+, and XML

505

We would have to define the table elements as well as the relationship in our mapping schema.

Let's jump right to the mapping schema file and examine how it is structured (ch13_ex10.xml):

<?xml version="1.0" ?>
<!-- ch13_ex10.xml-->
<Schema xmlns="urn:schemas-microsoft-com:xml-data"

xmlns:dt="urn:schemas-microsoft-com:datatypes"
xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<ElementType name="Order" sql:relation="Orders" >
<AttributeType name="CustID" />
<AttributeType name="OrderID" />
<AttributeType name="OrderDate" />
<attribute type="CustID" sql:field="CustomerID" />
<attribute type="OrderID" sql:field="OrderID" />
<attribute type="OrderDate" sql:field="OrderDate" />

</ElementType>

<ElementType name="Customer" sql:relation="Customers" >
<AttributeType name="CustID" />
<AttributeType name="CompanyName" />
<attribute type="CustID" sql:field="CustomerID" />
<attribute type="CompanyName" sql:field="CompanyName" />

<element type="Order" >
<sql:relationship key-relation="Customers" key="CustomerID"

foreign-key="CustomerID" foreign-relation="Orders" />
</element>

</ElementType>
</Schema>

Our document begins with the namespace declarations, and then has an ElementType node for each
underlying table schema. Our first ElementType node represents that Orders table, as shown by its
sql:relation attribute, but it is referred to via XPath using its name, which is Order:

<ElementType name="Order" sql:relation="Orders" >

Then, each ElementType node (table) contains an AttributeType and an Attribute node pair
for each column in the underlying table. The sql:field attribute is used to identify the corresponding
field in the SQL table:

<AttributeType name="CustID" />
...

<attribute type="CustID" sql:field="CustomerID" />

The key aspects of this mapping schema are in the sql:relation and the sql:relationship
attributes. The sql:relation attribute is used to identify the table name in the database, while the
sql:relationship attribute is used to identify the primary key to foreign key relationships between
the two tables:

<sql:relationship key-relation="Customers" key="CustomerID"
foreign-key="CustomerID" foreign-relation="Orders" />

Chapter 13

506

Notice that the key-relation attribute indicates the database's parent table, and the key attribute
identifies the primary key in the parent table. Likewise the foreign-relation attribute indicates the
database's child table, and the foreign-key attribute identifies the foreign key in the child table. Now
that we have the Mapping Schema written and saved to an XML file, we'll focus on how to query
against it using ADO and an XPath query.

Mapping Schema & Base Path Properties
The Mapping Schema Property is a new property of the Command object's Properties collection.
This property points to the location of the XML Mapping Schema file. The Base Path property of the
Command object's Properties collection indicates the file path used for resolving the relative paths of
a mapping schema used to translate an XPath command.

The Mapping Schema Property

oCmd.Properties("Mapping Schema") = "Orders_MappingSchema.xml"

The Base Path Property

oCmd.Properties("Base Path") = "C:\Inetpub\wwwroot\XMLDB\"

Code Examples
So now that we've taken a look at all of the players in running an XPath query, let's show a complete
example of how we might tackle this. For starter's we need a Mapping Schema file. We'll use the one
from the previous section (ch13_ex10.xml), for consistency's sake. The next step is to create an ASP
page that we can run our XPath query against, like so (ch13_ex10.asp):

<%@LANGUAGE=VBSCRIPT%>
<HTML>
<HEAD>
<TITLE>ADO 2.6 XPath Example - ch13_ex10.asp</TITLE>
<!-- #include file="adovbs.inc" -->
<%

Dim oCmd
Dim oCn
Dim sCompanyName
Dim sConn
Dim sProvider

'--- Get the parameter
sCompanyName = Request.QueryString("CompanyName")

'--- Establish the connection to the database
sProvider = "SQLOLEDB"
sConn = "Data Source=(local); Initial Catalog=Northwind;" & _

"User ID=sa;Password=;"
Set oCn = Server.CreateObject("ADODB.Connection")
oCn.ConnectionString = sConn
oCn.Provider = sProvider
oCn.CursorLocation = adUseClient
oCn.Open

Set oCmd = CreateObject("ADODB.Command")
Set oCmd.ActiveConnection = oCn

ADO, ADO+, and XML

507

Once we have a connection to the SQL Server 2000 database, we create a Command object to run our
query. Then, we set our Command object's CommandText property to the XPath query:

'--- Generate the XPath query
oCmd.CommandText = "Customer[@CompanyName = '" & sCompanyName & "']"

This takes our QueryString argument for the company name and passes it to the XPath query. Then we
set the dialect to be the XPath dialect, so SQL Server can parse the query accordingly:

'--- Specify the dialect to be an XPath query
oCmd.Dialect = "{ec2a4293-e898-11d2-b1b7-00c04f680c56}"
'--- XPath dialect

Next we specify the mapping schema and base path properties to point to the mapping schema file:

'--- Indentify the mapping schema
oCmd.Properties("Mapping Schema") = "ch13_ex10.xml"

oCmd.Properties("Base Path") = "C:\Inetpub\wwwroot\XMLDB\"

Make sure that you specify the correct base path your ch13_ex10.xml file here.

Finally, we wrap up by setting the Output Stream to be the Response object and writing the XML to
the client using the oCmd.Execute method:

'--- Set the output stream to go to the ASP Response object
oCmd.Properties("Output Stream") = Response

'--- Write the XML to the client
Response.write "<XML ID='MyDataIsle'><Customers>"
oCmd.Execute , , adExecuteStream
Response.write "</Customers></XML>"
oCn.Close
Set oCmd = Nothing
Set oCn = Nothing

%>
</HEAD>

Notice that we set the oCmd.Execute method's adExecuteStream parameter to tell ADO that
results are expected back in the form of a stream instead of the default Recordset.

The rest of the code just iterates through the data and creates the output:

<BODY>
<H3>Client-side processing of XML Document MyDataIsle</H3>
<SCRIPT language="VBScript">

Dim oXMLDoc
Dim sOutputOrders
Dim sOrderList
Dim oRoot, oChild, oHeader
Dim sOutputHeader
Dim iCustomerNumber
Dim sTotalPage

Chapter 13

508

Set oXMLDoc = MyDataIsle.XMLDocument
oXMLDoc.resolveExternals=false
oXMLDoc.async=false

Set oRoot = oXMLDoc.documentElement

iCustomerNumber = 1
For each oCurrentCustomer in oRoot.childNodes

'--- Create the appropriate header for each customer
document.write "<DIV id=Header" & iCustomerNumber & "></DIV>"
'--- Create the order lists for each customer
document.write "<UL id=Orders" & iCustomerNumber & ">"

sOutputHeader = document.all("header" & _
iCustomerNumber).innerHTML

sOutputHeader = sOutputHeader & "CustomerID: " & _
oCurrentCustomer.getAttribute("CustID")

document.all("Header" & iCustomerNumber).innerHTML = _
sOutputHeader

For each oChild in oCurrentCustomer.childNodes
sOutputOrders = document.all("Orders" & _

iCustomerNumber).innerHTML
'--- Create the order list items
sOrderList = " Order # " & _

oChild.getAttribute("OrderID") & _
", Date: " & oChild.getAttribute("OrderDate") & _
""

sTotalPage = sOutputOrders & sOrderList
'--- Set the order list items to the order list
document.all("Orders" & iCustomerNumber).innerHTML = _

sTotalPage
Next
'--- Process next customer
iCustomerNumber = iCustomerNumber + 1

Next
Set oXMLDoc = Nothing
Set oRoot = Nothing
Set oChild = Nothing
Set oHeader = Nothing

</SCRIPT>
</BODY>
</HTML>

To run this query, simply generate a URL with an XPath query containing a company name that you
want to see orders for. For example:

http://localhost/XMLDB/ch13_ex10.asp?companyname=ernst%20handel

ADO, ADO+, and XML

509

At the time this chapter was written, there was an outstanding issue according to
Microsoft (#223396), that the SQLOLEDB provider does not support using the
CommandStream for input of XPath queries. Until this issue is resolved, we'll simply
use CommandText to specify the XPath query, as shown in the previous example.

As some of our other examples in this chapter have done, the VBScript, client-side code binds the XML
document to an instance of the DOM in order to display the data to the browser in HTML.

Joining XML and SQL Data
One of the top features on the bulleted list of things to do for SQL Server 2000 was to create a
mechanism to integrate XML with SQL data. We'll see how we can do this in Chapter 14 using the SQL
extensions provided in the OpenXML function. This allows stored procedures to process XML and
generate rowsets for use by SQL statements. So now we have the ability to pass XML data into stored
procedures, join with SQL data sets, and return XML data, if we so desire.

Since the XML data that we pass in can be translated to a data set that SQL Server 2000 understands,
we can use the data set (XML document, in this case) as we would in any SQL operation. For example,
we could join on the dataset, insert rows from the dataset into a table or use the dataset to update other
SQL data.

This uses two stored procedures:

❑ The sp_xml_preparedocument stored procedure translates the XML document to a data
set format that SQL Server can comprehend.

❑ The sp_xml_removedocument stored procedure removes the XML document from SQL
Server's memory when we're done with it.

Chapter 13

510

The code below defines a stored procedure (spOpenXML) that we wrote to join a particular XML
document with data from the SQL Server Northwind database. Specifically, we'll pass in an XML
document containing customer data, and we'll join that with the orders for those customers in the
database. The end result is that we get back a SQL data set containing the orders for the customer that
we passed in.

Create this stored procedure in your database:

ALTER PROCEDURE spOpenXML
@sXML VARCHAR(2000)

AS

DECLARE @iDoc INT

-- Prepare the XML document for SQL Server
EXEC sp_xml_preparedocument @iDoc OUTPUT, @sXML

-- Query the XML data set joined to a SQL Server table
SELECT

c.CustomerID,
c.ContactName,
o.OrderID,
o.OrderDate

FROM OPENXML(@iDoc, '/ROOT/Customers', 1)
WITH (CustomerID varchar(10), ContactName varchar(20))
AS c
INNER JOIN Orders o ON c.CustomerID = o.CustomerID

-- Remove the internal representation of the XML document.
EXEC sp_xml_removedocument @iDoc

GO

This code starts out by using the system stored procedure sp_xml_preparedocument to create an in-
memory representation of the XML document that we pass in via the @sXML parameter. The first
parameter of sp_xml_preparedocument, @iDoc, is an output parameter. It returns a handle to the
prepared XML document that resides in SQL Server's memory. The second parameter, @XMLDoc, is an
input parameter that accepts the XML document.

Once we have our handle to the XML document within SQL Server's memory, we can use the
OpenXML function with our XML document just like we could use a standard SQL data set within SQL.
Let's take a closer look at the SELECT statement in the spOpenXML stored procedure.

SELECT
c.CustomerID,
c.ContactName,
o.OrderID,
o.OrderDate

FROM OPENXML(@iDoc, '/ROOT/Customers', 1)
WITH (CustomerID varchar(10), ContactName varchar(20))
AS c
INNER JOIN Orders o ON c.CustomerID = o.CustomerID

ADO, ADO+, and XML

511

Here, we passed in the @iDoc handle to the in memory XML document, an XPath query command,
and a flag indicating that the XML is attribute-centric. We also tacked on a WITH clause to describe the
structure of the rowset that we get back from the OpenXML function.

To indicate that we want all columns back from the OpenXML function, we would
simply use a WITH clause that looks like this: WITH Customers.

The OpenXML function through the WITH clause translates into a data set that we can then use like any
other data set in T-SQL. We took this data set of customers and joined it to the orders data from the
Northwind database. In fact, any T-SQL statement that operates with a data set can be used with the
OpenXML keyword.

We've just shown a very simple example showing a SELECT, but any type of query can be used using
this formula. And once we are finished with the in memory XML document, we release it by passing the
document handle @iDoc to the sp_xml_removedocument system stored procedure.

The ASP Page
Now, to invoke the stored procedure and return our SQL data set back, we run some ADO code as
shown below (ch13_ex11.asp). First we create a standard connection to a SQL Server database:

<HTML>
<HEAD>
<TITLE>ADO 2.6 OpenXML Example - ch13_ex11.asp</TITLE>
<!-- #include file="adovbs.inc" -->
<%

Dim i
Dim oCmd
Dim oCn
Dim oRs
Dim sConn
Dim sProvider
Dim sQuery
Dim sXMLDoc

'--- Open the connection to the database
sProvider = "SQLOLEDB"
sConn = "Data Source=(local);Initial Catalog=Northwind;User ID=sa"
Set oCn = Server.CreateObject("ADODB.Connection")
oCn.Provider = sProvider
oCn.ConnectionString = sConn
oCn.CursorLocation = adUseClient
oCn.Open

Then we prepare the XML document that we want to pass into our stored procedure. We could have
opened a file to load an XML document, or even be passed the XML from another application:

'--- Prepare the XML document to pass in to the stored procedure
sXMLDoc = "<ROOT>"
sXMLDoc = sXMLDoc & "<Customers CustomerID='VINET' " & _

"ContactName='Paul Henriot'>"
sXMLDoc = sXMLDoc & "<Orders CustomerID='VINET' " & _

"EmployeeID='5' OrderDate='1996-07-04T00:00:00'>"
sXMLDoc = sXMLDoc & "<OrderDetails OrderID='10248' " & _

"ProductID='11' Quantity='12'/>"

Chapter 13

512

sXMLDoc = sXMLDoc & "<OrderDetails OrderID='10248' " & _
"ProductID='42' Quantity='10'/>"

sXMLDoc = sXMLDoc & "</Orders>"
sXMLDoc = sXMLDoc & "</Customers>"
sXMLDoc = sXMLDoc & "<Customers CustomerID='LILAS' " & _

"ContactName='Carlos Gonzlez'>"
sXMLDoc = sXMLDoc & "<Orders CustomerID='LILAS' " & _

"EmployeeID='3' OrderDate='1996-08-16T00:00:00'>"
sXMLDoc = sXMLDoc & "<OrderDetails OrderID='10283' " & _

"ProductID='72' Quantity='3'/>"
sXMLDoc = sXMLDoc & "</Orders>"
sXMLDoc = sXMLDoc & "</Customers>"
sXMLDoc = sXMLDoc & "</ROOT>"

Next we simply invoke the stored procedure from a Command object, and return the data to a
Recordset object:

'--- Invoke the stored procedure
sQuery = "spOpenXML"
Set oCmd = Server.CreateObject("ADODB.Command")
Set oCmd.ActiveConnection = oCn
oCmd.CommandText = sQuery
oCmd.CommandType = adCmdStoredProc
oCmd.Parameters.Item("@sXML").Value = sXMLDoc

And finally we loop through the Recordset object in server-side code to display the data to the
browser as HMTL:

'--- Write the data set back out to the client via a Recordset
Set oRs = oCmd.Execute()

Response.Write ""
Do While Not oRs.Eof

Response.Write ""
For i = 0 to oRs.Fields.Count - 1

Response.Write oRs(i) & _
" "

Next
Response.Write ""
oRs.MoveNext

Loop
Response.Write ""

oRs.Close
oCn.Close
Set oRs = Nothing
Set oCmd = Nothing
Set oCn = Nothing

%>
</HEAD>
<BODY>
</BODY>
</HTML>

The result is a list of the orders our chosen customers – Paul Henriot and Carlos Gonzlez – have made.

ADO, ADO+, and XML

513

Returning XML
Notice that we returned the data as a SQL data set from this stored procedure. So we could take this
data and return it back to an ADO Recordset object. However, if we simply add the line FOR XML
AUTO to the end of the query, we could send back an XML document in return. So as you can see, there
are several ways we can mix SQL and XLM data.

ALTER PROCEDURE spOpenXML2
@sXML VARCHAR(2000)

AS

DECLARE @iDoc INT

-- Prepare the XML document for SQL Server
EXEC sp_xml_preparedocument @iDoc OUTPUT, @sXML

-- Query the XML data set joined to a SQL Server table
SELECT Customer.CustomerID,

Customer.ContactName,
Orders.OrderID,
Orders.OrderDate

FROM OPENXML(@iDoc, '/ROOT/Customers', 1)
WITH (CustomerID varchar(10), ContactName varchar(20))
AS Customer
INNER JOIN Orders ON Customer.CustomerID = Orders.CustomerID

FOR XML AUTO

-- Remove the internal representation of the XML document.
EXEC sp_xml_removedocument @iDoc

GO

The ASP code below demonstrates how we could pass XML to this stored procedure (spOpenXML2)
and return an XML document back instead of a SQL data set going into a Recordset object. The only
difference in this ASP/ADO code is that we indicate that the Output Stream of the Command object
should be a stream: the ASP Response object. Then we write the data to an XML data island and we
display the data using client-side VBScript code (ch13_ex12.asp).

<%@LANGUAGE=VBSCRIPT%>
<HTML>
<HEAD>
<TITLE>ADO 2.6 OpenXML Returning XML Example - ch13_ex12.asp</TITLE>
<!-- #include file="adovbs.inc" -->
<%

Dim oCmd
Dim oCn
Dim sConn
Dim sProvider
Dim sQuery
Dim sXMLDoc

'--- Open the connection to the database
sProvider = "SQLOLEDB"
sConn = "Data Source=(local);Initial Catalog=Northwind;User ID=sa"
Set oCn = Server.CreateObject("ADODB.Connection")
oCn.Provider = sProvider
oCn.ConnectionString = sConn
oCn.CursorLocation = adUseClient
oCn.Open

Chapter 13

514

'--- Prepare the XML document to pass in to the stored procedure
sXMLDoc = "<ROOT>"
sXMLDoc = sXMLDoc & "<Customers CustomerID='VINET' " & _

"ContactName='Paul Henriot'>"
sXMLDoc = sXMLDoc & "<Orders CustomerID='VINET' " & _

"EmployeeID='5' OrderDate='1996-07-04T00:00:00'>"
sXMLDoc = sXMLDoc & "<OrderDetails OrderID='10248' " & _

"ProductID='11' Quantity='12'/>"
sXMLDoc = sXMLDoc & "<OrderDetails OrderID='10248' " & _

"ProductID='42' Quantity='10'/>"
sXMLDoc = sXMLDoc & "</Orders>"
sXMLDoc = sXMLDoc & "</Customers>"
sXMLDoc = sXMLDoc & "<Customers CustomerID='LILAS' " & _

"ContactName='Carlos Gonzlez'>"
sXMLDoc = sXMLDoc & "<Orders CustomerID='LILAS' " & _

"EmployeeID='3' OrderDate='1996-08-16T00:00:00'>"
sXMLDoc = sXMLDoc & "<OrderDetails OrderID='10283' " & _

"ProductID='72' Quantity='3'/>"
sXMLDoc = sXMLDoc & "</Orders>"
sXMLDoc = sXMLDoc & "</Customers>"
sXMLDoc = sXMLDoc & "</ROOT>"

'--- Invoke the stored procedure
sQuery = "spOpenXML2"
Set oCmd = Server.CreateObject("ADODB.Command")
Set oCmd.ActiveConnection = oCn
oCmd.CommandText = sQuery
oCmd.CommandType = adCmdStoredProc
oCmd.Parameters.Item("@sXML").Value = sXMLDoc

'--- Write the XML data set back out to the client
oCmd.Properties("Output Stream") = Response
Response.Write "<XML ID='MyDataIsle'><ROOT>"
oCmd.Execute , , adExecuteStream
Response.Write "</ROOT></XML>"
oCn.Close
Set oCmd = Nothing
Set oCn = Nothing

%>

<SCRIPT language="VBScript" For="window" Event="onload">
Dim oXML
Dim oRoot
Dim oChild
Dim sOutputXML

Set oXML = MyDataIsle.XMLDocument
oXML.resolveExternals=false
oXML.async=false

Set oRoot = oXML.documentElement

For each oChild in oRoot.childNodes
sOutputXML = document.all("log").innerHTML
document.all("log").innerHTML = sOutputXML & "" & _

oChild.getAttribute("ContactName") & ""
Next
Set oXML = Nothing
Set oRoot = Nothing
Set oChild = Nothing

ADO, ADO+, and XML

515

</SCRIPT>
</HEAD>
<BODY>

<center>
<hr>
<H2>ADO 2.6 OpenXML Returning XML Example - ch13_ex12.asp</H2>
<hr>

<H3>Client-side processing of XML Document MyDataIsle</H3>
</center>

<UL id=log>

</BODY>
</HTML>

This just returns us the bulleted list containing the two customers we specified: Paul Henriot and Carlos
Gonzlez.

Inserting Data
The examples using the OpenXML function we've shown thus far, have demonstrated how we can query
an XML data set inside of a stored procedure and even join it to a standard SQL data set. However, we
can also pass an XML data set into a stored procedure that could insert its records into a SQL table.
Let's look at the T-SQL in the stored procedure that would handle this for us (spOpenXML_Insert):

ALTER PROCEDURE spOpenXML_Insert
@sXML VARCHAR(2000)

AS

DECLARE @iDoc INT

-- Prepare the XML document for SQL Server
EXEC sp_xml_preparedocument @iDoc OUTPUT, @sXML

INSERT Territories
SELECT TerritoryID, TerritoryDescription, RegionID
FROM OPENXML(@iDoc, '/ROOT/Territories', 1)

WITH (TerritoryID nvarchar(20), TerritoryDescription nchar(50), RegionID INT)

-- Remove the internal representation of the XML document.
EXEC sp_xml_removedocument @iDoc

GO

Notice that we pass in an XML document and we use the OpenXML ... WITH statement to translate the
XML data to a data set that SQL Server can use in the INSERT query. In the end, we are inserting a
series of new territories into the Territory table from an XML document. Now, let's look at the
ASP/ADO code that call the sp_OpenXML_Insert stored procedure (ch13_ex13.asp):

<HTML>
<HEAD>
<TITLE>ADO 2.6 OpenXML Insert Example - ch13_ex13.asp</TITLE>
<!-- #include file="adovbs.inc" -->
<%

dim i
Dim oCmd

Chapter 13

516

Dim oCn
Dim sConn
Dim sProvider
Dim sQuery
Dim sXMLDoc

'--- Open the connection to the database
sProvider = "SQLOLEDB"
sConn = "Data Source=(local);Initial Catalog=Northwind;User ID=sa"
Set oCn = Server.CreateObject("ADODB.Connection")
oCn.Provider = sProvider
oCn.ConnectionString = sConn
oCn.CursorLocation = adUseClient
oCn.Open

'--- Prepare the XML document to pass in to the stored procedure
sXMLDoc = "<ROOT>"
sXMLDoc = sXMLDoc & "<Territories TerritoryID='77777' " & _

"TerritoryDescription='Nowhereville' RegionID='1'/>"
sXMLDoc = sXMLDoc & "<Territories TerritoryID='88888' " & _

"TerritoryDescription='Somewhere Town' RegionID='2'/>"
sXMLDoc = sXMLDoc & "<Territories TerritoryID='99999' " & _

"TerritoryDescription='Anywherebuthere' RegionID='3'/>"
sXMLDoc = sXMLDoc & "</ROOT>"

'--- Invoke the stored procedure
sQuery = "spOpenXML_Insert"
Set oCmd = Server.CreateObject("ADODB.Command")
Set oCmd.ActiveConnection = oCn
oCmd.CommandText = sQuery
oCmd.CommandType = adCmdStoredProc
oCmd.Parameters.Item("@sXML").Value = sXMLDoc

'--- Insert the data
oCmd.Execute

oCn.Close
Set oCmd = Nothing
Set oCn = Nothing

%>
</HEAD>
<BODY>

<center>
<hr>
<h3>ADO 2.6 OpenXML Insert Example - ch13_ex13.asp</h3>
<hr>
</center>

</BODY>
</HTML>

Here we are passing in an XML document that contains a list of three territories. We'll then pass these
new territories to the stored procedure and execute via the Command.Execute method. In this case,
we have no return data to display, but we could have returned data, let's say, to show an updated list
containing all of the territories.

ADO, ADO+, and XML

517

To run this, you'll need to execute a command like:

http://localhost/XMLDB/ch13_ex13.asp?sql=select%20'<xml>';select%20*%20from%20terr
itories%20where%20territoryid='77777'%20or%20territoryid='88888'%20or%20territoryi
d='99999'%20for%20xml%20auto;select%20'</xml>'

That wraps up our look at the currect features available in ADO for working with XML. Around the
corner, however, there are exciting new features that will be made available by ADO+. To help you
prepare for these, we shall have a brief preview of this new technology.

ADO+
At the time of writing, the Microsoft.NET initiative has been revealed at conferences and on the
Internet. There is a tremendous amount of energy surrounding this and for good reason. In any event,
the .NET strategy will have significant impact on the development community. I had the privilege of
working on this effort in the data and XML area.

This section attempts to give a "cameo" appearance to one of the many new emerging technologies
stemming from that effort. A technology that is well related to this book: ADO+.

ADO+ is a piece of a larger framework including but not limited to ASP+. The following will not
address the entirety of the new framework (including but not limited to new languages, new compilers
and new systems) but rather will focus on the interoperability between classic database access and XML.

Evolution
A quick note should be made regarding the evolution of database access technologies. These will stem
from a Microsoft perspective, as the author is most familiar with these (for good or for bad). Aside from
proprietary API's (DBLIB, etc), DAO was the first automation library to address database access. Based
primarily on a single tier system, DAO was targeted at Access databases. It was later evolved to work
with 2-tier systems. However, a solution architected for the client/server world, ADO, soon followed to
address the nature of 2-tier data access. Ambiguous as it was, ADO was also soon swept along with the
next architecture wave and was also evolved within its domain to address the issues of 3 or n-tier systems.
The introduction of the Remote Recordset was an example of dealing with the statelessness of the Web.

To better address the inherent distributed architecture of the Web a ground up approach was to design
the next evolution of data access: ADO+. ADO+ was developed to address the tiered, or message based
architecture of the Web.

The Idea
The founding of ADO+ relied on specific technologies for specific applications. ADO (classic) provided
an automation API for abstracted database access for client server systems. Despite this, some found it
difficult to apply the technology specifically. Often, when delivering data, in forms such as XML, the
database is much more distant than the data itself. One of the main thrusts behind ADO+ was to be
simple and targeted. When interfacing with databases, speak the language of databases; when
interfacing with abstract data types, speak the language of abstract data types. ADO+ addresses these by
properly fragmenting the technologies and allowing the developer to focus on the "lingo" specific to the
job, without mixing metaphors so to say.

First we will introduce the new objects of the ADO+ framework. Next we will use those objects
practically to expose the uniqueness of the solution in an isolated environment, only hinting at the
actual application of such through sample. Finally, we will expose some of the exciting new tools
that allow sleek and novel exposure to the rest of the world through the Internet.

Chapter 13

518

Disclaimer

The content of this chapter was based on early designs of ADO+, and is not necessarily consistent with
the beta or final version of the product. Please be advised that the code may change.

The ADO+ Framework
Part of a larger framework, the ADO+ technologies introduce simple, targeted objects to access data,
update data, and interoperate with XML. The primary objects are: DataSet, DataSetCommand (and
the Command), and Connection. The following is a quick overview of the objects, followed by a
detailed look at each of them.

Database

DataSetCommand

Update
Command

Insert
Command

Delete
Command

Select
Command

Connection

DataSet

The diagram is intended to illustrate one potential model for the ADO+ objects.

DataSet
A new object in the ADO family is the DataSet object. Think of the DataSet object as a tiny, in
memory database that stores data. A DataSet can store many pieces of data. For example, a good
example of a DataSet is a PurchaseOrderDataSet. It stores information about customers, orders,
order details, status, etc. All of the data can and is stored in one object. It is like a remote Recordset
object without any database notions. It is easy to remote (as it remotes in XML) and it is easy to
program. The DataSet also tracks changes made to its internal data. We will go into more detail on the
DataSet object later.

Connection
The Connection (or ADOConnection) is familiar and parallel to the classic ADO Connection object.
However, it, has a more targeted and simple job: to connect DataSetCommands (and commands) to
ADO databases. The reason why I refer to these as ADO databases, is because the ADOConnection
object is compatible with OLEDB. ADO+ allows the developer to circumvent the ADO abstraction,
meaning, that there also exists a SQLConnection object also. Although you can use the
ADOConnection object to talk to MS-SQL Server databases, the SQLConnection object speaks
natively to MS-SQL Server, without going through the many layers of ADO that provide database
abstraction at the connection and command level, thus it is more efficient. This is an example of
targeted objects that I mentioned before.

ADO, ADO+, and XML

519

DataSetCommand
The DataSetCommand is the object that pushes data into a DataSet from a Database. It also can pull
changes from a DataSet and push them into a database. I purposefully use the push word here to
indicate a shift in data access architectures. This is a push model (where data is pushed in a chunk into a
data structure), not a pull model (where data is pulled from a stream on demand or sometimes without
developer control, that is, MoveNext). The DataSetCommand is made up of four Commands:

❑ SelectCommand

❑ UpdateCommand

❑ InsertCommand

❑ DeleteCommand

These Commands are similar to the ADO commands, with some of the same themes as the connection
object: simple and targeted. The ADO+ Command, like the ADO Command, defines that which is
executed against a database, including CommandText and Parameters, for example. Though you can
use a Command standalone to get at a stream of data, the DataSetCommand allows the developer to
establish Select, Insert, Update and Delete Commands for your set of data. And, just like the
connection, the DataSetCommand is technology specific: both the ADODataSetCommand, and the
SQLDataSetCommand are provided.

DataSet
As mentioned before, the DataSet stores the data. It knows nothing about where the data is coming
from, or where the data is going. A DataSet has a collection of tables. Tables have a collection of
columns and data. Relationships can also be expressed between tables. It can be compared to a "never
connected" recordset in the sense that it never talks to a database, a subtle but important distinction.
The importance of not communicating with the databases is that there is no technology specific baggage
within the DataSet to slow down its function. The DataSet is platform neutral and the data it stores is
not database type specific. The DataSet stores types native to the Microsoft.NET framework. (Note:
The default set of types in the DataSet is those of the framework and of XML. You can define your
own types, like SQLTinyInt).

One advantage to the DataSet is that it can have both characteristics of, and work well with, a
normalized relational database and have characteristics of hierarchical or semi-structure XML
documents. You will soon see how the DataSet begins to bridge the gap between the XML Web world
and traditional corporate databases.

The DataSet was not necessarily designed for streaming large amounts of data. Though it can perform
well at caching larger amounts of read-only data (and is multi-threaded for read-only scenarios such as
cached stock quotes), and there are properties for anticipating the size of the data to improve
performance, the standalone Command object is best suited for streaming data. The Command object
provides interfaces for streaming read-only forward only data.

Schema
In order for a DataSet to store data, the DataSet must have a schema. DataSet schemas can be
constructed in code, via XML and from CommandSets; the DataSet can also infer schema from data,
so it is not always necessary to construct schema. However, one can simply define a DataSet and start
adding schemas via the collections.

Chapter 13

520

Note: You will see a lot of syntax that is new to VB.NET including fully qualified library names, constructors,
object assignment without using Set, and many others in the samples. This code can and will compile under
VB.NET only. The code from this chapter can be found in two files in the download - ch13_ex01plus.aspx and
ch13_ex02plus.aspx

Dim dsPurchaseOrder as New DataSet()
dsPurchaseOrder.Tables.Add("Customers")
dsPurchaseOrder.Tables.Add("Orders")

The code fragment above establishes a data type to store purchase order data. We have added two
tables, Customers and Orders. Next, using the Tables collection on the DataSet and the Columns
collection on Table we can add the columns to the tables to describe the data types and column names.

dsPurchaseOrder.Tables("Customers").Columns.Add("CustomerId",GetType(System.Int32)
)
dsPurchaseOrder.Tables("Customers").Columns.Add("CustomerName",GetType(System.Stri
ng))

dsPurchaseOrder.Tables("Orders").Columns.Add("OrderId",GetType(System.Int32))
dsPurchaseOrder.Tables("Orders").Columns.Add("CustomerId",GetType(System.Int32))
dsPurchaseOrder.Tables("Orders").Columns.Add("OrderStatus",GetType(System.String))
dsPurchaseOrder.Tables("Orders").Columns.Add("OrderDate",GetType(System.Date))

dsPurchaseOrder.Tables("Customers").Columns("CustomerId").AutoIncrement=True
dsPurchaseOrder.Tables("Orders").Columns("OrderId").AutoIncrement=True

Notice that in defining the columns we also define the types. This is because, unlike previous Variant
based data access models, the ADO+ has a vertical internal storage model. This means that instead of
storing data arrays of rows (where data can differ between columns, thus forcing a Variant model), the
DataSet stores data in arrays of columns, preserving the type of the data, as well as increasing
efficiencies in storage and performance. Also, we set AutoIncrement properties on the keys to True.
This is so they will automatically assign a new ID to each new Customer and to each new Order. Note:
the ID assignment (autoincrement) is internal to the DataSet only. When, however, using DataSet
commands, the IDs are synched with the Dataset.

Notice that in our purchase order DataSet above, we have established the data to store customers and
orders. However, wouldn't it be nice to describe a relation between these two tables and implement
relational support typically found in databases, like cascading deletes and updates, and other
constraints?

In our Orders table there exists a column: CustomerId. This is to establish the foreign key to the
Customer table (note: XML typically establishes relations through hierarchies. The DataSet supports
this functionality and hides the foreign key from the schema). To add the relationship, we can use the
following method:

dsPurchaseOrder.Relations.Add(dsPurchaseOrder.Tables("Customers").Columns("Custome
rId"),_ dsPurchaseOrder.Tables("Orders").Columns("CustomerId"),True)

The last flag in the call, True, creates the constraints between the two tables.

ADO, ADO+, and XML

521

Now that we have our DataSet with its schema we can start adding data. Data can be added in many
ways (as well as through schemas, both to be discussed as the chapter goes on). Data is stored in rows.
First you construct a Row, and then you add it to the DataSet table. A helper function on the Table
object, NewRow() is used to construct and allocate a new Row object. The reason why it is on the table,
and needs to be done this way, is that the schema for the Row needs to match the schema of the other
rows in the tables. The NewRow() function creates the Row with appropriate schema. The following
code will add a customer to the DataSet.

Dim rowCustomer as DataRow
rowCustomer = dsPurchaseOrder.Tables("Customers").NewRow()
rowCustomer.Item("CustomerName") = "Kelly"
dsPurchaseOrder.Tables("Customers").Rows.Add(rowCustomer)

So, we created a row, set a data point in the Row, and then added it to the tables Rows collection. Notice
that I did not set the CustomerId, as I had originally established this as a column that AutoIncrements.
(Later, when we reconcile this with the databases, the database will assign a new key, but all of the data
and related data will stay intact.)

When a one-to-many relationship is established as was done here, not only can we keep the data
organized in such a manner, but we can also access it relationally. To add orders to the customer record,
we use the child row of the Customer row. Again we will not set the PrimaryKey, and we will not
have to set the ForeignKey (CustomerId) either. The following code adds to order rows to the
Customer "Kelly".

Dim rowOrder as DataRow
rowOrder = dsPurchaseOrder.Tables("Orders").NewRow()
rowOrder.Item("OrderDate") = "07/26/00"
rowOrder.Item("OrderStatus") = "New"
rowOrder.Item("CustomerId") =
dsPurchaseOrder.Tables("Customers").Rows(0)("CustomerId")
dsPurchaseOrder.Tables("Orders").Rows.Add(rowOrder)
rowOrder = dsPurchaseOrder.Tables("Orders").NewRow()
rowOrder.Item("OrderDate") = "10/21/00"
rowOrder.Item("OrderStatus") = "Deleted"
rowOrder.Item("CustomerId") =
dsPurchaseOrder.Tables("Customers").Rows(0)("CustomerId")
dsPurchaseOrder.Tables("Orders").Rows.Add(rowOrder)

By setting the CustomerId field in the Order record to the same value as the CustomerId field in
the Customers record we created previously, we indicate that it is related to the customer. We can
then easily iterate over the orders for every customer using the For Each syntax.

For Each rowCustomer in dsPurchaseOrder.Tables("Customers").Rows
Response.Write("
" & rowCustomer("CustomerName"))
Response.Write("
<blockquote>")
For Each rowOrder in rowCustomer.GetChildRows("rel1")

Response.Write("
" & rowOrder("OrderStatus") & " " &
rowOrder("OrderDate"))

Next
Response.Write("</blockquote>")

Next

Chapter 13

522

The output of the above code is the following:

Kelly
<blockquote>
New 7/26/2000
Deleted 10/21/2000</blockquote>

or

Kelly
New 7/26/2000
Deleted 10/21/2000

Accessing and changing data is done by simply setting the new value. You can access the particular
column through name or ordinal.

dsPurchaseOrder.Tables("Customers").Rows(0)("CustomerName") = "Kelly Smith"

Realize, though, that when you are programming against a DataSet (as seen above), you are only
changing the data in the DataSet, you will need to submit those changes to a database in order to store
them. Note that you, the developer, are in control of when and if that happens. Also remember that this
is not a variant based model, and that a string is expecting a string, that is, a database or function
will not be doing the type-checking later – this is done by the run time.

When changes are made such as the change to the column above, or adding a new row, or deleting a
row (DeleteRow not illustrated here), the DataSet is tracking all of these changes. This is so that at
some point and time, you can extract these changes and apply them elsewhere. The DataSet has its
own internal commit and rollback model also (AcceptChanges, RejectChanges and even
GetChanges to see them) As is the case of the web and databases, this usually means that changes are
submitted to a queue, another web server, or a component. And since these changes can be formatted in
XML, it is easy to go cross platform as well. The format of the XML in the GetChanges() method is
compliant with SQL Server 2000 XML "updateGrams".

Response.Write(dsPurchaseOrder.GetChanges().XMLData)

GetChanges() returns another DataSet that represents the changes made in the dsPurchaseOrder
Dataset since the last AcceptChanges was called, or since it was created. Also, the XMLData
property can be used as the updategram for the SQL server. Using the XMLData method, we get an
XML representation of the DataSet. The output is shown below:

<DocumentElement>
<Customers>

<CustomerId>0</CustomerId>
<CustomerName>Kelly Smith</CustomerName>

</Customers>
<Orders>

<OrderId>0</OrderId>
<CustomerId>0</CustomerId>
<OrderStatus>New</OrderStatus>
<OrderDate>2000-07-26T07:00:00</OrderDate>

</Orders>
<Orders>

<OrderId>1</OrderId>
<CustomerId>0</CustomerId>
<OrderStatus>Deleted</OrderStatus>
<OrderDate>2000-10-21T07:00:00</OrderDate>

</Orders>
</DocumentElement>

ADO, ADO+, and XML

523

Note that if a value is NULL, then it will effectively not exist, so would not be returned as an element or
attribute in the above method.

Finally, to round out the discussion on the DataSet, and to provide some context to the rest of this
book, the DataSet was intended to interoperate smoothly with XML. The DataSet can easily show
XML, stream in and out XML, express changes in XML and even compile from XML schema
(discussed later).

To create an XML document from a DataSet you can use one of three methods: XMLData,
XMLSchema and XML

'display the XML
Response.write(dsPurchaseOrder.XMLData)

'To write the schema use
Response.Write(dsPurchaseOrder.XMLSchema)

To Write them both use
Response.Write(dsPurchaseOrder.XML)

The output of the XML property (which is XMLSchema and XMLData combined) is as follows:

XMLSchema

<schema id="" targetNamespace="" xmlns="http://www.w3.org/1999/XMLSchema"
xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">
<element name="Customers">
<complexType content="elementOnly">
<all>
<element name="CustomerId" msdata:AutoIncrement="True" minOccurs="0"

type="int"/>
<element name="CustomerName" minOccurs="0" type="string"/>

</all>
</complexType>
<unique name="Constraint1">
<selector>.</selector>
<field>CustomerId</field>

</unique>
</element>
<element name="Orders">
<complexType content="elementOnly">
<all>
<element name="OrderId" msdata:AutoIncrement="True" minOccurs="0"

type="int"/>
<element name="CustomerId" minOccurs="0" type="int"/>
<element name="OrderStatus" minOccurs="0" type="string"/>
<element name="OrderDate" minOccurs="0" type="timeInstant"/>

</all>
</complexType>
<keyref name="rel1" refer="Constraint1">
<selector>.</selector>
<field>CustomerId</field>

</keyref>
</element>

</schema>

Chapter 13

524

XMLData

<DocumentElement>
<Customers>
<CustomerId>0</CustomerId>
<CustomerName>Kelly Smith</CustomerName>

<Orders>
<OrderId>0</OrderId>
<CustomerId>0</CustomerId>
<OrderStatus>New</OrderStatus>
<OrderDate>2000-07-26T07:00:00</OrderDate>

</Orders>
<Orders>
<OrderId>1</OrderId>
<CustomerId>0</CustomerId>
<OrderStatus>Deleted</OrderStatus>
<OrderDate>2000-10-21T07:00:00</OrderDate>

</Orders>
</Customers>

</DocumentElement>

In order to get the data nested within customers as above, set the Nested property on the
DataRelation to True. This will create the Nested XML data (orders nested within customers).

Having XML native to the DataSet is very powerful. Once data is pushed into a dataset, either by code
or by DataSetCommands, the data is now interoperable with many technologies including SOAP, the
WEB, XSL, and even cross platform. It is the best example of abstracting data away from databases. To
fully understand some of these concepts, let's use a DataSetCommand to push data into a DataSet and
then display it as an XML Document. First, let's discuss the DataSetCommand (the Connection).

The DataSetCommand and the Connection Objects
As mentioned in the overview, the DataSetCommand uses the Connection object to fill DataSets. It
also can reconcile DataSet changes.

Constructing a Connection object is simple and familiar to ADO programmers. The
ConnectionString property and the Open method are used to establish the connection. In these
examples I will use the SQLConnection object and the SQLDataSetCommand object.

VB
Dim sqlConnection as New SQLConnection("server=(local);uid=sa;database=northwind")
sqlConnection.Open()

I took the liberty here of leveraging the constructor, instead of setting the ConnectionString. A
constructor is a convenient way to set primary properties on an object when creating it. I also opened
the connection, which would be done by the DataSetCommand on fillDataSet if the connection
were closed, but is done explicitly in the example for clarity. Opening the connection explicitly gives
the developer more control over lifetime, and gives access to transactions (different of course, from the
DataSets).

The DataSetCommand has four commands: insert, update, delete and select. The DataSet
command is intended to handle all operations against a database. Because these objects are typically
stateless, it is suggested that, if updates are going to occur, that the DataSetCommands Insert,
Update and Delete commands are set up by the developer in code. If they are not set, they will be
constructed at run-time if needed, which can be costly for stateless objects.

ADO, ADO+, and XML

525

Additionally, proper architectures call for stored procedures. Setting each of the commands to point to
stored procedures can also be done and parameters are established in the same way as in classic ADO
Commands.

For this example, I am going simply set the Select statement to an SQL statement.

Dim dsCommandSet as New SQLDataSetCommand("select * from customers",sqlConnection)

Notice that I set the Select Command's CommandText and ActiveConnection in the constructor.
Constructors are great shortcuts for setting often used properties. Now we can use this
DataSetCommand to push Data into the DataSet. As indicated, this is a push model - in order to
remind the developer of its push nature, the APIs reflect the action well: FillDataSet.

Dim dsCustomers as new DataSet
dsCommandSet.FillDataSet(dsCustomers,"Customers")

The FillDataSet method is that which makes everything happen. It opens a cursor, reads the data,
and pushes into the DataSet. Once in the DataSet it is completely disconnected from the database.
Notice that I didn't establish any schema in the DataSet. However, I did tell it the table name to create
in the second parameter Customers. If there exists no schema, the DataSetCommand will create it for
you. If schema does exist, you may need to map schema to schema (for example CustId ->
CustomerId) if there are mismatches. See the MissingSchemaAction property in the SDK
documentation for more details on how and when the DataSet creates schema, if at all.

The FillDataSet method executed the SelectCommand (the command object on the
DataSetCommand) and pushed Schema and Data into the Dataset. We can now look at the schema
and the Data.

'Look at schema
dim t as DataTable
dim c as DataColumn

For Each t in dsCustomers.Tables
Response.Write("
" & t.TableName)
Response.Write("<BlockQuote>")
For Each c in t.columns

Response.Write("
" & c.ColumnName)
Next
Response.Write("</blockquote>")

Next

'look at data
response.write("<P><TABLE><TR>")
dim rowTemp as DataRow
For Each rowTemp in dsCustomers.Tables("Customers").Rows

Response.write("<tr>")
For Each c in dsCustomers.Tables("Customers").Columns

response.write("<TD>" & rowTemp(c) & "</td>")
Next
Response.write("</tr>")

Next
Response.Write("</table">)

Chapter 13

526

Notice that I interleaved HTML throughout the code to get a more uniform output, as seen in the
following screenshots:

We could further push more data from DataSetCommands, or add more data in. We can than move
and program against all of the data as one unit. Instead of having a Customers recordset, and Orders
recordset, and one OrderDetails recordset, we have one PurchaseOrder DataSet

Now, suppose we wanted to write a function to return the set of customers in XML format. There are
two ways to do this: string and DataSet.

ADO, ADO+, and XML

527

When working with the .NET framework you can easily move DataSets around because they are
inherently disconnected. We can write a function that returns our dataset:

Public Function GetCustomersList() as DataSet
Dim sqlConnection as New SQLConnection("server=(local);uid=sa;database=northwind
")
Dim dsCommandSet as New SQLDataSetCommand("select * from customers",sqlConnection)
Dim dsCustomers as new DataSet

dsCommandSet.FillDataSet(dsCustomers,"Customers")
GetCustomersList = dsCustomers

End Function

Applications can expose DataSets in this manner. However, a useful side-effect of DataSets is that
when used as a Web Service, they expose XML. A Web Service in this context can be summed up as a
function that can be called from the Web (from an HTTP request). By attributing the above function as
a Web function, a URL is created to route the request from the function.

It is not clear at the time of this writing how and what attributes will be required. Attributes are a
new concept to VB and decorate a function or code with more meaning without polluting the
language.

When the function is invoked by another .NET component, a DataSet is returned. When the function
is invoked by a non-.NET component, the data is returned as an XML document.

If you simply want to force the return of XML in a string format, declare the function as String, and
then return dsCustomers.XMLData.

If changes are made to the DataSet that is filled by a DataSetCommand, that same DataSetCommand
can reconcile those changes with the Database, using the Update method.

dsCommandSet.FillDataSet(dsCustomers,"Customers")

dsCustomers.tables("customers").Rows(0)("CompanyName") = "foo"
'…
'Remote the dataset
'send it in mail
'change it in any way
'at some point send it back and then
'…
dsCommandSet.Update(dsCustomers,"Customers")

If you have stored procedures or SQL statements associated with the insert/update and delete
commands, these will fire appropriately when the update method is invoked. You also have the ability
to just send the changes (using the GetChanges method on the DataSet), as the Update method simply
ignores rows that haven't been changed.

Chapter 13

528

Typeness of DataSet
Not only does the DataSet have internal typed storage, but there are also some nice tools to create
typed accessors customized to your schema. These typed accessors are further help in obtaining compile
time type checking bugs instead of run-time; which overcomes a great source of stress in the current
variant-based data access models.

The idea behind a typed accessor for a DataSet is, that you can program directly against the tables and
columns through the name and type of data structure (that is, Customer(0).FirstName). So if, as
before, we wanted to access the data in our "generic" Dataset, we would use notation such as the
following:

Just to get at the data, you can access the objects by tables and column names (there is a default 0 based
index property, as well as PrimaryKey property).

Response.Write(dsPurchaseOrders.Customers(0).FirstName)
'Or
Response.Write(dsPurchaseOrders.Customers.PrimaryKey(10001010).FirstName

It is also very clean when you iterate through the relationships. We can now use the following syntax:

For each Customer in dsPurchaseOrders.Customers
For Each Order in Customer.Orders

Response.Write(Order.OrderDate)
Next

Next

These typed accessors are available essentially through code wrappers only. However, there are some
very nice tools, which allow easy and efficient creation of them. The first tool is that of the language.
VB.NET introduces some new object oriented programming techniques such as, and most important for
this discussion, inheritance. By inheriting from System.Data.DataSet, we can easily add accessors to
the columns and tables allowing inherited calls to pass through to the parent Dataset objects.

Visual Studio 7 introduces a new XML Schema designer used to create XML schema and data. The tool
allows for many scenarios, including mapping databases to XML schema, creating XML schema from
databases, etc. Once the format is in XML Schema, a code generator (xsd.exe) can be invoked to
create the classes that inherit from DataSet and provide the typed accessors mentioned above. This
code generator is part of the framework and can be used to form the command line, as illustrated here.

The executable simply generates a wrapper class that inherits from DataSet, and has accessors
consistent with the schema of the XML, including relationships (interpreted from hierarchies or
schema). This class, when included with your project, will provide the programming model as sampled
above. Using the DataSet created above against the customers table in the database, I grabbed the
.XMLSchema property and created a file:

C:\>customers.xsd

<schema id="" targetNamespace="" xmlns="http://www.w3.org/1999/XMLSchema"
xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">
<element name="Customers">

<complexType content="elementOnly">
<all>

<element name="CustomerID" type="string"/>
<element name="CompanyName" type="string"/>

ADO, ADO+, and XML

529

<element name="ContactName" minOccurs="0" type="string"/>
<element name="ContactTitle" minOccurs="0" type="string"/>
<element name="Address" minOccurs="0" type="string"/>
<element name="City" minOccurs="0" type="string"/>
<element name="Region" minOccurs="0" type="string"/>
<element name="PostalCode" minOccurs="0" type="string"/>
<element name="Country" minOccurs="0" type="string"/>
<element name="Phone" minOccurs="0" type="string"/>
<element name="Fax" minOccurs="0" type="string"/>

</all>
</complexType>

</element>
</schema>

Notice the database schema generated an XML (XSD versioned) schema. The class generator, XSD, can
be found in the \bin directory of the FrameworksSDK. This will generate both general classes (using
the /c switch) and subsetted Dataset classes (using the /d switch), as seen below.

C:\>xsd.exe customers.xsd /d

'NOTE THIS IS NOT ALL OF THE CODE GENERATED, JUST SAMPLE WRAPPERS

Public Class CustomersRow
Inherits DataRow

Private tableCustomers As Customers
…

Public Overloads Overridable Function AddCustomersRow(_
ByVal columnCustomerID As String, _
ByVal columnCompanyName As String, _
ByVal columnContactName As String, _
ByVal columnContactTitle As String, _
ByVal columnAddress As String, _
ByVal columnCity As String, _
ByVal columnRegion As String, _
ByVal columnPostalCode As String, _
ByVal columnCountry As String, _
ByVal columnPhone As String, _
ByVal columnFax As String) As CustomersRow

Dim rowCustomersRow As CustomersRow
rowCustomersRow = CType(Me.NewRow,CustomersRow)
rowCustomersRow.ItemArray = New [Object]() {
columnCustomerID, _
columnCompanyName, _
columnContactName, _
columnContactTitle, _
columnAddress, _
columnCity, _
columnRegion, _
columnPostalCode, _
columnCountry, _
columnPhone, _
columnFax}
Me.Rows.Add(rowCustomersRow)
Return rowCustomersRow

End Function

Chapter 13

530

Public Overridable Property Address As String
Get

Return CType(Me(Me.tableCustomers.AddressColumn),String)
End Get
Set

Me(Me.tableCustomers.AddressColumn) = value
End Set

End Property

The above code illustrates some of the accessors that are generated. These include:

MyDataSet.Customers.CustomersRow
MyDataSet.Customers.AddCustomersRow([ID],[Name],[etc])
MyDataSet.Customers(0).Address

I encourage you to use the generator and explore the code, or use the generator and use statement
completion in the Visual Studio editor to explore. These classes can help expose the schemas that you
export to other developers, easily and quickly.

Summary
Throughout this chapter we've examined a series of topics all revolving around XML support within
ADO 2.6 and SQL Server 2000. As we've seen, there are quite a few techniques now at our disposal that
we can employ to integrate XML into our applications.

We've discussed:

❑ How to persist data to files and streams of different sorts.

❑ How to query SQL data without writing any SQL, via the XPath and Mapping Schema
techniques.

❑ The technique of writing XML template queries against SQL database.

❑ How we can merge XML data sets with SQL data sets to retrieve and even modify SQL data.

We've also been introduced to ADO+. In summary, ADO+ will provide many new ways to
communicate with databases and XML, as well as interoperate between them. We barely scratched
the surface of ADO+ as well as the new Microsoft.NET framework. Keep up with the latest at
http://msdn.microsoft.com.

XML is coming from all angles in today's technology surge. These new features and techniques
help to prepare us for the next generation of application development as we move to an XML
data-centric world.

ADO, ADO+, and XML

531

Chapter 13

532

Storing and Retrieving XML in
SQL Server 2000

In this Internet world, many of the applications you'll come across will be Web applications that share a
common requirement – having HTML pages with dynamic data. We can write ASP (Active Server
Pages) applications that retrieve data from the database and do the necessary conversion to display data
in those HTML or XML pages, but this requires a certain amount of development work. SQL Server
2000 now includes XML support, which we can use to get these Internet documents in and out of SQL
Server 2000 without having to write complex ASP applications. These new XML features allow us to
literally view the entire relational database as XML. Thus we can write end-to-end XML applications.

A number of XML-related technologies have been introduced to support the storage and retrieval of
XML into and out of SQL Server. There are a number of new features on the server side, as well as
some on the middle tier. The middle tier features are discussed in the next chapter. In this chapter, we'll
concentrate on the server side features.

These server side features include:

❑ FOR XML – allows you to retrieve data from SQL Server as an XML

❑ OPENXML – allows you to shred XML documents and store them in relational tables

❑ XML Bulk Load – allows you to bulk load from an XML document into SQL

❑ XML Views – provide an XML view of relational data

❑ XPath query support – allows you to query the XML view

❑ XML Updategrams – allow you to update data in relational tables using the XML views

Chapter 14

534

In SQL Server 2000, we can write SELECT queries that return XML instead of the standard rowsets. The
new FOR XML clause is used to get the results of a query returned as an XML tree instead of a rowset.
These features are built in to the database query processor, which significantly enhances query
performance.

If we want to update data in SQL Server 2000 from an XML document source, we can do that as well,
using extensions to SQL INSERT, UPDATE, and DELETE statements. The new OPENXML functionality
generates a rowset view of the XML. This rowset view can then be used in place of a recordset to
update database tables.

Finally, when we have a large amount of XML that we want to put into SQL Server 2000, we can use
the Bulk Load object to add this data for us.

There are many cases where we may require data to be returned in an XML format. For example, to his
is typically the case if our application uses public XML schemas (such as Microsoft's Biz Talk schemas).
There are two main ways in which you can retrieve XML:

❑ Writing SQL queries – with special extensions – directly against SQL Server 2000 tables

❑ Defining XML views of relational data, and retrieving the data as XML using these XML
views

With both of these methods, the transformation of the relational data into XML is all done for you. All
of this makes Web application development much simpler, because you avoid writing complex
programs to retrieve and display data.

Note that almost all the examples in this chapter use the Northwind database that
comes with SQL Server 2000. We assume that you already have some knowledge of
SQL.

Retrieving XML from SQL Server 2000: FOR XML
In relational databases, as you well know, the standard practice employed to query or summarize data is
to run queries against that data. In SQL, queries specified against the database return results as a rowset.

For example, the following query, ch14_ex01.sql:

SELECT CustomerID,
ContactName

FROM Customers

when run against the Northwind database, returns a 2-column rowset of customer IDs and contact
names from the Customers table as a result, as shown opposite:

Storing and Retrieving XML in SQL Server 2000

535

New SQL Server Query Support
SQL Server 2000 provides enhanced query support, in which we can request the result of a SELECT
statement be returned as an XML document. To retrieve the result of a SELECT statement as XML, we
must specify the FOR XML clause in the SELECT statement, along with one of three modes: RAW, AUTO,
or EXPLICIT.

For example, if we wanted our previous sample query to return XML instead of a results table, we could
append to it as follows:

SELECT CustomerID,
ContactName

FROM Customers
FOR XML AUTO

This query uses the AUTO mode (which is specified after the FOR XML clause) and returns a long list of
customer information as XML, of which the following is a fragment:

<Customers CustomerID="ALFKI" ContactName="Maria Anders" />
<Customers CustomerID="ANATR" ContactName="Ana Trujillo" />

We've added formatting to the output XML in this chapter to make it more readable – the result
you obtain will be a continuous string.

However, note that while the FOR XML mode can be used in a SELECT statement, it cannot be used in
nested SELECTs, such as:

SELECT *
FROM Table1
WHERE … = SELECT * FROM Table2 FOR XML AUTO

Let's briefly summarize what each of the three FOR XML modes does, before going on to look at each
one in more detail:

❑ The RAW mode produces attribute-centric XML with a flat structure. Each row in the table is
represented in a generic tag called ROW, with the columns represented as attributes. The RAW
mode is the easiest of the three modes to administer, although it does limit you to this
structure.

Chapter 14

536

❑ The AUTO mode produces XML where the hierarchy of elements in the resulting XML is
determined by the order of columns in the SELECT statements, so you have limited control
over the shape of the XML produced. This mode provides a compromise between control and
complexity.

❑ The EXPLICIT mode allows the user to have total control over the shape of the resulting
XML. However, the downside is that it is more complicated to administer than the other
modes.

FOR XML: General Syntax
Here is the syntax for the FOR XML clause that is specified in the SELECT statement:

FOR XML xml_mode [,XMLDATA], [,ELEMENTS], [BINARY BASE64]

❑ If the optional XMLDATA option is specified, an XML-Data schema for the resulting XML is
returned as part of the result. The schema is prepended to the XML.

❑ The ELEMENTS option is specified if an element-centric document is to be returned in which
the column values are returned as sub-elements. By default the column values map to the
element attributes in XML. The ELEMENTS option only applies in AUTO mode. We can request
an element-centric document in EXPLICIT mode, but the ELEMENTS option isn't the way to
do it.

❑ If the BINARY Base64 option is specified in the FOR XML clause, any binary data returned (for
example, from a SQL Server IMAGE-type field) is represented in base64-encoded format. To
retrieve binary data using the RAW and EXPLICIT modes, this option must be specified. It is
not required when AUTO mode is specified, but without it, the AUTO mode returns binary data
as a URL reference by default.

For example this query retrieves employee ID and photo (an image type column) for
employee 1:

SELECT EmployeeID, Photo
FROM Employees
WHERE EmployeeID=1
FOR XML AUTO

The query returns this result:

<Employees EmployeeID="1"
Photo="dbobject/Employees[@EmployeeID='1']/@Photo"/>

Notice the URL reference to the Photo column returned. This URL reference can be used
later to retrieve the employee photo. The dbobject is a virtual name of dbobject type. And
the Employees[@EmployeeID='1']/@Photo is an XPath expression that is used to retrieve
the image. The virtual names are created as part of creating a virtual directory for SQL Server.

Now let's look at each of the modes in detail.

Storing and Retrieving XML in SQL Server 2000

537

The RAW Mode
If the RAW mode is specified, each row in the rowset returned by the SELECT statement is transformed
into an element with a generic tag <row> and the columns as attribute values. The resulting XML does
not have any hierarchy. If we take the following query (ch14_ex02.sql):

SELECT C.CustomerID, O.OrderID, O.OrderDate
FROM Customers C, Orders O
WHERE C.CustomerID = O.CustomerID
ORDER BY C.CustomerID, O.OrderID
FOR XML RAW

the result is as follows:

<row CustomerID="ALFKI" OrderID="10643" OrderDate="1997-08-25T00:00:00"/>
<row CustomerID="ALFKI" OrderID="10692" OrderDate="1997-10-03T00:00:00"/>
<row CustomerID="ALFKI" OrderID="10702" OrderDate="1997-10-13T00:00:00"/>
...

Note that if you execute these queries in Query Analyzer, as we are here, you get a document
fragment – the XML this produces is not well-formed, as we're missing a top-level element. When
you write applications, you would normally specify these queries in an XML template, in which you
can specify a single top-level element. The templates are discussed in Chapter 20.

This kind of simple XML structure is efficient for parsing, and is useful if there is no requirement to
generate XML in a specific format. If you want to transfer data from one source to another, it's easy to
generate such a flat XML document, and pass it on to a receiving application.

Note that the RAW mode is not the same as the persistence format of ADO, but it can be transformed
into it if required.

We could also request an XDR schema for the resulting XML as follows (ch14_ex03.sql):

SELECT C.CustomerID, O.OrderID, O.OrderDate
FROM Customers C, Orders O
WHERE C.CustomerID = O.CustomerID
ORDER BY C.CustomerID, O.OrderID
FOR XML RAW, XMLDATA

This is the result:

<Schema name="Schema1" xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:dt="urn:schemas-microsoft-com:datatypes">

<ElementType name="row" content="empty" model="closed">
<AttributeType name="CustomerID" dt:type="string"/>
<AttributeType name="OrderID" dt:type="i4"/>
<AttributeType name="OrderDate" dt:type="dateTime"/>
<attribute type="CustomerID"/>
<attribute type="OrderID"/>
<attribute type="OrderDate"/>

Chapter 14

538

</ElementType>
</Schema>
<row xmlns="x-schema:#Schema1" CustomerID="ALFKI"

OrderID="10643" OrderDate="1997-08-25T00:00:00"/>
<row xmlns="x-schema:#Schema1" CustomerID="ALFKI"

OrderID="10692" OrderDate="1997-10-03T00:00:00"/>
<row xmlns="x-schema:#Schema1" CustomerID="ALFKI"

OrderID="10702" OrderDate="1997-10-13T00:00:00"/>
...

You may need to change your settings in SQL Server to increase the maximum number of characters
allowed per column in order to obtain this result (Options | Results).

As you can see, we again get a flat structure without a hierarchy. If you want XML generated with a
particular hierarchy – for example a <Customers> element containing <Orders> sub-elements – then
you need to specify AUTO or EXPLICIT mode.

The AUTO Mode
Unlike RAW mode, the query specified with AUTO mode does generate hierarchical XML, although you
have limited control over the shape of the XML produced. The shape of the XML document generated
is mainly governed by the order in which you specify the table columns in the SELECT clause – this is
the only control you have.

Let's look at an example (ch14_ex04.sql):

SELECT Customers.CustomerID, ContactName,
OrderID, OrderDate

FROM Customers, Orders
WHERE Customers.CustomerID=Orders.CustomerID
ORDER BY Customers.CustomerID, OrderID
FOR XML AUTO

The syntax of each line in the code above is very similar to the equivalent lines in the FOR XML RAW
example we saw in the previous section. The main exception is the first line, which works somewhat
differently here:

❑ Each table name (from which at least one column is specified in the SELECT clause) maps to
an element

❑ Each column name specified in the SELECT clause maps to the attribute name in the XML
unless the ELEMENTS option is specified

❑ If the ELEMENTS option is specified, then each column name maps to sub-elements with text
only contents

So the result of the previous query is:

<Customers CustomerID="ALFKI" ContactName="Maria Anders">
<Orders OrderID="10643" OrderDate="1997-08-25T00:00:00"/>
<Orders OrderID="10692" OrderDate="1997-10-03T00:00:00"/>
<Orders OrderID="10702" OrderDate="1997-10-13T00:00:00"/><Orders
...

Storing and Retrieving XML in SQL Server 2000

539

</Customers>
<Customers CustomerID="ANATR" ContactName="Ana Trujillo">

<Orders OrderID="10308" OrderDate="1996-09-18T00:00:00"/>
<Orders OrderID="10625" OrderDate="1997-08-08T00:00:00"/>
...

</Customers>
...

The first table identified in our SELECT statement is the Customers table. Therefore the <Customers>
element is created first, with the columns that belong to this table (CustomerID and ContactName) as
attributes. The next identified table is Orders, so the <Orders> elements are created as child elements
of CustomerID, with the column taken from the Orders table as attributes.

However, if the ELEMENTS option is specified, as it is here:

SELECT Customers.CustomerID, ContactName,
OrderID, OrderDate

FROM Customers, Orders
WHERE Customers.CustomerID=Orders.CustomerID
ORDER BY Customers.CustomerID, OrderID
FOR XML AUTO, ELEMENTS

then the columns become sub-elements with text only contents:

<Customers>
<CustomerID>ALFKI</CustomerID>
<ContactName>Maria Anders</ContactName>
<Orders>

<OrderID>10643</OrderID>
<OrderDate>1997-08-25T00:00:00</OrderDate>

</Orders>
<Orders>

<OrderID>10692</OrderID>
<OrderDate>1997-10-03T00:00:00</OrderDate>

</Orders>
...

</Customers>
<Customers>

<CustomerID>ANATR</CustomerID>
<ContactName>Ana Trujillo</ContactName>
<Orders>

<OrderID>10308</OrderID>
<OrderDate>1996-09-18T00:00:00</OrderDate>

</Orders>
...

</Customers>

Again, the first table identified in our SELECT statement is the Customers table. The CustomerID and
ContactName columns this time map to children of <Customers>, as does the <Orders> element (in
the order in which they are specified). The OrderID and OrderDate are then created as child elements
of <Orders>.

Chapter 14

540

If you change the column order in the SELECT clause like this (ch14_ex05.sql):

SELECT OrderID, Customers.CustomerID, ContactName, OrderDate
FROM Customers, Orders
WHERE Customers.CustomerID=Orders.CustomerID
ORDER BY Customers.CustomerID, OrderID
FOR XML AUTO

the XML produced has a different hierarchy, in which <Orders> elements appear as parent and
<Customers> as child elements:

<Orders OrderID="10643" OrderDate="1997-08-25T00:00:00">
<Customers CustomerID="ALFKI" ContactName="Maria Anders"/>

</Orders>
<Orders OrderID="10692" OrderDate="1997-10-03T00:00:00">

<Customers CustomerID="ALFKI" ContactName="Maria Anders"/>
</Orders>
...

Here, the OrderID appears before the Customers.CustomerID. Therefore, an <Order> element is
created first, and then a <Customer> child element is added. The ContactName is added to the
existing <Customer> element, and the OrderDate is added to the existing <Order> element.

Thus, the AUTO mode allows the user limited control over the shape of the XML. If you want greater
control and flexibility in determining the shape and contents of the XML produced by the SELECT
statement, you need to specify EXPLICIT mode. We'll discussed this next.

The Explicit Mode
The EXPLICIT mode allows you total control over the resulting XML. Using this mode, we can decide
the shape of the resulting XML, but this flexibility comes with a price. As well as specifying what data
we want, we also need to provide explicit information about the shape of the XML that we want
generated. This makes writing SELECT queries more difficult than in AUTO or RAW mode.

There are four components of the SELECT statement that we need to be particularly concerned with
when using the EXPLICIT mode. These are:

❑ Column aliases. We need to specify column aliases following a specific syntax for each column
we specify in the SELECT clause. The information in the column aliases is used to generate the
XML hierarchy.

❑ Metadata columns. In addition to specifying the columns from which to retrieve the
information, the SELECT clause must specify two additional columns, with aliases Tag and
Parent (the column aliases are not case sensitive). These columns must be the first columns
specified in the SELECT clause. The parent-child relationship identified by the values in the
Tag and Parent columns are used along with the column aliases in generating the hierarchy
in the resulting XML.

❑ Some optional directives (discussed later).

❑ The ORDER BY clause specifying the ordering of rows. We must specify an appropriate order
in the ORDER BY clause to generate the correct document hierarchy. For example, if the
resulting XML has <Customer> elements with <Order> child elements, then you need to
specify the ORDER BY clause to order records by customers, and within customers, by orders.

Let's look at each of these in more detail.

Storing and Retrieving XML in SQL Server 2000

541

Specifying Column Aliases
The column aliases in the SELECT clause must be specified in a particular way, because the information
in the column aliases, along with the Tag and Parent column values, is used to generate the hierarchy.

For example, the following query returns the customer information (ch14_ex06.sql). To keep this
example simple, only CustomerID and ContactName columns are specified:

SELECT 1 as Tag,
NULL as Parent,
Customers.CustomerID as [Cust!1!CustID],
Customers.ContactName as [Cust!1!Contact]

FROM Customers
ORDER BY [Cust!1!CustID]
FOR XML EXPLICIT

The query generates the following XML:

<Cust CustID="ALFKI" Contact="Maria Anders"/>
<Cust CustID="ANATR" Contact="Ana Trujillo"/>
…

Note that we are just starting with a simple example. To generate this flat XML fragment, you
don't need to specify EXPLICIT mode: either RAW or AUTO mode will produce this result without
pain. We are taking this simple example only to understand the basic mechanics of specifying
EXPLICIT mode. The power of EXPLICIT mode will become more clear when we generate
complex XML hierarchies.

In this query, the CustomerID column has the alias [Cust!1!CustID], and the ContactName
column has the alias [Cust!1!Contact].

The general syntax for column alias is:

ElementName!TagNumber!PropertyName!Directive

where:

❑ ElementName is the name of the element that will appear in the resulting XML (in the above
example, Cust is the element name).

❑ TagNumber is the unique tag number of the element. In the above example, TagNumber is 1.

❑ PropertyName is the name given to this particular attribute in the resulting XML (assuming
the default attribute-centric mapping). If you specify element-centric mapping using the
optional Directive, then it is the name of the sub-element. In this example, the
PropertyName CustID, and Contact are the names of the attribute in the resulting XML.

❑ Directive modifies the resulting XML in various ways. Directives are discussed in the
section after next. No directives are specified in the column aliases in this example.

Chapter 14

542

Specifying the Metadata Columns
Since in the EXPICIT mode we specify the shape of the XML, one of the things we do is specify two
additional columns in the SELECT clause. The alias for these two columns must be Tag and Parent.
These two columns provide parent-child relationship information between the elements in the XML that
is generated by the query.

These metadata columns must be the first two columns specified in the SELECT clause.

❑ The Tag column provides a numeric tag number of the element. It can be any number you
want, as long as the number is unique for each element defined.

❑ The Parent column is used to define which element is the parent of this element. If the
current element has no parent, then the value in this column is NULL.

Let us look at the previous query again:

SELECT 1 as Tag,
NULL as Parent,
Customers.CustomerID as [Cust!1!CustID],
Customers.ContactName as [Cust!1!Contact]

FROM Customers
ORDER BY [Cust!1!CustID]
FOR XML EXPLICIT

The Tag value 1 is the unique tag value of the <Cust> element. In processing the query result to
produce the XML, if the value in the Tag column is 1, then all the columns in the rowset produced by
the query with TagNumber 1 are identified. These are the columns mapped to the attributes (or sub-
elements) in the Cust element. This will be discussed later in more detail.

As you see in the result, the <Cust> element has no parent element, so the Parent metadata column is
assigned a NULL value.

The rest of the query is straightforward. Although we specify one, the ORDER BY clause is not required
in this example. The ORDER BY clause only becomes important when you are generating XML
containing hierarchies.

Before we come back to look at some more complicated examples, let's look at the different
directives that can be included in the column alias.

Specifying the Directive in the Column Alias
The EXPLICIT mode allows additional controls in the generation of XML. We can:

❑ Identify certain attributes in the query as being of type id, idref, or idrefs

❑ Request the resulting XML be an element-centric document (by default you get an attribute-
centric XML)

❑ Wrap certain data in the XML in a CDATA section

❑ Specify how to deal with characters in the data returned by SQL Server that are special in
XML

Storing and Retrieving XML in SQL Server 2000

543

Specifying the directive in the column alias does all this. These are the directives you can specify:

❑ id

❑ idref

❑ idrefs

❑ Hide

❑ element

❑ xml

❑ cdata

❑ xmltext

Let's familiarize ourselves with these directives.

id, idref, idrefs Directives

The directives id, idref, and idrefs identify the attribute as being of type id, idref, or idrefs. If
you specify one of these you will see the effect in the XML-Data schema of the resulting XML.
(Remember that you can request the XML-Data schema by specifying the XMLDATA option in the
query.)

In this query, the CustID attribute is identified as being of type id by specifying the id directive in the
column alias. The query also requests the XML-Data schema for the generated XML.
(ch14_ex07.sql):

SELECT 1 as TAG,
NULL as parent,
Customers.CustomerID as [Cust!1!CustID!id],
Customers.ContactName as [Cust!1!Contact]

FROM Customers
ORDER BY [Cust!1!CustID!id]
FOR XML EXPLICIT, XMLDATA

The schema is prepended to the result. Also note the dt:type attribute added in the definition of the
CustID AttributeType:

<Schema name="Schema2" xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:dt="urn:schemas-microsoft-com:datatypes">

<ElementType name="Cust" content="mixed" model="open">
<AttributeType name="CustID" dt:type="id"/>
<AttributeType name="Contact" dt:type="string"/>
<attribute type="CustID"/>
<attribute type="Contact"/>

</ElementType>
</Schema>

<Cust xmlns="x-schema:#Schema2" CustID="ALFKI" Contact="Maria Anders"/>
<Cust xmlns="x-schema:#Schema2" CustID="ANATR" Contact="Ana Trujillo"/>
<Cust xmlns="x-schema:#Schema2" CustID="ANTON" Contact="Antonio Moreno"/>
...

Chapter 14

544

element and xml Directives

The element and xml directives produce element-centric XML rather than attribute-centric. For
example, our ch14_ex06.sql example of the EXPLICIT section returned the following attribute-
centric XML:

<Cust CustID="ALFKI" Contact="Maria Anders"/>
<Cust CustID="ANATR" Contact="Ana Trujillo"/>
...

If we add the element directive to the column aliases in this example, the query will now look like this
(ch14_ex08.sql):

SELECT 1 as TAG,
NULL as parent,
Customers.CustomerID as [Cust!1!CustID!element],
Customers.ContactName as [Cust!1!Contact!element]

FROM Customers
ORDER BY [Cust!1!CustID!element]
FOR XML EXPLICIT

The XML returned by this query looks like this:

<Cust>
<CustID>ALFKI</CustID>
<Contact>Maria Anders</Contact>

</Cust>
<Cust>

<CustID>ANATR</CustID>
<Contact>Ana Trujillo</Contact>

</Cust>
...

The only difference between the xml and element directives is that when element is specified, the
data is encoded into escape codes. For example, if you have the special XML character '<' in the data, it
would be encoded as <. When xml is used, this encoding does not take place.

You can also generate mixed mode XML by specifying element or xml on one of the columns only, as
seen below (ch14_ex09.sql):

SELECT 1 as TAG,
NULL as parent,
Customers.CustomerID as [Cust!1!CustID],
Customers.ContactName as [Cust!1!Contact!element]

FROM Customers
ORDER BY [Cust!1!CustID]
FOR XML EXPLICIT

This is the result (using xml in the above query would give the same result):

<Cust CustID="ALFKI">
<Contact>Maria Anders</Contact>

</Cust>
<Cust CustID="ANATR">

<Contact>Ana Trujillo</Contact>
</Cust>
...

Storing and Retrieving XML in SQL Server 2000

545

Here, since the element directive is specified only for the ContactName column, ContactName is
returned as a sub-element. The CustomerID column remains mapped to the corresponding attribute
because attribute-centric mapping is the default.

The cdata Directive

The cdata directive wraps the data within a CDATA section. To specify this directive, the original data
must be a text type (such as the text, ntext, varchar, nvarchar, SQL Server data types). It is
important to remember that the PropertyName of the column alias must not be specified when you
specify the cdata directive in the alias.

So for the following example (ch14_ex10.sql):

SELECT 1 as TAG,
NULL as parent,
Customers.CustomerID as [Cust!1!CustID],
Customers.ContactName as [Cust!1!!cdata]

FROM Customers
ORDER BY [Cust!1!CustID]
FOR XML EXPLICIT

the resulting XML is in the following format:

<Cust CustID="ALFKI"><![CDATA[Maria Anders]]>
</Cust><Cust CustID="ANATR"><![CDATA[Ana Trujillo]]>
...

The xmltext Directive

Sometimes when we are inserting information in an XML format into a database, not all of the elements
will be inserted directly into the database as standard column entries. In such a case, we may want to
put any spare XML (also referred to as unconsumed XML) into its own column (referred to as an
overflow column) for safe keeping, until it is needed again. This can be done as part of the functionality
of OPENXML, discussed later in the chapter.

The xmltext directive is used to identify a database column as an overflow column, pull out all of the
XML contained within this column, and put it back into an XML format.

For example, assume we have the following Employee table, and have previously stored an XML
document using OPENXML:

EmployeeID EmployeeName OverflowColumn

Emp1 Joe <Tag HomePhone="data">content</Tag>
Emp2 Bob <Tag MaritalStatus="data"/>
Emp3 Mary <Tag HomePhone="data"

MaritalStatus="data"></Tag>

We can write a query with EXPLICIT mode to return the XML such that the data in the overflow is
appropriately added to the elements in the XML document. An example of such a query is seen below
(ch14_ex11.sql):

Chapter 14

546

SELECT 1 as Tag,
NULL as parent,
EmployeeID as [Emp!1!EmpID],
EmployeeName as [Emp!1!EmpName],
OverflowColumn as [Emp!1!!xmltext]

FROM Employee
FOR XML EXPLICIT

For the overflow column (OverflowColumn), PropertyName is not specified in the column alias, but
directive is set to xmltext. This identifies the column as containing overflow text. In the resulting
XML, all of this content gets appended to the attributes of the enclosing <Emp> parent as further
attributes:

<Emp EmpID="Emp1" EmpName="Joe" HomePhone="data">content</Emp>
<Emp EmpID="Emp2" EmpName="Bob" MaritalStatus="data"></Emp>
<Emp EmpID="Emp3" EmpName="Mary" HomePhone="data"

MaritalStatus="data"></Emp>

If you specify a PropertyName in the column alias for OverflowColumn, then the overflow data is
inserted into the XML as attributes of a child element of the element defined by the query. This child
element takes the name specified in the PropertyName (ch14_ex12.sql).

SELECT 1 as Tag,
NULL as parent,
EmployeeID as [Emp!1!EmpID],
EmployeeName as [Emp!1!EmpName],
OverflowColumn as [Emp!1!UnconsumedData!xmltext]

FROM Employee
FOR XML EXPLICIT

This will produce this result:

<Emp EmpID="Emp1" EmpName="Joe">
<UnconsumedData HomePhone="data">content</UnconsumedData>

</Emp>
<Emp EmpID="Emp2" EmpName="Bob">

<UnconsumedData MaritalStatus="data"/>
</Emp>
<Emp EmpID="Emp3" EmpName="Mary">

<UnconsumedData HomePhone="data" MaritalStatus="data">
</UnconsumedData>
</Emp>

In most of the examples of the EXPLICIT mode that we have seen so far, the resulting XML was rather
lacking in hierarchical structure. Most of the queries simply returned one or more of the same element
with their property (attribute or sub-element) values. However, with EXPLICIT mode we have full
control over the shape of the XML. We can generate hierarchies such as <Customer> elements
consisting of <Order> elements, and <Order> elements consisting of <OrderDetail> elements.

Now that we understand the basics of writing EXPLICIT mode queries, let's look at how XML is
generated in EXPLICIT mode queries – that is, how the rowset produced by the execution of a SELECT
statement is transformed into an XML. We must specify our SELECT query in such a way that the
resulting rowset has all the information necessary to generate the XML.

Storing and Retrieving XML in SQL Server 2000

547

Generating XML from the Rowset (Universal Table)
One thing we haven't explained is the logic behind generating the XML from an EXPLICIT query.
Upon the execution of the EXPLICIT query, a rowset is generated (just like from any other SELECT
statement), which acts as a kind of intermediate stage between the execution of the query against the
database, and the completion of the XML result. This rowset is referred to as the universal table, so
called because it is not a normalized rowset.

Let's look again at the first simple EXPLICIT query we encountered (ch14_ex06.sql):

SELECT 1 as Tag,
NULL as Parent,
Customers.CustomerID as [Cust!1!CustID],
Customers.ContactName as [Cust!1!Contact]

FROM Customers
ORDER BY [Cust!1!CustID]
FOR XML EXPLICIT

The partial rowset (universal table) generated when this query is executed is given below:

Tag Parent Cust!1!CustID Cust!1!Contact

1 NULL "ALFKI" "Maria Anders"
1 NULL "ANATR" "Ana Trujillo"
1 NULL "ANTON" "Antonio Moreno"

…

To see the universal table rowset generated for a query, execute the query against the Northwind
database without the FOR XML clause.

To generate the XML, the rows in this universal table are processed as follows.

As the first row is read, it identifies the Tag as being 1. Therefore, all the columns in the row with a
TagNumber of 1 in the column names are identified (here we have Cust!1!CustID and
Cust!1!Contact). These column names provide values for the properties of the element identified by
Tag 1. These columns names identify Cust as the ElementName, therefore a <Cust> element is
created. The column names also identify CustID and Contact as the PropertyNames. Therefore
CustID and Contact attributes are added to the <Cust> element.

When the second row is read, it identifies NULL as its Parent. Therefore, the previous tag is closed by
adding the end tag (</Cust>). Again, the second row identifies 1 as Tag, so all the columns with
TagNumber 1 in the column name are identified (again we have Cust!1!CustID and
Cust!1Contact). These column names identify Cust as the ElementName, and as a result, another
<Cust> element is created and the process continues.

When all three cycles have been completed, the following query result is returned:

<Cust CustID="ALFKI" Contact="Maria Anders"/>
<Cust CustID="ANATR" Contact="Ana Trujillo"/>
<Cust CustID="ANTON" Contact="Antonio Moreno"/>

…

Chapter 14

548

Hierarchy Generation
As we write SELECT queries to generate complex XML, the basic process of writing queries to generate
hierarchy is still the same. For example, consider the following two SQL Server table fragments, taken
from the Northwind database:

Assume that we want to generate the following XML about customer order information from the data
stored in these tables:

<Customer CustomerID="ALFKI">
<Order OrderID=10643>
<Order OrderID=10692>
...

</Customer>
<Customer CustomerID="ANATR" >

<Order OrderID=10308 >
<Order OrderID=10625 >
...

</Customer>

One way to write the query to generate this XML is to specify two SELECT statements and join them
with UNION ALL, where the first SELECT statement is written to produce the customer information, and
the second SELECT statement is written to produce the order information.

The two SELECT statements must produce rowsets that are union compatible in order to apply UNION
ALL. For union compatibility, each rowset produced must have same number of columns and the
corresponding columns must be of same data type.

Let's use Tag value 1 for the <Customer> element and Tag value 2 for the <Order> element.

We'll look at this step by step to see how we get from the database data to the final XML output. We
will take the following:

❑ The first and second rowsets, that represent the two elements separately

❑ The SELECT query to create to XML

❑ The universal table: the intermediate between the query and the XML

❑ The XML

Storing and Retrieving XML in SQL Server 2000

549

The First Rowset: Representing the <customer> Element
So we need our first SELECT query to produce a rowset in this format:

Tag Parent Customer!1!CustomerID Order!2!OrderID
1 NULL ALFKI NULL
1 NULL ANATR NULL
...

Here, 1 is the Tag number assigned to the <Customer> element. Again, recall that the Tag value can
be any number as long as each element produced has a unique tag number. The same value is specified
for the TagNumber in the column alias – [Customer!1!CustomerID]. The OrderID column is generated
only because this rowset needs to have the same number of columns as the second SELECT statement, in
order to be union compatible with it.

This is the first SELECT query:

SELECT 1 as Tag,
NULL as Parent,
Customers.CustomerID as [Customer!1!CustomerID],
NULL as [Order!2!OrderID]

FROM Customers

The Second Rowset: Representing the <order> Element
We need a second SELECT statement to produce a rowset with this format:

Tag Parent Customer!1!CustomerID Order!2!OrderID
2 1 ALFKI 10643
2 1 ALFKI 10692
2 1 ANATR 10308
2 1 ANATR 10625
...

Here, the unique Tag value assigned to the <Order> element is 2. We want the <Order> element to be
the child of the <Customer> element. Therefore, the Parent value for the <Order> element is 1,
identifying <Customer> as the parent. In this query, the CustomerID values are produced again for
the ORDER BY clause, to produce the necessary ordering of customers and orders.

This is our second SELECT query:

SELECT 2,
1,
Customers.CustomerID,
Orders.OrderID

FROM Customers, Orders
WHERE Customers.CustomerID = Orders.CustomerID

Each of the queries must also provide appropriate column aliases (remember the format,
ElementName!TagNumber!PropertyName!Directive). For the CustomerID column, we need to
specify the alias as Customer!1!CustomerID, where CustomerID is the ElementName, and 1 is the
TagNumber, which is same as the Tag value we decided for the Customer ElementType.

Chapter 14

550

In the same way, we assign Order!2!OrderID alias to the OrderID column, to define it as a property
of the <order> element.

The SELECT Query
Finally, we put these two queries together with a UNION ALL. We must also specify the ORDER BY clause
so that the <Order> elements appear below their <Customer> parent. The resulting query is given
below (ch14_ex13.sql):

SELECT 1 as Tag,
NULL as Parent,
Customers.CustomerID as [Customer!1!CustomerID],
NULL as [Order!2!OrderID]

FROM Customers
UNION ALL
SELECT 2,

1,
Customers.CustomerID,
Orders.OrderID

FROM Customers, Orders
WHERE Customers.CustomerID = Orders.CustomerID
ORDER BY [Customer!1!CustomerID],

[Order!2!OrderID]
FOR XML EXPLICIT

Note that the column aliases are provided as part of the first SELECT statement. Aliases provided in the
subsequent SELECT will be ignored, so we don't need to state them again.

The ORDER BY clause ensures that the records in the rowset are generated in the proper order. This isn't
simply stating that the <Customer> elements will be sorted by CustomerID and the <Order>
elements by OrderID. We're also ensuring that when the rowset is processed, the final XML will have
the <Order> elements appear as child elements of appropriate the <Customer> parent.

Processing the Rowset (Universal Table)
The query produces this rowset (only partial rows are shown) or universal table:

Tag Parent Customer!1!CustomerID Order!2!OrderID
1 NULL ALFKI NULL
2 1 ALFKI 10643
2 1 ALFKI 10692
2 1 ALFKI ...
1 NULL ANATR NULL
2 1 ANATR 10308
2 1 ANATR 10625
2 1 ANATR ...

This universal table is then processed to produce the desired XML. The rows are processed in order, so
let's start with the first row.

The Tag value in this row is 1. All the columns with a Tag number of 1 specified in the column name
are identified. In this case, there is only one column, i.e. Customer!1!CustomerID.

Storing and Retrieving XML in SQL Server 2000

551

Now the rest of the information in the alias is used, which identifies Customer as the element name,
and CustomerID as the property value. Therefore, a <Customer> element is created, with an attribute
CustomerID with a value "ALFKI" – the value from the column in the table.

The second row identifies Tag value 2. Now, all the columns with TagNumber 2 in the column alias are
identified. In this example, the Order!2!OrderID is the only column. The column name identifies
Order as the element name, OrderID as the property value, and the <Customer> element as the
parent. So, an <Order> element is created, with an attribute OrderID that has the value "10643",
from the column value in the table. This element is then placed into the XML as a child of the
<Customer> element.

The process is repeated for the remaining rows of the universal table. One thing to note is that when the
Tag number encountered at the start of the table row changes from 2 to 1 again, the first customer tag is
automatically closed off, and the next one opened.

The ResultingXML

When the rows have all been processed, the XML is produced, as expected. Let's have another look at
it, to remind us:

<Customer CustomerID="ALFKI">
<Order OrderID="10643" />
<Order OrderID="10692" />
…

</Customer>
<Customer CustomerID="ANATR">

<Order OrderID="10308" />
<Order OrderID="10625" />
…

</Customer>
...

Further Examples
Now we understand the process of XML creation inside out, lets affirm our knowledge by going through
some slightly more complicated examples.

Example 1 – Using idrefs to Create Attributes
Assume we want this <Customer> and <Order> hierarchy generated:

<Customer xmlns="x-schema:#Schema1" CustomerID="ALFKI">
<Order OrderID="10643" CustomerID="ALFKI"/>
<Order OrderID="10692" CustomerID="ALFKI"/>

...
</Customer>
<Customer xmlns="x-schema:#Schema1" CustomerID="ANTON">

<Order OrderID="10365" CustomerID="ANTON"/>
<Order OrderID="10507" CustomerID="ANTON"/>
...

</Customer>

 …

Chapter 14

552

where the CustomerID attribute of the <Customer> element is an id type attribute, and the
CustomerID attribute of the <Order> element is an idref type attribute, referring to the id type
attribute.

This is the query (ch14_ex14.sql) that produces the desired XML:

SELECT 1 as Tag,
NULL as Parent,
Customers.CustomerID as [Customer!1!CustomerID!id],
NULL as [Order!2!OrderID],
NULL as [Order!2!CustomerID!idref]

FROM Customers
UNION ALL
SELECT 2,

1,
Customers.CustomerID,
Orders.OrderID,
Orders.CustomerID

FROM Customers, Orders
WHERE Customers.CustomerID = Orders.CustomerID
ORDER BY [Customer!1!CustomerID!id], [Order!2!OrderID]
FOR XML EXPLICIT, XMLDATA

Here, the id and idref directives are specified in the first SELECT clause. The query also requests
an XDR schema by specifying the XMLDATA option, so that we can see the changes in the schema due to
the id and idref directives.

This is the partial result.

<Schema name="Schema1" xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:dt="urn:schemas-microsoft-com:datatypes">

<ElementType name="Customer" content="mixed" model="open">
<AttributeType name="CustomerID" dt:type="id"/>
<attribute type="CustomerID"/>

</ElementType>
<ElementType name="Order" content="mixed" model="open">
<AttributeType name="OrderID" dt:type="i4"/>
<AttributeType name="CustomerID" dt:type="idref"/>
<attribute type="OrderID"/>
<attribute type="CustomerID"/>

</ElementType></Schema>
<Customer xmlns="x-schema:#Schema1" CustomerID="ALFKI">

<Order OrderID="10643" CustomerID="ALFKI"/>
<Order OrderID="10692" CustomerID="ALFKI"/>

...
</Customer>
<Customer xmlns="x-schema:#Schema1" CustomerID="ANTON">

<Order OrderID="10365" CustomerID="ANTON"/>
<Order OrderID="10507" CustomerID="ANTON"/>
...

</Customer>

The schema specifies the dt:type as id for the CustomerID attribute of the <Customer> element,
and dt:type as idref for the CustomerID attribute of <Order> element.

Storing and Retrieving XML in SQL Server 2000

553

Now you can see how EXPLICIT queries can become more of a challenge. Assume we want to generate
the following hierarchy with attributes of type idrefs:

<Customer CustomerID="ALFKI" OrderList="Ord-10643 Ord-10692 ...">
<Order OrderID="Ord-10643" OrderDate="1997-08-25T00:00:00"/>
<Order OrderID="Ord-10692" OrderDate="1997-10-03T00:00:00"/>

...
</Customer>
<Customer CustomerID="ANATR" OrderList="Ord-10308 Ord-10625 ... ">

<Order OrderID="Ord-10308" OrderDate="1996-09-18T00:00:00"/>
<Order OrderID="Ord-10625" OrderDate="1997-08-08T00:00:00"/>

...
</Customer>

This XML contains two elements (Customer, Order). The <Customer> element has an attribute
Orderlist, which refers to the OrderID attributes of the <Order> elements for that customer. Thus
we need to specify the OrderID attribute of the <Order> element as of type id, and the OrderList
attribute as an idrefs value.

We therefore require three SELECT statements: one each for <Customer>, OrderList as idrefs,
and <Order>. The OrderList idrefs attribute and Order element are both children of the
Customer element, so their SELECT statements will appear after the Customer SELECT. They must
also include a key (such as CustomerID) from the Customer to get the right ordering/nesting.

This is demonstrated in the query below (ch14_ex15.sql):

-- Customer element
SELECT 1 as Tag,

NULL as Parent,
Customers.CustomerID as [Customer!1!CustomerID],
NULL as [Customer!1!OrderList!idrefs],
NULL as [Order!2!OrderID!id],
NULL as [Order!2!OrderDate]

FROM Customers
UNION ALL
-- OrderList attribute
SELECT 1,

NULL,
Customers.CustomerID,
'Ord-'+CAST(Orders.OrderID as varchar(5)),
NULL,
NULL

FROM Customers, Orders
WHERE Customers.CustomerID = Orders.CustomerID
UNION ALL
-- Order element
SELECT 2,

1,
Customers.CustomerID,
NULL,
'Ord-'+CAST(Orders.OrderID as varchar(5)),
Orders.OrderDate

FROM Customers, Orders
WHERE Customers.CustomerID = Orders.CustomerID
ORDER BY [Customer!1!CustomerID],

[Order!2!OrderID!id],
[Customer!1!OrderList!idrefs]

FOR XML EXPLICIT

Chapter 14

554

In general, descendants must inherit keys from their ancestors to get the right ordering. The ordering is
best explained by looking at the shape of the universal table this query produces, and considering why
this shape is needed (only partial rowset is shown below):

Corresponding TAG PARENT [Customer!1! [Customer!1! [Order!2!
XML CustomerID] OrderList!idrefs] OrderID]
<Customer> 1 NULL ALFKI NULL NULL
OrderList 1 NULL ALFKI Ord-10692 NULL
<Order> 2 1 ALFKI NULL Ord-10692
<Order> 2 1 ALFKI NULL Ord-11001
<Customer> 1 NULL ANATR NULL NULL
…

The first column shows the XML produced, which is not part of the rowset generated by the above
query – we have added that column for explanation purposes only.

First, we want to have the top-level Customer elements ordered by CustomerID in the ORDER BY
clause. If we did not select the CustomerID in every descendant of Customer (instead selecting NULL
in the SELECT clause), then the descendant rows would rise to the top of the table, which is not what
we want.

Second, we want to have the OrderList idrefs attribute appear after the Customer element begins,
but before the child elements of Customer begin. If we just sorted by the OrderList values next, this
would not produce the ordering we want. The NULLs would rise to the top of the
Customer!1!OrderList!idrefs column, and the Order children would appear before the
OrderList idrefs attribute, as shown in the following universal table:

Corresponding TAG PARENT [Customer!1! [Customer!1! [Order!2!
XML CustomerID] OrderList!idrefs] OrderID]
<Customer> 1 NULL ALFKI NULL NULL
<Order> 2 1 ALFKI NULL Ord-10692
<Order> 2 1 ALFKI NULL Ord-11001
OrderList 1 NULL ALFKI Ord-10692 NULL
<Customer> 1 NULL ANATR NULL NULL
…

So instead, we need to order by the non-idrefs children first, and then by the idrefs children. For
this example, that means ordering by Order!2!OrderID first, and then ordering by
Customer!1!OrderList!idrefs:

ORDER BY [Customer!1!CustomerID],
[Order!2!OrderID!id],
[Customer!1!OrderList!idrefs]

Also note the casting specified in the query:

'Ord-'+CAST(Orders.OrderID as varchar(5)),

This is done because all of these queries are against the Northwind database in SQL Server. In this
database, the OrderID values are integers. However, in XML the idrefs can't be numbers, so we need
to convert them.

Storing and Retrieving XML in SQL Server 2000

555

In summary, it is very important to specify the appropriate ORDER BY clause. For the OrderList idrefs
type attributes, the corresponding <Order> instances must appear immediately after the <Customer>
element to which the idrefs attribute belongs.

Example 2 – Producing XML Containing Siblings
The query in this example produces XML containing siblings. Assume we want this XML hierarchy:

<Employee ID="1">
<Order ID="10258">

<Product ID="2"/>
<Product ID="5"/>
<Product ID="32"/>

</Order>
<Order ID="10270">

<Product ID="36"/>
<Product ID="43"/>

</Order>
...
<Customer ID="AROUT"/>
<Customer ID="BSBEV"/>
<Customer ID="CONSH"/>
<Customer ID="EASTC"/>
<Customer ID="NORTS"/>
<Customer ID="SEVES"/>

</Employee>

where the <Employee> element consists of <Order> and <Customer> child elements (siblings). The
<Order> child elements are the orders the parent employee has taken, and the <Customer> child
elements are the customers who live in the same city as the parent employee. Note that in this example
there is no relationship between <Order> and <Customer> elements, except that they are children of
the same parent. The <Order> element in turn has <Product> child elements, just to add more
complexity.

To generate this, we will use four SELECT statements, one for each of the <Employee>, <Order>,
<Product>, and <Customer> elements. It is important to understand that each SELECT clause selects
all its ancestor's keys. Again, the ordering is important in the ORDER BY clause.

Here is the query (ch14_ex16.sql):

SELECT 1 as TAG, 0 as parent,
E.EmployeeID as [Employee!1!ID],
NULL as [Order!2!ID],
NULL as [Product!3!ID],
NULL as [Customer!4!ID]

FROM Employees E
UNION ALL
SELECT 2 as TAG, 1 as parent,

E.EmployeeID,
O.OrderID,
NULL,
NULL

FROM Employees E join Orders O on E.EmployeeID=O.EmployeeID
UNION ALL

Chapter 14

556

SELECT 3 as TAG, 2 as parent,
E.EmployeeID,
O.OrderID,
P.ProductID,
NULL

FROM Employees E join Orders O on E.EmployeeID=O.EmployeeID
JOIN [Order Details] D on O.OrderID=D.OrderID
JOIN Products P on D.ProductID=P.ProductID
UNION ALL
SELECT 4 as TAG, 1 as parent,

E.EmployeeID,
NULL,
NULL,
C.CustomerID

FROM Employees E join Customers C on E.City=C.City
ORDER BY [Employee!1!ID], [Customer!4!ID], [Order!2!ID], [Product!3!ID]
FOR XML EXPLICIT

Among siblings, we order by the last child first. So in this example, we order by:

❑ The top-level element (Employee)

❑ Then the last child of employee (Customer)

❑ Then the children of Customer (none)

❑ Then the next child of Employee (Order)

❑ Then the children of Order (Product)

Alternative Ways to Retrieve XML
As we've seen, the EXPLICIT mode queries are a bit complex – writing these queries to produce
complex XML documents can be a challenge. However, there is an alternative. We can create XML
Views of the relational data, and specify XPath queries against these views.

In SQL Server 2000, we can create XML views using XML-Data reduced language (a subset of XML-
Data schema language). XPath queries generate FOR XML EXPLICIT queries to retrieve data from the
database. To get the simplicity of XPath queries against XML views, and the control of explicit
queries, we can use the SQL Server profiler to capture the explicit queries that XPath generates.

There's more on XML views and XPath in the next chapter. For now, let's look at another of those new
server side features that SQL Server 2000 provides.

Storing XML in SQL Server 2000: OPENXML
In the world of relational databases, when we are updating a table we need to provide the necessary
data as a rowset to the INSERT, UPDATE, or DELETE statements. However, if our source data is an XML
document, and we want to INSERT this data into the database, UPDATE the existing relational data from
the source XML document, or DELETE existing records in the tables based on the data in the XML
document, then somehow we need to create a rowset from the XML data and pass it to the INSERT,
UPDATE, or DELETE statement.

Storing and Retrieving XML in SQL Server 2000

557

OPENXML provides this functionality. The OPENXML function in SQL Server 2000 is a rowset provider,
which means it creates a rowset view of an XML document. Since a rowset is like a table, it can be used
in place of a table or relational view in SELECT queries. Thus, the OPENXML feature in SQL Server 2000
allows you to store data from XML documents or document fragments in database tables.

OPENXML is one way of storing XML in the database using SQL. In addition, you can store XML
using XML updategrams, which are discussed in the next chapter.

To do this there are a number of steps that take place, we need to:

❑ Create an in-memory DOM representation of the XML document

❑ Use OPENXML to create a rowset view of this XML. As part of OPENXML, specify an XPath
expression to retrieve the desired elements

❑ Pass this rowset to INSERT, UPDATE, and DELETE statements to update the database

❑ Destroy the in-memory DOM representation of the XML document

Using OPENXML in SQL Statements
If we think about a typical SELECT statement for retrieving rows from a table, it is written in the form:

SELECT *
FROM <TableName>
WHERE <Some Condition>

This statement will retrieve data from the specified table(s). However, our data source is not in a table
form, it is an XML document. So, OPENXML is first used to generate a rowset view of this XML
document, which is then provided to the SELECT statement.

SELECT *
FROM OPENXML …
WHERE …

Thus, if we want to apply updates to a database table from data that is XML, then OPENXML can be used
with INSERT, UPDATE, or DELETE statements to apply necessary updates from the XML data. For
example:

INSERT INTO Customers
SELECT *
FROM OPENXML …
WHERE ..

Creating the In-Memory Representation of the Document
As we said, we need to create a DOM tree that represents the XML, so that OPENXML can generate a
rowset of this data, and then destroy it later so that we do not waste resources. There are two special
stored procedures to do this:

❑ sp_xml_preparedocument

❑ sp_xml_removedocument

Chapter 14

558

Before OPENXML can access the XML document, the sp_xml_preparedocument stored procedure
must be called to generate an in-memory DOM representation of the XML. The stored procedure
returns a document handle of this in-memory DOM tree. This document handle is passed to OPENXML,
which then generates the rowset used in the SQL queries. The document handle allows OPENXML to
access the data:

DECLARE @hdoc int
DECLARE @doc varchar(1000)
-- Source XML document
SET @doc ='
<root>
<Customer cid= "Cust1" name="Bob" city="Seattle">

<Order oid="Ord1" empid="1" orderdate="10/1/2000" />
<Order oid="Ord2" empid="1" orderdate="10/2/2000" />

</Customer>
<Customer cid="C2" name="John" city="NewYork" >

<Order oid="Ord3" empid="2" orderdate="9/1/2000" />
<Order oid="Ord4" empid="3" orderdate="9/2/2000" />

</Customer>
</root>
'--Create an internal representation of the XML document.
EXEC sp_xml_preparedocument @hdoc OUTPUT, @doc
EXEC sp_xml_removedocument @hdoc

Note that 8K is the maximum size of XML allowed when the nvarchar data type is used. If your
XML is larger than 8K you may want to specify ntext data type.

The first line here declares an integer variable – @hdoc –to hold the document handle returned by the
sp_xml_preparedocument stored procedure. The second variable – @doc – holds the source XML
that we are mapping using the following:

EXEC sp_xml_preparedocument @hdoc OUTPUT, @doc

And again, since the entire XML document is read in memory, it is important that we call the
sp_xml_removedocument stored procedure when the XML document is no longer needed. This frees
up memory and resources:

EXEC sp_xml_removedocument @hdoc

We can use this general template for all of our queries in this section:

DECLARE @hdoc int
DECLARE @doc varchar(1000)
-- Source XML document
SET @doc ='Copy XML document here
'--Create an internal representation of the XML document.
EXEC sp_xml_preparedocument @hdoc OUTPUT, @doc

Your SELECT statement goes here
EXEC sp_xml_removedocument @hdoc

Storing and Retrieving XML in SQL Server 2000

559

Understanding OPENXML
Having seen how we create the DOM representation that lets OPENXML generate a rowset, let's look at
the general syntax for an OPENXML query:

OPENXML (DocHandle int,
XPathPattern nvarchar,
[Flags byte])

[WITH (RowsetSchema | TableName)]

Only the first two of these parameters of the OPENXML function are required. The parameters are:

❑ DocHandle: This is the XML document handle returned by sp_xml_preparedocument.

❑ XpathPattern: An XPath expression (XPathPattern). This expression identifies the nodes
in the XML document that will be mapped to the rowset generated. For example, the XPath
pattern /root/Order/OrderDetail identifies the <OrderDetail> child element nodes of
the <Order> child element node of the <root> element.

❑ Flags: The Flags parameter specifies how the attributes/sub-elements in the XML
document map to the columns of the rowset being generated. Flags can be set to 1 for
attribute-centric mapping, 2 for element-centric mapping, 3 for mixed mapping (remember
this parameter is of byte type). The value 3 is obtained by combining, using a logical OR, 1
(attribute-centric) and 2 (element-centric).

The Flags value 8 has a special meaning: it is used in connection with the @mp:xmltext
metaproperty attribute which we'll discuss later. We can also combine values logically – again,
we'll see more of this later.

❑ WITH Clause: This is used to provide the description of the rowset to generate (optional). Here
we have 3 options:

� Don't specify anything, in which case a predefined rowset schema (also referred to as an
edge table schema) is used.

� Specify an existing table name, in which case that table schema is used to generate the
rowset view.

� Specify the rowset schema (column names and data types and the necessary mapping)
yourself. By default, the rowset columns map to the same name attributes/sub-elements in
the XML. If the rowset column names are different or we want to map the columns to
meta attributes in XML (as we'll discuss later) we can specify additional mapping
information.

Here is an example where an existing table name is provided to OPENXML, which generates the rowset
view using this table schema.

Assume you have a CustOrder table with this schema:

CustOrder(oid varchar(10), orderdate datetime, requireddate datetime)

and an XML document such as the following:

<root>
<Customer cid= "Cust1" name="Bob" city="Seattle">

<Order oid="Ord1" empid="1" orderdate="10/1/2000"
requireddate="11/1/2000"
note="ship 2nd day UPS" />

Chapter 14

560

<Order oid="Ord2" empid="1" orderdate="10/2/2000"
requireddate="12/1/2000" />

</Customer>
<Customer cid="C2" name="John" city="NewYork" >

<Order oid="Ord3" empid="2" orderdate="9/1/2000"
requireddate="10/1/2000" />

<Order oid="Ord4" empid="3" orderdate="9/2/2000"
requireddate="10/2/2000" />

</Customer>
</root>

The document handle and the table name are passed to OPENXML like this (ch14_17.sql):

SELECT *
FROM OPENXML (@hdoc, '/root/Customer/Order')

WITH CustOrder

The resulting three-column rowset returned by the SELECT statement looks like this:

oid orderdate requireddate

Ord1 2000-10-01 00:00:00.000 2000-11-01 00:00:00.000
Ord2 2000-10-02 00:00:00.000 2000-12-01 00:00:00.000
Ord3 2000-09-01 00:00:00.000 2000-10-01 00:00:00.000
Ord4 2000-09-02 00:00:00.000 2000-10-02 00:00:00.000

In the result, there is one row for each <Order> element in the original XML document.

If we want to insert the XML into the CustOrder table, we can specify the INSERT statement as
follows (ch14_ex18.sql):

INSERT INTO CustOrder
SELECT *
FROM OPENXML (@hdoc, '/root/Customer/Order')

WITH CustOrder

And the following is an UPDATE statement that updates the requireddate of order ord1
(ch14_ex19.sql).

UPDATE CustOrder
SET requireddate =

(SELECT requireddate
FROM OPENXML (@hdoc, '/root/Customer/Order')

WITH CustOrder
WHERE oid = 'Ord1')

Instead of specifying a table name, we can explicitly specify the rowset schema (column names and the
data types) in OPENXML, as seen here (ch14_ex20.sql):

SELECT *
FROM OPENXML (@hdoc, '/root/Customer/Order')

WITH (oid varchar(20),
orderdate datetime,
requireddate datetime)

Storing and Retrieving XML in SQL Server 2000

561

which gives the same result as ch14_ex17.sql.

By default, the columns specified in the rowset schema map to the attributes (or sub-elements in case of
element-centric mapping) of the same name. Note that attribute-centric mapping is the default – that is,
the oid column in the resulting rowset maps to the oid attribute of the <Order> element.

If the column names in the rowset differ from the XML element/attribute names to which they map, or
you want to map a column to a meta property attribute (discussed later), then you need to provide
additional mapping information as part of the rowset schema.

Before we discuss this additional mapping information, let's first discuss the concepts of attribute-centric
and element-centric mapping in the context of OPENXML:

OPENXML: Attribute-centric and Element-centric Mapping
By default, OPENXML assumes that each of the rowset columns maps to the samename attribute in the
source XML (i.e. attribute-centric mapping is the default). However, you can set the Flags parameter
to an appropriate value to specify element-centric (Flags=2) or mixed (Flags=3).

If Flags is set to mixed, then attribute-centric mapping is first applied to the remaining rowset columns,
followed by element-centric mapping, as shown in the following example. The <Order> element in the
following sample XML document (ch14_ex21.sql) has attributes and sub-elements that map to
OPENXML rowset columns. Flags is set to 3 to indicate mixed mode mapping:

DECLARE @hdoc int
DECLARE @doc varchar(1000)
SET @doc ='
<root>

<Customer cid= "Cust1" name="Bob" city="Seattle">
<Order oid="Ord1" empid="1" >

<orderdate>10/1/2000</orderdate>
<requireddate>11/1/2000</requireddate>
note="ship 2nd day UPS" />

</Order>
<Order oid="Ord2" empid="1" >

<orderdate>10/2/2000</orderdate>
<requireddate>12/1/2000</requireddate>

</Order>
</Customer>
<Customer cid="C2" name="John" city="NewYork" >
<Order oid="Ord3" empid="2" >

<orderdate>9/1/2000</orderdate>
<requireddate>10/1/2000</requireddate>

</Order>
<Order oid="Ord4" empid="3" >

<orderdate>9/2/2000</orderdate>
<requireddate>10/2/2000</requireddate>

</Order>
</Customer>

</root>
'--Create an internal representation of the XML document.
EXEC sp_xml_preparedocument @hdoc OUTPUT, @doc

SELECT *
FROM OPENXML (@hdoc, '/root/Customer/Order', 3)

WITH (oid varchar(20),
orderdate datetime,
requireddate datetime)

EXEC sp_xml_removedocument @hdoc

The result is again the same as for ch14_ex17.sql.

Chapter 14

562

Additional Mapping Information for Specifying the Rowset Schema
As we discussed earlier, we can specify the schema for the rowset (RowsetSchema parameter in
OPENXML syntax). The general syntax in specifying the rowset schema is:

ColumnName datatype [AdditionalMapping],
ColumnName datatype [AdditionalMapping],
ColumnName datatype [AdditionalMapping]

For example, if we specify a 2-column rowset schema in the WITH clause such as

EmployeeID varchar(5),
LastName varchar(20)

then in the default attribute-centric mapping, the EmployeeID column maps to the EmployeeID
attribute in the XML, and the LastName column maps to the LastName attribute in the XML. If our
column names are different from the attribute names to which they map, then we must provide an
appropriate XPath expression to map the column to its attribute, as shown here:

EmployeeID varchar(5) @EID
LastName varchar(20) @Lname

In this rowset schema the EmployeeID column maps to the EID attribute, and the LastName column
maps to the Lname attribute in the XML document (assuming EID and Lname are attributes in the XML
document).

In specifying the rowset schema in the WITH clause, the additional mapping information is provided
using an XPath expression when:

❑ Column names in the rowset being generated are different from those of the attributes/sub-
elements

❑ We want to map rowset column(s) to meta properties (such as node name, unique ID value,
name of the previous sibling of the node, and so on)

.
If the rowset schema specified in the WITH clause has column names different from the attribute/sub-
elements names to which they map, then you need to explicitly identify the attribute/sub-element. The
OPENXML in this example generates a rowset in which the column names are different from the
attribute/sub-element to which they map. The additional mapping is provided in the schema
specification in the WITH clause, seen below (ch14_ex22.sql):

DECLARE @hdoc int
DECLARE @doc varchar(1000)
SET @doc ='
<root>

<Customer cid= "Cust1" name="Bob" city="Seattle">
<Order oid="Ord1" empid="1" orderdate="10/1/2000"

requireddate="11/1/2000"
note="ship 2nd day UPS" />

<Order oid="Ord2" empid="1" orderdate="10/2/2000"
requireddate="12/1/2000" />

</Customer>

Storing and Retrieving XML in SQL Server 2000

563

<Customer cid="C2" name="John" city="NewYork" >
<Order oid="Ord3" empid="2" orderdate="9/1/2000"

requireddate="10/1/2000" />
<Order oid="Ord4" empid="3" orderdate="9/2/2000"

requireddate="10/2/2000" />
</Customer>

</root>'
EXEC sp_xml_preparedocument @hdoc OUTPUT, @doc

SELECT *
FROM OPENXML (@hdoc, '/root/Customer/Order', 1)

WITH (OrdID varchar(20) '@oid',
OrdDate datetime '@orderdate',
OrdReqDate datetime '@requireddate')

EXEC sp_xml_removedocument @hdoc

So now we have:

OrdID OrdDate OrdReqDate

Ord1 2000-10-01 00:00:00.000 2000-11-01 00:00:00.000
Ord2 2000-10-02 00:00:00.000 2000-12-01 00:00:00.000
Ord3 2000-09-01 00:00:00.000 2000-10-01 00:00:00.000
Ord4 2000-09-02 00:00:00.000 2000-10-02 00:00:00.000

Notice the XPath patterns (@oid, @orderdate, and @requireddate) specified in the WITH clause. In
this example, each of these XPath patterns identifies an attribute node in the XML.

Another reason why we may need to specify additional mapping information in the WITH clause is if we
want to map our rowset column to the metaproperty attributes.

Metaproperty Attributes

Each node in the XML document has certain metaproperties (node name, unique ID value, name of the
previous sibling of the node, and so on). These metaproperties are stored as attributes (hence
metaproperty attributes) of the node. We may want to map these metaproperty attributes to the columns
in the rowset, thus retrieving the meta information about the nodes.

The meta properties are defined in the namespace (urn:schemas-microsoft-com:xml-metaprop)
specific to SQL Server 2000.

The metaproperty attributes supported are:

❑ @mp:id: This metaproperty attribute holds the unique identifier value of the node
(@mp:parentid returns id of the parent node).

❑ @mp:localname: Stores the local name of the node (@mp:parentlocalname returns the
local name of the parent).

❑ @mp:namespaceuri: Provides the namespace URI of the node.
(@mp:parentnamespaceuri returns the namespace URI of the parent node).

❑ @mp:prefix: Provides the namespace prefix of the node (@mp:parentprefix returns the
namespace prefix of the parent node).

❑ @mp:prev: Provides the unique id of the previous sibling of the node.

❑ @mp:xmltext: When you map this metaproperty attribute to a column, that column will
receive all the unconsumed data (an example is given overleaf).

Chapter 14

564

Note that if you don't specify the rowset schema in the WITH clause, then a predefined rowset schema,
also referred to as an edge table, is used. The rowset returned has one column for each of the
metaproperties described above.

The OPENXML in this example returns id, localname and prev metaproperty values of each of the
<Order> element nodes selected (ch14_ex23.sql):

DECLARE @hdoc int
DECLARE @doc varchar(1000)
SET @doc ='
<root>

<Customer cid= "Cust1" name="Bob" city="Seattle">
<Order oid="Ord1" empid="1" >
<orderdate>10/1/2000</orderdate>
<requireddate>11/1/2000</requireddate>
note="ship 2nd day UPS" />

</Order>
<Order oid="Ord2" empid="1" >
<orderdate>10/2/2000</orderdate>
<requireddate>12/1/2000</requireddate>

</Order>
</Customer>
<Customer cid="C2" name="John" city="NewYork" >

<Order oid="Ord3" empid="2" >
<orderdate>9/1/2000</orderdate>
<requireddate>10/1/2000</requireddate>

</Order>
<Order oid="Ord4" empid="3" >
<orderdate>9/2/2000</orderdate>
<requireddate>10/2/2000</requireddate>

</Order>
</Customer>

</root>
'
EXEC sp_xml_preparedocument @hdoc OUTPUT, @doc

SELECT *
FROM OPENXML (@hdoc, '/root/Customer/Order', 3)

WITH (oid varchar(20),
CustName varchar(10) '../@name',
UniqueIDVal int '@mp:id',
NodeName varchar(10) '@mp:localname',
NodeSibling varchar(10) '@mp:prev')

EXEC sp_xml_removedocument @hdoc

This is the result:

oid CustName UniqueIDVal NodeName NodeSibling
---------- ---------- ----------- ---------- -----------
Ord1 Bob 6 Order NULL
Ord2 Bob 12 Order 6
Ord3 John 21 Order NULL
Ord4 John 26 Order 21

Storing and Retrieving XML in SQL Server 2000

565

The @mp:xmltext metaproperty has a special meaning. When this attribute is mapped to a rowset
column (and Flags is set to 8), that column will contain all the unconsumed XML data. In the
following example, Flags is set to 11 – logical OR of 3 and 8. The value 3 is for mixed mode mapping,
and 8 is to indicate that only unconsumed data should be copied to this column. If the flag is set to 3
(mixed mode mapping), then all the data (consumed and unconsumed) will be copied to the overflow
column that is mapped to the @mp:xmltext metaproperty attribute (ch14_ex24.sql):

DECLARE @hdoc int
DECLARE @doc varchar(1000)
SET @doc ='
<root>

<Customer cid= "Cust1" name="Bob" city="Seattle">
<Order oid="Ord1" empid="1" >
<orderdate>10/1/2000</orderdate>
<requireddate>11/1/2000</requireddate>
note="ship 2nd day UPS" />

</Order>
<Order oid="Ord2" empid="1" >
<orderdate>10/2/2000</orderdate>
<requireddate>12/1/2000</requireddate>

</Order>
</Customer>
<Customer cid="C2" name="John" city="NewYork" >

<Order oid="Ord3" empid="2" >
<orderdate>9/1/2000</orderdate>
<requireddate>10/1/2000</requireddate>

</Order>
<Order oid="Ord4" empid="3" >
<orderdate>9/2/2000</orderdate>
<requireddate>10/2/2000</requireddate>

</Order>
</Customer>

</root>
'
EXEC sp_xml_preparedocument @hdoc OUTPUT, @doc

SELECT *
FROM OPENXML (@hdoc, '/root/Customer/Order', 11)

WITH (oid varchar(20),
CustName varchar(10) '../@name',
orderdate datetime,
RemainingData ntext '@mp:xmltext')

EXEC sp_xml_removedocument @hdoc

This is the result. Notice the RemainingData column contains only the unconsumed data:

oid CustName orderdate RemainingData

Ord1 Bob 2000-10-01 00:00:00.000 <Order empid="1">
<requireddate>11/1/2000
</requireddate>
note="ship 2nd day UPS" />
</Order>

Ord2 Bob 2000-10-02 00:00:00.000 <Order empid="1">
<requireddate>12/1/2000
</requireddate></Order>

Chapter 14

566

Ord3 John 2000-09-01 00:00:00.000 <Order empid="2">
<requireddate>10/1/2000
</requireddate></Order>

Ord4 John 2000-09-02 00:00:00.000 <Order empid="3">
<requireddate>10/2/2000
</requireddate></Order>

We also can retrieve text in the XML nodes identified. The XPath text function can be specified as a
column pattern, which maps the rowset column to the text in the node identified (ch14_ex24.sql):

EXEC sp_xml_preparedocument @hdoc OUTPUT, @doc

SELECT *
FROM OPENXML (@hdoc, '/root/Customer/Order', 3)

WITH (oid varchar(20),
CustName varchar(10) '../@name',
comment ntext 'text()')

EXEC sp_xml_removedocument @hdoc

This is the result:

oid CustName comment
Ord1 Bob note="ship 2nd day UPS" />
Ord2 Bob NULL
Ord3 John NULL
Ord4 John NULL

The Edge Table Schema for the Rowset
As mentioned earlier, if we don't provide any schema for the rowset to be generated, then OPENXML
generates a rowset using a default schema (edge table). The rowset is called an edge table because the
rowset generated has one row for every "edge" in the XML tree (consisting of nodes and edges)
generated by the sp_xml_preparedocument stored procedure.

The information returned in the rowset includes meta information of the DOM nodes. This meta
information includes:

❑ The unique identifier of the node and the parent node

❑ The node type (element, attribute, or text node)

❑ The local name of the node

❑ The namespace prefix in the node name

❑ The namespace URI of the node (NULL if no namespace)

❑ The data type of the node

❑ The unique identifier value of the node's previous sibling

❑ The value of the node

Storing and Retrieving XML in SQL Server 2000

567

The edge table schema is given below:

id bigint,
parentid bigint
nodetype int (1=element; 2=attribute; 3=text node)
localname nvarchar
prefix nvarchar
namespaceuri nvarchar
datatype nvarchar
prev bigint
text ntext

As you can see, the edge table returns meta properties of the DOM node. If we specify the rowset
schema in the WITH clause, we can obtain these meta property values by mapping the columns to the
meta property attributes.

The information in the edge table is useful in analyzing the XML document. For example, we may want
to find element/attribute names, namespaces, the datatypes of elements/attributes, the information
about the document hierarchy, and so on. This allows the application developer to query the XML
document before processing the contents. For instance, we may want to know the number of customers
in the document before we process them.

Understanding the Edge Table

The following SELECT statement with OPENXML returns a rowset that has the edge table format
(ch14_ex25.sql):

DECLARE @hdoc int
DECLARE @doc varchar(1000)
SET @doc ='
<ROOT>

<Customer CustomerID="VINET" ContactName="Paul Henriot">
<Order OrderID="10248" CustomerID="VINET" EmployeeID="5" OrderDate=

"1996-07-04T00:00:00">
<OrderDetail OrderID="10248" ProductID="11" Quantity="12"/>
<OrderDetail OrderID="10248" ProductID="42" Quantity="10"/>

</Order>
</Customer>
<Customer CustomerID="LILAS" ContactName="Carlos Gonzlez">

<Order OrderID="10283" CustomerID="LILAS" EmployeeID="3" OrderDate=
"1996-08-16T00:00:00">

<OrderDetail OrderID="10283" ProductID="72" Quantity="3"/>
</Order>

</Customer>
</ROOT>'

--Create an internal representation of the XML document.
EXEC sp_xml_preparedocument @hdoc OUTPUT, @doc

-- Execute a SELECT statement using OPENXML rowset provider.
SELECT *
FROM OPENXML (@hdoc,

'/ROOT/Customer[@CustomerID="VINET"]/Order[@OrderID="10248"]')

EXEC sp_xml_removedocument @hdoc

Chapter 14

568

The XPath pattern specified identifies <Order> child element nodes with OrderID 10248, which have
a <Customer> parent with CustomerID "VINET".

This is the resulting rowset:

id parentid nodetype localname prefix namespaceuri datatype prev text

5 2 1 Order NULL NULL NULL NULL NULL
6 5 2 OrderID NULL NULL NULL NULL NULL
30 6 3 #text NULL NULL NULL NULL 10248
7 5 2 CustomerID NULL NULL NULL NULL NULL
31 7 3 #text NULL NULL NULL NULL VINET
8 5 2 EmployeeID NULL NULL NULL NULL NULL
32 8 3 #text NULL NULL NULL NULL 5
9 5 2 OrderDate NULL NULL NULL NULL NULL
33 9 3 #text NULL NULL NULL NULL 1996-07-

04T00:00:00
10 5 1 OrderDetail NULL NULL NULL NULL NULL
11 10 2 OrderID NULL NULL NULL NULL NULL
34 11 3 #text NULL NULL NULL NULL 10248
12 10 2 ProductID NULL NULL NULL NULL NULL
35 12 3 #text NULL NULL NULL NULL 11
13 10 2 Quantity NULL NULL NULL NULL NULL
36 13 3 #text NULL NULL NULL NULL 12
14 5 1 OrderDetail NULL NULL NULL 10 NULL
15 14 2 OrderID NULL NULL NULL NULL NULL
37 15 3 #text NULL NULL NULL NULL 10248
16 14 2 ProductID NULL NULL NULL NULL NULL
38 16 3 #text NULL NULL NULL NULL 42
17 14 2 Quantity NULL NULL NULL NULL NULL
39 17 3 #text NULL NULL NULL NULL 10

Let's review the first three rows of this table. Once you understand them, the result in the subsequent
rows becomes obvious.

The first row:

id parentid nodetype localname prefix namespaceuri datatype prev text

5 2 1 Order NULL NULL NULL NULL NULL

identifies the Order node:

<Customer CustomerID="VINET" ContactName="Paul Henriot">
<Order OrderID="10248" CustomerID="VINET" EmployeeID="5" OrderDate=

"1996-07-04T00:00:00">

It is given a unique id value of 5. Its parentid is 2, identifying the Customer node. The result does
not show the Customer node because the XPath query does not request the Customer node. The
nodetype is 1 because the Order node is an element node. The Order node has no prefix, therefore
the value in the prefix column is NULL. The column value NULL indicates that the node has no specific
value of the meta property.

Storing and Retrieving XML in SQL Server 2000

569

The second row:

id parentid nodetype localname prefix namespaceuri datatype prev text

6 5 2 OrderID NULL NULL NULL NULL NULL

identifies the OrderID node with the unique id value of 6. Notice that the parentid column has value
5, identifying the Order node as its parent.The nodetype is 2 because it is an attribute node. The rest
of the column values are NULL since they don't apply.

The third row identifies a text node:

id parentid nodetype localname prefix namespaceuri datatype prev text

30 6 3 #text NULL NULL NULL NULL 10248

This is the value of the OrderID attribute in the document. The value 10248 appears in the text
column (the last column) in the rowset. Its unique id value is 30, and the parentid is 6, identifying
OrderID node as its parent. The nodetype value is 3, indicating this node is a text node.

This should give you some idea of how this information about the document, the hierarchy contained in
it, the node names, and their types are returned in the rowset.

Using the Edge Table

The information in the edge table rowset can be quite useful. For example, if you want to find out how
many <Customer> elements are in the document, the following query (ch14_ex26.sql) gives you the
answer. Replace the SELECT query in the previous example with this:

SELECT count(*)
FROM OPENXML(@hdoc, '/')
WHERE localname = 'Customer'

You should get the answer 2.

In addition, the edge table rowsets are useful in dealing with attributes of type idrefs. As we saw in
the previous example, OPENXML copies the XML attribute/element values to the columns in the rowset
based on the mapping specified in the schema that is declared in the WITH clause.

This works well if the attribute/sub-element has only one value. However, if we have XML attributes of
type idrefs that can have multiple values, how do we extract individual values? If we have a
document fragment:

<Customer CustID="1" OrderList="Ord1 Ord2 Ord3" />

then to generate a rowset

CustID OrderID
1 Ord1
1 Ord2
1 Ord3

requires additional work. Here is a possible solution using the edge table.

Chapter 14

570

Consider this XML document:

<Data>
<Customer CustomerID = "C1" ContactName = "Joe Smith"

OrderList = "O1 O2 O3" />
<Customer CustomerID = "C2" ContactName = "Andrew Fuller"

OrderList = "O4 O5" />
</Data>'

and assume we have these tables:

Customer (CustomerID varchar(5) primary key,
ContactName varchar(30))

CustOrder (CustomerID varchar(5) references Customer (CustomerID),
OrderID varchar(5) primary key)

Say we want to insert values into the Customer and CustOrder tables from the XML document using
OPENXML. Adding records to the Customer table is straightforward using OPENXML, but to insert values
in the CustOrder table is not easy. The solution provided here uses OPENXML to return the rowset in an
edge table format. The information in the edge table is then used to retrieve the information.

The solution uses two stored procedures. The GetIdIDrefsValues stored procedure returns a result
as a two column rowset, such as:

CustomerID OrderList
C1 O1 O2 O3
C2 O4 O5

The second stored procedure, InsertidrefsValues, then retrieves the individual order id values for
each customer, and inserts the CustomerID OrderID values in the CustOrder table:

The two stored procedures are given below (ch14_ex27.sql):

DROP PROCEDURE InsertidrefsValues
GO
CREATE PROCEDURE InsertidrefsValues

@OrderIDList varchar(500),
@CustOrder varchar(50),
@CustID varchar(5)

AS
DECLARE @sp int
DECLARE @att varchar(5)
SET @sp = 0
WHILE (LEN(@OrderIDList) > 0)
BEGIN

SET @sp = CHARINDEX(' ', @OrderIDList+ ' ')
SET @att = LEFT(@OrderIDList, @sp-1)
EXEC('INSERT INTO '+@CustOrder+' VALUES ('''+@CustID+''', '''+@att+''')')
SET @OrderIDList = SUBSTRING(@OrderIDList+ ' ', @sp+1,

LEN(@OrderIDList)+1-@sp)
END
Go

Storing and Retrieving XML in SQL Server 2000

571

DROP PROCEDURE GetIdIdrefsValues
GO
CREATE PROCEDURE GetIdIdrefsValues

@xmldoc int,
@xpath varchar(100),
@from varchar(50),
@to varchar(50),
@TableName varchar(100)

AS
DECLARE @OrdIDList varchar(500)
DECLARE @CustID varchar(5)

/* Temporary Edge table */
SELECT *
INTO #TempEdge
FROM OPENXML(@xmldoc, @xpath)

DECLARE fillidrefs_cursor CURSOR FOR

SELECT CAST(OneSideAttrVal.text AS nvarchar(200)) AS CustID,
CAST(ManySideAttrVal.text AS nvarchar(4000)) AS OrdIDList

FROM #TempEdge Elem, #TempEdge OneSideAttr,
#TempEdge OneSideAttrVal, #TempEdge ManySideAttr,
#TempEdge ManySideAttrVal

WHERE Elem.id = OneSideAttr.parentid
AND UPPER(OneSideAttr.localname) = UPPER(@from)
AND OneSideAttr.id = OneSideAttrVal.parentid
AND Elem.id = ManySideAttr.parentid
AND UPPER(ManySideAttr.localname) = UPPER(@to)
AND ManySideAttr.id = ManySideAttrVal.parentid

OPEN fillidrefs_cursor
FETCH NEXT FROM fillidrefs_cursor INTO @CustID, @OrdIDList
WHILE (@@FETCH_STATUS <> -1)

BEGIN
IF (@@FETCH_STATUS <> -2)

BEGIN
execute InsertidrefsValues @OrdIDList, @TableName, @CustID

END
FETCH NEXT FROM fillidrefs_cursor INTO @CustID, @OrdIDList

END
CLOSE fillidrefs_cursor
DEALLOCATE fillidrefs_cursor
Go

You can test this code using the following (ch14_ex28.sql):

DECLARE @h int

EXECUTE sp_xml_preparedocument @h OUTPUT, '

<Data>
<Customer CustomerID = "C1" ContactName = "Joe Smith"

OrderList = "O1 O2 O3" />
<Customer CustomerID = "C2" ContactName = "Roger Wolter"

OrderList = "O4 O5" />
</Data>'

Chapter 14

572

--insert values in the Customer table
INSERT INTO Customer SELECT * FROM OPENXML(@h, '//Customer') WITH Customer
--insert values in the CustOrder table using edge table

EXECUTE GetIdIdrefsValues @h, '//Customer', 'CustomerID', 'OrderList',
'CustOrder'

EXECUTE sp_xml_removedocument @h

You should find the tables are populated with the required data.

As you can see, the OPENXML feature in SQL Server 2000 is a valuable tool for working with XML
documents and databases. OPENXML is a server side implementation that allows us to modify database
contents from an XML document source. There are alternative middle-tier features, such as the XML
updategrams, that can be used to modify SQL server data. We'll be looking at the middle-tier features in
the next chapter.

Bulk Loading XML
SQL Server 2000 allows us to bulk load XML into the database tables. This is an efficient alternative to
using OPENXML to shred the document, and then using an INSERT statement to store the data. This is
especially useful if we are loading large amounts of XML onto the database.

The XML Bulk Load feature uses XML views, which we'll meet in the next chapter. XML views are
schemas written in XDR, with extensions for mapping relational database tables to the
elements/attributes in the XML view. However, we'll discuss the XML Bulk Load here because it is a
server side feature.

We can use the XML Bulk Load object from code via the Bulk Load object model. We need to pass it
two pieces of information:

❑ The mapping schema: The mapping XDR schema must be provided to the XML Bulk Load
object

❑ The XML document that you want to bulk load

The Bulk Load object model has only one object – SQLXMLBulkLoad. It also has several properties that
we can set. These properties allow us, among other things, to specify whether we want to execute Bulk
Load in a transaction mode or not. In a transaction mode, if some problem occurs, then rollback is
guaranteed. The non-transacted Bulk Load is faster because no logging takes place. If your database is
empty, then non-transacted Bulk Load is the way to go.

These properties also allow us to specify if we want the tables created before loading the data. We can
specify if we want to create a table that doesn't already exist, but not drop the ones already in existence.
We can insist on checking any constraint violations, such as primary key or foreign key violations. You
can also specify a file in which to log the errors and messages that are generated during execution.

Storing and Retrieving XML in SQL Server 2000

573

The XML Bulk Load supports the following properties and methods:

Name Description

Execute Loads the data using the XML View and the XML data files provided
as input.

ConnectionCommand This property is used to specify the existing connection object that
XML Bulk Load should use.

ConnectionString Instead of a connection command, you can specify a connection string
using this property.

KeepNulls If this Boolean property is set to True, the column value for which the
corresponding attribute/sub-element is missing in the XML document
is set to NULL (even if the column has a default value, NULL will be
assigned). If the property is set to False, then if the column has a
default value set, that default value is assigned. The default value for
this property is False.

KeepIdentity SQL Server has identity type columns, where the value of the column is
assigned by SQL Server. If this property is set to True, then if the
XML document provides a value for the identity type column, that
value is stored in the column. If the property is set to False, then any
value provided in the XML document for the identity type column is
ignored, and the SQL Server assigned value is inserted in the column.
The default value for this property is True.

CheckConstraints If this Boolean property is set to True, then Bulk Load will check each
value inserted in a column against the constraints specified on that
column (such as primary key/foreign key constraints). The default value
for this property is False.

ForceTableLock If this Boolean property is set to True, the table in which data is
inserted is locked for the duration of the Bulk Load. When the property
is set to False, a table lock is acquired for each record inserted in the
table. The default value for this property is False.

XMLFragment If this Boolean property is set to True, the source XML document is
considered as a fragment (that is, there is no single top-level element in
the document). The default value for this property is False.

Transaction If this Boolean property is set to True, then Bulk Load is performed in
transaction mode (which guarantees rollback in case of a failure). By
default this property is False.

TempFilePath This property specifies the file path where XML bulk load creates the
temporary files in a transacted Bulk Load. If this property is not set,
then the temporary files are stored at location specified in the TEMP
environment variable. The temporary files are created only during a
transacted Bulk Load.

ErrorLogFile This property specifies the file name in which errors are logged by
XML Bulk Load. If this property is not set, the logging is turned off.

Table continued on following page

Chapter 14

574

Name Description

SchemaGen If this Boolean property is set to True, Bulk Load will create the tables
necessary to perform the bulk load. If some of the tables already exist, then
the SGDroptables property determines whether the existing tables are
removed and recreated.

SGDropTables If this Boolean property is set to True, then the existing tables are dropped
and recreated. This property is used along with the SchemaGen property.
The default value for this property is False.

SGUseID In XML Views you can define certain attributes as id type. If the SGUseID
property is set to True, then ScheamGen uses the id type attribute as
primary key column, and creates necessary constraints on this column
when the table is created. The default value for this property is False.

Let's see how all of this works in practice.

How the Database is Generated from XML
Because the XML document can be large, the entire document is not read in memory. Instead, the
document is read like a stream, and the data is processed as it is read. Let's take a look at how the
records are generated from the data in the source XML document, and when the records are sent to
SQL Server.

Say we have a Customer table:

Customer(CustomerID, ContactName)

and this XML document:

<Customer CustomerID="C1" ContactName="Joe" />
<Customer CustomerID="C2" ContactName="Bob" />
...

When the start tag of the first <Customer> element is read, a record for the customer table is
generated. As the attributes are read, these attribute values are copied to the record already generated.
When the end tag is reached, the record is considered complete, and is sent to SQL Server for insertion.
Both the <Customer> element and the record, go out of scope at this point. As the next <Customer>
element is read, a new record for the Customer table is generated, and the process is repeated.

It is important to understand that the data for the Customer table must be contained between the start
and end tag of the <Customer> element. This becomes clear when we have a complex XML document
and the associated mapping XDR schema (schema that describes the primary key and foreign key
relationships between two elements).

If our document includes hierarchy such as:

<Customer CustomerID="C1" ContactName="Joe" >
<Order OrderID="Ord1" OrderDate="10/10/2000" />
<Order OrderID="Ord1" OrderDate="10/10/2000" />

</Customer>
...

Storing and Retrieving XML in SQL Server 2000

575

and these tables:

Customer(CustomerID, ContactName)
Order (OrderID, OrderDate, CustomerID)

then a customer record is generated first as the start tag of the <Customer> element is read. The
CustomerID and ContactName attribute values are copied to this record. As the start tag of the
<Order> element is read, a record for the Order table is generated, and the OrderID and OrderDate
attribute values are copied to this table. When the end tag is reached, the Order record is sent to SQL
Server.

The XML Bulk Load uses the primary key foreign key relationship specified in the mapping XDR
schema – in this case we'll obtain the CustomerID foreign key value from the <Customer> element.
All the <Order> elements are processed in this manner. Finally, when the end tag, </Customer>, is
reached, the Customer record is sent to SQL Server.

The value of the CustomerID attibute of the <Customer> element must be specified before the
<Order> child elements. Otherwise, when the end tag of the <Order> element is reached, the record
will be sent to SQL Server without the foreign key value (and Bulk Load will fail). This is illustrated by
the following XML document:

<Customer>
<ContactName>Joe</ContactName>
<Order OrderID="Ord1" OrderDate="10/10/2000" />
<Order OrderID="Ord1" OrderDate="10/10/2000" />
<CustomerID>>C1 </CustomerID>

</Customer>
...

In the above document, the key CustomerID node appears after the <Order> child elements. That's a
problem because the Order records are sent to SQL Server as soon as the end tag is reached – that is,
without the CustomerID foreign key value. Therefore, our XML document must have the key attribute
appear first.

The only exception to the record generation rule is when you have idref or idrefs type nodes in the
XML document. During Bulk Load, no record is generated if a node of type idref or idrefs enters
the scope (the start tag is read). For example, consider this XML fragment:

<Customer CustomerID="C1" OrderList="Ord1 Ord2 Ord3" />
<Customer CustomerID="C2" OrderList="Ord4 Ord5" />
...

Assume the mapping schema associates the <Customer> element to the Customer table, the
CustomerID attribute to the CustomerID column in the Customer table, and the OrderList
attribute to the OrderID column of the CustOrder table. In this case, when the start tag of the first
<Customer> element is read, a record for the Customer table is generated. The CustomerID attribute
value is copied to the record, but the OrderList attribute does not map to the Customer table, so that
value is not copied to the record generated for the Customer table.

Chapter 14

576

However, if the schema identifies the OrderList as an idrefs type attribute, that attribute is simply
ignored. That means we have to make sure that the <Order> element is described somewhere in the
document and the schema. If our XML document is revised, like so:

<Customer CustomerID="C1" OrderList="Ord1 Ord2 Ord3" />
<Order CustomerID="C1" OrderID="Ord1" />
<Order CustomerID="C1" OrderID="Ord2" />
<Order CustomerID="C1" OrderID="Ord3" />

<Customer CustomerID="C2" OrderList="Ord4 Ord5" />
<Order CustomerID="C2" OrderID="Ord4" />
<Order CustomerID="C2" OrderID="Ord5" />

the XML Bulk Load will insert data in the Customer and Order tables. The only problem is that the
user is responsible to maintain the referential integrity.

Assume we have this XML View (mapping schema) defined (ch14_ex29.xdr):

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"

xmlns:dt="urn:schemas-microsoft-com:datatypes"
xmlns:sql="urn:schemas-microsoft-com:xml-sql" >

<ElementType name="Customers" sql:relation="Customer" >
<AttributeType name="CustomerID" />
<AttributeType name="CompanyName" />
<AttributeType name="City" />
<AttributeType name="OrderList" dt:type="idrefs" />

<attribute type="CustomerID" />
<attribute type="CompanyName" />
<attribute type="City" />
<attribute type="OrderList" sql:relation="CustOrder"

sql:field="OrderID" >
<sql:relationship
key-relation ="Cust"
key ="CustomerID"
foreign-key ="CustomerID"
foreign-relation="CustOrder" />
</attribute>
</ElementType>

<ElementType name="Order" sql:relation="CustOrder" >
<AttributeType name="OrderID" dt:type="id" />
<AttributeType name="CustomerID" />
<AttributeType name="OrderDate" />

<attribute type="OrderID" />
<attribute type="CustomerID" />
<attribute type="OrderDate" />
</ElementType>

</Schema>

Storing and Retrieving XML in SQL Server 2000

577

and this is our XML data (ch14_ex29.xml):

<Customers CustomerID="1111" CompanyName="Sean Chai" City="NY"
OrderList="Ord1 Ord2" />

<Customers CustomerID="1112" CompanyName="Dont Know" City="LA"
OrderList="Ord3 Ord4" />

<Order OrderID="Ord1" CustomerID="1111" OrderDate="1999-01-01" />
<Order OrderID="Ord2" CustomerID="1111" OrderDate="1999-02-01" />
<Order OrderID="Ord3" CustomerID="1112" OrderDate="1999-03-01" />
<Order OrderID="Ord4" CustomerID="1112" OrderDate="1999-04-01" />

and assume that the XML data is bulk loaded in these tables (ch14_ex29.sql):

CREATE TABLE Customer (
CustomerID int primary key,
CompanyName varchar(20) NOT NULL,
City varchar(20) default 'Seattle')

go
CREATE TABLE CustOrder (

OrderID varchar(10) primary key,
CustomerID int foreign key references

Customer (CustomerID),
OrderDate datetime default '2000-01-01')

Go

we can execute the Bulk Load using the following Visual Basic code (ch14_ex29.vb):

Set objBL = CreateObject("SQLXMLBulkLoad.SQLXMLBulkLoad")
objBL.ConnectionString = "provider=SQLOLEDB.1;data " & _

"source=server;database=database;uid=sa;pwd="
objBL.ErrorLogFile = "c:\error.log"
objBL.CheckConstraints=True
objBL.XMLFragment = True
objBL.Execute "c:\XMLView.xml", "c:\XMLData.xml"
Set objBL1=Nothing

First we create a SQLXMLBulkLoad object (objBL). Then we set various properties on this object. The
ConnectionString property is set because we are using a connection string which identifies the
server, database, and the necessary login information. The ErrorLogFile property is set so that we
can log any errors during Bulk Load.

The CheckConstraint property is set to True. As a result, each time a record is inserted, all the
constraints are checked. For example, if we are adding data in the CustOrder table, and specify a
CustomerID that doesn't exist in the Customer table, then Bulk Load will fail because of primary key
foreign key constraint violation.

The XMLFragment property is set to True, because the source XML document does not have a single
top-level element. Finally the Execute method is called. The Execute method takes two parameters:
the schema file name and the XML data file name.

In summary, XML Bulk Load feature allows us to bulk load large XML documents into SQL Server
tables with great efficiency. The XML Bulk Load requires an XML view of the tables in which we are
bulk loading the XML. We'll discuss the XML views in more detail in the next chapter.

Chapter 14

578

Summary
We'll conclude this chapter by summarizing the server side XML features in SQL Server. The two
server side features we discussed are FOR XML and OPENXML.

� FOR XML is an extension to SELECT statement and is used to retrieve data from SQL Server as
XML. FOR XML supports three different modes: RAW, AUTO, and EXPLICIT.

� The RAW mode generates flat XML. It is useful if your application doesn't require specific
shape of XML.

� The AUTO mode generates hierarchy, giving the user limited control over the shape of the
XML.

� The EXPLICIT mode is the most powerful of all, because you have complete control over the
shape of the XML.

Users with good SQL background may find writing these queries easy, but if you find
EXPLICIT mode queries complex to write you have another option – create XML views and
specify XPath queries against it. We will explore this method in the next chapter.

� OPENXML does the opposite. It takes an XML document and shreds it to produce a rowset
view. This rowset can then be passed to INSERT, UPDATE, and DELETE statements. In this
way, XML can be stored in the database or modified using ordinary SQL queries. In the next
chapter we'll see how XML updategrams can be used to perform updates based on XML data.

In the next chapter we'll discuss the middle tier features such as XML Views, XML updategrams, and
XPath queries.

Storing and Retrieving XML in SQL Server 2000

579

Chapter 14

580

XML Views in SQL Server 2000

In the previous chapter, we learned how to retrieve XML data from a relational database using SQL.
Wouldn't it be great if we could also query the database as though it were an XML document (or
collection of documents), using XPath and other XML query languages? This is precisely the capability
that XML Views in SQL Server 2000 provide.

An XML View allows us to query SQL Server 2000 as though it were storing XML. The XML View
describes the shape of an XML document, even though the XML does not really exist because it is
created on-the-fly from the relational database. Furthermore, it allows us to describe relationships
between the XML and the table structure so that we can get XML returned in a format that we want
(even if that is different from the table structure and names in the database).

Once we have defined an XML View, which defines the mapping between the XML and the database,
we can then query this XML View as though it were a real XML document; the query, together with the
view, determines the shape of the resulting XML.

An XML View is created by adding some annotations to an XML schema. The schema describes the
shape of an XML document, and the annotations describe the mappings between the XML and the
database.

You can then query this XML view (possibly modifying the underlying database) using XML query
languages such as XPath and Updategrams. In this way, the relational database is hidden from the user,
and the data appears to be completely XML-based.

At present, XML Views are based on the schema language XDR (see http://www.ltg.ed.ac.uk/~ht/
XMLData-Reduced.htm). However, the W3C is defining a standard XML Schema Definition language
(XSD) that will be supported in early 2001 (see http://www.w3.org/TR/xmlschema-1/ for details).

Chapter 15

582

Additionally, Microsoft is working closely with the W3C to help design the XML Query Language,
which XML Views will eventually support (Watch http://www.w3.org/XML/Query for details on this
emerging standard). For more information about the XML Query Language, please read Chapter 11.

XML Views are especially convenient when an XML schema – such as a BizTalk schema (see
http://www.biztalk.org/ for a vast collection of schemas) – is already available, but it is also
straightforward to construct XML schemas from scratch.

In this chapter we will describe:

❑ The basics of XDR schemas, in brief

❑ How to annotate an XDR schema into an XML View

❑ How to query a database with XPath

❑ Updategrams, a novel approach to updating, inserting, and deleting XML data

❑ Some advanced uses of XML Views

You will find detailed examples of all of these features in this chapter and the next.

Before reading this chapter, you should be familiar with the basic structure of the Northwind database
(which we use for our examples). Also, the section on XPath benefits from — but does not require — an
understanding of the FOR XML EXPLICIT mode, as described in the previous chapter.

Fragments and Documents
An XML View actually describes one or more kinds of XML fragments. There is a distinction between
an XML fragment and an XML document.

As you are aware, a well-formed XML document has just one top-level element:

<Customer CustomerID="ANATR">
<Order CustomerID="ANATR" OrderID="10308"/>
<Order CustomerID="ANATR" OrderID="10625"/>

</Customer>

The natural data structure representation of this structure is a tree. In contrast, an XML fragment can
have many top-level elements. Here we have a fragment of the above document:

<Order CustomerID="ANATR" OrderID="10308"/>
<Order CustomerID="ANATR" OrderID="10625"/>

The natural representation of a fragment is a forest (an ordered collection of trees).

XDR Schemas
As the name XML Data Reduced suggests, XDR is a simplified version of XML Data, a schema
language for XML (see http://www.w3.org/TR/1998/NOTE-XML-data/ for details.) XDR provides the
building blocks to describe complex shapes and data types not possible to describe with DTDs, but
lacks the full flexibility (and complexity) of the XML Schema Definition Language (XSD). For a tutorial
on schema languages in general and XDR in particular, please see:

http://msdn.microsoft.com/xml/XMLGuide/schema-overview.asp.

XML Views in SQL Server 2000

583

Let's quickly review the main points of creating an XDR schema. Consider the following XML
fragment, which contains two Customer elements, both having a CustomerID attribute. One
Customer element also contains several Order elements, all of which have a CustomerID attribute
and an OrderID attribute:

<Customer CustomerID="ANATR">
<Order CustomerID="ANATR" OrderID="10308"/>
<Order CustomerID="ANATR" OrderID="10625"/>
<Order CustomerID="ANATR" OrderID="10759"/>
<Order CustomerID="ANATR" OrderID="10926"/>

</Customer>
<Customer CustomerID="PARIS"/>

Now, let's create an XDR schema for this fragment. XDR schemas begin with the top-level element
<Schema>, which contains declarations of elements and attributes. Elements and attributes are declared
by name using <ElementType> and <AttributeType> tags, respectively. Various attributes on these
tags control the content model, data type, and other aspects of the XML data. Here is an XDR schema
that describes the above XML fragment:

<Schema xmlns="urn:schemas-microsoft-com:xml-data">
<AttributeType name="CustomerID"/>

<ElementType name="Order">
<AttributeType name="OrderID" />
<attribute type="CustomerID"/>
<attribute type="OrderID" />

</ElementType>

<ElementType name="Customer">
<attribute type="CustomerID"/>
<element type="Order" />

</ElementType>
</Schema>

Notice that every component in the schema belongs to the XDR namespace (urn:schemas-
microsoft-com:xml-data), and that there can be any number of <ElementType> or
<AttributeType> declarations in the schema.

First the schema defines the CustomerID attribute, which will appear in both element types:

<AttributeType name="CustomerID"/>

Next it defines the Order element:

<ElementType name="Order">
<AttributeType name="OrderID" />
<attribute type="CustomerID"/>
<attribute type="OrderID" />

</ElementType>

Remember that the Order element contained two attributes: CustomerID, which we have already
declared, and OrderID, which we declare inside the definition of Order. These attributes are defined
on Order using the <attribute> tag. It is not enough to declare them using <AttributeType>; they
must also be defined using <attribute>.

Chapter 15

584

These declarations are exactly like local and global variables in a programming language. Because
CustomerID is declared globally, it can be used in any <ElementType>; however, OrderID has been
declared locally to the Order <ElementType>, so it can only be used in the Order <ElementType>
(other ElementType elements could locally declare their own OrderID attributes). XDR allows us to
do this so that different elements can contain attributes of the same name but with (potentially) different
meaning.

We cannot, however, do the same with <ElementType> declarations. <ElementType> declarations
are always global (they do not have to be declared before they are used). Because Customer elements
can contain Order elements, we must use an <element> inside of the Customer <ElementType>:

<ElementType name="Customer">
<attribute type="CustomerID"/>
<element type="Order" />

</ElementType>

This simple example illustrates the basics of XDR, which will be enough for this chapter, although XDR
also provides ways to describe content models, element order, bounds on the minimum or maximum
number of occurrences, and much more. For a complete description of XDR, please see
http://msdn.microsoft.com/xml/XMLGuide/schema-overview.asp.

The Default Mapping
Now that we've looked at XDR schemas, you may be wondering how much additional work is required
to make a schema work with the database. Surprisingly, the answer can be: none! Consider a section of
the Customers table in the Northwind database:

The following XDR schema (ch15_ex01.xdr) can be used without modification as an XML view of
this table:

<Schema xmlns="urn:schemas-microsoft-com:xml-data">
<AttributeType name="CustomerID"/>
<AttributeType name="ContactName"/>
<ElementType name="Customers">

<attribute type="CustomerID"/>
<attribute type="ContactName"/>

</ElementType>
</Schema>

How will values in the database be mapped to the XML? Because there are no annotations describing
the mapping between the XML data and SQL Server, a default mapping is used. The default mapping
takes each <ElementType> to the table of the same name (or to a column, if the element's content is
textOnly), and each <AttributeType> to the column of the same name. Attributes and textOnly
elements inherit the table of their parents.

XML Views in SQL Server 2000

585

Thus, in the schema above, each <Customers> element selects from one row of the table named
Customers; because the <Customers> element has two attributes named CustomerID and
ContactName, the columns with those names are selected from the Customers table. In other words,
this XML View describes an XML fragment shaped like this:

<Customers CustomerID="ALFKI" ContactName="Maria Anders">
<Customers CustomerID="ANATR" ContactName="Ana Trujillo">
<!-- additional Customers elements ... -->

Querying SQL Server
One way to obtain this fragment from SQL Server 2000 is to execute an XPath query using a URL like
this:

http://localhost/virtualdirectory/schema/ch15_ex01.xdr/Customers

All of the examples in this chapter require that you have already created a virtual directory with a
virtual name of type schema that can execute XPath queries. Appendix E describes how to set up such
a virtual directory in detail.

Before proceeding, first set up SQL Server to allow XPath queries, as described in
Appendix E.

The XPath query above returns an XML fragment, which is not a well-formed XML document. Most
browsers and other XML tools require a well-formed XML document. You can wrap the fragment in a
top-level element with any name you desire using the URL root parameter, as follows:

http://localhost/virtualdirectory/schema/ch15_ex01.xdr/Customers?root=ROOT

This second XPath query returns a well-formed XML document corresponding to all the Customers in
the database:

<?xml version="1.0" encoding="UTF-8" ?>
<ROOT>

<Customers CustomerID="ALFKI" ContactName="Maria Anders">
<Customers CustomerID="ANATR" ContactName="Ana Trujillo">
<!-- more Customers elements ... -->

</ROOT>

You can try this out in an XML aware web browser, such as IE5.x, but remember to add the root
parameter to the XPath query. The result looks like this:

Chapter 15

586

If you want to try the examples in this chapter using IE5.x or another XML aware
browser that requires well-formed XML, remember to add a root element to the
fragment.

We will explain access methods in greater detail in the next chapter.

Names and Other Restrictions
One difficulty in using the default mapping is that XML names are more restrictive than SQL names
about the characters they can contain. A special encoding mechanism is provided to map between the
two kinds of names. This encoding is described fully in the documentation accompanying SQL Server,
but basically amounts to replacing the characters that are not allowed in XML names with _xHHHH_
where H is a hex digit. For example, the SQL name [Order Details] is represented as the XML
name _x005B_Order_x0020_Details_0x005D_. (5B and 5D are the hex values of the left and right
square brackets, and 20 is the hex value of the space character, none of which are valid XML name
characters.)

Also, the default mapping does not allow an <ElementType> to have element children because there
is no way to infer the join relationship that should exist between them. Consequently, the default
mapping is really only useful when the XML is flat and the XML names are the same as the SQL
names. Explicit mappings require annotations, which we will describe next.

Annotated XDR Schemas
The annotations to XDR all belong to the namespace urn:schemas-microsoft-com:xml-sql. For
convenience, we use the namespace prefix sql to denote this namespace. We will begin by describing
the simplest and most common annotations, and proceed to the more complex, less common
annotations. At the end of this section, a table is provided that summarizes all the available annotations
and their purposes.

Tables and Columns (sql:relation and sql:field)
Two essential annotations are sql:relation and sql:field. These annotations allow us to explicitly
map an element, ElementType, or attribute to a particular table or column in the database. Let's
try these annotations on the schema from the previous section to produce a new, annotated schema
(ch15_ex02.xdr):

<Schema xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<AttributeType name="ID"/>
<AttributeType name="ContactName"/>
<ElementType name="Contact" sql:relation="Customers">

<attribute type="ID" sql:field="CustomerID"/>
<attribute type="ContactName"/>

</ElementType>
</Schema>

XML Views in SQL Server 2000

587

This XML View maps the <Contact> element to the Customers table, and the ID attribute to the
CustomerID column. It is not necessary to explicitly map the ID or ContactName attributes to the
Customers table using sql:relation; when an attribute or element mapped to a field does not
specify a relation, it inherits its parent's table. The value of sql:relation can be a simple table name
as it is here, or it can be a three-part SQL name database.owner.table. The name can refer to any
table or view in the database.

The result of querying this schema is the same as the default mapping from the non-annotated schema,
except that the XML names have changed:

<Contact ID="ALFKI" ContactName="Maria Anders">
<Contact ID="ANATR" ContactName="Ana Trujillo">
<!-- additional Contact elements ... -->

Where previously the attributes had to have the same names as the columns to which they mapped by
default, here we map an attribute called ID to the CustomerID column – illustrating how we can create
different XML names than the SQL names.

Here is the URL that you need to try out this XML View in a browser:

http://localhost/virtualdirectory/schema/ch15_ex02.xdr/Contact?root=ROOT

Another common use of sql:field is to create element-centric XML, mapping columns to elements
instead of to attributes. For example, the schema below (ch15_ex03.xdr)

<Schema xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<AttributeType name="ID"/>
<ElementType name="Name" sql:field="ContactName" />
<ElementType name="Contact" sql:relation="Customers">

<attribute type="ID" sql:field="CustomerID"/>
<element type="Name"/>

</ElementType>
</Schema>

maps the ContactName column to a sub-element of <Contact>, instead of to an attribute:

<Contact ID="ALFKI">
<Name>Maria Anders</Name>

</Contact>
<Contact ID="ALFKI">

<Name>Ana Trujillo</Name>
</Contact>

To display the resulting XML in a web browser, use the URL:

http://localhost/virtualdirectory/schema/ch15_ex03.xdr/Contact?root=ROOT

Chapter 15

588

Null Values
Although there are many possible interpretations for the SQL NULL value, the one chosen by XML
Views is absence. When an attribute maps to a NULL value, then that instance of the attribute will not
appear in the XML. Similarly, when an element maps to a NULL value, that element instance will not
exist in the XML.

If you ever want to fill in these missing values with a default value, XDR allows you to describe the
default value to be used when an attribute does not exist. For example:

<Schema xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<ElementType name="Customer">
<AttributeType name="Region" />
<attribute type="Region" default="WA" />

</ElementType>
</Schema>

The value will still not appear in the XML, but now applications can process the schema and know the
appropriate default value to use. This is usually the best solution, as it minimizes the size of the XML
(and therefore improves performance). However, when even this solution is not acceptable, one can use
SQL default values in the table definition to ensure that the value always appears in the XML data.

Join Relationships (sql:relationship)
The sql:field and sql:relation annotations provide a great deal of flexibility. Now, suppose you
want to produce XML data from multiple tables. A new annotation is required to express the join
relationship between these tables. Appropriately enough, this annotation is in an element called
<sql:relationship>. Don't confuse this with the similar-sounding sql:relation – they are
completely different annotations.

The join relationship is placed inside the child element, joining it with its parent. Two attributes on the
<sql:relationship> element, key-relation and key, describe the table and column of the
parent; two other attributes, foreign-relation and foreign-key, describe the table and column of
the child. These need not correspond to actual primary and foreign keys in the database; any columns
can be used in the join.

The schema below (ch15_ex04.xdr) demonstrates a join between the elements <Contact> and
<Order>:

<Schema xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<AttributeType name="ID"/>
<AttributeType name="Name"/>
<ElementType name="Order" sql:relation="Orders">

<attribute type="ID" sql:field="OrderID" />
</ElementType>
<ElementType name="Contact" sql:relation="Customers">

<attribute type="ID" sql:field="CustomerID"/>
<attribute type="Name" sql:field="ContactName"/>

XML Views in SQL Server 2000

589

<element type="Order">
<sql:relationship key-relation="Customers" key="CustomerID"

foreign-relation="Orders" foreign-key="CustomerID" />
</element>

</ElementType>
</Schema>

The relationship is equivalent to the SQL join condition Customers JOIN Orders ON
Customers.CustomerID=Orders.CustomerID, as in the query

SELECT Customers.CustomerID, ContactName, OrderID FROM Customers
JOIN Orders ON Customers.CustomerID = Orders.CustomerID
FOR XML AUTO

The XML produced by the schema above is as follows:

<Contact ID="ALFKI" Name="Maria Anders">
<Order ID="10643"/>
<Order ID="10692"/>
<Order ID="10702"/>
<Order ID="10835"/>
<Order ID="11011"/>

</Contact>
<Contact ID="ANATR" Name="Ana Trujillo">

<Order ID="10308"/>
<Order ID="10625"/>
<Order ID="10759"/>
<Order ID="10926"/>

</Contact>
<!-- ... -->

Multi-column Joins
Sometimes, tables are joined along multiple columns. For example, a Customers table might be joined
with an Addresses table along both FirstName and LastName. In such cases, the column names
should be separated by spaces in the key and foreign-key values:

<sql:relationship key-relation="Customers" key="FirstName LastName"
foreign-relation="Addresses" foreign-key="FirstName LastName"/>

This is equivalent to the SQL join

Customers JOIN Addresses ON
Customers.FirstName=Addresses.FirstName AND Customers.LastName=Addresses.LastName

Note that the column order is significant – columns are paired together in the same order in which they
appear.

Joins like these pose no problem for column names containing spaces, because such names must already
be surrounded by square brackets to be legal SQL names. For example:

<sql:relationship key-relation="Customers" key="[First Name] [Last Name]"
foreign-relation="Addresses" foreign-key="[First Name] [Last Name]"/>

Chapter 15

590

Link Tables
Another common join scenario occurs when two tables are joined through one or more intermediate
tables (link tables). For example, in the Northwind database, Orders and Products are joined through
an Order Details table, like so:

This kind of join can be described using additional sql:relationship elements inside the child. The
next example (ch15_ex05.xdr) demonstrates joining Orders and Products using the Order
Details table as an intermediate table:

<Schema xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<AttributeType name="ID"/>
<ElementType name="Product" sql:relation="Products">

<AttributeType name="UnitPrice"/>
<attribute type="ID" sql:field="ProductID" />
<attribute type="UnitPrice" />

</ElementType>
<ElementType name="Order" sql:relation="Orders">

<attribute type="ID" sql:field="OrderID" />
<element type="Product">

<sql:relationship key-relation="Orders" key="OrderID"
foreign-relation="[Order Details]" foreign-key="OrderID" />

<sql:relationship key-relation="[Order Details]" key="ProductID"
foreign-relation="Products" foreign-key="ProductID" />

</element>
</ElementType>

</Schema>

The XPath Order with this schema produces the XML shown below:

<Order ID="10248">
<Product ID="11" UnitPrice="21.0000"/>
<Product ID="42" UnitPrice="14.0000"/>
<Product ID="72" UnitPrice="34.8000"/>

</Order>
<Order ID="10249">

<Product ID="14" UnitPrice="23.2500"/>
<Product ID="51" UnitPrice="53.0000"/>

</Order>
<Order ID="10250">

<Product ID="41" UnitPrice="9.6500"/>
<Product ID="51" UnitPrice="53.0000"/>
<Product ID="65" UnitPrice="21.0500"/>

</Order>
<!-- ... -->

XML Views in SQL Server 2000

591

As in life, relationships can be challenging. To save yourself from frustration (and possibly a broken
heart), follow these three rules:

❑ The last relationship's foreign-relation must be the table of the child.

❑ The first relationship's key-relation must be the table of the parent. (*)

❑ For each relationship beyond the first, its key-relation must be the same table as the previous
relationship's foreign-relation.

* The second rule is, more specifically: The first relationship's key-relation must be the table of the
first mapped ancestor, which is usually – but not always – the parent. We'll explain how this works
later, when we describe constant elements.

Qualified Joins (sql:limit-field and sql:limit-value)
Another common database scenario is a qualified join. For example, in the Northwind database, the
Products table contains both discontinued and current products. The status of a product is indicated
using the column named Discontinued in the Products table (the value 1 indicates the product is
discontinued, 0 not discontinued). Suppose in our previous example we want only the products that are
not discontinued. In SQL, this would be expressed as

Orders JOIN [Order Details] ON Orders.OrderID=[Order Details].OrderID
JOIN Products ON [Order Details].ProductID=Products.ProductID
AND Products.Discontinued = 0

To express a special join such as this in an annotated schema, a new annotation is required.

The annotations sql:limit-field and sql:limit-value are used to qualify a join. These
annotations, when placed on an element or attribute that has a join relationship, select that element
or attribute only when the limit-field equals the indicated limit-value (or NULL, if no limit-value was
specified).

We demonstrate this by modifying the previous schema to use a qualified join (ch15_ex06.xdr):

<Schema xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<AttributeType name="ID"/>
<ElementType name="Product" sql:relation="Products">

<AttributeType name="UnitPrice"/>

<attribute type="ID" sql:field="ProductID" />
<attribute type="UnitPrice" />

</ElementType>
<ElementType name="Order" sql:relation="Orders">

<attribute type="ID" sql:field="OrderID" />
<element type="Product"

sql:limit-field="Discontinued" sql:limit-value="0">
<sql:relationship key-relation="Orders" key="OrderID"

foreign-relation="[Order Details]" foreign-key="OrderID" />
<sql:relationship key-relation="[Order Details]" key="ProductID"

foreign-relation="Products" foreign-key="ProductID" />
</element>

</ElementType>
</Schema>

Chapter 15

592

This schema with the XPath Order results in XML data that excludes the discontinued products:

<Order ID="10248">
<Product ID="11" UnitPrice="21.0000"/>
<Product ID="72" UnitPrice="34.8000"/>

</Order>
<Order ID="10249">

<Product ID="14" UnitPrice="23.2500"/>
<Product ID="51" UnitPrice="53.0000"/>

</Order>
<!-- ... -->

Keys, Nesting and Ordering (sql:key-fields)
XML is ordered, and is therefore hierarchical data. SQL Server uses rowset ordering to produce the
XML hierarchy (see the explanation of FOR XML EXPLICIT and the Universal Table in the previous
chapter for details). Thus, order is very important to getting the expected XML results from an XPath
query. Updategrams also require keys to uniquely identify elements.

Usually, join relationships contain enough information to determine the keys of the tables used.
However, sometimes an annotated schema does not contain enough key information. For example,
consider the following schema (ch15_ex07.xdr), which uses Order Details and Products:

<Schema xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<AttributeType name="ID"/>
<ElementType name="Product" sql:relation="Products">

<attribute type="ID" sql:field="ProductID"/>
</ElementType>
<ElementType name="Detail" sql:relation="[Order Details]">

<attribute type="ID" sql:field="OrderID" />
<element type="Product">

<sql:relationship key-relation="[Order Details]" key="ProductID"
foreign-relation="Products" foreign-key="ProductID" />

</element>
</ElementType>

</Schema>

Rows in the Order Details table are uniquely identified by both OrderID and ProductID; either
one alone is not sufficient. However, this schema does not convey that OrderID is a key of the Order
Details table.

Consequently, XPath does not have enough information to totally order the XML results. At best, this
may result in non-deterministic results (differently ordered XML from one time to the next). At worst,
this can cause the resulting XML fragment to nest elements incorrectly. Updategrams will also have
problems when using this schema, because it will not be able to uniquely identify the <Detail>
elements.

The sql:key-fields annotation provides a solution to this problem by allowing us to list all the key
columns used by an element or attribute. Because the errors that can result from missing keys are often
cryptic, we recommend always explicitly listing the key-fields on all elements (and on all attributes with
join relationships – that is, any attribute that comes from a different table than its parent element).

XML Views in SQL Server 2000

593

To see key-fields in action, we correct the schema above to produce the one below (ch15_ex08.xdr):

<Schema xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<AttributeType name="ID"/>
<ElementType name="Product" sql:relation="Products">

<attribute type="ID" sql:field="ProductID"/>
</ElementType>
<ElementType name="Detail" sql:relation="[Order Details]"

sql:key-fields="OrderID ProductID">
<attribute type="ID" sql:field="OrderID" />
<element type="Product"

sql:key-fields="ProductID">
<sql:relationship key-relation="[Order Details]" key="ProductID"

foreign-relation="Products" foreign-key="ProductID" />
</element>

</ElementType>
</Schema>

The XML View is the same (the key-fields only appear in the result if they are selected elsewhere in the
schema), but the query languages like XPath and updategrams that use the XML View now have the
key information they need to function properly.

The columns listed in sql:key-fields can sometimes be used to control sort order. For example, if in
the results from an XPath, you want elements ordered not by primary key but by some other column,
you can sometimes accomplish this goal by putting the column into the key-fields value. For general-
purpose sorting, post-processing (such as XSLT) is required.

Alternative Mappings
So far, all of our XML data has been in one-to-one correspondence with values in the database (and
vice-versa). However, there are three annotations that provide other ways to control the mapping
between the XML and the database. You can choose to:

❑ ignore some elements or attributes in the schema, and not map them: unmapped data

❑ produce elements that map to nothing: constant elements

❑ map blocks of XML to a column all at once: xml-text

Let's look at each of these and why you would want to do this next.

Unmapped Data (sql:map-field)
Often, there are schema elements or attributes that should not map to anything in the database. This
occurs most commonly when working with a pre-existing schema or sharing a schema with other
applications, and there is no corresponding information in the database. Such unmapped data is
indicated using the sql:map-field annotation. This annotation's value can be either 0 (false) or 1
(true). However, it is not necessary to specify sql:map-field="1", because its default value is true.
An example (where it is set to false) is seen below (ch15_ex09.xdr):

<Schema xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:sql="urn:schemas-microsoft-com:xml-sql">

Chapter 15

594

<AttributeType name="ID"/>
<AttributeType name="City"/>
<AttributeType name="NotMapped" />
<ElementType name="Contact" sql:relation="Customers" sql:key-

fields="CustomerID">
<attribute type="ID" sql:field="CustomerID"/>
<attribute type="City" />
<attribute type="NotMapped" sql:map-field="0"/>

</ElementType>
</Schema>

Unmapped data is completely ignored – it will not appear in the XML results of a query, and will not be
processed by an insert or update. Consequently, the schema above produces the same XML as if the
NotMapped attribute did not exist at all.

When an element is not mapped, none of its descendants are mapped either.

Constant Elements (sql:is-constant)
At other times, an element does not correspond to any value in the database, but it should still appear in
the XML. The most common examples are "wrapper" elements that contribute nothing but structure to
the XML data. These elements occur frequently in BizTalk schemas, for example. When the element
should appear in the XML results but does not come from the database, use the annotation sql:is-
constant. Like sql:map-field, this annotation takes a 0 or 1 value (the default is false).

Here is an example of a superfluous constant element, <OrderList> (ch15_ex10.xdr):

<Schema xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<AttributeType name="ID"/>
<AttributeType name="Name"/>
<ElementType name="Order" sql:relation="Orders">

<attribute type="ID" sql:field="OrderID" />
</ElementType>
<ElementType name="OrderList" sql:is-constant="1">

<element type="Order">
<sql:relationship key-relation="Customers" key="CustomerID"

foreign-relation="Orders" foreign-key="CustomerID" />
</element>

</ElementType>
<ElementType name="Contact" sql:relation="Customers">

<attribute type="ID" sql:field="CustomerID"/>
<attribute type="Name" sql:field="ContactName"/>
<element type="OrderList"/>

</ElementType>
</Schema>

Note that in this example, <OrderList> actually contributes nothing but wasted space to the XML
data. Nevertheless, schemas like this appear quite often in practice. This schema produces XML data
like this:

XML Views in SQL Server 2000

595

<Contact ID="ALFKI" Name="Maria Anders">
<OrderList>

<Order ID="10643"/>
<Order ID="10692"/>
<Order ID="10702"/>
<Order ID="10835"/>
<Order ID="11011"/>

</OrderList>
</Contact>
<Contact ID="ANATR" Name="Ana Trujillo">

<OrderList>
<Order ID="10308"/>
<Order ID="10625"/>
<Order ID="10759"/>
<Order ID="10926"/>

</OrderList>
</Contact>
<!-- ... -->

Constant elements may be nested inside one another and need not have child elements. However,
constant elements cannot have mapped attributes, because there is no table from which the attribute can
be selected.

For most purposes, constant elements are ignored. As the example above demonstrates, the constant
<OrderList> element does not factor into the join relationship between <Contact> and its <Order>
descendants. The join relationship between them is exactly the same as if the <OrderList> element
were not in-between.

XML Text (sql:overflow-field)
There are at least three scenarios in which overflow fields are useful:

1. Perhaps the most common use is to map a chunk of text (usually XML) stored in the
database into the XML data without entitization. Because XML treats a few characters
such as ampersand (&) and less-than (<) specially, these characters normally must be
encoded as special entities (& and < respectively). If a column in the database
contains data that is already XML, it has already been entitized so you do not want to
entitize it a second time (resulting in &amp; instead of &, for example). When
you want to preserve the XML structure of the data, or otherwise skip entitization, you
can map it using sql:overflow-field. (See also the annotation sql:use-cdata later
in this chapter for a different way to avoid entitization.)

2. Another use is to store chunks of XML inside the database as is, without shredding the
XML into individual rows and columns. Such XML data is called 'overflow' because it
spills over into the overflow field. In this case, any XML encountered by an Updategram
insert or update that was not already mapped to rows and columns will be stuffed into the
overflow column and inserted into the database verbatim.

3. A third scenario is to generate mixed content. At the time of this writing, XML Views do
not support mixed content directly. Every schema that would generate mixed content (for
example, an <ElementType> that maps to a field but also has child elements) generates
an error. However, the overflow field can be used to generate mixed content, either
directly (by containing mixed content itself) or indirectly (in conjunction with other
elements). The following example demonstrates both techniques.

Chapter 15

596

First create a table with an overflow column (ch15_ex11.sql):

CREATE TABLE MixedContent (cid nchar(5) PRIMARY KEY, xml nvarchar(100))
INSERT INTO MixedContent
VALUES(N'ALFKI', N'<overflow>Overflow combined with child elements can produce
mixed content</overflow>')
INSERT INTO MixedContent
VALUES(N'XXXX', N'<overflow>And overflow by itself can be <mixed/>
content</overflow>')

and then a schema that uses it (ch15_ex11.xdr):

<Schema xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<AttributeType name="ID"/>
<ElementType name="Customer" sql:relation="Customers">

<attribute type="ID" sql:field="CustomerID" />
</ElementType>
<ElementType name="MixedContent" sql:overflow-field="xml" content="mixed">

<element type="Customer">
<sql:relationship key-relation="MixedContent" key="cid"

foreign-relation="Customers" foreign-key="CustomerID" />
</element>

</ElementType>
</Schema>

Together, these produce this XML with mixed content:

<MixedContent>
Overflow combined with child elements can produce mixed content
<Customer ID="ALFKI"/>

</MixedContent>
<MixedContent>

And overflow by itself can be <mixed/> content
</MixedContent>

Note - this example needs web release 2 to function, see MSDN for the updated details.

Data Types (sql:datatype, dt:type, sql:id-prefix)
Perhaps the trickiest problem in providing an XML view over SQL data is managing the vast
differences between their type systems. XDR has a type system; SQL has a different one. XPath has yet
another. At the time of this writing, XSD and the XML Query Language are not yet finalized, but both
will have their own (different) type systems.

We will not cover the SQL type system in any depth. The sql:datatype annotation exists mainly to
allow updategrams to handle certain binary types and to improve performance in XPath (by avoiding
unnecessary conversions). In SQL Server 2000, only the BLOB SQL types such as binary and text
are allowed in sql:datatype. In the latest SQL XML web release (and in SQL Server 2000 SP1),
sql:datatype has been expanded to accept any of the SQL types such as nchar and dateTime. The
impact of the sql:datatype annotation is described later with the individual query languages. We also
defer a description of XPath types to the XPath section later in this chapter.

XML Views in SQL Server 2000

597

The XDR type system is relatively straightforward. The types belong to a different namespace,
urn:schemas-microsoft-com:datatypes, which we will always assign to the namespace prefix dt.
Here is an example of a schema with both XDR and SQL types (ch15_ex12.xdr):

NOTE: The sql:datatype values in this example require the latest SQL XML web
release, or SQL Server 2000 SP1 or later. Remove the sql:datatypes to use this schema
with any earlier version of SQL XML.

<Schema xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:sql="urn:schemas-microsoft-com:xml-sql"
xmlns:dt="urn:schemas-microsoft-com:datatypes">
<AttributeType name="ProductID" dt:type="id" sql:id-prefix="P"/>
<AttributeType name="ProductName" dt:type="string"/>
<AttributeType name="UnitPrice" dt:type="fixed.14.4" sql:datatype="money"/>
<AttributeType name="SupplierID" dt:type="int" sql:datatype="int"/>
<AttributeType name="UnitsInStock" dt:type="i4" sql:datatype="smallint"/>
<AttributeType name="UnitsOnOrder" dt:type="i2" sql:datatype="smallint"/>
<AttributeType name="Discontinued" dt:type="boolean"/>
<ElementType name="Product" sql:relation="Products">

<attribute type="ProductID" />
<attribute type="ProductName" />
<attribute type="UnitPrice" />
<attribute type="SupplierID"/>
<attribute type="UnitsInStock"/>
<attribute type="UnitsOnOrder"/>
<attribute type="Discontinued"/>

</ElementType>
</Schema>

and part of the XML it produces:

<Product ProductID="P1" ProductName="Chai" UnitPrice="18.0000"
SupplierID="1" UnitsInStock="39" UnitsOnOrder="0" Discontinued="0"/>

<Product ProductID="P2" ProductName="Chang" UnitPrice="19.0000"
SupplierID="1" UnitsInStock="17" UnitsOnOrder="40" Discontinued="0"/>

<Product ProductID="P3" ProductName="Aniseed Syrup" UnitPrice="10.0000"
SupplierID="1" UnitsInStock="13" UnitsOnOrder="70" Discontinued="0"/>

<Product ProductID="P4" ProductName="Chef Anton's Cajun Seasoning"
UnitPrice="22.0000" SupplierID="2" UnitsInStock="53" UnitsOnOrder="0"
Discontinued="0"/>

<!-- ... -->

In all, XDR has thirty-five distinct types.

Booleans and Binaries
We have already seen examples of the XDR boolean type, which takes the values 0 (false) and 1 (true).
For example, the sql:map-field and sql:is-constant annotations are both boolean-typed. The
XDR boolean type is thus the same as the SQL bit type.

The bin.base64 and bin.hex types are used to indicate that an XML value is really a binary value,
but either Base64- or BinHex-encoded in order to be legal XML. There is not really any corresponding
SQL value; however, FOR XML can Base64-encode binary SQL values. See also the section on the
sql:url-encode annotation.

Chapter 15

598

Strings
The string type represents any string value, and the char type applies to single-character values. Six
other types — entity, entities, enumeration, notation, uri, and uuid — are string values with
special meanings in XML, but otherwise are not important as annotations in XML Views. XDR string
types are essentially equivalent to SQL Unicode string types such as nvarchar.

Numbers
If you enjoyed maths in school, then you'll love the fourteen number types in XDR. These are
fixed.14.4, float, i1, i2, i4, i8, int, number, r4, r8, ui1, ui2, ui4, and ui8. As the name
suggests, fixed.14.4 supports up to fourteen digits before the decimal and up to four after it, making
fixed.14.4 ideal as a monetary type. The types i1 through i8 are signed integer types, where the
number indicates the number of bytes. Similarly, the types ui1 through ui8 are unsigned integer types.
The floating-point types r4 and r8 are single-precision and double-precision IEEE 754 floating-point
numbers, respectively.

Note that SQL'92 (the version of SQL implemented in SQL Server 2000) does not support unsigned
integer types, nor does it support true IEEE 754 floating-point numbers (no infinities, NaNs, etc.).
Consequently, it is not always possible to find a perfect match between SQL numbers and XDR
numbers. When in doubt, be sure to select a type that is wide enough to hold any value you might store
in it.

For convenience, we have enumerated the XDR numeric types – their ranges are summarized in this
table:

Type Range

fixed.14.4 like number, but no more than 14 digits to the left and no more than 4 digits
to the right of the decimal point

float same as r8

i1 -128 to 127

i2 -32768 to 32767

i4 -2147483648 to 2147483647

i8 -9223372036854775808 to 9223372036854775807

int synonymous with i4

number same as r8

r4 1.17549435E-38 to 3.40282347E+38

r8 2.2250738585072014E-308 to 1.7976931348623157E+308

ui1 0 to 255

ui2 0 to 65535

ui4 0 to 4294967295

ui8 0 to 18446744073709551615

XML Views in SQL Server 2000

599

Identifiers
The id type is a special type in XML. It is a string, but must satisfy the Name rule in the formal XML
grammar (See http://www.w3.org/TR/REC-xml#NT-Name). A simplified definition of this rule is that an
XML id consists of a letter followed by any number of digit, letter, or underscore characters. More than
this, the XML id values in a document must all be unique. In this way, id values act like a primary key
in an XML document.

The idref type is a reference to an element with that id. Consequently, idref values must also be
valid id values. However, idref values need not be unique (and in general, will not be). The idrefs
type is a space-separated list of idref values. The idref and idrefs types can be used with id to
produce a graph-like structure within an XML document.

The nmtoken and nmtokens types are similar to idref and idrefs. Although they do not reference
other values in the document and need not be unique, values with these types must satisfy the
NCName rule.

Because these types must satisfy the NCName rule but the data in the database might not (for example,
an integer primary key) or might lack uniqueness within the document (for example, two tables with
integer keys whose values happen to overlap), the sql:id-prefix annotation is sometimes necessary.
This annotation may be used with any id, idref, idrefs, nmtoken, or nmtokens type. The sql:id-
prefix value is prepended to the database value (which is first converted to nvarchar). The user
bears the responsibility for ensuring that the id prefix results in unique and properly formatted
id values.

Usually, idrefs types contain multiple values. Although the idrefs value might already be stored in a
single column in the database as a space-delimited list of id values, it is more common that the idrefs
value selects from multiple rows. In this case, the idrefs attribute or element requires a join
relationship. The following schema (ch15_ex13.xdr) demonstrates the three identify types:

<Schema xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:sql="urn:schemas-microsoft-com:xml-sql"
xmlns:dt="urn:schemas-microsoft-com:datatypes">

<ElementType name="Customer" sql:relation="Customers">
<AttributeType name="ID" dt:type="id"/>
<AttributeType name="Orders" dt:type="idrefs" sql:id-prefix="O"/>

<attribute type="ID" sql:field="CustomerID"/>
<attribute type="Orders" sql:relation="Orders" sql:field="OrderID">
<sql:relationship key-relation="Customers" key="CustomerID"

foreign-relation="Orders" foreign-key="CustomerID"/>
</attribute>
<element type="Order">

<sql:relationship key-relation="Customers" key="CustomerID"
foreign-relation="Orders" foreign-key="CustomerID"/>

</element>
</ElementType>
<ElementType name="Order" sql:relation="Orders">

<AttributeType name="ID" dt:type="id" sql:id-prefix="O"/>
<AttributeType name="Employee" dt:type="idref" sql:id-prefix="E"/>

Chapter 15

600

<attribute type="ID" sql:field="OrderID"/>
<attribute type="Employee" sql:field="EmployeeID"/>

<element type="Employee">
<sql:relationship key-relation="Orders" key="EmployeeID"
foreign-relation="Employees" foreign-key="EmployeeID"/>

</element>
</ElementType>
<ElementType name="Employee" sql:relation="Employees">

<AttributeType name="ID" dt:type="id" sql:id-prefix="E"/>
<attribute type="ID" sql:field="EmployeeID"/>

</ElementType>
</Schema>

The XML obtained from this schema displays both the id prefixes and the concatenated idrefs
values:

<Customer ID="ALFKI" Orders="O10643 O10692 O10702 O10835 O10952 O11011">
<Order ID="O10835" Employee="E1"/>
<Order ID="O10952" Employee="E1">

<Employee ID="E1"/>
<Employee ID="E1"/>

</Order>
<Order ID="O11011" Employee="E3">

<Employee ID="E3"/>
</Order>
<Order ID="O10692" Employee="E4"/>
<Order ID="O10702" Employee="E4">

<Employee ID="E4"/>
<Employee ID="E4"/>

</Order>
<Order ID="O10643" Employee="E6">

<Employee ID="E6"/>
</Order>

</Customer>
<Customer ID="ANATR" Orders="O10308 O10625 O10759 O10926">

<Order ID="O10625" Employee="E3"/>
<Order ID="O10759" Employee="E3">

<Employee ID="E3"/>
<Employee ID="E3"/>

</Order>
<Order ID="O10926" Employee="E4">

<Employee ID="E4"/>
</Order>
<Order ID="O10308" Employee="E7">

<Employee ID="E7"/>
</Order>

</Customer>
<!-- ... -->

Dates and Times
There are five date/time types in XDR: date, time, dateTime, dateTime.tz, and time.tz. These
last two are timezone variants of dateTime and time, respectively. As the names suggest, date
consists of only the date part, time only the time part, and dateTime combines the two. The format
XDR uses is based on ISO 8601 (see http://www.w3.org/TR/NOTE-datetime). This schema
(ch15_ex14.xdr) demonstrates all five types:

<Schema xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:sql="urn:schemas-microsoft-com:xml-sql"

xmlns:dt="urn:schemas-microsoft-com:datatypes">

XML Views in SQL Server 2000

601

<AttributeType name="date" dt:type="date" />
<AttributeType name="time" dt:type="time" />
<AttributeType name="dateTime" dt:type="dateTime"/>
<AttributeType name="time.tz" dt:type="time.tz"/>
<AttributeType name="dateTime.tz" dt:type="dateTime.tz"/>
<ElementType name="Example" sql:relation="Orders">

<attribute type="date" sql:field="OrderDate"/>
<attribute type="time" sql:field="OrderDate"/>
<attribute type="dateTime" sql:field="OrderDate"/>
<attribute type="time.tz" sql:field="OrderDate"/>
<attribute type="dateTime.tz" sql:field="OrderDate"/>

</ElementType>
</Schema>

resulting in the XML:

<Example date="1996-07-04" time="00:00:00" dateTime="1996-07-04T00:00:00"
time.tz="00:00:00" dateTime.tz="1996-07-04T00:00:00"/>

<Example date="1996-07-05" time="00:00:00" dateTime="1996-07-05T00:00:00"
time.tz="00:00:00" dateTime.tz="1996-07-05T00:00:00"/>

<Example date="1996-07-08" time="00:00:00" dateTime="1996-07-08T00:00:00"
time.tz="00:00:00" dateTime.tz="1996-07-08T00:00:00"/>

<Example date="1996-07-08" time="00:00:00" dateTime="1996-07-08T00:00:00"
time.tz="00:00:00" dateTime.tz="1996-07-08T00:00:00"/>

<Example date="1996-07-09" time="00:00:00" dateTime="1996-07-09T00:00:00"
time.tz="00:00:00" dateTime.tz="1996-07-09T00:00:00"/>

<!-- ... -->

SQL has only two date/time types, datetime and smalldatetime. Neither of these includes a
timezone, and both have smaller precision than the XDR date/time types. For example, the XDR time
type has nanosecond resolution, while the SQL Server datetime type has only 1/300 second
resolution. If you require greater precision or timezones, store your date/time data in a SQL string type
such as nvarchar.

Mapping Between XDR Types and SQL Types
In general, it is not possible to force SQL types into XDR types or vice-versa. SQL often does not have
any conversion functions that would perform as desired. Some types are automatically converted by
FOR XML EXPLICIT; others, such as dateTime, require an explicit conversion. Also, because SQL
Server does not perform implicit type conversions in many cases (such as number to string), some XDR
types require an explicit conversion when used in a query language such as XPath or when used as id
types. Because these type conversions are largely query-dependent, we'll cover them in greater detail in
the sections on XPath and updategrams.

CDATA Sections
By default, database values are entitized when mapping to XML. This means that XML special
characters such as < are replaced with the corresponding entity <. To avoid entitization on an
element, indicate that the value should use a CDATA section. This is done with the sql:use-cdata
annotation (which is boolean-valued like sql:map-field, and defaults to false), as seen in action
below, in ch15_ex15.xdr:

<Schema xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:sql="urn:schemas-microsoft-com:xml-sql">

Chapter 15

602

<ElementType name="Name" content="textOnly"/>
<ElementType name="Customer" sql:relation="Customers">

<element type="Name" sql:field="CompanyName" sql:use-cdata="1"/>
</ElementType>

</Schema>

Embedded Binary Values
XML doesn't really have a convenient way to deal with binary data (such as images) embedded in the
document. The schema ch15_ex16.xdr below

<Schema xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<AttributeType name="Name"/>
<AttributeType name="Photo"/>
<ElementType name="Employee" sql:relation="Employees"

sql:key-fields="EmployeeID">
<attribute type="Name" sql:field="LastName"/>
<attribute type="Photo"/>

</ElementType>
</Schema>

will put the Base64-encoded value of each employee's photo into the XML. This wastes both time (to
encode on the server, and then unencode to use the data as an image) and space (because the encoded
data is much larger than the data itself).

XML Views provide an annotation, sql:url-encode (which is boolean-valued and defaults to false,
just like sql:use-cdata) that instead constructs a relative URL (called a direct object query) using an
XPath-like syntax to refer to the value in the database. The URL is especially convenient for embedding
images into an HTML page, since the IMG tag can use the URL as its SRC value. Because the query must
select a single value from the database, the XML View must contain enough key information (through
key fields or join relationships) to uniquely identify each value – sql:url-encode is seen below in
action (ch15_ex17.xdr):

<Schema xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<AttributeType name="Name"/>
<AttributeType name="Photo"/>
<ElementType name="Employee" sql:relation="Employees"

sql:key-fields="EmployeeID">
<attribute type="Name" sql:field="LastName"/>
<attribute type="Photo" sql:url-encode="1"/>

</ElementType>
</Schema>

This schema generates XML like

<Employee Name="Davolio" Photo="dbobject/Employees[@EmployeeID=1]"/>

In the next chapter, we will demonstrate an XSL that transforms these values into IMG tags in
the HTML.

XML Views in SQL Server 2000

603

Table 1. Annotation Summary
Annotation Context(s) Purpose

sql:datatype AttributeType,
ElementType

Specifies a column's SQL type. Use
with dt:type.

sql:field attribute, element,
ElementType

Maps to a SQL column.

sql:id Schema Identifies an inline schema for use in
template queries. Use with sql:is-
mapping-schema.

sql:id-prefix AttributeType,
ElementType

Prepends a string to the column value.
Use with dt:type equal to id, idref,
idrefs, nmtoken, or nmtokens.

sql:is-constant element, ElementType Indicates that this element appears in
the XML but maps to nothing in the
database.

sql:is-mapping-
schema

Schema Indicates that an inline schema is an
annotated schema. Use with sql:id.

sql:key-fields attribute, element,
ElementType

Specifies a table's key columns.

sql:limit-field attribute or element
with a relationship

Qualifies a join (limit-field specifies
the column). Use with sql:limit-
value.

sql:limit-value attribute or element Qualifies a join (limit-value specifies
the value; NULL when absent). Use with
sql:limit-field.

sql:map-field attribute, element,
ElementType

Indicates that this maps to nothing in
the database.

sql:overflow-
field

element, ElementType Specifies a column for overflow XML
data.

sql:relation attribute, element,
ElementType

Maps to a SQL table

sql:relationship inside an attribute or
element

Specifies a join relationship with the
parent element (or first mapped
ancestor, if the parent is a constant
element).

sql:target-
namespace

Schema Places the elements and attribute
declared in a schema into a different
namespace.

sql:url-encode attribute, element,
ElementType

Generates a dbobject URL to the
value instead of the value itself.

sql:use-cdata element, ElementType Encloses the content with a CDATA
section.

Chapter 15

604

Templates
Before we describe the XPath and Updategram query languages, let us first explain a mechanism, called
templates, for executing these queries. Each template is just an XML document, but the XML is
processed in a special way, at least, in one respect: If a query command node is embedded in the
template, then that query is executed and its results replace the command node in the XML. The result
is dynamic XML content.

Below is a sample template file (ch15_ex18.xml) that contains three kinds of queries. Note that
updategrams require the latest SQL XML web release or SQL Server 2000 SP1, and that for various
reasons, updategrams reside in a distinct namespace from the rest of the SQL XML components:

Updategrams require the latest SQL XML web release or SQL Server 2000 SP1 or
later. Remove <u:sync> to use this template with any earlier version of SQL XML.

<AnyXMLContent xmlns:sql="urn:schemas-microsoft-com:xml-sql"
xmlns:u="urn:schemas-microsoft-com:xml-updategram" >

<CanBeUsed in="the template" />
and will be preserved in the output of the template
<!-- Comments also will be preserved in the output -->

<!-- This is an SQL query that selects all the Employee elements -->
<sql:query>

SELECT * FROM Employees FOR XML AUTO
</sql:query>

<!-- This is an updategram query that modifies one Employee -->
<u:sync mapping-schema="Schema.xdr">

<u:before>
<Employee EmployeeID="3">

<FirstName>Janet</FirstName>
<LastName>Leverling</LastName>

</Employee>
</u:before>
<u:after>
<Employee EmployeeID="3">

<FirstName>Janet</FirstName>
<LastName>Leverling-Brown</LastName>

</Employee>
</u:after>

</u:sync>

<!-- This is an XPath query that selects the modified Employee -->
<sql:xpath-query mapping-schema="Schema.xdr">

/Employee[@EmployeeID="3"]
</sql:xpath-query>

</AnyXMLContent>

The template can be executed by accessing it through a URL, like this (assuming you have provided a
suitable schema.xdr, which I have left as another exercise for you to try upon completion of reading
this chapter):

http://localhost/virtualdirectory/template/yourTemplate.xml

XML Views in SQL Server 2000

605

or through various other mechanisms such as ADO. The next chapter and the Books Online
documentation that accompanies SQL Server 2000 contain more information about these access
mechanisms.

A template may contain any number of SQL, updategram, and XPath queries. The queries in a template
are executed sequentially. Each query command node corresponds to one SQL transaction; when one
fails, the others will still be executed.

Now we will explore how the query languages XPath and updategrams use XML Views.

XPath
In this section, we will describe the subset of XPath supported by SQL XML. For the examples in the
first part of this section, we will use this annotated schema (ch15_ex20.xdr):

<Schema xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:sql="urn:schemas-microsoft-com:xml-sql"
xmlns:dt="urn:schemas-microsoft-com:datatypes">

<ElementType name="Product" sql:relation="Products">
<AttributeType name="ProductID" dt:type="id"/>
<AttributeType name="UnitPrice" dt:type="fixed.14.4"

sql:datatype="money"/>
<AttributeType name="Units" />

<attribute type="ProductID" sql:id-prefix="P"/>
<attribute type="UnitPrice" />
<attribute type="Units" sql:field="UnitsInStock"/>

</ElementType>
<ElementType name="Order" sql:relation="Orders">

<AttributeType name="OrderID"/>
<AttributeType name="OrderDate" dt:type="date"

sql:datatype="datetime"/>

<attribute type="OrderID"/>
<attribute type="OrderDate"/>
<element type="Product">

<sql:relationship key-relation="Orders" key="OrderID"
foreign-relation="[Order Details]" foreign-key="OrderID"/>

<sql:relationship key-relation="[Order Details]" key="ProductID"
foreign-relation="Products" foreign-key="ProductID"/>

</element>
</ElementType>
<ElementType name="Customer" sql:relation="Customers">

<AttributeType name="CustomerID" dt:type="string"
sql:datatype="nvarchar(5)"/>

<AttributeType name="ContactName"/>

<attribute type="CustomerID"/>
<attribute type="ContactName"/>
<element type="Order">

<sql:relationship key-relation="Customers" key="CustomerID"
foreign-relation="Orders" foreign-key="CustomerID" />

</element>
</ElementType>

</Schema>

Chapter 15

606

which describes XML shaped like this:

<Customer CustomerID="ALFKI" ContactName="Maria Anders">
<Order OrderID="10643" OrderDate="1997-08-25">

<Product ProductID="P28" UnitPrice="45.6000" Units="26"/>
<Product ProductID="P39" UnitPrice="18.0000" Units="69"/>
<Product ProductID="P46" UnitPrice="12.0000" Units="95"/>

</Order>
<Order OrderID="10692" OrderDate="1997-10-03">

<Product ProductID="P63" UnitPrice="43.9000" Units="24"/>
</Order>
<!-- ... -->

</Customer>
<Customer CustomerID="ANATR" ContactName="Ana Trujillo">

<Order OrderID="10308" OrderDate="1996-09-18">
<Product ProductID="P69" UnitPrice="36.0000" Units="26"/>
<Product ProductID="P70" UnitPrice="15.0000" Units="15"/>

</Order>
<Order OrderID="10625" OrderDate="1997-08-08">

<Product ProductID="P14" UnitPrice="23.2500" Units="35"/>
<Product ProductID="P42" UnitPrice="14.0000" Units="26"/>
<Product ProductID="P60" UnitPrice="34.0000" Units="19"/>

</Order>
<!-- ... -->

</Customer>
<!-- ... -->

or this:

<Order OrderID="10248" OrderDate="1996-07-04">
<Product ProductID="P72" UnitPrice="34.8000" Units="14"/>
<Product ProductID="P11" UnitPrice="21.0000" Units="22"/>
<Product ProductID="P42" UnitPrice="14.0000" Units="26"/>

</Order>
<Order OrderID="10249" OrderDate="1996-07-05">

<Product ProductID="P51" UnitPrice="53.0000" Units="20"/>
<Product ProductID="P14" UnitPrice="23.2500" Units="35"/>

</Order>
<Order OrderID="10250" OrderDate="1996-07-08">

<Product ProductID="P41" UnitPrice="9.6500" Units="85"/>
<Product ProductID="P51" UnitPrice="53.0000" Units="20"/>
<Product ProductID="P65" UnitPrice="21.0500" Units="76"/>

</Order>
<!-- ... -->

or even like this:

<Product ProductID="P1" UnitPrice="18.0000" Units="39"/>
<Product ProductID="P2" UnitPrice="19.0000" Units="17"/>
<Product ProductID="P3" UnitPrice="10.0000" Units="13"/>
<Product ProductID="P4" UnitPrice="22.0000" Units="53"/>
<!-- ... -->

depending on whether the XPath query begins at Customer, Order, or Product, respectively.

XML Views in SQL Server 2000

607

Introduction
XPath is an XML query language with an especially compact form. XPath does not provide ways to
modify data, but does provide a convenient syntax for selecting XML. For complete details, please see
the XPath specification at http://www.w3.org/TR/XPath.

XPath consists of two fundamental operations, navigation and predication. Navigation selects nodes in
the XML. Predication filters that selection according to certain criteria. Although there are many query
scenarios that XPath cannot support, these two operations are enough for many common needs.
Combined with XML Views, XPath provides a powerful way to interact with relational data as though it
were XML.

Recall that XPath queries can be executed through either the URL or through a template file. When
using an XPath in a URL, be aware of URL encoding,for example, spaces. Similarly, when using
an XPath in a template, be aware of XML encoding issues. If the XPath contains special characters
like <, you may want to wrap it in a CDATA section.

Navigation
XPath is especially well designed for navigating the tree-like hierarchy of XML. XPath walks the tree
using steps. The simplest step walks from one node to one of its children by name. Each XPath step
selects some set (possibly empty) of XML nodes. An XPath step may contain not just element nodes, but
also attribute nodes, text nodes, processing-instruction nodes, and so on. The syntax is very suggestive
of file-system paths.

A very simple XPath is

/Customer

This XPath is an absolute XPath because of the leading slash; it selects all the top-level elements named
Customer. The XML returned includes all the descendants of each Customer. That's the way XPath
works – selection always picks a node with all of its content. XPath does not support projection
(selecting only part of a node); for that, we'll have to wait for the XML Query Language (see chapter
11).

To continue down the XML hierarchy, the XPath

/Customer/Order

selects all the Order element children of all the top-level Customer elements. This is roughly
equivalent to the SQL query

SELECT * FROM Orders O
WHERE EXISTS (SELECT * FROM Customers C WHERE C.CustomerID = O.CustomerID)

Attributes can be selected by preceding the name with the "at" symbol (@). Before we explore other axes
of navigation, however, let's first learn about predicates.

Chapter 15

608

Predication
Predicates are indicated using square brackets, like this:

/Customer[@CustomerID='ALFKI']

This XPath selects all top-level Customer elements whose CustomerID is equal to the string "ALFKI",
exactly like the SQL query

SELECT * from Customers WHERE CustomerID=N'ALFKI'

First, the XPath selects the top-level Customer elements using /Customer. Then a predicate is applied
that selects the CustomerID attribute of the current selection, and compares that attribute with the
string value "ALFKI".

The contents of a predicate are either a boolean-valued expression (like above), or a numeric
expression. Numeric predicates are special because they select based on position. The XPath
Customer[3] selects the third Customer. Because document order often has no meaning in an XML
View of a relational database, SQL XML does not support numeric predicates.

Predicates can be used multiple times in an XPath, combined sequentially, and nested. The following
three examples will clarify the use and subtle nuances of predicates:

1. Single Predicate

/Customer[@CustomerID='ALFKI']/Order[@OrderID=10692]

selects the Order element whose OrderID attribute equals 10692 from the Customer element whose
CustomerID attribute equals "ALFKI". An equivalent SQL query is:

SELECT * FROM Orders O WHERE OrderID=10692 AND
EXISTS (

SELECT * FROM Customers C
WHERE C.CustomerID=O.CustomerID AND C.CustomerID='ALFKI'

)

The XML result from this XPath is

<Order OrderID="10692" OrderDate="1997-10-03">
<Product ProductID="P63" UnitPrice="43.9000" Units="24"/>

</Order>

Now consider this similar XPath that uses a nested predicate:

2. Nested Predicate

/Customer[@CustomerID='ALFKI' and Order[@OrderID=10692]]/Order

This selects all the Order elements from those Customer elements with both a CustomerID attribute
equal to "ALFKI" and an Order whose OrderID attribute equals 10692.

XML Views in SQL Server 2000

609

Note that this XPath selects five Order elements from the XML View, while the previous XPath selects
only one. The reason is that the Order element used inside the predicate is independent of the one used
outside of the predicate. The previous XPath filtered its final Order selection but this XPath did not.

This is like the SQL query

SELECT * FROM Orders O WHERE EXISTS (
SELECT * FROM Customers C
WHERE C.CustomerID=O.CustomerID AND C.CustomerID='ALFKI'
AND EXISTS (

SELECT * FROM Orders O2
WHERE C.CustomerID=O2.CustomerID AND O2.OrderID=10692

)
)

Applying non-positional predicates sequentially has the same effect as combining their conditions using
and in a single predicate:

3. Sequential Predicates

/Customer[@CustomerID='ALFKI'][Order/@OrderID=10692]/Order

is equivalent to

/Customer[@CustomerID='ALFKI' and Order/@OrderID=10692]/Order

Note that this XPath is different still – the difference is caused by the Order/@OrderID=10692 versus
Order[@OrderID=10692]. We'll explain why in the next two sections, when we explain implicit
XPath type conversions. For now, we merely note that this XPath selects nothing at all in an ordinary
XML document, but selects five orders (exactly like the previous XPath) in SQL XML.

XPath Types
XPath has a simple type system that includes only four types: boolean, number, string, and
nodeset. However, the conversions from one type to another can sometimes cause surprising effects,
and SQL XML differs from the official specification in a few places. We first describe the XPath types,
and then observe a few pitfalls worth avoiding.

An XPath boolean is exactly what you would expect – true or false. An XPath number is an IEEE 754
double-precision floating-point number – XPath does not have an integer number type. An XPath
string is a Unicode string. Finally, an XPath nodeset is an ordered set of XML nodes (including
possibly text nodes).

XPath defines explicit conversion operators boolean(), number(), and string() that convert from
any of these types to the corresponding type. A boolean is converted to a number as one expects
(true becomes 1, false becomes 0). When converted to string, the value is "true" or "false" –
note that this is not localized, and differs from the XDR representation of boolean ("1" or "0"). Also,
this means that string(b) is different from string(number(b)), where b is a boolean value.

The string and number types convert to each other about as you would expect. There are some
nuances (for example, the string representation of a number uses as many digits as required to
uniquely identify it but no more, which is a different representation than what printf() produces),
but it is unlikely that they will affect you. When in doubt, consult the W3C XPath specification.

Chapter 15

610

A number converted to boolean results in true if and only if the number is non-zero and non-NaN. A
string converted to boolean results in true if and only if the string is non-empty. Note that these
conversions are not reversible: for example, boolean(string(boolean(x))) does not equal
boolean(x) (in fact, it always equals true, because the string value of true or false is always a
nonempty string).

The nodeset conversions are unusual. A nodeset converted to boolean becomes an existence test.
The result is true if and only if the nodeset is not empty. This means that an XPath like

/Customer[Order]

converts the nodeset Order to boolean, and therefore selects all Customer elements that have Order
children.

A nodeset converted to number first converts the nodeset to string, and then converts that
string to number. The conversion of a nodeset to string uses the string value of only the first
node in the nodeset. This conversion is not implemented for the same reason that numeric predicates
are not; however, not supporting it at all would mean being unable to perform almost every useful
XPath. SQL XML differs from the XPath specification in a subtle way that we will explain in the next
section, when we describe the implicit conversions that occur as part of XPath expressions.

XPath Expressions
XPath supports the usual sort of operations, including arithmetic, string manipulation, equality tests, and
relational comparisons.

Of the arithmetic operators, everything but modulus is supported (that is, addition, subtraction,
multiplication, and division). Note that SQL Server lacks true IEEE floating-point arithmetic (notably
NaNs and infinities), so floating-point arithmetic differs slightly from the XPath specification.

The following XPath demonstrates all the arithmetic operators:

/Product[((@Units - 1) * (@UnitPrice + 1)) div 2 > 0]

and results in the following XML:

<Product ProductID="P1" UnitPrice="18.0000" Units="39"/>
<Product ProductID="P2" UnitPrice="19.0000" Units="17"/>
<Product ProductID="P3" UnitPrice="10.0000" Units="13"/>
<Product ProductID="P4" UnitPrice="22.0000" Units="53"/>
<!-- ... -->

There are a few lexical oddities about XPath arithmetic worth noting in this example. Division is
represented with div instead of a slash. Because hyphen is a valid XML name character, most
subtraction operations require a space between the minus sign and the name in front of it; @Units-1
selects an attribute named Units-1.

Arithmetic operators implicitly cast their operands to number. This has the unexpected side effect that
the XPath /Order[0 + Product/@UnitPrice > 10] is different from the XPath
/Order[Product/@UnitPrice > 10]. The latter selects all Order elements having any Product
with UnitPrice greater than 10. The former selects all Order elements whose first Product has
UnitPrice greater than 10, because the nodeset Product/@UnitPrice is first converted to number
(which has the effect of using the value of only the first node).

XML Views in SQL Server 2000

611

XPath oddities like this compel us to recommend against the use of long paths like A/B in predicates.
Most likely, the meaning you wanted is actually a nested predicate like
/Order[Product[@UnitPrice > 10]] anyway.

Because SQL XML does not support positional predicates, it uses "any" semantics for both of these
XPaths. That is, both /Order[0 + Product/@UnitPrice > 10] and
/Order[Product/@UnitPrice > 10] produce the same XML result in SQL XML.

This deviation from the W3C standard also applies to relational and equality operators. These operators
apply special conversion rules to their operands that we will not explain in detail here. For example, an
expression @Date > '1998-10-01' should first convert both the nodeset @Date and the string
'1998-10-01' to number (which will result in NaN), and then compare them (which will result in
false, since NaN compared with anything is false). SQL XML instead performs a string comparison,
with the expected result (true if and only if the value of @Date is a date later than the one indicated in
the string).

Here's an XPath that attempts string and date comparisons. These would not work in ordinary XML
documents, but do work in SQL XML:

/Customer[@CustomerID > 'PARIS']/Order[@OrderDate <= '1999-01-01']

which results in the XML

<Order OrderID="10322" OrderDate="1996-10-04">
<Product ProductID="P52" UnitPrice="7.0000" Units="38"/>

</Order>
<Order OrderID="10354" OrderDate="1996-11-14">

<Product ProductID="P1" UnitPrice="18.0000" Units="39"/>
<Product ProductID="P29" UnitPrice="123.7900" Units="0"/>

</Order>
<Order OrderID="10474" OrderDate="1997-03-13">

<Product ProductID="P14" UnitPrice="23.2500" Units="35"/>
<Product ProductID="P28" UnitPrice="45.6000" Units="26"/>
<Product ProductID="P40" UnitPrice="18.4000" Units="123"/>
<Product ProductID="P75" UnitPrice="7.7500" Units="125"/>

</Order>
<!-- ... -->

At the time of this writing, none of the XPath string functions (concat(), substring(), etc.) are
supported. Microsoft has announced intentions to support these functions in the near future.

XPath and the XML View
XPath works by translating the XPath into an equivalent FOR XML EXPLICIT query. During this
translation process, XPath makes use of the many annotations provided in the XML View.

XPath applies join relationships when navigating from one node to another. If the nodes are joined in
the schema, then the join relationship will be used in the SQL query. Predicates correspond to existence
tests (WHERE EXISTS).

Chapter 15

612

Nodes that have an id-prefix are converted to string, and then the prefix is prepended to the value. Note
that this prevents using those values as numbers in the XPath. For example,
/Product[@ProductID=11] is an error; the correct XPath uses the id prefix:
/Product[@ProductID='P11'].

In many cases, key information is required to correctly order and nest the resulting XML. If an XPath
query seems to be returning odd results, or returns a FOR XML EXPLICIT error, the problem may be
that the schema is missing sql:key-fields. Read the section about this annotation for instructions on
its use.

Finally, XPath queries must perform many data conversions. XPath translates first from the SQL type to
the XDR type, and then from the XDR type to the XPath type. This means that specifying XDR and
SQL types in the schema can help eliminate unnecessary conversions. When the query converts a
column used as an index (for example, /Customer[@CustomerID='ALFKI']), eliminating the
unnecessary conversion can result in a ten-fold performance improvement of the XPath query.

Default Schema
XPath works best with an XML View, but can work without any schema at all – with some restrictions.
These restrictions (names, flat hierarchy) are the same restrictions as on the default mapping used by an
XML View. (See the earlier section, "The Default Mapping," for details.)

In addition, an XPath with no XML View must select the value of a single column from a single row.
Because there is no schema to describe how the XML should be shaped, the XPath cannot return XML.

The default schema can be especially convenient for so called "direct object" queries that use an XPath-
like syntax to access objects in the database. For example, the XPath

/Customers[@CustomerID='ALFKI']/@ContactName

is exactly the same as the SQL query

SELECT ContactName FROM Customers WHERE CustomerID='ALFKI'

XPath Parameters
XPath parameters are prefixed with the dollar-sign symbol (for example, $param). SQL XML supports
only string-valued parameters, but this presents no great difficulties. Parameters can be shared among
other queries in a template. For example, the following template selects the Customer element with the
id parameter value that was passed to the template (which defaults to "ALFKI"):

<xpath-params xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<sql:header>

<sql:param name="id">ALFKI</sql:param>
</sql:header>
<sql:xpath-query mapping-schema="xpath.xdr">

/Customer[@CustomerID=$id]
</sql:xpath-query>

</xpath-params>

XML Views in SQL Server 2000

613

Additional XPath Axes
XPath is not limited to top-down navigation (from an element to its children and attributes). XPath has a
rich set of navigation axes, including namespaces, descendants, ancestors, and so on. However, at the
time of this writing, SQL XML supports only four axes: child, attribute, parent, and self. In
particular, the popular descendant-or-self shortcut "//" is not supported.

All four of these have abbreviated forms that are more commonly used. For the child and attribute
axes, we've seen that the abbreviations have the form child or @attribute, respectively. For
parent, the short form is two dots (..) and one dot (.) is the short form for self. Thus, the XPath

/Customer/Order[../@CustomerID='ALFKI']

is equivalent to the XPath

/Customer[@CustomerID='ALFKI']/Order

All of these also have longer forms that look like axisname::nodetest. So the previous XPath could
also be written

/child::Customer[attribute::CustomerID='ALFKI']/child::Order

In this case, the node test is just the name of the element or attribute. Other node tests include functions
like node() (selects all nodes) and text() (selects all text nodes) and the wildcard * (which is similar
to node(), but not exactly the same). At the time of this writing, SQL XML supports only names and
node().

The abbreviation .. is short for parent::node() and the abbreviation . is short for self::node().
So the XPath above that uses .. could also be rewritten as:

/child::Customer/child::Order[parent::node()/attribute::CustomerID='ALFKI']

Updategrams
At this time, there is no W3C standard for updating XML documents. Updategrams attempt to fill this
void by specifying a standard XML-based language for inserting, updating, and deleting XML data.

Updategrams are declarative. You describe what the XML currently is and what you want it to become,
and the updategram takes care of all the details necessary to make it so. Updategrams use the
namespace URI urn:schemas-microsoft-com:xml-updategram, which we will always assign to
the prefix u.

In SQL Server 2000, updategram queries are executed through templates. Each updategram uses an
XML View of the database to determine the SQL query that is required to perform the update.

NOTE: Updategrams require the latest SQL XML web release from MSDN, or SQL
Server 2000 SP1 or later. The examples in this section are not compatible with the
early beta version of updategrams that was released for SQL Server 2000 beta 2.

Chapter 15

614

Introduction
Every updategram consists of one <u:sync> element, corresponding to one database transaction. The
transaction is described by a sequence of <u:before> and <u:after> pairs. Every <before> must
have a matching <after>, and vice-versa; if one is missing, then it is equivalent to one with empty
content. The contents of the <before> element are compared with the contents of its matching
<after> element to determine whether an INSERT, UPDATE, or DELETE is required.

To avoid conflicts between multiple, concurrent queries, updategrams employ "optimistic concurrency
control". If the current state of the database does not match the XML described in the <before>
element, then the transaction will not be committed, and no change will be made. Depending on how
specific the <before> element is, the synchronization will effectively range from none at all ("update
always") to total synchronization ("update only if the row has not changed at all").

To demonstrate updategrams, let's create a table:

CREATE TABLE FictionalCharacters
(cid nvarchar(10) PRIMARY KEY, FirstName nvarchar(40), LastName nvarchar(40))

We now use the following schema, ch15_ex21.xdr, for mapping the table:

<Schema xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:dt="urn:schemas-microsoft-com:datatypes"
xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<ElementType name="First" content="textOnly" />
<ElementType name="Last" content="textOnly" />
<ElementType name="Person" sql:relation="FictionalCharacters"

sql:key-fields="cid">
<AttributeType name="ID" dt:type="id"/>
<attribute type="ID" sql:field="cid"/>
<element type="First" sql:field="FirstName"/>
<element type="Last" sql:field="LastName"/>

</ElementType>
</Schema>

This template (ch15_ex22.xml) demonstrates an insert into the FictionalCharacters table:

<insert>
<u:sync mapping-schema="ch15_ex21.xdr"

xmlns:u="urn:schemas-microsoft-com:xml-updategram">
<u:before/>
<u:after>

<Person ID="HGTTG42">
<First>Arthur</First>
<Last>Dent</Last>

</Person>
</u:after>

</u:sync>
<sql:xpath-query mapping-schema="ch15_ex21.xdr"

xmlns:sql="urn:schemas-microsoft-com:xml-sql">
Person
</sql:xpath-query>

</insert>

XML Views in SQL Server 2000

615

The result of executing this template, if the updategram succeeds, will be

<insert>
<Person ID="HGTTG42">

<First>Arthur</First>
<Last>Dent</Last>

</Person>
</insert>

or

<insert>
<?MSSQLError Some Error Message Here ?>

</insert>

if it fails. When successful, the updategram inserts a new row in the FictionalCharacters table with
the cid, FirstName, and LastName column values from the XML. Had there been other columns in
that row, they would have been set to NULL since their values were not specified.

We can now update this row, using this updategram (ch15_ex22a.xml):

<update>
<u:sync mapping-schema="ch15_ex21.xdr"

xmlns:u="urn:schemas-microsoft-com:xml-updategram">
<u:before>

<Person ID="HGTTG42">
<First>Arthur</First>

</Person>
</u:before>
<u:after>

<Person ID="HGTTG42"/>
</u:after>

</u:sync>
<sql:xpath-query mapping-schema="ch15_ex21.xdr"

xmlns:sql="urn:schemas-microsoft-com:xml-sql">
Person
</sql:xpath-query>

</update>

The result of this template (when successful) will be:

<update>
<Person ID="HGTTG42">

<Last>Dent</Last>
</Person>

</update>

because the FirstName value specified in the <before> element is removed (that is, set to NULL) in
the <after> element.

In the first template, the <before> element was empty, so the updategram became an INSERT. In
the second, the contents of the <before> and <after> elements were matched and the updategram
became an UPDATE. However, had the elements matched differently, it could have been a DELETE
and an INSERT instead. Before we examine the heuristics used to determine what kind of query an
updategram represents, let us first consider how an updategram handles the values given it,
especially NULL.

Chapter 15

616

Values, Absence and NULL
Up until now, we've said that absence of XML data is equivalent to a SQL NULL value, and vice-versa.
Unfortunately, this equivalence presents a problem for an updategram, because optimistic concurrency
control applies only to the values in the before element. If the value was NULL, it would be absent, and
thus would not figure into the equation (even though we might not want to perform the update or delete
if the value has changed away from NULL). Therefore, updategrams need a way to explicitly differentiate
NULL values from absent ones.

Updategrams allow the user to specify a string value that will be used in the XML in place of a SQL
NULL. Whenever an XML value is equal to this string, the string is replaced with NULL in the equivalent
SQL query. The string is specified with the attribute u:nullvalue on the <u:sync> element or
<u:header> element.

A popular value to use for u:nullvalue is the string NULL itself. After having executed the previous
templates, let's perform another one that restores the first name of our fictional character
(ch15_ex23.xml):

<restore>
<u:sync mapping-schema="ch15_ex21.xdr"

xmlns:u="urn:schemas-microsoft-com:xml-updategram"
u:nullvalue="NULL" >

<u:before>
<Person ID="HGTTG42">

<First>NULL</First>
</Person>

</u:before>
<u:after>

<Person ID="HGTTG42">
<First>Arthur</First>

</Person>
</u:after>

</u:sync>
</restore>

This updategram will commit only if the FirstName is still NULL.

Note that when evaluating the value of an element, updategrams don't use the usual definition of string
value. In XPath syntax, string(element) usually takes all the text node descendants of the element
and concatenates them together in document order, which is equivalent to the XPath
string(element//text()). Updategrams use only the text nodes that are immediate children of the
element, equivalent to the XPath string(element/text()). When the string value of the element
matches the u:nullvalue, NULL is substituted in its place.

Also, updategrams are aware of XDR default. That is, when an element or attribute value is absent,
updategrams use the default value (if given) in the annotated XDR schema. The default is indicated in
the schema on an <AttributeType> or <ElementType> using the default attribute. When there is
no default value, no value is used for the absent element or attribute.

XML Views in SQL Server 2000

617

Insert/Update/Delete Heuristics
Now that you understand how an updategram extracts the XML values out of the before and after
elements and how it handles absence and default values, the only remaining piece of the puzzle is
determining which values in the after element correspond to which values in the before element.
Once this matching has been performed, the updategram knows which rows to update, which to delete,
and which to insert, and can create the corresponding SQL query to perform that work.

An updategram matches elements based on an element key. This key can be specified in the annotated
schema using sql:key-fields, or it can be specified in the updategram using the u:id annotation. If
the u:id method is chosen, then it must be used everywhere in the updategram.

As an example, consider the following updategram (ch15_ex24.xml):

<keys>
<u:sync xmlns:u="urn:schemas-microsoft-com:xml-updategram"

mapping-schema="ch15_ex21.xdr">
<u:before>

<Person ID="HGTTG42">
<First>Arthur</First>
<Last>Dent</Last>

</Person>
</u:before>
<u:after>

<Person ID="HGTTG42">
<First>Ford</First>
<Last>Prefect</Last>

</Person>
<Person ID="HGTTG54">

<First>Arthur</First>
<Last>Dent</Last>

</Person>
</u:after>

</u:sync>
</keys>

Because EmployeeID is known from the schema to be a key, and it uniquely identifies the Employee
elements, this updategram will match the two Person elements with ID HGTTG42, and find no match
for Person HGTTG54 in the <before> image. There are no default or nullvalue attributes to
apply. Therefore, the updategram will perform one UPDATE for HGTTG42, and one INSERT for
HGTTG54.

As a second example, consider the updategram (ch15_ex25.xml)

<u:sync xmlns:u="urn:schemas-microsoft-com:xml-updategram"
mapping-schema="ch15_ex21.xdr">
<u:before>

<Person u:id="forty-two" ID="HGTTG42"/>
<Person u:id="fifty-four" ID="HGTTG54"/>

</u:before>
<u:after>

<Person u:id="fifty-four" ID="54"/>
<Person u:id="forty-two" ID="42"/>

</u:after>
</u:sync>

Chapter 15

618

This updategram needs to change the value of the key itself. The only way to do this is to identify the
elements using u:id. The values used for u:id are arbitrary; they are used only for matching elements
in the updategram, and will not be inserted into the database: as a result, this updategram will not work.
Of course, u:id is not limited to key changes; it can be used any time.

Parameters
Updategrams use parameters exactly like XPath does, and with a similar syntax. Anywhere an
updategram contains the dollar-sign ($) followed by the name of a parameter, the parameter value will
be substituted.

As an example, consider the updategram (ch15_ex26.xml)

<parameterized-insert xmlns:u="urn:schemas-microsoft-com:xml-updategram">
<u:header u:nullvalue="NULL">

<u:param name="first">Bob</u:param>
<u:param name="last">Doe</u:param>
<u:param name="id"/>

</u:header>
<u:sync mapping-schema="ch15_ex21.xdr" u:nullvalue="NULL">

<u:before/>
<u:after>

<Person ID="$id">
<First>$first</First>
<Last>$last</Last>

</Person>
</u:after>

</u:sync>
</parameterized-insert>

This updategram will insert a new fictional character using the parameters passed in to the template, or
the default values "Bob" and "Doe", if the parameters are not passed to the template (since these are the
default parameter values given in the template header).

Default Schema
We previously described the subset of XPath that can be executed without a schema. Updategrams can
also use a default mapping, with some restrictions. These restrictions (names, flat hierarchy) are similar
to the default mapping used by an XML View (See the earlier section, "The Default Mapping," for details).

In addition, updategrams cannot work with any of the SQL types binary, image, ntext, text, or
varbinary in the <before> element and binary, image, or varbinary in the <after> element.
Values that map to monetary SQL types (money and smallmoney) must be preceded with a currency
symbol such as $; conversely, values preceded with a currency symbol cannot be inserted, updated, or
deleted from any string type column in the database (char, nvarchar, etc.).

XML Views in SQL Server 2000

619

Server-Generated Identities
Automatically-generated column values (such as identity columns) can be indicated in an updategram
using the u:at-identity attribute. For example:

<auto-identity>
<u:sync xmlns:u="urn:schemas-microsoft-com:xml-updategram">

<u:after>
<Employees u:at-identity="x" FirstName="Jack" LastName="Ryan"/>

</u:after>
</u:sync>

</auto-identity>

will insert a new record into the Employees table, which has an auto-identity column (EmployeeID).
The symbol used to represent the identity (in this example, x) can be referred to in sub-elements;
wherever the symbol occurs as a value, it will be replaced with the identity that was generated from the
insert.

Also, the generated value can be returned as part of the template result by using the u:returnid
attribute on the u:after element. For example, the template

<return>
<u:sync xmlns:u="urn:schemas-microsoft-com:xml-updategram">

<u:after u:returnid>
<Employees u:at-identity="x" FirstName="Jack" LastName="Ryan"/>

</u:after>
</u:sync>

</return>

produces a result like:

<return>
<returnid>

<x>10</x>
</returnid>

</return>

Multiple auto-generated columns can be returned by specifying them as a space-separated list in the
u:returnid value.

Unfortunately, auto-generated values are not integrated with parameters, so it is not possible to refer to
them in other queries in the same template. However, one could use u:returnid to pass the values
created in one updategram to another template.

Data Types
All values that map to any of the SQL types binary, image, ntext, text, or varbinary must be
marked in the schema as having that sql:datatype. Otherwise, the updategram will not be able to
generate a valid SQL query. Similarly, both monetary types (money, smallmoney) must be marked as
having one of the XDR numeric types to be properly used, even though you could still have an attribute
type unitprice, without either datatype.

The XDR binary types bin.hex and bin.base64 are used when decoding binary values. Binary
values cannot be referred to using a dbobject URL (as generated by sql:url-encode).

If an attribute or element has a sql:id-prefix in the schema, then that prefix will be stripped out of
the value in the updategram.

Chapter 15

620

Overflow
When an element is marked as having an sql:overflow-field in the schema, any data in the
u:after element that is not otherwise consumed will be placed into the overflow column. (The
overflow column must be one of the SQL string types, and should have enough space to store the
value.) This includes elements or attributes that were marked as sql:map-field="0" but appeared in
the updategram.

Advanced Topics

Namespaces and External Schemas
Most uses of XML require namespaces, whether some externally defined namespace or your own
custom one. There are two central concepts required when using namespaces in XML Views:
namespace declarations and the sql:target-namespace annotation.

Recall that namespace declarations come in two forms, xmlns="uri" and xmlns:prefix="uri", and
are inherited of the descendants of the element where they were declared. Namespace URIs are
commonly overloaded for many different purposes – versioning (like the XSL namespaces) and actual
URLs (that you can visit on the Web) are just two examples. For XML Views, there are three kinds of
namespace URIs worth mentioning.

First, there are the four special namespace URIs corresponding to XDR and SQL XML (all of which
begin with urn:schemas-microsoft-com:, followed by one of xml-data, datatypes, xml-sql,
or xml-updategram) that identify schema contents or annotations, respectively. Second, there are
external schema references, which we will explain next. And finally, everything else – which are treated
as ordinary namespace names.

External schema references are distinguished from ordinary namespace URIs by beginning with the
string x-schema:. Every such namespace URI is treated as a reference to a schema at the file location
listed after the colon. The external schema will be loaded, and all its ElementType and
AttributeType declarations made available to the schema that imported it (and in fact, all of the
schemas currently being processed).

The following two schemas demonstrate the concept:

<!-- ch15_ex27.xdr -->

<Schema xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<ElementType name="Customer" sql:relation="Customers">

<element type="x:Order" xmlns:x="x-schema:ch15_ex28.xdr">
<sql:relationship key-relation="Customers" key="CustomerID"

foreign-relation="Orders" foreign-key="CustomerID" />
</element>

</ElementType>
</Schema>

XML Views in SQL Server 2000

621

<!-- ch15_ex28.xdr -->
<Schema xmlns="urn:schemas-microsoft-com:xml-data"

xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<ElementType name="Order" sql:relation="Orders">

<AttributeType name="CustomerID" />
<AttributeType name="OrderID" />
<attribute type="CustomerID" />

</ElementType>
</Schema>

Together, these schemas produce XML shaped like this:

<Customer>
<Order CustomerID="ALFKI" OrderID=""/>
<Order CustomerID="ALFKI" OrderID=""/>
<Order CustomerID="ALFKI" OrderID=""/>

</Customer>
<Customer>

<Order CustomerID="ANATR" OrderID=""/>
<Order CustomerID="ANATR" OrderID=""/>

</Customer>
<!-- ... -->

exactly as if there had been only one schema.

The second part of using namespaces in XML Views is the sql:target-namespace annotation. The
sql:target-namespace annotation is used on the Schema element, and declares that all the top-level
declarations in the schema will go into that namespace URI. This annotation can be used on a schema
by itself; but it is most commonly used in conjunction with external schemas, creating a web of schemas,
one for each namespace URI.

If we modify the second schema above to use a target namespace:

<!-- ch15_ex28a.xdr -->
<Schema xmlns="urn:schemas-microsoft-com:xml-data"

xmlns:sql="urn:schemas-microsoft-com:xml-sql"
sql:target-namespace="your namepsace" >
<ElementType name="Order" sql:relation="Orders">

<AttributeType name="CustomerID" />
<AttributeType name="OrderID" />
<attribute type="CustomerID" />

</ElementType>
</Schema>

then the resulting XML when you run the first schema (making sure of course, that you change the
second schema reference to ch15_ex28a.xdr) will look like this:

<Customer>
<y:Order xmlns:y="your namespace" CustomerID="ALFKI" OrderID=""/>
<y:Order xmlns:y="your namespace" CustomerID="ALFKI" OrderID=""/>
<y:Order xmlns:y="your namespace" CustomerID="ALFKI" OrderID=""/>

</Customer>
<Customer>

<y:Order xmlns:y="your namespace" CustomerID="ANATR" OrderID=""/>
<y:Order xmlns:y="your namespace" CustomerID="ANATR" OrderID=""/>

</Customer>
<!-- ... -->

Chapter 15

622

Note that the prefix used in the schema is not necessarily preserved in the XML result. Also note that,
although the Order element is placed into a namespace, none of its attributes are. This is consistent
with the normal interaction between attributes and namespace declarations. If you require an attribute
to be placed in the target namespace, declare it at the top-level of the schema.

We should note that the use of namespaces in XPath is currently limited to templates. XPath uses
namespace prefixes, so it requires those prefixes to be bound to namespace URIs. Currently SQL Server
does not provide a way to perform this binding in a URL, so the binding must occur in XML (using
ordinary namespace declarations).

Structural Recursion
Unfortunately, XML Views currently do not directly support recursion. The reason is that creating
recursive hierarchies using FOR XML EXPLICIT (which XPath uses) requires advance knowledge of the
depth of the hierarchy to construct the query. This problem is demonstrated by the SQL query
(ch15_ex30.sql)

SELECT 1 as TAG, 0 as parent,
E1.EmployeeID as [Employee!1!id],
NULL as [Employee!2!id],
NULL as [Employee!3!id]

FROM Employees E1
WHERE E1.ReportsTo = NULL
UNION ALL
SELECT 2, 1,

E1.EmployeeID,
E2.EmployeeID,
NULL

FROM Employees E1 JOIN Employees E2 ON E1.EmployeeID = E2.ReportsTo
WHERE E1.ReportsTo = NULL
UNION ALL
SELECT 3, 2,

E1.EmployeeID,
E2.EmployeeID,
E3.EmployeeID

FROM Employees E1 JOIN Employees E2 ON E1.EmployeeID = E2.ReportsTo
JOIN Employees E3 ON E2.EmployeeID = E3.ReportsTo

WHERE E1.ReportsTo = NULL
ORDER BY 3, 4, 5

FOR XML EXPLICIT

This limitation of XML Views prevents the use of recursive schemas like:

<Schema xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<ElementType name="Employees">
<element type="Employees" >

<sql:relationship key-relation="Employees" key="EmployeeID"
foreign-relation="Employees" foreign-key="ReportsTo" />

</element>
</ElementType>

</Schema>

XML Views in SQL Server 2000

623

because the EXPLICIT query needed is data-dependent. Until XML Views provides explicit support for
recursion, an alternative method is required.

The natural first attempt, an almost-recursive schema like the one below, also does not work. Let's look
at this to see why:

<!-- This schema will not work! -->
<Schema xmlns="urn:schemas-microsoft-com:xml-data"

xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<ElementType name="Employees"/>
<ElementType name="Manager" sql:relation="Employees">

<element type="Employees">
<sql:relationship key-relation="Employees" key="EmployeeID"
foreign-relation="Employees" foreign-key="ReportsTo" />

</element>
</ElementType>

</Schema>

The problem with this schema is that the join relationship from the table to itself, a so-called self-join, is
also not supported by XML Views at the time of this writing.

However, all is not lost! Using a little imagination, it is possible to create recursive hierarchies. One
solution is to alias the table using a SQL view, then use that view in the annotated schema. The
following example demonstrates this technique using the Employees table in the Northwind database.

First, prepare a SQL view that mirrors the Employees table:

CREATE VIEW Managers AS SELECT * FROM Employees

Then, use the SQL view in the schema (ch15_ex31.xdr):

<Schema xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<ElementType name="Employees"/>
<ElementType name="Managers">

<element type="Employees">
<sql:relationship key-relation="Managers" key="EmployeeID"

foreign-relation="Employees" foreign-key="ReportsTo" />
</element>

</ElementType>
</Schema>

When true structural recursion is required (in which the element names are equal), the only solution
using XML Views at the time of this writing is to post-process the XML. In fact, post-processing to
obtain recursive XML avoids the overhead of the SQL unions and joins, possibly performing better than
the recursive EXPLICIT query would have performed. Certainly this solution will scale up better, as it
off-loads some processing from the database to the middle tier. We provide a complete example of this
technique using XSL in the SQL Server case study.

Chapter 15

624

Summary
XML Views permit a flexible, efficient XML representation of relational data. An XML View can select
data from disparate tables and join them together into one XML document. Using XPath, you can select
an entire XML View or the portions of it. You can also use XPath to refer directly to items (such as
images) in the database. Updategrams allow the modification of the underlying relational store through
the XML View by inserting, deleting, or updating XML fragments.

Updategrams, XPaths, and ordinary SQL queries can be executed from XML templates, and the results
from these queries substituted into the XML template. Combined with other standard XML processing
techniques (such as XSL), these query languages provide a powerful way to transport and present XML
data on the Web.

XML Views in SQL Server 2000

625

Chapter 15

626

JDBC

If you are an enterprise Java developer who specializes in writing database applications using the JDBC
API, you have probably had to confront the thorny issue of extending your applications to today's
pervasive computing environment. Nowadays, people expect to be able to access mission-critical data
anytime, anywhere, and from any device, regardless of what data access API is being used to
manipulate the underlying data source. The challenge of the enterprise Java developer is to create JDBC
applications that allow platform-neutral, device-independent access to data. By XML-enabling your
JDBC applications, you can accomplish this. Here is the good news; it's easier than you might think.

How XML Enhances JDBC (and vice versa)
When you combine XML with J2EE (Java 2, Enterprise Edition) technologies and standard Internet
protocols (such as HTTP), you can write enterprise applications that provide universal data access to
JDBC data sources with a minimal amount of coding. With XML, XSLT, and JDBC, you can design
scalable and extensible architectures that facilitate device-independent data delivery in J2EE
applications. This allows end users to access your data using web browsers, WAP devices, PDAs, or any
other current or future device that renders content using an XML-based markup language.

Moreover, combining XML and JDBC facilitates the creation of web services using J2EE. Web services
are HTTP applications that provide an application programming interface rather than a user interface. With
web services, your trading partners can integrate your business processes and data with their
applications, regardless of which hardware platform and operating system they are built on, or
programming language that they are written in.

Chapter 16

628

This chapter will give you some practical, hand-on examples of how to integrate XML with JDBC in
your J2EE applications in a manner that facilitates device-and-platform independent universal data
access in today's pervasive computing environment. Specifically, it will cover two scenarios:

❑ Generating XML from a JDBC data source: We will walk through the construction of a simple
XML gateway architecture for JDBC. This architecture contains software components that
allow you to execute SQL statements against arbitrary JDBC data sources, returning the result
sets as well-formed XML data structures that can then be consumed by any application with
XML parsing capabilities. Next, we will show you how to add server-side XSLT processing
capabilities to this architecture to illustrate how easy it is to transform the XML-serialized
JDBC result set, to a mark-up language that targets a particular device, such as a web browser.

❑ Using XML to update a JDBC data source: In this scenario, we will show you how to use
WebRowSets, an emerging Java technology, to create distributed JDBC applications that use
XML to marshal disconnected Result sets between remote machines. Please note that, as of
this writing, the WebRowSet binaries are still in "early access" status, and could change
slightly before becoming part of the core API.

Software Needed for This Chapter
Before getting started, you should make sure that you install and configure the core software needed to
work through the examples provided in the chapter. This software includes JDK 1.3, the Xalan XSLT
processor for Java, Tomcat 3.1, and a relational database system with a JDBC driver. For the most part,
the code samples in this chapter will compile and run on virtually any system for which a reasonable
implementation of the Java virtual machine has been ported. Since we developed and tested these
samples on Windows NT 4.0, most of the examples in this chapter are NT-centric.

JDK 1.3
The first piece of software needed is JDK 1.3. You can download this free of charge from
http://java.sun.com. When you download it, ensure that you select the correct installer for the operating
system you are using. If you are using NT, for example, you will download and run the InstallShield
self-extracting setup program. I also recommend that you download the JDK documentation, which is
available as a separate download. While you can browse this documentation on Sun's Java web site, you
will find it infinitely more convenient to have it available on your local file system.

One point of clarification: while we recommend JDK 1.3, we have also tested the code in this chapter
on JDK 1.2.2. This is important because JDK 1.3 has not been ported to as many platforms as the
ubiquitous JDK 1.2.2. One word of caution: if you do decide to use JDK 1.2.2, make sure you download
the JNDI (Java Naming and Directory Interface) reference implementation. The WebRowSet examples
covered later require JNDI. While JDK 1.3 includes JNDI, JDK 1.2.2 does not, and you must add this as
a separate download. We will discuss this in more detail later in the chapter.

Xalan XSLT Processor for Java
The next piece of software we will use is Xalan for Java version 1.2. Xalan is an open-source XSLT
processor that is maintained by the Apache Group. You can download it from http://xml.apache.org.
After downloading and unpacking the xalan-j_1_2_D02.zip archive, locate the xalan.jar and
xerces.jar (the Xerces XML parser) archives and copy them to the \jdk1.3\lib directory.

JDBC

629

If you don't want to use Xalan, or you would like to try another XSLT processor, there are several
quality XSLT processors implemented in Java. Examples include:

❑ IBM LotusXSL (http://alphaworks.ibm.com/tech/LotusXSL)

❑ James Clark's XT package (http://www.jclark.com/xml/xt.html)

Software Needed to Implement Rowsets
To run the sample distributed JDBC application, you'll need to download the Java packages used to
implement the WebRowSet framework. This framework provides a transparent mechanism for
serializing the data, metadata, and properties of a JDBC result set to XML for transportation and
manipulation by a remote application across the network. We will cover this framework in more detail
later. The packages needed to use the WebRowSet framework include the sun.jdbc.rowset and
javax.sql packages, and the JNDI reference implementation. We'll cover the framework in more
detail later; for now, just follow the instructions below to download and install the software.

The sun.jdbc.rowset Package

To download this package, point your browser at:
http://developer.java.sun.com/developer/earlyAccess/crs/. This is "early access" technology, so you
must create a free account with the Sun Java Developer Connection if you haven't already done so. The
samples in this chapter have been tested with the "early access 4" release. Once you have downloaded
the rowset-1_0-ea4.zip archive, locate the rowset.jar file and place it in the C:\jdk1.3\lib
directory.

The WebRowSet implementation contained in this package is an experimental,
unsupported technology. Therefore, it may change before it becomes an official part of
the Java platform. Please do not use this technology in a production application until
it is released as a final, stable product.

The javax.sql Package

The JDBC 2.0 API includes two packages: java.sql, which contains the JDBC 2.0 core API, and
javax.sql, which contains the JDBC 2.0 standard extension API. The java.sql package is included
with the JDK, so it should already be on your system. Since the WebRowSet class uses the JDBC 2.0
standard extension API, we'll need the javax.sql package, which is provided as a separate download.
To download this package, point your browser at http://java.sun.com/products/jdbc/download.html,
and select the JDBC 2.0 Optional Package Binary. Download the jdbc2_0-stdext.jar archive, and
place it in the C:\jdk1.3\lib directory.

The JNDI Reference Implementation

The WebRowSet class uses JNDI (Java Naming and Directory Interface). If you installed JDK version
1.3, you can skip this step. JDK 1.3 ships with JNDI. If you are using JDK 1.2.2, you must download the
JNDI reference implementation from Sun's web site. To do so, point your browser at
http://java.sun.com/products/jndi/index.html. Download the jndi1_2_1.zip archive and unpack it;
locate the jndi.jar file, and place it in your CLASSPATH.

Chapter 16

630

Tomcat 3.1
Since all of the sample applications covered in this chapter are implemented at least in part using the
Java servlet API, you will need to install and configure a servlet container on your system. The
examples provided should work in any servlet container that supports the Java servlet API version 2.2
or higher. We recommend Tomcat 3.1, the open-source servlet and JSP reference implementation
developed by the Apache Software Foundation. This is a lightweight, high performance servlet
container that is easy-to-use, implements the standard religiously (it is, after all, the reference
implementation), and includes a lightweight HTTP listener that eliminates the need to install a separate
web server. To qualify this comment, the HTTP listener is useful for unit-testing applications. In a
production environment, you should use a commercial-quality web server with the appropriate
connector. Tomcat provides connectors for Apache, IIS, and Netscape/iPlanet Enterprise Server. Since
it is implemented in Java, Tomcat will run on a variety of different platforms. Here are the installation
steps for Windows NT 4.0:

❑ Download jakarta-tomcat.zip from http://jakarta.apache.org.

❑ Install it by unpacking the zip archive into a directory on your hard drive.

❑ Modify the jakarta-tomcat\bin\tomcat.bat file to point the JAVA_HOME variable to the
directory in which you installed JDK 1.3. This variable assignment does not exist in the batch
file, so you will need to add it. For example, if you installed the JDK on the C drive, add this
variable assignment to the file: set JAVA_HOME=C:\jdk1.3

❑ You also want to change the jakarta-tomcat\bin\tomcat.bat file to add the rowset,
JDBC standard extensions, Xerces, and Xalan code base to Tomcat's CLASSPATH. To do so,
insert the following code on or about line 35 of tomcat.bat (this assumes that you put the
JAR files, as recommended, in the jdk1.3\lib directory):

rem This is an existing line in the batch file. Look for it to find
rem the right spot to add your additional JARs to the CLASSPATH:

set CLASSPATH=%CLASSPATH%;%JAVA_HOME%\lib\tools.jar

rem Start adding your additional jars here:

set CLASSPATH=%CLASSPATH%;%JAVA_HOME%\lib\rowset.jar
set CLASSPATH=%CLASSPATH%;%JAVA_HOME%\lib\jdbc2_0-stdext.jar
set CLASSPATH=%CLASSPATH%;%JAVA_HOME%\lib\xerces.jar
set CLASSPATH=%CLASSPATH%;%JAVA_HOME%\lib\xalan.jar

❑ Run the jakarta-tomcat\bin\startup.bat to start Tomcat.

❑ Point your browser to http://127.0.0.1:8080. By default, Tomcat's HTTP server listens on port
8080 to preclude any conflict with a web server that might already be installed on your system
and listening on port 80. Of course, you can change the port assignment, if desired, by editing
the server.xml configuration file (see the Tomcat documentation for more details). When
you hit this URL, you will see the Tomcat home page.

If you are using a UNIX variant, the installation and configuration steps are similar, with a few key
differences. Instead of downloading the ZIP archive, you want to download and unpack the tar
archive. In addition, you will need to modify the tomcat.sh UNIX shell script instead of the
tomcat.bat batch file. Refer to the Tomcat documentation for additional information.

JDBC

631

At the end of the chapter, we will cover all of the steps required to package our sample applications for
deployment to Tomcat or any other J2EE-compliant servlet container. In the meantime, you might want
to download the web application archive provided with the sample code for this chapter from our web
site; details on how to get all of the code for this book is supplied in the support and errata appendix.
This will allow you to test the examples while you are going through the chapter. To do so, follow
these steps:

❑ If Tomcat is already running, stop it using the shutdown.bat batch file located in the
\jakarta-tomcat\bin directory.

❑ Locate the Chapter26\jdbcxml.war web application archive, and place it in the
\jakarta-tomcat\webapps directory.

❑ Start Tomcat by running the startup.bat (or startup.sh for UNIX users) script in the
\jakarta-tomcat\bin directory.

❑ Point your browser at http://127.0.0.1:8080/jdbcxml/index.html. This file is located in the
jdbcxml.war archive's file system root. Tomcat will automatically unpack the archive at the
first access. You should now see this page:

In addition to the HTML and the compiled binaries, this archive also includes all of the source code
discussed in this chapter.

A JDBC Data Source and Driver (Oracle, SQL Server, etc.)
Finally, you will need to have access to a database with a JDBC driver. The examples are written
generically enough to work with a variety of different relational database products. Most database
products on the market today include a JDBC driver. The three that we will use in this chapter are
Oracle 8i via the Oracle thin JDBC driver, and Microsoft SQL Server 7.0 and Microsoft Access 97, both
via the JDBC-ODBC Bridge.

Chapter 16

632

The Oracle JDBC driver is typically packaged in a file called classes111.zip. This file comes with
any Oracle installation, so your Oracle database administrator will be able to provide it for you. You
can also download it from http://www.oracle.com. The JDBC-ODBC Bridge ships with the JDK.

To preclude any problems from occurring, you want to ensure that the JDBC driver you will use is
added to the CLASSPATH. If you are using the JDBC-ODBC Bridge, this was taken care of when you
installed the JDK, so you don't need to worry about it. If your database does not have a JDBC driver
(or you are unsure), you can simply use the JDBC-ODBC Bridge (assuming that the database product
provides an ODBC driver, as most do). Please consult your specific database product's documentation
for more information.

Generating XML from JDBC
As we touched on earlier, XML and JDBC complement each other very well. Using these two
technologies, you can create "universal data access" applications that can run on a variety of different
J2EE-compliant application servers and access a variety of different data sources. It gives you the best of
all worlds. The use of XML allows you to make your data and metadata available to virtually any
application, regardless of how it was written or the type of platform on which it runs. The use of Java
and the J2EE APIs gives the application developer platform and vendor freedom of choice; a variety of
different vendors have created J2EE-compliant application servers that run on a variety of different
hardware and OS combinations. A short list includes ATG, BEA Systems, IBM, and the iPlanet Sun-
Netscape Alliance. The use of JDBC as the data access API allows you to leverage decades worth of
relational data technology and thought leadership.

The challenge, then, is to create an architecture that allows you to extract data from a JDBC data
source, serialize it to XML, and send it to the requesting client, using XSLT as appropriate to create
output that targets a particular device. For extensibility purposes, this architecture should be designed in
a manner that abstracts the process of accessing the data source via JDBC and serializing the Result set
as XML, thereby shielding the application developer from these details, and promoting code reuse. To
illustrate this, we will create a simple XML gateway architecture for JDBC.

Our Simple XML Gateway Architecture for JDBC
The heart of our XML gateway architecture for JDBC is the JDBC2XML class. This class controls access
to the JDBC data source. Briefly, it executes a SQL statement against the specified JDBC data source,
serializes the returned JDBC result set as XML, and returns this XML document to the calling client. In
our architecture, the JDBC2XML class will be reused by two Java servlets: the XMLDataGateway servlet
and the JDBC2HTML servlet. The XMLDataGateway servlet provides a generic XML-over-HTTP
interface to JDBC data sources for XML-enabled applications. The JDBC2HTML servlet returns JDBC
result sets as HTML to web browsers using the specified XSL stylesheet. This servlet essentially acts as a
filter; when an HTTP user agent submits an HTTP GET or POST request to an XSL stylesheet, the
request is delegated to the JDBC2HTML servlet for handling. The following figure shows this
architecture:

JDBC

633

A Simple XML Gateway Architecture for JDBC

XML-enabled
Application

XMLDataGateway
Servlet

Web
browser

HTTP GET
or POST

HTTP GET
or POST

XML
over
HTTP

HTML
over
HTTP

XSL
Stylesheet

Delegated to
JDBC2HTML

Servlet

JDBC2XML
Class

XSLT

In-process
call

In-process
call

XML
serialized
resultset

XML
serialized
resultset

JDBC

JDBC Data
Source

This section will walk you through creating and using this architecture. Specifically, it will show you
how to do the following:

❑ Develop the JDBC2XML class

❑ Develop the XMLDataGateway servlet

❑ Query a JDBC data source using the XMLDataGateway servlet

❑ Develop the JDBC2HTML servlet

❑ Write an XSL stylesheet that defines HTML presentation logic for our <resultset/> XML
schema

❑ Query a JDBC data source using the JDBC2HTML servlet

Chapter 16

634

The JDBC2XML Class
The class encapsulates the functionality required to query a JDBC data source and return the results of
that query as a well-formed XML document. Essentially, it executes a SQL statement against the
specified JDBC data source, serializes the returned JDBC result set as XML, and returns this XML
document to the calling client as a string. Create the JDBC2XML.java file and enter the following code:

package com.jresources.jdbc;

import java.sql.*;
import java.util.*;

public class JDBC2XML
{

public JDBC2XML()
{

super();
}

To accomplish this, the JDBC2XML class implements several different methods. These methods include:

❑ Methods that apply XML encoding rules, including the encodeXML() method

❑ A method that serializes a JDBC result set to XML, the writeXML() method

❑ The method that brings everything together by executing the search and returning the results
as XML (the execute() method)

This section will show you how to implement each method.

Applying XML Encoding Rules to the Result Set Data
The encodeXML() method is a generic method that allows you to apply XML encoding rules to certain
special characters. A well-formed XML document with element or attribute values containing these
special characters must be specially encoded to escape them out. Otherwise, an XML parser will not be
able to process the document. This table shows those characters and their encoded values:

Character Encoded value

& &

< <

> >

' '

" "

The encodeXML() method simply does a search-and-replace operation on the passed-in string,
replacing instances of the special characters with their encoded equivalent. This method will be used by
the writeXML() method to ensure that any data retrieved from the database is encoded properly
before being serialized to XML:

JDBC

635

String encodeXML(String sData)
{

String[] before = {"&","<",">","\"", "\'"};
String[] after = {"&","<",">",""", "'"};
if(sData!=null)
{

for(int i=0;i<before.length;i++)
{

sData = Replace(sData, before[i], after[i]);
}

}
else {sData="";}
return sData;

}

This code fragment shows the Replace() method used by the encodeXML() method. As its name
implies, the Replace() method simply loops through the string represented by the variable content,
replacing all occurrences of oldWord with newWord:

String Replace(String content, String oldWord, String newWord)
{

int position = content.indexOf(oldWord);
while (position > -1)
{

content = content.substring(0,position) + newWord +
content.substring(position + oldWord.length());
position = content.indexOf(oldWord,position+newWord.length());

}
return content;

}

Serializing the Result Set's Metadata and Data as XML
The next step is to add code to our JDBC2XML class that serializes a JDBC result set to XML. To
accomplish this, we need to do two things: design an XML data structure that encapsulates the data and
metadata of a result set, and implement the writeXML() method that performs the actual serialization.

Designing the <resultset> XML Structure

The first step is to define an XML data structure that will represent the serialized state of our JDBC
result set. For simplicity, we will create a DTD-less document that can be parsed by non-validating
XML parsers. The root element is the <resultset> element. This element contains two sub-elements:
a <metadata> element, and a <records> element.

The <metadata> element contains a <field> element for each database field. This element contains
two attributes: a name attribute, and a datatype attribute. The <records> element contains a
<record> element for each row in the result set. The <record> element also contains a <field>
element for each column. This code fragment shows the structure of our <resultset> XML
document:

<?xml version="1.0" encoding="ISO-8859-1"?>
<resultset>

<metadata>
<field name="field name goes here" datatype="field's datatype goes here"/>

</metadata>

Chapter 16

636

<records>
<record>

<field name="field name goes here">
field's value goes here

</field>
</record>

</records>
</resultset>

Implementing the writeXML() Method

The writeXML() method serializes the specified JDBC result set as an XML document that conforms
to the structure defined above. The first action it performs is to create a StringBuffer that contains
the <?xml?> processing instruction and the <resultset> root element. We will use this
StringBuffer object to hold our output. Next, it enumerates through the result set's metadata,
creating a <field> element for each column. Finally, it enumerates through each record of the result
set, creating a <record> element that contains a <field> element for each column. Field values are
pre-processed with the encodeXML() method defined above to ensure compliance with XML encoding
rules. Once we have looped through the entire result set, we terminate the <resultset> element, and
return the XML document:

String writeXML(ResultSet rs)
{

StringBuffer strResults = new StringBuffer
("<?xml version=\"1.0\" encoding=\"ISO-8859-1\"?>\r\n<resultset>\r\n");

try
{

ResultSetMetaData rsMetadata = rs.getMetaData();
int intFields = rsMetadata.getColumnCount();
strResults.append("<metadata>\r\n");
for(int h =1; h <= intFields; h++)
{

strResults.append("<field name=\"" + rsMetadata.getColumnName(h) +
"\" datatype=\"" + rsMetadata.getColumnTypeName(h) + "\"/>\r\n");

}
strResults.append("</metadata>\r\n<records>\r\n");
while(rs.next())
{

strResults.append("<record>\r\n");
for(int i =1; i <= intFields; i++)
{

strResults.append("<field name=\"" + rsMetadata.getColumnName(i)
+ "\">" + encodeXML(rs.getString(i)) + "</field>\r\n");

}
strResults.append("</record>\r\n");

}
}catch(Exception e) {}
strResults.append("</records>\r\n</resultset>");
return strResults.toString();

}
}

JDBC

637

Executing the Query
The execute() method brings it all together by executing a query against a JDBC data source and
returning the results as an XML document. It takes five input parameters:

❑ The JDBC driver

❑ The JDBC URL

❑ The user ID

❑ The password

❑ The SQL statement

public String execute(String driver, String url, String uid, String pwd,
String sql)

{
String output = new String();

The first step is to register and instantiate the JDBC driver. Next, we will connect to the database and
create a statement object. After that, we will execute the SQL statement using the statement object's
executeQuery() method. This will return a result set. We will then serialize the result set to XML
using the writeXML() method we created above:

try
{

Class.forName(driver);
Connection conn = DriverManager.getConnection(url, uid, pwd);
Statement s = conn.createStatement();
ResultSet rs = s.executeQuery(sql);
output = writeXML(rs);

Last, but not least, we will close the result set and the connection and return the XML-serialized result
set to the calling client. If an exception occurs, we will return an <error> element containing a short
description of the exception. The calling client (which is most likely an XML-enabled application) will
parse this element to determine the details of the exception that occurred:

rs.close();
conn.close();

}
catch(Exception e)
{

output = "<error>" + encodeXML(e.toString()) + "</error>";
}
return output;

}

Now our JDBC2XML reusable class is complete, and we can start using it in our sample applications.

The XMLDataGateway Servlet
The XMLDataGateway servlet uses the JDBC2XML class to provide a generic XML-over-HTTP interface
to JDBC data sources. In this section, we will show how to implement and use this servlet.

Chapter 16

638

Implementing the Servlet
To implement the XMLDataGateway servlet, we will write a Java class that subclasses the
javax.servlet.http.HttpServlet class. We will also override the doGet() and doPost()
methods to handle HTTP GET and HTTP POST requests.

package com.jresources.jdbc;

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class XMLDataGateway extends HttpServlet
{

Overriding the doGet() Method

The doGet() method allows the XMLDataGateway servlet to respond to HTTP GET requests. The code
in this method is actually simple. First, we will set the MIME type to "text/xml." That way, requesting
HTTP user agents will know that the response sent should be handled as an XML document. Next, we
will get a reference to the PrintWriter object that enables us to write a response back to the client.
Finally, we'll instantiate the JDBC2XML class and call the execute() method. This method will return
the XML-serialized result set, which we will pass immediately to the HTTP response stream's
PrintWriter. We will obtain the SQL and JDBC connection information needed by the execute()
method from the HttpServletRequest object, which encapsulates key-value pairs obtained from the
URL's query string. If this seems a little confusing right now, don't worry; it will become much clearer
when we run a sample application.

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws IOException, ServletException

{
response.setContentType("text/xml");
PrintWriter out = response.getWriter();
JDBC2XML searchObj = new JDBC2XML();
out.println(searchObj.execute(request.getParameter("driver"),

request.getParameter("jdbcurl"), request.getParameter("uid"),
request.getParameter("pwd"), request.getParameter("sql")));

}

Overriding the doPost() Method

The next step is to override the doPost() method. In this particular servlet, we will handle HTTP
POSTs the same way we handle HTTP GETs. Therefore, our doPost() implementation will simply
make a call to doGet().

public void doPost(HttpServletRequest request, HttpServletResponse response)
throws IOException, ServletException

{
doGet(request, response);

}
}

JDBC

639

That's all there is to writing the XMLDataGateway servlet. Now, you would compile the Java source
into bytecode and package it for deployment to a J2EE-compliant servlet container. We will cover this
process in detail at the end of the chapter once we have completed the entire application. In the
meantime, we will walk through a few examples of how to use the XMLDataGateway servlet, using the
pre-built jdbcxml.war web application downloaded from the Wrox web site. For more information on
how to deploy jdbcxml.war to Tomcat, please refer to the section in this chapter on installing and
configuring Tomcat.

Developing an HTML Form Interface
In order to test the XMLDataGateway servlet, we must create a user interface for it. Since the servlet is
an HTTP application, we will create a simple HTML form that allows you to test it from a web browser.
We will save it in an HTML file, and name that file xmlsqlquery.html.

The XMLDataGateway servlet of course will be the action handler for the HTML form, and the form
will use HTTP POST as the request method. The form contains five fields, each corresponding to the
associated request parameter expected by the servlet. Here's the source listing for the
XMLDataGateway's HTML front end. For brevity purposes, only the HTML form itself is shown,
omitting the HTML opening and closing tags and any other tags the file might have:

<form action="/jdbcxml/servlet/XMLDataGateway" method="POST">
<table border="0">

<tr>
<td align="right">JDBC Driver: </td>
<td>

<input type="text" size="50" name="driver"></td>
</tr>
<tr>

<td align="right">JDBC URL: </td>
<td>

<input type="text" size="50" name="jdbcurl"></td>
</tr>
<tr>

<td align="right">Userid:</td>
<td><input type="text" size="50"

name="uid"></td>
</tr>
<tr>

<td align="right">password </td>
<td><input type="password"

size="50" name="pwd"></td>
</tr>
<tr>

<td align="right">SQL Statement:</td>
<td><textarea name="sql" rows="10" cols="50"></textarea></td>

</tr>
<tr>

<td align="right"><input type="submit"></td>
<td> </td>

</tr>
</table>

</form>

Chapter 16

640

Using the XMLDataGateway Servlet
As we mentioned earlier, the XMLDataGateway servlet can be used from any HTTP client that knows
how to parse and render (or manipulate) well-formed XML. This section will discuss two scenarios for
using the XMLDataGateway servlet: from a web browser, and from a Win32 application.

Using XMLDataGateway from a Web Browser

Now we are ready to start using the XMLDataGateway servlet. First, start Tomcat if it isn't already
running. Then, point your browser at http://127.0.0.1:8080/jdbcxml/xmlsqlquery.html. Since the results
will come back as XML, I recommend you use a browser that knows how to consume and display well-
formed XML, such as Microsoft Internet Explorer 5.x or higher. On the HTML form, type in the name
of the JDBC driver you want to use, the URL of the JDBC data source, the user ID and password
required to log onto the database server, and the SQL statement. Then, click the Submit Query button
to execute the query.

To give you a specific example, we will walk through a search of a Microsoft Access database. To
facilitate this, we have provided a sample MS-Access database as part of the chapter's sample code
download. This database is named contacts.mdb, and is located in the
..\Chapter16\jdbcxml\sql directory.

Prior to running through this example, we need to set up this Access database as a System DSN using
the Windows NT Control Panel ODBC applet. After launching this applet, you will see the ODBC
Data Source Administrator. Click on the Add button, and you will see this dialog:

JDBC

641

Select the Microsoft Access driver, and click on Finish. You will see this dialog:

For the data source name, type in contacts. Click on the Select button, and browse to the location of
the contacts.mdb file on your local system. Once you have completed that, click on OK. You should
now be back to the ODBC Data Source Administrator, and it should show your new contacts System
DSN added to the list:

Chapter 16

642

Now we are ready to execute a query. On the xmlsqlquery.html form, type in the following
information:

❑ The fully qualified class name of the Sun JDBC-ODBC:
driver:(sun.jdbc.odbc.JdbcOdbcDriver)

❑ The Contacts database's JDBC URL (jdbc:odbc:contacts)

❑ Since the Contacts database does not implement any security, you can simply leave the user
ID and password blank

❑ For the SQL statement, type in SELECT * FROM contacts

 The completed form should look like this:

JDBC

643

To execute the query, click on the Submit Query button. Your results should look like this:

To give you a more advanced example, we will walk through a search of an Oracle 8i database. We will
use the Oracle thin driver. This example should work with any Oracle installation, since it merely
queries the user_tables entity. To make the connection, we'll type in the following information:

❑ The fully qualified class name of the Oracle JDBC driver:
(oracle.jdbc.driver.OracleDriver). You must ensure that the Oracle JDBC driver is in
Tomcat's CLASSPATH. To add it, please view the Tomcat setup instructions that were covered
earlier in this chapter.

❑ The Oracle database's JDBC URL, using the following form:
jdbc:oracle:thin:@oraclehostname:port:oracledbname, where oraclehostname
is the name of the server on which the Oracle database resides, port is the IP port on which
to connect to the Oracle database, and oracledbname is the name of the particular database
to query.

❑ The user ID and password with which to log onto the Oracle database server.

Chapter 16

644

Finally, we'll type in the SQL statement. This example is a simple query of the Oracle user_tables
entity. Here's what the complete query looks like:

When we execute the query, the servlet sends the XML-serialized result set showing the query results.
This is what it looks like in MS Internet Explorer 5.x:

JDBC

645

As we have mentioned before, if you don't have access to Oracle, you can use the XMLDataGateway
servlet to query any database product for which a JDBC driver has been written. To preclude any
problems that might occur when testing it with another database product, please ensure that the JDBC
driver for this database is added to Tomcat's CLASSPATH. In addition, if you are using a desktop
database product such as Microsoft Access, many of these products allow you to create databases that
do not require verification of user credentials. If this is the case, then you simply leave the user ID and
password fields blank. You should also note that the JDBC URL format is driver-dependent. Therefore,
if you are using a database other than Oracle, please consult the product's documentation for
information on how to form a valid JDBC URL.

Using the XMLDataGateway Servlet from Other XML-Enabled Applications

As we mentioned before, one of the great advantages of using the XMLDataGateway servlet is that it
allows you to extend the availability of your JDBC data source to non-Java applications. For example,
one of your trading partners might use a system that is implemented as a Win32 application written in
Visual C++. Your internal systems might be built on the J2EE architecture, using JDBC to access an
Oracle database server running on Solaris.

One of the easiest ways to integrate these two systems over the Internet is via XML-over-HTTP, which
our XMLDataGateway servlet implements. Your trading partner's Win32 application can be modified to
use MSXML to execute SQL statements against your Oracle database via HTTP GET. From there, it can
perform any necessary integration steps.

Note: If you are planning to make your data available over the Internet via XML-
over-HTTP, please ensure that you attend to the security details. For example, ensure
that default passwords are changed for database administrator accounts, access
control lists are properly set, and SSL encryption is used.

To show you a simple example of this process, we will use the Microsoft XML Notepad to execute the
same Microsoft Access query we covered in the previous section. You can download Microsoft XML
Notepad from http://msdn.microsoft.com/xml/notepad/.

 After you have installed XML Notepad, launch the application, click on File in the menu bar, and then
click on Open. You'll see a dialog box that looks like this:

Select the From URL radio button, and then type in the following URL. Yes, it is that long:

http://127.0.0.1:8080/jdbcxml/servlet/XMLDataGateway?driver=sun.jdbc.odbc.JdbcOdbcDriver&jdbcu
rl=jdbc:odbc:contacts&sql=select+*+from+contacts

Chapter 16

646

In this example, you'll notice that we are using HTTP GET instead of HTTP POST. The input parameters
that the servlet takes are placed as ampersand-delimited key-value pairs in the URL's query string. Once
the query is executed, XML Notepad will display the results as follows:

Summary
In this section, we walked through the creation of the XMLDataGateway servlet, a simple example of
how you can create an architecture-neutral XML-over-HTTP gateway to your JDBC data sources. In the
next section, we will take it a step further by extending this architecture to perform device-specific
transformations of JDBC data using XML and XSLT.

The JDBC2HTML Servlet
The JDBC2HTML servlet is an example of how you can use XML and XSLT to target JDBC data to a
particular device (in this case, a web browser). This servlet uses the JDBC2XML class we created earlier
in the chapter to query a JDBC data source and serialize the returned result set to XML. From there, it
uses the Xalan XSLT processor to transform the result set's XML into HTML, using the requested XSL
stylesheet.

JDBC

647

The JDBC2HTML servlet is designed as a filter; in other words, the servlet is not invoked directly.
Instead, the servlet container is configured to dispatch requests for URLs with a particular mapping to
this servlet for handling. In the case of the JDBC2HTML servlet, we will configure the servlet container
to pass any URL requests for files ending in .xsl to the JDBC2HTML servlet for execution. This is
how the servlet will know which XSL stylesheet to use for the XSLT operation. If this sounds confusing,
don't worry; we will cover how this process works in detail as the chapter proceeds.

This section will show you how to implement this framework, specifically the following tasks:

❑ Writing the servlet itself

❑ Writing a generic XSL stylesheet that transforms the XML-serialized result set into an HTML
table

❑ Using the JDBC2HTML servlet to query a Microsoft SQL Server database

Implementing the JDBC2HTML Servlet
As with the XMLDataGateway servlet, we will implement the JDBC2HTML servlet by writing a Java
class that subclasses the javax.servlet.http.HttpServlet class. We will also override the
doGet() and doPost() methods to handle HTTP GET and HTTP POST requests respectively. Since
we are using the Xalan XSLT processor in the servlet, we will import the org.apache.xalan.xslt
package. We will also import the org.xml.sax.SAXException class, which is thrown by the Xerces
SAX parser (the underlying parser used by Xalan) if either the XML document or the XSL stylesheet is
not well formed:

package com.jresources.jdbc;

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import org.xml.sax.SAXException;
import org.apache.xalan.xslt.*;

public class JDBC2HTML extends HttpServlet
{

Overriding the doGet() Method

The next step is to override the doGet() method for HTTP GET request handling. Since the
JDBC2HTML servlet is a filter, the first order of business is to determine the physical file location of the
requested stylesheet. It first checks the PATH_INFO environment variable. If it is Null, the servlet
assumes that it was invoked as a result of a direct URL request for an XSL stylesheet (for example,
http://hostname/dir/myStylesheet.xsl), and obtains the stylesheet's real path by passing the
SCRIPT_NAME environment variable (obtained via the getServletPath() method call) to the servlet
context's getRealPath() implementation. Otherwise, it uses the PATH_INFO (for example, the
PATH_INFO for http://hostname/servlet/JDBC2HTML/dir/myStylesheet.xsl is
/dir/myStylesheet.xsl), and gets the PATH_INFO 's real path via the Request object's
getPathTranslated() method.

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws IOException, ServletException

{
String qryDoc;

Chapter 16

648

if(request.getPathInfo()==null)
{

qryDoc = getServletConfig().getServletContext().getRealPath(
request.getServletPath());

} else
{

qryDoc = request.getPathTranslated();
}

Next, it sets the MIME type to "text/html", instantiates the JDBC2XML class, and executes the query
using the query parameters supplied by the HttpServletRequest object:

response.setContentType("text/html");
PrintWriter out = response.getWriter();
JDBC2XML searchObj = new JDBC2XML();
String output = searchObj.execute(request.getParameter("driver"),

request.getParameter("jdbcurl"), request.getParameter("uid"),
request.getParameter("pwd"), request.getParameter("sql"));

Finally, it will use the Xalan XSLT processor to transform the results of the query to HTML using the
requested XSL stylesheet file, and place the output in the HTTP response stream:

try
{

XSLTProcessor processor = XSLTProcessorFactory.getProcessor();
processor.process(new XSLTInputSource(new

java.io.StringReader(output)), new XSLTInputSource("file:///" +
qryDoc), new XSLTResultTarget(out));

}
catch(SAXException se)
{

throw new ServletException(se);
}

}

Overriding the doPost() Method

The next step is to override the doPost() method. As with the XMLDataGateway servlet, the
JDBC2HTML servlet will handle HTTP POSTs the same way we handle HTTP GETs. Therefore, our
doPost() implementation will simply make a call to doGet().

public void doPost(HttpServletRequest request, HttpServletResponse response)
throws IOException, ServletException

{
doGet(request, response);

}

}

That's all there is to writing the JDBC2HTML servlet. While a bit more complex than the
XMLDataGateway servlet, it is still straightforward. Moreover, the same concepts could be easily
applied to other device types, such as a WAP phone. The only difference would be in the MIME type
(for example, text/vnd.wap.wml vs. text/html), the output syntax (WML vs. HTML), and the
display constraints of WAP devices vis-à-vis web browsers.

JDBC

649

Now, you would compile the Java source code into bytecode and package it for deployment to a J2EE-
compliant servlet container. Part of this packaging process would include creating a mapping that
instructs the servlet container to hand off all requests for .xsl files to the JDBC2HTML servlet. We will
cover this process in detail at the end of the chapter. In the meantime, we will walk through a few
examples of how to use the JDBC2HTML servlet using the jdbcxml.war web application downloaded
from our web site, and deployed to Tomcat in an earlier section.

Writing an XSL Stylesheet
To use the JDBC2HTML servlet, you must create XSL stylesheets that transform the <resultset>
XML schema to HTML. To show you an example of this, we will create an XSL stylesheet that
transforms the XML-serialized result sets returned by the JDBC2XML class into an HTML table. We
will call this stylesheet html_table.xsl.

Like any other XSL stylesheet, this stylesheet will contain a variety of templates that contain the
presentation logic for elements in the result set XML document. The first template is the template for
the document root. This template will simply use the <xsl:apply-templates/> element to instruct
the XSLT processor to apply the appropriate template to each element it encounters as it drills down
through the hierarchy of the XML document. Please note that the / pattern-matching statement means
to match the root element of the document:

<?xml version='1.0'?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:template match="/">
<xsl:apply-templates/>

</xsl:template>

The Resultset Template

The next template is for the top-level <resultset> element. This template does two things. First, it
sets up the basic structure of the HTML document. Second, it uses the <xsl:apply-templates>
element at the appropriate spots to apply the templates for the <metadata> element (which will be
displayed as the table's heading) and the <records> element (which will be displayed as the table
body). In the case of the <records> element, the //resultset/records notation tells the XSLT
processor to match any <records> element that is a descendant of the <resultset> element:

<xsl:template match="resultset">
<html>

<head>
<title>

A JDBC Resultset in HTML Table Format
</title>

</head>
<body>

<h1 align="center">
A JDBC Resultset in HTML Table Format

</h1>
<table border="1" cellspacing="0" cellpadding="5" align="center">

<xsl:apply-templates select="metadata"/>
<xsl:apply-templates select="//resultset/records"/>

</table>
</body>

</html>
</xsl:template>

Chapter 16

650

The Metadata and Metadata Field Templates

The next two templates set up the table header row from the <metadata> element and its <field>
child elements. The meta-data template creates the table row. The field template creates a table cell for
each field:

<xsl:template match="metadata">
<tr bgcolor="#FFD700">

<xsl:apply-templates/>
</tr>

</xsl:template>
<xsl:template match="metadata/field">

<td><xsl:value-of select="@name"/></td>
<xsl:apply-templates/>

</xsl:template>

The Records and Record Templates

The next two templates create a table row for each record, with a table cell containing the data for each
field:

<xsl:template match="records">
<xsl:apply-templates/>

</xsl:template>
<xsl:template match="record">

<tr>
<xsl:for-each select="field">

<td><xsl:value-of select="."/></td>
</xsl:for-each>

</tr>
</xsl:template>

The Error Template

Finally, we have a template to handle any errors that might occur. As you might recall, the
JDBC2XML's execute() method returns an <error> element containing information from any
exception that is thrown within that method. This template ensures that this information is displayed in
a user-friendly manner:

<xsl:template match="error">
<html>

<head>
<title>

A JDBC Resultset in HTML Table Format
</title>

</head>
<body>

Your request caused the following error: <xsl:value-of select="."/>
</body>

</html>
</xsl:template>

</xsl:stylesheet>

JDBC

651

Using the JDBC2HTML Servlet
Now we are ready to start using the JDBC2HTML servlet. First, we'll create an HTML front-end that
looks just like the one we created for the XMLGateway servlet. We'll call this file
htmlsqlquery.html. The only difference between xmlsqlquery.html and htmlsqlquery.html
is that htmlsqlquery.html uses the html_table.xsl stylesheet that we just created as its HTML
form's action handler. In other words, the HTML <form> tag looks like this:

<form action="html_table.xsl" method="POST">

To open it up, point your browser at http://127.0.0.1:8080/jdbcxml/htmlsqlquery.html.

To illustrate how to use this tool, we will execute a query against the Northwind sample database that
comes with Microsoft SQL Server 7.0. If you don't have SQL Server installed, don't worry; you can use
JDBC2HTML with virtually any database for which there is a JDBC driver. We'll use the Sun JDBC-
ODBC Bridge that ships with the JDK as the JDBC driver. The JDBC URL is
jdbc:odbc:system_dsn, where system_dsn is the database's System DSN, created using the
Windows NT ODBC Control Panel applet. We will write a SQL statement that queries the products
table. This screenshot shows the complete query:

Chapter 16

652

When we execute the query, the result set is returned as an HTML table, as shown in this next
screen shot:

Summary
In this section, we created a simple XML gateway architecture for JDBC. This architecture allows you to
access JDBC data as XML over HTTP in an architecture-neutral manner. It also allows you to easily
stream JDBC data as HTML to web browsers via XSLT. This simple architecture can be used as a
framework to XML-enable your existing JDBC applications. In the next section, we will show you how
to create distributed two-way JDBC applications using Sun's emerging XML-based WebRowSet
technology.

Using XML for distributed JDBC Applications
The simple XML gateway architecture for JDBC is extremely useful for what it does, namely extract
data from a JDBC data source and serialize it to XML. However, suppose you wanted to create a two-
way XML-based system that allows you to scroll through an XML-serialized result set, add and modify
data, and then submit the modified XML to the application server to update the underlying JDBC data
source; how could you do this?

JDBC

653

Sun provides a WebRowSet class that allows you to do just that. With WebRowSet, you can create a
disconnected JDBC result set that can be serialized to XML, transported via TCP/IP application-layer
protocols to remote clients for data manipulation, and then returned to the original data source for
batch updating. This technology is "early access" technology, and is therefore not quite ready for
production use; nevertheless, it will be an extremely important technology in the near future, and
warrants coverage in this chapter.

Note: The WebRowSet implementation used in this chapter is Early Access Release 4

The Rowset Interface
To give you a little background, the JDBC 2.0 standard extension API includes a Rowset interface. At
its simplest level, the Rowset interface provides a framework for writing classes that encapsulate a
persistent set of rows. The underlying data source for this set of rows can be anything from a comma-
delimited ASCII text file to an XML document. What makes the Rowset interface particularly
interesting, though, is the ability to write implementing classes that encapsulate disconnected JDBC
result sets. Once you have done this, you now have a way to make a JDBC result set that is scrollable
and updateable, can be passed over a network, and can be used as a JavaBeans component in a GUI
application builder. When your implementing class uses XML to persist the state of the JDBC result set
(including its connection information to the underlying JDBC data source), you now have a framework
for bi-directional access to JDBC data sources via the Internet. Fortunately, Sun is providing a Rowset
implementation (albeit "early access") that does just that: the sun.jdbc.rowset.WebRowSet class.

The sun.jdbc.rowset.WebRowSet Class
The WebRowSet class is a Rowset implementation that can serialize the data, metadata, and properties
of a JDBC result set to XML. That way, the result set can be disconnected, transported across the
network, and manipulated by a remote application. Later, the WebRowSet class can use the information
in the XML document to re-establish the connection and update the original data source.

The XML document produced by the WebRowSet class is a valid document, and must conform to the
DTD defined by the RowSet.dtd file provided with the Rowset package. Otherwise, a validating
parser will not be able to parse it. Underneath the hood, the WebRowSet class uses the Sun JAXP parser
(this ships with Tomcat, so it should already be on your system) to validate and parse its serialized XML
state.

The WebRowSet class is, as mentioned before, "early access" (beta) technology, so it should not be used
in a production application. You also might find it a little buggy, although we expect that these bugs will
be fixed prior to the release of the production version. For example, as of Early Access Release 4, the
WebRowSet class does not support the SQL Server nchar or nvarchar data types.

A note about concurrency: In its current implementation, the WebRowSet class uses optimistic locking.
Therefore, it does not maintain any locks in the underlying database while the Rowset is disconnected
from the database. This could be problematic, in that another user could modify the underlying
database while a Rowset is disconnected, and then have his changes overwritten when the Rowset is
reconnected and the underlying database is updated.

Chapter 16

654

To preclude this from happening, the WebRowSet class maintains a copy of the original value of any
row that has been modified. That way, it can compare the Rowset's original value with the database
prior to update, and throw an exception if there has been an interim update. Moreover, it provides an
extensible architecture to modify this behavior (through the javax.sql.RowSetWriter interface) if a
different concurrency model is desired.

Implementing a Distributed JDBC Application Using the
WebRowSet Class

In this section, we will implement a distributed JDBC application using the WebRowSet class. In this
scenario, a Java application will use WebRowSet to query a remote JDBC data source via HTTP, add a
record to the returned Rowset, and then send the updated Rowset back to the application server via
HTTP POST to update the original data source. This diagram shows the application's architecture:

A Distributed JDBC Application Using WebRowSet

WebRowSetFetch
Servlet

WebRowSetHTTPClient Application
(inserts, updates and deletes records as approriate)

HTTP GET
or POST to

retrieve rowset

HTTP POST
to submit

updated XML-
serialized rowset

XML-serialized
rowset returned

via HTTP

Notify client
of success
or failure

WebRowSetUpdate
Servlet

sun.jdbc.rowset.WebRowSet
Class

Update JDBC
data source

Execute query
via WebRowSet

JDBC

JDBC Data
Source

Note: The client application in this sample is implemented in Java. Theoretically, one could also
implement it as a Microsoft COM application. To do this would require writing a simple OLEDB
provider that transformed the WebRowSet XML schema to a disconnected ADO recordset. While
non-trivial to implement, this component would nonetheless go a long way toward facilitating
enterprise application integration.

JDBC

655

To implement this application, we will cover the following specific tasks:

❑ Writing the WebRowSetFetchServlet class. This servlet provides an interface for fetching a
WebRowSet via HTTP GET or POST.

❑ Writing the WebRowsetUpdateServlet class. This servlet provides an HTTP interface for
updating the original data source with a modified WebRowSet.

❑ Writing the WebRowSetHTTPClient application. This application uses the
WebRowSetFetchServlet to execute a query against a JDBC data source and return the
WebRowSet. It then adds a record to the WebRowSet, and uses the
WebRowsetUpdateServlet to update the underlying JDBC data source.

Setting up the Sample Database
Please note that this sample application uses a Microsoft SQL Server 7.0 database, however it also
works under SQL Server 2000. To set up the database, perform the following tasks:

❑ Open up SQL Server Enterprise Manager and create a new database called WebRowSetTest.

❑ Locate the SQL script named WebRowSet.sql in the sample code distribution for this
chapter. You can download this from the Wrox web site under the Code subsection. This
script creates the guestbook table.

❑ Execute this script using SQL Server Query Analyzer. Ensure that the database selected is the
WebRowSetTest database you just created.

❑ Create a System DSN that points to this database using the Control Panel ODBC applet. Call
this DSN webrowset.

If you don't have SQL Server, you can use pretty much any other database for which a JDBC driver
exists. The only constraint is that the driver and the underlying database must support batch updates.
Just make sure you update the WebRowSetHTTPClient class .properties file to reflect the correct
JDBC driver and URL. For your reference, here is the schema of the guestbook table:

Field name Data Type Size

ID varchar 50
Fname varchar 50
Lname varchar 50
Comments varchar 255

Fetching a Rowset Via HTTP: The WebRowSetFetchServlet Class
The WebRowSetFetchServlet essentially duplicates the functionality of the XMLDataGateway servlet
we covered earlier in the chapter. In this case, we are using the WebRowSet class to bring back a
disconnected JDBC result set, and returning its XML representation to the requesting HTTP client. In
this section, we will show how to implement this servlet, and test it using a web browser.

Implementing the Servlet
As with the other servlets we have talked about in this chapter, we will implement the
WebRowSetFetchServlet by writing a Java class that subclasses the
javax.servlet.http.HttpServlet class. We will also override the doGet() and
doPost()methods to handle HTTP GET and HTTP POST requests respectively. Since we are using the
WebRowSet class in the servlet, we will import the sun.jdbc.rowset package. We will also import
the javax.sql package. This package contains the interfaces that constitute the JDBC 2.0 standard
extension API. The sun.jdbc.rowset package (including the WebRowSet class) uses this API:

Chapter 16

656

package com.jresources.jdbc;

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import javax.sql.*;
import sun.jdbc.rowset.*;
import java.sql.*;

public class WebRowSetFetchServlet extends HttpServlet
{

The next step is to override the doGet() method for HTTP GET request handling. The doGet()
expects five parameters from the request object: the JDBC driver, JDBC URL, user ID, password, and
SQL statement. After setting the MIME type and obtaining a reference to the PrintWriter object that
encapsulates the HTTP response stream, we will instantiate and register the JDBC driver:

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws IOException, ServletException

{
response.setContentType("text/xml");
PrintWriter out = response.getWriter();
try
{

//instantiate and register the JDBC driver
Class.forName(request.getParameter("driver"));

The next step is to create an instance of the WebRowSet class, and set the appropriate properties. These
properties include the JDBC URL, the user ID, the password, and the SQL statement. You can also set
other properties, such as transaction isolation, as appropriate. Once you have set all of the properties,
call the WebRowSet object's execute() method. This will populate the Rowset with the rows returned
by your SQL statement, and disconnect from the data source. To write the Rowset's XML state back to
the HTTP client, you call the WebRowSet object's writeXml() method, passing in the HTTP response
stream's PrintWriter:

WebRowSet wrs;

wrs = new WebRowSet();
// set some properties of the rowset
wrs.setUrl(request.getParameter("jdbcurl"));
wrs.setUsername(request.getParameter("uid"));
wrs.setPassword(request.getParameter("pwd"));
wrs.setCommand(request.getParameter("sql"));
wrs.setTransactionIsolation

(java.sql.Connection.TRANSACTION_READ_UNCOMMITTED);
// populate the rowset.
wrs.execute();
wrs.writeXml(out);

}
catch(Exception e)
{

throw new ServletException(e);
}

}

JDBC

657

One word of caution: The WebRowSet class contains a static variable called SYSTEM_ID. This variable
stores the URL for the DTD (Document Type Definition) file that defines the structure of the XML
document used by the WebRowSet class. The default value is http://java.sun.com/j2ee/dtds/
RowSet.dtd. If you are testing this on a machine that is not connected to the Internet, this could cause
you problems, as the calling HTTP user agent (for example, Internet Explorer 5.x) will not be able to
locate the DTD with which to validate the document. If this is the case, you might want to change this
variable to the location of the DTD on your local machine for testing purposes. For example, add this
line of code to the doGet() method:

WebRowSet.SYSTEM_ID =
"http://127.0.0.1:8080/jdbcxml/bin/RowSet.dtd";

Once again, we will handle HTTP POSTs the same way we handle HTTP GETs. Therefore, our
doPost() implementation will simply make a call to doGet().

public void doPost(HttpServletRequest request, HttpServletResponse response)
throws IOException, ServletException

{
doGet(request, response);

}
}

Now, you would compile the Java source into bytecode and package it for deployment to a J2EE-
compliant servlet container. We will cover this process in detail at the end of the chapter. In the
meantime, we will walk through an example of how to use the servlet using the jdbcxml.war web
application downloaded from our web site, and deployed to Tomcat, as explained in an earlier section.

Testing the Servlet with a Web Browser
Before continuing with the development of the distributed application, we will first unit-test the
WebRowSetFetchServlet we created. The easiest way to do this is to create an HTML form similar to
the one we created for the XMLDataGateway servlet. We'll call this HTML file webrowset.html. We
can unit-test this servlet with virtually any database for which a JDBC driver exists. In this example,
we'll use the same Oracle query we did for the XMLDataGateway servlet. Here's what it looks like:

Chapter 16

658

When we execute the query, this is what the results look like in Internet Explorer 5.x. Once again, it is
similar to the output created by the XMLDataGateway servlet, although the WebRowSet's XML
document contains significantly more information. In addition to the Rowset's data and metadata, it
also stores other properties, such as connection information required to reconnect back to the
underlying data source for future updating:

Performing a Batch Update Via HTTP: The WebRowSetUpdateServlet Class
The next step is to write a servlet that allows you to update the underlying data source via HTTP. This
servlet will accept a remote WebRowSet's XML representation via HTTP POST and perform a batch
update of the underlying data source.

Note: for this servlet to function properly, the RowSet.dtd file must be in the
jakarta-tomcat/bin directory so that the WebRowSet class can find it to validate
the uploaded document.

package com.jresources.jdbc;

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import javax.sql.*;
import sun.jdbc.rowset.*;
import java.sql.*;

public class WebRowSetUpdateServlet extends HttpServlet
{

JDBC

659

Overriding the doGet() Method
In the previous servlets, we put the bulk of the logic in the doGet() method. In the case of the
WebRowSetUpdateServlet, we want to support HTTP POST only, since the uploaded XML
documents are likely to be quite large. Therefore, the doGet() method will simply return a 403
(Forbidden) HTTP response code:

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws IOException, ServletException

{
response.sendError(403);

}

Overriding the doPost() Method
The next step is to override the doPost() method to handle the HTTP POST request. The doPost()
method expects the HTTP request body's contents to contain WebRowSet's XML document. To update
the underlying data source, you simply create an instance of the WebRowSet class and call the
readXml() method, passing in the BufferedReader from the Request object. This
BufferedReader object encapsulates the contents of the HTTP request body. After that, you call the
acceptChanges() method, and the WebRowSet will connect to the underlying data source, perform
any inserts, updates, and deletes, and close the connection.

public void doPost(HttpServletRequest request, HttpServletResponse response)
throws IOException, ServletException

{
response.setContentType("text/plain");
PrintWriter out = response.getWriter();
try
{

WebRowSet wrs = new WebRowSet();
wrs.readXml(request.getReader());
wrs.acceptChanges();
out.println("The transaction succeeded");

}
catch(Exception e)
{

out.println("The transaction failed with the following error: " +
e.getMessage());

}
}

}

Inserting, Updating, and Deleting Data at the Client: The
WebRowSetHTTPClient Class

Now we are ready to write the client application for our distributed JDBC application. We will call
this application WebRowSetHTTPClient. This application is a stand-alone console application written
in Java.

Implementing the Application
The WebRowSetHTTPClient class contains three methods:

❑ The executeSearch() method, which encapsulates an HTTP GET request to
WebRowSetFetchServlet

❑ The updateDataSource() method, which encapsulates an HTTP POST request to
WebRowSetUpdateServlet

❑ The main() method, the application's entry point

Chapter 16

660

import java.io.*;
import java.net.*;
import java.util.*;
import javax.sql.*;
import sun.jdbc.rowset.*;

public class WebRowSetHTTPClient
{

public WebRowSetHTTPClient() {
super();

}

The executeSearch() method encapsulates an HTTP GET request to WebRowSetFetchServlet. It
takes six input parameters: the URL of WebRowSetFetchServlet, the JDBC driver, the URL of the
JDBC data source, the user ID, the password, and the SQL statement. It returns a populated
WebRowSet:

public WebRowSet executeSearch(String httpEndpoint, String driver,
String jdbcurl, String uid, String pwd, String sql) throws Exception

{
try
{

The first step is to dynamically construct the URL we are requesting. We will do this by concatenating
the URL of WebRowSetFetchServlet with a query string dynamically constructed from the
parameters passed to the method. After that, we will open up a connection to that URL to initiate the
HTTP GET request:

String url = httpEndpoint + "?driver=" + driver + "&jdbcurl=" + jdbcurl
+ "&uid=" + uid + "&pwd=" + pwd + "&sql=" + URLEncoder.encode(sql);

URL host = new URL(url);
HttpURLConnection hostConn = (HttpURLConnection)host.openConnection();
hostConn.connect();

The next step is to initialize a new WebRowSet from the response by passing a BufferedReader object
derived from the HTTP response stream to the WebRowSet's readXml() method. Once we have
populated the WebRowSet, we will return it to the calling client:

BufferedReader xml = new BufferedReader(new
InputStreamReader(hostConn.getInputStream()));

WebRowSet wrs = new WebRowSet();
wrs.readXml(xml);
hostConn.disconnect();
return wrs;

}
catch(Exception e)
{

throw new Exception(e.getMessage());
}

}

Next, we'll implement the updateDataSource() method. This method encapsulates an HTTP POST
request to WebRowSetUpdateServlet, thereby allowing you to propagate any changes you made to
WebRowSet to the remote data source. It takes two parameters: the updated WebRowSet and the URL
of WebRowSetUpdateServlet. It returns the response received from WebRowSetUpdateServlet.

JDBC

661

public String updateDataSource(WebRowSet wrs, String httpEndPoint)
throws Exception

{
try
{

The first step is to post the WebRowSet's XML data structure to WebRowSetUpdateServlet. To
accomplish this, we will establish an HTTP connection to the servlet, create a
java.io.BufferedWriter object (which writes text to a character output stream) from the
OutputStream object that encapsulates the HTTP POST request, and call the WebRowSet's
writeXml() method, passing in the BufferedWriter object. Internally, the writeXml() method
will write the XML to the BufferedWriter, which will in effect upload the XML to the servlet:

URL host = new URL(httpEndPoint);
HttpURLConnection hostConn = HttpURLConnection)host.openConnection();
hostConn.setRequestMethod("POST");
hostConn.setDoInput(true);
hostConn.setDoOutput(true);
BufferedWriter xml = new BufferedWriter(new

OutputStreamWriter(hostConn.getOutputStream()));
wrs.writeXml(xml);
xml.close();

Next, we will read the response from the servlet, which will either tell us that the operation was a
success, or inform us of the specific error that occurred. Once we have read the response, we will return
it to the calling client:

String line;
StringBuffer results = new StringBuffer();
BufferedReader input = new BufferedReader(new

InputStreamReader(hostConn.getInputStream()));
while((line = input.readLine()) != null)
{

results.append(line + "\r\n");
}
input.close();
hostConn.disconnect();
return results.toString();

}
catch(Exception e)
{

throw new Exception(e.getMessage()+ ", " + e.getClass());
}

}

To bring everything together, we will write the application's entry point: the main() method. The
main() method executes a query of the guestbook table in our sample webrowset SQL Server
database, adds a record to the returned WebRowSet, and posts it back to the server to update the
database. It takes three command line arguments, each representing a field in the guestbook table: the
first name, last name, and comments for an individual adding a record to the database. The first thing
the main() method will do is check to ensure that the proper number of command line arguments was
passed in. If not, it will give the user a help message informing him of the proper usage of the
application:

Chapter 16

662

public static void main(String[] args)
{

if(args.length < 3)
{

System.err.println("Usage: WebRowSetHTTPClient <first name>
<last name> <comments>");

return;
}

Next, it will initialize some String variables containing the JDBC connect information required to
execute the query. It will also initialize some variables containing the URLs to the fetch and update
servlets. The application will read this initialization information from a Properties file called
WrsHTTPClient.properties, which is included in the sample code that you can download from the
Wrox web site:

try
{

Properties initProps = new Properties();
initProps.load(new FileInputStream("WrsHTTPClient.properties"));
//The JDBC connect info:
String driver = initProps.getProperty("jdbc.driver");
String jdbcurl = initProps.getProperty("guestbook.url");
String uid = initProps.getProperty("guestbook.uid");
String pwd = initProps.getProperty("guestbook.pwd");
String sql = "select * from guestbook";
//The fetch and update servlet endpoints
String httpEndpoint = initProps.getProperty("httpEndpoint");
String httpUpdateEndpoint = initProps.getProperty("httpUpdateEndpoint");

For your reference, here are the contents of the WrsHTTPClient.properties file. You can modify
this file, if needed, with an ASCII text editor (such as Notepad) to change any of the initialization data:

WrsHTTPClient initialization properties

jdbc.driver=sun.jdbc.odbc.JdbcOdbcDriver
guestbook.url=jdbc:odbc:webrowset
guestbook.uid=sa
guestbook.pwd=
httpEndpoint=http://127.0.0.1:8080/jdbcxml/servlet/WebRowSetFetchServlet
httpUpdateEndpoint=http://127.0.0.1:8080/jdbcxml/servlet/WebRowSetUpdateServlet

Next, it will execute the search using the executeSearch() method we just created. This will return
an initialized instance of WebRowSet:

WebRowSetHTTPClient me = new WebRowSetHTTPClient();
System.out.println("Fetching remote data...");
WebRowSet data = me.executeSearch(httpEndpoint, driver, jdbcurl, uid,

pwd, sql);

Now it is time to insert our record. First, we must explicitly set the table name to guestbook. The
WebRowSet instance on the server needs to know which table to update. Next, we will move the
cursor to the insert row to prepare for the insert operation. Then, we will add a record based on
command line arguments passed to the main() method. After we're done, we will return the cursor to
the previous row. Finally, we will post the batch update back to the server using our
updateDataSource() method:

JDBC

663

System.out.println("Adding data to the WebRowSet...");
data.setTableName("guestbook");
data.moveToInsertRow();
data.updateString("ID", "ID" + System.currentTimeMillis());
data.updateString("fname", args[0]);
data.updateString("lname", args[1]);
data.updateString("comments", args[2]);
data.insertRow();
data.moveToCurrentRow();
System.out.println("Updating the remote data source with changes...");
System.out.println(me.updateDataSource(data, httpUpdateEndpoint));

}
catch(Exception e)
{

System.out.println(e.toString());
}

}

Building the Application

Now it is time to compile our client application. To do this efficiently, we will create a batch file. This
batch file, named buildClient.bat, is located in the chapter's sample code distribution. The first
thing we need to do is ensure that all of the appropriate code dependencies are added to the
CLASSPATH used by the compiler to build the application's bytecode. This code includes the xml.jar
archive, which contains the JAXP XML parser; the JDBC 2.0 standard extension API, contained in the
jdbc2_0-stdext.jar archive; and the Rowset binaries, contained in the rowset.jar archive:

@echo off

REM Change this to reflect the Tomcat and JDK installations on your system
set TOMCAT_HOME=c:\jakarta-tomcat
set JAVA_HOME=c:\jdk1.3

REM add all of the necessary packages to the CLASSPATH
set cp=%CLASSPATH%
set CLASSPATH=.
set CLASSPATH=%CLASSPATH%;%TOMCAT_HOME%\lib\xml.jar
set CLASSPATH=%CLASSPATH%;%JAVA_HOME%\lib\rowset.jar
set CLASSPATH=%CLASSPATH%;%JAVA_HOME%\lib\jdbc2_0-stdext.jar
set CLASSPATH=%CLASSPATH%;%cp%

Finally, we will invoke javac to compile our Java source into bytecode:

REM This is where javac will place the compiled bytecode
set outputDir=..\WEB-INF\classes

REM This is where javac finds the source code
set basepath=..\src

REM Compile the code...
javac -d %outputDir% -classpath %CLASSPATH% %basepath%\WebRowSetHTTPClient.java

Chapter 16

664

Running the Application

Now we can run our application. Once again, we will create a batch file to do this efficiently. This batch
file, named runWrsHTTPClient.bat, is located in the chapter's sample code, downloadable from our
web site. As we did in the build process, we must ensure that the xml.jar, jdbc2_0-stdext.jar,
and rowset.jar archives are added to the CLASSPATH:

@echo off
set cp=%CLASSPATH%
set JAVA_HOME=C:\jdk1.3
set TOMCAT_HOME=C:\jakarta-tomcat
set CLASSPATH=.
set CLASSPATH=%CLASSPATH%;%TOMCAT_HOME%\lib\xml.jar
set CLASSPATH=%CLASSPATH%;%JAVA_HOME%\lib\rowset.jar
set CLASSPATH=%CLASSPATH%;%JAVA_HOME%\lib\jdbc2_0-stdext.jar
set CLASSPATH=%CLASSPATH%;..\WEB-INF\classes;%cp%
java WebRowSetHTTPClient Andy Hoskinson "Hello world!"

Note: Prior to running this application, please put the RowSet.dtd file in the same
directory as the runWrsHTTPClient.bat batch file. The WebRowSet class needs this
file to validate the XML document returned by WebRowSetFetchServlet.

When we run this batch file, the output looks like this:

Packaging the Code for J2EE Deployment
Throughout the chapter, we have promised you that we will tell you how to build and package all of the
server-side code discussed in this chapter into a web application archive (WAR) for deployment to a
J2EE servlet container. This section will show you how to compile our Java classes, build a JAR archive,
and package all of the code that we have written, into a WAR file for easy deployment, distribution, and
installation on J2EE servlet containers. Our web application uses the standard directory structure
defined in Chapter 9 of the Java Servlet Specification, v2.2. You can download this document from
ftp://ftp.java.sun.com/pub/servlet/22final-182874/servlet2_2-spec.pdf.

JDBC

665

A key directory in the web application's file system is the /WEB-INF directory. This directory contains
the application's deployment descriptor, class, and JAR files. Since no file contained in the WEB-INF
directory is ever served directly to a client, it is a "safe" directory for placing sensitive files for your web
application's consumption only. The WEB-INF directory generally contains the following files:

❑ /WEB-INF/web.xml: The web application deployment descriptor

❑ /WEB-INF/classes/*: Servlet and utility classes.

❑ /WEB-INF/lib/*.jar: JAR files

The rest of the directories contain web-accessible files. For the purpose of this chapter, these include:

❑ /: The root directory will contain the HTML files and XSL stylesheets that we created in
earlier sections of this chapter.

❑ /src: The Java source code.

❑ /bin: Batch files discussed in this chapter.

❑ /sql: The DDL for our sample SQL Server Guestbook database. This directory also contains
our contacts.mdb sample MS-Access database.

The Web Application Deployment Descriptor
The first step is to create the web application deployment descriptor. The deployment descriptor is used
to configure the web application's container. It includes descriptive meta-data about the web
application, as well as application-scope parameters and various servlet registration parameters:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app
PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
"http://java.sun.com/j2ee/dtds/web-app_2.2.dtd">

<web-app>
<display-name>Professional XML Databases: Chapter 16 (JDBC)</display-name>
<description>

This web app contains the sample code for Professional XML Databases:
Chapter 16 (JDBC)

</description>

Next, we need to register our servlets. First, we'll give each of our servlets an alias. We'll also map the
JDBC2HTML servlet to files with an extension of *.xsl. This will cause the servlet engine to dispatch
all URL requests for XSL files in this web application to the JDBC2HTML servlet for handling:

<servlet>
<servlet-name>

JDBC2HTML
</servlet-name>
<servlet-class>

com.jresources.jdbc.JDBC2HTML
</servlet-class>

</servlet>
<servlet>

<servlet-name>
XMLDataGateway

</servlet-name>

Chapter 16

666

<servlet-class>
com.jresources.jdbc.XMLDataGateway

</servlet-class>
</servlet>
<servlet>

<servlet-name>
WebRowSetFetchServlet

</servlet-name>
<servlet-class>

com.jresources.jdbc.WebRowSetFetchServlet
</servlet-class>

</servlet>
<servlet>

<servlet-name>
WebRowSetUpdateServlet

</servlet-name>
<servlet-class>

com.jresources.jdbc.WebRowSetUpdateServlet
</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>
JDBC2HTML

</servlet-name>
<url-pattern>

*.xsl
</url-pattern>

</servlet-mapping>
</web-app>

Building the Application
The next step is to perform the build process. To accomplish this, we will write an MS Windows batch
file. We'll call this file build.bat. This batch file is located at Chapter16\jdbcxml\bin\build.bat,
in this chapter's source code archive downloadable from our web site. This process includes:

❑ Compiling the Java source

❑ Packaging the bytecode into a JAR

❑ Packaging our entire application into a WAR (web application archive), using the jar tool.
Please note that our directory structure will conform to the standard WAR directory structure as
defined by the Servlet 2.2 specification, Chapter 9.

Compile the Java Classes
First, we'll compile our classes using javac. Since our classes import classes from the Servlet API
packages, we must ensure that Tomcat's servlet.jar is in the CLASSPATH. Per the servlet 2.2
specifications, the bytecode goes into the web application's WEB-INF/classes directory:

@echo off

REM Change this to reflect the Tomcat and JDK installations on your system
set TOMCAT_HOME=c:\jakarta-tomcat
set JAVA_HOME=c:\jdk1.3

REM add all of the necesssary packages to the CLASSPATH
set cp=%CLASSPATH%
set CLASSPATH=.
set CLASSPATH=%CLASSPATH%;%TOMCAT_HOME%\lib\xml.jar
set CLASSPATH=%CLASSPATH%;%TOMCAT_HOME%\lib\servlet.jar

JDBC

667

REM This assumes that these packages are in the JDK's lib directory
set CLASSPATH=%CLASSPATH%;%JAVA_HOME%\lib\rowset.jar
set CLASSPATH=%CLASSPATH%;%JAVA_HOME%\lib\jdbc2_0-stdext.jar
set CLASSPATH=%CLASSPATH%;%JAVA_HOME%\lib\xerces.jar
set CLASSPATH=%CLASSPATH%;%JAVA_HOME%\lib\xalan.jar

set CLASSPATH=%CLASSPATH%;%cp%

REM This is where javac will place the compiled bytecode
set myClasspath=..\WEB-INF\classes

REM This is where javac finds the source code
set basepath=..\src

REM Compile the code...
javac -d %myClasspath% -classpath %CLASSPATH% %basepath%*.java

Package the Bytecode into a JAR
Next, we'll build the JAR archive using the Jar tool that comes with the JDK. This goes into the web
application's /WEB-INF/lib/ directory:

REM Set the directory where the JAR should be built
set jarpath=..\WEB-INF\lib
REM Build the JAR...
jar cvf %jarpath%\jdbcxml.jar -C %myClasspath%\ .

Package the Application into a WAR
Finally, we'll use the jar tool to package the entire application into a WAR file. Once this is built, we
can distribute the application to our end users:

REM Set the directory where the completed WAR should be built (warpath), and the
directory to be recursively archived (apppath)
set warpath=..\..\
set apppath=..\..\jdbcxml
REM Build the WAR...
jar cvf %warpath%\jdbcxml.war -C %apppath%\ .

If you are inexperienced in such Java issues, Wrox Press publishes a number of books on the subject,
including Professional Java Server Programming – J2EE Edition (ISBN1861004656), if you want more
information on packaging and deployment.

Summary
In this chapter, we showed you how you can use JDBC and XML to create universal data access
gateways for your J2EE applications. In the first section, we showed you how to construct a simple XML
gateway architecture for JDBC that allows you to execute SQL statements against arbitrary JDBC data
sources and return the result sets as well-formed XML data structures for consumption by applications
that can parse and consume XML. In the second section, we showed you how to build a distributed
JDBC application that allows you to interact with a JDBC data source over the Internet using HTTP.
Finally, we showed you how to build and package the application for J2EE deployment.

In the next chapter, we will show you how to use XML to facilitate Data Warehousing.

Chapter 16

668

Data Warehousing, Archival, and
Repositories

In this chapter and the two that follow it, we'll look at some common applications of XML in the
enterprise. Whether your system is a large-scale transaction system that's moving millions of detail
records a day, or a content management system that has to support multiple presentation formats, the
judicious use of XML can improve your ability to reach your goals. This chapter deals specifically with
the persistence of information using XML. We'll see some of the traditional strategies for these
processes, and then see how adding XML to the mix can benefit the developer.

We'll look at the following topics in this chapter:

❑ Data warehousing. In a typical transaction-oriented system, one classic problem faced by
developers is how to design a database that supports both the fast creation of transactions and
the efficient querying and summarization of those transactions for reporting purposes. One
solution that may be considered is creating a data warehouse. We'll look at how data
warehouses work and see how XML may be used to streamline the transaction and
warehousing process.

❑ Data archival. For most systems, data loses its relevance over time and should be moved off
the system when some threshold is reached (for example, when the record has been around
for a certain period of time). However, we typically want to set this data aside in some form so
that, should we need to refer to it later, we can retrieve the data with the minimum of effort.
We'll see how XML may be used to make this process easier.

Chapter 17

670

❑ Data repositories. In certain circumstances, databases contain information that is only
accessed at the detail level – that is, there is no querying or summarization performed
against that data. For example, a real estate system might contain information about the
minutiae of each property, but that information might only be relevant (in a business sense)
when examining that individual property. We'll see how XML may be used to persist
detail-only information in a way that makes the relational database perform better, while
taking advantage of XML technologies (such as XSLT) to present the detail information
when necessary.

All the examples in these three chapters are designed to work with SQL Server 6.x+, ADO 2.5+, and
VBScript (the version that comes with Internet Explorer 4.0+); however, the concepts discussed should
be applicable to any relational database platform and operating system.

Data Warehousing
One of the problems often faced by data architects is to design a system that facilitates both the quick
retrieval of detail information, or transactions, and the ability to easily and efficiently query and
summarize that data. As we will see, the two different roles that our information plays have different
design requirements. In this section, we'll:

❑ Define data warehousing

❑ Discuss the concepts that drive data warehouse design

❑ Take a look at how XML can facilitate the data warehousing process

❑ Look at examples of XML in use in a data warehouse

The Two Roles of Data
In an enterprise-level data solution, the data in the database plays two roles:

❑ Information gathering

❑ Querying and summarization of data

Let's look at those two roles, and the different constraints they impose on the design of, and access to,
our databases.

Detailed Information Gathering
The first use of the database is to gather data from external sources (such as other databases, XML, or
simple delimited text files). This could be the insertion of invoice records into an invoice-tracking
database as customers submit them, for example, or the periodic update of stock trade information to a
stock watch database. Obviously, the specific mechanisms involved will vary from implementation to
implementation, but there are some things that remain consistent across all implementations that gather
data:

❑ Detail oriented. Because this aspect of systems is primarily concerned with getting information
into the database from external systems, they typically work with the data at the most granular
level supported by your system. For example, an invoice tracking database will be concerned
with the details of an invoice, such as items ordered, customer address information etc. A
stock watch database, on the other hand, will gather stock level information and supplier
details, amongst other things.

Data Warehousing, Archival, and Repositories

671

❑ Write-heavy. Systems designed for information gathering are mostly concerned with writing
data to the database. In some systems – such as an invoice tracking system – reads will be
performed in the context of performing an update, but this is typically minimal compared to
the amount of inserts being performed. In addition, any reads that are performed on the
database will be at the single record level – aggregation is typically not performed in this part
of the system.

❑ Transacted. Because the act of adding information to a database needs to happen seamlessly -
either all the information needs to be added, or none of it – writing records to the database
usually requires wrapping the inserts in a transaction. Because all the rows, pages, or tables
modified during the course of a transaction will be locked until that transaction is committed,
our database should be designed so that each transaction may be carried out over as short a
time and small a footprint as possible – this is sometimes known as the "get in, get out"
approach.

❑ Space-conscious. Because many of these systems will be inserting a huge amount of
information into the database, they need to be designed with space conservation in mind. A
stock watch application, for example, will typically insert millions of trade records into its
database every day. If a field is improperly sized – using an int where a smallint would do,
for example – every extra byte that is unused translates to storage space that is lost. In
addition, these systems typically rely on being able to insert records quickly, also making
smaller records a priority. These systems should be tuned to get away with the smallest
possible size for the inserted records.

❑ Heavily normalized. Since the space used in the database for the detail information is at a
premium, architects will typically design these systems to be as normalized as possible. Look-
up tables and other generalization tables will be used wherever possible to minimize
the size of the records inserted by the data gathering process. If you're unsure about how
normalization works, you can read more about it in the relational database primer in
appendix B.

Information Querying and Summarization
The other use of databases is to provide the ability to query the data and summarize it to extrapolate
trends, volumes, and other useful information from the details. In an invoice tracking system, for
example, you might be interested in the monthly sales of three-inch blue grommets broken down by
state; or for a stock watch system, how many shares of a stock were traded on each day of a particular
week. Again, the specific mechanisms will vary from implementation to implementation, but there are
some constants:

❑ Summary-oriented. Code that supports querying and summarization tends to be focused on
obtaining summary information from the detail information available. When making a
business decision, it's much more useful to see aggregate data reflecting general trends than to
browse through detail records looking for the specific information of interest (although it is
often useful to have the high detail information available for viewing as well).

❑ Read-only. Code that is responsible for the querying and summary of data is always read-only.
The information being queried and summarized enters the system during the data gathering
part of the database operations.

❑ Results-conscious. Since reports and other human-readable information must be produced
as the outcome of information querying and summarization, the tables that drive these
processes should be concerned with arriving at the result as rapidly as possible. To help
this happen, tables may often be designed to hasten the derivation of the queried or
summarized information.

Chapter 17

672

❑ Less normalized. Since results are typically more important than space consumption for
information querying and summarization, systems that support these types of functions tend to
be less normalized than systems designed to gather data. This means that you can retrieve
meaningful results by looking at a couple of tables and writing a simple query, say, rather than
having to write a complicated query involving multiple look-up tables.

As you can see, the two roles that data play in our systems are often at cross-purposes with one another.
First, let's look at how databases have traditionally been designed to support these requirements; then,
we'll see how data warehousing makes this process easier.

The Traditional Solution
The traditional approach to designing a relational database to support a platform is to design one
database to perform both data acquisition functions and querying/summarization functions. For
example, the invoice tracking system we've been using as an example throughout the system might be
used to support both invoice data entry and summary reporting. You'll recall that the table creation
script for the invoice tracking system (first encountered in chapter 3) looks something like this
(ch17_ex01.sql):

CREATE TABLE Customer (
CustomerKey integer PRIMARY KEY,
Name varchar(50),
Address varchar(50),
City varchar(30),
State char(2),
PostalCode varchar(10))

CREATE TABLE shipMethod (
shipMethodKey integer PRIMARY KEY,
shipMethod varchar(5))

INSERT shipMethod (shipMethodKey, shipMethod) VALUES (1, 'FedEx')
INSERT shipMethod (shipMethodKey, shipMethod) VALUES (2, 'USPS')
INSERT shipMethod (shipMethodKey, shipMethod) VALUES (3, 'UPS')

CREATE TABLE Invoice (
InvoiceKey integer PRIMARY KEY,
invoiceDate datetime,
shipDate datetime,
shipMethodKey integer

CONSTRAINT FK_Invoice_shipMethodKey FOREIGN KEY (shipMethodKey)
REFERENCES shipMethod (shipMethodKey),

CustomerKey integer
CONSTRAINT FK_Invoice_Customer FOREIGN KEY (CustomerKey)

REFERENCES Customer (CustomerKey))

CREATE INDEX ix_Invoice_invoiceDate ON Invoice (invoiceDate)
CREATE INDEX ix_Invoice_shipDate ON Invoice (shipDate)
CREATE INDEX ix_Invoice_CustomerKey ON Invoice (CustomerKey)

CREATE TABLE Part (
PartKey integer PRIMARY KEY,
name varchar(20),
size varchar(10) NULL,
color varchar(10) NULL)

Data Warehousing, Archival, and Repositories

673

CREATE TABLE LineItem (
LineItemKey integer PRIMARY KEY,
InvoiceKey integer

CONSTRAINT FK_LineItem_Invoice FOREIGN KEY (InvoiceKey)
REFERENCES Invoice (InvoiceKey),

PartKey integer
CONSTRAINT FK_LineItem_Part FOREIGN KEY (PartKey)

REFERENCES Part (PartKey),
Quantity integer,
Price float)

CREATE INDEX ix_LineItem_PartKey ON LineItem (PartKey)
CREATE INDEX ix_LineItem_InvoiceKey ON LineItem (InvoiceKey)

When run, this script creates the following table structure:

This set of tables supports the addition of invoices (via insertion of records into the Invoice and
LineItem tables). Space is conserved for these tables where possible by normalizing out Part and
Customer. This normalization also facilitates querying and reporting on Part and Customer.
However, there are a couple of issues with using this type of dual-purpose structure.

First, the system is not well tuned to either data entry or reporting. For example, there are indexes on
the Invoice and LineItem tables for the orderDate and invoiceDate columns, the customerKey
column, and the partKey column. While these indexes are very important for querying and reporting,
from a data entry perspective they only serve to slow down inserts into our database – because the
index data will also need to be written to the database for each index on the table. If we are only writing
data to the table (as we would for a transaction-only database), these indexes do not provide any benefit
to the transaction gathering processes. On the other hand, reporting processes will typically need to join
to several tables to obtain the information needed to generate reports. Additionally, summarization
requires the retrieval of all the detail information before summary information may be returned. We can
see that the system as designed is really a compromise between the two roles of data.

In addition, there is a serious danger of wait states for reporting and querying due to the locking being
performed by the data entry. If records are being inserted into a table on a regular basis, any report that
requires information to be read will have to wait for the write locks to be released on the database. If
there are processes in the data entry database that update many records at once (such as marking
invoices as shipped, for example), our relational database is likely to escalate the lock to a table lock,
making all reporting impossible while the update is taking place.

Chapter 17

674

Many databases try to get around the problem by adding structures that will be used to drive reporting.
These tables would be separate from the transaction tables, and have all the appropriate indices to allow
data to be queried and summarized from those tables in any way the business rules might call for. For
our example, we might add a MonthlyPartTotal table, like so (ch17_ex02.sql):

CREATE TABLE MonthlyPartTotal (
summaryMonth tinyint,
summaryYear smallint,
PartKey integer

CONSTRAINT FK_MPT_PartKey FOREIGN KEY (PartKey)

REFERENCES Part (PartKey),
Quantity integer)

This is a step in the right direction, but then often the database designer shoots himself or herself in the
foot by adding a trigger to update this table whenever the LineItem table is updated, as could be
achieved in our database by the following, ch17_03.sql:

CREATE TRIGGER UpdateMPT
ON LineItem
FOR INSERT, UPDATE
AS
BEGIN

IF (SELECT COUNT(*)
FROM MonthlyPartTotal, inserted, Invoice

WHERE summaryMonth = DATEPART(mm, Invoice.invoiceDate)
AND summaryYear = DATEPART(yyyy, Invoice.invoiceDate)
AND inserted.InvoiceKey = Invoice.InvoiceKey
AND MonthlyPartTotal.PartKey = inserted.PartKey) > 0

UPDATE MonthlyPartTotal
SET Quantity = MonthlyPartTotal.Quantity + inserted.Quantity
FROM inserted, Invoice
WHERE summaryMonth = DATEPART(mm, Invoice.invoiceDate)
AND summaryYear = DATEPART(yyyy, Invoice.invoiceDate)
AND inserted.InvoiceKey = Invoice.InvoiceKey
AND MonthlyPartTotal.PartKey = inserted.PartKey

ELSE
INSERT MonthlyPartTotal (summaryMonth, summaryYear, PartKey, Quantity)
SELECT DATEPART(mm, Invoice.invoiceDate),

DATEPART(yyyy, Invoice.invoiceDate),
inserted.PartKey,
inserted.Quantity

FROM inserted, Invoice
WHERE inserted.InvoiceKey = Invoice.InvoiceKey

IF (SELECT COUNT(*) FROM deleted) > 0
UPDATE MonthlyPartTotal

SET Quantity = MonthlyPartTotal.Quantity - deleted.Quantity
FROM deleted, Invoice
WHERE summaryMonth = DATEPART(mm, Invoice.invoiceDate)
AND summaryYear = DATEPART(yyyy, Invoice.invoiceDate)
AND deleted.InvoiceKey = Invoice.InvoiceKey
AND MonthlyPartTotal.PartKey = deleted.PartKey

END

Data Warehousing, Archival, and Repositories

675

Now we're right back at square one when querying the MonthlyPartTotal table, since it's being
updated every time a record gets inserted into the LineItem table. Remember that the whole point of
segregating the data is to avoid running into write locks on our reporting tables – and this trigger causes
an insert or update to the table every time a detail record is added! In order to make both record
insertion and querying fast and as lock-free as possible (and to avoid having to perform dirty reads on
our database - never a good idea as they may return incomplete or unexpected results), we need to think
about taking a different approach. That approach is called data warehousing.

The Data Warehousing Solution
The way that data warehousing works is really very simple – instead of using one database to support all
our data access functionality, we actually create two separate databases. Each of the new databases is
then designed to support one of our two major data roles, the organization of which is discussed in the
following sections:

❑ On-Line Transaction Processing (OLTP) databases – the information gatherers

❑ On Line Analytical Processing (OLAP) databases – the query and summarization handlers

� Parts that make up an OLAP database

� The role of XML in improving the function of OLAP databases.

On-Line Transaction Processing (OLTP)
The gathering of detail information is often referred to as On-Line Transaction Processing, or OLTP.
Don't be misled by the term – while the name refers specifically to transaction processing (such as
purchases made at a consumer e-commerce site), this part of our design is intended to handle all data
gathering processes. In this part of the database, we design our tables to support the acquisition of
transactional data – the database is as normalized as possible, with the specific table or tables (in our
example, the Invoice and LineItem tables) being kept as small as possible to reduce insert time and
disk consumption. Additionally, we discard indexes on foreign keys and other potentially searchable
columns, as they are not needed to gather data. We should also make sure we have data archival
strategies in place to make sure our OLTP database does not grow too large.

Here is an example of what our OLTP database structure might look like (ch17_ex04.sql):

CREATE TABLE Customer (
CustomerKey integer PRIMARY KEY,
Name varchar(50),
Address varchar(50),
City varchar(30),
State char(2),
PostalCode varchar(10))

CREATE TABLE shipMethod (
shipMethodKey integer PRIMARY KEY,
shipMethod varchar(5))

INSERT shipMethod (shipMethodKey, shipMethod) VALUES (1, 'FedEx')
INSERT shipMethod (shipMethodKey, shipMethod) VALUES (2, 'USPS')
INSERT shipMethod (shipMethodKey, shipMethod) VALUES (3, 'UPS')

Chapter 17

676

CREATE TABLE Invoice (
InvoiceKey integer PRIMARY KEY,
invoiceDate datetime,
shipDate datetime,
shipMethodKey integer

CONSTRAINT FK_Invoice_shipMethodKey FOREIGN KEY (shipMethodKey)

REFERENCES shipMethod (shipMethodKey),
CustomerKey integer

CONSTRAINT FK_Invoice_Customer FOREIGN KEY (CustomerKey)

REFERENCES Customer (CustomerKey))

CREATE TABLE Part (
PartKey integer PRIMARY KEY,
name varchar(20),
size varchar(10) NULL,
color varchar(10) NULL)

CREATE TABLE LineItem (
LineItemKey integer PRIMARY KEY,
InvoiceKey integer

CONSTRAINT FK_LineItem_Invoice FOREIGN KEY (InvoiceKey)

REFERENCES Invoice (InvoiceKey),
PartKey integer

CONSTRAINT FK_LineItem_Part FOREIGN KEY (PartKey)

REFERENCES Part (PartKey),
Quantity integer,
Price float)

The SQL script produces the same table structure as before; the only difference is that we have elected
not to add the indexes to the tables, making them streamlined for data gathering as we discussed earlier.
We are keeping our transaction database consumption to a minimum, making it faster for us to add new
transactions.

On-Line Analytical Processing (OLAP)
Databases intended to support querying and summarization are sometimes referred to as On-Line
Analytical Processing databases, or OLAP databases. These databases are designed with one goal in
mind – the querying and summarization of our detail data by any number of specifics defined in the
business rules for our system. For this part of our design, we create our tables to support the querying
and retrieval of this information, with the ability to rapidly insert information being a much lower
priority. In addition, there are data warehouse indexing technologies that we can leverage, which are
designed specifically for OLAP querying to really optimize our ability to query and report on our detail
data.

When the term data warehouse is used in the industry, normally what is meant is a database tuned for
OLAP processing or other processing that requires access to summarized data, such as a billing system
for our example invoice database. Another useful term to understand is data mart – as you might
suspect, a data mart is simply a pared-down data warehouse tuned to a specific business need. For
example, in our invoice tracking system there might be a data mart for the accounting department and a
data mart for the inventory control department.

Data Warehousing, Archival, and Repositories

677

Data is transferred from the OLTP database to the OLAP database on a scheduled basis (typically, this
should occur when database traffic is low). For example, you might have a process that runs at 3:00 in
the morning, every morning, that grabs the previous day's transactions, bundles them up into some
transmission format such as BCP files or XML, and sends them to the OLAP system for loading. By
transferring this data all at once, in a burst, the availability of the OLTP database for writes (and the
OLAP database for reads) is minimally impacted.

Next, let's see how an OLAP database is designed so we can understand how XML can benefit data
warehouse developers.

Parts of an OLAP Database
OLAP databases should be constructed in a specific way to leverage the technologies provided by
today's relational database platforms. In order to design an OLAP database, first we need to identify
some things about the way we plan to query and summarize our data. This section discusses the
essential parts of an OLAP database, namely:

❑ Fact Tables – where the information we wish to report on is stored.

❑ Measure Tables – where you store the measures used to do the reporting.

❑ Schema – where the two types of table above interact to give you your reports.

Fact Tables

First, we need to define our fact tables. These tables contain the data that we are planning to report on,
at the lowest level of granularity we will need to access. For example, if the consumer of our data
warehouse will need to report data at the invoice level, then each record in the fact table should
represent one invoice – but if we only need to report data at the customer level, it makes sense to pre-
aggregate the data to the customer level before adding it to our fact table. We should also try to keep
the fact tables as small as possible, as we will usually have lots of records in those tables – so we should
make sure our column datatypes are right (not using a four-byte integer when a one-byte integer would
do, for example), and that we don't carry any redundant data in our fact table. Denormalization is
usually employed in this step to bring all the facts together into one table. For example, if we were
designing a data mart for the inventory control team, we might provide a fact table that contains invoice
data and part data, denormalized together, so that a user can easily query how many of part 123 were
ordered on invoice 456. Our fact table creation script might look something like this (ch17_ex05.sql):

CREATE TABLE factInvoicePart (
InvoiceKey integer PRIMARY KEY IDENTITY,
CustomerKey integer,
ShipDateKey integer,
ShipMethodKey integer,
PartKey integer,
Quantity integer,
Price float)

Don't let the use of an integer for the invoice ship date fool you – we'll see why it's changed to an
integer when we discuss measure tables.

On the other hand, if we were designing a data mart for the executive team, we might aggregate the
information into daily summaries before creating our fact table, as executives are not going to be
interested in specific invoices. A script like the following (ch17_ex06.sql) would serve to create a fact
table for executives:

Chapter 17

678

CREATE TABLE factDailyTotal (
DailyTotalKey integer PRIMARY KEY IDENTITY,
InvoiceDate integer,
partKey integer,
partCount integer,
partUnitPrice float)

Measure/Dimension Tables

Next, you need to identify the measures that you will be using. You can think of measures as parameters
that you would use in the WHERE clause in your query when accessing the data. We might decide that
we want to see invoices broken down by customer, for example, or by ship date. For our example
inventory control fact table above, we might have a customer measure table, a ship date measure table,
a ship method measure table, and a part measure table. These tables might be created by the following
script, ch17_ex07.sql:

CREATE TABLE measureCustomer (
CustomerKey integer PRIMARY KEY,
Name varchar(50),
Address varchar(50),
City varchar(30),
State char(2),
PostalCode varchar(10))

CREATE TABLE measureShipDate (
ShipDateKey integer PRIMARY KEY,
Month tinyint,
Day tinyint,
Year smallint)

CREATE TABLE measureShipMethod (
shipMethodKey integer PRIMARY KEY,
shipMethod varchar(5))

CREATE TABLE measurePart (
PartKey integer PRIMARY KEY,
name varchar(20),
size varchar(10) NULL,
color varchar(10) NULL)

Now that we have the fact and measure tables defined, we need to bring them together into a schema.

Schema

Remember that a schema is composed of the tables in our database, joined together by the foreign keys
that relate the individual tables together. There are two types of schema that are normally used when
designing an OLAP database:

❑ star schema

❑ snowflake schema

Data Warehousing, Archival, and Repositories

679

Star Schema

In a star schema, the fact table is in the "center" of the star, and all the measure tables are related to it.
All of the columns in the fact table that represent measures should be indexed and related as foreign
keys back to the appropriate measure table, as the measures we are tracking for each fact must be
represented in our measure tables. For example, the following script (ch17_ex08.sql) would be
appropriate for creating the fact and measure tables we have defined for our inventory control OLAP
database:

CREATE TABLE measureCustomer (
CustomerKey integer PRIMARY KEY,
Name varchar(50),
Address varchar(50),
City varchar(30),
State char(2),
PostalCode varchar(10))

CREATE TABLE measureShipDate (
ShipDateKey integer PRIMARY KEY,
ShipMonth tinyint,
ShipDay tinyint,
ShipYear smallint)

CREATE TABLE measureShipMethod (
shipMethodKey integer PRIMARY KEY,
shipMethod varchar(5))

CREATE TABLE measurePart (
PartKey integer PRIMARY KEY,
name varchar(20),
size varchar(10) NULL,
color varchar(10) NULL)

CREATE TABLE factInvoicePart (
InvoiceKey integer PRIMARY KEY IDENTITY,
CustomerKey integer

CONSTRAINT fk_fact_Customer FOREIGN KEY (CustomerKey)

REFERENCES measureCustomer (CustomerKey),
ShipDateKey integer

CONSTRAINT fk_fact_ShipDate FOREIGN KEY (ShipDateKey)

REFERENCES measureShipDate (ShipDateKey),
ShipMethodKey integer,

CONSTRAINT fk_fact_ShipMethod FOREIGN KEY (ShipMethodKey)

REFERENCES measureShipMethod (shipMethodKey),
PartKey integer,

CONSTRAINT fk_fact_Part FOREIGN KEY (PartKey)

REFERENCES measurePart (PartKey),
Quantity integer,
Price float)

CREATE INDEX ix_fact_Customer ON factInvoicePart (CustomerKey)
CREATE INDEX ix_fact_ShipDate ON factInvoicePart (ShipDateKey)
CREATE INDEX ix_fact_ShipMethod ON factInvoicePart (shipMethodKey)
CREATE INDEX ix_fact_Part ON factInvoicePart (PartKey)

Chapter 17

680

This script creates the structure seen below:

Snowflake Schema

In a snowflake schema, the fact table is in the "center" of the snowflake, and the measure tables that
directly correspond to facts are related to it. Again, all of the columns in the fact table that represent
measures should be indexed and related as foreign keys back to the appropriate measure table. Each
measure may then be broken down into more coarse measures – for example, we might break down a
date measure into a month measure, and then into a year measure. For example, the following script
(ch17_ex09.sql) would be appropriate for creating the fact and measure tables we have defined for
our inventory control OLAP database, assuming that we want to break down the ship date measure:

CREATE TABLE measureCustomer (
CustomerKey integer PRIMARY KEY,
Name varchar(50),
Address varchar(50),
City varchar(30),
State char(2),
PostalCode varchar(10))

CREATE TABLE measureShipYear (
ShipYearKey integer PRIMARY KEY,
ShipYear smallint)

CREATE TABLE measureShipMonth (
ShipMonthKey integer PRIMARY KEY,
ShipMonth tinyint,
ShipYearKey integer

CONSTRAINT fk_measure_ShipYear FOREIGN KEY (ShipYearKey)
REFERENCES measureShipYear (ShipYearKey))

CREATE TABLE measureShipDate (
ShipDateKey integer PRIMARY KEY,
ShipDay tinyint,
ShipMonthKey integer

CONSTRAINT fk_measure_ShipMonth FOREIGN KEY (ShipMonthKey)
REFERENCES measureShipMonth (ShipMonthKey))

Data Warehousing, Archival, and Repositories

681

CREATE TABLE measureShipMethod (
shipMethodKey integer PRIMARY KEY,
shipMethod varchar(5))

CREATE TABLE measurePart (
PartKey integer PRIMARY KEY,
name varchar(20),
size varchar(10) NULL,
color varchar(10) NULL)

CREATE TABLE factInvoicePart (
InvoiceKey integer PRIMARY KEY IDENTITY,
CustomerKey integer

CONSTRAINT fk_fact_Customer FOREIGN KEY (CustomerKey)

REFERENCES measureCustomer (CustomerKey),
ShipDateKey integer

CONSTRAINT fk_fact_ShipDate FOREIGN KEY (ShipDateKey)

REFERENCES measureShipDate (ShipDateKey),
ShipMethodKey integer,

CONSTRAINT fk_fact_ShipMethod FOREIGN KEY (ShipMethodKey)

REFERENCES measureShipMethod (shipMethodKey),
PartKey integer,

CONSTRAINT fk_fact_Part FOREIGN KEY (PartKey)

REFERENCES measurePart (PartKey),
Quantity integer,
Price float)

CREATE INDEX ix_fact_Customer ON factInvoicePart (CustomerKey)
CREATE INDEX ix_fact_ShipDate ON factInvoicePart (ShipDateKey)
CREATE INDEX ix_fact_ShipMethod ON factInvoicePart (shipMethodKey)
CREATE INDEX ix_fact_Part ON factInvoicePart (PartKey)
CREATE INDEX ix_measure_Month ON measureShipDate (shipMonthKey)
CREATE INDEX ix_measure_Year ON measureShipMonth (shipYearKey)

This SQL script creates the following set of tables:

Chapter 17

682

Cubes
To better facilitate the query and retrieval of your OLAP data, each star schema or snowflake schema
creates a cube, where the detail information is aggregated along each of the measures. An example
will help you understand how this works. Recall our sample structure when we were discussing star
schemas earlier:

Say that we had 100,000 invoices in our factInvoicePart table. We could summarize them by their
shipping method:

FedEx UPS USPS
All invoices 72,102 15,209 12,689

If we wanted to know how many invoices were shipped via FedEx, we could simply look at the FedEx
number stored in our cube. This is an example of a one-dimensional cube. We can add another
dimension by partitioning the data by the customer on the invoice as well:

FedEx UPS USPS
Customer 1 22,615 5,192 3,972
Customer 2 12,541 2,188 918
Customer 3 7,342 3,182 1,212
Customer 4 15,320 716 3,132
Customer 5 14,284 3,931 3,455

This two-dimensional cube allows us to retrieve details of how many invoices were shipped to a
particular customer using a particular method. We can also determine how many invoices were shipped
to a customer overall (by adding the numbers found on that particular row of the cube), or how many
invoices were shipped using a particular shipping method.

You can imagine adding more dimensions to the cube – for example, we might add the order date as a
measure, or the shipping state. For each new dimension, the data in the cube is further partitioned –
creating a three-dimensional cube, a four-dimensional hypercube, and so on – making it very easy to
retrieve the specifics of the fact data for any grouping of measurements. Many OLAP libraries provide
mechanisms for accessing the data found in cubes. For more information on OLAP cubes, refer to
"Professional Data Warehousing with SQL Server 7.0 and OLAP Services", published by Wrox, ISBN
186100281.

Data Warehousing, Archival, and Repositories

683

As you can see, adopting an OLTP/OLAP structure for your data design promotes quick, low-locking
access both from a data acquisition perspective and a querying perspective – data is entered into the
OLTP database, which is tuned for data acquisition, and moved to the OLAP database for reporting,
which is tuned for querying and summarization. If you have a high-volume database system with
extensive querying and summary needs, you should consider moving to a data warehouse model.

Building your Fact Tables

Before we move any further forward, we should discuss the process of moving data from an OLTP
database to an OLAP database. As we mentioned before, you typically want to update your OLAP fact
tables in the middle of the night (or whenever your transactions are the least frequent). Moving the data
obviously consists of two steps – pulling the data out of the OLTP database and updating the OLAP
database with that data. In order to perform this update as rapidly as possible, native export forms are
often used – for example, data might be extracted from the OLTP database in the form of bulk data files
(such as BCP files for SQL Server). This data is then loaded into the OLAP database. However, there
are some problems with this approach – the most notable of which is the relative fragility of the export
and import code. If the OLTP or OLAP databases change, this code will need to be revisited. Later in
the chapter, we'll see how XML may be used to make the process of updating OLAP databases simpler
and more efficient.

Now that you have a good understanding of the concepts of data warehousing, let's see how XML may
be used to enhance the data warehousing process.

The Role of XML
We can add XML to the mix to help us in the creation and updating of our data warehouse. XML can
be used, firstly, to make it easier to update the OLAP database from the OLTP database, and secondly,
as an effective way to handle OLTP data. Let's look at both of these.

Using XML for OLAP Update Data

When working with data warehouses on the relational database platform, one of the most important
steps is designing a process to move data from the OLTP database to the OLAP database. If the OLTP
database and the OLAP database are both on the same platform and reside on the same network, then
remote server calls may be used to bring the data from one server to another for processing. However,
what happens if the OLTP database is not relational (for example, flat files, Object-oriented database)?
A perfect example of this would be a point-of-sale system – if you buy a point-of-sale system off the
shelf, the odds are good that the storage and export mechanisms it uses will not be directly compatible
with your OLAP database.

The problem is compounded if you have multiple sources of OLTP data. In the stock market data
system we suggested earlier, the stock data that is reported will be likely to come from a number of
different exchanges, all of which will have their own syntax for the export of data. Rather than building
specialized import routines for all the different formats, if you build one XML importer and then
leverage the data provider's ability to export in XML (if it has that ability – or you can build an XML
server to provide the data from a legacy system in XML format), you can save yourself a lot of
aggravation and coding time. Let's see an example.

Say we want to design a common XML format that we can use to load data into our OLAP warehouse.
For the purposes of this example, we'll assume that the OLTP provider has awareness of our measures
(it translates customers, parts, and so on to the appropriate keys). We could design a structure that looks
like this (ch17_ex09.dtd):

Chapter 17

684

<!ELEMENT InvoiceBulk (Invoice+)>

<!ELEMENT Invoice (LineItem+)>
<!ATTLIST Invoice

CustomerKey CDATA #REQUIRED
ShipDate CDATA #REQUIRED
ShipMethodKey CDATA #REQUIRED>

<!ELEMENT Part EMPTY>
<!ATTLIST Part

PartKey CDATA #REQUIRED
Quantity CDATA #REQUIRED
Price CDATA #REQUIRED>

A sample document for this structure might look like this (ch17_ex09.xml):

<?xml version="1.0"?>
<!DOCTYPE listing SYSTEM "ch17_ex09.dtd" >

<InvoiceBulk>
<Invoice

CustomerKey="17"
ShipDate="10/17/2000"
ShipMethodKey="1">
<Part

PartKey="33"
Quantity="17"
Price="0.20" />

<Part
PartKey="29"
Quantity="13"
Price="0.15" />

</Invoice>
<Invoice

CustomerKey="12"
ShipDate="10/11/2000"
ShipMethodKey="2">
<Part

PartKey="31"
Quantity="19"
Price="0.10" />

<Part
PartKey="29"
Quantity="17"
Price="0.15" />

</Invoice>
</InvoiceBulk>

Note that we've chosen to model these structures as closely as possible to the structures used by the
OLTP system. When designing structures for the transmission of data from the OLTP system to the
OLAP system, you should always try to minimize the impact on the OLTP system – your motto should
be "grab it and go".

Once you have the document extracted from your OLTP system, you'll need to get it loaded into your
OLAP database. There are a number of different ways to do this, including using a parsing library like
the DOM or SAX to load the data. Emergent platforms such as SQL Server 2000 also offer ways to load
XML documents directly into a database. However, let's see a different way you can perform the same
function using XSLT.

Data Warehousing, Archival, and Repositories

685

Consider this stylesheet (ch17_ex10.xsl):

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:output method="text" />
<xsl:template match="/">

<xsl:for-each select="InvoiceBulk/Invoice/Part">
<xsl:text>INSERT factInvoicePart (

CustomerKey,
ShipDateKey,
ShipMethodKey,
PartKey,
Quantity,
Price)

SELECT </xsl:text>
<xsl:value-of select="../@CustomerKey" /><xsl:text>,
</xsl:text>
<xsl:text>measureShipDate.ShipDateKey,
</xsl:text>
<xsl:value-of select="../@ShipMethodKey" /><xsl:text>,
</xsl:text>
<xsl:value-of select="@PartKey" /><xsl:text>,
</xsl:text>
<xsl:value-of select="@Quantity" /><xsl:text>,
</xsl:text>
<xsl:value-of select="@Price" />
<xsl:text>

FROM measureShipDate</xsl:text>
<xsl:text>

WHERE DATEPART(mm, '</xsl:text>
<xsl:value-of select="../@ShipDate" />
<xsl:text>')=measureShipDate.shipMonth

AND DATEPART(dd, '</xsl:text>
<xsl:value-of select="../@ShipDate" />
<xsl:text>')=measureShipDate.shipDay

AND DATEPART(yyyy, '</xsl:text>
<xsl:value-of select="../@ShipDate" />
<xsl:text>')=measureShipDate.shipYear</xsl:text>
<xsl:text>
GO

</xsl:text>

</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

Bear in mind that if you're running this example, the whitespace is very important! This stylesheet takes
the OLAP document we have created and builds a series of INSERT statements that will perform the
insertion of the records into our fact tables (the tables created when you run ch17_ex08.sql – the star
schema). If you apply the style sheet to the sample OLTP export document we saw earlier
(ch17_ex09.xml – it merely needs the inclusion of the association line – see ch17_ex10.xml for a
complete version), you get the following output (ch17_ex10a.sql)*:

INSERT factInvoicePart (
CustomerKey,
ShipDateKey,
ShipMethodKey,
PartKey,
Quantity,
Price)

Chapter 17

686

SELECT 17,
measureShipDate.ShipDateKey,
1,
33,
17,
0.20

FROM measureShipDate
WHERE DATEPART(mm, '10/17/2000')=measureShipDate.shipMonth
AND DATEPART(dd, '10/17/2000')=measureShipDate.shipDay
AND DATEPART(yyyy, '10/17/2000')=measureShipDate.shipYear

GO

INSERT factInvoicePart (
CustomerKey,
ShipDateKey,
ShipMethodKey,
PartKey,
Quantity,
Price)

SELECT 17,
measureShipDate.ShipDateKey,
1,
29,
13,
0.15

FROM measureShipDate
WHERE DATEPART(mm, '10/17/2000')=measureShipDate.shipMonth
AND DATEPART(dd, '10/17/2000')=measureShipDate.shipDay
AND DATEPART(yyyy, '10/17/2000')=measureShipDate.shipYear

GO

INSERT factInvoicePart (
CustomerKey,
ShipDateKey,
ShipMethodKey,
PartKey,
Quantity,
Price)

SELECT 12,
measureShipDate.ShipDateKey,
2,
31,
19,
0.10

FROM measureShipDate
WHERE DATEPART(mm, '10/11/2000')=measureShipDate.shipMonth
AND DATEPART(dd, '10/11/2000')=measureShipDate.shipDay
AND DATEPART(yyyy, '10/11/2000')=measureShipDate.shipYear

GO

INSERT factInvoicePart (
CustomerKey,
ShipDateKey,
ShipMethodKey,
PartKey,
Quantity,
Price)

Data Warehousing, Archival, and Repositories

687

SELECT 12,
measureShipDate.ShipDateKey,
2,
29,
17,
0.15

FROM measureShipDate
WHERE DATEPART(mm, '10/11/2000')=measureShipDate.shipMonth
AND DATEPART(dd, '10/11/2000')=measureShipDate.shipDay
AND DATEPART(yyyy, '10/11/2000')=measureShipDate.shipYear

GO

*This output is obtained by using XT to process the stylesheet. If you use IE5.5 with XML support
installed (XML for SQL and MSXML3, available from MSDN) instead, you get a working script
produced, but without any formatting – you will need to do it yourself. For more on XT, visit
http://www.jclark.com/xml/xt.html.

Bear in mind that you need to actually add content into our star schema tables for the above script to
work. This can be done easily using the script below (ch17_ex10b.sql):

INSERT measureCustomer (
CustomerKey,
[Name],
Address,
City,
State,
PostalCode)

VALUES (
12,
'Homer J. Simpson',
'742 Evergreen Terrace',
'Springfield',
'KY',
'12345')

GO

INSERT measureCustomer (
CustomerKey,
[Name],
Address,
City,
State,
PostalCode)

VALUES (
17,
'Kevin B. Williams',
'744 Evergreen Terrace',
'Springfield',
'KY',
'12345')

GO

INSERT measureShipMethod (
shipMethodKey,
shipMethod)

VALUES (
1,
'Fedex')

GO

Chapter 17

688

INSERT measureShipMethod (
shipMethodKey,
shipMethod)

VALUES (
2,
'USPS')

GO

INSERT measureShipMethod (
shipMethodKey,
shipMethod)

VALUES (
3,
'UPS')

GO

INSERT measurePart (
PartKey,
[name],
[size],
color)

VALUES (
31,
'grommets',
'3 in.',
'blue')

GO

INSERT measurePart (
PartKey,
[name],
[size],
color)

VALUES (
29,
'sprockets',
'2 in.',
'silver')

GO

INSERT measurePart (
PartKey,
[name],
[size],
color)

VALUES (
33,
'brackets',
'1 in.',
'red')

GO

INSERT measureShipDate (
ShipDateKey,
ShipMonth,
ShipDay,
ShipYear)

Data Warehousing, Archival, and Repositories

689

VALUES (
1,
10,
11,
2000
)

GO

INSERT measureShipDate (
ShipDateKey,
ShipMonth,
ShipDay,
ShipYear)

VALUES (
2,
10,
17,
2000
)

GO

So, once you have:

❑ Run ch17_ex08.sql against a sample database to create the tables in the first place

❑ Transformed ch17_ex10.xml with ch17_ex10.xsl to produce the output script
ch17_ex10a.sql

❑ Run ch17_ex10b.sql to populate tables with initial data

❑ Run ch17_ex10a.sql to add data to populate table factInvoicePart with data

you should finally arrive at the following table structure, PHEW!

Chapter 17

690

There are a couple of benefits to using stylesheets to create data insertion scripts. The first is
maintainability – if an incoming format changes, a new stylesheet may be prepared and deployed
without requiring a full build of your system. Additionally, if you are using an implementation of XSLT
that performs stylesheet caching (such as MSXML3), your performance will be as good as or better than
an implementation using the DOM or SAX. Once the data insertion scripts are created, they may be
applied to the OLAP database in an automated way (such as using the command-line version of ISQL to
run the script).

Next, let's look at another way that you could use XML to actually replace your OLTP database.

Using XML for OLTP Data

If you consider the way OLTP data is typically organized, you will see that XML could easily be used to
support your data gathering functionality.

❑ OLTP systems typically access one discrete transaction at a time. In the example of our
invoice system, this might be the invoice record and any line item records associated with it -
but they can be treated together as a single unit. Because the information created by OLTP
systems is relatively self-contained (you won't typically be accessing several transactions at a
time from your OLTP systems), you can store each transaction in a XML document.

❑ Locking can be avoided. Because XML documents are simply text files, they will be locked
on a document-by-document basis – so there's no danger of inadvertent lock escalation by a
data manager.

❑ XML technology can be easily leveraged. If you store your data as XML documents, it
becomes a simple matter to use XSLT to provide many different views of those data –
including browser renders, wireless renders, and various data export formats.

Note that you should confine the XML documents to the truly transactional data – all of the other tables
you need to validate the transactional data are best left in a relational form so that you can ensure the
validity of the transaction data as it arrives. So, in our invoice example, we would keep the following
RDBMS structure (ch17_ex11.sql):

CREATE TABLE Customer (
CustomerKey integer PRIMARY KEY,
Name varchar(50),
Address varchar(50),
City varchar(30),
State char(2),
PostalCode varchar(10))

CREATE TABLE shipMethod (
shipMethodKey integer PRIMARY KEY,
shipMethod varchar(5))

INSERT shipMethod (shipMethodKey, shipMethod) VALUES (1, 'FedEx')
INSERT shipMethod (shipMethodKey, shipMethod) VALUES (2, 'USPS')
INSERT shipMethod (shipMethodKey, shipMethod) VALUES (3, 'UPS')

CREATE TABLE Part (
PartKey integer PRIMARY KEY,
name varchar(20),
size varchar(10) NULL,
color varchar(10) NULL)

Data Warehousing, Archival, and Repositories

691

A side effect in this case is that all the foreign keys disappear - the tables are relegated to scrubbing
individual data points and driving the user interface. Our XML structure would then cover the Invoice
and LineItem tables we pulled out (ch17_ex12.dtd):

<!ELEMENT Invoice (LineItem+)>
<!ATTLIST Invoice

CustomerKey CDATA #REQUIRED
ShipDate CDATA #REQUIRED
ShipMethodKey CDATA #REQUIRED>

<!ELEMENT LineItem EMPTY>
<!ATTLIST LineItem

PartKey CDATA #REQUIRED
Quantity CDATA #REQUIRED
Price CDATA #REQUIRED>

A sample document that could be validated by the above DTD might look like the following
(ch17_ex12.xml):

<?xml version="1.0"?>
<!DOCTYPE listing SYSTEM "ch17_ex12.dtd" >

<InvoiceBulk>
<Invoice
CustomerKey="17"
ShipDate="10/17/2000"
ShipMethodKey="1">
<Part
PartKey="33"
Quantity="17"
Price="0.20" />

<Part
PartKey="29"
Quantity="13"
Price="0.15" />

</Invoice></InvoiceBulk>

We could then use XSLT, the DOM, SAX, or other XML import mechanisms to transfer the OLTP data
to the OLAP database as we did in the XML transport example. If you keep the measure tables in your
OLAP database and the lookup tables in your OLTP database in sync, the data from your OLTP XML
documents may be loaded directly into your OLAP database and all the foreign key relationships will
automatically be satisfied.

Summary
If you are designing a system that will involve a large amount of transactional data as well as heavy
analytical processing, you may want to consider breaking apart your database and creating a data
warehouse. Doing so will help you to reduce locking issues and allow you to tune your databases for
their specific purposes.

When you decide to implement a data warehouse, you can leverage XML to make the process less
painful. If you have heterogeneous OLTP data sources, you can use XML to make the extraction of data
for OLAP processing; and you can even go one step further by converting your OLTP transaction data
to XML. Doing so will reduce lock contention and make your OLTP system run more smoothly.

Chapter 17

692

Data Archival
Another fundamental problem that data designers have to contend with on a regular basis is how to
properly archive data. As the Information Age swings into full gear, it's going to become increasingly
important to maintain archive copies of data, even if it needs to be aged off your primary system for
performance and cost reasons. In this section, we'll see how the problem of data archival (and retrieval)
has been handled in the past, and how we can use XML to make it easier.

Classical Approaches
In the world of relational databases, the archival of data is a tricky issue. Normally, code is set up to
determine when data is archivable (after a certain time period, for example, or once the data reaches a
particular workflow state). This code is run at some off-peak time, and any data that is determined to be
archivable is removed from the relational database and stored to some other medium. However, there
are a couple of problems with this approach. Let's see an example to understand why. Look again at our
invoice OLTP system from earlier in the chapter (ch17_ex04.sql).

Our business logic might dictate that once an invoice's ship date is more than a year old, that invoice
should be archived from off the system. A typical strategy would be to bulk-copy the records to a flat
file, then delete them from the relational database. However, this strategy presents some problems:

❑ What about the LineItem data? LineItem rows are part of invoices, and should be archived
off at the same time as the Invoice rows. However, simply bulk-copying the Invoice rows
to one flat file and the LineItem rows to another file makes it really difficult to recreate the
invoice at some later time (for example, if a customer calls to request a transaction history for
the past three years). The only relatively easy way to recreate the invoice is to load the
Invoice and LineItem data from the archive and then obtain the data via a join; if the
archive files are large, however, this is extremely wasteful.

❑ What about the other tables in the database? In typical circumstances, there are more than
one (related) table that will be updated on a regular basis. In our example, the Customer and
Part tables are almost certainly going to be changing – new customers and parts will be
added, while old parts will be archived off as it becomes possible. As this data becomes
archivable (which almost certainly will be driven by a different business rule than the one that
drives invoice archival – and therefore will be archived off at a different time), reconstructing
an invoice from archive may also require digging through the archive data to locate the
customer and part associated with that particular invoice.

❑ What about human readability? Often, a customer will request specific information from an
archived source that doesn't necessarily need to be reconstructed. For example, a customer
might ask the question, "How many 3-inch blue grommets did I order on April 17 of last year?
Because I'm looking at my inventory, and I only see seven of them, and I could have sworn I
ordered fifteen, but I've misplaced my copy of the invoice..." In this case, browsing the
archive documents by hand would probably be the fastest way to obtain the data. However, if
the data is archived in a non-human-readable form, it becomes much more difficult to extract
data from the archives simply by searching through them.

If we decide to use XML for our data archival rather than some flat file structure, we can avoid all of
these problems and make retrieving archived information much easier.

Data Warehousing, Archival, and Repositories

693

Using XML for Data Archival
Archiving data to XML is a straightforward process. Each time an archive process is run, each row that
is known to be archivable is extracted (or the data that are interesting from an archival perspective are
extracted) and expressed in the form of an XML tree; these trees would then be stored together in the
archive document for that day. It's important that the XML that is produced this way be self-contained;
that is, all keys that have no meaning outside the context of the relational database should be expanded
to the information in the related tables. Let's see an example. In our relational OLTP database, we want
to archive off all invoices whose ship date is more than a year ago. As you'll recall, the invoice structure
looks like this:

CREATE TABLE Invoice (
InvoiceKey integer PRIMARY KEY,
invoiceDate datetime,
shipDate datetime,
shipMethodKey integer

CONSTRAINT FK_Invoice_shipMethodKey FOREIGN KEY (shipMethodKey)

REFERENCES shipMethod (shipMethodKey),
CustomerKey integer

CONSTRAINT FK_Invoice_Customer FOREIGN KEY (CustomerKey)

REFERENCES Customer (CustomerKey))

When creating an XML structure to hold an archived copy of our invoice, the first thing we do is
discard our primary key (as it has no meaning outside the context of the database). Note that we might
not always want to discard the primary key data – if the key has some meaning apart from uniquely
identifying the record in the database, we may want to hold on to it. We then create data points in our
structure for all non-foreign-key columns of the table. This gives us:

<!ELEMENT Invoice EMPTY>
<!ATTLIST Invoice

invoiceDate CDATA #REQUIRED
shipDate CDATA #REQUIRED>

Next, we need to expand the foreign key relationships. In this case, we have two – the ship method key
and the customer key. The ship method key is actually a look-up, so we'll express it as an attribute that
may take an enumerated value (note that we changed the values to be human-readable):

<!ELEMENT Invoice EMPTY>
<!ATTLIST Invoice

invoiceDate CDATA #REQUIRED
shipDate CDATA #REQUIRED
shipMethod (USPS | UPS | FedEx) #REQUIRED>

For the customer, however, we'll add a child element that contains all of the data points from the
Customer table in lieu of the customer key. We can include the customer key as well, if we like – that
will enable us to link back to our relational database later on if we need to – but we definitely have to
spell out the customer details as well:

<!ELEMENT Invoice (Customer)>
<!ATTLIST Invoice

invoiceDate CDATA #REQUIRED
shipDate CDATA #REQUIRED
shipMethod (USPS | UPS | FedEx) #REQUIRED>

Chapter 17

694

<!ELEMENT Customer EMPTY>
<!ATTLIST Customer

Name CDATA #REQUIRED
Address CDATA #REQUIRED
City CDATA #REQUIRED
State CDATA #REQUIRED
PostalCode CDATA #REQUIRED>

However, we also need to store the line items, as they are part of our invoice, so we add a LineItem
child element:

<!ELEMENT Invoice (Customer, LineItem+)>
<!ATTLIST Invoice

invoiceDate CDATA #REQUIRED
shipDate CDATA #REQUIRED
shipMethod (USPS | UPS | FedEx) #REQUIRED>

<!ELEMENT Customer EMPTY>
<!ATTLIST Customer

Name CDATA #REQUIRED
Address CDATA #REQUIRED
City CDATA #REQUIRED
State CDATA #REQUIRED
PostalCode CDATA #REQUIRED>

<!ELEMENT LineItem EMPTY>
<!ATTLIST LineItem

Quantity CDATA #REQUIRED
Price CDATA #REQUIRED>

Finally, we need to add the part information to the line item as a child element in lieu of the part key.
Again, if we want, we can hang onto the part key to associate the part back to our relational database
later. The finished structure looks like this (ch17_ex13.dtd):

<!ELEMENT Invoice (Customer, LineItem+)>
<!ATTLIST Invoice

invoiceDate CDATA #REQUIRED
shipDate CDATA #REQUIRED
shipMethod (USPS | UPS | FedEx) #REQUIRED>

<!ELEMENT Customer EMPTY>
<!ATTLIST Customer

Name CDATA #REQUIRED
Address CDATA #REQUIRED
City CDATA #REQUIRED
State CDATA #REQUIRED
PostalCode CDATA #REQUIRED>

<!ELEMENT LineItem (Part)>
<!ATTLIST LineItem

Quantity CDATA #REQUIRED
Price CDATA #REQUIRED>

<!ELEMENT Part EMPTY>
<!ATTLIST Part

Name CDATA #REQUIRED
Size CDATA #REQUIRED
Color CDATA #REQUIRED>

Data Warehousing, Archival, and Repositories

695

An example of a document using this structure is shown below (ch17_ex13.xml):

<?xml version="1.0"?>
<!DOCTYPE listing SYSTEM "ch17_ex13.dtd" >

<Invoice
invoiceDate="10/17/2000"
shipDate="10/20/2000"
shipMethod="USPS">
<Customer
Name="Homer J. Simpson"
Address="742 Evergreen Terrace"
City="Springfield"
State="KY"
postalCode="12345" />

<LineItem
Quantity="12"
Price="0.10">
<Part Color="Blue"
Size="3-inch"
Name="Grommets" />

</LineItem>
<LineItem
Quantity="12"
Price="0.10">
<Part Color="Blue"
Size="3-inch"
Name="Grommets" />

</LineItem>
</Invoice>

As you can see, this document handles all of the issues we were encountering with our data archival
strategy:

❑ The LineItem data is associated directly with the Invoice. Once the document containing
the invoice is opened, all of the line item information is directly accessible.

❑ Because we have designed the document to be self-contained, all of the other information
about the invoice – such as the customer and parts for the invoice – is described in place. If
the relational database has archived off customer or part information, the full meaning of the
archived invoice can be determined by the information contained in the document.

❑ This document is quite easy to read. If a customer has a question about an invoice and
this file is identified as the XML document containing information about that particular
invoice, it would be a simple matter to glean the information from the document and return
it to the customer.

While there is a small price to pay in archive space consumption (as the XML documents contain more
information than a traditional bulk-copied file would), the space may be easily recaptured by
compressing the XML documents before storing them. At any rate, since archived information is
typically stored to a removable medium, space consumption is not as critical an issue as it would be for
a live system. If your system has so many transactions that a month's worth would create a file that is
too large to be easily handled, you might consider breaking the archive down into smaller files, such as
a file per week.

Another great benefit to using XML for a data archive is the ability to apply some of the emergent XML
tools to leverage that information. For example, an XML indexer might be used to make your data
archive easily searchable, making it almost as efficient for pure reads as the original relational data was.

Chapter 17

696

When you are creating your data archive, you may want to retain some indexing data in your database
to help you locate specific information more easily. For example, you might have a table that contains
the file name of the archived data, the identifier of the removable medium where it was stored, and the
data ranges of the invoices the file contains. That way, when a specific data recovery request is made,
you will be able to more easily obtain the data you are looking for.

Summary
In this section, we've seen how XML may be used to improve the data archival process. In a properly
designed XML archive, each document will be self-contained and have all the information necessary to
reconstruct the original business meaning of the information stored in the document. The documents
are human-readable, making manual extraction of data simpler than with traditional data archival
methods. Finally, an XML data archive may be manipulated with the emergent XML toolsets to make it
a more powerful archival medium than flat bulk-copied files.

Data Repositories
One of the challenges sometimes encountered when designing enterprise solutions is that of building
data repositories. Data repositories consist of large amounts of data, much of which is seldom
aggregated or queried against. An example where this might occur would be a real estate system – there
are literally hundreds of data points associated with a particular property that is for sale, but a buyer is
typically only going to run queries against a handful of them. However, the data is interesting once the
buyer has drilled down to a particular property and wants to see the detailed information for that
property. In this section, we'll see what the traditional approach to creating data repositories has been,
and then see how XML can make the process easier.

Classical Approaches
Traditionally, data repositories are built in relational databases. All information, regardless of how often
it is queried or summarized, is treated the same – as a column in a normalized structure where it is
appropriate. If a column is searched against frequently, it may be indexed to improve performance, but
that's about as much as can be done to differentiate it from columns that are only accessed on a single-
row basis. Information that is only accessed at a detail level is effectively dead weight in the database
from a querying perspective – it clogs up the pages, making more physical reads necessary per row
accessed and leading to "cache thrashing". Let's see a simple example. Suppose we had the following
table in our database (ch17_ex14a.sql):

CREATE TABLE Property (
PropertyKey integer PRIMARY KEY IDENTITY,
NumberOfBedrooms tinyint,
HasSwimmingPool bit,
Address varchar(50),
City varchar(30),
State char(2),
PostalCode varchar(10),
SellerName varchar(50),
SellerAgent varchar(50))

Data Warehousing, Archival, and Repositories

697

Assuming that the character fields are entirely filled, each row in this table would consume about 200
bytes or so. If the database platform where this table resides uses 2K pages, about 20 properties would
be able to fit on one page. However, if we want to select all the properties that have three bedrooms and
no swimming pool, really we're only interested in six bytes of the record – the key and the two metrics
we're querying against. In this case, about 650 properties would fit on one page in our database in this
case. Your mileage may vary, depending on the way your platform chooses to store data, fill factors, and
other issues, but generally speaking a table with fewer columns will return the results of a query faster
than one with more columns (assuming the query isn't covered by an index, in which case that rule of
thumb does not apply). We can improve our query speed by taking the columns that are not normally
queried and moving them into another table (ch17_ex14b.sql):

CREATE TABLE Property (
PropertyKey integer PRIMARY KEY IDENTITY,
NumberOfBedrooms tinyint,
HasSwimmingPool bit)

CREATE TABLE PropertyDetail (
PropertyKey integer PRIMARY KEY,
Address varchar(50),
City varchar(30),
State char(2),
PostalCode varchar(10),
SellerName varchar(50),
SellerAgent varchar(50))

But why stop there? As we've discussed in this chapter, a great way to store detail data that doesn't need
to be queried is as XML. In fact, systems with more detail-only data than not can benefit from using
XML as their primary data repository. Let's see how we might do this.

Using XML for Data Repositories
Imagine turning the problem around and attacking it from an XML perspective. Information flows into
your system in the form of XML. An indexing system picks up the XML document, indexes it into your
relational database, and then stores the original XML document in a document repository. To carry on
from our previous example, let's say we have XML documents with the following structure coming into
our system (ch17_ex15.dtd):

<!ELEMENT Property EMPTY>
<!ATTLIST Property

NumberOfBedrooms CDATA #REQUIRED
HasSwimmingPool CDATA #REQUIRED
Address CDATA #REQUIRED
City CDATA #REQUIRED
State CDATA #REQUIRED
PostalCode CDATA #REQUIRED
SellerName CDATA #REQUIRED
SellerAgent CDATA #REQUIRED>

We need to build a structure in our relational database to hold the index into these documents. We've
already decided that the fields we may want to query on or summarize are NumberOfBedrooms and
HasSwimmingPool. Therefore, we create the following table in our database (ch17_ex15.sql):

Chapter 17

698

CREATE TABLE Property (
PropertyKey integer PRIMARY KEY IDENTITY,
NumberOfBedrooms tinyint,
HasSwimmingPool tinyint,
DocumentFile varchar(50))

We would then store the original XML document to a particular predefined location on our network
and use the DocumentFile field to point to the document location. If we want to query on the number
of bedrooms now, we can do so against the index and return a handful of filenames; these filenames can
be used to drill into the original XML documents to provide detail information about the address, the
seller, and so on.

There are a number of advantages to using XML for data repositories:

❑ Greater flexibility in providers. With the tendency towards XML standards, more and
more external data providers will have the ability to provide data as XML. If you design your
data repository to use XML as its primary storage mechanism, it becomes much easier to get
data into and out of your system.

❑ Faster querying and summarization. If your relational database index is built properly, you
can more quickly obtain a set of keys that will allow you to drill down into the specifics of
each item in your repository. In addition, querying will be faster due to reduced database size.

❑ More presentation options. If your data is stored natively as XML, you will have a greater
arsenal of tools at your disposal that can be used to leverage that content without additional
coding.

❑ Fewer locking concerns. Like the OLTP database we discussed earlier, keeping most of the
information at the file level with only the indexed information in the database will reduce the
locking concerns in the database and improve overall performance.

Be aware that if your data archive grows to be a large number of files, and you plan to access those files
frequently, you may need to perform file system management to ensure that obtaining the information
in those files doesn't become a bottleneck for you.

Summary
If you are designing a system that contains many data points that will never (or rarely) be queried and
summarized – but will be reported at the detail level only – then using XML as your data repository
platform might be your best bet. Passing the documents in the repository through an indexer –
extracting the information needed to query and summarize your detail and storing it in your relational
database, providing a way to find specific detail information that matches your search criteria – allows
you to create a document index in your database so that you can find the documents you need quickly
and easily, while allowing you to leverage existing XML tools to enhance the way you use that data.

Data Warehousing, Archival, and Repositories

699

Summary
In this chapter, we've seen how XML may be used to improve the way you access and manipulate your
data. We've seen:

❑ How XML may be used to help create a data warehouse

❑ The benefits you can realize by using XML as your archival strategy

❑ How XML can improve the functionality of your data repository

As more of your business partners move towards being able to send and receive XML natively, your
systems will directly and immediately benefit. In addition, these strategies will help you to decrease lock
contention on your systems and improve your data processing speed.

Chapter 17

700

Data Transmission

One of the most common uses of XML for data in enterprise today, and part of its appeal, is data
transmission. Companies need to be able to communicate clearly and unambiguously with one another,
and each other's systems, and XML provides a very good medium for doing so. In fact, as we've already
seen, XML was created for data transmission between different vendors and systems. XML lets you
create your own structure.

In this chapter, we'll take a look at the common goals and engineering tasks involved in data
transmission, and see how XML can improve our data transmission strategy. In particular we'll look at:

❑ What data transmission involves

❑ Classic strategies for dealing with data transmission issues, and where their shortcomings lie

❑ How we can overcome some of the problems associated with the classic strategies using XML

❑ SOAP (Simple Object Access Protocol), and the elements that make up SOAP messages

❑ The basics of using SOAP to transmit XML messages over HTTP

Executing a Data Transmission
First, let's take a look at what's involved in transmitting data between two systems. Once we get a feel
for the steps involved and the traditional way of handling them, we'll see how XML makes the
processing of those steps easier.

Chapter 18

702

Agree on a Format
Before we can send data between two systems, we need to agree what format the data transmission will
take. This may or may not involve negotiation between the two teams developing the systems. If one of
the systems is larger and has already implemented a data standard, typically the smaller team will write
code to handle that standard. If no standard exists, on the other hand, the two development teams will
have to collaborate on a standard that suits each team's needs – a process that may be quite time-
consuming, as we'll see when we discuss classical strategies later in this chapter.

Transport
Next, the sending party has to have some way of getting the data to the receiving party – will it be e-
mail, http, ftp? Again, the sending party and the receiving party will have to agree on the mechanism
used to transmit the data, which may involve discussions about firewalls and network security.

Routing
As systems become larger and larger, and begin to exchange data with more and more partners, systems
that receive data will need to have some way of routing data to the appropriate system or workflow
queue. This decision will be based on the sender and the operation that needs to be performed on that
data. There are also security implications here, but we'll discuss that when look at SOAP later in the
chapter.

As more and more systems start to interoperate in this scenario, a loosely-coupled information sharing
approach becomes more practical. System-to-system transmission requires those systems to build an
interface to each other, but as more systems are added, the cost of this interoperability increases
exponentially. A loosely coupled approach that uses information brokers could reduce this cost to
linear, as systems only require an interface to be built to the broker.

Request-Response Processing
More and more applications are starting to use the Internet as their framework for the processing and
transmission of information. It's therefore becoming more important to build a mechanism that allows
a specific transmission of data to be responded to in a traceable manner – things like an appraisal
verification service, or a credit reporting service. This is especially important for service providers that
offer access to their services via the Internet. Microsoft's Biztalk is one application that facilitates this –
we'll mention Biztalk again later in the chapter.

Classic Strategies
In this section, we'll see how the issues of data transmission have traditionally been addressed by
systems that were not XML-aware. After we've see some of the shortcomings of these strategies, we'll
take a look at how XML can improve our ability to control the transmission and routing of data.

Selecting on a Format
When one system transmits data to another, that transmission typically takes the form of a character
stream or file. Before two companies can set up a communications channel, they need to agree on the
exact format of that channel. Typically, the stream or file is broken up into records, which are further
subdivided into fields, as you would expect.

Data Transmission

703

Let's see some of the typical structures we might expect to see in a classic data transmission format.

Delimited Files
This kind of delimited file is quite common, and usually has some character (such as a comma or
vertical bar |) to separate the fields, and a carriage return to separate the records. Empty or NULL
fields are shown by two delimiting characters immediately following each other. You can read more
about these in Chapter 12 – Flat File Formats.

Fixed-width Files
Fixed-width flat files have an advantage in that the systems always know the length and exact format of
the data being sent. A carriage return will generally still be used as the record delimiter in this case.
Again, you can read more about fixed-width delimited files in Chapter 12.

Proprietary/Tagged Record Formats
As you might imagine, proprietary formats can vary in structure from hybrid delimited/fixed-width
formats, to relatively normalized structures. The key to these structures is that typically there are
different types of records; each record will have some sort of indicator specifying the type of record
(and hence the meaning of the fields found in this record). For each record, however, all of our
formatting and other specification rules still apply.

For example, we might have the following specialized format for our invoice example, which we worked
on in the first four chapters, where each record is exactly 123 bytes long. The first character of each
record is used as the record identifier. Records must always start with the Invoice header record,
followed by the Customer record, and then one or more Part records :

1. Invoice header record

2. Customer record

3. One or more Part records

Based on its contents, the fields that make up each record are as follows:

Invoice Header Record

Field Start
Position

Size Name Format Description

1 1 1 Record type Always H. The letter H
means this is an invoice
header record

Indicates an invoice
header record

2 2 8 Order Date Datetime YYYYMMDD The date the order on
the invoice was placed

3 10 8 Ship Date Datetime YYYYMMDD The date the order on
the invoice was shipped

4 18 106 Unused (Filler) String Must be filled with all
spaces

Chapter 18

704

Customer Record

Field Start
Position

Size Name Format Description

1 1 1 Record type Always C. The letter
C indicates that this is
a customer record.

Indicates a customer
record

1 2 30 Customer Name String The name of the
customer for this invoice

2 32 50 Customer Address String The street address of the
customer

3 82 30 Customer City String The city of the
customer's address

4 112 2 Customer State String The customer's state

5 114 10 Customer Postal
Code

String The customer's postal
code

Part Record

Field Start
Position

Size Name Format Description

1 1 1 Record type Always P Indicates a part record

2 2 20 Part Description 1 String The description of the
first part ordered

3 22 5 Part Quantity 1 Numeric. Left pad
with zeroes.

The quantity of the first
part ordered

4 27 7 Part Price 1 Numeric. Two
implied decimal
places. Left pad with
zeroes.

The unit price of the first
part ordered

5 34 90 Unused String Must be filled with all
spaces

A file that follows the above format might look like this (we've had to format this slightly to fit it on the
page):

H20001017200010223
CHomer J. Simpson 742
Evergreen Terrace Springfield
KY12345
P3 inch blue grommets000170000010 P2 inch red sprockets000230000015
H20001017200010223
CKevin B. Williams 744
Evergreen Terrace Springfield
KY12345
P1.5 inch silver spro000110000025 P3 inch red grommets 000140000030
P0.5 inch gold widget000090000035

Data Transmission

705

Problems with Classic Structures
Let's take a look at some of the shortcomings of classic data transmission structures.

Not Self-Documenting

You'll notice that in all of our examples, there had to be associated documentation with a file format
explaining how the records and fields were broken apart, what each field represented, and the specific
formatting idiosyncrasies of each field. This is less than ideal, because without the supporting
documentation, the files are virtually unusable.

Not Normalized

In most classic structures, records are completely denormalized (although we have seen some custom
structures, like tagged-record structures, that allow structure information to be transmitted). In our
fixed-width and delimited examples in Chapter 12, there are only a finite number of parts available for
use – five in the case of these examples. What if there is a sixth part, however? How can we represent it
in our structure?

The example we give of a proprietary format is a little better, but still not ideal. It allows a theoretically
unlimited number of parts for each invoice, but there is the added overhead for the parser of
determining what type of record each record is, and handling it appropriately.

Fragile

You may or may not remember a little problem that had all of the world's COBOL programmers
gainfully employed for the last few years of the twentieth century – the so-called "Y2K" problem. At its
heart, this problem boiled down to a data description problem, affecting (among other things) data
transmission formats.

If a fixed-width file, for example, had defined a field holding a date as six characters in the form
YYMMDD, then this presented a Y2K problem. Changing the file to hold a proper eight-character date
in the form YYYYMMDD not only necessitated changing the code that created the file, but changing
the code of all of the other programs that consumed that file! Obviously, this is sub-optimal.

While the Y2K problem has passed, we can still see similar issues cropping up for classic data
transmission formats on a regular basis. What if we want to pass additional information with our parts in
our file? What if we are going international and need to add a country field for our customers? Classic
data structures handle these types of changes ungracefully.

Routing and Requesting

When transmitting data, there are really two questions that need to be answered:

❑ What is the data?

❑ What should be done with it?

Take our sample invoice files, for instance. These files do a good job of describing what the data is, but
not a very good job of what should be done with it. As the recipient of one of these data transmissions,
what do I do? Is this a new copy of an invoice I've never seen, meaning I should insert it into my
tracking database? Is this an updated copy, meaning I should find an invoice that matches it and update
the information?

Chapter 18

706

Obviously, we can add more fields and/or record types to our formats to help answer the routing
questions – for example, in our proprietary format we might add a record type that describes how the
contents of the file are to be used. But what if we decide that there's a new way to use data that we
didn't think about when we designed the file? What if sometimes we don't have a specific purpose in
mind for the data, and are simply transmitting it in a "for-your-records" fashion? It would be useful if
there were some way we could specify the purpose of the data, separate and distinct from the data itself,
that could be transmitted at the same time in a universally understood way.

Transport
Once we have created our file or character stream, we need to somehow get it from the producer to the
consumer. There are many different ways this can happen, depending on how compatible (or
incompatible) the sending and receiving systems are. Let's look at a few of them.

Physical Media
The most widely used transmission mechanism for data, in some cases up until just a few years ago, was
physical media. The producer cuts a tape, saves to floppy, or prints the data. On receipt, the consumer
would then have to load the tape, copy the file, or (believe it or not) re-key the data to make it available
to processes at their site.

There are a number of problems with using physical media to transmit data. The most obvious one is
the manual intervention issue. There are costs and processing time associated with having an operator
load a tape or disk on the producer's side, and ship the results to the consumer. At the consumer,
another operator has to load the tape or disk, or re-key the data. Human error is also a big concern
when manually generating and loading data.

One important problem is that of speed. Unless the data is traveling a really short distance, it is quite
likely that there will be both a delay in transportation, and a delay in getting the data on to the other
system. This delay could be days long.

Another major problem with physical media is the fragility issue. Tapes, disks, and printouts are
susceptible to damage during the preparation and shipping steps. An incautious delivery person
throwing a package a little too hard can render the entire file unusable.

Finally, there's the hardware issue to consider. If a consumer needs to be able to accept data
transmissions from a variety of producers, the consumer will need to have hardware available that can
read the physical media provided by the producers.

E-mail
Data transmissions may also be performed as e-mail attachments. The file is prepared by the producer,
optionally compressed, and then sent as an attachment to the consumer. The consumer can extract the
attachment manually and provide it to the systems on their end. Even better, savvy programmers can
always write a mail daemon that picks up mail addressed to a particular location, extract the
attachments automatically, and provide them to the processing system with no additional human
intervention.

The major problem with using e-mail to handle these types of data transmissions is one of message
volume and file size. If you are sending many small data transmissions – one file per invoice received
for example – then an e-mail system will expend a lot of time and resources managing all of the
messages as they arrive at the consumer. On the other hand, if you tend to send fewer transmissions but
larger files – one file with all of the invoices received on a particular day, for example – then your e-
mail may be blocked by the receiving system because of excessive attachment size. While e-mail is OK
as an alternative for transmitting data, it is not strongly recommended.

Data Transmission

707

FTP
About two or three years ago, FTP was being used heavily for data transmission. A consumer machine
would have an FTP server installed on it, and files would be dropped into a particular directory.
Automated processes could then watch that directory for files and process them as they came in.

Recently, however, there has been a certain amount of concern with leaving FTP access open through a
firewall. With the current spate of denial-of-service attacks, many network administrators are closing off
access to everything but port 80 (and/or port 443, for HTTPS) on their systems to try to avoid these
attacks. Of course, if the FTP port is not available through the firewall, FTP may not be used to transmit
data. One way round this is to have several layers of firewalls with different permissions. The idea is to put a FTP
server in between the firewalls, therefore not opening up your internal network.

Socket Code
With the advent of the Internet, many developers built custom TCP applications to accept data over a
particular TCP port. A random port number would be picked, and the producer and consumer would
write code to stream data to and accept data from that port. For a while, this seemed an ideal solution –
while there was additional developer effort required to get the service up and running, any level of
security could be imposed on the packets transmitted to that port, and the software would not interfere
with any traditional servers such as HTTP or FTP running on the same machine.

Unfortunately, specialized socket code suffers from the same problem as FTP – firewalls. Denial-of-
service attacks don't rely on their packets being accepted to accomplish their goal, so many network
administrators simply disallow traffic on custom ports.

Virtual Private Network (VPN)
Another, more secure way of transferring information over the Internet is through the use of a Virtual
Private Network. This is a tunneling mechanism that may be used to make two machines on the Internet
appear as if they were on the same LAN. Files may be moved across this network as if they were being
transferred between nodes on a LAN.

While this is more secure than other transmission mechanisms, it is still vulnerable to vandals – spurious
packets, even denial-of-service attacks, may still be launched against a VPN. Each system also has to
have the appropriate VPN software in place and running.

Leased-Line
The best possible, and cleanest, classic mechanism for the transmission of data is via a leased-line.
Essentially, the producer and/or consumer pay to have a frame-relay, T1, or other physical line installed
directly between the two physical locations. Data may then be freely transmitted along that line without
bandwidth difficulties, Internet traffic concerns, or security worries.

The obvious downside to leased-line transmission is cost. High-bandwidth leased-lines such as T1 lines
can cost thousands of US dollars to install and maintain. If a producer is attempting to transmit data to
many consumers, each producer-consumer pair will need to have a leased-line installed to do so. While
the transmission of data over leased-lines is as safe as possible, it will probably not be cost-effective for
most applications.

Chapter 18

708

How Can XML Help?
We've seen the various problems encountered when attempting to transfer data using traditional means.
Now, let's take a look at how using XML to transfer data helps us eliminate many of these challenges.

XML Documents are Self-Documenting
One of the best things about XML is that properly designed XML documents are self-documenting, in
the sense that the tags describe the data with which they are associated. Whether we are using elements
or attributes, the name of a specific element or attribute should clearly describe the content of that
specific element or attribute, assuming the author has designed the XML file well.

Take for example the following XML structure (ch18_ex01.xml):

<?xml version="1.0"?>
<!DOCTYPE OrderData [
<!ELEMENT OrderData (Invoice+)>
<!ELEMENT Invoice (Customer, Part+)>
<!ATTLIST Invoice

orderDate CDATA #REQUIRED
shipDate CDATA #REQUIRED>

<!ELEMENT Customer EMPTY>
<!ATTLIST Customer

name CDATA #REQUIRED
address CDATA #REQUIRED
city CDATA #REQUIRED
state CDATA #REQUIRED
postalCode CDATA #REQUIRED>

<!ELEMENT Part EMPTY>
<!ATTLIST Part

description CDATA #REQUIRED
quantity CDATA #REQUIRED
price CDATA #REQUIRED>

]
>
<OrderData>

<Invoice
orderDate="10/17/2000"
shipDate="10/20/2000">
<Customer

name="Homer J. Simpson"
address="742 Evergreen Terrace"
city="Springfield"
state="KY"
postalCode="12345" />

<Part
description="2 inch blue grommets"
quantity="17"
price="0.10" />

<Part
description="3 inch red sprockets"
quantity="11"
price="0.15" />

</Invoice>
<Invoice

orderDate="10/21/2000"
shipDate="10/25/2000">

Data Transmission

709

<Customer
name="Kevin B. Williams"
address="744 Evergreen Terrace"
city="Springfield"
state="KY"
postalCode="12345" />

<Part
description="1.5 inch silver sprockets"
quantity="9"
price="0.25" />

<Part
description="0.5 inch gold widgets"
quantity="3"
price="0.35" />

</Invoice>
</OrderData>

Even without any other supporting documentation, it's pretty clear what all of the parts of this document
represent. A programmer could conceivably write a program to accept this type of document given a
sample like the one shown above. The only thing not provided in this example that would be useful is
strong data typing. However, once XML Schemas enter widespread use, we will be able to specify the
exact format and size of each data field in our structure.

XML Documents are Flexible
Because of the nature of XML structures, it becomes very easy to add information to them as necessary
without breaking existing code. For example, we might decide that we want to add an additional field to
the Invoice element, called shipMethod, which describes the type of shipping method to be used to
fulfill the order. We can do so by modifying our previous document type definition as follows
(ch18_ex02.xml):

<!ELEMENT OrderData (Invoice+)>
<!ELEMENT Invoice (Customer, Part+)>
<!ATTLIST Invoice

orderDate CDATA #REQUIRED
shipDate CDATA #REQUIRED
shipMethod (USPS | UPS | FedEx) #IMPLIED>

<!ELEMENT Customer EMPTY>
<!ATTLIST Customer

name CDATA #REQUIRED
address CDATA #REQUIRED
city CDATA #REQUIRED
state CDATA #REQUIRED
postalCode CDATA #REQUIRED>

<!ELEMENT Part EMPTY>
<!ATTLIST Part

description CDATA #REQUIRED
quantity CDATA #REQUIRED
price CDATA #REQUIRED>

Because we've defined our new attribute as implied (not necessary), any existing documents that were
valid against the previous version of our DTD will also validate against this one. This allows us to make
modifications to our XML structures as it is necessitated by business requirements without requiring all
the consumers receiving the structure to be modified.

Chapter 18

710

XML Documents are Normalized
XML documents, by their nature, are structured. This is more natural when working with data – for
most applications, data is best represented by a tree structure. Unlike classic file formats that require a
consuming program to extrapolate the normalization, it is available right away when processing an
XML document.

XML Documents can Utilize Off-The-Shelf XML Tools
There are many off-the-shelf tools that are well suited to the creation, manipulation, and processing of
XML documents. As XML becomes more and more prevalent in the business environment, you can bet
that more and more toolsets will be developed that allow programmers to make use of content in an
XML form. Significantly, many of the tools that are available are open-source, freely distributed, or
made available as standard on a platform – for example MSXML with MS Windows 2000 – making
them ideal tools for the programmer on a budget.

Routing and Requesting
Because XML documents are by their nature in tree form, it becomes very easy to wrap an existing
XML document in an additional parent element that describes how that document is to be processed
and routed. The best way to think of this is as an envelope. Like an envelope, the wrapping element
might describe whom the document is from, who the intended recipient is, and what the contents are to
be used for.

For example, let's say we had our structure from earlier:

<!ELEMENT OrderData (Invoice+)>
<!ELEMENT Invoice (Customer, Part+)>
<!ATTLIST Invoice

orderDate CDATA #REQUIRED
shipDate CDATA #REQUIRED>

<!ELEMENT Customer EMPTY>
<!ATTLIST Customer

name CDATA #REQUIRED
address CDATA #REQUIRED
city CDATA #REQUIRED
state CDATA #REQUIRED
postalCode CDATA #REQUIRED>

<!ELEMENT Part EMPTY>
<!ATTLIST Part

description CDATA #REQUIRED
quantity CDATA #REQUIRED
price CDATA #REQUIRED>

The element <OrderData> is really acting as an envelope already. It is being used to hold a number of
invoices, in much the same way that an envelope may contain many pieces of paper. It makes sense for
us to add some routing information to that element.

Let's say we want to add a user name. This will be the user with which the processing system associates
the invoices in the document. We'll also add a workflow state that indicates the way the user should
handle the data:

Data Transmission

711

<!ELEMENT OrderData (Invoice+)>
<!ATTLIST OrderData
userName CDATA #IMPLIED
status (PleaseCall | FYI | PleaseFulfill | Fulfilled) #IMPLIED>

<!ELEMENT Invoice (Customer, Part+)>
<!ATTLIST Invoice
orderDate CDATA #REQUIRED
shipDate CDATA #REQUIRED>

...

Note that our additional workflow attributes have been declared as IMPLIED. This allows us to still
transmit the data in the document without specifying any particular behavior on the part of the
processor. So here's a sample document using our new structure (ch18_ex03.xml):

<OrderData
userName="Ned Flanders"
status="FYI">
<Invoice

orderDate="10/17/2000"
shipDate="10/20/2000">
<Customer

name="Homer J. Simpson"
address="742 Evergreen Terrace"
city="Springfield"
state="KY"
postalCode="12345" />

<Part
description="2 inch blue grommets"
quantity="17"
price="0.10" />

...

The processing system would first examine the envelope – the <OrderData> element – to determine
whether any routing or workflow information was provided. It would then know that the contents were
to be associated with Ned Flanders, and that they should be placed in an FYI workflow state. Then, the
processor would open the envelope, start examining the children, and handle each one according to its
internal rules for associating invoices with workflow queues and users.

This type of structure also makes it easier to create request-response pairs. We can associate a
transaction key with our request, so that when the consumer responds to our request we can identify
which request is being responded to. Let's see an example. We'll add an attribute to our structure:

<!ELEMENT OrderData (Invoice+)>
<!ATTLIST OrderData

userName CDATA #IMPLIED
status (PleaseCall | FYI | PleaseFulfill | Fulfilled) #IMPLIED
transactionID CDATA #IMPLIED>

<!ELEMENT Invoice (Customer, Part+)>
<!ATTLIST Invoice

orderDate CDATA #REQUIRED
...

Chapter 18

712

Then, each time our code creates a document, it should create an identifier for that document, add it to
the XML document, and log it. It then transmits the request to the consumer:

<OrderData
userName="Ned Flanders"
status="FYI"
transactionID="101700A1B12">
<Invoice

orderDate="10/17/2000"
shipDate="10/20/2000">
<Customer

name="Homer J. Simpson"
...

The consumer processes the request for workflow storage, and then responds to the original system that
the data has been received and all is well:

<!ELEMENT OrderDataResponse EMPTY>
<!ATTLIST OrderDataResponse

status (Accepted | Errors | TooBusy) #REQUIRED
stateDetail CDATA #IMPLIED
transactionID CDATA #REQUIRED>

<OrderDataResponse
status="Accepted"
transactionID="101700A1B12" />

or that the request had some problem, and perhaps a description of the problem encountered:

<OrderDataResponse
status="Errors"
stateDetail="Unknown customer."
transactionID="101700A1B12" />

The next stage in this argument involves SOAP – but that's such a big topic it deserves a section
in itself.

SOAP
If you're familiar with SOAP (Simple Object Access Protocol), a lot of what we just described with the
enveloping mechanism probably sounds familiar to you. A consortium of technology companies,
including Microsoft and IBM, designed SOAP, intending it to address several different challenges:

❑ Platform-independent component instantiation and remote procedure calls. SOAP-aware
servers can interpret SOAP messages as remote procedure calls where appropriate. This
allows, for example, a program running on the Windows 2000 platform to request a process to
be run on a legacy system, without requiring specialized code to be written on either side (as
long as each has a SOAP-aware server running).

❑ Providing meta-information about a document in the form of an envelope. SOAP defines two
namespaces – one for the SOAP envelope and another for the body of the document – that
provide much of the same functionality we created earlier in the chapter.

Data Transmission

713

❑ Delivering XML documents over existing HTTP channels. SOAP provides a well-defined way
to transmit XML documents over HTTP. (This is important for firewalls, since most port 80
requests are open.) SOAP-aware servers can interpret the MIME-type and route the XML
document being transferred accordingly.

Let's take a look at the way SOAP envelopes are created. We'll do this by building up an example bit by
bit, looking at the meaning of each element and attribute as we go.

Before we start, we should mention a couple of peculiarities about SOAP messages. First, SOAP
messages cannot contain document type definitions. They need to conform to the informal rules set out
below, but these rules are not enforced by a document type definition. Second, SOAP messages may not
contain processing instructions. If your documents require processing instructions or DTDs, you may
not be able to use SOAP to pass them over HTTP.

If you want to know more about SOAP, see http://www.w3.org/TR/SOAP/ for the latest
specification. There's also a detailed introduction to implementing SOAP solutions in Professional
XML, ISBN 1-861003-11-0, from Wrox Press.

The SOAP Envelope
To transmit an XML document over HTTP using SOAP, the first thing we need to do is to encapsulate
that document in a SOAP envelope structure. The elements and attributes that are used in this structure
are in the namespace http://schemas.xmlsoap.org/soap/envelope.

In a SOAP message, the topmost element is always an Envelope. It then has as its children a Header
element and a Body element. The Header element is optional, while the Body element is mandatory.
All these elements fall in the SOAP envelope namespace.

So for our example, we have:

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

You can attach additional information to the SOAP envelope in the form of attributes or
subelements, if you want. However, they must be namespace-qualified, and if they are subelements,
they must appear after the Body subelement. Because SOAP allows you to put information about
the anticipated usage of the XML payload in the Header element, additional elements or attributes
are typically placed there rather than as part of the envelope proper.

The SOAP Header
We can optionally pass a Header element in our SOAP message as well. If we choose to do so, the
element must be the first child element of the Envelope element. The Header element is used to pass
additional processing information that the client might need to properly handle the message – in effect,
giving us the ability to extend the SOAP protocol to suit our needs.

Chapter 18

714

For example, we might specify that our SOAP messages will have a Header element that indicates
whether the body of the message is a retransmission of a message already sent, or if it contains new
information. We could add an element to our document called MessageStatus that indicates whether
the message is a retransmission or not. When we choose to add elements to the Header element in a
SOAP message, we need to assign a namespace for that element and make sure all the elements and
attributes under it are attributed to that namespace.

So we might have a document that looks like this:

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header>
<invoice:MessageStatus

xmlns:invoice="http://www.invoicesystem.com/soap">
<invoice:status>Resend</invoice:status>

</invoice:MessageStatus>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Here, we're saying that there is a MessageStatus associated with the XML payload that's in the body
of the SOAP message. If the consuming engine understands the MessageStatus element, it can take
an appropriate action – for example, it might attempt to match the information up to information it has
already stored in a relational database, rather than inserting a new record. However, the consumer
doesn't have to understand how to handle the MessageStatus element – if it doesn't, it can process the
message as if the MessageStatus header element were not present.

If we want to make comprehension of the MessageStatus element compulsory – in other words, make
it so that a processor must return an error if it does not understand that element – we can do so by
adding an attribute defined in SOAP called mustUnderstand. If this attribute is set to the value 1, then
processors that do not know how to handle the MessageStatus element must return an error to the
sender. We'll see how SOAP errors are returned a little later in the chapter.

Our modified SOAP message now looks like this:

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header>
<invoice:MessageStatus

xmlns:invoice="http://www.invoicesystem.com/soap"
SOAP-ENV:mustUnderstand="1">
<invoice:status>Resend</invoice:status>

</invoice:MessageStatus>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The SOAP Body
Finally, the Body element in a SOAP message contains the actual message that is intended for the
recipient. This message will typically be the payload you are attempting to transmit over HTTP. The
Body element must appear in all SOAP messages, and must either immediately follow the Header
element (if the Header element is present in the message), or be the first child element of the
Envelope element (if no Header element exists). Elements and attributes that appear in the XML
payload may be assigned to a namespace, but are not obliged to be.

Data Transmission

715

Let's say that what we're retransmitting is a copy of an invoice. We might have a SOAP message that
looks like this:

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header>
<invoice:MessageStatus

xmlns:invoice="http://www.invoicesystem.com/soap"
SOAP-ENV:mustUnderstand="1">
<invoice:status>Resend</invoice:status>

</invoice:MessageStatus>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
<Invoice
customerIDREF="c1"
orderDate="10/17/2000"
shipDate="10/20/2000">
<LineItem
partIDREF="p1"
quantity="17"
price="0.15" />

<LineItem
partIDREF="p2"
quantity="13"
price="0.25" />

</Invoice>
<Customer
CustomerID="c1"
name="Homer J. Simpson"
address="742 Evergreen Terrace"
city="Springfield"
state="KY"
postalCode="12345" />

<Part
PartID="p1"
name="grommets"
size="3 in."
color="blue" />

<Part
PartID="p2"
name="sprockets"
size="2 in."
color="red" />

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

A SOAP-aware processor would read this message and determine whether it could correctly process all
the Header elements with the mustUnderstand attribute set to true. If it could, it would then "rip
open the envelope", extract the XML payload, and act on it according to any instructions provided in
the Header elements.

As we mentioned earlier, a SOAP processor must return an error to the caller if a SOAP message
cannot be correctly processed. This is done by returning a Fault element in the body of the response –
let's see how this would be done.

Chapter 18

716

The SOAP Fault Element
If a SOAP processor encounters difficulty in handling a SOAP message, it must return a Fault element
as part of its response. The Fault element (which is in the SOAP envelope namespace) must appear as
a child element of the Body element (but it does not have to appear first, or be the only child element of
the Body element). This allows us to return an error, but still respond to the sent message – as we'll see
in a few pages. The Fault element contains some subelements that are used to describe the problem
encountered by the SOAP-aware processor. Let's see how they work.

The faultcode Element

The faultcode element is used to indicate the type of error that occurred when attempting to parse
the SOAP message. Its value is intended to be algorithmically processed, and as such takes the form:

general_fault.more_specific_fault.more_specific_fault

with each further entry in the list, separated by periods, providing more specific information about the
type of error that occurred. The values should be (but do not have to be) qualified by the namespace
defined for the SOAP envelope. In the SOAP 1.0 Specification, the following values for faultcode are
defined:

Name Meaning

VersionMismatch The processing party found an invalid namespace for the SOAP
Envelope element.

MustUnderstand An immediate child element of the SOAP Header element that was
either not understood or not obeyed by the processing party contained
a SOAP mustUnderstand attribute with a value of 1.

Client The message was incorrectly formed or did not contain the appropriate
information in order to succeed. For example, the message could lack
the proper authentication or payment information. This is generally an
indication that the message should not be resent without change.

Server The message could not be processed for reasons not directly
attributable to the contents of the message itself, but rather to the
processing of the message. For example, processing could include
communicating with an upstream processor, which didn't respond. The
message may succeed at a later point in time..

So, for example, if the processor ran out of memory, it would be acceptable to pass back a faultcode
containing the value Server:

<SOAP-ENV:Fault>
<SOAP-ENV:faultcode>SOAP-ENV:Server</SOAP-ENV:faultcode>

</SOAP-ENV:Fault>

However, it might be more useful for the original sender of the SOAP message to know why there was a
server error. In that case, a qualified faultcode could be passed:

<SOAP-ENV:Fault>
<SOAP-ENV:faultcode>SOAP-ENV:Server.OutOfMemory</SOAP-ENV:faultcode>

</SOAP-ENV:Fault>

Data Transmission

717

The faultstring Element
The faultstring subelement is intended to provide a human-readable description of the error
that occurred. It must be present in the Fault element, and should provide some sort of message
 about what happened. For our out-of-memory example, then, our fault message might look something
like this:

<SOAP-ENV:Fault>
<SOAP-ENV:faultcode>SOAP-ENV:Server.OutOfMemory</SOAP-ENV:faultcode>
<SOAP-ENV:faultstring>Out of memory.</SOAP-ENV:faultstring>

</SOAP-ENV:Fault>

The detail Element
The detail subelement is used to describe specific errors related to the processing of the XML payload
itself (as opposed to the processing of the SOAP message, server errors, or errors related to the SOAP
headers). If the XML payload was incomplete, in an unexpected format, or violated business logic
applied to it by the system receiving the SOAP message, these problems would be reported in the
detail subelement.

The detail subelement is not required in a Fault element; it should only be present if there was some
problem processing the body of the message. Each of the child elements of the detail subelement
should be qualified with a namespace.

Let's say that one of the business rules applied by the SOAP message consumer is that when it receives
an invoice with a status of Resend, it must match the resent data to the data in its database. If it does
not, it must report this to the SOAP message sender in its fault response. The message might look like
this:

<SOAP-ENV:Fault>
<SOAP-ENV:faultcode>SOAP-ENV:Client.BusinessRule.NotFound
</SOAP-ENV:faultcode>
<SOAP-ENV:faultstring>The resent record was not found.
</SOAP-ENV:faultstring>
<SOAP-ENV:detail>
<error:BusinessRule xmlns:error="http://www.invoicesystem.com/soap">
<BusinessRule>ResendNotMatched</BusinessRule>
<ErrorCode>1007</ErrorCode>

</error:BusinessRule>
</SOAP-ENV:detail>

</SOAP-ENV:Fault>

Transmission Over HTTP
One of the problems we were facing with our classic data transmission strategies was that of firewalls
and restricted network access. Because HTTP is a widely accepted protocol, and because most firewalls
will allow traffic to port 80 (and to port 443 for HTTPS access), it is useful to be able to transmit XML
over HTTP.

As we've already seen, the SOAP protocol defines a way to transmit XML messages over HTTP, and
there are other mechanisms that exist (such as XML-RPC) that are also designed to piggyback on port
80. While there's some dissent among the theorists as to how good a solution this is – one doesn't have
to look too hard to find a white paper on the dilution of the http:// URL prefix and why using HTTP for
SOAP is a bad idea – HTTP (or HTTPS) nevertheless provides a perfectly acceptable transport
mechanism for XML documents.

Chapter 18

718

When transmitting SOAP over HTTP, a request-response mechanism is used. Much as an HTML web
page is requested and then sent in response to the HTTP request, a SOAP message will be sent in
response to an HTTP SOAP request. Let's see how these requests and responses look.

HTTP SOAP Request
When transmitting a SOAP packet over HTTP, the normal semantics of HTTP should be followed –
that is, the HTTP headers appear, followed by a double carriage return, followed by the body of the
HTTP request (which in our case will be the SOAP message itself).

There is an additional header field defined for SOAP requests that must be used, called SOAPAction.
The value of this header field must be a URI, but the SOAP specification doesn't define what that URI
has to mean. Typically, it should represent the procedure or process run by the server on receipt of the
SOAP message. If the SOAPAction field takes a blank string ("") as a value, then the intent of the SOAP
message is assumed to be provided in the standard HTTP request URI. If there is no value provided,
then the sender is not indicating any intent for the message.

Here are some examples of SOAPAction headers:

SOAPAction: "http://www.invoiceserver.com/soap/handler.exe#Invoice"
SOAPAction: ""
SOAPAction:

Other HTTP headers should appear in the request as normal. We'll see an example of an HTTP SOAP
request a little later. First, let's look at the way the HTTP SOAP response is transmitted.

HTTP SOAP Response
SOAP responses over HTTP use the same status codes as you would expect to see when transmitting
HTML over HTTP. For example, a status code of 2xx means that the request was handled successfully.
If an error is encountered during the processing of the SOAP message itself, the response must contain
the status code 500 (internal server error) and report the exact problem encountered in the body of the
SOAP response.

An HTTP Transmission Example
Let's revisit our previous example. For our sample transaction, we are resending an invoice that has
already been submitted to the receiving party. We will assume that the receiving system will decide how
to process the request based on the HTTP request URL. To issue the HTTP request for this
transmission, we preface the body of the request with the appropriate HTTP headers, including the
SOAPAction header. Note that we specify the content type as text/xml – this should always be the
case for SOAP messages:

POST /soap/Handler HTTP/1.1
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn
SOAPAction: ""

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header>
<invoice:MessageStatus

xmlns:invoice="http://www.invoicesystem.com/soap"
SOAP-ENV:mustUnderstand="1">
<invoice:status>Resend</invoice:status>

</invoice:MessageStatus>
...

Data Transmission

719

On receipt of this HTTP POST, a SOAP-aware server would forward the packet to the Handler
resource for processing. If all is well and the invoice is found on the system, the Handler resource would
respond to the client with a HTTP SOAP response message that looks something like this:

HTTP/1.1 200 OK
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn

<SOAP-ENV:Envelope
<SOAP-ENV:Body />

</SOAP-ENV:Envelope>

Note that we have transmitted an empty body element. Since the request doesn't require any
information in return (other than confirmation that the request was handled properly), we don't need to
pass anything in the body of the SOAP response message.

If the Handler resource doesn't know how to handle the MessageStatus header element, it must
respond to the client with a SOAP message containing a Fault element describing the problem:

HTTP/1.1 500 Internal Server Error
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>

<SOAP-ENV:Fault>
<faultcode>SOAP-ENV:MustUnderstand</faultcode>
<faultstring>MessageStatus header not recognized</faultstring>

</SOAP-ENV:Fault>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

If the Handler resource comprehends the MessageStatus header element, but for some reason can't
process the body of the message (as in our previous example where the invoice couldn't be matched), it
must respond accordingly:

HTTP/1.1 500 Internal Server Error
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<SOAP-ENV:Fault>
<SOAP-ENV:faultcode>
SOAP-ENV:Client.BusinessRule.NotFound

</SOAP-ENV:faultcode>
<SOAP-ENV:faultstring>
The resent record was not found.

Chapter 18

720

</SOAP-ENV:faultstring>
<SOAP-ENV:detail>
<error:BusinessRule xmlns:error="http://www.invoicesystem.com/soap">
<BusinessRule>ResendNotMatched</BusinessRule>
<ErrorCode>1007</ErrorCode>

</error:BusinessRule>
</SOAP-ENV:detail>

</SOAP-ENV:Fault>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Biztalk
Microsoft is developing a SOAP-aware server called Biztalk. This server will be able to process SOAP-
based HTTP requests and respond accordingly. A full discussion of Biztalk is outside the scope of this
chapter – it's a fairly deep product, with enterprise-class support for schemas, built-in EDI support, a
graphical XSLT generator, and much more. If you want to learn more about Biztalk, you can do so at
http://www.microsoft.com/biztalk.

Compressing XML
One of the major concerns with XML is the large files that often result when data is represented in an
XML document. A system that is attempting to transmit or receive a large number of documents at
once, may have to be concerned about the bandwidth consumption of those documents. However, since
XML documents are text (and typically repetitive text at that), one approach we can take to minimize
the bandwidth consumption when our documents are transmitted is to compress them.

There are any number of third-party compression algorithms that handle the compression of XML
documents very well. By compressing the XML document before transmitting it, and uncompressing it
upon receipt, bandwidth consumption can often be slashed by two-thirds or more.

The down side is that both the producer and the consumer will need to be able to correctly process the
documents, so an XML document transmitted this way will only be receivable by systems that have the
decompression software in place. As XML becomes more frequently used for data transmission,
standard libraries are likely to become available that handle this compression and decompression
behind the scenes.

Data Transmission

721

Summary
In this chapter, we've seen how data transmission may be streamlined by using XML. We've seen some
of the shortcomings of classic data transmission strategies, and taken a look at how XML helps us avoid
some of the common pitfalls there. Namely, this is because XML documents are:

❑ Self-documenting

❑ Flexible

❑ Normalized

❑ Able to utilize off-the-shelf XML tools

❑ Able to cope with routing and requesting

Finally, we took a quick look at some of the ways we can augment our XML documents with enveloping
information to create a more robust document handling and data processing environment. Specifically,
we discussed SOAP – the Simple Object Access Protocol. We saw how SOAP messages are structured,
and introduced the concept of the SOAP request-response mechanism used for transmission over
HTTP.

In summary, moving your data transmission to XML will help ensure the longevity, maintainability, and
adaptability of your systems.

Chapter 18

722

Marshalling and Presentation

In this chapter, we'll look at some ways XML can be used to streamline the data marshalling and
presentation process. The chapter is divided into three sections. In the first, we'll see how XML can be
used to marshal a more useful form of data from our relational databases; in the second, we'll see how
information gathered over the Web can be transformed to XML; and in the last section, we'll see how
XML streamlines our presentation pipeline and makes it easy to support multiple platforms, including
handheld devices.

The examples in this chapter are all written in VBScript, and are intended for use with SQL Server 7.0+
databases. In addition, if you want to run the examples you should have installed Microsoft's MSXML3
parser, available from Microsoft at http://msdn.microsoft.com/xml/general/xmlparser.asp.

If you are not running in this environment, you can still adopt the strategies outlined to suit your
programming language and database platform.

Marshalling
When retrieving data from a relational database in a tiered, enterprise-level solution, the first thing that
needs to happen is marshalling – the data needs to be extracted from the relational database and
provided to the business logic or presentation tier, perhaps by a COM component, in a usable format.
In this section, we'll take a look at the likely long-term strategy for extracting data in XML, and then see
how we can perform this extraction by hand in the short term.

XML is a great medium for marshalling because it allows structured information to be exposed from the
database without requiring custom, inflexible structures to be built to support that information. Using
XML as the marshalling medium will make your solution more adaptable as your data requirements
change, because it is an open standard available on many different platforms. Let's take a look at some
quick examples of other standard marshalling techniques and see why XML is the best choice.

Chapter 19

724

Custom Structures
The traditional way to marshal data from the database layer is via custom structures. Let's say, for
example, that you wanted to convey information from the following tables in your marshalled data. The
following code can be accessed in the file tables.sql:

CREATE TABLE Customer (
CustomerKey integer PRIMARY KEY IDENTITY,
customerName varchar(30),
customerAddress varchar(30),
customerCity varchar(30),
customerState char(2),
customerPostalCode varchar(10))

CREATE TABLE Invoice (
InvoiceKey integer PRIMARY KEY IDENTITY,
CustomerKey integer

CONSTRAINT fk_Customer FOREIGN KEY (CustomerKey)
REFERENCES Customer (CustomerKey),

orderDate datetime,
shipDate datetime)

CREATE TABLE Part (
PartKey integer PRIMARY KEY IDENTITY,
partName varchar(20),
partColor varchar(10),
partSize varchar(10))

CREATE TABLE LineItem (
LineItemKey integer PRIMARY KEY IDENTITY,
InvoiceKey integer

CONSTRAINT fk_Invoice FOREIGN KEY (InvoiceKey)
REFERENCES Invoice (InvoiceKey),

PartKey integer
CONSTRAINT fk_Part FOREIGN KEY (PartKey)

REFERENCES Part (PartKey),
quantity integer,
price float)

This script produces the following table structure:

Marshalling and Presentation

725

If you wanted to work in a more complicated language, you might define a structure that looks like this
(the example below is written in C, and is for illustrative purposes only):

struct partData
{

struct
{

char partName[20];
char partColor[30];
char partSize[30];

} part;
int quantity;
float price;

}
struct invoiceData
{

char orderDate[10];
char shipDate[10];
struct
{

char customerName[30];
char customerAddress[30];
char customerCity[30];
char customerState[2];
char customerPostalCode[10];

} customer;
struct partData part[10];

}

Then, if you populate and marshal this structure back to a caller, the caller has all the information about
an invoice in a structured form. It may reference that information using the structure nomenclature for
that language. However, what happens if we add a column, say, shipMethod, to the Invoice table? If
we want that information to be available through marshalling, now we need to modify our source code
to marshal the data and modify any business or presentation layer code that serves to create this
structure.

Recordsets
Another common way to marshal data from a database is in the form of recordsets. Recordsets have the
benefit of being relatively dynamic, and they include metadata that describes the information that they
contain. However, the major disadvantage to recordsets is that they are flattened (unless you are using
hierarchical recordsets, which are difficult to use and don't perform well), so data returned by them
often contains repeating information. For example, if our query returned one invoice with five line
items, the five records returned would each contain the invoice information. This would require
software that was trying to use the data in a structured way (to create a report, for example) to examine
the keys on each row to determine where the structures began and ended. Let's look at a simplistic
example. Say we wanted to return the ship dates for all invoices with a specific order date, and the
name, size, color, and quantity from each of the line items ordered. We would write a SELECT statement
that looked like this:

SELECT Invoice.InvoiceKey, shipDate, quantity, partName, partColor, partSize
FROM Invoice, LineItem, Part

WHERE Invoice.orderDate = "10/21/2000"
AND LineItem.InvoiceKey = Invoice.InvoiceKey
AND LineItem.PartKey = Part.PartKey

ORDER BY Invoice.InvoiceKey

Chapter 19

726

This query might return a recordset that looks something like this:

InvoiceKey shipDate quantity partName partColor partSize

17 10/24/2000 17 grommets blue 2 inch

17 10/24/2000 13 sprockets red 1 inch

18 10/25/2000 9 widgets silver 0.5 inch

18 10/25/2000 11 sprockets blue 1.5 inch

18 10/25/2000 5 brackets orange 3 inch

When we try to do something with the recordset in our business layer or presentation layer (such as
create an HTML page to return to a browser), our code needs to iterate through the records, watching
the InvoiceKey for a change – this will indicate to the code that a new invoice page needs to be
created. Each piece of code in the business layer or presentation layer will need to handle the data this
way. If we could marshal the data in a hierarchical form immediately, this extra code could be avoided.

XML
If we marshal data out of the database in XML, we have the best of both worlds. We have good
structural information available without extra code, while we can make modifications to the marshalling
code without necessarily breaking the consumer code on the front end.

We can also leverage the constantly growing toolset for the manipulation and processing of XML
documents if we marshal our data in XML. XSLT (as we'll see) is especially suited to the transformation
of marshalled XML into some client-capable format (such as HTML or WML).

Now that we know that we want to marshal our data into an XML format, let's see how we can
accomplish this with the current technology available.

The Long-Term Solution: Built-In Methods
Both SQL Server and Oracle have introduced mechanisms for the automatic marshalling of XML data
from the respective relational databases in their latest releases. However, these technologies are still in
the development stages, and don't provide the ability to model sophisticated relationships like pointing
relationships. Additionally, you don't have a lot of control over the format of the XML created – SQL
Server and Oracle simply create an XML string based on the structure of the joined result set created.
While these technologies will almost certainly be the way we marshal XML from our relational
databases in the long term, for now we will need to take a different approach.

The Manual Approach
To marshal our data into an XML document, there are a few approaches we could take. If we are using
ADO, we can return the data as an ADO XML recordset and then use XSLT to transform that data into
the target XML. We could also generate a set of SAX events and send them to a SAX handler to create
the document in a serial way. However, the most flexible approach (for smaller files – remember that
the DOM has a large memory footprint) is to use the DOM to build our XML document based on data
returned from the database. Let's take a look at some code we can use to accomplish this.

Marshalling and Presentation

727

Example
Let's say we want to create an XML document that includes all the invoices for a particular month.
We've decided that we should use the following structure, ch19_ex1.dtd to return the data:

<!ELEMENT OrderData (Invoice+, Customer+, Part+)>
<!ELEMENT Invoice (LineItem+)>
<!ATTLIST Invoice

CustomerID IDREF #REQUIRED
orderDate CDATA #REQUIRED
shipDate CDATA #REQUIRED>

<!ELEMENT Customer EMPTY>
<!ATTLIST Customer

CustomerID ID #REQUIRED
customerName CDATA #REQUIRED
customerAddress CDATA #REQUIRED
customerCity CDATA #REQUIRED
customerState CDATA #REQUIRED
customerPostalCode CDATA #REQUIRED>

<!ELEMENT LineItem EMPTY>
<!ATTLIST LineItem

PartID IDREF #REQUIRED
quantity CDATA #REQUIRED
price CDATA #REQUIRED>

<!ELEMENT Part EMPTY>
<!ATTLIST Part

PartID ID #REQUIRED
partName CDATA #REQUIRED
partSize CDATA #REQUIRED
partColor CDATA #REQUIRED>

An example of a document using this structure would look like this:

<?xml version='1.0'?>
<!DOCTYPE OrderData SYSTEM 'OrderData.dtd'>
<OrderData>

<Invoice
orderDate="10/22/00"
shipDate="10/25/00"
customerIDREF="CUST1">
<LineItem

PartIDREF="PART1"
quantity="12"
price="0.15"/>

<LineItem
PartIDREF="PART2"
quantity="17"
price="0.2"/>

<LineItem
PartIDREF="PART4"
quantity="5"
price="0.3"/>

</Invoice>
<Invoice

orderDate="10/22/00"
shipDate="10/22/00"
customerIDREF="CUST2">
<LineItem

PartIDREF="PART2"
quantity="11"

Chapter 19

728

price="0.15"/>
<LineItem
PartIDREF="PART3"
quantity="3"
price="0.2"/>

</Invoice>
<Invoice

orderDate="10/25/00"
shipDate="10/28/00"
customerIDREF="CUST1">
<LineItem

PartIDREF="PART3"
quantity="11"
price="0.25"/>

</Invoice>
<Customer

CustomerID="CUST1"
customerName="Homer J. Simpson"
customerAddress="742 Evergreen Terrace"
customerCity="Springfield"
customerState="KY"
customerPostalCode="12345"/>

<Customer
CustomerID="CUST2"
customerName="Kevin B. Williams"
customerAddress="744 Evergreen Terrace"
customerCity="Springfield"
customerState="KY"
customerPostalCode="12345"/>

<Part
PartID="PART1"
partName="grommets"
partSize="2 inch"
partColor="blue"/>

<Part
PartID="PART2"
partName="widgets"
partSize="3 inch"
partColor="silver"/>

<Part
PartID="PART3"
partName="brackets"
partSize="1.5 inch"
partColor="orange"/>

<Part
PartID="PART4"
partName="sprockets"
partSize="4 inch"
partColor="green"/>

</OrderData>

To marshal the data out of the database and into this document structure, we need to extract the
information for invoices, parts, customers, and line items. Let's see how we would build code to
accomplish this task.

The first thing we can note is that invoices, customers, and parts are only related by ID-IDREF
relationships in our XML document – they do not participate in any containment relationships. A
diagram of the structure would look like this:

Marshalling and Presentation

729

The other important thing to note about our data tables is that each table has an integer, unique across
all records in that table that identifies that record. We can take advantage of this to build our ID-IDREF
relationships without needing to join the tables when we extract the data from our database.

First, we'll build some stored procedures to return our data. We'll need three stored procedures – one
for the invoice and line item data, one for the customer data, and one for the part data. Each one will
only return the data that is relevant to a particular month's invoices – for example, the part stored
procedure should only return those parts that appeared on invoices during that particular month. The
following procedures are saved as GetInvoicesForDateRange.sql, GetPartsForDateRange.sql,
and GetCustomersForDateRange.sql respectively:

CREATE PROC GetInvoicesForDateRange (
@startDate AS DATETIME,
@endDate AS DATETIME)

AS
BEGIN

SELECT I.InvoiceKey AS InvoiceKey,
I.orderDate AS orderDate,
I.shipDate AS shipDate,
I.CustomerKey AS customerKey,
LI.PartKey AS partKey,
LI.quantity AS quantity,
LI.price AS price

FROM Invoice I, LineItem LI
WHERE I.orderDate >= @startDate

AND I.orderDate < DATEADD(d, 1, @endDate)
AND I.InvoiceKey = LI.InvoiceKey

ORDER BY I.InvoiceKey
END

Chapter 19

730

CREATE PROC GetPartsForDateRange (
@startDate AS DATETIME,
@endDate AS DATETIME)

AS
BEGIN

SELECT DISTINCT P.PartKey AS PartKey,
P.partColor AS partColor,
P.partSize AS partSize,
P.partName AS partName

FROM Invoice I, LineItem LI, Part P
WHERE I.orderDate >= @startDate

AND I.orderDate < DATEADD(d, 1, @endDate)
AND I.InvoiceKey = LI.InvoiceKey
AND LI.PartKey = P.PartKey

ORDER BY partName, partSize, partColor
END

CREATE PROC GetCustomersForDateRange (
@startDate AS DATETIME,
@endDate AS DATETIME)

AS
BEGIN

SELECT DISTINCT C.CustomerKey AS CustomerKey,
C.customerName AS customerName,
C.customerAddress AS customerAddress,
C.customerCity AS customerCity,
C.customerState AS customerState,
C.customerPostalCode AS customerPostalCode

FROM Invoice I, Customer C
WHERE I.orderDate >= @startDate

AND I.orderDate < DATEADD(d, 1, @endDate)
AND I.CustomerKey = C.CustomerKey

ORDER BY customerName
END

Each of these stored procedures will return data for one of the three main branches of our XML
document tree. By using a consistent ID-IDREF generation technique, we can link up the pointing
relationships without requiring an explicit JOIN in our SQL – so instead of pulling back a massive four-
table-join result set, we can simply pull back the contents of each of the four tables and rely on the
generated IDs to link the tables together.

For the purposes of this sample, we'll populate our database this way:

Marshalling and Presentation

731

Chapter 19

732

Here's the VBScript that generates the XML document (ch19_ex1.vbs) – note that you may need to
change the ADO connection string depending on the name of the database where you created the
tables:

Dim Conn, rs
Dim Doc, elOrderData, elInvoice, elLineItem, elCustomer, elPart
Dim sSQL
Dim sInvoiceKey

Set Conn = CreateObject("ADODB.Connection")
Set rs = CreateObject("ADODB.Recordset")
Set Doc = CreateObject("Microsoft.XMLDOM")
Set elOrderData = Doc.createElement("OrderData")
Doc.appendChild elOrderData

Conn.Open "Driver={SQL Server};Server=SQL1;Uid=sa;Pwd=;Database=myXML"
sSQL = "GetInvoicesForDateRange '10/1/2000', '10/31/2000'"
rs.Open sSQL, Conn

sInvoiceKey = ""
While Not rs.EOF

If rs("InvoiceKey") <> sInvoiceKey Then
' we need to add this invoice element
Set elInvoice = Doc.createElement("Invoice")
elInvoice.setAttribute "orderDate", FormatDateTime(rs("orderDate"), 2)
elInvoice.setAttribute "shipDate", FormatDateTime(rs("shipDate"), 2)
elInvoice.setAttribute "CustomerIDREF", "CUST" & rs("customerKey")
elOrderData.appendChild elInvoice
sInvoiceKey = rs("InvoiceKey")

End If
Set elLineItem = Doc.createElement("LineItem")
elLineItem.setAttribute "PartIDREF", "PART" & rs("partKey")
elLineItem.setAttribute "quantity", rs("quantity")
elLineItem.setAttribute "price", rs("price")
elInvoice.appendChild elLineItem
rs.MoveNext

Wend
Set elInvoice = Nothing
Set elLineItem = Nothing
rs.Close

sSQL = "GetCustomersForDateRange '10/1/2000', '10/31/2000'"
rs.Open sSQL, Conn
While Not rs.EOF

Set elCustomer = Doc.createElement("Customer")
elCustomer.setAttribute "CustomerID", "CUST" & rs("CustomerKey")
elCustomer.setAttribute "customerName", rs("customerName")
elCustomer.setAttribute "customerAddress", rs("customerAddress")
elCustomer.setAttribute "customerCity", rs("customerCity")
elCustomer.setAttribute "customerState", rs("customerState")
elCustomer.setAttribute "customerPostalCode", rs("customerPostalCode")
elOrderData.appendChild elCustomer
rs.MoveNext

Wend
Set elCustomer = Nothing
rs.Close

Marshalling and Presentation

733

sSQL = "GetPartsForDateRange '10/1/2000', '10/31/2000'"
rs.Open sSQL, Conn
While Not rs.EOF

Set elPart = Doc.createElement("Part")
elPart.setAttribute "PartID", "PART" & rs("PartKey")
elPart.setAttribute "partName", rs("partName")
elPart.setAttribute "partSize", rs("partSize")
elPart.setAttribute "partColor", rs("partColor")
elOrderData.appendChild elPart
rs.MoveNext

Wend
Set elPart = Nothing
rs.Close

Conn.Close

WScript.Echo "<?xml version='1.0'?>"
WScript.Echo "<!DOCTYPE OrderData SYSTEM 'ch19_ex1.dtd'>"
WScript.Echo Doc.xml
Set Doc = Nothing
Set rs = Nothing
Set Conn = Nothing

Let's break the code down and see how it works.

Dim Conn, rs
Dim Doc, elOrderData, elInvoice, elLineItem, elCustomer, elPart
Dim sSQL
Dim sInvoiceKey

Set Conn = CreateObject("ADODB.Connection")
Set rs = CreateObject("ADODB.Recordset")
Set Doc = CreateObject("Microsoft.XMLDOM")

First, we set up our variable and create the objects we'll need – ADO Connection and Recordset
objects, and a Microsoft DOM object.

Set elOrderData = Doc.createElement("OrderData")
Doc.appendChild elOrderData

Next, we create the OrderData root element for our new document and append it to the document
child list.

Conn.Open "Chapter19", "sa", ""
sSQL = "GetInvoicesForDateRange '10/1/2000', '10/31/2000'"
rs.Open sSQL, Conn

As we mentioned before, we're going to return three sets of data from the database. The first will be the
Invoice and LineItem data. We call our stored procedure to obtain all the invoices for October.

sInvoiceKey = ""

Chapter 19

734

Because we're retrieving both invoices and line items in one call, we'll watch InvoiceKey as we move
through the records. Anytime InvoiceKey changes, we'll know we've transitioned to a new invoice and
we need to create a new Invoice element.

While Not rs.EOF
If rs("InvoiceKey") <> sInvoiceKey Then

' we need to add this invoice element
Set elInvoice = Doc.createElement("Invoice")
elInvoice.setAttribute "orderDate", FormatDateTime(rs("orderDate"), 2)
elInvoice.setAttribute "shipDate", FormatDateTime(rs("shipDate"), 2)
elInvoice.setAttribute "CustomerIDREF", "CUST" & rs("customerKey")
elOrderData.appendChild elInvoice
sInvoiceKey = rs("InvoiceKey")

Here, we create the Invoice element and add it to the OrderData element we created earlier. Note
that we create the customerIDREF attribute by prefixing the database key (which we know to be a
unique integer across the entire table) with a string uniquely identifying the element – in this case, the
letters CUST. Later, when we follow the same rule to generate the ID for the customer record, the ID-
IDREF relationship will automatically be created.

End If
Set elLineItem = Doc.createElement("LineItem")
elLineItem.setAttribute "PartIDREF", "PART" & rs("partKey")
elLineItem.setAttribute "quantity", rs("quantity")
elLineItem.setAttribute "price", rs("price")
elInvoice.appendChild elLineItem

For every record in our ADO recordset, we'll create a LineItem element under whatever Invoice
element we currently happen to be in. Note that we use the same technique to generate the PartIDREF
attribute as we did for the CustomerIDREF attribute earlier in the code.

rs.MoveNext
Wend
Set elInvoice = Nothing
Set elLineItem = Nothing
rs.Close

sSQL = "GetCustomersForDateRange '10/1/2000', '10/31/2000'"
rs.Open sSQL, Conn

Now, we iterate through all the customers that had invoices for the specified date range, after closing the
previous loop and freeing the objects.

While Not rs.EOF
Set elCustomer = Doc.createElement("Customer")
elCustomer.setAttribute "CustomerID", "CUST" & rs("CustomerKey")
elCustomer.setAttribute "customerName", rs("customerName")
elCustomer.setAttribute "customerAddress", rs("customerAddress")
elCustomer.setAttribute "customerCity", rs("customerCity")
elCustomer.setAttribute "customerState", rs("customerState")
elCustomer.setAttribute "customerPostalCode", rs("customerPostalCode")
elOrderData.appendChild elCustomer

Marshalling and Presentation

735

For each record in the recordset, we create a Customer element as a child of the orderData element.
Again, because we are using the same rule to generate the CustomerID attribute as we did to generate
the CustomerIDREF attribute earlier, the pointing relationship is created.

rs.MoveNext
Wend
Set elCustomer = Nothing
rs.Close

sSQL = "GetPartsForDateRange '10/1/2000', '10/31/2000'"
rs.Open sSQL, Conn

Finally, we go through all the parts that appeared on invoices in the specified date range.

While Not rs.EOF
Set elPart = Doc.createElement("Part")
elPart.setAttribute "PartID", "PART" & rs("PartKey")
elPart.setAttribute "partName", rs("partName")
elPart.setAttribute "partSize", rs("partSize")
elPart.setAttribute "partColor", rs("partColor")
elOrderData.appendChild elPart

Again, we create a Part for each record in the recordset as a child of the orderData element.

rs.MoveNext
Wend
Set elPart = Nothing
rs.Close

Conn.Close

Finally, we insert the XML header and the document type header to the Windows Scripting Host
output, followed by the XML we have created. Note that, since the DOM level 1 does not provide a
way to associate a particular document type with a document created from scratch, this is the way to
associate the document with a particular DTD.

WScript.Echo "<?xml version='1.0'?>"
WScript.Echo "<!DOCTYPE OrderData SYSTEM 'OrderData.dtd'>"
WScript.Echo Doc.xml
Set Doc = Nothing
Set rs = Nothing
Set Conn = Nothing

For our sample data, this script (when run through the Windows Scripting Host) produces the following
output (whitespace added for readability):

<?xml version='1.0'?>
<!DOCTYPE OrderData SYSTEM 'OrderData.dtd'>
<OrderData>

<Invoice
orderDate="10/22/00"
shipDate="10/25/00"

Chapter 19

736

customerIDREF="CUST1">
<LineItem

PartIDREF="PART1"
quantity="12"
price="0.15"/>

<LineItem
PartIDREF="PART2"
quantity="17"
price="0.2"/>

<LineItem
PartIDREF="PART4"
quantity="5"
price="0.3"/>

</Invoice>
<Invoice

orderDate="10/22/00"
shipDate="10/22/00"
customerIDREF="CUST2">
<LineItem

PartIDREF="PART2"
quantity="11"
price="0.15"/>

<LineItem
PartIDREF="PART3"
quantity="3"
price="0.2"/>

</Invoice>
<Invoice

orderDate="10/25/00"
shipDate="10/28/00"
customerIDREF="CUST1">
<LineItem

PartIDREF="PART3"
quantity="11"
price="0.25"/>

</Invoice>
<Customer

CustomerID="CUST1"
customerName="Homer J. Simpson"
customerAddress="742 Evergreen Terrace"
customerCity="Springfield"
customerState="KY"
customerPostalCode="12345"/>

<Customer
CustomerID="CUST2"
customerName="Kevin B. Williams"
customerAddress="744 Evergreen Terrace"
customerCity="Springfield"
customerState="KY"
customerPostalCode="12345"/>

<Part
PartID="PART1"
partName="grommets"
partSize="2 inch"
partColor="blue"/>

Marshalling and Presentation

737

<Part
PartID="PART2"
partName="widgets"
partSize="3 inch"
partColor="silver"/>

<Part
PartID="PART3"
partName="brackets"
partSize="1.5 inch"
partColor="orange"/>

<Part
PartID="PART4"
partName="sprockets"
partSize="4 inch"
partColor="green"/>

</OrderData>

Conclusion
In this section, we have seen that XML provides a good way to marshal structured data out of a
relational database. Changes to the data being extracted by the marshaller can be made while minimally
impacting business-layer or presentation-layer code, while rich structures can be returned without the
flattening that is typical of database recordsets. Marshalling data to XML can also be useful when you
want to leverage other XML technologies, such as XSLT, to provide flexible data presentation – as we'll
see later in the chapter.

Next, we'll take a look at gathering information from the outside world – specifically, the context of the
browser and building XML structures from it.

Information Gathering
There are a number of reasons why you might want to be able to gather data from a web browser
directly to XML. For example, you might be using an XML repository as your intermediate data
platform of choice – in this case, you'll need to actually get to XML from forms that get submitted using
the HTTP POST method. Another reason might be that the back-end systems that are the ultimate
consumers of the data are designed to accept a particular XML standard; in that case, it would be more
efficient to gather the data directly as XML rather than needing to pass it through an intermediate
process. In this section, we'll take a look at some of the technology on the horizon to enable the simple
gathering of data structured as XML across the Web, and then see how we can generate XML
documents on the fly from CGI forms today.

The long-term solution: XForms
The W3C has a working group dedicated to the next generation of Internet forms, called XForms, as we
described in Chapter 10. These forms will use XML as both their format description language and their
output platform. While the XForms working group is far too early in their process to provide specifics,
you should expect XForms to supersede traditional HTML forms as the preferred means of gathering
information over the Internet within the next couple of years. Until support for XForms starts to appear
in the leading browsers, we need to come up with an alternative way of gathering information and
producing XML documents from HTML forms. Let's see how this would be done.

Chapter 19

738

Manual Approach
When transforming data from HTML forms to XML, arguably the best technology to use is the DOM.
In addition, we should perform the transformation to XML on the client, rather than the server, to
reduce server load if possible. Unfortunately, many of the current client platforms do not provide DOM
implementations, so we may be forced to do our transformations on the server. Let's look at examples of
each, then we'll see how to build forms on the fly from XML content.

Example 1: Transforming Form Data to XML on the Client
Let's say we have the following form for entering an invoice:

The code for this form, ch19_ex3.htm, looks like this:

<HTML>
<BODY>

<H1>Invoice</H1>
<P>
<FORM name="frmSubmitInvoice" method="POST" action="submitInvoice.asp">

<TABLE>
<TR>

<TD>Customer Name:</TD>
<TD><INPUT name="customerName" size=30 maxlen=30></TD>

</TR>

Marshalling and Presentation

739

<TR>
<TD>Customer Address:</TD>
<TD><INPUT name="customerAddress" size=50 maxlen=50></TD>

</TR>
<TR>

<TD>Customer City:</TD>
<TD><INPUT name="customerCity" size=30 maxlen=30></TD>

</TR>
<TR>

<TD>Customer State:</TD>
<TD><INPUT name="customerState" size=2 maxlen=2></TD>

</TR>
<TR>

<TD>Customer Postal Code:</TD>
<TD><INPUT name="customerPostalCode" size=10 maxlen=10></TD>

</TR>
<TR>

<TD>Order Date:</TD>
<TD><INPUT name="orderDate" size=10 maxlen=10></TD>

</TR>
<TR>

<TD>Ship Date:</TD>
<TD><INPUT name="shipDate" size=10 maxlen=10></TD>

</TR>
</TABLE>
<P>
<TABLE>

<TR>
<TD>Part</TD>
<TD>Quantity</TD>
<TD>Price</TD>

</TR>
<TR>

<TD>
<SELECT name="part1">

<OPTION VALUE="0"></OPTION>
<OPTION VALUE="1">2 inch blue grommets</OPTION>
<OPTION VALUE="2">3 inch silver widgets</OPTION>
<OPTION VALUE="3">1.5 inch orange brackets</OPTION>
<OPTION VALUE="4">4 inch green sprockets</OPTION>
<OPTION VALUE="5">0.5 inch gold bolts</OPTION>

</SELECT></TD>
<TD><INPUT name="quantity1" size=5 maxlen=5></TD>
<TD><INPUT name="price1" size=8 maxlen=8></TD>

</TR>
<TR>

<TD>
<SELECT name="part2">

<OPTION VALUE="0"></OPTION>
<OPTION VALUE="1">2 inch blue grommets</OPTION>
<OPTION VALUE="2">3 inch silver widgets</OPTION>
<OPTION VALUE="3">1.5 inch orange brackets</OPTION>
<OPTION VALUE="4">4 inch green sprockets</OPTION>
<OPTION VALUE="5">0.5 inch gold bolts</OPTION>

</SELECT>

Chapter 19

740

</TD>
<TD><INPUT name="quantity2" size=5 maxlen=5></TD>
<TD><INPUT name="price2" size=8 maxlen=8></TD>

</TR>
<TR>

<TD>
<SELECT name="part3">

<OPTION VALUE="0"></OPTION>
<OPTION VALUE="1">2 inch blue grommets</OPTION>
<OPTION VALUE="2">3 inch silver widgets</OPTION>
<OPTION VALUE="3">1.5 inch orange brackets</OPTION>
<OPTION VALUE="4">4 inch green sprockets</OPTION>
<OPTION VALUE="5">0.5 inch gold bolts</OPTION>

</SELECT>
</TD>
<TD><INPUT name="quantity3" size=5 maxlen=5></TD>
<TD><INPUT name="price3" size=8 maxlen=8></TD>

</TR>
<TR>

<TD>
<SELECT name="part4">

<OPTION VALUE="0"></OPTION>
<OPTION VALUE="1">2 inch blue grommets</OPTION>
<OPTION VALUE="2">3 inch silver widgets</OPTION>
<OPTION VALUE="3">1.5 inch orange brackets</OPTION>
<OPTION VALUE="4">4 inch green sprockets</OPTION>
<OPTION VALUE="5">0.5 inch gold bolts</OPTION>

</SELECT>
</TD>
<TD><INPUT name="quantity4" size=5 maxlen=5></TD>
<TD><INPUT name="price4" size=8 maxlen=8></TD>

</TR>
<TR>

<TD>
<SELECT name="part5">

<OPTION VALUE="0"></OPTION>
<OPTION VALUE="1">2 inch blue grommets</OPTION>
<OPTION VALUE="2">3 inch silver widgets</OPTION>
<OPTION VALUE="3">1.5 inch orange brackets</OPTION>
<OPTION VALUE="4">4 inch green sprockets</OPTION>
<OPTION VALUE="5">0.5 inch gold bolts</OPTION>

</SELECT>
</TD>
<TD><INPUT name="quantity5" size=5 maxlen=5></TD>
<TD><INPUT name="price5" size=8 maxlen=8></TD>

</TR>
</TABLE>
<P><INPUT type="submit" name="cmdGo" value="Add invoice">

</FORM>
</BODY>

</HTML>

When the user submits this form (by clicking the Add invoice button), each of the input fields is
returned to the target of the form – in this case, the ASP document submitInvoice.asp. However, we
have chosen to use XML documents on our server to store the information submitted in these forms,
instead of storing that data in a database. We need to come up with a way to get this information into
XML as painlessly as possible. Rather than processing the individual fields on the server side, let's use a
DOM document on the client side to create the XML document and submit it as a string field to the
server. The first thing we need to do is add a hidden field that will act as our XML buffer:

Marshalling and Presentation

741

<INPUT type="hidden" name="formXML">

At the end of the form, we'll modify the Add invoice button, previously a submit button, to be a button
that calls a Javascript function instead:

<INPUT type="button" name="cmdGo" value="Add invoice"
onClick="createXML ();">

Finally, we have to write the Javascript function. The way the script builds the document is very similar
to the previous example – it builds up the tree node by node so we won't go through the entire code.
The interesting bit is at the end, where it takes the XML generated by the DOM object and stores it in
the hidden field we added earlier. This makes it available to the server that is receiving the form
submission. Rather than building up the document on the server, the server can simply take the
generated XML and perform whatever actions are appropriate on it.

The entire code, for ch19_ex2.htm is now as follows (we have not repeated the content of the table as
it is the same as the last example):

<HTML>

<BODY>

<H1>Invoice</H1>

<P>

<FORM name="frmSubmitInvoice" method="POST" action="submitInvoice.asp">

<INPUT type="hidden" name="formXML">

<TABLE>

</TABLE>

<P>

<INPUT type="button" name="cmdGo" value="Add invoice"

onClick="createXML();">

</FORM>

</BODY>

<SCRIPT LANGUAGE="JScript">

<!--

function createXML()

{

var DOM;

var elInvoice;

var elLineItem;

var iLoop;

DOM = new ActiveXObject("Microsoft.XMLDOM");

elInvoice = DOM.createElement("Invoice");

DOM.appendChild(elInvoice);

Chapter 19

742

elInvoice.setAttribute("customerName",

frmSubmitInvoice.customerName.value);

elInvoice.setAttribute("customerAddress",

frmSubmitInvoice.customerAddress.value);

elInvoice.setAttribute("customerCity",

frmSubmitInvoice.customerCity.value);

elInvoice.setAttribute("customerState",

frmSubmitInvoice.customerState.value);

elInvoice.setAttribute("customerPostalCode",

frmSubmitInvoice.customerPostalCode.value);

elInvoice.setAttribute("orderDate", frmSubmitInvoice.orderDate.value);

elInvoice.setAttribute("shipDate", frmSubmitInvoice.shipDate.value);

if (frmSubmitInvoice.part1.value > "0")

{

elLineItem = DOM.createElement("LineItem");

elLineItem.setAttribute("partID", frmSubmitInvoice.part1.value);

elLineItem.setAttribute("quantity",

frmSubmitInvoice.quantity1.value);

elLineItem.setAttribute("price", frmSubmitInvoice.price1.value);

elInvoice.appendChild(elLineItem);

}

if (frmSubmitInvoice.part2.value > "0")

{

elLineItem = DOM.createElement("LineItem");

elLineItem.setAttribute("partID", frmSubmitInvoice.part2.value);

elLineItem.setAttribute("quantity",

frmSubmitInvoice.quantity2.value);

elLineItem.setAttribute("price", frmSubmitInvoice.price2.value);

elInvoice.appendChild(elLineItem);

}

if (frmSubmitInvoice.part3.value > "0")

{

elLineItem = DOM.createElement("LineItem");

elLineItem.setAttribute("partID", frmSubmitInvoice.part3.value);

elLineItem.setAttribute("quantity",

frmSubmitInvoice.quantity3.value);

elLineItem.setAttribute("price", frmSubmitInvoice.price3.value);

elInvoice.appendChild(elLineItem);

}

if (frmSubmitInvoice.part4.value > "0")

{

elLineItem = DOM.createElement("LineItem");

elLineItem.setAttribute("partID", frmSubmitInvoice.part4.value);

elLineItem.setAttribute("quantity",

frmSubmitInvoice.quantity4.value);

elLineItem.setAttribute("price", frmSubmitInvoice.price4.value);

elInvoice.appendChild(elLineItem);

}

if (frmSubmitInvoice.part5.value > "0")

{

Marshalling and Presentation

743

elLineItem = DOM.createElement("LineItem");

elLineItem.setAttribute("partID", frmSubmitInvoice.part5.value);

elLineItem.setAttribute("quantity",

frmSubmitInvoice.quantity5.value);

elLineItem.setAttribute("price", frmSubmitInvoice.price5.value);

elInvoice.appendChild(elLineItem);

}

frmSubmitInvoice.formXML.value = DOM.xml;

frmSubmitInvoice.submit();

}

//-->

</SCRIPT>

</HTML>

If we are able to create the XML documents on the client side, it makes sense - we can do preliminary
validation of the content and avoid unnecessary round-trips back to the server where possible.
Unfortunately, to use this example the client must be running IE 5.0 or later. If you want to write XML-
aware code that runs on any browser, you'll need to create the XML on the server side. Let's see how
this would be done.

Example 2: Transforming Form Submissions to XML on the Server
First, let's revert our HTML form code back to our non-Javascript version. Next, we need to write a
version of submitInvoice.asp that will take the submitted form and create the appropriate XML
from it. The code to handle this is, again, very similar to the code in the first example in the chapter –
creating an instance of a DOM document and then building it up; except in this example we're using
the information submitted to the ASP page.

<%@ Language=VBScript %>
<%

Dim docInvoice
Dim elInvoice
Dim elLineItem
Dim i

Set docInvoice = CreateObject("Microsoft.XMLDOM")
Set elInvoice = docInvoice.createElement("Invoice")
docInvoice.appendChild elInvoice
elInvoice.setAttribute "customerName", Request("customerName")
elInvoice.setAttribute "customerAddress", Request("customerAddress")
elInvoice.setAttribute "customerCity", Request("customerCity")
elInvoice.setAttribute "customerState", Request("customerState")
elInvoice.setAttribute "customerPostalCode", Request("customerPostalCode")
elInvoice.setAttribute "orderDate", Request("orderDate")
elInvoice.setAttribute "shipDate", Request("shipDate")
For i = 1 to 5

If Request("part" & i) > "0"Then
Set elLineItem = docInvoice.createElement("LineItem")
elInvoice.appendChild elLineItem
elLineItem.setAttribute "partID", Request("part" & i)
elLineItem.setAttribute "quantity", Request("quantity" & i)
elLineItem.setAttribute "price", Request("price" & i)

End If
Next
Response.Write "<?xml version='1.0'?>"

Response.Write docInvoice.xml
%>

Chapter 19

744

This example sends the data back to the browser, but it is likely that your code would take the XML
and store it, pass it along for storage into a relational database, or take whatever other action is
appropriate. However, for demonstration purposes, it is useful to return the XML to the client. The
document created by the preceding code should look something like this (depending on the values
entered into the form):

<?xml version='1.0'?>
<Invoice

customerName="Homer J. Simpson"
customerAddress="742 Evergreen Terrace"
customerCity="Springfield"
customerState="KY"
customerPostalCode="12345"
orderDate="12/20/2000"
shipDate="12/25/2000">
<LineItem

partID="4"
quantity="21"
price="1.90"/>

<LineItem
partID="1"
quantity="12"
price="0.12"/>

</Invoice>

Next, let's look at how we can drive our forms with XML – in our example, we'll generate our same
HTML form populated with data from the XML document we just created.

Example 3: Creating HMTL Forms with XSLT for Updates
In this example, we'll create an HTML form by styling our XML document. We could use this to drive
our forms engine if our native data repository happened to be in XML, or we could use it to drive
several different presentation layers (as we'll see later in the chapter when we talk about presentation).
We will use the XML file that was returned to the browser above, and we'll call it ch19_ex4.xml. If it
makes more sense for your situation, you can programmatically perform the transform using XT or
some other tool – visit http://www.jclark.com/xml/xt.html for instructions on obtaining XT.

<?xml version='1.0'?>
<?xml-stylesheet type="text/xsl" href="ch19_ex4.xsl"?>
<Invoice

customerName="Homer J. Simpson"
customerAddress="742 Evergreen Terrace"
customerCity="Springfield"
customerState="KY"
customerPostalCode="12345"
orderDate="12/20/2000"
shipDate="12/25/2000">
<LineItem

partID="4"
quantity="21"
price="1.90"/>

<LineItem
partID="1"
quantity="12"
price="0.12"/>

</Invoice>

Marshalling and Presentation

745

Let's see an XSLT style sheet we could use to go from this XML document to an appropriate HTML
form, and then discuss the pros and cons of using XSLT for this purpose. We'll also see some tips on
how you can use the document() function to make your style sheets more flexible. The following style
sheet is called ch19_ex4.xsl:

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:output method="html" />
<xsl:template match="Invoice">

<HTML>
<BODY>

<H1>Invoice</H1>
<P/>
<FORM name="frmSubmitInvoice" method="POST"

action="submitInvoice.asp">
<TABLE>

<TR>
<TD>Customer Name:</TD>
<TD>

<INPUT name="customerName" size="30" maxlen="30">
<xsl:attribute name="value">

<xsl:value-of select="@customerName" />
</xsl:attribute>

</INPUT>
</TD>

</TR>
<TR>

<TD>Customer Address:</TD>
<TD>

<INPUT name="customerAddress" size="50" maxlen="50">
<xsl:attribute name="value">

<xsl:value-of select="@customerAddress" />
</xsl:attribute>

</INPUT>
</TD>

</TR>
<TR>

<TD>Customer City:</TD>
<TD>

<INPUT name="customerCity" size="30" maxlen="30">
<xsl:attribute name="value">

<xsl:value-of select="@customerCity" />
</xsl:attribute>

</INPUT>
</TD>

</TR>
<TR>

<TD>Customer State:</TD>
<TD>

<INPUT name="customerState" size="2" maxlen="2">
<xsl:attribute name="value">

<xsl:value-of select="@customerState" />
</xsl:attribute>

</INPUT>
</TD>

</TR>
<TR>

<TD>Customer Postal Code:</TD>
<TD>

<INPUT name="customerPostalCode" size="10" maxlen="10">
<xsl:attribute name="value">

Chapter 19

746

<xsl:value-of select="@customerPostalCode" />
</xsl:attribute>

</INPUT>
</TD>

</TR>
<TR>

<TD>Order Date:</TD>
<TD>

<INPUT name="orderDate" size="30" maxlen="30">
<xsl:attribute name="value">

<xsl:value-of select="@orderDate" />
</xsl:attribute>

</INPUT>
</TD>

</TR>
<TR>

<TD>Ship Date:</TD>
<TD>

<INPUT name="shipDate" size="30" maxlen="30">
<xsl:attribute name="value">

<xsl:value-of select="@shipDate" />
</xsl:attribute>

</INPUT>
</TD>

</TR>
</TABLE>
<P />
<TABLE>

<TR>
<TD>Part</TD>
<TD>Quantity</TD>
<TD>Price</TD>

</TR>
<xsl:for-each select="LineItem">

<TR>
<TD>

<SELECT>
<xsl:attribute name="name">part<xsl:value-of

select="position()" />
</xsl:attribute>
<xsl:variable name="partID" select="@partID" />
<xsl:for-each

select="document('parts.xml')/Parts/Part">
<OPTION>

<xsl:attribute name="VALUE">
<xsl:value-of select="@partID"

/>
</xsl:attribute>
<xsl:if test="$partID=@partID">

<xsl:attribute name="SELECTED">
SELECTED

</xsl:attribute>
</xsl:if>
<xsl:value-of select="@partName" />

</OPTION>
</xsl:for-each>

</SELECT>
</TD>
<TD>

<INPUT size="5" maxlen="5">
<xsl:attribute name="name">

quantity

Marshalling and Presentation

747

<xsl:value-of select="position()" />
</xsl:attribute>
<xsl:attribute name="value">

<xsl:value-of select="@quantity" />
</xsl:attribute>

</INPUT>
</TD>
<TD>

<INPUT size="8" maxlen="8">
<xsl:attribute name="name">

price
<xsl:value-of select="position()" />

</xsl:attribute>
<xsl:attribute name="value">

<xsl:value-of select="@price" />
</xsl:attribute>

</INPUT>
</TD>

</TR>
</xsl:for-each>
<xsl:variable name="LIC" select="count(LineItem)" />
<xsl:for-each
select="document('forloop.xml')/ForLoop/*[position()>$LIC]">
<TR>

<TD>
<SELECT>

<xsl:attribute name="name">
part
<xsl:value-of select="." />

</xsl:attribute>
<xsl:for-each

select="document('parts.xml')/Parts/Part">
<OPTION>

<xsl:attribute name="VALUE">
<xsl:value-of select="@partID" />

</xsl:attribute>
<xsl:value-of select="@partName" />

</OPTION>
</xsl:for-each>

</SELECT>
</TD>
<TD>

<INPUT size="5" maxlen="5">
<xsl:attribute name="name">

quantity<xsl:value-of select="." />
</xsl:attribute>

</INPUT>
</TD>
<TD>

<INPUT size="8" maxlen="8">
<xsl:attribute name="name">

price<xsl:value-of select="." />
</xsl:attribute>

</INPUT>
</TD>

</TR>
</xsl:for-each>

</TABLE>
<P />
<INPUT type="submit" name="cmdGo" value="Add invoice" />

</FORM>
</BODY>

</HTML>
</xsl:template>

</xsl:stylesheet>

Chapter 19

748

Let's look at some specific techniques we used in this stylesheet to create the form we wanted.

<INPUT name="customerName" size="30" maxlen="30">
<xsl:attribute name="value">

<xsl:value-of select="@customerName" />
</xsl:attribute>

</INPUT>

Here, we use xsl:value-of to add the customer name value as an attribute to the INPUT element we
have created. Note that we can add the attribute to the INPUT element, even though we didn't use
xsl:element to create that element.

<xsl:for-each select="LineItem">
<TR>

<TD>
<SELECT>

<xsl:attribute name="name">part<xsl:value-of
select="position()" /></xsl:attribute>

Here we see how xsl:attribute can be used on a set of items – in this case, all of the LineItem
children of the Invoice element, to declare HTML input elements with unique names. The
position() function returns the position of the LineItem child within the Invoice child list, so
if our invoice has two line items (as it does in this example), we will create attributes called part1
and part2. The same technique is used to create the quantityX and priceX HTML input elements
as well.

<xsl:variable name="LIC" select="count(LineItem)" />
<xsl:for-each
select="document('forloop.xml')/ForLoop/*[position()>$LIC]">
<TR>

<TD>
<SELECT>

<xsl:attribute name="name">
part
<xsl:value-of select="." />

</xsl:attribute>
<xsl:for-each

select="document('parts.xml')/Parts/Part">
<OPTION>

<xsl:attribute name="VALUE">
<xsl:value-of select="@partID" />

</xsl:attribute>
<xsl:value-of select="@partName" />

</OPTION>
</xsl:for-each>

</SELECT>
</TD>
<TD>

<INPUT size="5" maxlen="5">
<xsl:attribute name="name">

quantity
<xsl:value-of select="." />

</xsl:attribute>
</INPUT>

</TD>
<TD>

<INPUT size="8" maxlen="8">
<xsl:attribute name="name">

price

Marshalling and Presentation

749

<xsl:value-of select="." />
</xsl:attribute>

</INPUT>
</TD>

</TR>
</xsl:for-each>

This is an unavoidable part of this stylesheet, and has to do with the fact that we provide five lines on
which part data may be entered. XSLT doesn't provide iterative processing per se, so there's no way to
say "count up the line items, then for any more that are needed up to five, create blank ones." We've
used a relatively clever way of getting around the problem here, but your mileage may vary as far as
performance goes. There's an external document called forloop.xml that contains an artificial for
loop:

<ForLoop>
<X>1</X>
<X>2</X>
<X>3</X>
<X>4</X>
<X>5</X>

</ForLoop>

Here's the code we use to access this document in our XSLT:

<xsl:variable name="LIC" select="count(LineItem)" />
<xsl:for-each
select="document('forloop.xml')/ForLoop/*[position()>$LIC]">

What this boils down to is: first, set the variable called LIC to the number of line items present in the
invoice (which is 2 here). Then, iterate through the ForLoop child elements where the position is
greater than that value. This is the same as saying for i = 3 to 5. For each of these values, we
create empty table rows in the same way we created them for the line items that were actually present.

We also use this technique to dynamically generate the drop-down list for the parts. This is driven by
our parts.xml document, which looks like the following

<Parts>
<Part

partID="0"
partName="" />

<Part
partID="1"
partName="2 inch blue grommets" />

<Part
partID="2"
partName="3 inch silver widgets" />

<Part
partID="3"
partName="1.5 inch orange brackets" />

<Part
partID="4"
partName="4 inch green sprockets" />

<Part
partID="5"
partName="0.5 inch gold bolts" />

</Parts>

Chapter 19

750

The XSLT that styles up this document and creates the OPTION elements inside each SELECT element
looks like this:

<xsl:for-each
select="document('parts.xml')/Parts/Part">
<OPTION>

<xsl:attribute name="VALUE">
<xsl:value-of select="@partID" />

</xsl:attribute>
<xsl:if test="$partID=@partID">

<xsl:attribute name="SELECTED">
SELECTED

</xsl:attribute>
</xsl:if>
<xsl:value-of select="@partName" />

</OPTION>
</xsl:for-each>

Depending on the particular XSLT engine and processing engine you are using, this processing should
still be fast – and it allows you to change your available parts on the fly by simply modifying the
parts.xml document.

The output of this style sheet when run against our source invoice (with white space for readability)
looks like this:

<HTML>
<BODY>

<H1>Invoice</H1>
<P></P>
<FORM name="frmSubmitInvoice" method="POST" action="submitInvoice.asp">

<TABLE>
<TR>

<TD>Customer Name:</TD>
<TD><INPUT name="customerName"

size="30"
maxlen="30"
value="Homer J. Simpson">

</TD>
</TR>
<TR>

<TD>Customer Address:</TD>
<TD><INPUT name="customerAddress"

size="50"
maxlen="50"
value="742 Evergreen Terrace">

</TD>
</TR>
<TR>

<TD>Customer City:</TD>
<TD><INPUT name="customerCity"

size="30"
maxlen="30"
value="Springfield">

</TD>
</TR>

Marshalling and Presentation

751

<TR>
<TD>Customer State:</TD>
<TD><INPUT name="customerState"

size="2"
maxlen="2"
value="VA">

</TD>
</TR>
<TR>

<TD>Customer Postal Code:</TD>
<TD><INPUT name="customerPostalCode"

size="10"
maxlen="10"
value="12345">

</TD>
</TR>
<TR>

<TD>Order Date:</TD>
<TD><INPUT name="orderDate"

size="30"
maxlen="30"
value="12/20/2000">

</TD>
</TR>
<TR>

<TD>Ship Date:</TD>
<TD><INPUT name="shipDate"

size="30"
maxlen="30"
value="12/25/2000">

</TD>
</TR>

</TABLE>
<P></P>
<TABLE>

<TR>
<TD>Part</TD>
<TD>Quantity</TD>
<TD>Price</TD>

</TR>
<TR>

<TD>
<SELECT name="part1">

<OPTION VALUE="0"></OPTION>
<OPTION VALUE="1">2 inch blue grommets</OPTION>
<OPTION VALUE="2">3 inch silver widgets</OPTION>
<OPTION VALUE="3">1.5 inch orange brackets</OPTION>
<OPTION VALUE="4" SELECTED>4 inch green sprockets</OPTION>
<OPTION VALUE="5">0.5 inch gold bolts</OPTION>

</SELECT>
</TD>
<TD><INPUT size="5"

maxlen="5"
name="quantity1"
value="21">

</TD>

Chapter 19

752

<TD><INPUT size="8"
maxlen="8"
name="price1"
value="1.90">

</TD>
</TR>
<TR>

<TD>
<SELECT name="part2">

<OPTION VALUE="0"></OPTION>
<OPTION VALUE="1" SELECTED>2 inch blue grommets</OPTION>
<OPTION VALUE="2">3 inch silver widgets</OPTION>
<OPTION VALUE="3">1.5 inch orange brackets</OPTION>
<OPTION VALUE="4">4 inch green sprockets</OPTION>
<OPTION VALUE="5">0.5 inch gold bolts</OPTION>

</SELECT>
</TD>
<TD><INPUT size="5"

maxlen="5"
name="quantity2"
value="12">

</TD>
<TD><INPUT size="8"

maxlen="8"
name="price2"
value="0.12">

</TD>
</TR>
<TR>

<TD>
<SELECT name="part3">

<OPTION VALUE="0"></OPTION>
<OPTION VALUE="1">2 inch blue grommets</OPTION>
<OPTION VALUE="2">3 inch silver widgets</OPTION>
<OPTION VALUE="3">1.5 inch orange brackets</OPTION>
<OPTION VALUE="4">4 inch green sprockets</OPTION>
<OPTION VALUE="5">0.5 inch gold bolts</OPTION>

</SELECT>
</TD>
<TD><INPUT size="5"

maxlen="5"
name="quantity3">

</TD>
<TD><INPUT size="8"

maxlen="8"
name="price3">

</TD>
</TR>
<TR>

<TD>
<SELECT name="part4">

<OPTION VALUE="0"></OPTION>
<OPTION VALUE="1">2 inch blue grommets</OPTION>
<OPTION VALUE="2">3 inch silver widgets</OPTION>
<OPTION VALUE="3">1.5 inch orange brackets</OPTION>

Marshalling and Presentation

753

<OPTION VALUE="4">4 inch green sprockets</OPTION>
<OPTION VALUE="5">0.5 inch gold bolts</OPTION>

</SELECT>
</TD>
<TD>INPUT size="5"

maxlen="5"
name="quantity4">

</TD>
<TD><INPUT size="8"

maxlen="8"
name="price4">

</TD>
</TR>
<TR>

<TD>
<SELECT name="part5">

<OPTION VALUE="0"></OPTION>
<OPTION VALUE="1">2 inch blue grommets</OPTION>
<OPTION VALUE="2">3 inch silver widgets</OPTION>
<OPTION VALUE="3">1.5 inch orange brackets</OPTION>
<OPTION VALUE="4">4 inch green sprockets</OPTION>
<OPTION VALUE="5">0.5 inch gold bolts</OPTION>

</SELECT>
</TD>
<TD><INPUT size="5"

maxlen="5"
name="quantity5">

</TD>
<TD><INPUT size="8"

maxlen="8"
name="price5">

</TD>
</TR>

</TABLE>
<P></P>
<INPUT type="submit" name="cmdGo" value="Add invoice">

</FORM>
</BODY>

</HTML>

In this example, we've seen how well written XSLT can be used to dynamically generate HTML forms.
We've also seen how the document() function may be used to pull in content from other documents,
making the content easy to maintain.

Conclusion
In this section of the chapter, we have looked at some techniques for gathering information from
Internet browsers and persisting it to XML. We've seen how look-up documents may be used to create
pseudo-procedural behavior in W3C-standard XSLT, and how we can generate XML documents either
on the server or the client. Until XForms become available, the approaches presented here may be used
to gather XML data from standard HTML forms.

Next, let's see how XML may be used to effectively drive our presentation layer.

Chapter 19

754

Presentation
Virtually every Internet-enabled application you write will have some presentation component. Data
will need to be marshalled out of a data repository and converted to a target-device-readable-format. In
the past, the target device for the presentation layer has almost always been a browser running on a
desktop or laptop; however, with the current wireless revolution, your presentation layer will more and
more often need to target handheld devices such as PDAs and cell phones. In this section, we'll see
some techniques that we can use to make our presentation to multiple target devices more painless.

Why Use XML?
XML helps us to abstract our data-marshalling layer away from our presentation layer. Because XML's
structure is similar to that of device-specific markup languages such as HTML and WML (for mobile
devices), an XML document with the proper layout can easily be used to drive various permutations, or
styles, of output device markup. Let's look at an example. Let's say we have the following XML
document for an invoice:

<?xml version='1.0'?>
<Invoice

customerName="Homer J. Simpson"
customerAddress="742 Evergreen Terrace"
customerCity="Springfield"
customerState="KY"
customerPostalCode="12345"
orderDate="12/20/2000"
shipDate="12/25/2000">
<LineItem

partID="4"
quantity="21"
price="1.90"/>

<LineItem
partID="1"
quantity="12"
price="0.12"/>

</Invoice>

Let's see how we can use XSLT to style this for various output platforms.

Example: XML Detail – HTML Detail
In this first example, we'll use XSLT to style our sample XML document into an HTML document. The
approach taken here is straightforward; we style the Invoice element first, then each LineItem child
of the Invoice element.

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:output method="html" />
<xsl:template match="Invoice">

<HTML>
<BODY>

<H1>Invoice</H1>

Marshalling and Presentation

755

<P />
<TABLE>

<TR>
<TD>Customer Name:</TD>
<TD><xsl:value-of select="@customerName" /></TD>

</TR>
<TR>

<TD>Customer Address:</TD>
<TD><xsl:value-of select="@customerAddress" /></TD>

</TR>
<TR>

<TD>Customer City:</TD>
<TD><xsl:value-of select="@customerCity" /></TD>

</TR>
<TR>

<TD>Customer State:</TD>
<TD><xsl:value-of select="@customerState" /></TD>

</TR>
<TR>

<TD>Customer Postal Code:</TD>
<TD><xsl:value-of select="@customerPostalCode" /></TD>

</TR>
<TR>

<TD>Order Date:</TD>
<TD><xsl:value-of select="@orderDate" /></TD>

</TR>
<TR>

<TD>Ship Date:</TD>
<TD><xsl:value-of select="@shipDate" /></TD>

</TR>
</TABLE>
<P />
<TABLE BORDER="1">

<TR>
<TD>Part</TD>
<TD>Quantity</TD>
<TD>Price</TD>

</TR>
<xsl:for-each select="LineItem">

<TR>
<TD>

<xsl:variable name="partID" select="@partID" />
<xsl:value-of

select="document('parts.xml')/Parts/Part[@partID=$partID]/@partName" />
</TD>
<TD><xsl:value-of select="@quantity" /></TD>
<TD><xsl:value-of select="@price" /></TD>

</TR>
</xsl:for-each>

</TABLE>
<P />

</BODY>
</HTML>

</xsl:template>
</xsl:stylesheet>

Chapter 19

756

Note that because the XML was already arranged in a similar way to the way we wanted our HTML to
look, we didn't have to do a lot of fancy processing in our stylesheet. As a rule, you should always feed
XML that is as close as possible to the target layout into the XSLT – this tends to ensure that your
styling time is kept to a minimum and your throughput is maximized.

Next, let's see how the same XML document could be styled to WML.

Example: XML Detail – WML Detail
In this example we'll assume that you have knowledge of WML already. If not, Professional WAP (1-
861004-04-4 for details) can provide all you need to know. We'll style the same XML document into a
single-card WML deck. Note that much of the code is exactly the same, and that we haven't introduced
any data logic; we've only changed the styling of the structure.

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:template match="Invoice">
<wml>

<card id="invoicetop" title="Invoice" newcontext="true">
<p>
<table columns="2">

<tr>
<td>Customer Name:</td>
<td><xsl:value-of select="@customerName" /></td>

</tr>
<tr>

<td>Customer Address:</td>
<td><xsl:value-of select="@customerAddress" /></td>

</tr>
<tr>

<td>Customer City:</td>
<td><xsl:value-of select="@customerCity" /></td>

</tr>
<tr>

<td>Customer State:</td>
<td><xsl:value-of select="@customerState" /></td>

</tr>
<tr>

<td>Customer Postal Code:</td>
<td><xsl:value-of select="@customerPostalCode" /></td>

</tr>
<tr>

<td>Order Date:</td>
<td><xsl:value-of select="@orderDate" /></td>

</tr>
<tr>

<td>Ship Date:</td>
<td><xsl:value-of select="@shipDate" /></td>

</tr>
</table>
<table columns="3">

<tr>
<td>Part</td>
<td>Quantity</td>

Marshalling and Presentation

757

<td>Price</td>
</tr>
<xsl:for-each select="LineItem">

<tr>
<td>

<xsl:variable name="partID" select="@partID" />
<xsl:value-of select="document('parts.xml')/Parts/Part

[@partID=$partID]/@partName" />
</td>
<td><xsl:value-of select="@quantity" /></td>
<td><xsl:value-of select="@price" /></td>

</tr>
</xsl:for-each>

</table>
</p>

</card>
</wml>

</xsl:template>
</xsl:stylesheet>

This brings up an important point. On the WML platform, we might only want to present a summary of
the invoice, not the details. If our data is stored natively in XML, it might make sense to style the native
XML into our summary – taking the extra time to move it into summarized XML before styling it would
cause a performance drop. On the other hand, if we are marshalling the XML out of a relational
database anyway, we'd be much better off to marshal the data in a summarized form and then style that.
Remember, when working with data a good rule of thumb is to perform data manipulations in the
lowest tier possible (preferably directly on the relational database platform using stored procedures or
some other mechanism); this will reduce network traffic and take advantage of the database's caching
mechanisms.

Example: XML Detail – WML Summary
In this example, we'll use XSLT to style our XML detail invoice document into a WML summary. In
our summary, the only things we are interested in are the customer name and the total invoice amount.
However, this presents a problem, as XSLT doesn't provide a way to calculate the sum of a product in
one pass so we'll have to use two style transforms to get at what we want. Remember that our initial
invoice document looks like this:

<?xml version='1.0'?>
<Invoice

customerName="Homer J. Simpson"
customerAddress="742 Evergreen Terrace"
customerCity="Springfield"
customerState="KY"
customerPostalCode="12345"
orderDate="12/20/2000"
shipDate="12/25/2000">
<LineItem

partID="4"
quantity="21"
price="1.90"/>

<LineItem
partID="1"
quantity="12"
price="0.12"/>

</Invoice>

Chapter 19

758

The first thing we do is style it so that we have the line price for each line item (by multiplying the
quantity and the price together). The stylesheet we use to do that looks like this:

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:template match="Invoice">
<xsl:element name="Invoice">

<xsl:attribute name="customerName">
<xsl:value-of select="@customerName" />

</xsl:attribute>
<xsl:attribute name="customerAddress">

<xsl:value-of select="@customerAddress" />
</xsl:attribute>
<xsl:attribute name="customerCity">

<xsl:value-of select="@customerCity" />
</xsl:attribute>
<xsl:attribute name="customerState">

<xsl:value-of select="@customerState" />
</xsl:attribute>
<xsl:attribute name="customerPostalCode">

<xsl:value-of select="@customerPostalCode" />
</xsl:attribute>
<xsl:attribute name="orderDate">

<xsl:value-of select="@orderDate" />
</xsl:attribute>
<xsl:attribute name="shipDate">

<xsl:value-of select="@shipDate" />
</xsl:attribute>
<xsl:for-each select="LineItem">

<xsl:element name="LineItem">
<xsl:attribute name="linePrice">

<xsl:value-of select="@quantity*@price" />
</xsl:attribute>

</xsl:element>
</xsl:for-each>

</xsl:element>
</xsl:template>

</xsl:stylesheet>

The intermediate result returned after styling the detail invoice with the above stylesheet is below:

<?xml version="1.0" encoding="utf-8"?>
<Invoice

customerName="Homer J. Simpson"
customerAddress="742 Evergreen Terrace"
customerCity="Springfield"
customerState="VA"
customerPostalCode="12345"
orderDate="12/20/2000"
shipDate="12/25/2000">
<LineItem linePrice="39.9"/>
<LineItem partID="1" linePrice="1.44"/>

</Invoice>

Marshalling and Presentation

759

Now, we use the sum function to add together the various line prices to get the total for the invoice and
style the contents the rest of the way to WML. Note that we round the sum to the nearest two digits –
some XSLT processors introduce slight rounding errors when performing calculations, so this code is
written to help us get around the problem.

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:template match="Invoice">
<wml>

<card id="invoicetop" title="Invoice" newcontext="true">
<p>
<table columns="2">

<tr>
<td>Customer Name:</td>
<td><xsl:value-of select="@customerName" /></td>

</tr>
<tr>

<td>Total invoice:</td>
<td>

<xsl:value-of select="round(sum(LineItem/@linePrice) * 100
+ 0.49999) div 100" />

</td>
</tr>

</table>
</p>

</card>
</wml>

</xsl:template>
</xsl:stylesheet>

The final result, after we style the intermediate result with this stylesheet, is this:

<?xml version="1.0" encoding="utf-8"?>
<wml>

<card
id="invoicetop"
title="Invoice"
newcontext="true">
<p>

<table columns="2">
<tr>

<td>Customer Name:</td>
<td>Homer J. Simpson</td>

</tr>
<tr>

<td>Total invoice:</td>
<td>41.34</td>

</tr>
</table>

</p>
</card>

</wml>

Chapter 19

760

Summary
In this section, we've seen how XSLT may be used to format XML data for presentation. We've seen
why this is a good thing – using XML and XSLT abstracts the data away from the presentation, allowing
us to easily superimpose different presentation logic for different target consumers (such as Web
browsers or handheld devices). We've also seen some of the limitations of XSLT, and some things we
need to watch out for.

You can learn more about XSLT in Chapter 8 – XSLT/XPath. For more information about WML, we
recommend taking a look at Professional WAP, published by Wrox Press (ISBN 1861004044)

Conclusion
In this chapter, we've seen how XML may be used for the marshalling, gathering, and presentation of
data. XML may be used to provide formatted information to a Web server in a platform-independent
way; that information may then easily either be loaded into a relational database or persisted to a
document archive for later use. In addition, XML provides a good way to handle multiple target
consumers in the presentation layer, as it allows the abstraction of presentation away from data. As
you integrate XML into your enterprise solution, you should consider taking advantage of XML for
these processes.

Marshalling and Presentation

761

Chapter 19

762

SQL Server 2000 XML Sample
Applications

This chapter is designed to introduce you to, and show you how to get results from, some of the more
advanced XML features in SQL Server 2000, and how to program them. We will do this with by
building up two separate sets of projects, each of which is designed to show you how to get the most out
of specific features.

To test these applications you need SQL Server 2000 installed, and the updategram and bulk load
functionality that you can download from the MSDN web site as part of the XML for SQL web release
1 Beta 1. This can be freely downloaded from http://msdn.microsoft.com/downloads/default.asp. This
web release both enhances the features that were shipped with SQL Server 2000 and provides you with
some totally new SQL Server XML functionality. You can obtain an evaluation copy of SQL Server
2000 from http://www.microsoft.com/sql/productinfo/default.htm.

You also need to have a virtual directory (virtual root) set up to run a lot of the examples. This set up is
discussed in Appendix E.

The projects discussed in this chapter are as follows:

Project 1 - Accessing SQL Server 2000 Directly Over HTTP

In this project, we explore different ways to access SQL Server 2000 over HTTP, including:

❑ How to POST an XML template using an HTML form

❑ A simple Visual Basic application using ADO that executes an XML template

❑ An ASP application that executes an XML updategram

Chapter 20

764

All the samples execute a simple XML template (consisting of SQL queries and/or XPath queries). We
also show how parameters are passed in each of the applications.

Project 2 - Building an Empire: An eLemonade Company

In this project, we use a fictional e-commerce site to contrast two XML approaches to the same
problem. One approach uses FOR XML and OpenXML, and then other uses XML Views, XPath, and
Updategrams. We start with business requirements of selling lemonade over the Internet. Based on
these requirements, we design a database and then finally write an application that explores these XML
features in SQL Server 2000.

Project 1 – Accessing SQL Server 2000 Directly
Over HTTP

In this first project, we will be showing you how you can access and even update information directly
from your SQL Server 2000 database, using HTTP. This enables you to get results passed to a client
(either a web browser, or later on a Visual Basic application) either across a corporate network or across
the Internet. We will see two different techniques that allow you execute queries in SQL Server:

❑ Posting XML templates using HTML form

❑ A VB application using ADO to execute an XML template

❑ An ASP application to execute an XML template (consisting an updategram that
modifies data)

Templates can include SQL queries that can be simple SELECT statements, which update nothing. But
updategrams, which are templates, are used for updating data (INSERT, UPDATE, DELETE). In case of a
VB application, the client must install the application and its required components such as an updated
version of Microsoft Data Access Components (MDAC). The VB application distributes the load for
such things processing the results of a query. In case of an ASP application, the load on the server is
heavier but the client platform is less of an issue. As SQL Server 2000 allows data access over HTTP,
data retrieval/manipulation can be accomplished through firewalls and across platforms.

Note that the examples in Project 1 are designed to be run against the Northwind database; if you
are executing a template in a URL, then you need a virtual root to access Northwind, and a virtual
name of type template.

XML Templates – Getting XML from SQL Server Across
the Web

We briefly met XML Templates in Chapter 15. The first part of this project is designed to provide you
with a quick introduction to the concept of XML templates, and how they can be used to retrieve data
from SQL Server 2000 across HTTP.

A template is simply an XML document that uses a specific syntax, which can be interpreted/processed
by SQL Server 2000 components. They are called templates because they act like a placeholder for
SQL queries, updategrams, and XPath queries, and are processed in a special way. Each template
can hold a number of these queries, which are executed sequentially, and if one fails the others will
still be executed.

SQL Server 2000 XML Sample Applications

765

As you may remember from our discussion on XML Views in Chapter 15, when we run XPath queries
we need to provide a mapping schema in annotated XDR form. These schemas allow the query to map
the information in the database to the format of XML that you want returned. You can also use these
schemas with SQL queries (or use the mapping described in Chapter 14 which discussed the FOR XML
clause).

We will look at templates containing XPath queries later, but for the moment we will concentrate
on more simple templates. The general syntax for an XML template that executes a SQL query is
as follows:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql" >
<sql:header>

<sql:param ParameterName> Default Value </sql:param>
<sql:param ParameterName> Default Value </sql:param>...n

</sql:header>
<sql:query>

SQL statement(s)
</sql:query>

</ROOT>

The two main parts of the template are as follows:

❑ The <ROOT> element provides a single top-level element for the resulting XML.

❑ The keywords, header, param, and query, which are defined in the urn:schemas-
microsoft-com:xml-sql namespace.

The keyword elements, nested inside the <ROOT> element, allow you to pass parameters to the
template:

❑ The <query> element is used to contain the actual SQL statements that make up the query to
be run by the template.

❑ The <header> element acts as a container element in which you can specify multiple
parameters using the <param> element.

❑ The <param> element is used to define the parameter name and its optional value.

The following XML template (ch20_ex01.xml) executes a simple SELECT query:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<sql:query>

SELECT FirstName, LastName
FROM Employees
WHERE EmployeeID = 6
FOR XML AUTO

</sql:query>
</ROOT>

The only parameter that we are passing here is the actual SQL query we want to run. The query is on
the Employees table, and asks for the first and last names of the employee whose EmployeeID is 6.
The templates are stored in the directory associated with the virtual name of type template (which is
Template in the example below, to make things easier to understand) – you can test this template by
specifying this URL:

http://localhost/Virtualdirectory/Template/ch20_ex01.xml

Chapter 20

766

Remember to fill in the name of your Virtualdirectory. Because we are executing this template via
a URL, which is sent over an IIS Server via HTTP, the result will also be returned via HTTP. The file
returned will be the template with the result in place of the SQL query, as follows:

Now let's expand this template (ch20_ex02.xml), this time we will add a parameter to the SQL query.
Here the parameter that the query takes is EmpID:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<sql:header>

<sql:param name='EmpID'>1</sql:param>
</sql:header>
<sql:query>

SELECT FirstName, LastName
FROM Employees
WHERE EmployeeID = @EmpID
FOR XML AUTO

</sql:query>
</ROOT>

This example demonstrates how the parameters are used. They allow us to pass values into the template
(we will see how to do this programmatically later in the chapter once we have demonstrated their
syntax). As you can see, this template has a parameter EmpID, as the value of the name attribute on the
<param> element:

<sql:param name='EmpID'>1</sql:param>

This is then referred to in the SQL query:

WHERE EmployeeID = @EmpID

In executing this template, if parameter value is not provided, then the default value 1 is used (the
default is specified as the content of the element). You can test it by specifying the following URL:

http://localhost/Virtualdirectory/Template/ch20_ex02.xml?EmpID=5

And here is the result:

SQL Server 2000 XML Sample Applications

767

Templates Featuring XPath Queries
In Chapter 15, when we looked at XML Views, we saw that you had to provide a schema with your
XPath queries to map the XML structure you want returned to the tables and columns in the database.
You can either specify the schema to be used or provide it directly in the template (in the latter case it is
known as an inline schema). The schema syntax used is XDR, and we must add the annotations we met
in Chapter 15 to provide the mapping.

The XPath query is specified in the <xpath-query> tag, and the schema file name is provided as a
value of the mapping-schema attribute (this is the schema against which the XPath query is executed).
The following example shows how an XPath query can be specified in a template (ch20_ex03.xml):

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<sql:header>

<sql:param name='EmpID'>1</sql:param>
</sql:header>
<sql:xpath-query mapping-schema="ch20_ex04.xml">

/Employees[@EmployeeID=$EmpID]
</sql:xpath-query>

</ROOT>

Here is the mapping schema to run the query against (ch20_ex04.xml), so to test this example the
schema must be placed in the directory associated with virtual name of type template (or one of its
subdirectories in which case path relative to the template directory must be specified):

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"

xmlns:dt="urn:schemas-microsoft-com:datatypes"
xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<ElementType name="Employees" >
<AttributeType name="EmployeeID" />
<AttributeType name="FirstName" />
<AttributeType name="LastName" />

<attribute type="EmployeeID" />
<attribute type="FirstName" />
<attribute type="LastName" />

</ElementType>
</Schema>

The following URL can be used to test this example:

http://localhost/Virtualname/template/ch20_ex03.xml?EmpID=7

The EmpID in the URL is the parameter with value 7. The isapi extension (sqlisapi.dll) inserts the
parameter value into the template. When the template is run, using the above URL, the resulting XML
looks like this:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<Employees EmployeeID="7" FirstName="Robert" LastName="King" />

</ROOT>

Chapter 20

768

Applying XSLT to a Template
You can even apply an XSL transformation to the resulting XML by specifying an XSL file in the
template using the xsl attribute, as shown below, in the template, ch20_ex05.xml:

<root
xmlns:sql='urn:schemas-microsoft-com:xml-sql'
sql:xsl='ch20_ex05.xsl'>

<sql:query>
SELECT CustomerID, ContactName, City
FROM Customers
FOR XML AUTO

</sql:query>
</root>

The stylesheet below (ch20_ex05.xsl) is then applied at the server after the template is successfully
executed and prior to the result being sent to the client.

<?xml version='1.0' encoding='UTF-8'?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

<xsl:template match = '*'>
<xsl:apply-templates />

</xsl:template>
<xsl:template match = 'Customers'>

<TR>
<TD><xsl:value-of select = '@CustomerID' /></TD>
<TD><xsl:value-of select = '@ContactName' /></TD>
<TD><xsl:value-of select = '@City' /></TD>

</TR>
</xsl:template>
<xsl:template match = '/'>
<HTML>

<HEAD>
<STYLE>th { background-color: #CCCCCC }</STYLE>

</HEAD>
<BODY>

<TABLE border='1' style='width:300;'>
<TR><TH colspan='2'>Customer List</TH></TR>
<TR><TH >Customer ID</TH><TH>Contact Name</TH><TH>City</TH></TR>
<xsl:apply-templates select = 'root' />

</TABLE>
</BODY>

</HTML>
</xsl:template>

</xsl:stylesheet>

To test this example, save the template and the stylesheet in the directory associated with virtual name
of type template. This URL then executes the template:

http://localhost/Virtualroot/Template/ch20_ex05.xml?contenttype=text/html

SQL Server 2000 XML Sample Applications

769

The screenshot below shows part of the resulting output:

Updategrams
As we said earlier, we can also use an updategram in the XML template, with a SQL query. We met
updategrams in Chpater 15, where we used them to update the contents of SQL Server 2000.
Updategrams consist of <sync>, <before> and <after> tags.

The following template (ch20_ex06.xml) uses an updategram to insert a record in the Employees
table.

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram"
xmlns:sql="urn:schemas-microsoft-com:xml-sql" >

<updg:sync >
<updg:before>
</updg:before>
<updg:after>
<Employees FirstName="Joe" LastName="Smith" />
</updg:after>

</updg:sync>
<sql:query>

SELECT EmployeeID, FirstName, LastName
FROM Employees
FOR XML AUTO

</sql:query>
</ROOT>

This example can be run by using the following URL

http://localhost/Virtualroot/Template/ch20_ex06.xml

As you may remember updategrams can be used with a mapping schema – if one is provided. In this
examples, we have not provided one, so default mapping takes place, which means that element names
map to the table name and the attribute names map to columns in the table.

Chapter 20

770

In the following updategram, a mapping schema is specified because the element and attribute
names specified in the updategram don't match the corresponding table and column names. This is
the updategram (ch20_ex07.xml). Save this file in the directory associated with virtual name of
type template.

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram"
xmlns:sql="urn:schemas-microsoft-com:xml-sql" >
<updg:sync mapping-schema="ch20_ex07.xdr" >

<updg:before>
</updg:before>
<updg:after>
<Emp FName="Joeeeee" LName="Smitheeee" />
</updg:after>

</updg:sync>
<sql:query>

SELECT EmployeeID, FirstName, LastName
FROM Employees
FOR XML AUTO

</sql:query>
</ROOT>

This is the mapping schema (ch20_ex07.xdr). Save it in the same directory where template file is stored.

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"

xmlns:dt="urn:schemas-microsoft-com:datatypes"
xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<AttributeType name="Contact" />

<ElementType name="Emp" sql:relation="Employees" >
<AttributeType name="FName" />
<AttributeType name="LName" />

<attribute type="FName" sql:field="FirstName" />
<attribute type="LName" sql:field="LastName" />

</ElementType>
</Schema>

This example can be run by using the following URL (same as the previous example):

http://localhost/Virtualroot/Template/ch20_ex07.xml

Note again that we specified the schema in this case because the element/attribute names are not the
same as the table and column names to which they map. For example, the element name <Emp> is
different from the table Employees to which it maps. The mapping schema provides the necessary
mapping.

Posting a Template Using an HTML Form
So far, we have seen the potential power of using templates, although they have been run from files
sitting on the server executed using a URL. We can really take advantage of this functionality, however,
by calling it from an HTML form. In this section, we will show you how to call a template from a form.
We will start by just triggering them from a button, but will then move on to see how they can be
associated with form fields so that the user's input is passed into the template as a parameter.

SQL Server 2000 XML Sample Applications

771

Posting a Template to the Server
In the first example, we use a simple HTML form to send the template to the server. Here is the code
for the form (ch20_ex08.html). Save this file anywhere (say on the C:\ drive) and open it in the
browser:

<html>
<head>

<title>Sample Form </title>
</head>
<body>

<form action="http://localhost/northwind" method="POST">
<input type="hidden" name="contenttype" value=text/xml >
<input type="hidden" name="template" value="
<root xmlns:sql='urn:schemas-microsoft-com:xml-sql' >
<sql:query>
SELECT top 5 CustomerID, ContactName, City
FROM Customers
FOR XML AUTO
</sql:query>
</root>

">
<p><input type="submit" value="Show customers" >
</form>
</body>

</html>

Remember to create a virtual root using IIS Virtual Directory Management for SQL Server utility
and specify that virtual root in the HTML form's action. This applies to all following examples of
this type.

The form it produces is very simple, with just one button:

What is actually happening, is that we have the template code in a hidden form field called template:

<input type="hidden" name="template" value="
<root xmlns:sql='urn:schemas-microsoft-com:xml-sql' >
<sql:query>
SELECT top 5 CustomerID, ContactName, City
FROM Customers
FOR XML AUTO
</sql:query>
</root>

">

Chapter 20

772

For this to work, the form requires one additional hidden field contenttype, which sets the content
type of the request to XML:

<input type="hidden" name="contenttype" value=text/xml >

The action of the form is set to the URL (that is, the form is posted to the URL) of our virtual
directory.

<input type="submit" value="Show customers" >

For the POST operation to succeed, the virtual directory must allow the POST method. This should
provide you with no problems if you have set up the virtual directory as explained in appendix E.

Here is the result that is returned:

<root xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<Customers CustomerID="ALFKI" ContactName="Maria Anders" City="Berlin" />
<Customers CustomerID="ANATR" ContactName="Ana Trujillo" City="México D.F." />
<Customers CustomerID="ANTON" ContactName="Antonio Moreno" City="México D.F." />
<Customers CustomerID="AROUT" ContactName="Thomas Hardy" City="London" />
<Customers CustomerID="BERGS" ContactName="Christina Berglund" City="Luleå" />
</root>

You can apply XML transformation to the query result. Here is the revised HTML form in which we
execute the same query but this time we specify an XSL file. As a result you get the customer
information displayed in a table form. Save this file (ch20_ex09.html) anywhere on your machine (say
C:\) and open it in the browser:

<html>
<head>

<title>Sample Form </title>
</head>
<body>

<form action="http://localhost/Virtualroot" method="POST">
<input type="hidden" name="contenttype" value=text/html >

<input type="hidden" name="template" value="
<root xmlns:sql='urn:schemas-microsoft-com:xml-sql' >
<sql:query>
SELECT top 5 CustomerID, ContactName, City
FROM Customers
FOR XML AUTO
</sql:query>
</root>
">

<input type="hidden" name="xsl" value="ch20_ex09.xsl" >

<p><input type="submit" value=" Show all Customers" >
</form>

</body>
</html>

SQL Server 2000 XML Sample Applications

773

Note that the contenttype is specified as text/html because the XSL transforms the result into an
HTML format. Therefore, to display it in the browser as a table, the content type is set as text/html.

This is the XSL file (ch20_ex09.xsl) to be placed in your virtual root directory.

<?xml version='1.0' encoding='UTF-8'?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

<xsl:template match = '*'>
<xsl:apply-templates />

</xsl:template>
<xsl:template match = 'Customers'>

<TR>
<TD><xsl:value-of select = '@CustomerID' /></TD>
<TD><xsl:value-of select = '@ContactName' /></TD>
<TD><xsl:value-of select = '@City' /></TD>

</TR>
</xsl:template>
<xsl:template match = '/'>
<HTML>

<HEAD>
<STYLE>th { background-color: #CCCCCC }</STYLE>

</HEAD>
<BODY>

<TABLE border='1' style='width:300;'>
<TR><TH colspan='3'>Customer List</TH></TR>
<TR><TH >Customer ID</TH><TH>Contact Name</TH><TH>City</TH></TR>
<xsl:apply-templates select = 'root' />

</TABLE>
</BODY>

</HTML>
</xsl:template>

</xsl:stylesheet>

The result of this XSL transformation is a 3-column table (CustomerID, ContactName, City)
displayed in the browser, similar to the one produced by ch20_ex05.xml and its associated stylesheet.

Of course, this has the query hard coded into the page – to make this truly useful we would need to be
able to pass in parameters to the template – this is what we will look at next.

Passing Parameters to the Query
Remember from our earlier examples, that we can pass parameters to the query if they are identified in
the <sql:header> tag in the template. We can modify our HTML code to pass the parameter value.
This application is similar to the previous application with the following exceptions:

❑ The XML template takes one parameter which limits the scope of the SELECT statement
specified in it.

❑ The client provides the value of this parameter as one of the values in the form
(CustomerID).

Chapter 20

774

Save the following file (ch20_ex10.html) anywhere (say, the root of your C:\ drive) and open it in the
browser. When the form is submitted, the template and the parameter value are sent as two separate
items in the POST header:

<html>
<head>

<title>Sample Form </title>
</head>
<body>
For a given customer ID, contact name and city information retrieved.
<form action="http://localhost/Virtualroot" method="POST">

Customer ID:
<input type="text" name="CustomerID" value="ALFKI">
<input type="hidden" name="contenttype" value="text/xml" >
<input type="hidden" name="template" value="
<root xmlns:sql='urn:schemas-microsoft-com:xml-sql' >
<sql:header>

<sql:param name='CustomerID'>ALFKI</sql:param>
</sql:header>
<sql:query>

SELECT CustomerID, ContactName, City
FROM Customers
WHERE CustomerID=@CustomerID
FOR XML AUTO

</sql:query>
</root>
">

<p><input type="submit">
</form>
</body>

</head>

There are security implications with executing templates in this manner. As the template is contained in
the HTML form, the client has complete access to its contents and can therefore change the query. For
this reason, it is best to store the XML template on the IIS server and have the client POST to a virtual
name of template type that has been configured using the SQL Server virtual directory administration
tool. We will discuss this later.

Executing Template Files
Rather than passing the template to the server from a hidden form field, you can have the form execute
the XML template on the server when you click a button on the HTML file. In this example, instead of
specifying the XML template in the HTML form, the XML template file is stored (ch20_ex11.xml) on
the IIS server in the directory associated with the virtual name of template type. To do this, we just set
the form's action to the URL of the template file. Here is the template:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql" >
<sql:query>

SELECT top 5 CustomerID, ContactName, City
FROM Customers
FOR XML AUTO

</sql:query>
</ROOT>

Since this template file is stored in the virtual directory, all the requests for the file are handled by the
ISAPI extension (sqlisapi.dll). Therefore, users do not have access to the contents of the template
file and cannot change the query inside the template. Here is the revised HTML (ch20_ex11.html).
Save this file anywhere (say your C:\ drive root).

SQL Server 2000 XML Sample Applications

775

<html>
<head>

<title>Sample Form </title>
</head>
<body>

Display first 5 customers.
<form action="http://localhost/Virtualroot/template/ch20_ex11.xml"
method="POST">
<input type="hidden" name="contenttype" value="text/xml" >
<p><input type="submit" value="Find customers" >
</form>

</body>
</html>

Passing Parameters to Template Files

We promised earlier that we would show you how to pass parameters to the XML templates from form
fields. This can be done quite simply, by adding a form field whose names match the parameters
accepted by the template.

Let's start with a simple example, where the template takes just one parameter (EmployeeID). This will
allow us to enter the ID of the employee and retrieve their first and last names.

Here is the revised template (you should be familiar with the syntax by now). Save this template file
(ch20_ex12.xml) on the IIS server in the directory associated with the virtual name of template type.

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql" >
<sql:header>

<sql:param name="CustomerID">ALFKI</sql:param>
</sql:header>
<sql:query>

SELECT CustomerID, ContactName, City
FROM Customers
WHERE CustomerID=@CustomerID
FOR XML AUTO

</sql:query>
</ROOT>

And here is the revised HTML form (ch20_ex12.html). Note that we have the action of the form
pointing to the URL of the template. The addition of the input element where we type the number of
the employee we wish to retrieve, allows us to pass the value added by the user to the template:

<html>
<head>

<title>Sample Form </title>
</head>
<body>

For a given employee ID, employee first and last name is retrieved.
<form action="http://localhost/Virtualroot/template/ch20_ex12.xml"

method="POST">
<input type="text" name="CustomerID" value="ALFKI" >
<input type="hidden" name="contenttype" value="text/xml" >
<p><input type="submit" value="Find Customer" >

</form>
</body>

</html>

Chapter 20

776

The simple form looks like this:

And here is the result that is returned to us when we execute this query:

Sample ASP Application
Now we come to a more interesting application that makes use of Active Server Pages (ASP), which
allows the user to update the records in the database.

We will create a single ASP page which will generate a form for the user to enter the employee ID in a
form when it is first accessed, and which will then return the employee name details when the user
clicks on the button to submit the ID. This is done using the methods that we have already
demonstrated. (If no ID is presented when the user clicks on the button, the blank form is returned for
them to fill in.) When the result is displayed, the user then gets the option to edit the record using an
XML updategram.

Here is the form that the ASP generates if no ID is specified:

SQL Server 2000 XML Sample Applications

777

When a value is entered into the form, the ASP page uses this value to execute the following XML
template to retrieve the specified employee's record.

<root xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<sql:header>

<sql:param name="eid"></sql:param>
</sql:header>
<sql:query>

SELECT eid, fname, lname
FROM Employee
WHERE eid=@eid
FOR XML AUTO

</sql:query>
</root>

The template is executed using the server-side HTTP functionality provided in MSXML 3.0. The
resulting employee record is in the form of an XML document. The server then uses MSXML to parse
this document and retrieve the fname and lname attribute values. These values are then passed to the
client as values of fields in a dynamically generated HTML form. Here are the returned details for the
user to update:

The client can then modify these values and submit this new form whose action is set to execute another
template, which contains an XML updategram:

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
<updg:header>

<updg:param name="eid"/>
<updg:param name="fname" />
<updg:param name="lname" />

</updg:header>
<updg:sync >

<updg:before>
<Employee eid="$eid" />

</updg:before>
<updg:after>

<Employee eid="$eid" fname="$fname" lname="$lname" />
</updg:after>

</updg:sync>
</ROOT>

Chapter 20

778

Note that the field names in the dynamically generated HTML form match the parameter names
specified in the template.

Creating the Application
Now let's build this application. There are a number of things we need to do here:

❑ Create a new database

❑ Write the two templates

❑ Compose the ASP page that houses the functionality

Let's look at each of these in turn:

Creating the Table

In this example, first use the following SQL script (ch20_ex15.sql) to create a new table called
EditEmployees in Northwind database, so that we can edit the entries.

We are not using the Northwind Employees table here because the sample modifies data in the
table. Therefore we create our own table and change data as we want

CREATE TABLE EditEmployees (eid int, fname varchar(20), lname varchar(20))

INSERT INTO EditEmployees VALUES (1, 'Nancy', 'Davolio')
INSERT INTO EditEmployees VALUES (2, 'Andrew', 'Fuller')

This simply creates a table for us called EditEmployees, with the columns eid, fname, and lname.
We populate this table using INSERT statements so that we have some values to work with.

Creating the Templates

There are two templates in this application, the first to retrieve the employee details based on the ID
supplied in the form, and the second to update the database content.

The code for the first template is as follows (ch20_ex16.xml):

<root xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<sql:header>

<sql:param name="eid"></sql:param>
</sql:header>
<sql:query>

SELECT eid, fname, lname
FROM EditEmployees
WHERE eid=@eid
FOR XML AUTO

</sql:query>
</root>

This template needs to be saved in the directory associated with the virtual name of template type.

SQL Server 2000 XML Sample Applications

779

The second template is a little more complicated, as it uses the updategram to allow the user to edit the
record. We explored using updategrams in Chapter 15. This template is called ch20_ex17.xml.

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
<updg:header>

<updg:param name="eid"/>
<updg:param name="fname" />
<updg:param name="lname" />

</updg:header>
<updg:sync >

<updg:before>
<EditEmployees eid="$eid" />

</updg:before>
<updg:after>

<EditEmployees eid="$eid" fname="$fname" lname="$lname" />
</updg:after>

</updg:sync>
</ROOT>

The template will take the employee id, and use this to select the appropriate record, because we do not
allow the user to re-write the id for the user (only the names) we write this back in to make sure that it
overwrites the correct record. Save this in the same place as the first template.

Writing the ASP Page

Now we come on to the main ASP page. Since the page we will be creating is an ASP application, it
must be placed in a virtual root, which must be created using the Internet Services Manager tool. You
cannot use the virtual root that was created using the IIS Virtual Directory Management for SQL Server
utility, because that virtual root is only configured for use with SQL Server and cannot handle ASP
requests.

To create a new virtual root for the ASP application, start the Internet Services Manager tool. To create
a new virtual directory, highlight the Default Web Site, go to the Action menu, and select New. Provide
the virtual directory name, and then path to the physical directory in which the following ASP
application will be saved (ch20_ex17.asp).

Let's step through the code for the ASP Page and see what it is doing here. We start by declaring our
scripting language, VBScript, and the EmpID variable to hold the EmpID. :

<% LANGUAGE=VBSCRIPT %>
<%
Dim EmpID

Remember that, if the user is loading the page for the first time, we want to show them the form to
collect user data, so we need to check if the id has been specified. So, we set EmpID to the value of the
input box that would contain the employee id if the user had already seen the form. We then write out
the start of the HTML code for the page to be displayed, and start an if... then statement to display
the first form if the id has not been specified.

EmpID=Request.Form("eid")
%>

<html>
<body>

<%
'if employee id value is not yet provided, display this form
if EmpID="" then

%>

Chapter 20

780

If EmpID is empty, we start the <FORM> element and write that back to the client. When the user
submits the id, it will be posted back to the same ASP page.

<!-- the EmpID has not been specified so we display the form that allows users to
enter an id -->

<form action="ch20_ex16.asp" method="POST">

Enter EmpID: <input type=text name="eid">

<input type=submit value="Submit this ID" >

Once the user has specified an id, we get passed onto this section, which creates retrieves the record.

<-- Otherwise, we have already entered an employee ID, so display the second part
of the form where the user can change fname and lname -->

<%
else

%>

<form name="Employee" action="http://localhost/VirtualRoot/Template/Ch20_ex17.xml"
method="POST">

You may update the first name and last name information below.

<!-- comment goes here to separate the parts of the application or page -->

<%
' Let us load the document in the parser and extract the values to populate the

form.
Set objXML=Server.CreateObject("MSXML2.DomDocument")

objXML.async=False
objXML.Load("http://localhost/northwind/Template/Ch20_ex16.xml?eid=" & EmpID)

set objEmployee=objXML.documentElement.childNodes.Item(0)

' In retrieving data form the database, if a value in the column is NULL,
' we don't get any attribute for the corresponding element. In this
' case we want to skip the error generation and go to the next attribute
On Error Resume Next

' get the eid attribute value
Response.Write "Emp ID: <input type=text readonly=true style='background-

color:silver' name=eid value="""
Response.Write objEmployee.attributes(0).value
Response.Write """>

"

' get the fname attribute value
Response.Write "First Name: <input type=text name=fname value="""
Response.Write objEmployee.attributes(1).value
Response.Write """>

"

SQL Server 2000 XML Sample Applications

781

' the "lname" attribute
Response.Write "Last Name: <input type=text name=lname value="""
Response.Write objEmployee.attributes(2).value
Response.Write """>
"

set objEmployee=Nothing
Set objXML=Nothing

%>
<input type="submit" value="Submit this change" >

<input type=hidden name="contenttype" value="text/xml">
<input type=hidden name="eeid" value="<%=EmpID%>">

<% end if %>
</form>
</body>
</html>

This example illustrates how easy it is to write ASP applications to retrieve and process XML with SQL
Server XML functionality. The size of the code is much smaller and the application is more secure as all
the business logic is controlled by the server and not present in the HTML transmitted to the client.

Sample ADO Applications
Having seen how to pass the records as XML across HTTP using URLs to call templates, we will now
look at how we can use ADO from a Visual Basic form. ADO is a client dependent method of accessing
and manipulating SQL Server data using XML. The clients must have Microsoft Data Access
Components 2.6 or higher for this functionality. One immediate advantage of this method is a
distributed load. Whereas in ASP applications the server handles all the processing of data, client-side
ADO applications use the processing power of the client to manage data. One of the more likely usages
of ADO is the custom client applications that may require high speed batch editing of data sets where
an HTML interface may not be appropriate. For a more complete discussion of the XML capabilities of
ADO and ADO+, refer to chapter 13.

In this Visual Basic application a command is executed using ADO. The command executes a simple
SELECT query against the Northwind database. The query specifies the FOR XML clause. Therefore,
instead of getting a record set, XML is returned upon the execution of the command, and since the
result itself is XML, it must be returned as a stream. It is important to note here that the structure of the
returned XML document is entirely controlled by the query executed. This method is more flexible
than using other ADO features which transform record sets into XML documents.

Executing a Command
To get us going with using VB and ADO, we'll start by simply executing a SELECT statement that is
hard coded into the VB form. The SELECT statement uses the FOR XML clause to return XML as a
string that is displayed to the user.

Start up Visual Basic and create a new Visual Basic Project. A Standard EXE project is sufficient. Add a
reference to ADO 2.6. We need at least this version because earlier versions of ADO where not
designed to work with SQL Server XML features. This code can be found in the download, saved as
ch20_ex18:

Chapter 20

782

Private Sub Form_Load()

Dim cmd As New ADODB.Command
Dim conn As New ADODB.Connection
Dim strmOut As New ADODB.Stream

' Open a connection to the SQL Server.
conn.Provider = "SQLOLEDB"
conn.Open "server=(local); database=Northwind; uid=sa; "

Set cmd.ActiveConnection = conn
cmd.CommandText = "SELECT FirstName, LastName FROM Employees FOR XML AUTO"

' Execute the command, open the return stream, and read the result.
strmOut.Open
strmOut.LineSeparator = adCRLF
cmd.Properties("Output Stream").Value = strmOut

cmd.Execute , , adExecuteStream
strmOut.Position = 0
Debug.Print strmOut.ReadText

End Sub

When we run this application it will retrieve the records from Northwind specified in the query, and
displays them in the immediate window:

Executing an XML Template
Now let's look at an example that makes use of an XML template. This time, we will be using ADO to
execute the template. There are three key parts to this example:

❑ We use the FileSystemObject to open a text stream over a text file, which contains the
XML template. This method returns TextStream object.

❑ The data in this stream is passed to an ADO stream. To do this we convert the TextStream
object into ADOStream object which is understood by the ADO command object (cmd). We
need to do this because the ADO command object doesn't understand TextStream, but does
understand ADOStream.

❑ The ADO stream is then executed using the connection to SQL Server.

In testing this application, you must include the Microsoft Scripting Runtime project reference. It
contains the FileSystemObject, which is needed to perform the file operations. You also need a
reference to ADO 2.6.

Let's step through this code (ch20_ex20): The application first opens a standard connection to SQL
Server 2000 using the ADO connection object (ADODB.Connection).

SQL Server 2000 XML Sample Applications

783

Private Sub Form_Load()
Dim cmd As New ADODB.Command
Dim conn As New ADODB.Connection
Dim strmIn As New ADODB.Stream
Dim txtStream As TextStream
Dim strmOut As New ADODB.Stream
Dim objFSO As New FileSystemObject

' Open a connection to the SQL Server.
conn.Provider = "SQLOLEDB"
conn.Open "server=(local); database=Northwind; uid=sa; "

Set cmd.ActiveConnection = conn

Next we set the dialect for the ADO command object (ADODB.Command). Since you are executing an
XML template, we must set the ADO commands dialect to MSSQLXML. This setting instructs ADO to
specifically interact with SQL Server XML features.

' Set the command dialect to XML (DBGUID_MSSQLXML).
cmd.Dialect = "{5d531cb2-e6ed-11d2-b252-00c04f681b71}"

Then a stream is opened over the XML template file using the OpenTextFile method of the
FileSystemObject (objFSO). Using the ReadALL method on the TextStream object (txtStream),
the contents of the template file are written into an ADO stream (strmIn). The position of each stream
is reset to 0 prior to executing the command and prior to reading the result. We use the
TextStream.ReadALL command to return a string and then later used this string to create the
ADOStream object.

' Open the command stream and write our template to it.
strmIn.Open

Set txtStream =
objFSO.OpenTextFile("C:\inetpub\wwwroot\Northwind\template\ch20_ex20.xml",_

ForReading)
strmIn.WriteText txtStream.ReadAll
strmIn.Position = 0

The ADO stream (strmIn) is then assigned to the CommandStream property of the ADO command
object (cmd).

Set cmd.CommandStream = strmIn

To execute the template we first open the output stream (strmOut.Open) and set the command's
Output Stream property to this stream.

' Execute the command, open the return stream, and read the result.
strmOut.Open
strmOut.LineSeparator = adCRLF
cmd.Properties("Output Stream").Value = strmOut

Finally the command's execute method (cmd.Execute) is called specifying adExecuteStream as the
third parameter (the options parameter). The data in the output stream (strmOut) is accessed using
the ReadText method of the ADO stream object (ADODB.Stream).

Chapter 20

784

cmd.Execute , , adExecuteStream
strmOut.Position = 0
Debug.Print strmOut.ReadText

End Sub

Here is the sample XML template that is executed in our Visual Basic application. Save this template
(ch20_ex20.xml) in the directory associated with virtual name of template type (it doesn't have to be
in this directory for ADO application. But we will use the same template in another application later):

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql" >
<sql:query>

SELECT FirstName, LastName
FROM Employees
where EmployeeID=1
FOR XML AUTO

</sql:query>
</ROOT>

As before the results are passed to the immediate window.

Passing Parameters
The next application is similar to the previous one, except for the following:

❑ The XML template executes an XPath query against XML View

❑ This template accepts one parameter which must be passed through ADO

The Visual Basic application is given below. It is similar to the previous example except now parameter
information is added in the code. Here is the code again; we have highlighted the differences in the two
versions:

Private Sub Form_Load ()

Dim cmd As New ADODB.Command
Dim conn As New ADODB.Connection
Dim strmIn As New ADODB.Stream
Dim txtStream As TextStream
Dim strmOut As New ADODB.Stream
Dim objFSO As New FileSystemObject

Prior to executing the command, an ADO parameter (ADODB.Parameter) is added to the command
object's parameters collection. This parameter stores The employeeID, which is required by the XPath
query in the template.

Dim objParam As ADODB.Parameter

' Open a connection to the SQL Server.
conn.Provider = "SQLOLEDB"
conn.Open "server=(local); database=Northwind; uid=sa; "

Set cmd.ActiveConnection = conn

SQL Server 2000 XML Sample Applications

785

' Set the command dialect to XML (DBGUID_MSSQLXML).
cmd.Dialect = "{5d531cb2-e6ed-11d2-b252-00c04f681b71}"

' Open the command stream and write our template to it.
strmIn.Open

Set txtStream =
objFSO.OpenTextFile("C:\inetpub\wwwroot\Northwind\template\ch20_ex21.xml",_

ForReading)
strmIn.WriteText txtStream.ReadAll
strmIn.Position = 0

Set cmd.CommandStream = strmIn
' Execute the command, open the return stream, and read the result.
strmOut.Open
strmOut.LineSeparator = adCRLF
cmd.Properties("Output Stream").Value = strmOut

The parameter name must be prefixed with the @ in the parameter's definition. The parameter is
marked as an input parameter by specifying adParamInput as the value of the Direction property.
The value of the Size property determines the maximum number of characters that will be passed to
the template. In this example 25 is sufficient. In passing parameters to templates that execute an XPath
query, note that XPath can use only string-valued parameters.

Set objParam = cmd.CreateParameter

objParam.Name = "@EmployeeID"
objParam.Direction = adParamInput
objParam.Type = adWChar
objParam.Size = 25
objParam.Value = "6"
cmd.Parameters.Append objParam
cmd.NamedParameters = True

cmd.Execute , , adExecuteStream
strmOut.Position = 0
Debug.Print strmOut.ReadText

End Sub

In testing this application (ch20_ex21), you must include the Microsoft Scripting Runtime project
reference. It contains the FileSystemObject, which is needed to perform the file operations, as well
as a reference to the ADO 2.6 library.

Now let's look at the revised template. Notice that the XML template specifies XML view using an
inline XDR schema. Since the schema is inline, the value of mapping-schema attribute has the '#'
character in the beginning indicating the schema is inline (in the same template file).

In the XPath query:

Employees[@EmployeeID=$EmployeeID]

Chapter 20

786

the $EmployeeID is the parameter passed to the template. The query retrieves Employees elements
with specific value for its EmployeeID attribute. The template parameter is defined in the
<sql:header> tag in the template.

Save this template (ch20_ex21.xml) in the directory associated with the virtual name of template
type (it can be anywhere for this application but we will use this template in later examples, executed in
the URL).

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
sql:id="MyMappingSchema"
sql:is-mapping-schema="1">

<ElementType name="Employees" >
<AttributeType name="EmployeeID" />
<AttributeType name="FirstName" />
<AttributeType name="LastName" />

<attribute type="EmployeeID" />
<attribute type="FirstName" />
<attribute type="LastName" />

</ElementType>
</Schema>

<sql:header>
<sql:param name='EmployeeID'>1</sql:param>

</sql:header>
<sql:xpath-query mapping-schema="#MyMappingSchema">

Employees[@EmployeeID=$EmployeeID]
</sql:xpath-query>

</ROOT>

Again the results are printed out to the immediate window.

Having seen some examples of accessing SQL server's XML capabilities over HTTP, let's look at a
more integrated case study that brings together some of the ideas that we have seen so far.

Building an Empire: an eLemonade Company
For the rest of this chapter, we will use a prototype e-commerce scenario to demonstrate the use of
OpenXML, FOR XML, XPath, and Updategrams. All of these technologies may be used independently
or together with others; however, a natural pairing is OpenXML with FOR XML, and XPath with
Updategrams. We will present a scenario and two solutions, one for each pair of technologies. The
solutions presented demonstrate the strengths and weaknesses of these technologies.

We begin by describing the requirements for this project, and then outlining solutions to some of the
problems presented. Next, we explore a solution using OPENXML and FOR XML, and then consider a
different solution using XML Views, XPath, and Updategrams.

The Internet Lemonade Stand – Project Requirements
Let's suppose that you've decided to open your storefront online, and you've identified your target
market: thirsty web surfers. Recalling a classic computer game, you are suddenly inspired: Yes, that's
right, this will be the Internet lemonade stand.

SQL Server 2000 XML Sample Applications

787

Based on years of experience and substantial research in the lemonade stand business, you quickly
determine the requirements for your project. Of course, you're selling online, so weather is no longer an
issue - it's always sunny somewhere! There are, however, other issues to consider:

❑ You need lemons, and lots of them. You need a way to track your supplies of lemons
and sugar.

❑ Of course, you need to track sales and shipping information.

❑ You need to keep a sharp eye on market trends, so you will need to track various news feeds
for bulletins that could impact your online lemonade retail business.

❑ Customer loyalty is the key to your success, so you decide to allow users to create profiles to
customize the web site layout (and maybe someday track buying patterns over time, to
provide targeted advertising).

You're going to develop this web site entirely on your own using the super-cool XML features of SQL
Server 2000, so your development budget will be smaller than usual. In fact, it will be negligible in this
example, because we're going to do all the work for you. All you need to do is follow the preparatory
steps below, using the sample code provided with this book.

The sample code assumes that you have created a SQL virtual directory named lemonade with a
virtual name template to execute template queries. Replace all instances of http://localhost/
lemonade/template in this example with your actual server location and virtual directory names.

Database Design
In this example, we've chosen a design that allows us to highlight various features of XML support in
SQL Server 2000, but one that also shares many characteristics with real-world scenarios. We will not
go into all the details of setting up the database, but will instead highlight some relevant points, such as
the table structure.

Let's suppose that with the exception of news feeds that allow you to track market trends, you supply all
the data yourself (supply costs, advertising costs, sales and revenues). After examining your
requirements in detail, you decide to store the data in the database in five tables:

Chapter 20

788

This database, and the tables within it can be created using the following script (ch20_ex22.sql):

CREATE DATABASE LEMONADE
GO
USE LEMONADE
GO
-- The NEWS table stores all the news bulletins you collect
CREATE TABLE NEWS
(Date datetime not null, -- publication date

Headline nvarchar(100) not null, -- news headline
Story ntext not null) -- news content

-- The PURCHASES table stores all the expenditures you make
CREATE TABLE PURCHASES
(Pid int identity primary key, -- purchase id

Date datetime not null, -- date purchased
Price money not null, -- total cost in dollars
Notes nvarchar(100)) -- description or other comments

-- The SUPPLIES table tracks lemon and sugar supplies
CREATE TABLE SUPPLIES
(Pid int foreign key references Purchases (Pid),

-- corresponding purchase
Item nvarchar(10) not null, -- lemon, sugar
Quantity smallint not null) -- number of lemons, kilograms sugar

-- The CUSTOMERS table keeps customer-specific information
CREATE TABLE CUSTOMERS
(Cid nvarchar(12) primary key, -- customer id

Name nvarchar(50), -- customer name
Color nvarchar(20)) -- favorite color

-- The ORDERS table stores all orders placed through the Internet Lemonade Stand
CREATE TABLE ORDERS
(Oid int identity primary key, -- order id

OrderDate datetime not null, -- time order was placed
ShipDate datetime, -- time order was fulfilled
Cid nvarchar(12) foreign key references Customers (cid),

-- customer who placed order
Quantity smallint not null, -- liters of lemonade
UnitPrice money not null) -- dollars per liter

I'd suggest creating these tables in a new database to keep your examples separate and thus more
logically distributed. (I've called mine lemonade), Let's also prepare the database with a customer and
initial inventory (Mom kindly supplied sugar for free), by running the following (ch20_ex23.sql)
against our lemonade database:

INSERT INTO PURCHASES VALUES ('1999-10-19', 0.00, 'thanks, Mom!')
INSERT INTO SUPPLIES VALUES (@@identity, 'sugar', 2)
INSERT INTO PURCHASES VALUES ('1999-10-19', 5.00, NULL)
INSERT INTO SUPPLIES VALUES (@@identity, 'lemon', 20)
INSERT INTO CUSTOMERS VALUES ('ad', 'Arthur Dent', 'yellow')

SQL Server 2000 XML Sample Applications

789

External XML Sources
One major goal of this study is to investigate ways of importing data from external XML sources into a
database table (specifically, our NEWS table, in the case of the example below). Let's suppose the news
feeds are available from one or more Internet sources in XML form. External sources of XML
information can be handled in many ways. In the two different solutions, we will see some of these
ways, but for now, let's just look at an example XML source – we'll be using a static XML document,
but in practice live, dynamic data works just as well:

<NewsStream>
<Story>

<Title>Lemon Prices Sour</Title>
<Date>1999-09-23</Date>
<Author>Ford Prefect</Author>
<Text>Today, lemon prices reach a new 52-week low as ...</Text>

</Story>
<Story>

<Title>The Internet Lemonade Stand Opens For Business</Title>
<Date>1999-10-19</Date>
<Author>Argle Fargle</Author>
<Text>In a shrewd move, the Internet Lemonade Stand opened ...</Text>

</Story>
<!-- additional news items -->

</NewsStream>

The important point is that this XML comes in a form that you do not control, so you have to take
whatever you have and map it to your database. This situation presents different problems than having
total control over the XML structure. We'll consider different ways to insert this XML into our NEWS
table, in the following sections.

The Two Different Solutions
Now it is time to look our two different solutions – one using OpenXML and FOR XML to implement a
solution through SQL, and the other being entirely XML-based, using XML Views, XPath and
Updategrams.

Each prototype consists of pages to display an internal report of the latest news and expenses, as well as
pages that allow customers to create new accounts, edit their profile information, and place and track
orders.

Prototyping with OpenXML and FOR XML
Sometimes, a completely SQL-based solution is required. This can be true, for example, if you already
have an extensive network of stored procedures and other database logic and want only to extend this
system to produce XML output. Sometimes, system constraints can require a SQL solution.

One drawback to this approach is that there is no way to perform server-side XSL transformations in
SQL Server. These transformations can be performed using XML templates (as we will see in the next
section), ASP, or some other mechanism. Alternatively, the transformation can be effected through the
query itself; for example, a query can return HTML directly.

Chapter 20

790

Displaying News and Expenses
Inserting XML into the database can be done using OpenXML. Commonly, you have some external
XML source that you must match up with your database structure. To solve this problem effectively,
you need to identify the top-most element in the XML that you will map to a row, and then determine
how to extract the column values from the XML (relative to the element you chose).

In the case of the news feed above, each <Story> corresponds to one row of the News table, and the
<Date>, <Title>, and <Text> elements under it correspond to the date, headline, and story
columns, respectively.

So, we can insert the news into the database using an OpenXML statement like this (ch20_ex24.sql):

DECLARE @idoc int
EXEC sp_xml_preparedocument @idoc OUTPUT,

'<NewsStream>

</NewsStream>'
INSERT INTO NEWS
SELECT * FROM OpenXML(@idoc, '/NewsStream/Story', 2)
WITH (Date datetime './Date',

Headline nvarchar(100) './Title',
Story ntext './Text')

Each XPath in the WITH clause selects some XML node relative to the row pattern used in the OpenXML
statement. Verifying the insert and displaying the news can then be done in any number of ways;
perhaps the simplest is this:

SELECT * FROM News ORDER BY [date] FOR XML AUTO, ELEMENTS

We use an element-centric mapping because the story text is potentially large, and therefore better
placed inside an element than in an attribute.

If this query is placed into an XML template, then the results from this query can then be post-
processed using XSL to produce nicely formatted HTML. Let's combine the news with an expense
report, reverse ordered by date, using the following template (ch20_ex24.xml):

<report sql:xsl="ch20_ex24.xsl" xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<sql:query>
SELECT * FROM News ORDER BY Date DESC FOR XML AUTO, ELEMENTS;
SELECT * FROM Purchases ORDER BY Date DESC FOR XML AUTO;

</sql:query>
</report>

where ch20_ex24.xsl is:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="html" indent="yes" media-type="text/html" />

<xsl:template match="/">
<xsl:apply-templates/>

</xsl:template>

SQL Server 2000 XML Sample Applications

791

<xsl:template match="report">
<html>
<head>

<title>The Internet Lemonade Stand News And Expense Report</title>
</head>
<body>

<h1>Top News</h1>
<dl>
<xsl:apply-templates select="News"/>
</dl>

<h1>Inventory Purchases</h1>
<TABLE BORDER="2">

<tr>
<th>date</th>
<th>total cost</th>
<th>notes</th>

</tr>
<xsl:apply-templates select="Purchases"/>

</TABLE>
</body>
</html>
</xsl:template>

<xsl:template match="News">
<dt>[<xsl:value-of select="Date"/>]
<xsl:value-of select="Headline"/></dt>
<dd><xsl:value-of select="Story"/></dd>

</xsl:template>

<xsl:template match="Purchases">
<tr>

<td><xsl:value-of select="@Date"/></td>
<td><xsl:value-of select="@Price" /></td>
<td><xsl:value-of select="@Notes"/></td>

</tr>
</xsl:template>

</xsl:stylesheet>

Place Orders and Create Customer Accounts
Data may also be manipulated using plain SQL, without any XML at all. For example, suppose you
already have created stored procedures for order placement and customer account manager. A query
like:

DECLARE @cid nvarchar(12), @quantity smallint, @unit_price money

-- obtain the parameter values, and then
INSERT INTO Orders VALUES (today(), NULL, @cid, @quantity, @unit_price)

will create a new order, or a query like:

DECLARE @cid nvarchar(12), @name nvarchar(50), @color nvarchar(20)
-- obtain the parameter values, and then
INSERT INTO Customers VALUES (@cid, @name, @color)

Chapter 20

792

will create a new row in the Customers table.

This technique allows you to combine ordinary relational operations with XML-based inserts using
OpenXML. In this way, you can leverage any existing infrastructure to bootstrap an XML
implementation (for example, you can continue to use already existing SQL statements by wrapping
them in a template).

The following XML template (ch20_ex25.xml) demonstrates creating a customer account using a SQL
query; presumably an HTML form supplies the parameter values:

<create>
<sql:header xmlns:sql="urn:schemas-microsoft-com:xml-sql" >

<sql:param name="color">white</sql:param>
<sql:param name="id"/>
<sql:param name="name"/>

</sql:header>
<sql:query xmlns:sql="urn:schemas-microsoft-com:xml-sql" >

INSERT INTO Customers VALUES (@id, @name, @color)
</sql:query>

</create>

Now that you've created a Customer, you might like to view the customer data. Using FOR XML, it is
easy to create XML representing the customer data:

SELECT * FROM Customers FOR XML AUTO

or customers with their purchases:

SELECT * FROM Customers JOIN Orders ON Customers.Cid=Orders.Cid FOR XML AUTO

For most simple applications, this approach works well. When additional control over the XML shape
beyond that provided by FOR XML AUTO is required, EXPLICIT mode can be used to obtain whatever
XML shape is needed. See Chapter 14 for details on FOR XML EXPLICIT.

However, FOR XML EXPLICIT can be quite complex, both to develop and to maintain as your XML
requirements change. An alternative approach is to use XML Views with XPath and updategram
queries. We explore this solution next.

Prototyping with XPath and Updategrams
Using an end-to-end XML-based solution has many advantages over an ad-hoc one. For one thing,
XML can be more easily interoperable among platforms and products than other, code-based solutions.
For another, real-world data is often most naturally viewed as semi-structured data, not relational data.
Finally, changes in the XML shape or content are more readily dealt with when you're already working
at the XML level.

To improve maintainability it is also important to have a solution that allows you to work with your data
as you naturally think of it. Data is often semi-structured, so XML is a natural representation. XML is
also very nicely interoperable with other systems. Consequently, although XPath and Updategrams
usually require a little more setup than raw SQL, the benefits pay off in the long term.

SQL Server 2000 XML Sample Applications

793

Annotate a Schema
In order to use XPath and Updategrams, you must know both the relational design and the XML shape.
In our case, we have no XML schema, so we must create one. There are tools available, such as the
XML View Mapper, that facilitate creating schemas from existing databases. The XML View Mapper is
available from Microsoft's XML Developer Center at http://msdn.microsoft.com/xml. For this example,
we'll just write a schema from scratch.

Let's begin with a very simple schema (ch20_ex26.xdr) that exposes all of our tables in the natural
way, mapping rows to elements and columns to attributes:

<Schema xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:dt="urn:schemas-microsoft-com:datatypes"
xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<ElementType name="News" sql:relation="News" sql:field="Story">
<AttributeType name="date" />
<AttributeType name="headline"/>
<attribute type="date"/>
<attribute type="headline"/>

</ElementType>

<ElementType name="Expense" sql:relation="Purchases">
<AttributeType name="id"/>
<AttributeType name="date"/>
<AttributeType name="price"/>
<AttributeType name="notes"/>
<attribute type="id" sql:field="Pid"/>
<attribute type="date"/>
<attribute type="price"/>
<attribute type="notes"/>

</ElementType>

<AttributeType name="quantity"/>

<ElementType name="Inventory" sql:relation="Supplies">
<AttributeType name="id"/>
<AttributeType name="type"/>
<attribute type="id" sql:field="Pid"/>
<attribute type="type" />
<attribute type="quantity"/>

</ElementType>

<ElementType name="Order" sql:relation="Orders">
<AttributeType name="id"/>
<AttributeType name="ordered" />
<AttributeType name="shipped" />
<AttributeType name="customer"/>
<AttributeType name="unit-price"/>
<attribute type="id" sql:field="Oid"/>
<attribute type="ordered" sql:field="OrderDate"/>
<attribute type="shipped" sql:field="ShipDate"/>
<attribute type="customer" sql:field="Cid"/>
<attribute type="quantity"/>
<attribute type="unit-price" sql:field="UnitPrice"/>

</ElementType>

Chapter 20

794

<ElementType name="Name" content="textOnly"/>
<ElementType name="Customer" sql:relation="Customers">

<AttributeType name="id"/>
<AttributeType name="color"/>
<attribute type="id" sql:field="Cid"/>
<attribute type="color"/>
<element type="Name"/>

</ElementType>
</Schema>

This schema maps the relational data to XML fairly directly. For illustrative purposes, we have included
two elements with text content. Otherwise, this schema is unremarkable, using only the sql:relation
and sql:field annotations.

We can already use this schema to extract data as XML using XPath, for example, in the following
template (ch20_ex26.xml):

<Example xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<Customers>

<sql:xpath-query mapping-schema="ch20_ex26.xdr">Customer</sql:xpath-query>
</Customers>
<Sales>

<sql:xpath-query mapping-schema="ch20_ex26.xdr">Order</sql:xpath-query>
</Sales>

</Example>

lists all customers and all sales, using two separate XPath queries (which result in two separate database
queries). If we've done everything right, the resulting XML from this query should be as follows:

<Example xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<Customers>

<Customer id="ad" color="yellow">
<Name>Arthur Dent</Name>

</Customer>
</Customers>
<Sales/>

</Example>

Improve the Schema
However, the schema ch20_ex26.xdr does not really represent the shape of our data. None of the
elements are connected, even though several of the tables we have in the database are normally joined
together.

There are several different XML Views that could make sense for our data, but a customer-centric view
is especially relevant. In this view, we list all our customers ordered by name, and the purchases made
for each customer. In creating this view, we will also specify additional information about the database,
such as key-fields and data types (both XDR and SQL types). We change Customer, Name, Order and
quantity as follows (only the Order ElementType is shown):

SQL Server 2000 XML Sample Applications

795

<AttributeType name="quantity" dt:type="i2" sql:datatype="smallint"/>
<ElementType name="Order" sql:relation="Orders"

sql:key-fields="Oid">
<AttributeType name="id" dt:type="id" sql:datatype="int"/>
<AttributeType name="ordered"

dt:type="dateTime" sql:datatype="datetime"/>
<AttributeType name="shipped"

dt:type="dateTime" sql:datatype="datetime"/>
<AttributeType name="unit-price"

dt:type="fixed.14.4" sql:datatype="money"/>
<attribute type="id" sql:field="Oid" sql:id-prefix="O"/>
<attribute type="ordered" sql:field="OrderDate"/>
<attribute type="shipped" sql:field="ShipDate"/>
<attribute type="quantity"/>
<attribute type="unit-price" sql:field="UnitPrice"/>
</ElementType>
<ElementType name="Name" content="textOnly"

dt:type="string" sql:datatype="nvarchar"/>
<ElementType name="Customer" sql:relation="Customers"

sql:key-fields="Name Cid">
<AttributeType name="id" dt:type="id" sql:datatype="nvarchar"/>
<AttributeType name="color" dt:type="string" sql:datatype="nvarchar"/>
<attribute type="id" sql:field="Cid"/>
<attribute type="color"/>
<element type="Name"/>
<element type="Order">

<sql:relationship key-relation="Customers" key="Cid"
foreign-relation="Orders" foreign-key="Cid"/>

</element>
</ElementType>

We generally specify the key-fields for elements as a matter of habit, and recommend you do the same
(see Chapter 15 for details). In this case, we've also listed Name for Customers (even though it is not
really a key of that table) to sort the <Customer> elements by name. Although this is not the
recommended way to sort XML results (use XSL instead), it works well enough for this example.

Providing specific XDR types and SQL types can help eliminate unnecessary conversions in XPath. For
some queries, this can result in significant performance increases (a factor of ten, or more). For
Updategrams, specific SQL types are required for column types such as ntext. So while we're at it,
we'll also add explicit types to the other schema components.

But first, let's also change <Inventory> and <Expense> so that they are grouped together. We can do
this using <sql:relationship>, and we can also use sql:limit-field to separate the supplies by
type. In this way, we replace <Inventory> with two attributes, lemons and sugar:

<ElementType name="Expense" sql:relation="Purchases" sql:key-fields="Pid">
<AttributeType name="id" dt:type="id" sql:datatype="int"/>
<AttributeType name="date" dt:type="date" sql:datatype="datetime"/>
<AttributeType name="price" dt:type="fixed.14.4" sql:datatype="money"/>
<AttributeType name="notes" dt:type="string" sql:datatype="nvarchar"/>
<AttributeType name="lemons" dt:type="i2" sql:datatype="smallint"/>
<AttributeType name="sugar" dt:type="i2" sql:datatype="smallint"/>
<attribute type="id" sql:field="Pid" sql:id-prefix="P"/>
<attribute type="date"/>
<attribute type="price"/>

Chapter 20

796

<attribute type="notes"/>
<attribute type="lemons" sql:relation="Supplies" sql:field="quantity"

sql:limit-field="Item" sql:limit-value="lemon">
<sql:relationship key-relation="Purchases" key="Pid"

foreign-relation="Supplies" foreign-key="Pid"/>
</attribute>
<attribute type="sugar" sql:relation="Supplies" sql:field="quantity"

sql:limit-field="Item" sql:limit-value="sugar">
<sql:relationship key-relation="Purchases" key="Pid"

foreign-relation="Supplies" foreign-key="Pid"/>
</attribute>
</ElementType>

For reasons that will be made clear later, we'll also add a constant element that groups together expense
information and news items. Putting it all together, we have the schema ch20_ex27.xdr:

<Schema xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:dt="urn:schemas-microsoft-com:datatypes"
xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<ElementType name="News" sql:relation="News" sql:field="Story"
dt:type="string" sql:datatype="ntext" >

<AttributeType name="date" dt:type="date" sql:datatype="datetime"/>
<AttributeType name="headline"

dt:type="string" sql:datatype="nvarchar"/>
<attribute type="date"/>
<attribute type="headline"/>
</ElementType>
<ElementType name="Expense" sql:relation="Purchases" sql:key-fields="Pid">
<AttributeType name="id" dt:type="id" sql:datatype="int"/>
<AttributeType name="date" dt:type="date" sql:datatype="datetime"/>
<AttributeType name="price" dt:type="fixed.14.4" sql:datatype="money"/>
<AttributeType name="notes" dt:type="string" sql:datatype="nvarchar"/>
<AttributeType name="lemons" dt:type="i2" sql:datatype="smallint"/>
<AttributeType name="sugar" dt:type="i2" sql:datatype="smallint"/>
<attribute type="id" sql:field="Pid" sql:id-prefix="P"/>
<attribute type="date"/>
<attribute type="price"/>
<attribute type="notes"/>
<attribute type="lemons" sql:relation="Supplies" sql:field="Quantity"

sql:limit-field="Item" sql:limit-value="lemon">
<sql:relationship key-relation="Purchases" key="Pid"

foreign-relation="Supplies" foreign-key="Pid"/>
</attribute>
<attribute type="sugar" sql:relation="Supplies" sql:field="Quantity"

sql:limit-field="Item" sql:limit-value="sugar">
<sql:relationship key-relation="Purchases" key="Pid"

foreign-relation="Supplies" foreign-key="Pid"/>
</attribute>
</ElementType>
<ElementType name="NewsAndExpenses" sql:is-constant="1">
<element type="News"/>
<element type="Expense"/>
</ElementType>

SQL Server 2000 XML Sample Applications

797

<ElementType name="Order" sql:relation="Orders"
sql:key-fields="Oid">

<AttributeType name="id" dt:type="id" sql:datatype="int"/>
<AttributeType name="ordered"

dt:type="dateTime" sql:datatype="datetime"/>
<AttributeType name="shipped"

dt:type="dateTime" sql:datatype="datetime"/>
<AttributeType name="quantity" dt:type="i2" sql:datatype="smallint"/>
<AttributeType name="unit-price"

dt:type="fixed.14.4" sql:datatype="money"/>
<attribute type="id" sql:field="Oid" sql:id-prefix="O"/>
<attribute type="ordered" sql:field="OrderDate"/>
<attribute type="shipped" sql:field="ShipDate"/>
<attribute type="quantity"/>
<attribute type="unit-price" sql:field="UnitPrice"/>
</ElementType>
<ElementType name="Name" content="textOnly"

dt:type="string" sql:datatype="nvarchar"/>
<ElementType name="Customer" sql:relation="Customers"

sql:key-fields="Name Cid">
<AttributeType name="id" dt:type="id" sql:datatype="nvarchar"/>
<AttributeType name="color" dt:type="string" sql:datatype="nvarchar"/>
<attribute type="id" sql:field="Cid"/>
<attribute type="color"/>
<element type="Name"/>
<element type="Order">

<sql:relationship key-relation="Customers" key="Cid"
foreign-relation="Orders" foreign-key="Cid"/>

</element>
</ElementType>

</Schema>

We can now use a simple template (ch20_ex27.xml) with this schema to return customer information:

<Example xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<Customers>

<sql:xpath-query xmlns:sql="urn:schemas-microsoft-com:xml-sql"
mapping-schema="ch20_ex27.xdr">Customer</sql:xpath-query>

</Customers>
</Example>

returns XML data like this:

<Customers xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<Customer id="ad" color="yellow">

<Name>Arthur Dent</Name>
</Customer>

</Customers>

Obviously, this example is not particularly interesting until we have some more data. To create the data,
we'll build several web pages. One page for internal use only displays an expense sheet and relevant
news stories. Another two pages will create new customer accounts or edit existing ones, where
customers can enter their own names and favorite colors. Finally, one page is personalized to each
customer, displaying the list of orders that customer has placed.

Chapter 20

798

Display News and Expenses
The news feed must first be connected to the database. However, it is provided in a different format
than our schema describes, so we must first map the news to our pre-existing News table with another
annotated schema. Then we can wrap the news in the <after> part of an updategram, and submit it to
the database for insertion.

Here is a reminder of the XML news feed format:

<NewsStream>
<Story>

<Title>Lemon Prices Sour</Title>
<Date>1999-09-23</Date>
<Author>Ford Prefect</Author>
<Text>Today, lemon prices reach a new 52-week low as ...</Text>

</Story>
<Story>

<Title>The Internet Lemonade Stand Opens For Business</Title>
<Date>1999-10-19</Date>
<Author>Argle Fargle</Author>
<Text>In a shrewd move, the Internet Lemonade Stand opened ...</Text>

</Story>
<!-- additional news items -->

</NewsStream>

This can be modeled using the following schema ch20_ex28.xdr:

<Schema xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:dt="urn:schemas-microsoft-com:datatypes"
xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<ElementType name="Title" sql:field="Headline" sql:datatype="nvarchar"/>
<ElementType name="Text" sql:field="Story" sql:datatype="ntext"/>
<ElementType name="Date" sql:field="Date"

dt:type="date" sql:datatype="datetime"/>
<ElementType name="Author" content="textOnly"/>
<ElementType name="Story" sql:relation="News">
<element type="Title"/>
<element type="Date" />
<element type="Author" sql:map-field="0"/>
<element type="Text"/>
</ElementType>
<ElementType name="NewsStream" sql:is-constant="1">
<element type="Story"/>
</ElementType>

</Schema>

which maps <NewsStream> as a constant element and <Author> to nothing. This is necessary because
neither element corresponds to anything in the database (but <NewsStream> appears in the XML). The
news can then be inserted into the database with the following template containing an updategram
(ch20_ex28.xml):

<insert-news>
<u:sync xmlns:u="urn:schemas-microsoft-com:xml-updategram"

mapping-schema="ch20_ex28.xdr">
<u:after>

<NewsStream>
<!-- all the news here -->
</NewsStream>

</u:after>
</u:sync>

</insert-news>

SQL Server 2000 XML Sample Applications

799

At this point, we are ready to create the third, internal web page by using a template to extract the data
and a server-side XSL post-processing step to render the data as HTML. If <News> and <Inventory>
elements were completely unrelated, we would require two separate XPath queries (and hence, two
roundtrips to the database). However, by using the constant <NewsAndExpense> element, we can
perform this query in a single XPath (ch20_ex29.xml):

<internal sql:xsl="ch20_ex29.xsl" xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<sql:xpath-query mapping-schema="ch20_ex27.xdr">
NewsAndExpenses
</sql:xpath-query>

</internal>

where ch20_ex29.xsl is

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="html" indent="yes" media-type="text/html" />

<xsl:template match="/">
<xsl:apply-templates/>

</xsl:template>
<xsl:template match="internal">

<html>
<head>
<title>The Internet Lemonade Stand News And Expense Report</title>
</head>
<body>
<h1>Top News</h1>
<dl>

<xsl:apply-templates select="NewsAndExpenses/News"/>
</dl>
<h1>Expense Sheet</h1>
<table border="1">
<tr>
<th>date</th>
<th>purchase</th>
<th>total cost</th>
<th>notes</th>

</tr>
<xsl:apply-templates select="NewsAndExpenses/Expense"/>
</table>
</body>
</html>
</xsl:template>

<xsl:template match="News">
<dt>[<xsl:value-of select="@date"/>]
<xsl:value-of select="@headline"/></dt>
<dd><xsl:value-of select="."/></dd>

</xsl:template>

<xsl:template match="Expense">
<tr>

<td><xsl:value-of select="@date"/></td>
<td><xsl:choose><xsl:when test="@sugar">
<xsl:value-of select="@sugar"/> kg. sugar
</xsl:when><xsl:otherwise><xsl:value-of select="@lemons"/>
lemon<xsl:if test="@lemons>1">s</xsl:if>
</xsl:otherwise></xsl:choose></td>
<td><xsl:value-of select="@price"/></td>
<td><xsl:value-of select="@notes"/></td>

</tr>
</xsl:template>

</xsl:stylesheet>

Chapter 20

800

This stylesheet takes the following XML output from the template:

<internal xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<NewsAndExpenses>
<News date="1999-09-23" headline="Lemon Prices Sour">
Today, lemon prices reach a new 52-week low as ...

</News>
<News date="1999-10-19" headline="The Internet Lemonade Stand Opens For

Business">
In a shrewd move, the Internet Lemonade Stand opened ...

</News>
<Expense id="P1" date="1999-10-19" price="0" notes="thanks, Mom!" sugar="2" />
<Expense id="P2" date="1999-10-19" price="5" lemons="20" />
</NewsAndExpenses>

</internal>

and reformats it into user-friendly HTML tables.

Create and Edit Customer Accounts
Previously, we demonstrated how to post a template through an HTML form. This method is
straightforward but presents all sorts of security risks. A better approach is to pass parameters to a
server-side template that is completely under your control. Although we are only storing each
Customer's name and favorite color, this technique obviously generalizes to larger sets of parameters.

We first need a login/new account page (ch20_ex30.html):

<HTML>
<HEAD>

<TITLE>Welcome to the Internet Lemonade Stand</TITLE>
</HEAD>
<BODY>

<P>Please log in to your account</P>
<FORM ACTION="http://localhost/virtualname/template/ch20_ex31.xml">

Username <input type="text" name="cid" value=""/>
<input type="submit"/>
</FORM>

<P>or create a new account</P>
<FORM ACTION="http://localhost/virtualname/template/ch20_ex30.xml">

Username <input type="text" name="id" value=""/>

Full Name <input type="text" name="name" value=""/>

Favorite Color <input type="text" name="color" value=""/>

<input type="submit"/>

</FORM>
</BODY>
</HTML>

SQL Server 2000 XML Sample Applications

801

Logging in takes the user to personalized page (see next section); otherwise, we attempt to create a new
account. Using a template to create a new account can be as simple as a parameterized updategram
insert, as seen in the following example, ch20_ex30.xml:

<create>
<u:header xmlns:u="urn:schemas-microsoft-com:xml-updategram" >

<u:param name="color">white</u:param>
<u:param name="id"/>
<u:param name="name"/>

</u:header>
<u:sync xmlns:u="urn:schemas-microsoft-com:xml-updategram"

u:nullvalue="" mapping-schema="ch20_ex27.xdr">
<u:after>

<Customer id="$id" color="$color">
<Name>$name</Name>
</Customer>

</u:after>
</u:sync>

</create>

When the user successfully created a new account, they will be presented with this screen:

Chapter 20

802

Of course, when the id collides with an existing customer's id, the updategram will return an error. So,
we must be prepared to capture this error and display it to the user in a friendly way. We will do this
using XSL by modifying the template above to use a style sheet:

<create sql:xsl="ch20_ex31.xsl" xmlns:sql="urn:schemas-microsoft-com:xml-sql">

where ch20_ex31.xsl is:

<xsl:stylesheet version="1.0" xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>
<xsl:output method="html" indent="yes" media-type="text/html" />

<xsl:template match="/">
<html>
<head><title>Customer Login</title></head><body>

<xsl:apply-templates/>
</body>

</html>
</xsl:template>
<xsl:template match="create">
<xsl:choose>

<!-- if the template returns an error, display it
otherwise, the new account succeeded -->
<xsl:when test="processing-instruction('MSSQLError')">

<p>A customer with that username already exists. Please
try a different username.</p>
<form action="http://localhost/lemonade/template/ch20_ex30.xml">
Username
<input type="text" name="id" value=""/>
Full Name
<input type="text" name="name" value=""/>
Favorite Color
<input type="text" name="color" value=""/>
<input type="submit"/>
</form>

</xsl:when>
<xsl:otherwise>

Congratulations on your new account.
</xsl:otherwise>
</xsl:choose>

</xsl:template>
</xsl:stylesheet>

When the user does error in this fashion, they are presented with this screen:

SQL Server 2000 XML Sample Applications

803

Of course, in practice, we would also want to pass the parameters through to the XSL, so that the
customer does not have to enter all his or her personal data again.

Personalized Customer Page
Displaying a customer's orders is a straightforward application of the same XPath and XSL technique
we used earlier for the internal page. To accomplish this task, we use the parameterized template
ch20_ex31.xml:

<personal sql:xsl="ch20_ex32.xsl" xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<sql:header>

<sql:param name="cid"/>
</sql:header>
<sql:xpath-query mapping-schema="ch20_ex27.xdr">

Customer[@id=$cid]
</sql:xpath-query>

</personal>

This template returns the customer data together with all the orders the customer has ever placed. We
can use XSL to display these orders to the user (dividing them among orders fulfilled and orders still
pending). First, prepare the database with some orders, using the following code (ch20_ex31.sql):

INSERT INTO Orders VALUES('1999-10-04', '1999-10-04', 'ad', 2, 1.75)
INSERT INTO Orders VALUES('1999-10-19', '1999-10-23', 'ad', 5, 1.50)
INSERT INTO Orders VALUES('1999-10-25', '1999-10-26', 'ad', 15, 1.00)

And then execute the template with this XSL named ch20_ex32.xsl:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="html" indent="yes" media-type="text/html" />

<xsl:template match="/">
<xsl:apply-templates/>

</xsl:template>
<xsl:template match="personal">

<xsl:apply-templates/>
</xsl:template>
<xsl:template match="Customer">

<html>
<head><title>Welcome <xsl:value-of select="Name"/>!</title></head>
<body>

<xsl:attribute name="BGCOLOR">
<xsl:value-of select="@color"/>

</xsl:attribute>
<p>Welcome back to the Internet Lemonade Stand,

<xsl:value-of select="Name"/>!</p>
<p>Let us quench your thirst with our excellent lemonade!</p>

<h2>Pending Orders</h2>

<xsl:for-each select="Order[not(@shipped)]">

<xsl:sort select="@shipped" order="descending"/>
Ship Date: <xsl:value-of select="@shipped"/>
Order Date: <xsl:value-of select="@ordered"/>

Amount: <xsl:value-of select="@quantity"/> liters
Cost: <xsl:value-of
select="format-number(@quantity * @unit-price, '$#.00')"/>

</xsl:for-each>

Chapter 20

804

<h2>Past Orders</h2>

<xsl:for-each select="Order[@shipped]">

<xsl:sort select="@shipped" order="descending"/>
Ship Date: <xsl:value-of select="@shipped"/>
Order Date: <xsl:value-of select="@ordered"/>

Amount: <xsl:value-of select="@quantity"/> liters
Cost: <xsl:value-of
select="format-number(@quantity * @unit-price, '$#.00')"/>

</xsl:for-each>

</body>
</html>

</xsl:template>
</xsl:stylesheet>

So, from the main page, if we now log in as Arthur Dent using his Customer ID (ad), we are presented
with the following report:

Placing new orders is a straightforward extension of the examples presented above, so we leave that as
an exercise for you, the reader.

SQL Server 2000 XML Sample Applications

805

Summary
SQL Server 2000 provides feature-rich XML capabilities. This added functionality makes developing
web applications much simpler. These features allow you to create powerful web applications with great
ease.

With the middle-tier features – such as annotated XDR schemas and Updategrams – you can write end-
to-end XML applications, and query and modify relational data as though it were XML. The support for
annotated XDR schema reduces the amount of programming required to produce XML from the
relational data.

On the server side, features such as OPENXML and FOR XML allow you to leverage your existing
SQL knowledge and applications. Turning your relational data into XML can be as simple as adding
FOR XML AUTO to an existing SQL query, or using the more complex FOR XML EXPLICIT for full
control over the XML output. OPENXML, on the other hand, is rowset provider that can be used to a
shred an XML document and generate a rowset view of the XML and use it along with INSERT,
UPDATE and DELETE statements.

With all these features, writing web applications in this Internet world has become a lot simpler.

Helpful Web Sites
❑ You can obtain an evaluation copy of SQL Server 2000 from

http://www.microsoft.com/sql/productinfo/default.htm

❑ The MSDN website (http://msdn.microsoft.com/downloads/default.asp in particular) is the
place to download the web releases of SQL Server 2000. The web releases provide you with
new SQL Server XML functionality (the XML updategram and XML Bulk Load) as well as
enhancements to the features that were shipped with SQL Server 2000.

Chapter 20

806

DB Prism: A Framework to
Generate Dynamic XML from a

Database

In this case study, we will be looking at DB Prism, an open source framework to generate dynamic
XML from a database. Unlike other technologies, such as Apache XSP or Oracle XSQL servlet, DB
Prism generates the dynamic XML inside the database, transforming it into an active database. An
active database means that you use the database engine not only to execute SQL statements, but to
directly return a complex XML representation of the data stored inside as well.

DB Prism is a servlet engine that works in two different modes: as a standalone servlet, or plugged into
the Cocoon publishing framework. In the first mode, DB Prism works like the PLSQL Cartridge of
Oracle Web Server. Plugged into the Cocoon framework, DB Prism works as a DB Producer, generating
dynamic XML from a database.

The main motivation to work like the PLSQL Cartridge of Oracle Web Server is to allow old
technologies to coexist with new ones, helping in the migration path. Using DB Prism it is possible to
run applications made to work with Oracle Web Server (OWS) in the same box or the latest Oracle
Internet Application Server (IAS) without any modifications.

This kind of application includes applications designed with Oracle Designer, Web Server Generator or
Oracle Web DB, and standalone applications made using the PLSQL HTP toolkit (Html Toolkit
Procedures is group of related procedures or functions written in PLSQL to make application for the
Oracle Web Server architecture). We will not describe in detail how these applications are constructed
and executed because that is not within the scope of this case study. For further information on how
these applications work, refer to the developer's manuals of these products.

Chapter 21

808

DB Prism plugged into the Apache Cocoon framework is a new way for making Internet applications
with technologies as XML and XSLT, which is the focus of the second part of the case study. Cocoon is
a presentation framework based on servlet technology, so it can run in any web server supporting
servlet technology. As a presentation framework it has the responsibility for serving pages requested by
the user, applying first styles as the page needs and transforming static or dynamic XML content into
HTML. Cocoon is also able to perform more sophisticated formatting, such as XSL:FO (XSL
Formatting Objects) rendering on PDF, WML formatting for WAP-enabled devices, or direct XML
serving to XML and XSL aware clients. The Cocoon project aims to change the way web information is
created, rendered, and served by completely separating document content, style, and logic.

DB Prism is plugged into the Cocoon framework for the XML creation step. It then moves the logic to
the database, closely allied to the data itself. The most important characteristic of DB Prism is that,
unlike in other technologies, the logic of the application resides in the database as a stored procedure.
This approach provides several benefits such as scalability, better separation of code, security,
maintainability, and re-use of developer skills (these benefits shall be discussed later in the study). The
stored procedure could be written in the proprietary language or in Java. Writing stored procedure in
Java with a JDBC or SQLJ call guarantees portability across different database vandors because there is
a standard defined for this purpose.

DB Prism already includes support for Oracle databases, but its design allows developers to write
adapters to plug into many other kinds of databases. In this case study, we will introduce a new adapter
and so develop an example from it.

This case study is focused on two main topics. First, we will look at DB Prism internals – giving
background information and internal information about how DB Prism works to help developers write
new DB Prism adapters for new databases. The second part will look at how you can develop XML
applications with DB Prism, and the presentation framework Cocoon. The examples or the installation
step are based on a UNIX server environment, but there aren't restrictions for doing it in a Windows
platform, you only need change the directory paths and the scripts from .sh shell scripts to .bat
batch files.

Here is a more detailed outline of the contents of this case study:

❑ Cocoon architecture

❑ DB Prism architecture

� DB Prism class diagram

� DB Prism: Benefits provided to the Cocoon Framework

Part I. DB Prism Internals; focusing on "How to write a new Adapter":

❑ Who is who?

❑ Code to be taken into account

� DB Prism

� DBConnection

� DBFactory

� SPProc

❑ Common issues on writing a new Adapter

DB Prism: A Framework to Generate Dynamic XML from a Database

809

Part II. Putting DB Prism at work.

❑ Cocoon Setup on Oracle Internet Application Server (IAS)

❑ DB Prism Setup on IAS

❑ Loading DB Prism examples

❑ Making a Content Management System (CMS)

� Brief introduction to a CMS

� Design of the meta model

� Writing the Java Code

� Loading the Content

� Making two different stylesheets

❑ Conclusion and beyond

To run the examples in this case study you will need an Oracle IAS web server, an Oracle Database
(8.1+), Oracle XML SQL Utility version 12 (XSU12), Oracle XML parser 2.1, the Cocoon framework
from http//xml.apache.org, and the DB Prism servlet engine from http//www.plenix.com.

This case study assumes some knowledge of Java (servlet programming especially!), JDBC, SQLj, and
servlet configuration on an Oracle IAS.

Cocoon Architecture
The Cocoon project aims to change the way web information is created, rendered and served. This new
paradigm is based on fact that different individuals or groups often create document content, style, and
logic. Cocoon aims to allow a complete separation of the three layers so that they can be independently
designed, created and managed, reducing management overhead, increasing work reuse and reducing
time to market.

The Cocoon design divides the creation process of an application in three different levels:

❑ XML Creation:

In this level, the content owners make an XML static file with a regular XML editor. This
level is a content level.

❑ XML Processing:

If the XML content includes logic, this logic is processed. Cocoon XSP technology is
processed here, this technology is to XML as JSP is to HTML.

❑ XSL Rendering:

In this level, the XML coming from the previous level is processed by applying a stylesheet
for formatting the content to several targets of devices.

Cocoon is shown in the following diagram (picture adapted from one at the Apache web site
(http://xml.apache.org/cocoon/):

Chapter 21

810

The main components in this architecture are:

❑ Request
A client request, normally coming from a servlet request – Cocoon also has an offline
operation mode when the request is internally managed.

❑ Producer
Handles the request and produces an XML output (content). Cocoon has several
producers, like a file producer, which takes a request and interprets it as an XML file to be
uploaded from the file system. DB Prism adds a DB producer to Cocoon, which takes a
request and interprets it as a stored procedure call on the database side. The stored
procedure's return value contains the XML document generated in the database and feeds it
into the processing reactor.

❑ Processing Reactor
Processes the processing instructions contained in the XML document. The processing
instructions are delivered here from the previous step in the Cocoon 1.x architecture (the
Producer). With the site map implementation of the Cocoon 2.0 architecture, these processing
instructions are not necessary, making the development step clearer, without presentation
responsibility. The reactor forwards the XML document to the corresponding formatter.

❑ Formatter
Transforms the internal representation of an XML document into a stream that may be
interpreted by the client. The formatter assigns the corresponding MIME type to the
output response.

❑ Response
This encapsulates the response information sent back to the client. This information includes
the MIME type, character set, and the rest of the HTTP headers and content.

In this architecture, producers are based on static content. They do not evaluate or process anything about
the request to produce the XML output. XSP Technology is included in Cocoon as the default
implementation to make the content dynamically, from an originally static XML file. The file producer
loads this file, and then the processing instructions included in the document are passed to the reactor to
tell it to begin compilation of the page. When the page compilation is completed, compiled pages are then
inserted into the Cocoon pipeline as a new producer.

With this functionality, the logic of the application runs in the middle tier. When this application interacts
with a database, there are common problems and pitfalls. One is related to the performance – if the page
needs to process complex logic based on a large amount of data the round trip of JDBC calls to the
database will hinder the final performance of the application. Other pitfalls are related to the benefits of DB
Prism shown at the beginning of the text and explained in the next section. Remember also that Cocoon is
a presentation framework, not an application framework; the intention is to produce a variety of
presentation styles once the content has been processed.

DB Prism: A Framework to Generate Dynamic XML from a Database

811

DB Prism Architecture
DB Prism adds a new producer to Cocoon framework – this producer makes the XML inside the
database by executing a stored procedure. To deal with the portability problems of the stored
procedure, the design of the DB Prism permits extension of the original framework to any database that
supports stored procedures by adding a new adapter.

This design is explained in the following section, to provide internal documentation for developers who
decide to write a new adapter.

The DB Prism architecture looks like this:

Wrappers Engine Adapters

Cocoon

Servlet

DBPrism

Resource
Manager

DAD
Information

Oracle 7x

Oracle 8i

Java 8i

Java Lite

The three different main sections are as follows:

❑ Wrappers:
Wrappers handle the incoming request from a Cocoon framework or a servlet engine and
adapt them to the DB Prism request. They also return the generated XML or HTML page
to clients.

❑ Engine:
The Engine processes the request calling to the specific stored procedure, analyzing the
request and choosing the target database according to the information given. The Engine
doesn't deal with database specific problems as the stored procedures deal with those. The
Engine takes the connection from the Resource Manager, which implements a configurable
pool of database connections and transactions supported by a URL demarcation. The
information attached to the connection is stored in a DAD dictionary. DAD stands for
Database Access Descriptor and is a piece of configurable information stored in the DB
Prism configuration file. This file contains, for example, user name and password to
connect to the database, type of the database to be connected to, and all other necessary
connection information.

❑ Adapters:
Making the actual call to the specific stored procedure in a target database, each adapter deals
with the database specific problems such as "How are stored procedures stored in the
database dictionary?" and "How do I get the generated page from the database side?". Each
adapter includes three classes – a Factory to handle the creation process, a Database
Connection which implements the real stored procedure call (JDBC callable statement), and
Stored Procedure objects that encapsulate the name and arguments of a stored procedure in
the database.

In the following sections, these components are described in detail.

DB Prism Class Diagram
On the next facing pages is an overall picture of the classes of DB Prism:

Chapter 21

812

DBFactory

DBFactory()
createSPProc()
createDBConnection()
createUploadRequest()
createDownloadRequest()

DBJavaFactory()
createSPProc()
createDBConnection()
createUploadRequest()
createDownloadRequest()

DBJavaFactory
(from Oracle)

DBLiteFactory()
createSPProc()
createDBConnection()
createUploadRequest()
createDownloadRequest()

DBLiteFactory
(from Oracle)

DB7xFactory()
createSPProc()
createDBConnection()
createUploadRequest()
createDownloadRequest()

DB7xFactory
(from Oracle)

DB8iFactory()
createSPProc()
createDBConnection()
createUploadRequest()
createDownloadRequest()

DB8iFactory
(from Oracle)

DBDB2Factory()
createSPProc()
createDBConnection()
createUploadRequest()
createDownloadRequest()

DBDB2Factory
(from IBM)

ConnInfo

CONN_FREE : int=1
CONN_TX : int=2
CONN_DIR : int=3
ignoreProducerArg : boolean
errorLevel : int
txEnable : boolean
dLogin : boolean
status : int=CONN_FREE
stateless : boolean

ConnInfo()
int()
ConnInfo()
ConnInfo()
getFactory()
getURI()
ConnINfo()

DBConnection

NO_CHECK : int=1
GLOBAL : int=2
PER_PACKAGE : int=3

DBConnection()
doCall()
resetPackages()
doIt()
create()
replace2()
setCGIVars()
getAuthModel()
doAuthorize()
getRealm()
getGeneratedStream()
getGeneratedPage()
getSPCommand()
getPacakge()
getServletName()
getProcedure()
MsgArgumentCallError()
getAll()
getConnInfo()
getConnInfo()
int()

DBConnJava
(from Oracle)

DBConnJava()
create()
resetPackages()
getCallerName()
findArgumentsMatch()
doIt()
setCGIVars()
getGeneratedStream()
getAuthModel()
doAuthorize()
getRealm()

DBConnDB2
(from IBM)

DBConnDB2()
create()
resetPackages()
doIt()
create()
setCGIVars()
getGeneratedStream()
doAuthorize()
getRealm()

DBConnPLSQL
(from Oracle)

DBCommPLSQL()
create()
resetPackages()
doIt()
setCGIVars()
getGeneratedStream()
getAuthModel()
doAuthorize()
getRealm()

DBPrism

BEHAVIOR :int=0
cachep : boolean = true

makePage()
getVersion()
getPage()
initDBPrism()
DBPrism()
DBPrism()
init()
release()
getProperties()

DBConnJavaLite
(from Oracle)

DBConnJavaLite()
create()
getGeneratedStream()

DBConnJava8i
(from Oracle)

DBConnJava8i()
create()
getGeneratedStream()

AbstractProducer
(from producer)

AbstractProducer()
getDocument()
getPath()
getStream()
hasChanged()
init()

DBConn8i
(from Oracle)

DBConn8i()
create()
getGeneratedStream()

DBConn7x()
create()
getGeneratedStream()

DBConn7x
(from Oracle)

HeaderProcessor

convertCookieSpec()
process()
hasChanged()
getStatus()
doProcess()
processObject()
parseAttributes()
getChildren()

CocoonWrapper

CocoonWrapper()
init()
getStream()
getPath()
getBasename()
getStatus()
sendFailurePage()
sendUnauthorized
sendFailureMsg()
sendErrorPage()

Status
(from framework)

getStatus()
Configurable

(from framework)

-connection

-connection

+conninfo

+factory

+theDBFactory

init()

-glassPrism

instance

A

B

C

D

DB Prism: A Framework to Generate Dynamic XML from a Database

813

ConnectionWrapper

getConnection()
getConnection()
freeConnection()

TxDicc

timeOut : int=0
lastComp : int
UNDF : int=0
BGN : int=1
CMMT : int=2
ROLL : int=3
BLNG : int=4

init()
TxDicc()
TxDicc()
getAll()
getType()
getTxDef()
getTxName()

UploadRequest

HttpServletRequest
(from http)

Upload8i
(from Oracle)

Upload8i()
Upload8i()
create()
newAsBlob()
updateContentInfo()

UploadLite()
UploadLite()
create()
newAsBlob()
updateContentInfo()

UploadLite
(from Oracle)

FlexibleRequest
(from utils)

DownloadRequest

create()
DownloadRequest()
DownloadRequest()
doDownloadFromDB()

ResourceManager

clients : int=0
totalCount : int=0
connectionTimeOut : int
minConnections : int
maxConnections : int
txEnableProcessing : boolean
bContinue : boolean=true
counter : int= -1

top()
getInstance()
ResourceManager()
run()
init()
ResourceManager()
get()
relaease()
release()
get_connection()
release_connection()
findMyConnection()

DownloadJava
(from Oracle)

buff_out[] : byte=new byte (65000)

DownloadJava()
DownloadJava()
create()
doDownloadFromDB()

buff_out[] : byte=new byte (65000)

Download8i()
Download8i()
create()
doDownloadFromDB()

Download8i
(from Oracle)

buff_out[] : byte=new byte (65000)

DownloadLite()
DownloadLite()
create()
matchCase()
doDownloadFromDB()

DownloadLite
(from Oracle)

SPProc

SPProc()
addProcedure()
getAll()
getArgumentList()
add()
get()
create()

DBProcedure

shouldCache : boolean=false

DBProcedure()
get()

+cache

procedures

0..*

HttpServlet
(from http)

SPProcLite
(from Oracle)

create()

SPProcDB2
(from IBM)

create()

SPProcPLSQL
(from Oracle)

create()

ExecutionErrorMsgException

ExecutionErrorMsgException()
getMessage()

NotAuthorizedException()
getMessage()

NotAuthorizedException

ExecutionErrorPageException()
getMessage()

ExecutionErrorPageException
ServletWrapper

ServletWrapper()
init()
doPost()
destroy()
doGet()
getServletInfo()
sendUnauthorized()
sendErrorPage()
sendFailureMsg()
showPage()

-instance

+theTxDicc

-instance

A

B

C

D

Chapter 21

814

DB Prism: Benefits Provided to the Cocoon Framework
DB Prism provides several benefits to the Cocoon architecture by adding a DB Producer for Cocoon.
The most important benefits are discussed below:

❑ Scalability: a PLSQL or Java stored procedure is scalable up to 1000 or more concurrent
sessions without problems of memory leaks or concurrency.

❑ Better separation of concerns: the logic is handled on the database side, while presentation is
left to a separate presentation tier (for example, a web server).

❑ Security: when the user executes a stored procedure, she or he moves to the security level of
the database. The security assets are declarative and not programmatically controlled and so
are safer.

❑ Development tools: if the programmer writes, for example, a Java stored procedure, she or he
could use an integrated development tool to debug the application online.

❑ Maintainability: if a programmer makes a change in any table of the application, the
integrated dependency manager of the database can automatically invalidate the stored
procedures dependent on this table.

❑ Quick deployment: in a big application, a deployment stage tends to be difficult, but with
stored procedures, it is very easy.

❑ Automated development tools: with a little work, it is possible to make an automated
generator that takes logic information from a central repository and automatically generates
the stored procedures, in a similar fashion to an Oracle Designer/Web Server generator.

❑ Reuse of developer skills: many companies have developers with a lot of experience in Oracle
PLSQL. With little training, they will be able to develop an application using DB Prism and
the XTP toolkit (similar to the Html Toolkit Procedures of Oracle Web Server).

The following sections first describe DB Prism internals and Adapter creation, and secondly
development of an XML Application with DB Prism, using Oracle as the database and Oracle IAS as
the web server.

Part I. DB Prism Internals
In this part of the case study, we will introduce DB Prism internals.

Who is who?
The following section looks at the distribution of responsibilities between the different sources
included in the DB Prism distribution (the src directory), according to the architecture discussed in
the previous section.

Wrappers
The following three classes have the responsibility of adapting requests from different sources into
DB Prism internals representations:

src/com/prism/CocoonWrapper.java
src/com/prism/ConnectionWrapper.java
src/com/prism/ServletWrapper.java

DB Prism: A Framework to Generate Dynamic XML from a Database

815

❑ CocoonWrapper is a class that takes Cocoon requests and adapts them to a DB Prism request

❑ ServletWrapper is a class that adapts servlet requests to a DB Prism request

❑ ConnectionWrapper is a class that takes requests for connection from the Cocoon XSP
pages and adapts them to a ResourceManager request

Engine
src/com/prism/DBPrism.java
src/com/prism/CgiVars.java
src/com/prism/ExecutionErrorMsgException.java
src/com/prism/ExecutionErrorPageException.java
src/com/prism/NotAuthorizedException.java

❑ DBPrism is the main class of the framework. It takes a request (from Cocoon or a servlet
engine), gets one connection from a resource manager, and divides the process of generating a
page into two steps: one for making the stored procedure calls, and another for getting the
generated page from the database.

❑ CgiVars is a class that stores the CGI environment variables that will be sent to the database
in the stored procedure call.

❑ ExcecutionErrorMsgException, ExecutionErrorPageException, and
NotAuthorizedException are exception handlers, which encapsulate the information when
an error is caught.

Engine Framework Related Classes

src/com/prism/DBFactory.java
src/com/prism/DBConnection.java
src/com/prism/SPProc.java
src/com/prism/UploadRequest.java
src/com/prism/DownloadRequest.java

These classes are abstract classes that encapsulate database dependent stuff:

❑ DBFactory is a class that has methods for the creation process. It defines methods for
creating connections to a particular database, stored procedures and so on.

❑ DBConnection is a class that defines the operation to be implemented for a particular
database; this operation is database dependent and must be implemented by the concrete
classes (adapters).

❑ SPProc is a class that stores the information about a database's stored procedure – the stored
procedure can be defined with different arguments (overloading) and this class is a container
for the entire version of a particular stored procedure.

❑ UploadRequest is a class that encapsulates a request of multipart form data MIME type.
This type of request is not handled by the stored procedures directly; when an upload
operation occurs, first the multipart form data is uploaded into the database table, and second
the result of this operation is passed to the stored procedure.

❑ DownloadRequest defines the operation for downloading multimedia content from the
database store to the clients.

Chapter 21

816

Engine Resource Manager and DAD Information Classes

src/com/prism/ResourceManager.java
src/com/prism/TxDicc.java
src/com/prism/ConnInfo.java
src/com/prism/DBProcedure.java

❑ ResourceManager is a class that manages the connection pooling and transaction support –
this class implements a list of free and busy connections and a simple algorithm to allocate
and de-allocate connections.

❑ TxDicc is a dictionary of DAD information – this dictionary has the information defined for
every connection in the DB Prism configuration file.

❑ ConnInfo is a class that stores the information of a particular connection at run time.

❑ DBProcedure is a dictionary for storing stored procedure information; it works like a cache
of the stored procedures found in the database dictionary, which helps to improve
performance.

Engine (Others)

src/com/prism/HeaderProcessor.java

❑ HeaderProcessor is an accessory class, which handles the header process of the response
object. This class permits modification of the response object in the Cocoon pipeline directly
through XML tags. This utilizes the XML processing instruction <?http?>.

Adapters (Oracle Common)

src/com/prism/oracle/SPProcPLSQL.java
src/com/prism/oracle/DBConnPLSQL.java
src/com/prism/oracle/DBConnJava.java

These three classes are common to different adapters on Oracle databases:

❑ SPProcPLSQL is a class that encapsulates the information of a stored procedure in version 7
or 8 of the Oracle database. Independent from the language of the stored procedure, Oracle
stores the same information for each stored procedure.

❑ DBConnPLSQL is a class that handles the process of making a stored procedure call
independent from the version of the database, but dependent on PLSQL as language of the
stored procedure.

❑ DBConnJava is a similar class to the previous one but handles calls to stored procedures
written in the Java language.

Adapters (Oracle 8i)

src/com/prism/oracle/DB8iFactory.java
src/com/prism/oracle/DBConn8i.java

❑ DB8iFactory is a class that returns Oracle 8i PLSQL support objects

❑ DBConn8i is a class, which implements DB Prism functionality for Oracle 8i databases, and
stored procedures written in the PLSQL language

DB Prism: A Framework to Generate Dynamic XML from a Database

817

Adapters (Oracle 7x)

src/com/prism/oracle/DB7xFactory.java
src/com/prism/oracle/DBConn7x.java

DB7xFactory is a class that returns Oracle 7.x PLSQL support objects. DBConn7x is a class, which
implements DB Prism functionality for Oracle 7x databases, and stored procedures written in the
PLSQL language.

Adapters (Oracle 8i Java Support)

src/com/prism/oracle/DBJavaFactory.java
src/com/prism/oracle/DBConnJava8i.java

DBJavaFactory is a class that returns Oracle 8i Java support objects. DBConnJava8i is a class, which
implements DB Prism functionality for Oracle 8i databases and stored procedures written in Java.

Adapters (Oracle Lite Java Support)

src/com/prism/oracle/DBLiteFactory.java
src/com/prism/oracle/DBConnJavaLite.java

❑ DBLiteFactory is a class that returns Oracle Lite Java support objects

❑ DBConnJavaLite is a class that implements DB Prism functionality for Oracle Lite databases
and stored procedures written in Java

Adapters (Oracle Upload/Download functionality)

src/com/prism/oracle/Download8i.java
src/com/prism/oracle/DownloadJava.java
src/com/prism/oracle/DownloadLite.java
src/com/prism/oracle/Upload8i.java
src/com/prism/oracle/UploadLite.java

❑ Download8i is a class that implements the functionality of downloaded multimedia objects
from version 8i of the database and stored procedures written in PLSQL.

❑ DownloadJava is a class that implements the functionality of downloaded multimedia objects
from version 8i of the database and stored procedures written in Java.

❑ DownloadLite is a class that implements the functionality of downloaded multimedia objects
from Oracle Lite databases and stored procedures written in Java.

❑ Upload8i is a class that handles uploading multipart data from a data request to version 8i
databases; the uploading process does not depend on the language of the stored procedures, it
only inserts rows in the content table. Then, DB8iFactory and DBJavaFactory reuse this
class.

❑ UploadLite handles uploading multipart form data requests to Oracle Lite databases.

Adapters (DB2 skeletons)

src/com/prism/ibm/DBDB2Factory.java
src/com/prism/ibm/DBConnDB2.java
src/com/prism/ibm/SPProcDB2.java

Chapter 21

818

These three classes implement the skeleton of a suggested DB2 adapter for the Java stored procedures
support discussed in the next sections, these classes are only examples of a new possible adapter for any
kind of database which has stored procedures support.

Common Issues with Writing a New Adapter
When considering making a new adapter for a database not supported by DB Prism (for example, IBM
DB2), you need to first answer these questions:

1. Is there a JDBC driver for this database?
If not, then it is not possible to make an adapter.

2. Are stored procedures supported by this database?
Again, if not, making an adapter will be impossible.

3. Are packages supported by this database?
If not, this database probably supports the syntax of schema objects for referencing
the stored procedure, and then if possible makes an adapter using user schemas as
package names.

4. Are array types sending or receiving by the JDBC driver?
The easy way to implement an adapter for a new database is with Java stored procedures.
In this way, you can use classes from existing adapters such as DBConnJava or CgiVars
to facilitate the implementation of the new adapter. With these codes, you only need to
check for the option of passing byte array data types (byte []) and verify how to
upload the Java toolkit (Jxtp) in the target database. Then you only need to implement
SPProc, DBConnection, and DBFactory subclasses. The Jxtp toolkit was designed to be
portable. Only two classes are dependent on database-specific information, JxtpBuff and
JwpgDocLoad. JxtpBuff implements the buffer for storing the generated page, normally
in a CLOB (Character Large Object, as opposed to a BLOB for images) data type, and
JwpgDocLoad implements the download functionality.

5. Does the JDBC driver support large objects?
If the answer is yes, the new adapter could use this data type for storing the generated
page by the application. If not, you could download the page in smaller chunks of the
usual data types. The Oracle 7x adapter uses this technique for downloading the
generated page, in chunks of 32 KB.

If the questions are all answered, then you are ready to make a new adapter. Now it is time to see how a
new adapter is actually written.

Writing the New Adapter
When writing a new adapter, there are several pieces of code to take into account, which will be looked
at in the next section with general comments, in order to show how they work. Some of them are part of
the DB Prism framework itself, and are abstract classes that define the interface or responsibility of the
adapters with the DB Prism engine.

This section includes the DBPrism class, which is the main class of the framework; DBConnection,
which defines the interface or responsibility of an adapter; the factory class, DBFactory, which defines
the operation for the creation process; and SPProc, which defines how to represent stored procedures of
any kind of databases.

DB Prism: A Framework to Generate Dynamic XML from a Database

819

DBPrism.java
There are two crucial methods in the DB Prism class – makePage() defines the steps to make an XML
page through a stored procedure (including, for example, authorization of the request, and getting the
connection to the concrete database), and getPage() which gets the generated page of the previous
step from the database.

Before introducing the code of them, here is a UML sequence diagram of the complete process of
generating a page with a request from Cocoon and the adapter for Oracle 8i databases.

aCocoonE ngine aCocoonWrapper:
CocoonWrapper

glassPrism:
DBPrism

cache:
ResourceManager

aDBConn8i:
DBConn8i

2. malePage (HttpServletRequest)

11. release (HttpServletRequest,
DBConnection)

1. getStream (HttpServletRequest)

3. get (HttpServletRequest, String, String)

4. doCall (HttpServletRequest, String, String)

5. resetPackages()

6. setCGIVars (HttpServletRequest,
String, String)

7. get AuthMode()

8. do Authorize (int, String)

9. do (HttpServletRequest, String)
12. getPage (HttpServletRequest)

13. getGeneratedPage()

14. getGeneratedStream()
15. release (HttpServletRequest,

DBConnection)

Making the Stored Procedure Call

The makePage() method handles the process of getting the connection from the resource manager,
and makes the stored procedure call to the correct adapter. Previous to this step makePage() checks
for the authorization requirements. The makePage() code is shown below:

public void makePage(HttpServletRequest req) throws Exception
{

ConnInfo cc_tmp = new ConnInfo(req);
String name;
String password;
try
{

int i;
String str;
try
{

str = new String
(B64.decodeBuffer(req.getHeader("Authorization").substring(6)),
cc_tmp.clientCharset);

}
catch (Exception e)
{

str = ":";
}

Chapter 21

820

i = str.indexOf(':');
name = str.substring(0,i);
password = str.substring(i+1);
boolean dLogin = (cc_tmp.usr.equals("") || cc_tmp.pass.equals(""));
if (!dLogin)
{

connection = cache.get(req,cc_tmp.usr,cc_tmp.pass);
}
else if (name.equals("") || password.equals(""))
{

throw new NotAuthorizedException(cc_tmp.dynamicLoginRealm);
}
else
{

try
{

connection = cache.get(req,name,password);
}
catch (SQLException e)
{

throw new NotAuthorizedException(cc_tmp.dynamicLoginRealm);
}
connection.doCall(req,name,password);

}
}
catch (Exception e)
{

if (connection != null)
cache.release(req,connection);

// throw the exception as is
throw e;

}
}

}

We will now go through some of the most important parts of the code, and discuss their role in the
overall operation:

public void makePage(HttpServletRequest req) throws Exception
{ ConnInfo cc_tmp = new ConnInfo(req);

When a request is coming from a servlet, or from Cocoon, it has information about the URL, header,
and so on. When the constructor of ConnInfo is called with a request as parameter, it finds the
connection information by analyzing the syntax of the URL and extracts from them the Database
Access Descriptor key. This key is used to localize the rest of information needed to connect to a
desired database, this key is the last part of the value returned by method getServletPath of the
HttpServletRequest class, for example, in this URL:
http://myserver.com/servlets/demo/pkg.startup, demo is used as the DAD information.

This DAD information is stored in the prism.properties file and includes the user name and
password to connect to the database, and the compatibility mode set for this connection. The
compatibility mode is the kind of database used. The compatibility modes are classified according to
how many adapters they have, DB Prism by default includes 7x, 8i, Java, and Lite adapters.

Note: The servlet engine normally configures the servlet part of the URL to localize
the servlets, and demo is one zone configured in the servlet repository.

DB Prism: A Framework to Generate Dynamic XML from a Database

821

password = str.substring(i+1);

A request coming from the client (browser) has header information about the user name and password;
this information is used with dynamic logins. Dynamic logins mean that if there isn't a user name and
password in the DAD information, DB Prism will ask them the first time that user tries to execute the
application.

connection = cache.get(req,cc_tmp.usr,cc_tmp.pass);

After getting the connection information, DB Prism tries to get a connection from the Resource
Manager. The Resource Manager makes a JDBC connection to the target database and returns a
concrete object representing this connection (DBConnection). If there are problems, such as if you are
denied access, it throws a NotAuthorizedException.

connection.doCall(req,name,password);

If the Resource Manager returns a valid connection in this line, DB Prism makes the stored procedure
call. DBConnection is an abstract class, at run-time the calls are made to a specific class like DBConn8i
or DBConnJavaLite, and then this specific class implements the real call, taking into account the
database dependent code.

Getting the Page from a Database Buffer

The getPage() method handles the process of retrieving the generated page from the database buffer.

public Reader getPage(HttpServletRequest req) throws Exception
{

ConnInfo cc_tmp = new ConnInfo(req);

try
{

return connection.getGeneratedPage();
}
finally
{

if (connection!=null)
{

cache.release(req,connection);
}

}
}

Again, here is an explanation of the most important areas of this code:

return connection.getGeneratedPage();

The getPage() method returns an XML page as a java.io.reader object. This page is obtained
from the database buffer by executing the getGeneratedPage() method of the DBConnection
object. The connection instance variable has the connection object stored in the previous step
(makePage) and then has the same connection to the target database.

cache.release(req,connection);

Chapter 21

822

If getGeneratedPage() works, the connection has returned it to the Resource Manager. The
Resource Manager needs the ConnInfo object to check if this connection is part of a transaction.

Note: DB Prism supports transactions by URL demarcation. You could set transaction support defining
begin, commit, rollback, and belong to URLs (web pages), for example:

❑ /servlets/xml/pkg.startup (begin, the connection is taken here)

❑ /servlets/xml/pkg.commit (commits modifications, then frees the connection)

❑ /servlets/xml/pkg.rollback (rollback modifications, then frees the connection)

❑ /servlets/xml/pkg.* (any other pages that use the connection taken in the first step)

DBConnection.java
Firstly, this class declares an interface to create a connection to every database supported. The create
method has to be implemented by the adapters to return the connection to the database; for example,
DBConn8i class implements this method returning an instance of the DBConn8i class. In addition, it is
an abstract class that defines abstract "primitive operations", which concrete subclasses define to
implement steps in an algorithm (doCall and getGeneratedStream).

What Happens When a Call is Made to the Stored Procedure
The doCall() method handles the creation of a stored procedure call.:

public void doCall(HttpServletRequest req, String usr, String pass)
throws SQLException,NotAuthorizedException,ExecutionErrorPageException,
ExecutionErrorMsgException,UnsupportedEncodingException,IOException

{
String ppackage = getPackage(req);
String pprocedure = getProcedure(req);
if (!connInfo.txEnable && !connInfo.stateLess)
{

resetPackages();
}
setCGIVars(req,usr,pass);
int authStatus = doAuthorize(connInfo.customAuthentication,ppackage);
if (authStatus!=1)
{

String realms = getRealm();
throw new NotAuthorizedException(realms);

}

if (type != null &&
type.toLowerCase().startsWith("multipart/form-data"))

{
UploadRequest multi = connInfo.factory.createUploadRequest(req,this);
doIt(multi,getSPCommand(multi));

}
else if (getSPCommand(req).startsWith("!"))

doIt(new FlexibleRequest(req),getSPCommand(req).substring(1));
else

doIt(req,getSPCommand(req));
}

This code is explained below:

String ppackage = getPackage(req);
String pprocedure = getProcedure(req);

DB Prism: A Framework to Generate Dynamic XML from a Database

823

Before calling the stored procedure, the request is analyzed to get the package name and the stored
procedure name to be executed. A URL like http://myserver.com/servlets/xml/DEMOj.startup returns
DEMOj as the package name and startup as the procedure name.

resetPackages();

According to the parameter stateLess in the DAD information, the operation resetPackages()
will be called. Stateless packages are applications that don't use global states as global package variables.
To guarantee a clear session in every request this operation must reset all the global information. Not all
databases support this operation – Oracle Lite, for example, doesn't have this behavior but it could be
implemented in the class DBMS_Session.java.

setCGIVars(req,usr,pass);

This operation sends all the HTTP CGI variables to the database environment. There are almost 30
CGI variables like PATH_INFO; these variables are used by the applications in order to get important
information about the caller state. An adapter that implements Java support could use the
CgiVars.java class to get this information in a concrete object.

int authStatus = doAuthorize(connInfo.customAuthentication,ppackage);
if (authStatus!=1)
{

String realms = getRealm();
throw new NotAuthorizedException(realms);

The doAuthorize() method is called in order to implement application authorization schemes. There
are four modes of application schemes - none, global, perPackage, and custom. This value is in the
DAD information and the concrete class (adapter) must implement this responsibility. If the
authorization fails, the getRealm() method is called in order to get the application string from the
database, to be sent back to the browser with the authorization response.

if (type != null &&
type.toLowerCase().startsWith("multipart/form-data"))

{
UploadRequest multi = connInfo.factory.createUploadRequest(req,this);
doIt(multi,getSPCommand(multi));

If the request sent by the user is of multipart form data type (upload), DBConnection creates a new
instance of the UploadRequest class – this class stores the information sent by the user in the content
repository and returns a new request with the arguments sent in the client request plus the file(s)
uploaded in the repository. UploadRequest only needs to implement two methods – newAsBlob()
and updateContentInfo(). The stored procedure is then called with this new request object.

If the caller URL has the syntax: http://myserver.com/servlets/xml/!pkg.prc?a=1&b=2&a=3 it means
there is functionality of flexible parameters – this functionality doesn't call a stored procedure of the
form pkg.prc(a,b,a), instead the call looks like this:

pkg.prc(num_entries,name_array,values_array,reserved)

Where num_entries is 3, name_array is an array of {a,b,a}, values_array is an array of
{1,2,3}, and reserved is "none".

Chapter 21

824

If the URL doesn't have flexible parameter passing syntax, the stored procedure is called by calling the
abstract method doIt(), with the request of the client and the stored procedure command as
arguments. The second argument has the syntax [[schema.]package.]procedure, where schema is
the database user name owner of the stored procedure, such as scott, package is the package name
(for example, my_pkg) and procedure is the procedure name to be called. Only the last part is
mandatory, and many databases don't have the concept of the package for grouping related procedures
and functions; in these cases the adapter could use the syntax [schema.]procedure. Oracle Lite
adapter uses the concept of table name as package name; in this database the classes uploaded to the
system are attached to a particular table, and the syntax is interpreted like this –
[schema.]table_name.procedure.

Returning the Page

public StringReader getGeneratedPage() throws Exception
{

StringReader pg = getGeneratedStream();
if (!connInfo.txEnable)
{

sqlconn.commit();
}
return pg;

}

This code functions as follows:

public StringReader getGeneratedPage() throws Exception
{

StringReader pg = getGeneratedStream();

GetGeneratedPage() does not need to do different things according to the database, it only needs to
invoke the abstract method getGeneratedStream which has to be implemented in each subclass.
Each subclass represents a different database and implements the corresponding mechanism according
to the database dependent stuff. For example, in the UML sequence diagram the database used is
Oracle 8i, so the subclass is DBConn8i and it codifies the corresponding getGeneratedStream.

The getGeneratedStream abstract method, generally, gets the page from a database buffer; this
database buffer is filled by the application with the page to be returned to the client. According to the
versatility of the database for handling large amounts of text, this buffer could be a simple data type or
complex one; for example, a CLOB type is used in Oracle 8i's Java support for storing the generated
page.

if (!connInfo.txEnable)
{

sqlconn.commit();

If the URL is not part of a transaction, then the changes are committed, otherwise the resource manager
applies this commit automatically when the connection is returned, and the URL is recognized as a
commit URL.

return pg;

Finally, the page is returned to the Wrapper.

Abstract Methods
These methods of DBConnection define the contract with the Adapters, and these methods are
implemented by the sub-classes according to the functionality shown in the previous code.

DB Prism: A Framework to Generate Dynamic XML from a Database

825

public abstract int doAuthorize(String authMode, String ppackage) throws
SQLException;

public abstract String getRealm() throws SQLException;
public abstract StringReader getGeneratedStream() throws Exception;
public abstract void resetPackages() throws SQLException;
public abstract void doIt(HttpServletRequest req, String servletname) throws

SQLException,UnsupportedEncodingException;
public abstract void setCGIVars(HttpServletRequest req, String name,

String pass) throws SQLException;

DBFactory.java
It has as many sub-classes as databases to be supported. If a new database that needs support appears,
new subclasses must be incorporated. DBFactory declares an interface for operations to create SPProc,
DBConnection, UploadRequest and DownLoadRequest objects.

public abstract SPProc createSPProc(ConnInfo conn, String procname, Connection
sqlconn) throws SQLException;

public abstract DBConnection createDBConnection(ConnInfo connInfo);
public abstract UploadRequest createUploadRequest(HttpServletRequest request,

DBConnection repositoryConnection) throws IOException, SQLException;
public abstract DownloadRequest createDownloadRequest(HttpServletRequest

request, HttpServletResponse response, DBConnection repositoryConnection)
throws IOException, SQLException ;

❑ createSPProc must return an object of type SPProc, which represents a stored procedure in
the target database. This method is mandatory.

❑ createDBConnection must return an object of type DBConnection that represents a
specific connection to the target database. This method is also mandatory.

❑ createUploadRequest returns a new request after uploading the multimedia content in the
database repository. If the database doesn't have support for multimedia objects such as the
BLOB (Binary Large OBject) data type, a SQLException is returned.

❑ createDownloadRequest returns a DownloadRequest object to be used by the engine to
return a multimedia content to the client.

SPProc.java
This class represents a stored procedure for an abstract database – it has common methods such as
getAll()and addProcedure(). The sub-classes must implement this last method to represent a
concrete stored procedure in the target database. SPProc has a hash table for storing the argument
names and their types and a vector to store the argument list of every definition of an overload
procedure.

Stored procedures in many languages have multiple definitions according to the types of arguments, and
these multiple definitions are stored by an overload index starting at one. For example, in PLSQL, two
stored procedures having the definition like pkg.proc(a integer, b varchar2) and pkg.proc(a
integer), have two entries in the hash table, one with index 1 and the other with index 2. The vector
of the argument lists has {a,b} for the first occurrence and {a} for the second occurrence.

Note: The concrete instance of this class must load the definition of the stored
procedure from the database dictionary views – if the target database doesn't have
dictionary views for stored procedures, there are two possible solutions. First, you
could make your own dictionary view (this is the strategy used by the Oracle Lite
Adapter) and populate the content of this view with the public procedures and their
arguments. Secondly, you could use the reflection mechanism of the target language
(for example: Java) to find the procedure that matches with this call.

Chapter 21

826

Part II: Putting DB Prism to Work
DB Prism and Cocoon could be installed on any web server that runs servlets; I chose Oracle Internet
Application Server because it has a graphical installer, a pre-configured Apache web server 1.3.x and a
servlet runner Jserv 1.1. The instructions shown below could be applied to any version of Apache web
server and Jserv, and with minor changes they could be used to configure Apache web server with the
newest Tomcat servlet runner.

Before Start
Before installing Cocoon and DB Prism under Oracle Internet Application Server (IAS) you have to
check the correct installation of the product. For more information about this product, refer to the
Oracle Technology Network web site (http://technet.oracle.com/) or the Apache web site
(http://www.apache.org/).

To start the IAS web server, log into the system as the web server owner, and run this command:

cd $ORACLE_HOME/Apache/Apache/bin
./httpdsctl start

These commands start the Apache IAS on port 7777. Next, open a web browser on the server machine
and navigate to the following URLs: http://localhost:7777/ and http://localhost:7777/jserv/. This
process helps to test the Apache listener. The last URL is only public from a localhost connection for
security reasons.

These pages look like this:

DB Prism: A Framework to Generate Dynamic XML from a Database

827

The following screenshot shows the general information of the mod_jserv module of Apache web
server; mod_jserv is the Apache module that runs the servlets.

Selecting the URL of the previous screen, you have to go to the internal configuration of the servlet
runtime engine.

Here are some screens about the status page of mod_jserv.

Chapter 21

828

DB Prism: A Framework to Generate Dynamic XML from a Database

829

These screens show the mod_jserv configuration; if you don't see similar pages then refer to the IAS
documentation in order to check the installation instruction of Apache/Jserv IAS.

Cocoon Setup

Downloading Cocoon
Cocoon can be downloaded from http://xml.apache.org/cocoon/dist/. At the time of writing, Cocoon
version 1.8 is the latest. After downloading, it needs to be uncompressed into a suitable directory on the
web server – a good location for this (I would suggest) is the directory, /usr/local. It will expand into a
cocoon-x.x subdirectory (depending on the version you use). Create a symbolic link off /usr/local
called Cocoon to point at it (ln -s /usr/local/cocoon-x.x /usr/local/Cocoon).

Create a Write-enabled Directory
Next, go to the conf directory under the Cocoon main distribution (/usr/local/Cocoon) and edit
the cocoon.properties file, changing the line:

processor.xsp.repository = /repository

For the line:

processor.xsp.repository = /tmp/repository

This change is necessary in order to give a directory to Cocoon with write permissions for storing
compiled XSP pages.

File Modifications

1. Edit the Apache configuration file
($ORACLE_HOME/Apache/Apache/conf/httpds.conf), adding a directory alias for
cocoon examples, like this:

Alias /samples/ "/usr/local/Cocoon/samples/"

2. Edit the jserv.conf file ($ORACLE_HOME/Apache/Jserv/etc/jserv.conf) with these
changes:

� Add an extension handler for files that have a .xml extension by un-commenting
this line:

ApJServAction .xml /servlets/org.apache.cocoon.Cocoon

� Check for the mount point for servlet zones – it should look like this:

ApJServMount /servlets /root
ApJServMount /servlet /root

3. Edit the Apache jserv.properties file
($ORACLE_HOME/Apache/Jserv/etc/jserv.properties, adding the Cocoon libraries
to the CLASSPATH environment by inserting these lines after the system CLASSPATH:

Chapter 21

830

Version 1.8.0
wrapper.classpath=/usr/local/Cocoon/bin/cocoon.jar
wrapper.classpath=/usr/local/Cocoon/lib/fop_0_13_0.jar
wrapper.classpath=/usr/local/Cocoon/lib/xalan_1_2_D02.jar
wrapper.classpath=/usr/local/Cocoon/lib/xerces_1_2.jar
wrapper.classpath=/usr/local/Cocoon/lib/turbine-pool.jar

4. Edit the zone configuration file
($ORACLE_HOME/Apache/Jserv/etc/zone.properties), and add the parameter passed
to the Cocoon engine with the configuration file for it.

servlet.org.apache.cocoon.Cocoon.initArgs=properties=/usr/local/Cocoon/conf/
cocoon.properties

Testing Your Installation

Restart Apache IAS by running the following commands:

cd $ORACLE_HOME/Apache/Apache/bin
./httpdsctl restart

Now it is time to test the Cocoon installation and samples. Go to the Cocoon status page
(http://localhost:7777/Cocoon.xml) – the page should look like this if the installation was successful:

DB Prism: A Framework to Generate Dynamic XML from a Database

831

Test the examples by going to http://localhost:7777/samples/index.xml, as shown below:

This page provides a simple menu of examples for you to test on your installation. When all of this has
been completed successfully, it's time to move on to the DB Prism configuration.

DB Prism Setup

Downloading DB Prism
DB Prism can be downloaded from http://www.plenix.com/dbprism/. DB Prism version 1.1 is the latest
version at time of writing; it should be downloaded and uncompressed into the same directory as
Cocoon.

File Modifications

1. Go to the conf directory under the Cocoon main distribution (/usr/local/Cocoon);
make the following changes to the cocoon.properties file:

� Add the DB Prism producer for Cocoon:

producer.type.db = com.prism.CocoonWrapper
producer.db.properties = /usr/local/prism/conf/prism.properties

� Make sure the default producer is set to db, rather than file (this should be okay, as the
producer was added with the previous two lines); find the line:

producer.default = file

Chapter 21

832

Replace this with:

producer.default = db

� Add the HeaderProcessor of DB Prism to the list of processors of Cocoon by adding
this line:

processor.type.http = com.prism.HeaderProcessor

� Add the XSP Connection logic sheet to the list of them (all one line):

processor.xsp.logicsheet.connection.java =
resource://com/prism/xsp/connection.xsl

� Finally, add the formatter lines for an Excel output example, (again, the first two lines
shown are all one line of code):

formatter.type.application/vnd.ms-excel =
org.apache.cocoon.formatter.TextFormatter

formatter.application/vnd.ms-excel.MIME-type = application/vnd.ms-excel

2. Edit the Apache configuration file, making the following change – add a directory alias
for the Cocoon examples. This directory contains the stylesheet for the examples of DB
Prism. This is done by adding the following line:

Alias /xsl/ "/usr/local/prism/xsl/"

3. Edit the Apache jserv.properties file (found in $ORACLE_HOME/Apache/Jserv/etc/)
add the DB Prism library to the classpath environment by inserting this line, following
the system classpath:

wrapper.classpath=/usr/local/prism/bin/Prism.jar

4. Edit the zone configuration ($ORACLE_HOME/Apache/Jserv/etc/zone.properties)
file, firstly adding an alias for each DB Prism DAD:

servlet.plsql.code=com.prism.ServletWrapper
servlet.java.code=com.prism.ServletWrapper
servlet.demo.code=com.prism.ServletWrapper
servlet.xml.code=org.apache.cocoon.Cocoon
servlet.xmld.code=org.apache.cocoon.Cocoon
servlet.xmlj.code=org.apache.cocoon.Cocoon
servlet.doc.code=org.apache.cocoon.Cocoon
servlet.print.code=org.apache.cocoon.Cocoon

Now add the initialization parameters for the alias of the previous configuration:

servlet.plsql.initArgs=properties=/usr/local/prism/conf/prism.properties
servlet.java.initArgs=properties=/usr/local/prism/conf/prism.properties
servlet.xml.initArgs=properties=/usr/local/Cocoon/conf/cocoon.properties
servlet.xmld.initArgs=properties=/usr/local/Cocoon/conf/cocoon.properties
servlet.xmlj.initArgs=properties=/usr/local/Cocoon/conf/cocoon.properties
servlet.doc.initArgs=properties=/usr/local/Cocoon/conf/cocoon.properties
servlet.print.initArgs=properties=/usr/local/Cocoon/conf/cocoon.properties

DB Prism: A Framework to Generate Dynamic XML from a Database

833

Testing Your Installation

Restart Apache IAS by entering the following commands:

cd $ORACLE_HOME/Apache/Apache/bin
./httpdsctl restart

Test the DB Prism installation by going to the Cocoon status page (http://localhost:7777/Cocoon.xml).
If the installation was successful, the page should now look like this:

If your screen looks like the above, then this proves that Cocoon is now recognizing DB Prism as a new
producer. However, DB Prism is still not ready to connect to the database – the next section details how
to complete this set-up; how to set up the examples of DB Prism in the database.

Database Setup
We will use Oracle 8.1.6 for this study – this is fine for installation of the DB Prism examples. The
following section details a set of steps to follow to achieve this.

Note: remember to check for the availability of the database and log with the Oracle
owner (normally the user ORACLE)

1. Install the Oracle XML Utility for Java. Uncompress it and run the installation script. It
assumes a default installation on the user scott/tiger. If this has completed
successfully, you should see the following display on your screen:

Chapter 21

834

cd /usr/local
jar xvf /tmp/XSU12_ver1_2_1.zip
created: OracleXSU12/
extracted: OracleXSU12/README.html
created: OracleXSU12/doc/

extracted: OracleXSU12/doc/OracleXML.html
...
extracted: OracleXSU12/env.csh
extracted: OracleXSU12/env.bat
cd OracleXSU12/lib
sh oraclexmlsqlload.csh

Loading jar files...
...
Testing..
...
Done..
#

2. Install the DB Prism Java Toolkit – this script assumes the database user scott/tiger. A
successful installation will result in the following screen display:

cd /usr/local/prism/oi
sh install-toolkit.sh
SQL*Plus: Release 8.1.6.0.0 - Production on Mon Oct 9 15:56:33 2000

(c) Copyright 1999 Oracle Corporation. All rights reserved.

Connected to:
Oracle8i Enterprise Edition Release 8.1.6.1.0 - Production
With the Partitioning option
JServer Release 8.1.6.1.0 - Production

Java altered.
...
Package created.

No errors.
...
Disconnected from Oracle8i Enterprise Edition Release 8.1.6.1.0 - Production
With the Partitioning option
JServer Release 8.1.6.1.0 - Production
#

3. Now you have to install the examples included with DB Prism:

cd /usr/local/prism/oi
sh install-demo.sh
SQL*Plus: Release 8.1.6.0.0 - Production on Mon Oct 9 15:59:20 2000

DB Prism: A Framework to Generate Dynamic XML from a Database

835

(c) Copyright 1999 Oracle Corporation. All rights reserved.

Connected to:
Oracle8i Enterprise Edition Release 8.1.6.1.0 - Production
With the Partitioning option
JServer Release 8.1.6.1.0 - Production

Java altered.
...
Package created.

No errors.
...
Disconnected from Oracle8i Enterprise Edition Release 8.1.6.1.0 - Production
With the Partitioning option
JServer Release 8.1.6.1.0 - Production
#

Configuring DB Prism to Access the Database
The previous step installs the toolkit and the demo code in the database. The last step is to set it to
access the database:

1. Configure the DAD information – go to the prism.properties file, found in the
directory at /usr/local/prism/conf/prism.properties, and add the DAD xmlj, to
the list of DADs:

global.alias=plsql xml demo servlet xmld lite org.apache.cocoon.Cocoon java
xmlj doc print

Note: Every entry in this line must be configured in the zone.properties as
servlet alias.

2. Set the database parameter for the DAD, xmlj:

xmlj.dbusername=scott
xmlj.dbpassword=tiger
xmlj.connectString=jdbc:oracle:thin:@localhost:1521:ORCL
xmlj.errorLevel=2
xmlj.errorPage=http://localhost/error.html
xmlj.compat=java
xmlj.producerarg=ignore

3. Restart Apache IAS and test the DB Prism installation by issuing the following
commands:

cd $ORACLE_HOME/Apache/Apache/bin
./httpdsctl restart

Chapter 21

836

4. Go to the DB Prism examples main page,
http://localhost:7777/servlets/xmlj/DEMOj.startup, which should look like this:

Making the Hello World Example
Now we will see how to make a simple Hello World sample application, in the context of DB Prism and
Cocoon.

A quick way to install a Java stored procedure into Oracle version 8i is to make a simple file with
the.sqlj extension and load it with the command loadjava. This simple example uses the Jxtp
toolkit (Java XML Toolkit Procedure), which provides simple procedures and functions to generate
XML tags in a serialized way. The toolkit also accepts objects of type org.w3c.dom.Document, which
means that it is even possible to generate the XML pages in an object-oriented way with the standard
DOM API.

DB Prism: A Framework to Generate Dynamic XML from a Database

837

The code for the Hello World example is shown and discussed below:

package demo;
import com.prism.toolkit.*;

class Hello
{

public static void World()
{

Jxtp.prolog("1.0","http://localhost/xsl/hello.xsl");
Jxtp.process();
Jxtp.tagOpen("page");
Jxtp.tag("title","Hello World");
Jxtp.tagOpen("content");
Jxtp.tag("paragraph",
"This is my first Prism-Cocoon code, written in Java Stored Procedures!");
Jxtp.tagClose("content");
Jxtp.tagClose("page");
Jxtp.epilog();

}
}

The function of the various parts of this code is as follows:

import com.prism.toolkit.*;

This package needs to use the Jxtp procedures and functions:

Jxtp.prolog("1.0","http://localhost/xsl/hello.xsl");

Jxtp.prolog creates the following XML tags:

<?xml version="1.0"?>
<?xml-stylesheet href="http://localhost/xsl/hello.xsl" type="text/xsl"?>

Jxtp.process();

The above procedure sets up the processing instruction to the Cocoon framework, as shown below:

<?cocoon-process type="xslt"?>

Jxtp.tagOpen("page");

This line generates the XML tag, <page>

Jxtp.tag("title","Hello World");

This line generates the XML element <title>Hello World</title>

Jxtp.epilog();

Chapter 21

838

This line generates a comment and is not required.

Loading this code into the database executes the following command:

loadjava –user scott/tiger Hello.sqlj

This command loads and compiles the code inside the database and is ready to be called for DB Prism.
To make the Java code public, Oracle 8i requires call specs for the Java class. To make the call specs for
this demo execute the following SQL code with the sqlplus program:

sqlplus scott/tiger
SQL*Plus: Release 8.1.6.0.0 - Production on Mon Oct 9 15:59:20 2000

(c) Copyright 1999 Oracle Corporation. All rights reserved.

Connected to:
Oracle8i Enterprise Edition Release 8.1.6.1.0 - Production
With the Partitioning option
JServer Release 8.1.6.1.0 - Production

SQL> CREATE OR REPLACE PACKAGE Hello AS
PROCEDURE World;

END Hello;
SQL>/
SQL> CREATE OR REPLACE PACKAGE BODY Hello AS

PROCEDURE World
AS LANGUAGE JAVA
NAME 'demo.Hello.World()';

END Hello;
SQL>/
SQL>EXIT

After this has been run successfully, DB Prism can execute the Hello World application. Navigate to
http://localhost:7777/servlets/xmlj/Hello.World – executing the stored procedure should display a page
like this:

Making a Content Management System

Brief Introduction to a CMS
When the information or the size of the web site grows, several problems appear related to deployment
or maintainability of the big sites.

For example:

❑ How to make a change in the look and feel of the pages, which affects all the pages in the site

❑ How to access the assets concurrently by many content owners at the same time

DB Prism: A Framework to Generate Dynamic XML from a Database

839

❑ How to store the version history of the documents

❑ How to automatically store a link to different documents based on related information

❑ How to make a site search engine

These problems are solved with a database-backed CMS system. This system, at development time,
stores the assets inside the database and provides online viewing directly rendering the content when a
user request came. On the other hand, at the deployment time, the system provides an off-line
generation of the entire site or part of it on a web server disk for improving performance.

Unlike the HTML CMS system, an XML CMS has other additional benefits. These benefits are related
to XML technologies, here is a brief list of them:

❑ Can be used with several presentation formats, a XML content that defines a document must
be independent from the presentation format

❑ Validation of the document format through a given DTD at import time, this validation
guarantees that the imported asset is a valid document for the presentation system

❑ Can use search engines based on XML technologies, such as Oracle 8i interMedia which
interprets XML documents and provides a search text with queries like this, "find all
documents containing 'CMS' within <note>".

Based on these points, we will show a CMS made with Java stored procedures and SQLj as an extended
example of how to make an application with DB Prism / Cocoon. A DB Prism CMS divides the page
content in five visible parts, the content owner defines one (content body), and the others are generated
by the system automatically analyzing the information stored in the Meta model.

Chapter 21

840

Below, we shall go through the different highlighted parts of the page, looking at the source code for
each. The code is passed from the CMS as XML, and is transformed to HTML by the Cocoon
framework through a modified version of the document2html.xsl stylesheet.

Page Header

Provides general information for the current page.

This information is taken from the meta data of the current page and the top parent page (Category).
This information is used, for example, by the stylesheet document2html.xsl to show a banner image
for the current category in the upper right section of the page; it also could be used by a stylesheet for a
WebCrawler or Spider to give keywords for this page.

<document name='CMS'>
<header>

<name>CMS-Tables</name>
<title>CMS</title>
<subtitle>Tables of CMS</subtitle>
<authors><person name='SCOTT' /></authors>

</header>

Map Information

Provides information to build the left side menu bar.

This information is built using the directory-like structure of the pages (parent column of the table
pages); in this code, the first level pages and the children of the current category are selected:

<map>
<option>

<linkmap id='Home' longname='Top entry'
href='/Home'>Home</linkmap>

</option>
<option>

<linkmap id='Docs' longname='Documentation'
href='/Docs'>Docs</linkmap>

</option>
<option>

<linkmap id='Source' longname='Source Code'
href='/Source'>Source</linkmap>

</option>
<option>

<linkmap id='Dist' longname='Distribution available for DB Prism'
href='/Dist'>Dist</linkmap>

</option>
</map>

Path Information

Provides information about the ancestor of this page (parents) to build the upper left links in the content
area. With this information, the document2print.xsl stylesheet creates a navigation bar, which
permits the user to go back to the previous position:

<path>
<option>

<linktopic id='10' longname='DB Prism Servlet Engine'
href='/Home'>Home</linktopic>

</option>

DB Prism: A Framework to Generate Dynamic XML from a Database

841

<option>
<linktopic id='70' longname='Content Management System'

href='/CMS'>CMS</linktopic>
</option>
<option>

<linktopic id='200' longname='Tables of CMS'
href='/cms/CMS-Tables'>CMS-Tables</linktopic>

</option>
</path>

Related Topics

Documents related to the current page, shown by the document2html stylesheet in the upper right side
of content area. This information provides the user with a menu bar with links to related documents off
this page stored in the RELATED table:

<topics>
<option>

<linktopic href='/cms/CMS-Tables'>CMS-Tables</linktopic>
<linktopic href='/cms/CMS-Source'>CMS-Source</linktopic>
<linktopic href='/cms/CMS-Upload'>CMS-Upload</linktopic>
<linktopic href='/cms/CMS-Config'>CMS-Config</linktopic>
<linktopic href='/cms/CMS-Stylesheet'>CMS-Stylesheet</linktopic>

</option>
</topics>

Content (Body)

The asset uploaded by the content owner for this page:

<body>
<s1 title='Tables of CMS' level='0'>

<!-- Content Management System Table Definition -->
</s1>
<s2>

<p>
The CMS stores page elements in the following tables:

</p>
</s2>

</body>

DB Prism queries the database for every document to be loaded, and Cocoon builds each page by
combining these five elements into an HTML file, using the stylesheet associated with the top-level
entry. Five elements are used because the designers of CMS identified five areas of the page that they
wished to treat separately. For different page architectures, you might choose a different number of
elements.

Of these five elements, the Content element is unique for each page – it is what makes a page unique.
The other elements contain data that is reused by many pages to give the site consistency. Because
elements are stored in the database, one change updates the entire site. For example, if you change the
stylesheet code that defines the HTML Header, every page will reflect that change the next time that
CMS generates files for the site.

Chapter 21

842

When a browser requests a page, the Java code is executed on the server. For example, the Map
Information element includes a SQL query, which builds the top navigation bar at runtime, by
searching parent, neighbor, and child topics of the current page.

Design of the Meta Model

CMS Tables

The CMS stores page elements in the following tables:

❑ The PAGES table stores one row of structural information and other meta data for each page.
Each page is identified by a unique number stored in the ID_PAGE column (which references
the CN_ID_PAGE column of the CONTENT table). Pages have a PARENT foreign key to self,
which permits a directory-like structure.

❑ The CONTENT table stores each version of a page's content in a unique row identified by
CN_ID_PAGE number and VERSION number, with the actual content residing in a CLOB
column. The CMS stores multiple versions of a content block and uses a specified version to
build a page. The CONTENT table is linked to the PAGES table by ID number.

❑ The TEMPLATES/STYLESHEETS tables store the stylesheet(s) associated with this page.

❑ The RELATED table stores information on which pages are a related topic from other pages.
RELATED has from/to information which permits a mesh structure of the related pages.

Each page in the CMS belongs to another page (analogous to a file system directory), except the top-
level page(s). This page defines the stylesheet for its children. The CMS stores content, page data, and
template items in separate tables. Here's a complete definition of CMS tables in SQL:

The PAGES table stores the meta-data information for a given page:

TABLE PAGES
(

id_page NUMBER(10) NOT NULL,
parent NUMBER(10),
name VARCHAR2(255),
longname VARCHAR2(4000),
owner VARCHAR2(255),
created DATE,
modified DATE,
comments VARCHAR2(4000),
meta VARCHAR2(4000),
path VARCHAR2(4000),
language VARCHAR2(32),
deleted VARCHAR2(1),
created_by VARCHAR2(255),
modified_by VARCHAR2(255),
status VARCHAR2(255),
file_size NUMBER(10),
current_version NUMBER(6),
CONSTRAINT pg_pk PRIMARY KEY (id_page),
CONSTRAINT pg_pg_fk FOREIGN KEY (parent)

REFERENCES PAGES(id_page)
)

The CONTENT table stores the asset (XML document) for a given page:

DB Prism: A Framework to Generate Dynamic XML from a Database

843

TABLE CONTENT
(

cn_id_page NUMBER(10) NOT NULL,
version NUMBER(6)NOT NULL,
owner VARCHAR2(255),
status VARCHAR2(255),
source_file VARCHAR2(4000),
file_size NUMBER(10),
content CLOB,
created DATE,
modified DATE,
created_by VARCHAR2(255),
modified_by VARCHAR2(255),
CONSTRAINT cn_pk PRIMARY KEY (cn_id_page,version),
CONSTRAINT cn_pg_fk FOREIGN KEY (cn_id_page)

REFERENCES PAGES(id_page)
)

The RELATED table defines a relation between two documents:

TABLE RELATED
(

rl_id_page_from NUMBER(10) NOT NULL,
rl_id_page_to NUMBER(10) NOT NULL,
CONSTRAINT rl_pk PRIMARY KEY (rl_id_page_from , rl_id_page_to),
CONSTRAINT rl_pg_fk1 FOREIGN KEY (rl_id_page_from)

REFERENCES PAGES(id_page),
CONSTRAINT rl_pg_fk2 FOREIGN KEY (rl_id_page_to)

REFERENCES PAGES(id_page)
)

The TEMPLATES table defines the template (stylesheet) for a given page:

CREATE TABLE TEMPLATES
(

tpl_id_page NUMBER(10) NOT NULL,
tpl_id_stylesheet NUMBER(10) NOT NULL,
CONSTRAINT tpl_pk PRIMARY KEY (tpl_id_page , tpl_id_stylesheet),
CONSTRAINT tpl_pg_fk FOREIGN KEY (tpl_id_page)

REFERENCES PAGES(id_page),
CONSTRAINT tpl_st_fk FOREIGN KEY (tpl_id_stylesheet)

REFERENCES STYLESHEETS(id_stylesheet)
)

The STYLESHEETS table defines the stylesheets available on the system:

TABLE STYLESHEETS
(

id_stylesheet NUMBER(10) NOT NULL,
owner VARCHAR2(255),
status VARCHAR2(255),
url VARCHAR2(4000),
type VARCHAR2(255),
media VARCHAR2(255),
ext VARCHAR2(15),
attributes VARCHAR2(4000),
created DATE,
modified DATE,
created_by VARCHAR2(255),
modified_by VARCHAR2(255),
CONSTRAINT st_pk PRIMARY KEY (id_stylesheet)

)

Chapter 21

844

Writing the Java Code

Building Pages
DB Prism CMS defines a tree-structured hierarchy by using the parent foreign key in the table pages.
The site's home page is defined by the page that has no parent (Null value in the parent column of the
table pages), beneath it are several pages, which define content branches such as Documentation,
Source Code and so on. These content branches called categories define the layout or look and feel for
your children.

Page elements are all stored in the database, so the CMS executes queries to get them out, as shown in
the following Java code.

public void GET(int p_id, int p_level, int p_top, int p_version) throws
SQLException

{
ChildIterator cIter=null;
int topParent;
if (p_level>1)

topParent=p_id;
else

topParent = findTopParent(p_id,p_top);
String topName,topLongName,topOwner,

thisPageName,thisPageLongName,
thisPageComments,thisPagePath;

Jxtp.prolog();
Jxtp.process("http"); // Do not cache this page
Jxtp.header("Cache-Control","False");
try
{

Integer thisPageParent;
chooseStylesheet(topParent);
// Gets information about the top page and the current page
#sql {SELECT name,longname,owner INTO

:topName,:topLongName,:topOwner
FROM pages WHERE id_page=:topParent};

#sql {SELECT name,longname,comments,parent,path INTO
:thisPageName,:thisPageLongName,:thisPageComments,
:thisPageParent,:thisPagePath
FROM pages WHERE id_page=:p_id };

Jxtp.tagOpen("document","name='"+topName+"'");
Jxtp.tagOpen("header");
Jxtp.tag("name",thisPageName);
Jxtp.tag("title",topName);
Jxtp.tag("subtitle",thisPageLongName);
Jxtp.tagOpen("authors");
Jxtp.tagOpen("person","name='"+topOwner+"'");
Jxtp.tagClose("person");
Jxtp.tagClose("authors");
Jxtp.tagClose("header");
showMapInfo(p_id,thisPageName,p_top);
showPath(p_id,p_top);
relatedTopics(p_id,thisPageParent,p_top);
Jxtp.tagOpen("body");
Jxtp.tagOpen("s1","title='"+thisPageLongName+"' level='0'");
Jxtp.p("<!-- "+thisPageComments+" -->");
Jxtp.tagClose("s1");

DB Prism: A Framework to Generate Dynamic XML from a Database

845

// show Main Content
showContent(p_id,p_version);
// Print child up to indicated level, 1-no-child, 2-first-level-child
#sql cIter = {SELECT id_page,current_version,

longname,comments,level FROM pages WHERE level<:p_level
START WITH parent=:p_id CONNECT BY prior id_page=parent};

while(cIter.next())
{

Jxtp.tagOpen("s1","title='"+cIter.longname()+"'
level='"+cIter.level()+"'");
Jxtp.p("<!-- "+cIter.comments()+" -->");
Jxtp.tagClose("s1");
try
{

showContent(cIter.id_page().intValue(),
cIter.current_version().intValue());

}
catch (Exception e)
{

Jxtp.tag("s2",e.getMessage());
}

}
Jxtp.tagClose("body");
Jxtp.tagClose("document");

}
catch (Exception e)
{

Jxtp.tag("s1",e.getMessage());
Jxtp.tagClose("document");

}
finally
{

if (cIter != null)
cIter.close();

}
}

Here a brief outline of the overall process:

1. The process begins with a SELECT statement that pulls top page information and current
page information for the specific arguments from the database (p_id and topParent).
The topParent page was selected by the method findTopParent().

2. Next, the procedure calls the method chooseStylesheet(), which finds a correct
stylesheet for the top-parent page (category). This method executes a SELECT from the
tables TEMPLATES and STYLESHEETS in order to get the XSL stylesheets that Cocoon uses
to format the output.

3. Then, the procedure begins with the XML page information, which is divided into five
parts:

a. Header information (meta data) – such as Author, and last modified date.

b. Map Information – that is used by the document2html stylesheet to make the left side bar
menu (showMapInfo function).

c. Path Information – contains the complete path from the top level entry to the current page;
this information, is used by the document2html stylesheet to make links in the content area
in order to tell users how to go back. This information is generated by the stylesheet and
inserted into the left upper side of the content area (showPath procedure).

Chapter 21

846

d. Related Information – contains related topics extracted from the table related to the current
page and the neighbors of it (relatedTopics function). These topics are generated by the
stylesheet for the right upper side of the content area.

e. Content Data – the content area is acquired from the CONTENT table according to the current
page and the current version (showContent function). If the p_version parameter is not
null, it is used instead of the current version; p_level dictates to the procedure how many
child levels are expanded from this current page. Normally the level is 0, meaning only get this
page, but for other devices such as WAP or for a printable version, it is useful to get 1 or more
child levels.

The function of the code is as follows:

if (p_level>1)
topParent=p_id;

else
topParent = findTopParent(p_id,p_top);

If p_level is greater than 1, it means that the user requires a printable version of this page; it then uses
a p_id instead of top parent id for choosing the category of the page.

Jxtp.prolog();
Jxtp.process("http"); // Do not cache this page
Jxtp.header("Cache-Control","False");

These lines of code give directives about cache control to Cocoon; at development time these directives
direct the proxy or browser never to cache this page because the content is dynamically generated.

try
{

Integer thisPageParent;
chooseStylesheet(topParent);
// Gets information about the top page and the current page
#sql {SELECT name,longname,owner INTO

:topName,:topLongName,:topOwner
FROM pages WHERE id_page=:topParent};

#sql {SELECT name,longname,comments,parent,path INTO
:thisPageName,:thisPageLongName,:thisPageComments,
:thisPageParent,:thisPagePath
FROM pages WHERE id_page=:p_id };

Jxtp.tagOpen("document","name='"+topName+"'");
Jxtp.tagOpen("header");
Jxtp.tag("name",thisPageName);
Jxtp.tag("title",topName);
Jxtp.tag("subtitle",thisPageLongName);
Jxtp.tagOpen("authors");
Jxtp.tagOpen("person","name='"+topOwner+"'");
Jxtp.tagClose("person");
Jxtp.tagClose("authors");
Jxtp.tagClose("header");

DB Prism: A Framework to Generate Dynamic XML from a Database

847

This chooses the stylesheet for this category and selects the meta-data information of the top parent
page (category) and the current page. With this information it creates the XML section, "Header
Information", as was shown in the previous section. The chooseStylesheet method is explained in
more detail below.

showMapInfo(p_id,thisPageName,p_top);
showPath(p_id,p_top);
relatedTopics(p_id,thisPageParent,p_top);

These lines of code make the XML sections Map Information, Path Information and Related Topics,
which are explained in more detail in the next section.

Jxtp.tagOpen("body");
Jxtp.tagOpen("s1","title='"+thisPageLongName+"' level='0'");
Jxtp.p("<!-- "+thisPageComments+" -->");
Jxtp.tagClose("s1");
// show Main Content
showContent(p_id,p_version);

Makes the XML Content Body section. The content section has an s1 tag with the longname column of
the PAGES table, and as XML comments in the comments column. Then the showContent method
prints the assets stored by the content owner for this current page in the CONTENT table.

#sql cIter = {SELECT id_page,current_version,
longname,comments,level FROM pages WHERE level<:p_level
START WITH parent=:p_id CONNECT BY prior id_page=parent};

while(cIter.next())
{

Jxtp.tagOpen("s1","title='"+cIter.longname()+"'
level='"+cIter.level()+"'");
Jxtp.p("<!-- "+cIter.comments()+" -->");
Jxtp.tagClose("s1");
try
{

showContent(cIter.id_page().intValue(),
cIter.current_version().intValue());

}
catch (Exception e)
{

Jxtp.tag("s2",e.getMessage());
}

}

The above makes a hierarchical SQL query for retrieving the children of the current page. If p_level is
0, this query doesn't take effect. If p_level is greater than 1 it takes the p_level children of this page
and shows the assets of them. For debugging purpose the "try catch" statement prints an s2 tag with
the error, but normally this error never occurs.

Jxtp.tagClose("body");
Jxtp.tagClose("document");

}
catch (Exception e)

Chapter 21

848

{
Jxtp.tag("s1",e.getMessage());
Jxtp.tagClose("document");

}
finally
{

if (cIter != null)
cIter.close();

}
}

This closes the XML tag document. For debugging purposes, it shows the error as the XML s1 tag and
closes the XML tag document; again normally the error never happens. Finally as a good SQLj practice,
it provides a finally section which closes all the SQLj iterators opened in this method.

Related Procedures for Making The Page

chooseStylesheet

This procedure makes the Pi tags for the stylesheets associated to this page; these Pi tags tell Cocoon to
apply a selected stylesheet for formatting the output. For example, for the printable version, this
procedure tells Cocoon to use the document2print.xsl stylesheet, otherwise, it tells Cocoon to use
document2html.xsl.

public void chooseStylesheet(int p_id) throws SQLException

{
StylesheetIterator stlsIter=null;
try
{

Integer thisPageParent;
#sql stlsIter = {SELECT tpl_id_stylesheet,st.url,st.type,

st.media,st.ext FROM templates tpl,
stylesheets st WHERE tpl_id_page=:p_id
AND tpl_id_stylesheet=id_stylesheet
AND st.ext=:ext};

while(stlsIter.next())
if (stlsIter.media()!=null)

Jxtp.stylesheet(stlsIter.url(),
stlsIter.type(),
"media='"+stlsIter.media()+"'");

else
Jxtp.stylesheet(stlsIter.url(),stlsIter.type());

Jxtp.process();
}
catch (SQLException e)
{

throw e;
}
finally
{

if (stlsIter != null)
stlsIter.close();

}
}

DB Prism: A Framework to Generate Dynamic XML from a Database

849

showMapInfo

This procedure creates the XML tags shown in the previous section (Map Information). This information
is made in two steps, first a SELECT that pulls the pages of which the parent is the top page (categories),
and secondly the first level children of the current category. The effect of this map information is a list
of categories of the site (always shown) and an expanded list of the current categories. Finally the
method closes all the SQLj iterators for this function, this finally section guarantees that all the SQLj
cursors are closed properly, because if there are errors in any part of the code this section is always
executed and so can close those cursors too.

private void showMapInfo(int p_id, String p_name, int p_top) throws SQLException
{

PagesIterator pIterFirstLevel=null;
PagesIterator pIterDownLevel=null;
Jxtp.tagOpen("map");
try
{

int topParent = findTopParent(p_id,p_top);
Jxtp.tagOpen("option");
Jxtp.tag("linkmap","Home",

"id='Home' longname='Top entry' href='/Home'");
Jxtp.tagClose("option");
#sql pIterFirstLevel = {SELECT * FROM pages

WHERE parent=:p_top AND name IS NOT Null AND deleted<>'Y'
ORDER BY id_page};

while(pIterFirstLevel.next())
{

// top level path
String name = pIterFirstLevel.name();
Jxtp.tagOpen("option");
Jxtp.tag("linkmap",name,"id='"+name+

"' longname='"+pIterFirstLevel.longname()+
"'href='"+pIterFirstLevel.path()+
pIterFirstLevel.name()+"'");

Jxtp.tagClose("option");
if (pIterFirstLevel.id_page().intValue()==topParent)
{

// show down path (childrens) if there are
#sql pIterDownLevel = {SELECT * FROM pages WHERE parent=:topParent

AND name IS NOT null AND deleted<>'Y'
ORDER BY id_page};

while(pIterDownLevel.next())
{

name = pIterDownLevel.name();
Jxtp.tagOpen("option");
Jxtp.tag("linkmap",name,"id='"+name+

"'longname='"+pIterDownLevel.longname()+
"' href='"+pIterDownLevel.path()+
pIterDownLevel.name()+"'");

Jxtp.tagClose("option");
}

}
}

}
catch (SQLException e)
{

throw e;
)
finally
{

if (pIterDownLevel != null)
pIterDownLevel.close();

if (pIterFirstLevel != null)
pIterFirstLevel.close();

Jxtp.tagClose("map");
}

}

Chapter 21

850

showPath

This procedure creates the XML tags shown in the previous section (Path Information). This information
is made by a hierarchical query that begins from the top page to the current page. This SELECT is
ordered by the SQL pseudo column level in inverted form given a correct path from the home page of
the site to the current page passing for all the parents.

private void showPath(int p_id, int p_top) throws SQLException

{
PagesIterator pIter=null;
Jxtp.tagOpen("path");
try
{

if (p_id!=p_top)
{

int level = 1;
#sql pIter = {SELECT * FROM pages START WITH id_page=:p_id

CONNECT BY prior parent=id_page AND deleted<>'Y'

ORDER BY level desc};
while(pIter.next())
{

String name = pIter.name();
Jxtp.tagOpen("option");
Jxtp.tag("linktopic",name,

"id='"+pIter.id_page().intValue()+
"' longname='"+pIter.longname()+
"' href='"+pIter.path()+pIter.name()+"'");

Jxtp.tagClose("option");
level++;

}
}

}
catch (SQLException e) {

throw e;
}
finally
{

if (pIter != null)
pIter.close();

Jxtp.tagClose("path");
}

}

relatedTopics
This procedure creates the XML tags shown in a previous section (Related Topics). This function has two
main branches, first if the page is a home page (p_parent == null), it selects the related pages from
the RELATED table. Secondly, if is not a home page, it makes a union of the related pages with the
neighbors of the current page; the neighbors are the pages which are from the same parent. Finally it
closes the opened SQLj iterators.

This method also gives information about the templates associated to the current page. Every stylesheet
in the system has an extension on the CMS; this means, for example, that the extension "html" is used
with the document2print.xsl stylesheet and the extension "phtml" is associated to the stylesheet
document2print.xsl. Then, this information is used by the document2html.xsl stylesheet to
activate or deactivate the "Printable Version" link according to the existence of the "phtml" extension.

DB Prism: A Framework to Generate Dynamic XML from a Database

851

private void relatedTopics(int p_id, Integer p_parent, int p_top)
throws SQLException

{
String path,name;
RelatedIterator rIter=null;
StylesheetIterator stlsIter=null;
Jxtp.tagOpen("topics");
try
{

if (p_parent == null)
#sql rIter = {SELECT rl_id_page_to id_page

FROM related WHERE rl_id_page_from=:p_id};
else

#sql rIter = {SELECT rl_id_page_to id_page
FROM related WHERE rl_id_page_from=:p_id
UNION (SELECT id_page FROM pages WHERE

:p_parent<>:p_top and parent=:p_parent)};
Jxtp.tagOpen("option");
while(rIter.next())
{

Integer idPageTo = rIter.id_page();
#sql {SELECT name,path INTO :name,:path

FROM pages WHERE id_page=:idPageTo};
Jxtp.tag("linktopic",name,"href='"+path+name+"'");

}
#sql stlsIter = {SELECT tpl_id_stylesheet,st.url,st.type, st.media,st.ext

FROM templates tpl, stylesheets st
WHERE tpl_id_page=:p_id and tpl_id_stylesheet=id_stylesheet};

while(stlsIter.next())
Jxtp.tag("linktemplate",

stlsIter.tpl_id_stylesheet().toString(),
"ext='"+stlsIter.ext()+"'");

Jxtp.tagClose("option");
}
catch (SQLException e)
{

throw e;
}
finally
{

if (rIter!=null)
rIter.close();

if (stlsIter != null)
stlsIter.close();

}
Jxtp.tagClose("topics");

}

Importing Documents

The DB Prism CMS includes a client tool, which imports the assets from the file system to the database.
This client tool has these features:

❑ It runs in the client machine facilitating the importing process by the content owner.

❑ It validates the XML document before loading it into the database, parsing and applying a
given DTD.

❑ It applies a stylesheet (optional) that converts the original document to another, according to
structure of the CMS. This functionality permits, for example, converting an XHTML page
generated by an editor tool to the CMS model.

Chapter 21

852

This application takes an input file in XML format that has information about the username and
password of the repository, pages, stylesheet, templates and document to be imported. Here is the DTD
of this XML file:

<!ELEMENT CMS:site-config (CMS:user, CMS:password, CMS:ConnectString,
CMS:JdbcDriver, CMS:LoadPath, CMS:parserClass)>

<!ATTLIST CMS:site-config xmlns:CMS CDATA #REQUIRED>
<!ATTLIST CMS:site-config AutoCommitVersion (true|false) "true"

LoadPath CDATA #REQUIRED>
<!ELEMENT CMS:user (#PCDATA)>
<!ELEMENT CMS:password (#PCDATA)>
<!ELEMENT CMS:ConnectString (#PCDATA)>
<!ELEMENT CMS:JdbcDriver (#PCDATA)>
<!ELEMENT CMS:xmlcms-site (CMS:pages,CMS:relateds,CMS:templates,CMS:documents)>
<!ELEMENT CMS:pages (CMS:page)*>
<!ELEMENT CMS:page (CMS:longname, CMS:comments, CMS:language)>
<!ATTLIST CMS:page id CDATA #REQUIRED parent CDATA #IMPLIED src CDATA #REQUIRED>
<!ELEMENT CMS:stylesheets (CMS:stylesheet)*>
<!ATTLIST CMS:stylesheet href CDATA #REQUIRED type CDATA #REQUIRED

media CDATA #IMPLIED ext CDATA #IMPLIED attributes CDATA #IMPLIED>
<!ELEMENT CMS:relateds (CMS:related)*>
<!ATTLIST CMS:related from CDATA #REQUIRED to CDATA #REQUIRED>
<!ELEMENT CMS:templates (CMS:template)*>
<!ATTLIST CMS:template path CDATA #REQUIRED name CDATA #REQUIRED

stylesheet CDATA #REQUIRED>
<!ELEMENT CMS:documents (CMS:document)+>
<!ATTLIST CMS:document src CDATA #REQUIRED parent (yes|no) "yes"

stylesheet CDATA #IMPLIED>
<!ELEMENT CMS:path (#PCDATA)>
<!ELEMENT CMS:name (#PCDATA)>
<!ELEMENT CMS:longname (#PCDATA)>
<!ELEMENT CMS:comments (#PCDATA)>
<!ELEMENT CMS:language (#PCDATA)>
<!ELEMENT CMS:href (#PCDATA)>
<!ELEMENT CMS:type (#PCDATA)>
<!ELEMENT CMS:media (#PCDATA)>
<!ELEMENT CMS:ext (#PCDATA)>
<!ELEMENT CMS:attributes (#PCDATA)>

Here's an example of a site configuration file:

<?xml version="1.0"?>
<!DOCTYPE CMS:site-config SYSTEM "CmsConfig.dtd">
<CMS:site-config xmlns:CMS="http://www.plenix.com/dbprism/CMS/"

AutoCommitVersion="true" LoadPath="file:///JDev/myprojects/prism/xdocs">
<!-- Information About the server -->
<CMS:user>scott</CMS:user>
<CMS:password>tiger</CMS:password>
<CMS:ConnectString>

jdbc:oracle:thin:@cocodrilo.exa.unicen.edu.ar:1521:DUNDEE
</CMS:ConnectString>
<CMS:JdbcDriver>

oracle.jdbc.driver.OracleDriver
</CMS:JdbcDriver>

DB Prism: A Framework to Generate Dynamic XML from a Database

853

<!-- Site Specific Configuration Information -->
<CMS:xmlcms-site>

<!-- List of stylesheets -->
<CMS:stylesheets>

<CMS:stylesheet href="http://localhost/xsl/document2html.xsl"
type="text/xsl" ext="html" />

<CMS:stylesheet href="http://localhost/xsl/document2print.xsl"
type="text/xsl" ext="phtml" />

</CMS:stylesheets>
<!-- List of pages -->
<CMS:pages>

<CMS:page id="10" src="/Home.xml">
<CMS:longname>DB Prism Servlet Engine</CMS:longname>
<CMS:language>en</CMS:language>

</CMS:page>
<CMS:page id="11" src="/NotFound.xml">

<CMS:longname>Sorry, this page not found</CMS:longname>
<CMS:language>en</CMS:language>

</CMS:page>
<CMS:page id="20" parent="10" src="/Docs.xml">

<CMS:longname>Documentation</CMS:longname>
<CMS:comments>Documentation available for DB Prism</CMS:comments>
<CMS:language>en</CMS:language>

</CMS:page>
<CMS:page id="30" parent="10" src="/Source.xml">

<CMS:longname>Source Code</CMS:longname>
<CMS:comments>Source Code of DB Prism</CMS:comments>
<CMS:language>en</CMS:language>

</CMS:page>
<CMS:page id="40" parent="10" src="/Dist.xml">

<CMS:longname>Distribution available for DB Prism</CMS:longname>
<CMS:comments>Distribution available for DB Prism</CMS:comments>
<CMS:language>en</CMS:language>

</CMS:page>
<CMS:page id="50" parent="10" src="/Internals.xml">

<CMS:longname>DB Prism Internals</CMS:longname>
<CMS:comments>DB Prism Internals</CMS:comments>
<CMS:language>en</CMS:language>

</CMS:page>
<CMS:page id="60" parent="10" src="/OnNT.xml">

<CMS:longname>
DB Prism Installation and Configuration On NT

</CMS:longname>
<CMS:comments>Readme Config on NT</CMS:comments>
<CMS:language>en</CMS:language>

</CMS:page>
<CMS:page id="70" parent="10" src="/CMS.xml">

<CMS:longname>Content Management System</CMS:longname>
<CMS:comments>

DB Prism / Cocoon - Content Management System
</CMS:comments>
<CMS:language>en</CMS:language>

</CMS:page>
<CMS:page id="80" parent="10" src="/2.0.xml">

<CMS:longname>Future Plan for 2.0 release</CMS:longname>

Chapter 21

854

<CMS:comments>2.0 - Next Release of DB Prism</CMS:comments>
<CMS:language>en</CMS:language>

</CMS:page>
<CMS:page id="90" parent="10" src="/Credits.xml">

<CMS:longname>Credits and Stuff</CMS:longname>
<CMS:comments>DB Prism Project Credits and Stuff</CMS:comments>
<CMS:language>en</CMS:language>

</CMS:page>
<CMS:page id="100" parent="10" src="/Legal.xml">

<CMS:longname>Legal Stuff</CMS:longname>
<CMS:comments>Legal Stuff and Trademarks</CMS:comments>
<CMS:language>en</CMS:language>

</CMS:page>
</CMS:pages>
<!-- List of documents to be uploaded -->
<CMS:documents>

<CMS:document src="/Home.xml" />
<CMS:document src="/NotFound.xml" />
<CMS:document src="/Docs.xml" />
<CMS:document src="/Internals.xml" />
<CMS:document src="/OnNT.xml" />
<CMS:document src="/Source.xml" />
<CMS:document src="/2.0.xml" />
<CMS:document src="/Credits.xml" />
<CMS:document src="/Dist.xml" />
<CMS:document src="/CMS.xml" />
<CMS:document src="/Legal.xml" stylesheet="/doc2document-v10.xsl" />

</CMS:documents>
<!-- List of templates -->
<CMS:templates>

<CMS:template path="/" name="Home"
stylesheet="http://localhost/xsl/document2html.xsl" />

<CMS:template path="/" name="NotFound"
stylesheet="http://localhost/xsl/document2html.xsl" />

<CMS:template path="/" name="Docs"
stylesheet="http://localhost/xsl/document2html.xsl" />

<CMS:template path="/" name="Source"
stylesheet="http://localhost/xsl/document2html.xsl" />

<CMS:template path="/" name="Dist"
stylesheet="http://localhost/xsl/document2html.xsl" />

<CMS:template path="/" name="Internals"
stylesheet="http://localhost/xsl/document2html.xsl" />

<CMS:template path="/" name="OnNT"
stylesheet="http://localhost/xsl/document2html.xsl" />

<CMS:template path="/" name="CMS"
stylesheet="http://localhost/xsl/document2html.xsl" />

<CMS:template path="/" name="2.0"
stylesheet="http://localhost/xsl/document2html.xsl" />

<CMS:template path="/" name="Credits"
stylesheet="http://localhost/xsl/document2html.xsl" />

<CMS:template path="/" name="Legal"
stylesheet="http://localhost/xsl/document2html.xsl" />

<CMS:template path="/" name="CMS"
stylesheet="http://localhost/xsl/document2print.xsl" />

<CMS:template path="/" name="OnNT"
stylesheet="http://localhost/xsl/document2print.xsl" />

DB Prism: A Framework to Generate Dynamic XML from a Database

855

</CMS:templates>
<!-- List of related pages -->
<CMS:relateds>

<CMS:related from="Home" to="Changes" />
<CMS:related from="Dist" to="Readme" />
<CMS:related from="Dist" to="FAQ" />
<CMS:related from="Dist" to="Changes" />
<CMS:related from="Source" to="Readme" />

</CMS:relateds>
</CMS:xmlcms-site>

</CMS:site-config>

The CMS import utility has a principal method called importPage(), which takes the following steps:

❑ Finds the parent for this page, if the page has an entry in the table PAGES, gets the parent from
this entry; otherwise, tries to get the parent from another page entry in the same directory and
makes a new entry for this page in the table PAGES

❑ Makes a new entry in the table CONTENT and gets the CLOB locator for the new page to be
uploaded

❑ Opens a specified URL

❑ Parses and stores the XML content; if the content has a stylesheet associated, it uses it for
converting the original XML document to the new document to be uploaded

❑ Writes meta data to the PAGES table

This technique works with XML files from any source. Here is the corresponding code:

public boolean importPage(String src, String findParent, String xsl)
throws SQLException,IOException

{
Integer p_id,p_parent,newVersion;
String p_path,p_name,p_ext;
p_path = wwwIndex.getPath(src);
p_name = wwwIndex.getName(src);
p_ext = wwwIndex.getExt(src);

CLOB tmpClob; long clobSize;
try
{

#sql {SELECT id_page INTO :p_id FROM pages
WHERE path=:p_path AND name=:p_name };

}
catch (SQLException e)
{

// This page not found, creates one
#sql {SELECT NVL(MAX(id_page),0)+10 INTO :p_id FROM pages};

if (findParent.equalsIgnoreCase("yes"))
// Finds a logical parent
try
{

#sql {SELECT parent INTO :p_parent FROM pages
WHERE path=:p_path AND ROWNUM=1};

}

Chapter 21

856

catch (SQLException se)
{

p_parent=null;
}

else
p_parent = null;

// creates a page belonging to p_parent
#sql {INSERT INTO pages

VALUES (:p_id,:p_parent,:p_name,:p_name,
USER,SYSDATE,SYSDATE,NULL,NULL,
:p_path,NULL,'N',USER,USER,'Not Loaded',0,1)};

}
Writer out = null;
InputStream in = null;
try
{

#sql {SELECT NVL(MAX(version),0)+1 INTO :newVersion
FROM content WHERE cn_id_page = :p_id };

#sql {INSERT INTO Content(cn_id_page, version, owner,
status, source_file, content,created,modified,
created_by,modified_by)
VALUES (:p_id, :newVersion, USER, 'Created', :p_name,
EMPTY_CLOB(), SYSDATE, SYSDATE, USER, USER)};
try
{

#sql { SELECT content INTO :tmpClob FROM content
WHERE cn_id_page = :p_id AND version = :newVersion };

#sql {CALL DBMS_LOB.TRIM(:inout tmpClob, 0)};
out = tmpClob.getCharacterOutputStream();
URL inUrl = new URL(loadPath+p_path+p_name+"."+p_ext);
in = inUrl.openStream();
parseAndStore(in,out,xsl);
in.close();
out.close();
#sql clobSize = {VALUE(DBMS_LOB.GETLENGTH(:tmpClob))};
#sql {UPDATE content SET content = :tmpClob,

status = 'Loaded', file_size = :clobSize, modified=SYSDATE,
modified_by=USER WHERE cn_id_page = :p_id
AND version = :newVersion };

if (autoCommitVersion)
#sql { UPDATE pages SET current_version = :newVersion,

status = 'Loaded', file_size = :clobSize
WHERE id_page = :p_id };

else
#sql {UPDATE pages SET status = 'Loaded',

file_size = :clobSize WHERE id_page = :p_id };
}
catch (Exception e1)
{

if (in != null)
in.close();

if (out != null)
out.close();

String msg = "Error at importing time: "+e1.getMessage();
System.out.println(msg);

#sql { UPDATE content SET status = :msg
WHERE cn_id_page = :p_id AND version = :newVersion };

#sql { UPDATE pages SET status = :msg WHERE id_page = :p_id };
return false;

}

DB Prism: A Framework to Generate Dynamic XML from a Database

857

return true;
}
catch (SQLException e)
{

System.out.println(e.getMessage());
return false;

}
}

}

The parseAndStore function is below:

private void parseAndStore(InputStream in, Writer out, String stylesheet)
throws IOException,SAXException,XSLException

{
XMLDocument theXMLDoc = null;
XSLStylesheet theXSLStylesheet = null;

// Parse the document from the Stream
theParser.parse(in);

// Get the parsed XML Document from the parser
theXMLDoc = theParser.getDocument();
if (stylesheet != null)
{

URL inUrl = new URL(loadPath+stylesheet);
InputStream XSLStream = inUrl.openStream();
// Create the Stylesheet from the stream
theXSLStylesheet = new XSLStylesheet(XSLStream,null);

}
else

theXSLStylesheet = new XSLStylesheet(new StringReader(idenXSL),null);

// Create an instance of XSLProcessor to perform the transformation
XSLProcessor processor = new XSLProcessor();

// display any warnings that may occur
processor.showWarnings(true);
processor.setErrorStream(System.err);

// Transform theXMLDoc by theXSLStylesheet and write result out to argument
processor.processXSL(theXSLStylesheet, theXMLDoc, new PrintWriter(out));

}

This method executes the following tasks:

❑ It parses the XML document.

❑ It opens and executes the stylesheet if the argument stylesheet is not null. If the argument
stylesheet is null, it uses an idenXSL stylesheet; this stylesheet copies the XML document as
is, without modifications.

❑ It processes the original document with the respective stylesheet defined in the previous step.

❑ It outputs the processed document to the output stream received as a parameter.

To use this client tool, add the CMS-Java.jar file (located in the bin directory of DB Prism
distribution) to the CLASSPATH environment variable and run the application with your Java virtual
machine giving the XML configuration file as a parameter, for example:

java com.prism.cms.Cms file:///Jdev/myprojects/prism/cms/setupcms.xml

Chapter 21

858

Note: Remember to add to the CLASSPATH environment variable the JDBC 2.0 classes
(classes111.zip and classes12.zip), SQLj runtime (runtime.zip), and the
XML parser 2.1 (xmlparserv2.jar) classes.

Making Two Different Stylesheets

By default, the DB Prism CMS includes two stylesheet, one for online viewing and another for printable
versions. The document2html.xsl stylesheet uses all of the XML information generated by the CMS
to make the menu bar, hyperlinks and other interactive navigational items. The document2print.xsl
stylesheet uses a few XML elements and has a simple design optimized for printing.

At deployment time, the CMS pre-generates the online view as described previously. A user who
displays the online view in a browser can click a button to request the print view; at this point, code is
executed to retrieve the main topic and its children. The CMS could pre-generate a print view for each
page, but CMS developers have found that print-view requests are relatively rare, so it is more efficient
to treat them as exceptions and handle them on demand.

The figure below shows two views of a page: one for online viewing and one for printing.

It is also easy to customize presentation for various devices (for example, you could use Cocoon to
deliver content to cellular phones through a WML formatter) and even localize content by using
different template items. For WML presentation, CMS includes the content block and the first level
children; this information could be used by the document2wml.xsl stylesheet to make the elements
cards of the WML page.

Installing the CMS
With the DB Prism distribution, you will find an install script called install.sh, in the CMS directory
of the install. Its purpose is to install the DB Prism/Cocoon CMS, and it uses scott/tiger as the
username and password.

DB Prism: A Framework to Generate Dynamic XML from a Database

859

Execute this script, and then edit prism.properties according to your database specific parameters
(see earlier). CMS makes use of a new functionality of DB Prism version 1.1.0 – this functionality can
redirect every page request to the default page stored procedure. With this functionality, the user sees
the URL to a dynamic CMS page like a static page in the web server, for example:
http://server:port/servlets/doc/cms/CMS.html).

Here is an example of these parameters in the DAD section of the prism.properties files.

#DAD doc, use with Content Management System
doc.dbusername=scott
doc.dbpassword=tiger
doc.connectString=jdbc:oracle:thin:@reptil:1521:ORCL
doc.errorLevel=1
doc.errorPage=http://localhost/error.html
doc.case=lower
doc.compat=java
doc.producerarg=ignore
doc.defaultPage=CMSj.get
doc.alwaysCallDefaultPage=true
doc.docAccessPath=download

#DAD print, use with Content Management System, printable version
print.dbusername=scott
print.dbpassword=tiger
print.connectString=jdbc:oracle:thin:@reptil:1521:ORCL
print.errorLevel=1
print.errorPage=http://localhost/error.html
print.case=lower
print.compat=java
print.producerarg=ignore
print.defaultPage=CMSj.get
print.alwaysCallDefaultPage=true
print.docAccessPath=download

Deployment
At deployment time, you could make a mirror of the entire web site or part of it with any application
tool designed for downloading web sites like UNIX wget or Windows OffLineExplorer; for
example, with a few simple UNIX commands you could deploy the CMS pages in a specific directory,
for instance /tmp/my_site:

cd /tmp
mkdir my_site
cd my_site
wget -np --recursive --level=200 -nH --proxy=off \
http://cocodrilo.exa.unicen.edu.ar:7777/dbprism/doc/Home.html

This command stores all the pages of the CMS from Home.html, and your children up to level 200 in
the directory /tmp/my_site/dbprism/doc.

Chapter 21

860

Conclusions and Beyond
Cocoon is an open source presentation framework, which promises to solve many of the problems
concerned with the development of web applications. DB Prism is integrated with Cocoon to provide a
better separation of content, leaving the application logic and the presentation logic in different tiers,
transforming the database into an active XML database and the middle tier into the presentation tier.

DB Prism 2.0 is the next major release for this framework. This release is designed for the Cocoon 2.0
architecture, at this moment in alpha state. Here is a planned list of changes for DB Prism 2.0:

❑ CocoonWrapper will be rewritten as Cocoon Generator. This generator follows the new API
of Cocoon 2.0; it will include the proposed technology for the compiled XML pages.
Compiled XML pages promise to increase the performance of XML parsing by 200% for
medium-size XML pages (45 KB) and by 45% for large-size XML pages (600 KB). Unlike
serialized XML pages stored in a text string, compiled XML pages store a sequence of SAX
events in a binary stream decreasing the time of parsing XML document.

❑ The file prism.properties will be re-written as prism.xml – with this new configuration
file the user can use a traditional XML editor (for example a text editor) for customizing the
DB Prism functionality.

❑ The sitemap functionality of Cocoon 2.0 could be used on DB Prism, avoiding the problem of
hard-coding the stylesheet in the application logic. This functionality would mean that the
STYLESHEETS and TEMPLATES tables of the CMS system would no longer be needed, so they
can be removed.

❑ The content aggregation of the sitemap component of Cocoon 2.0 will permit removal of
some of the procedures of the CMS, like showMapInfo, for example, as the site map will
provide this functionality. This change will make the code of the CMS system more clear –
after all, this part of the code is the responsibility of the web designers, not of the developer of
the CMS.

❑ DB Prism's resource manager will be redesigned to support JDBC drivers with Java
Transaction Support, providing better support for a transactional DAD.

❑ A new web server generator will automatically generate Java Stored Procedures for DB
Prism/Cocoon permitting two main benefits, one to migrate actual application made by
Oracle Designer Web Server Generator and the other to use actual graphical designer tools to
make web application without coding. Oracle Designer Web Server Generator is a graphical
tool which permits design of the application graphically using information stored in the
Designer repository (table columns, types, relations, and so on). This graphical tool stores the
user designed application in the repository and generates PLSQL stored procedures for the
web application, then the DB Prism Web Server Generator will take this information to
automatically generate the stored procedure for the same application but using XML
technology.

DB Prism: A Framework to Generate Dynamic XML from a Database

861

Summary
In this case study we have looked at:

❑ Cocoon and DB Prism architecture

❑ Background information about DB Prism internals

❑ Developing applications with DB Prism/Cocoon using Java Stored Procedures

For the third point, we looked at the complete code of a CMS. This code demonstrates the benefits of
XML technologies for making web applications – this CMS only needs 400 lines of Java code to provide
the same functionality as any traditional CMS system.

Chapter 21

862

