
Matisse®®®® SQL

Programmer’s Guide

14th Edition

May 2003

Matissse SQL Programmer’s Guide

Copyright ©1992–2003 Matisse Software Inc. All Rights Reserved.

Matisse Software Inc.

433 Airport Blvd, Suite 421

Burlingame, CA 94010

USA

Printed in USA.

This manual and the software described in it are copyrighted. Under the
copyright laws, this manual or the software may not be copied, in whole or in
part, without prior written consent of Matisse Software Inc. This manual and
the software described in it are provided under the terms of a license between
Matisse Software Inc. and the recipient, and their use is subject to the terms of
that license.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the
government is subject to restrictions as set forth in subparagraph (c)(l)(ii) of the
Rights in Technical Data and Computer Software clause at DFARS 252.227-
7013 and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. and
international patents.

TRADEMARKS: Matisse and the Matisse logo are registered trademarks of
Matisse Software Inc. All other trademarks belong to their respective owners.

PDF generated 3 May 2003

Contents

Introduction . 9
Conventions . 9

1 Data Accessed with Matisse SQL . 10

2 The mt_sql Utility . 11
2.1 Simple Example . 11

2.2 Basic Usage . 11

2.3 Command Line Options . 12

2.4 Online Help . 13

2.5 Discovering the Schema . 13

3 Constants and Identifiers . 15
3.1 What Is a Constant? . 15

Integer Constants . 15

Numeric Constants . 15

Real Constants . 16

Boolean Constants . 16

Character String Constants . 16

Date and Timestamp Constants . 17

Time Interval Constants . 18

Bytes Constants . 18

List Constants . 18

3.2 What Is an Identifier? . 19

3.3 What Is a Keyword? . 19

4 Selecting Data . 22
4.1 Using the SELECT Command . 22

Using the ONLY Keyword . 22

Specifying a SQL Projection . 23

OID, REF, and Relationship in SQL Projection 24

CLASS_NAME and CLASS_ID. 25

4.2 Join Operation . 26

Natural Join . 26

Conditional Join. 27

Sorting the Result . 27

4.3 Creating a SQL Selection Using the INTO Keyword 27

4.4 Deleting a Selection Result . 28

4.5 Specifying a Search Criteria with WHERE . 29

4.6 Using Attributes in Expressions . 29

Specifying an Attribute in a WHERE Clause 29

4.7 Combining Predicates with AND and OR . 30
Contents 3

Precedence of Evaluation of AND and OR 31

4.8 Specifying a Negative Condition with NOT . 32

4.9 Specifying a Type Predicate with IS OF . 32

4.10 Getting DISTINCT Values . 33

4.11 Specifying Sort Criteria with ORDER BY . 33

4.12 Grouping with GROUP BY and HAVING . 34

Grouping by class . 35

HAVING clause . 35

5 Using Numeric Values .37
5.1 Introduction . 37

5.2 Comparison Operators . 37

5.3 Performing Arithmetic Operations . 37

Expressions and Arithmetic Operators . 37

Evaluating an Expression: An Example. 38

5.4 Result Types from Arithmetic Expressions . 38

5.5 Performing an Interval Test . 40

5.6 Using the ANY and ALL Keywords . 40

6 Using Null Values .41
6.1 Introduction . 41

6.2 What Is a Null Value? . 41

6.3 The IS NULL Keyword . 41

Example: Comparison with Null Values. 41

7 Using Text Values .43
7.1 Introduction . 43

7.2 What Does Text Comparison Mean? . 43

7.3 What Is a Pattern? . 45

7.4 How to Use the % Wildcard Character . 45

7.5 How to Use the Underscore Wildcard Character 46

7.6 Specifying a Pattern with the LIKE Keyword 46

7.7 How to Use an Escape Character . 47

7.8 Using the ANY and ALL Keywords . 47

Quantified Comparison with the ANY Keyword 48

Comparison with the ALL Keyword . 48

Equivalent Comparisons . 48

Alternate Syntax . 48

Examples . 49

7.9 Selecting Objects by Entry Points . 49

Exact Match Search. 49

Pattern Matching . 50

8 Using Relationships .51
8.1 Introduction . 51

8.2 What Is a Relationship? . 51
4 Matissse SQL Programmer’s Guide

8.3 The IN Keyword . 51

Comparing with a List of Successors . 52

8.4 Navigational Queries . 52

Using a Single Relationship in the SELECT List 52

Using Relationships and Other Columns in the SELECT List 53

Using a Relationship in the WHERE Clause 53

Relationship COUNT. 54

Dealing with Empty Relationships . 54

9 Version Travel . 56
9.1 Introduction . 56

9.2 Specifying a Version Travel Query . 56

10 Managing Transactions and Versions . 58
10.1 Introduction . 58

10.2 Starting a Version Access . 58

10.3 Ending a Version Access . 59

10.4 Starting a Transaction . 59

10.5 Committing a Transaction . 59

10.6 Cancelling a Transaction . 60

11 SQL Functions . 61
11.1 Character String Functions . 61

CONCAT . 61

INSTR . 62

LENGTH . 63

LOWER . 63

LTRIM . 63

RTRIM . 64

SUBSTR . 65

UPPER . 65

11.2 List Functions . 66

AVG . 66

ELEMENT . 67

MAX . 67

MIN . 68

SUBLIST . 68

SUM . 69

COUNT . 69

LIST . 70

11.3 Set Functions . 70

AVG . 70

COUNT . 71

MAX . 71

MIN . 72

SUM . 72
Contents 5

11.4 Set functions for relationship aggregation . 73

AVG . 73

COUNT . 74

MAX . 74

MIN . 74

SUM . 75

11.5 Datetime Functions . 75

CURRENT_DATE . 75

CURRENT_TIMESTAMP . 75

EXTRACT . 76

11.6 Conversion Functions . 76

CAST . 76

12 Defining a Schema .79
12.1 Classes, Attributes, and Relationships . 79

CREATE . 79

ALTER . 85

DROP . 86

12.2 Indexes . 87

CREATE . 87

DROP . 87

12.3 Entry Point Dictionaries . 88

CREATE . 88

DROP . 88

12.4 Methods . 89

CREATE . 89

DROP . 90

COMPILE . 90

13 Manipulating Data .92
13.1 Updating Data . 92

UPDATE . 92

13.2 Inserting Data . 95

INSERT . 95

13.3 Deleting Data . 96

DELETE . 96

14 Stored Methods and Statement Blocks .97
14.1 A Simple Example . 97

14.2 Method Invocation . 98

Calling a Method in SELECT Statement 98

Calling a Method in Method Body . 98

Calling a Static Method . 99

Static Method and Query Optimization . 99

14.3 Control Statements . 100

IF Statement . 100
6 Matissse SQL Programmer’s Guide

LOOP Statement . 101

REPEAT statement . 102

WHILE Statement . 102

FOR Statement . 103

LEAVE Statement . 104

ITERATE Statement . 105

RETURN Statement . 105

SET Assignment Statement. 106

SIGNAL Statement . 107

RESIGNAL Statement . 107

14.4 Statement Blocks . 107

Variable Declaration . 108

Direct Execution of Statement Block . 108

Returning Objects from Statement Block 109

14.5 Exception Handling . 109

Declaration of Handler. 109

Handler Types . 110

User Defined Exceptions. 111

Unhandled Exception . 111

15 Options . 113
15.1 Setting Options . 113

MAXOBJECTS . 113

Appendix A Sample Application Schema 114

Index . 116
Contents 7

8 Matissse SQL Programmer’s Guide

Tables

Table 2.1 Command Line Options . 12

Table 3.1 Keywords for Formulating SQL Requests 19

Table 4.1 Comparison of OID and REF() . 25

Table 4.2 AND Operator Truth Table . 31

Table 4.3 OR Operator Truth Table . 31

Table 4.4 Equivalent Logical Expressions . 31

Table 5.1 Comparison Operators . 37

Table 5.2 Types Resulting from Arithmetic Operation 39

Table 5.3 Type Resulting from the Negation Operation 39

Table 6.1 IS [NOT] NULL . 42

Table 7.1 Text Comparison Operators . 43

Table 7.2 ASCII Characters and Their Numeric Values 44

Table 7.3 Equivalent Expressions Using ANY and ALL. 48

Table 11.1 Supported casts between built-in data types 77

Introduction 9

Introduction

This manual describes the syntax and usage of the Matisse SQL language.
Matisse SQL allows you to select a subset of the instances of a class that meet
certain criteria regarding the attribute values or the relationships.

Conventions
This document uses the following conventions:

Text

The running text is written in characters like these.

Code

All computer variables, code, commands, and interactions are shown in this
font.

variable

In a program example, or in an interaction, a variable, which means
anything that is dependent on the user environment, is written in italics.

KEYWORD

In syntax descriptions, an SQL keyword always appears in uppercase
Courier.

{ANY|ALL}

In syntax descriptions, curly braces are used to enclose two or more choices
among different keywords or expressions. The choices themselves are
separated by a vertical bar |.

[id|keyword]

In syntax descriptions, brackets are used to enclose one or more optional
keywords or expressions. If there are two or more choices, they are
separated by a vertical bar |, and you can specify only one.

References

References to another part of the Matisse documentation are made as shown
here.

10 Matisse SQL Programmer’s Guide

1 Data Accessed with Matisse SQL

This section describes Matisse SQL with respect to the Matisse development
environment.

A SQL statement manipulates object instances of Matisse classes, which are
qualified by their class name.

A SQL statement can access both the relationships and the attributes of Matisse
objects. The attributes and relationships of the object instances of a class are the
attributes and relationships defined for the class itself as well as the attributes
and relationships defined on all the superclasses from which the class inherits.

The execution of a SQL SELECT statement produces a projection for the
columns defined in the select list.

Here is a simple example using the C API:

MtSTS sts;

MtSQLStmt stmt;

MtStream stream;

/* initialization */

sts = MtSQLAllocStmt (&stmt);

/* execute a SQL statement */

sts = MtSQLExecDirect (stmt, "SELECT * FROM person");

if (MtFailure(sts))

printf ("Error!! code = %d, message = %s\n", sts,

MtError());

/* open a row stream on statement */

sts = MtSQLOpenStream (&stream, stmt);

/* get the row value for the first column */

MtSQLNext (stream);

MtSQLGetRowValue(stream, 1, ...);

/* clean up */

sts = MtCloseStream (stream);

sts = MtSQLFreeStmt (stmt);

Please refer to the Matisse C API Reference for more detailed information on
how to use SQL C APIs.

2 The mt_sql Utility

The mt_sql utility is Matisse’s command-line interface allowing you to
interactively execute SQL statements and display the result.

2.1 Simple Example
The following is a simple example of using the mt_sql utility for creating a
class, inserting and accessing objects:

% mt_sql -d my_db@my_host

sql> CREATE CLASS movie (

title STRING,

rating STRING

);

sql> COMMIT;

sql> INSERT INTO movie (title, rating)

VALUES ('Rocky', 'R');

sql> COMMIT;

sql> SELECT * FROM movie;

OID title rating

------------------ ------------------- -------------------

0x1047 Rocky R

1 objects selected

sql> quit;

More details are explained in the following sections.

2.2 Basic Usage
An SQL statement can be a single line or can be divided into multiple lines. It
must be terminated by a semicolon (;) in either case. For example,

sql> SELECT lastName, firstName

2> FROM artist

3> WHERE lastName LIKE 'S%';

You can exit mt_sql with the command quit:

sql> quit;

If you execute a SQL statement and no transaction or read-only access is started
explicitly, mt_sql starts a read-only access to the latest version of the database.
When the SQL statement execution is done, mt_sql terminates the read-only
access immediately.
The mt_sql Utility 11

If you start a transaction or a read-only access explicitly using:

SET TRANSACTION READ {WRITE | ONLY}

then mt_sql keeps the transaction or read-only access open until you commit
or abort the transaction, or end the read-only access. Note that you cannot
update both the schema and other database objects in the same transaction. The
following statements need to be executed in different transactions, since the
first statement is creating schema objects, i.e., classes, attributes, while the
following INSERT statement creates a regular object:

% mt_sql -d my_db@my_host

sql> SET TRANSACTION READ WRITE;

Transaction read write started 0

sql> CREATE CLASS movie (

2> title STRING,

3> rating STRING

4>);

Class "movie" created

sql> COMMIT;

Transaction commited

sql> SET TRANSACTION READ WRITE;

Transaction read write started 0

sql> INSERT INTO movie (title, rating)

2> VALUES ('Rocky', 'PG');

1 object inserted

sql> COMMIT;

Transaction commited

2.3 Command Line Options
The mt_sql utility can take several options. The -h option gives you a simple
explanation for all the options as listed in Table 2.1.

Usage: mt_sql [-d [user:]dbname[@host[:port]]] [-qopshV]

Table 2.1 Command Line Options

Option Explanation

-d, --database=... Specify the database and host in the format of dbname@host

-q, --quiet When you specify this option, no output is printed on your terminal. The sql>
prompt is not shown either.

-V, --version Print the version of the utility and exit.

-p, --passwd=... Specify the password to connect to the database.

-s, --size=... Display size for string types (default 20)

-h, --help Display this help and exit.
12 Matisse SQL Programmer’s Guide

When you write a statement with BEGIN and END, such as a CREATE
METHOD statement, BEGIN and END must be the only word in a line. For
example:

sql> CREATE METHOD foo ()

> RETURNS INTEGER

> FOR class_foo

> BEGIN

> ...

> END;

2.4 Online Help
The utility has an online help that provides you with a simple description for
each SQL command, keyword, or built-in function.

To see a summary of available help commands, type “help”.

sql> help;

To see a description of each command, type “help <command>”. For example,

sql> help set transaction;

then you will see:

SyntaxSET TRANSACTION READ

{ONLY [<version>]

|WRITE [<priority>]}

Purpose:Start a version access (read-only transaction) or a

transaction.

...

2.5 Discovering the Schema
You can discover a database schema using SQL statements.

1. Getting the names of all the classes:

sql> SELECT MtName FROM MtClass;

MtName

movie

...
The mt_sql Utility 13

2. Getting the names of the attributes defined in a class:

sql> SELECT MtAttributes.MtName FROM MtClass

2> WHERE MtName = 'movie';

MtName

title

rating

A quicker way to discover all the attribute names is to use a SELECT
statement that selects no object:

sql> SELECT * FROM movie WHERE 1 = 2;

title rating

-------------------- --------------------

0 objects selected

3. Getting the names of the relationships defined in a class:

sql> SELECT MtRelationships.MtName FROM MtClass

2> WHERE MtName = 'movie';

MtName

directedBy

starring
14 Matisse SQL Programmer’s Guide

3 Constants and Identifiers

This section describes the different elements of a Matisse SQL command. The
elements that make up a request are separated by at least one separator. A
separator can be a blank space, a tab, or a carriage return.

After reading this section you should be familiar with:

Constants

Identifiers

Keywords

3.1 What Is a Constant?
A constant is a value of one of the following types:

Integer number

Numeric number

Real number

Boolean

Character string

Null value

Timestamp

Date

Time interval

Bytes

List of all the above types, except null and bytes.

Note that an undetermined value is expressed by the keyword NULL.

Integer
Constants

An integer constant is a string of 19 numerals at the most. It does not contain
spaces, and may be preceded by a plus + or a minus –. Maximum and minimum
values are 9223372036854775807 and -9223372036854775808, respectively.
Here is examples:

12

–123456879

Numeric
Constants

A numeric constants is a combination of integer number constants and a decimal
point ".", and may be preceeded by a plus + or a minus - sign. For example:
Constants and Identifiers 15

12.34

-.1

This type has a precision and scale. The scale is the number of digits in the
fractional part of the number, and cannot be negative or greater than the
precision.

Real Constants A real number constant, an approximate number, is a combination of integer
number constants and keywords “.” and “E” (or “e”). It can take the following
forms, where “x” represents an integer:

x

.x

x.

x.x

x.E[+–]x

.xE[+–]x

x.xE[+–]x

The following examples show real number constants that are valid:

12.

-.2

+143.5e-4

Boolean
Constants

You can declare boolean attributes in the Matisse database schema with the type
BOOLEAN. In Matisse SQL, boolean constants can take one of the two values:

TRUE

FALSE

For instance, to check if a boolean attribute MARRIED is set to TRUE you can
write the following predicate in a where-clause:

MARRIED = TRUE

Character String
Constants

A character string constant is a string of characters that does not include
carriage returns or non-printable characters, enclosed by single quotes. A
character string constant can be empty.

You can specify a single quote in a character string constant, by specifying two
contiguous quotes. In the definition of a character string constant, two
contiguous quotes have a length of one character.

The maximum length of a character string constant is 2000 characters.
Character strings are case sensitive.

The following example shows how to enter a character string containing a
single quote:
16 Matisse SQL Programmer’s Guide

'Computer''s'

Note that this string has the value Computer’s and has a length of 10.

Date and
Timestamp
Constants

A date constant is expressed with the following syntax:

DATE 'yyyy-mm-dd'

Where yyyy-mm-dd represents respectively the year with 4 digits, and the
month and day of the month with 2 digits.

For instance, if you want to check for the value of an attribute birthdate to
retrieve objects with a birth date later that October 10, 1997, you could write
the following predicate:

birthdate > DATE '1997-10-01'

To get the current date, use the following:

CURRENT_DATE

A timestamp constant is expressed with the following syntax:

TIMESTAMP 'yyyy-mm-dd hh:mm:ss[.uuuuuu]'

[AT {LOCAL | GMT | UTC}]

To the date specification is added hh:mm:ss that represents respectively the
hour, minutes and seconds, each using 2 digits. An optional fraction of seconds
can be specified up to 6 digits.

For instance, if we suppose that we run an application where each operation
updates a lastEntry attribute, you could check for the objects where the last
entry was entered after October 1, 1997 at 11:30 AM with the following
predicate:

lastEntry >

TIMESTAMP '1997-10-01 11:30:00'

The two following expressions are also valid and lead to the same result:

lastEntry >

TIMESTAMP '1997-10-01 11:30:00.00'

lastEntry >

TIMESTAMP '1997-10-01 11:30:00.000000'

By default the TIMESTAMP constant is interpreted by Matisse in the local time
for the client machine. You can also express the constant in Universal
Coordinated Time, also known as Greenwich Mean Time, by using the
keywords UTC or GMT.

For instance, if we suppose that the clock for your client machine is set in US
Pacific time, which is equivalent to GMT –9, the following constants would
actually yield the same internal value:
Constants and Identifiers 17

TIMESTAMP '1997-10-01 11:30:00'

TIMESTAMP '1997-10-01 11:30:00' AT LOCAL

TIMESTAMP '1997-10-01 20:30:00' AT GMT

TIMESTAMP '1997-10-01 20:30:00' AT UTC

For making your application portable across different time zones, it is strongly
recommended that you always store timestamp values in UTC, not in the local
time of your machine. Thus, if we suppose that the attribute lastEntry
contains the timestamp, 1997-10-01 20:30:00, in UTC, the following predicates
would evaluate to true:

lastEntry =

TIMESTAMP '1997-10-01 11:30:00' AT LOCAL

lastEntry =

TIMESTAMP '1997-10-01 20:30:00' AT UTC

To get the current timestamp, use the following:

CURRENT_TIMESTAMP

This returns the timestamp value in UTC.

Time Interval
Constants

A time interval constant is expressed with the following syntax:

INTERVAL '[+|-]d hh:mm:ss[.uuuuuu]'

where d represents the days which can be up to 10 digits, and hh:mm:ss

respectively represents the hours, minutes, and seconds. An optional fraction of
seconds can be specified up to 6 digits.

For instance, if you want to retrieve athlete objects with marathon record less
than two hours and ten minutes, you could write a predicate like:

marathonRecord < INTERVAL '0 02:10:00.00'

Bytes Constants A bytes constant is a list of unsigned 8-bit integer numbers, where each number
is expressed by a pair of hexadecimal digits, has the following syntax:

X 'dd...'

where d represents a hexadecimal digit. Here are some examples:

X '000102A0FF'

X '' -- empty bytes

List Constants A list constant is a list of constant values whose types are either integer
number, numeric number, real number, boolean, character string, timestamp,
date, or time interval. A list constant is expressed with the following syntax:

LIST(type)([constant, ...])
18 Matisse SQL Programmer’s Guide

For instance, a list constant with three integer numbers 1, 3, and 5 can be
written as follows:

LIST(INTEGER)(1, 3, 5)

A constant list with two dates can be expressed as follows:

LIST(DATE)(DATE '1997-03-10', DATE '1999-11-10')

A list of integers with no elements can be expressed as follows:

LIST(INTEGER)()

Note that all the elements in a constant list need to be of the same type, in
particular list elements cannot be NULL.

3.2 What Is an Identifier?
An identifier is a character string possibly enclosed by double quotes (" "). The
maximum length of an identifier is 255 characters. The other restrictions are as
follows:

If the identifier is not enclosed by double quotes:

It must start with a non-numeric character,

It cannot contain separators such as blanks, tabs, carriage returns.

The following characters are not allowed:

' ‘ " , . ? ! & ; + - * / % = | ^ ~ () < > [] { }

It cannot contain non-displayable characters.

If the identifier is enclosed by double quotes:

It cannot contain carriage returns

It cannot contain non-displayable characters

A double quote within the identifier is entered by two contiguous double
quotes ("").

Matisse SQL is not case sensitive for the identifiers.

3.3 What Is a Keyword?
A keyword is defined by the Matisse SQL language. Table 3.1 lists the
keywords that you can use to formulate an SQL request. Matisse SQL
keywords are not case sensitive.

Table 3.1 Keywords for Formulating SQL Requests

< > * /

‘ “ . ,

; () @
Constants and Identifiers 19

+ - = ADD

ALL ALTER AND ANY

AS ASC AT ATTRIBUTE

AUDIO AVG BEGIN BETWEEN

BIGINT BLOB BOOLEAN BOOLEAN LIST

BY BYTE BYTE ARRAY BYTES

CALL CARDINALITY CASE CAST

CHAR CHARACTER CHAR_LENGTH CLASS

CLASS_ID CLASS_NAME CLOB COMMIT

COMPARE COMPILE COMPILED CONCAT

CONNECT CONNECTION COUNT CREATE

CURRENT CURRENT_DATE CURRENT_TIMESTA
MP

DATE

DATE LIST DECIMAL DECLARE DEFAULT

DELETE DELETED DESC DICTIONARY

DISCONNECT DO DOUBLE DOUBLE ARRAY

DOUBLE LIST DROP DUPLICATE ELEMENT

ELSE ELSEIF END ENTRY_POINT

ENUM ENUM LIST ESCAPE EVENT

EXCEPT FALSE FLOAT FLOAT ARRAY

FLOAT LIST FOR FROM GMT

GROUP HAVING IF IMAGE

IN INDEX INHERIT INNER

INOUT INSERT INSERTED INSTANCE

INSTR INTEGER INTEGER ARRAY INTEGER LIST

INTERSECT INTERVAL INTERVAL LIST INTO

INVERSE IS JOIN LEAVE

LENGTH LIKE LIST LOCAL

LONG LONG LIST LOWER LTRIM

MAKE_ENTRY MAX MAXOBJECTS METHOD

METHODS MIN NATURAL NOT

NOTIFY NULL NUMERIC NUMERIC LIST

Table 3.1 Keywords for Formulating SQL Requests (Continued)
20 Matisse SQL Programmer’s Guide

OF OFF OID ON

ONLY OR ORDER OUT

PRECISION READ READONLY REAL

REF REFERENCES RELATIONSHIP RETURN

RETURNS ROLLBACK RTRIM SELECT

SELECTION SELF SENSITIVE SET

SHORT SHORT ARRAY SHORT LIST SMALLINT

STATIC STRING STRING ARRAY STRING LIST

SUBLIST SUBSCRIBE SUBSTR SUBSTRING

TIMESTAMP TIMESTAMP LIST UNKNOWN UNSUBSCRIBE

UPDATE UPDATED UPPER USER

UTC VALUES VARCHAR VARYING

VERSION VIDEO WAIT WHERE

WORK WRITE

Table 3.1 Keywords for Formulating SQL Requests (Continued)
Constants and Identifiers 21

4 Selecting Data

This section explains how to select data. After reading it you should know how
to:

Use the SELECT command

Name a result with the INTO keyword

Use predicates in the WHERE clause

Combine predicates with AND and OR

Use the NOT keyword to form a negative condition

4.1 Using the SELECT Command
You query a Matisse database with the SELECT command. This command
returns the objects selected by the selection criteria, or column values specified
by the select-list.

This command, in its simplest form, is made up of the SELECT command and a
FROM clause. The select list part of the SELECT command has the following
syntax:

SELECT [DISTINCT] { *

| [<navigation>.]{<attribute> | <relationship> | *}

| OID

| <expression>

} [, ...]

<navigation> ::=

<relationship>[.([CLASS | ONLY] <class>)]

[.<relationship>[.([CLASS | ONLY] <class>)] ...]

You must specify from where the data will be selected with a FROM clause. The
FROM clause has the following syntax:

FROM { [ONLY] class, ... | selection }

The following query selects all the objects of the class movie:

SELECT * FROM movie;

Using the ONLY
Keyword

You can also use the keyword ONLY to select objects of only the class specified
in the FROM clause, and not any of its subclasses. This is often referred to as the
“proper objects” of the class, or also the “direct objects” of the class.
22 Matisse SQL Programmer’s Guide

For instance, if we suppose that the class artist has a subclass
movieDirectors the following query would select only the objects which are
of class artist but not movieDirector or any other subclass of artist:

SELECT * FROM ONLY artist;

Specifying a
SQL Projection

Matisse queries always return a SQL projection. The Matisse C API and
language bindings allow you to access the result set and retrieve the values for
the columns defined in the select list.

The select list is a comma separated list of columns which can contain either the
symbol “*”, attributes, relationship, or column expressions.

An attribute specification consists of a Matisse attribute name that may be fully
qualified with an alias or a class name.

The following statements would return a result set structured into the two
columns firstName and lastName, also referenceable as column 1 and
column 2:

SELECT firstName, lastName FROM artist;

SELECT a.firstName, a.lastName FROM artist a;

A column expression specification can be an arithmetic expression or a SQL
function including string function, list function, or set function (also called an
aggregate function). In the case of a set function, there should be no other
column defined in the select list. The following statements illustrate the
different kinds of column expressions:

SELECT title, runningTime/10 FROM movie;

SELECT m.title, m.directedBy.lastName FROM movie m;

SELECT AVG(runningTime) FROM movie;

If an attribute in the select list is of list type and the query result is accessed
through the Matisse SQL Projection API, then the elements in the list are
“exploded” in a similar way a relational join would do. For instance, a box
office record with top five receipt numbers would display a result as follows:

SELECT week, topReceipts FROM boxOffice

WHERE week = DATE '2001-01-22';

week topReceipts

------------ -----------

2001-01-22 16

2001-01-22 11.3

2001-01-22 8.2

2001-01-22 7.6

2001-01-22 7

You can also associate a column alias to a projection column, as shown on the
following example:
Selecting Data 23

SELECT AVG(runningTime) AS “avg running time” FROM movie;

The keyword AS is optional and may be omitted.

OID, REF, and
Relationship in
SQL Projection

The 'SELECT *' projection includes the attributes, the OID column, and the
relationships defined in the class.

For example, the class movie has an attribute title and a relationship
starring to artist class, class artist has an attribute name.

sql> SELECT * FROM movie;

OID title starring

------------- --------------- -------------

0x4ff The Green Mile 0x6e4

0x501 Titanic 0x688

...

The OID and relationship columns are of type string and represented by the
hexadecimal OID number. Note that the relationship column returns only the
first successor object of the relationship for each object, even if the relationship
has more than one successor object. This is for the purpose of simplicity.

To get all the starring artists, you may use the following statement.

sql> SELECT m.title, a.name AS "Starring Artists"

2> FROM movie m, artist a

3> WHERE m.starring = a.OID;

title Starring Artists

-------------- ----------------

The Green Mile Tom Hanks

Titanic L. DiCaprio

Titanic Kate Winslet

...

See the next section for the join operation.

REF() can be used in SQL projection. REF() exports objects as the C API type
MtOid, and is used for passing objects from SQL to the language bindings. The
following table compares OID and REF(). For example:

SELECT REF(movie) FROM movie;
24 Matisse SQL Programmer’s Guide

SELECT REF(m.starring) FROM movie m;

CLASS_NAME
and CLASS_ID

Matisse SQL provides two other pseudo attributes besides OID,
CLASS_NAME and CLASS_ID.

CLASS_NAME returns the class name of an object as string. For example,

SELECT LastName, CLASS_NAME FROM Artist;

LastName CLASS_NAME

------------------- -------------------

Hanks Artist

Foster Artist

Spielberg MovieDirector

CLASS_NAME can be used also in WHERE clause. For example, the next
statement returns all the objects whose class name includes ‘Corporate’:

SELECT * FROM Customer c

WHERE c.CLASS_NAME LIKE '%Corporate%';

NOTE: Use the IS OF predicate instead of a simple comparison of class
name like:

SELECT * FROM Customer c

WHERE c.CLASS_NAME = 'CorporateCustomer';

The following predicate executes faster:
... WHERE c IS OF (ONLY CorporateCustomer);

For more information about the IS OF predicate, refer

to section 4.9, Specifying a Type Predicate with IS OF.

CLASS_ID returns the class of an object in hexadecimal OID format. For
example,

SELECT LastName, CLASS_ID FROM Artist;

LastName CLASS_ID

------------------- -------------------

Hanks 0x25f0

Foster 0x25f0

Table 4.1 Comparison of OID and REF()

OID REF()

C API type MtString MtOid

Matisse type MT_STRING MT_OID

Primary key yes no

Java binding type String MtObject
Selecting Data 25

Spielberg 0x260c

The type of CLASS_ID is string.

4.2 Join Operation
Matisse SQL provides equi-joins among classes using OID as the primary key
and relationships as foreign keys. For example, the following statement selects
the names of movies along with their director names:

SELECT m.name, d.lastName, d.firstName

FROM movie m, movieDirector d

WHERE m.directedBy = d.OID;

The join condition is expressed using the relationship directedBy defined
between the two classes. The relationship directedBy works as the foreign key
and OID works as the primary key. Here are two more examples using a SQL
join.

The following statement selects all the movies that have ever passed the $1
million box office record, along with the director's name and box office records.

SELECT m.name, d.lastName, bx.totalReceipts

FROM movie m, movieDirector d, boxOffice bx

WHERE m.directedBy = d.OID AND

m.boxOfficeRecords = bx.OID AND

bx.totalReceipts >1000000;

You can also join within the same class. Suppose we have the class person
with a relationship spouse. The following statement selects person names
with spouse's name.

SELECT p.name, sp.name

FROM person p, person sp

WHERE p.spouse = sp.OID;

Natural Join If no join condition is provided in the WHERE clause, Matisse SQL tries to find
an appropriate one. Since only relationships can work as foreign keys, if there is
only one relationship defined between the classes in the FROM clause, Matisse
SQL uses the relationship for the JOIN condition.

For example, the boxOfficeRecords relationship is the only one between the
movie class and boxOffice class. The following two statements are
equivalent:

SELECT * FROM movie m, boxOffice bx;

SELECT * FROM movie m, boxOffice bx

WHERE m.boxOfficeRecords = bx.OID;
26 Matisse SQL Programmer’s Guide

The following syntax works if there is one and only one relationship between
the movie and boxOffice classes, otherwise it returns an error:

SELECT * FROM movie NATURAL JOIN boxoffice WHERE ...;

The following statement raises an error since there are two relationships
directedBy and starring defined between the movie class and
movieDirector class. Note that Matisse SQL takes account of inheritance.

SELECT * FROM movie m, movieDirector d; -- error!

Conditional Join The following illustrates the syntax for a conditional join:

SELECT *

FROM movie m JOIN boxOffice bx

ON m.boxOfficeRecords = bx.oid

WHERE ...;

The ON clause can reference only the joined classes. INNER JOIN may be
specified in place of JOIN; the results are the same in either case.

For a three-way conditional join, the syntax is:

SELECT *

FROM Movie mv JOIN MovieDirector dr

ON mv.directedBy = dr.oid

JOIN boxOffice bx ON mv.boxOfficeRecords = bx.oid

WHERE dr.lastName = 'Spilberg'

AND bx.totalReciepts > 10000000;

You may use parentheses:

SELECT *

FROM (Movie mv JOIN MovieDirector dr

ON mv.directedBy = dr.oid)

JOIN boxOffice bx ON mv.boxOfficeRecords = bx.oid

WHERE dr.lastName = 'Spilberg'

AND bx.totalReciepts > 10000000;

Sorting the
Result

Within a query statement with join operation, you can use as the criteria of
sorting (see section 4.11, Specifying Sort Criteria with ORDER BY) attributes of
the first class specified in the FROM clause.

4.3 Creating a SQL Selection Using the INTO
Keyword

SQL Selections offer a convenient way to manage list of objects that are
selected from a SQL statement.
Selecting Data 27

You can create a selection of objects with the keyword INTO. The keyword
INTO must be followed with a character string that specifies the name of the
new selection result. A SELECT INTO statement uses the following syntax:

SELECT REF(alias) FROM classname alias WHERE ...

INTO selection

This selection contains a list of the objects that met the specified criteria. The
name for selection must be different from that of any of the classes that are
accessible in the current context. The following command, for example, selects
the objects of the class movie and stores them in a new selection called
mvAction:

SELECT REF(m) FROM movie m INTO mvAction;

After executing this command, you can select the objects from the mvAction
selection, as shown below:

SELECT * FROM mvAction;

The name for selection can be the same as any selection previously used in the
current transaction and still accessible, in which case the selection will be
overwritten with a new list of objects.

For example, you can narrow down the mvAction selection with a WHERE
clause, as shown below:

SELECT REF(m) FROM mvAction m WHERE ... INTO mvAction;

Note that no projection is printed in the mt_sql utility when a SELECT
statement has an INTO clause to generate a selection.

4.4 Deleting a Selection Result
.

SQL Selections created with the INTO keyword as shown in the previous section
must be deleted using a DROP SELECTION statement when they are no longer
needed.

The syntax for DROP SELECTION is as follows:

DROP SELECTION selection

For instance, an application may run the following queries:

SELECT REF(m) FROM movie m INTO mvAction;

... [other queries using the selection] ...

DROP SELECTION mvAction;
28 Matisse SQL Programmer’s Guide

4.5 Specifying a Search Criteria with WHERE
A search criterion can be defined in the WHERE clause as a combination of
predicates. During execution the predicates are evaluated on the objects
specified in the FROM clause. Each predicate evaluates to one of the following
three values:

TRUE

FALSE

UNKNOWN

Each object for which the combination of the predicates evaluated TRUE is
added to the selection result. Objects for which the evaluation returned FALSE

or UNKNOWN are not added to the selection result.

The following example shows how to select objects of the class movie with a
running time longer or equal 90 minutes:

SELECT REF(m)

FROM movie m

WHERE (runningTime >= 90)

INTO mvAction;

Note that the predicate (runningTime >= 90) compares the value of the
numeric attribute runningTime to the constant 90. Only those objects of class
movie that qualify for this predicate will be added in the selection result
mvAction.

In the SELECT request shown above, it is obvious that the objects for which the
comparison is FALSE are those whose runningTime is less than 90 minutes.
The objects for which the comparison is UNKNOWN are those for which the
runningTime is a null value or is not a numeric type.

4.6 Using Attributes in Expressions
You can specify attribute expressions either in the select list to define an SQL
projection, or as part of an evaluation predicate in the WHERE clause.

A predicate where one value is compared to another has the following syntax:

expression1 comparison_operator expression2

A predicate expression can contain any of the attributes of the class specified in
the FROM clause. The set of possible types associated with the attribute is the set
of types associated with the descriptor for the attribute in the database schema.

Specifying an
Attribute in a
WHERE Clause

When you specify an attribute expression in the WHERE clause, you can specify
the attribute by itself or preceded by a class name or an alias. In any case, the
attribute that you specify must belong to the class specified in the FROM clause.
Selecting Data 29

Here is the syntax for specifying an attribute:

[(class | alias).] attribute

In the example below we specify the attribute runningTime without a class or
an alias qualifier:

SELECT * FROM movie

WHERE runningTime = 90;

In the example below we specify two attributes preceded by the class name
qualifier:

SELECT * FROM movie

WHERE movie.title LIKE 'Rocky%'

AND movie.runningTime > 90;

The same query using an alias qualifier instead of the class name is shown
below:

SELECT * FROM movie AS m

WHERE m.title LIKE 'Rocky%'

AND m.runningTime > 90;

4.7 Combining Predicates with AND and OR
You can combine two or more predicates with the AND and OR logical operators.
Predicates linked together by these logical operators have the following syntax:

predicate1 logical_operator predicate2

When connected by an AND operator, both predicates must evaluate to true for
the AND to evaluate to true. When connected by an OR operator, only one of the
predicates needs to evaluate to true for the OR to evaluate to true.

The following example might help illustrate compound predicates. If you want
to select movies that have a running time greater than 90 minutes and a title
starting with ‘Rocky’.

A request like this would have the following syntax:

SELECT * FROM movie

WHERE runningTime > 90

AND title LIKE 'Rocky%';
30 Matisse SQL Programmer’s Guide

The result of the evaluation of the conjunctions (AND) and unions (OR) of
predicates are defined on truth tables. Table 4.2 is the truth table for the AND
operator.

Table 4.3 is the truth table for the OR operator.

Precedence of
Evaluation of
AND and OR

The subpredicates expressed within parentheses are evaluated in priority. For
operations at the same level, AND operators are applied before OR operators.

When a predicate does not have parentheses, a predicate is then interpreted from
left to right. The predicate

A AND B AND C

for example, is equivalent to the following predicate:

(A AND B) AND C

Matisse SQL implements the classic laws of commutativity and distributivity
for the AND and OR operators, as shown in Table 4.4.

A SELECT statement that selects objects of the class movie where the
runningTime is greater than 120 minutes or less than 90 minutes and whose
title starts with ‘Rocky’ would look like:

Table 4.2 AND Operator Truth Table

Predicate 1 Predicate 2 Result

True True True

True False False

False True/False False

Unknown True/False/Unknown Unknown

Table 4.3 OR Operator Truth Table

Predicate 1 Predicate 2 Result

True True/False/Unknown True

False False False

Unknown False/Unknown Unknown

Table 4.4 Equivalent Logical Expressions

Expression Equivalent Expression

A AND B B AND A

A OR B B OR A

A AND (B OR C) (A AND B) OR (A AND C)

A OR (B AND C) (A OR B) AND (A OR C)
Selecting Data 31

SELECT * FROM movie

WHERE title LIKE 'Rocky%'

AND (runningtime < 90

OR runningTime > 120);

Note that in accordance with the law of distributivity described above, the
following request is equivalent:

SELECT * FROM movie

WHERE (title LIKE 'Rocky%'

AND runningTime < 90)

OR

(title LIKE 'Rocky%'

AND runningTime > 120);

4.8 Specifying a Negative Condition with NOT
You can use the NOT keyword to evaluate the opposite or negation of a
predicate.

For example, to select objects of the class movie that do not have a title starting
with ‘Rocky’, you could write the following statement:

SELECT * FROM movie

WHERE NOT title LIKE 'Rocky%';

4.9 Specifying a Type Predicate with IS OF
A type predicate tests object instances based on their classes. The syntax is as
follows:

expression IS [NOT] OF ([ONLY] classname [, ...])

where expression, representing an object, is a class name or alias name
specified in the FROM clause, or relationship navigations. The result of the
predicate is true if
i) the actual class of an object, expression, is classname or one of the
subclasses of classname, or
ii) the actual class of an object is classname if the optional ONLY precedes
classname,

for at least one of the classes specified by classname.

If expression is NULL, the result of the predicate is unknown.

For example, the next SELECT statement selects employees using different
conditions for different type of employee:

SELECT * FROM Employee e
32 Matisse SQL Programmer’s Guide

WHERE (e IS OF (ONLY Employee) AND salary > 40000)

OR (e IS OF (Manager, Officer) AND salary > 50000);

When expression contains relationship navigations, the predicate executes the
type test for each successor object of the relationship. If at least one of the
successor object satisfies the type test, the result of the predicate is true.

For example, the following statement selects movies which has any starring
movie director:

SELECT * FROM Movie m

WHERE m.starring IS OF (MovieDirector);

Note that if the relationship starring has no successor object, the type
predicate evaluates to unknown since m.starring is NULL.

4.10 Getting DISTINCT Values
When you want to get only one copy for each set of duplicate rows, use the
DISTINCT keyword in the select-list. For example, the following statement lists
all kinds of ratings for each category:

SELECT DISTINCT category, rating FROM movie;

Current limitation: When you specify DISTINCT in a SELECT statement, you
can select only scalar values without relationship navigation, i.e., you cannot
select list types, multimedia types, or any relationship navigation.

4.11 Specifying Sort Criteria with ORDER BY
You can use an ORDER BY clause to sort the objects according to the values of
some of the attributes. You can specify the order to be ascending or descending
for each attribute in the ORDER BY clause. By default, the order is ascending.

The syntax is as follows:

ORDER BY criteria

Where criteria is a list of comma-separated criteria with each criterion
having the following syntax:

{ attribute [ASC | DESC] }

For instance, to select the movies by title ascending and runningTime

descending, with a running time higher than 90 minutes, you would write the
following statement:

SELECT * FROM movie

WHERE runningTime > 90

ORDER BY title ASC, runningTime DESC;
Selecting Data 33

Note that the ascending or descending specification is “sticky,” it propagates to
the next criteria unless otherwise specified. For instance the following statement
will sort the objects on both title and runningTime descending, as the DESC
propagates to the right.

SELECT * FROM movie

ORDER BY title DESC, runningTime;

To sort the objects on runningTime ascending, you need to specify it
explicitly:

SELECT * FROM movie

ORDER BY title DESC, runningTime ASC

Note that within a query statement containing a JOIN operation, you may use
attributes of the first class specified in the FROM clause as sort criteria (that is, as
arguments to the ORDER BY clause).

4.12 Grouping with GROUP BY and HAVING
When a GROUP BY clause is used with a SELECT statement, the GROUP BY
clause groups the selected objects based on the values of attributes specified by
GROUP BY clause, and returns a single row as summary information for each
grouped objects.

NOTE: All NULL values from grouping attributes are considered equal.

The syntax is:

SELECT ... WHERE ...

GROUP BY attribute [, ...]

[HAVING <search condition>]

A GROUP BY clause can have up to 16 attributes as its grouping criteria.

A simple example is to group movies based on their categories and return the
average running time for each group:

SELECT category, AVG (runningTime) FROM Movie

GROUP BY category;

category avg

----------------- ------------

Action 108.5

Drama 125.1

When a GROUP BY clause is used, the SELECT list can reference

a. attributes specified in the GROUP BY clause, or

b. any attribute that is used as parameter for set function.
34 Matisse SQL Programmer’s Guide

And also, the ORDER BY clause can reference only attributes specified in the
GROUP BY clause.

For example, the next statement is valid:

SELECT CONCAT ('Category: ', category), AVG (runningTime)

FROM Movie

GROUP BY category;

while the following is not valid:

SELECT category, title

FROM Movie

GROUP BY category; -- Error!!

because title is neither a grouping attribute nor used as parameter for a set
function.

Restrictions on grouping attribute

1. Grouping criteria cannot contain relationship navigation.

2. Grouping attribute cannot be of list types nor media types, e.g.,
LIST(INTEGER), IMAGE, or VIDEO

Grouping by
class

CLASS_NAME or CLASS_ID can be used to group objects by their class. For
example,

SELECT CLASS_NAME, AVG(salary) FROM Employee

GROUP BY CLASS_NAME;

CLASS_NAME avg

-------------------- --------------

Employee 23504.23

Manager 32119.13

In the example, the objects in the group of Employee consist of only direct
instances of class Employee, not including objects of class Manager, which is a
subclass of Employee.

Note that CLASS_NAME and CLASS_ID have the identical effect for
grouping.

HAVING clause The HAVING clause restricts the groups of the selected objects to those groups
for which the <search condition> is true.

For example, the following statement selects movie categories in which average
running time is more than two hours:

SELECT category, AVG (runningTime) FROM Movie

GROUP BY category
Selecting Data 35

HAVING AVG (runningTime) > 120;

category avg

----------------- ------------

Drama 125.1

The HAVING clause can reference only

a. attributes specified in the GROUP BY clause, or

b. any attribute that is used as parameter for set function.

When a HAVING clause is used without GROUP BY, the entire objects
resulting from the WHERE clause is treated as a single group. Then, the
statement’s SELECT list can contain only set functions, since nothing is
specified in GROUP BY clause.
36 Matisse SQL Programmer’s Guide

5 Using Numeric Values

5.1 Introduction
After reading this section, you should understand how Matisse analyzes
arithmetic expressions and what data types result from different operations. You
should also know how to:

Use comparison operators

Specify arithmetic operations on expressions

Specify an interval test

Negate expressions

Use the ANY and ALL keywords with numeric values

5.2 Comparison Operators
Table 5.1 lists the various comparison operators that are available:

You can use these operators, for example, to compare an attribute value to a
constant or to an expression as shown in the following section.

5.3 Performing Arithmetic Operations

Expressions and
Arithmetic
Operators

In Matisse SQL, an arithmetic expression can be any of the following:

expression

attribute

constant

value function

Table 5.1 Comparison Operators

Operator Meaning

= Equals

<> Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to
Using Numeric Values 37

sum of expressions

product of expressions

quotient of expressions

difference between two expressions

An operation involving two expressions has the following syntax:

expression1 operator expression2

The binary operators that are valid are the multiplication operator *, the
division operator /, the addition operator + and the subtraction operator -,
which also acts as a negation operator when preceding a single expression.

The order of evaluation of an expression that contains two or more operators is
determined by the hierarchy of operators. The sub-expressions within
parentheses are evaluated first. The evaluation is performed in the following
order, from left to right:

1. – negation operation

2. *, / multiplication and division

3. +, – addition and subtraction

Evaluating an
Expression: An
Example

To select the movies which would become longer than 90 minutes if their
running time was increased by 15%, you could write a statement as shown
below:

SELECT * FROM movie

WHERE (runningTime * 115 / 100) >= 90

AND runningTime <= 90;

Note that the expression to be evaluated in this request has the following
format:

(expression1 * constant1 / constant2)

To evaluate this expression, Matisse SQL multiplies expression1 by
constant1. Then the product of this operation is divided by constant2.

A NULL value may result from processing an expression if one of the elements
of the expression is not a numeric value type. Eventually, if the expression
returns NULL, the first predicate in the above statement returns a logic value
UNKNOWN since it cannot be evaluated.

5.4 Result Types from Arithmetic Expressions
The general format for an arithmetic operation between two expressions is the
following:

expression1 operator expression2
38 Matisse SQL Programmer’s Guide

In any arithmetic operation, the expressions to be operated on (the operands)
must be numeric values.

The types resulting from the arithmetic operations are summarized in Table 5.2.

When the operator is the division operator (/) and expression2 has the value
0, the DIVISION_BY_ZERO error will be returned. For any operation, if the
result is more than the precision that the type can hold, the
NUMERICOVERFLOW error will be returned.

NOTE: When one of the terms of an arithmetic expression is NULL, the
value of the resulting expression is NULL.

The negation operation produces the result types shown in Table 5.3.

NOTE: The negation operation cannot be applied to BYTE type, since it
does not allow negative number.

Table 5.2 Types Resulting from Arithmetic Operation

Operator Expression1 Expression2 Result

+, –, *, / LONG LONG LONG

NUMERIC NUMERIC NUMERIC

NUMERIC LONG

LONG NUMERIC

LONG DOUBLE DOUBLE

DOUBLE LONG

DOUBLE NUMERIC

NUMERIC DOUBLE

DOUBLE DOUBLE

Table 5.3 Type Resulting from the Negation Operation

Operator Expression1 Result

– FLOAT FLOAT

DOUBLE DOUBLE

SHORT SHORT

INTEGER INTEGER

LONG LONG

NUMERIC NUMERIC
Using Numeric Values 39

5.5 Performing an Interval Test
To test for values within an interval you can use a BETWEEN .. AND predicate as
shown below:

expression

[NOT] BETWEEN expression AND expression

Note that you can check that a value does not fall into an interval by inserting
the keyword NOT immediately before BETWEEN.

To select the movies where the running time is between 90 minutes and 120
minutes, you can write the following statement:

SELECT * FROM movie WHERE runningTime

BETWEEN 90 AND 120;

Note that the expression BETWEEN 90 AND 120 is equivalent to the following:

WHERE runningTime >= 90

AND runningTime <= 120;

5.6 Using the ANY and ALL Keywords
The ANY and ALL keywords let you compare a value to a set of values. The
syntax is as follows:

expression comparison_operator

{ANY | ALL} expressions

For more information please refer to the paragraph relating to the ANY and
ALL keywords in section 7.8, Using the ANY and ALL Keywords.
40 Matisse SQL Programmer’s Guide

6 Using Null Values

6.1 Introduction
This section explains how to use null values. After reading this section, you
should know:

What a null value is

How to test for null values using the IS NULL keyword

6.2 What Is a Null Value?
In Matisse, the attribute of an object can be explicitly assigned a null value. An
attribute for which no value has been assigned and for which there is no default
value defined in the database schema is also seen as having a null value.

6.3 The IS NULL Keyword
You can check if an expression leads to a null value with the IS NULL

keyword.

The syntax for evaluation a null value is as follows:

expression IS [NOT] NULL

The predicate:

expression IS NULL

is true if the result of the evaluation of the expression expression is null.

The predicate:

expression IS NOT NULL

is equivalent to the predicate:

NOT (expression IS NULL).

Example:
Comparison
with Null Values

The following request selects all the objects of class movie for which the
attribute runningTime has a null value:

SELECT * FROM movie WHERE runningTime IS NULL;
Using Null Values 41

A NULL value always leads to an UNKNOWN result when used directly in a
comparison or any other operation. For example, when the runningTime value
is null, the comparison in the following query will evaluate to UNKNOWN and
thus will not return any object.

SELECT * FROM movie

WHERE runningTime = NULL;

The behavior of IS [NOT] NULL is shown in Table 6.1.

Table 6.1 IS [NOT] NULL

Expression Value IS NULL IS NOT NULL

Null value True False

Valid value False True
42 Matisse SQL Programmer’s Guide

7 Using Text Values

7.1 Introduction
Some topics covered in this section are similar to those presented in section 5,

Using Numeric Values. The ANY and ALL keywords, for example, can also be
used with numeric values.

After reading this section, you should know how to:

Compare text values

Specify wildcard characters in a pattern

Specify an escape character with ESCAPE keyword

Use the ANY and ALL keywords

Select data by entry points

7.2 What Does Text Comparison Mean?
You can compare character strings with the same comparison operators that you
use to compare numeric values. These operators are listed in Table 7.1.

The comparison of a character string with a numeric value or any other non-
character string value evaluates to UNKNOWN.

If the two character strings have the same characters at each position, they are
equal. For example, the following character strings are equal:

'Rocky' = 'Rocky'

The following predicates evaluate to true:

'Rock' < 'Rocky'

'Mocky' < 'Rocky'

Table 7.1 Text Comparison Operators

Operator Meaning

= Equals

<> Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to
Using Text Values 43

When two character strings are compared, the trailing blank spaces are not
ignored but are taken into account. For example, the following predicates
evaluate to false:

'Rocky ' = 'Rocky'

'Rocky ' = 'Rocky '

The following predicate evaluates to true:

'Rocky ' = 'Rocky '

How Character
Strings Are
Compared

The character comparison between two strings is based on the ASCII (or
EBCDIC) character values. A character string is greater than another character
string when one or more of its characters has a higher ASCII (or EBCDIC)
value than the character occupying the same position in the other character
string.

All comparisons are performed on the basis of the number assigned to each
character in the ASCII (or EBCDIC) character table shown in Table 7.2.

Table 7.2 ASCII Characters and Their Numeric Values

SP

32

0

48

@

64

P

80

‘

96

p

112

!

33

1

49

A

65

Q

81

a

97

q

113

"

34

2

50

B

66

R

82

b

98

r

114

#

35

3

51

C

67

S

83

c

99

s

115

$

36

4

52

D

68

T

84

d

100

t

116

%

37

5

53

E

69

U

85

e

101

u

117

&

38

6

54

F

70

V

86

f

102

v

118

’

39

7

55

G

71

W

87

g

103

w

119

(

40

8

56

H

72

X

88

h

104

x

120

)

41

9

57

I

73

Y

89

i

105

y

121

*

42

:

58

J

74

Z

90

j

106

z

122

+

43

;

59

K

75

[

91

k

107

{

123
44 Matisse SQL Programmer’s Guide

The letter B, for example, has a number that is higher than A. In addition, lower
case letters all have numbers that are greater than that of any upper case letter.
While a has a number that is greater than those of all the other upper case
letters, it has a number lower than that of b.

The following statements are equivalent and find all the movies other than
Rocky with a running time greater than 90 minutes:

SELECT * FROM movie

WHERE title <> 'Rocky'

AND runningTime > 90;

SELECT * FROM movie

WHERE NOT (title = 'Rocky'

OR runningTime <= 90);

7.3 What Is a Pattern?
A pattern is a string of at most 255 characters, delimited by apostrophes (' '),
that lets you specify the different characteristics you are searching for in a text
string. These characteristics may include the following:

Length of the string

Constant characters in the string

Variable (wildcard) characters in the string

7.4 How to Use the % Wildcard Character
A pattern accepts the same alphanumeric characters that can be used in any text
string. In addition, a pattern may contain the following wildcard character:

%

,

44

<

60

L

76 92

l

108

|

124

-

45

=

61

M

77

]

93

m

109

}

125

.

46

>

62

N

78

^

94

n

110

~

126

/

47

?

63

O

79

_

95

o

111

Table 7.2 ASCII Characters and Their Numeric Values (Continued)
Using Text Values 45

The percent sign % is a wildcard character that represents any number of
characters or no characters. Look, for example, at the following pattern:

'Ro%'

This pattern specifies the subset of character strings that starts with the
characters Ro.

You can specify the % wildcard character at the beginning or in the middle of a
character string, as shown in the examples below:

'%ocky'

'R%ky'

The second pattern specifies the subset of character strings beginning with the
character R and ending with the characters ky.

7.5 How to Use the Underscore Wildcard Character
The underscore character _ functions similarly to the percent sign except that it
represents only one character. The following example shows how this character
is used:

'Rock_'

The above example specifies the subset of character strings containing five
characters whose first 4characters make the substring ‘Rock’.

7.6 Specifying a Pattern with the LIKE Keyword
When comparing two text strings, you can use the following syntax:

expression LIKE 'pattern'

The text string expression is compared to the master text string or pattern.
The condition expression LIKE 'pattern' is true if and only if the value of
expression matches with 'pattern'. Note that pattern needs to be a literal
constant string.

An expression is comparable to a pattern only if it evaluates to a character
string. If an expression evaluates to a value other than a character string, the
comparison will evaluate to UNKNOWN. If the expression evaluates to a character
string, the comparison will evaluate to TRUE or FALSE.

The following request selects all the movies whose names consist of at least
two separate words, or consist of at least two separate words linked by a
hyphen (-):
46 Matisse SQL Programmer’s Guide

SELECT * FROM movie

WHERE name LIKE '% %'

OR name LIKE '%-%';

7.7 How to Use an Escape Character
The escape character is a character string composed of just one character. When
it is defined, it becomes possible to use one of the wildcard characters as an
ordinary character as long as you insert an escape character immediately before
it.

For example, suppose you are looking for all the character strings that are 8
characters in length and begin with the characters '%ABC'. Since % already
serves duty as the wildcard character, you cannot specify the ordinary character
% with the wildcard character %. In this case, you must precede the character %
with an escape character.

When you compare a text string with a pattern, you must define the escape
character with the ESCAPE keyword, as shown in the following example:

expression LIKE '\%ABC%' ESCAPE '\'

This clause specifies all the character strings that are at least 4 characters in
length and begin with the characters %ABC.

Some character strings that meet these criteria are listed below:

%ABC

%ABCDE

Note that if you want to specify the character used as the escape character in a
search string, you must also precede it with itself, as shown below:

expression LIKE 'AB%C\\' ESCAPE '\'

This clause selects all the character strings that begin with the substring AB and
end with the substring C\.

When the escape character does not precede a special character, it is ignored.
For example, if \ is the escape character, the character string A\BC is the same
as the character string ABC.

7.8 Using the ANY and ALL Keywords
The ANY and ALL keywords allows you to compare an expression to a set of
expressions. They have the following syntax:

expression

operator { ANY | ALL}

(expression [[,expression]...])
Using Text Values 47

Quantified
Comparison
with the ANY
Keyword

You can use the ANY keyword to formulate a quantified comparison between
one character string and a set of character strings. Note that the operators used
to check for equality or inequality between text values are the same as those
discussed earlier in this section.

The comparison with the ANY keyword

Is TRUE if the set of expressions contains at least 1 expression for which the
comparison is true.

Is FALSE if the comparison is false for every expression contained in the set
of expressions.

Comparison
with the ALL
Keyword

The comparison with the ALL keyword

Is TRUE if the comparison is true for every expression contained in the set
of expressions.

Is FALSE if there is at least one expression in the set of expressions for
which the comparison is false.

Equivalent
Comparisons

Certain negations of comparisons using ALL are equivalent to comparisons
using ANY. Table 7.3 lists these equivalences.

Alternate Syntax The keyword IN can be used instead of = ANY and the keywords NOT IN can
be used instead of <> ALL. Note, for example, the statement:

SELECT * FROM movie

WHERE title = ANY('Rocky', 'Grease');

is equivalent to the statement:

Table 7.3 Equivalent Expressions Using ANY and ALL

Expression Using NOT and ALL Equivalent Expression

NOT (expression <>

ALL expressions)

expression =

ANY expressions

NOT (expression =

ALL expressions)

expression <>

ANY expressions

NOT (expression <=

ALL expressions)

expression >

ANY expressions

NOT (expression <

ALL expressions)

expression >=

ANY expressions

NOT (expression >=

ALL expressions)

expression <

ANY expressions

NOT (expression >

ALL expressions)

expression <=

ANY expressions
48 Matisse SQL Programmer’s Guide

SELECT * FROM movie

WHERE title IN LIST(STRING) ('Rocky', 'Grease');

In the same way, the statement:

SELECT * FROM movie

WHERE title <> ALL ('Rocky','Grease');

is equivalent to the request:

SELECT * FROM movie

WHERE title NOT IN LIST(STRING) ('Rocky','Grease');

Examples The following statement selects the objects of the class movie whose value for
the attribute title is Rocky, Grease, or Casper:

SELECT * FROM movie

WHERE title =

ANY('Rocky','Grease','Casper')

This request is equivalent to the following statement:

SELECT * FROM movie

WHERE NOT

(title <> ALL('Rocky','Grease','Casper'))

Both statements are equivalent to the following one:

SELECT * FROM movie

WHERE title = 'Rocky' OR name = 'Grease'

OR title = 'Casper'

7.9 Selecting Objects by Entry Points
The Entry Point Dictionaries of Matisse offer an efficient mechanism to
implement a full text search capability.

When an Entry Point Dictionary is defined in the database schema for a given
attribute, the creation of an object and the subsequent updates of the attribute
automatically populate the dictionary with a list of keywords generated from
the new value of the attribute. These keywords are called entry points.

Entry Point Dictionaries can be accessed to retrieve objects either from Matisse
SQL or language bindings, e.g., the Java binding.

Exact Match
Search

To search for objects through an entry point with an exact match, you must use
the following syntax:

[NOT] [<navigation>.]ENTRY_POINT (entry_point_dictionary)

{=| <>} 'entry_point'
Using Text Values 49

Assuming that you have defined on the attribute synopsis for the class movie
an Entry Point Dictionary that indexes every word in a text string, you may
select the movies whose synopsis contains the word “adventure” with the
following statement:

SELECT * FROM movie

WHERE ENTRY_POINT(MovieSynopsisDict) = 'adventure';

You can combine entry points predicates with any other predicates by using OR

and AND keywords, for instance:

SELECT * FROM movie

WHERE ENTRY_POINT(MovieSynopsisDict) = 'adventure'

OR ENTRY_POINT(MovieSynopsisDict) = 'lost'

AND title <> 'Rocky';

ENTRY_POINT() may be preceded by a relationship navigation, for example:

SELECT * FROM movie m

WHERE m.starring.ENTRY_POINT(LastNameDict) = 'Cruise';

Pattern
Matching

To search for objects through an entry point with pattern matching, you must
use the following syntax:

ENTRY_POINT(entry_point_dictionary) [NOT] LIKE

[ESCAPE 'escape-char']

The same rules as the ones described for the clause LIKE apply for the wildcard
and escape characters.

You may select the movies whose synopsis contains the pattern ‘adventure%’
for instance to qualify objects containing either ‘adventure’ or ‘adventurers’:

SELECT * FROM movie

WHERE ENTRY_POINT(MovieSynopsisDict) LIKE 'adventure%';
50 Matisse SQL Programmer’s Guide

8 Using Relationships

8.1 Introduction
This section describes how to navigate through relationships within an SQL
statement. After reading this section, you should know:

What a relationship is

How to use the IN keyword

How to use relationships in the select list and the where clause

8.2 What Is a Relationship?
In Matisse a relationship defines a link between an object and other objects.
From a given object, called a predecessor, the objects that a relationship points
to are referred to as the successors of the object through that relationship. The
successors of a relationship can be either a set of objects or a NULL value when
there is no successor for the relationship.

8.3 The IN Keyword
By using the IN keyword, you can select objects based on the evaluation of the
inclusion of two sets of objects. The sets of objects can be either a selection
result obtained with an other statement or the objects that are successors
through a relationship.

The keyword IN has the following syntax:

[ALL | ANY] set1 IN set2

For each object belonging to set1, the keyword IN checks whether or not it
also belongs to set2.

If the keyword ALL is specified, the inclusion is true if all the objects of set1
belong to set2. If nothing or ANY is specified, the inclusion is true if any of the
objects of set1 belong to set2.

For instance, to select the movies where all the directors are also starring in the
movie you would use the following command:

SELECT * FROM movie

WHERE ALL directedBy IN starring;

To select the movies where any director is also starring in the movie you would
use one of the following commands, which are equivalent:
Using Relationships 51

SELECT * FROM movie

WHERE ANY directedBy IN starring;

SELECT * FROM movie

WHERE directedBy IN starring;

You can combine with the keyword NOT. For instance, to select the movies
where no director is starring in the movie:

SELECT * FROM movie

WHERE NOT directedBy IN starring;

Comparing with
a List of
Successors

In addition to comparing the successors of an object through different
relationships, you can also compare successors to the result of a previous
statement execution.

For example, if you want to know which movies have a director whose name
starts with ‘R’ and is also starring in the movie, you can first select the
directors by their name:

SELECT REF(m) FROM movieDirector m

WHERE m.lastname LIKE 'R%'

INTO mDirectors;

Then, you get the movies with the following request:

SELECT * FROM movie

WHERE starring IN mDirectors;

Note that with the navigation capability of Matisse SQL, the two queries could
be written in only one statement, without the need to use an intermediate result:

SELECT * FROM movie

WHERE directedBy.lastname LIKE 'R%'

AND directedBy IN starring;

8.4 Navigational Queries
You can navigate through the relationships within the SELECT list or the
WHERE clause.

Using a Single
Relationship in
the SELECT List

The syntax of a relationship expression is as follows:

[{class | alias }.]navigation.{attribute|*}

With navigation such as:

navigation ::=

relationship[.({CLASS | ONLY} successor_class)]

[.relationship[.({CLASS | ONLY} successor_class)] ...]
52 Matisse SQL Programmer’s Guide

For instance to retrieve the directors of the movies with a title like “Rocky%”,
you would write the following statement:

SELECT directedBy.* FROM movie

WHERE title LIKE 'Rocky%';

The same statement with full class qualification would be expressed as follows:

SELECT movie.directedBy.lastname

FROM movie

WHERE movie.title LIKE 'Rocky%';

You can also filter the results from a class or subclass of the successors by
specifying a successor class in the navigational expression using the keyword
CLASS. For instance if you want to find the movie directors who are also
starring in some movies, you could write the following query:

SELECT m.starring.(CLASS movieDirector).lastname

FROM movie m;

If you filter the successors using the keyword ONLY instead of CLASS, the
result includes only the ‘proper’ instances of the class, i.e., excluding the
instances of its subclasses. For example, the next query returns the starring
actors of each movie who are NOT movie directors:

SELECT m.starring.(ONLY artist).lastname

FROM movie m;

Using
Relationships
and Other
Columns in the
SELECT List

The relationships with multiple successors are “exploded” in the projection
result in a similar way a relational join would do. For instance, a movie starring
two actors would display a result as follows:

SELECT m.title,

m.starring.lastname AS Starring

FROM movie m

WHERE m.title = 'Titanic';

Result:

Title Starring

------- ---------

Titanic DiCaprio

Titanic Winslet

Using a
Relationship in
the WHERE
Clause

You can access attributes through relationship navigation in the predicate
expressions in the WHERE clause with the following syntax:

[{class | alias }.]navigation.attribute

When a relationship is multi-valued, which means that several objects can be
reached through this relationship, the comparison with an other expression is
true if any of the objects evaluates to true.
Using Relationships 53

For instance, to retrieve the movies where any actor has a last name starting
with ‘S’, you would write the following statement:

SELECT * FROM movie

WHERE starring.lastname LIKE 'S%';

You can combine this with a relationship in the select list. For instance, the
following query is valid and returns the directors for the movies that qualify:

SELECT directedBy.* FROM movie

WHERE starring.lastname LIKE 'S%';

The same query expressed with full class qualification is expressed as follows:

SELECT movie.directedBy.* FROM movie

WHERE movie.starring.lastname LIKE 'S%';

Relationship
COUNT

You can also check for the cardinality of a relationship with the built-in
function COUNT which can be expressed with the following syntax:

COUNT (relationship [({CLASS | ONLY}.successor_class)])

For instance, to check for the movies starring more than 10 actors, you could
write the following statement:

SELECT * FROM movie

WHERE COUNT(starring) > 10;

To check for the movies where one movie director is starring:

SELECT * FROM movie

WHERE COUNT(starring.(CLASS movieDirector)) = 1;

To check for the movies starring two actors excluding movie directors:

SELECT * FROM movie

WHERE COUNT(starring.(ONLY artist)) = 2;

Dealing with
Empty
Relationships

When a relationship has no successor in Matisse, it is always implemented as a
NULL relationship. Consequently, the following query has a correct syntax, but
it will never retrieve any object:

SELECT * FROM movie

WHERE COUNT(starring) = 0;

This query should be rewritten as follows in order to find the movies for which
there is no actor:

SELECT * FROM movie

WHERE starring IS NULL;

If you want to retrieve the movies where there are between 0 and 5 actors, you
could express it as follows:
54 Matisse SQL Programmer’s Guide

SELECT * FROM movie

WHERE COUNT(starring) <= 5

OR starring IS NULL;
Using Relationships 55

9 Version Travel

9.1 Introduction
With Matisse you can save and query consistent versions of the database;
a saved version can be accessed until it is explicitly deleted. This section
describes how to select objects which have been updated, inserted, or deleted
across two different database versions.

For additional details on accessing database versions, see section 10, Managing
Transactions and Versions.

9.2 Specifying a Version Travel Query
You can specify the type of version travel operation in the FROM list, with the
following syntax:

FROM UPDATED

({ [ONLY]class | selection }, {BEFORE | AFTER} version)

FROM INSERTED

({ [ONLY]class | selection }, AFTER version)

FROM DELETED

({ [ONLY]class | selection }, BEFORE version)

When using the keyword BEFORE, you may specify version with either a
version name or CURRENT for the most recent version.

For instance, if you save a version every day for seven days, you may want to
find the objects updated between the versions named day1 and day2, with
day1 older than day2. For this, you first set the access mode as of day2, then
you can execute a version travel query as follows:

SET TRANSACTION READ ONLY day2;

SELECT * FROM UPDATED (movie, AFTER day1);

The objects that you have selected will be read in the version context for the
newer version day2.

You can also use the keyword BEFORE to retrieve the objects as of the older
version day1. Note that in this case the WHERE clause is evaluated in the day1
context.

SET TRANSACTION READ ONLY day1;
56 Matisse SQL Programmer’s Guide

SELECT * FROM UPDATED (movie, BEFORE day2) WHERE rating LIKE

'PG%';

For inserted objects, you can only access the objects as of the newer version.

SET TRANSACTION READ ONLY day2;

SELECT * FROM INSERTED (movie, AFTER day1);

For deleted objects, you can only access the objects as of the older version.

SET TRANSACTION READ ONLY day1;

SELECT * FROM DELETED (movie, BEFORE day2);

SELECT * FROM DELETED (movie, BEFORE CURRENT);
Version Travel 57

10 Managing Transactions and
Versions

10.1 Introduction
This section describes how to access or modify data in a Matisse database.
After reading this section, you should be able to perform the following
operations:

Obtain read-only access on a database

Obtain read/write access on a database

Commit a transaction

Cancel a transaction

10.2 Starting a Version Access
To obtain read-only access on the current connection, you must use the
following syntax:

SET TRANSACTION READ ONLY [savetime]

To obtain read only access at the latest logical time, you can use the following
command:

SET TRANSACTION READ ONLY

To obtain read only access for a particular savetime, which is a consistent
“snapshot” of the database at a particular time (for more information about
savetime, refer to the “Getting Started with Matisse” document), you must
specify the savetime, as in the following example:

SET TRANSACTION READ ONLY August1994;

The savetime specified can be either the fully qualified name generated by
Matisse upon commit, or only the prefix as shown on the above example.

Using a fully qualified name allows you to identify a savetime without
ambiguity when several savetimes have been generated with the same prefix.
For instance, if we suppose that the version August1994 was saved at the
logical time 2A (in hexadecimal), the statement from the previous example
could be expressed as follows:

SET TRANSACTION READ ONLY August19940000002A
58 Matisse SQL Programmer’s Guide

NOTE: If you perform a SELECT on a connection where you have not
previously set an access mode, the request will be executed in
read-only version mode on the latest version of the database.

10.3 Ending a Version Access
To end a read only access to database, you can use the following syntax:

ROLLBACK [WORK]

The optional keyword WORK has no effect on the execution. In either case, the
current version access is terminated.

10.4 Starting a Transaction
You may want to start a transaction on the current connection explicitly. This
may be necessary if you have previously set the connection to version access.

To start a transaction, you can use the following syntax:

SET TRANSACTION READ WRITE [priority]

The optional argument priority lets you specify the priority of the
transaction. Permitted values for this argument are integers in the range 0
(lowest priority) to 9 (highest priority). By default, the priority is 0.

For example, to start a transaction with the highest priority, you would write the
following command:

SET TRANSACTION READ WRITE 9;

10.5 Committing a Transaction
To validate a transaction, you can use the following syntax:

COMMIT [WORK] [VERSION savetime_prefix]

The following commands are equivalent:

COMMIT

COMMIT WORK

The optional argument savetime_prefix enables you to save the logical time
resulting from the transaction as a savetime. (The actual identifier of the
savetime will be made up of the prefix followed by the logical time that
corresponds to the transaction.)

To commit a transaction and save the corresponding logical time as a savetime,
you can use a command like the following:
Managing Transactions and Versions 59

COMMIT WORK VERSION August1994;

This command commits the transaction. The logical time resulting from the
transaction will be saved in a savetime. The prefix of this savetime will be
August1994.

NOTE: The name of the full savetime is output by COMMIT command
when it has concluded successfully.

Note that a savetime prefix cannot exceed 20 characters in length.

10.6 Cancelling a Transaction
There are times when you may want to cancel the modifications of a
transaction. To do this, use the ROLLBACK command. This command has the
following syntax:

ROLLBACK [WORK]

You can use the command ROLLBACK by itself or followed by the keyword
WORK. In either case the current transaction is cancelled. The following
commands are equivalent:

ROLLBACK

ROLLBACK WORK
60 Matisse SQL Programmer’s Guide

11 SQL Functions

This section explains how to use Matisse SQL functions. Matisse SQL has
many built-in functions that are applicable to various data types. You can use
these functions anywhere expressions are allowed.

After reading this section, you should know how to use:

Character string functions

List functions

Set functions (aggregate functions)

Set functions for relationship aggregation

Datetime functions

Conversion functions

11.1 Character String Functions
The following character string functions return character string. The type of
returned character string is STRING.

CONCAT

LOWER

LTRIM

RTRIM

SUBSTR (SUBSTRING)

UPPER

The following character string functions return numeric values. The return type
is INTEGER.

INSTR

LENGTH (CHAR_LENGTH)

CONCAT

Syntax CONCAT(string1, string2)

Purpose Concatenates two argument strings and returns the result.

Arguments string1, string2
SQL Functions 61

These can be Matisse attributes or any expressions that return a character string.
If one of the arguments is NULL or NULL pointer and the other argument is a
valid string, the valid string is returned.

Example sq1> SELECT a.firstName, a.lastName,

2> CONCAT(a.firstName, a.lastName) concatenated

3> FROM artist AS a;

firstName lastName concatenated

------------- ------------- ----------------

Leonardo DiCaprio LeonardoDiCaprio

INSTR

Syntax INSTR(string1, string2 [, n [, m]])

Purpose Returns the character position in string1 where string2 appears.

Arguments string1

The character string that you want to search. If this is not a valid character
string, NULL is returned.

string2

The character string that you want to find in string1. If this is not a valid
character string, NULL is returned.

n

The character position where the function starts to search. If, for example, n is
2, the search begins from the second character in string1. If n is negative,
counts backward from the end of string1 and searches backward from that
position. If n is 0, it is treated as 1. The default value is 1.

m

When string2 appears in string1 more than once, m specifies which
occurrence you want to find. If m is not positive, NULL is returned. The default
value is 1.

Description The return value is relative to the beginning of string1 regardless of the value
of n. When string2 is not found in string1 under the specified condition, the
function returns 0. When string2 is an empty string and string1 is a valid
character string, the result is non-zero number.

Example sql> SELECT INSTR('MATISSE MATINEE', 'MAT', 1, 2) FROM ...;

9

sql> SELECT INSTR('MATISSE MATINEE', 'MAT', -1) FROM ...;
62 Matisse SQL Programmer’s Guide

9

LENGTH

Syntax LENGTH(string)

CHAR_LENGTH(string)

Purpose Returns the number of characters in a string.

Arguments string

This can be a Matisse attribute or any expression that returns a character string.
If the argument is not a character string, this function returns NULL.

Description If the argument is an empty string, the function returns 0. If the argument is a
NULL pointer, the function returns NULL.

Example sql> SELECT m.title, LENGTH(m.title) t_length FROM movie m;

title t_length

---------- ---------

Rocky 5

LOWER

Syntax LOWER(string)

Purpose Returns a string in which all characters are converted to lowercase.

Arguments string

This can be a Matisse attribute or any expression that returns a character string.
If the argument is not a character string, this function returns NULL.

Example sql> SELECT m.title, LOWER(m.title) low FROM movie m;

title low

-------- ------

Rocky rocky

LTRIM

Syntax LTRIM(string1 [, string2])

Purpose Removes characters from the left of string1, with all the lifetimes characters
that appear in string2 removed, and returns the result.
SQL Functions 63

Arguments string1

The string characters from which you want to remove leading characters. This
can be a Matisse attribute or any expression that returns a character string.

string2

A set of characters to be removed from string1. When this is omitted, it is
substituted by a single space.

Description Trimming terminates when a character that does not appear in string2 is
encountered. If all characters in string1 are removed, an empty string is
returned. If string1 is an empty string, an empty string is returned. If
string1 is a NULL pointer, NULL is returned.

Example sql> SELECT LTRIM('baacde', 'ab') trimmed FROM ...;

trimmed

cde

RTRIM

Syntax RTRIM(string1 [, string2])

Purpose Removes characters from the right of string1, with all the rightness characters
that appear in string2 removed, and returns the result.

Arguments string1

The string characters from which you want to remove some trailing characters.
This can be a Matisse attribute or any expression that returns a character string.

string2

A set of characters to be removed from string1. When this is omitted, it is
substituted by a single space.

Description Trimming terminates when a character that does not appear in string2 is
encountered. If all characters in string1 are removed, an empty string is
returned. If string1 is an empty string, an empty string is returned. If
string1 is a NULL pointer, NULL is returned.

Example sql> SELECT RTRIM('abc d ef', 'def ') trimmed FROM ...;

trimmed

abc
64 Matisse SQL Programmer’s Guide

SUBSTR

Syntax SUBSTR(string, m [, n])

SUBSTRING(string, m [, n])

Purpose Returns a portion of character string, beginning at position m, n characters long.

Arguments string

The input character string. This can be a Matisse attribute or any expression
that returns a character string. If this is not a valid character string, NULL is
returned.

m

The position in string where the extraction begins. If m is positive, the function
counts from the beginning of string. If m is greater than the length of string, an
empty string is returned. If m is 0, it is treated as 1. If m is negative, the function
counts backwards from the end of string. If the length of string plus m is less
than or equal to 0, the position is treated as the beginning of string.

n

The number of characters to be extracted. If n is omitted, returns all characters
beginning from the position specified by m to the end of string. If n is less than
1, an empty string is returned. If string does not have n characters after position
m, returns all characters from the position m to the end of string.

Example sql> SELECT SUBSTR('MATISSE SQL', 6) extracted FROM ...;

extracted

SE SQL

sql> SELECT SUBSTR('MATISSE SQL', -6, 2) extracted FROM ...;

extracted

SE

UPPER

Syntax UPPER(string)

Purpose Returns a string in which all characters are converted to uppercase.

Arguments string

This can be a Matisse attribute or any expression that returns a character string.
If the argument is not a character string, this function returns NULL.

Example sql> SELECT m.title, UPPER(m.title) up FROM movie m;
SQL Functions 65

title up

------------ -----------

Rocky ROCKY

11.2 List Functions
Matisse provides SQL list functions that allow you to access elements in a
list, to get the number of elements, or to do aggregate calculations on a list. The
list types that can be used with the SQL list functions are:

LIST(SHORT)

LIST(INTEGER)

LIST(LONG)

LIST(FLOAT)

LIST(DOUBLE)

LIST(BOOLEAN)

LIST(DATE)

LIST(TIMESTAMP)

LIST(INTERVAL)

LIST(STRING)

LIST(NUMERIC(p, s))

The followings are the functions that works with list types:

AVG

MIN

MAX

SUM

COUNT

ELEMENT

SUBLIST

AVG

Syntax AVG(list)

Purpose Returns the average value of all the elements in a list.

Argument list
66 Matisse SQL Programmer’s Guide

A list. If this argument is not a list, NULL is returned. The function accepts the
numeric list types as well as LIST(INTERVAL).

Description The return type of the function is DOUBLE regardless of the type of list except
for LIST(INTERVAL), in which case INTERVAL is returned, and
LIST(NUMERIC), in which case NUMERIC is returned.

Example sql> SELECT AVG(LIST(10, 20, 40)) average FROM ...;

average

23.3333

ELEMENT

Syntax ELEMENT(list, n)

Purpose Returns an element at position n in list.

Argument list

A list. If this argument is not a list, NULL is returned. The function accepts all
types of list.

n

The position at which you want to get an element. If n is 0, it is treated as 1. If
n is negative, the function counts backwards from the end of the list. If n is out
of bounds of list, NULL is returned.

Example sql> SELECT ELEMENT(LIST(INTEGER)(10, 20, 30, 40), 2)

2> FROM ... ;

20

sql> SELECT ELEMENT(LIST(INTEGER)(10, 20, 30, 40), -2)

2> FROM ... ;

30

MAX

Syntax MAX(list)

Purpose Returns the maximum value of the elements in a list.

Argument list
SQL Functions 67

A list. If this argument is not a list, NULL is returned. The function accepts the
numeric list types as well as LIST(DATE), LIST(TIMESTAMP),and
LIST(INTERVAL).

Example sql> SELECT MAX(LIST(INTEGER)(10, 20, 30, 40))

2> FROM ... ;

40

MIN

Syntax MIN(list)

Purpose Returns the minimum value of the elements in a list.

Argument list

A list. If this argument is not a list, NULL is returned. The function accepts the
same types as MAX.

Example sql> SELECT MIN(LIST(INTEGER)(10, 20, 30, 40))

2> FROM ... ;

10

SUBLIST

Syntax SUBLIST(list, n [, m])

Purpose Returns a portion of the list, beginning at position n, m elements long.

Argument list

A list. If this argument is not a list, NULL is returned.

n

The position in list where the extraction begins. If n is positive, the function
counts from the beginning of list. If n is greater than the number of elements
in list, NULL is returned. If n is 0, it is treated as 1. If n is negative, the
function counts backwards from the end of list. If the number of elements in
list plus n is less than or equal to 0, the position is treated as the beginning of
list.

m

68 Matisse SQL Programmer’s Guide

The number of elements to be extracted. If m is omitted, returns all elements
beginning from the position specified by n to the end of list. If m is less than
1, an empty list is returned. If list does not have m elements after the position
n, returns all elements from the position n to the end of list.

Example sql> SELECT SUBLIST(LIST(INTEGER)(10, 20, 30, 40), 2)

2> as ranking, title

3> FROM movie;

ranking title

--------- ---------

20 Rocky

30 Rocky

40 Rocky

Example sql> SELECT SUBLIST(LIST(INTEGER)(10, 20, 30, 40), -3, 2)

2> as ranking, title

2> FROM movie;

ranking title

--------- ---------

20 Rocky

30 Rocky

SUM

Syntax SUM(list)

Purpose Returns the sum of the values in list.

Argument list

A list. If this argument is not a list, NULL is returned. The function accepts the
numeric list types as well as LIST(INTERVAL).

Example sql> SELECT SUM(LIST(INTEGER)(10, 20, 30, 40)) total

2> FROM ... ;

total

100

COUNT

Syntax COUNT(list)

Purpose Returns the number of elements in list.
SQL Functions 69

Argument list

A list. If this argument is not a list, NULL is returned.

Description If list is an empty list, the function returns 0. Note that if an attribute has not
been assigned a value yet, that is, the attribute’s value is NULL, this function
does not return 0, but it returns NULL.

LIST

Syntax LIST(type)({constant1 [, constant2, ...]})

Purpose Constructs a new constant list and returns it. See section 11.2, List Functions,
for more information.

Example INSERT INTO boxOffice (topReceipts)

VALUES (LIST(NUMERIC(10, 2))(34.5, 20.0, 8.9, 3.3, 2.1));

11.3 Set Functions
Matisse provides the following set functions to summarize data from multiple
objects as a result of SQL query execution. These functions work only in SQL
projection. You cannot put more than one set function in an SQL statement in
this release.

AVG

COUNT

MAX

MIN

SUM

AVG

Syntax AVG ([class.|alias.]attribute)

Purpose Returns the average value for an attribute from the set of objects which qualify
the query.

Argument attribute

Numeric types and INTERVAL are accepted. Note that if this argument is a type
of list, the function acts as a list function.

Description The result types are as follows:
70 Matisse SQL Programmer’s Guide

Argument Result

--------------- --------------

Any numeric type except NUMERIC DOUBLE

NUMERIC NUMERIC

INTERVAL INTERVAL

Example To get the average running time:

SELECT AVG(runningTime) FROM movie;

COUNT

Syntax COUNT ([{class | alias}.]*)

COUNT ([{class | alias}.] relationship [.succ_class].*)

Purpose Returns the number of objects which qualify the query.

Example For instance, the following queries are equivalent to get the count of all the
movies in the database:

SELECT COUNT(*) FROM movie;

SELECT COUNT(movie.*) FROM movie;

SELECT COUNT(m.*) FROM movie m;

To get the count of all the movie directors who are directing certain movies:

SELECT COUNT(m.movieDirector.*) FROM movie m;

MAX

Syntax MAX (attribute)

Purpose Returns the maximum value for an attribute from the set of objects which
qualify the query.

Argument attribute

Numeric types, DATE, TIMESTAMP, and INTERVAL are accepted. Note that if this
argument is a list, the function acts as a list function.

Description The result types are as follows:

Argument Result

--------------- --------------

Any numeric type Same type

DATE DATE

TIMESTAMP TIMESTAMP
SQL Functions 71

INTERVAL INTERVAL

MIN

Syntax MIN (attribute)

Purpose Returns the minimum value for an attribute from the set of objects which
qualify the query.

Argument attribute

Numeric types, DATE, TIMESTAMP, and INTERVAL are accepted. Note that if this
argument is a list, the function acts as a list function.

Description The result types are as follows:

Argument Result

--------------- --------------

Any numeric type Same type

DATE DATE

TIMESTAMP TIMESTAMP

INTERVAL INTERVAL

SUM

Syntax SUM (attribute)

Purpose Returns the sum value for an attribute from the set of objects which qualify the
query.

Argument attribute

Numeric types and INTERVAL are accepted. Note that if this argument is a list,
the function acts as a list function.

Description The result types are as follows:

Argument Result

--------------- --------------

Any numeric type Same type

INTERVAL INTERVAL

Example To get the sum of running time:

SELECT SUM(runningTime) FROM movie;
72 Matisse SQL Programmer’s Guide

11.4 Set functions for relationship aggregation
Matisse provides the following set functions to summarize data from multiple
successor objects of a relationship.

AVG

COUNT

MAX

MIN

SUM

Suppose we have two classes Department and Employee where Department
has a relationship employees referencing a set of Employee objects, and
Employee has an attribute salary of type NUMERIC.

The next SELECT statement returns the name of each department and the total
salary of employees working for the department:

SELECT d.name, SUM (d.employees.salary) FROM Department d;

name sum

--------------- -------------

Engineering 3467600.00

Marketing 944890.00

The SUM function here sums salaries of all the employees of a department, i.e.,
the function aggregates some data of all the successor objects of a relationship.

The general form is:

SetFunction (<navigation>.attribute)

<navigation> ::=

relationship[.({CLASS | ONLY} successor_class)]

[.relationship[.({CLASS | ONLY} successor_class)] ...]

In order to use the functions for relationship aggregation, attribute needs to
be of atomic type, not of list type. If attribute is of list type, e.g.,
LIST(INTEGER), the function works as list function explained in the
section 11.2, List Functions, and no aggregation on relationship happens.

If no successor object is found for a relationship, these set functions return
NULL.

AVG

Syntax AVG ([class.|alias.]navigation.attribute)
SQL Functions 73

Purpose Returns the average value for attribute from the set of successor objects
accessible through navigation.

Argument attribute

Numeric types and INTERVAL are accepted. Note that if this argument is of list
type, the function acts as a list function.

Example To get the average salary for each department:

SELECT d.name, AVG (d.employees.salary) FROM Department d;

COUNT

Syntax COUNT ([class.|alias.]navigation)

Purpose Returns the number of successor objects accessible through the relationship
navigation.

Example For instance, the following SELECT statement returns each department name
and the total number of employees in each department:

SELECT d.name, COUNT(d.employees) FROM Department d;

MAX

Syntax MAX ([class.|alias.]navigation.attribute)

Purpose Returns the maximum value for attribute from the successor objects
accessible through the relationship navigation.

Argument attribute

Numeric types, DATE, TIMESTAMP, and INTERVAL are accepted. Note that if this
argument is of list type, the function acts as a list function.

Example The following SELECT statement returns each department name and the
highest salary in the department:

SELECT d.name, MAX(d.employees.salary) FROM Department d;

MIN

Syntax MIN ([class.|alias.]navigation.attribute)
74 Matisse SQL Programmer’s Guide

Purpose Returns the minimum value for attribute from the successor objects
accessible through the relationship navigation.

Argument attribute

Numeric types, DATE, TIMESTAMP, and INTERVAL are accepted. Note that if this
argument is of list type, the function acts as a list function.

Example The following SELECT statement returns each department name and the lowest
salary in the department:

SELECT d.name, MIN(d.employees.salary) FROM Department d;

SUM

Syntax SUM ([class.|alias.]navigation.attribute)

Purpose Returns the sum value for attribute from the set of successor objects that are
accessible through the relationship navigation.

Argument attribute

Numeric types and INTERVAL are accepted. Note that if this argument is of list
type, the function acts as a list function.

11.5 Datetime Functions
This section explains the following datetime functions.

CURRENT_DATE

CURRENT_TIMESTAMP

EXTRACT

CURRENT_DATE

Syntax CURRENT_DATE

Purpose Returns the current date in the Universal Coordinated Time zone.

CURRENT_TIMESTAMP

Syntax CURRENT_TIMESTAMP
SQL Functions 75

Purpose Returns the current timestamp in Universal Coordinated Time zone, UTC.

EXTRACT

Syntax EXTRACT(<datetime_field> FROM <value>)

<datetime_field> ::=

YEAR

| MONTH

| DAY

| HOUR

| MINUTE

| SECOND

| MICROSECOND

<value> ::=

timestamp value

| date value

| interval value

Purpose Returns the specified datetime field from a timestamp, date, or interval value.
When extracting from a timestamp value, the value returned is in UTC
(Universal Coordinated Time) time zone.

Note that when extracting from a date value, only YEAR, MONTH, DAY can
be used as <datetime_field>. When extracting from an interval value, DAY,
HOUR, MINUTE, SECOND, MICROSECOND can be used as
<datetime_field>.

Example The following example extracts the month field from a date value:

SELECT EXTRACT (MONTH FROM DATE '1999-11-10') FROM ...;

11

11.6 Conversion Functions
This section describes the following conversion function:

CAST

CAST

Syntax CAST (value AS targetType)
76 Matisse SQL Programmer’s Guide

Purpose For built-in data types:

CAST converts a value of built-in data type into another built-in data type.
Table 11.1 shows which built-in data types can be converted to which other
built-in data types, where the first column represents the source data type and
the data types at the top represent the target data types.

Table 11.1 Supported casts between built-in data types

CAST does not support any list types. If cast is not supported, the
INVALID_CAST error is returned.

(a) When the source type is STRING, string formats for each target type are:
DATE 'yyyy-mm-dd'
TIMESTAMP 'yyyy-mm-dd hh:MM:ss[.uuuuuu]'
INTERVAL '[+|-]d hh:MM:ss[.uuuuuu]'
BOOLEAN 'TRUE' or 'FALSE' (case insensitive)

If the source string cannot be converted because of incorrect format,
INVALID_CAST error is returned.

(b) When the source type is STRING and the target type is CHARACTER, the
first character in the source string is returned.

(c) If a source string or a source number value is too big to be represented as
the target number type, NUMERICOVERFLOW error is returned.

(d) The conversion between a number and a character is based on ASCII code,
i.e., a number is converted into a character whose ASCII value is equivalent to
the source number, and vice versa.

When the source value is NULL, CAST returns NULL.

Example The following example casts a string into a date:

to

STRING Number

types

DATE TIMESTAMP INTERVAL BOOLEAN CHARACTER TEXT

from STRING x x xa xa xa xa xb x

Number

types

x xc xd

DATE x x

TIMESTAMP x x x

INTERVAL x x

BOOLEAN x x

CHARACTER x xd x

TEXT x x
SQL Functions 77

SELECT CAST ('1999-11-10' AS DATE) FROM ...

The next example normalizes the results of arithmetic division operation into a
specific precision and scale:

SELECT CAST (num1/num2 AS NUMERIC(19, 4)) FROM ...;

Note that if the precision and the scale of the target NUMERIC type are not
specified, the default precision and scale (19, 2) are used.

The next example converts a character into an integer:

SELECT CAST(CAST('a' AS CHARACTER) AS INTEGER) FROM ...;

97

Note that we need to cast ‘a’ to the character type since there is no literal
expression for a single character.

The next example returns the NUMERICOVERFLOW error, because
‘123456789’ is too big for SHORT type, which ranges from -32768 to 32767.

SELECT CAST ('123456789' AS SHORT) FROM ...; -- Error!!
78 Matisse SQL Programmer’s Guide

12 Defining a Schema

This section explains the SQL statements that are used to define a database
schema, that is, those that define classes, attributes, relationships, indices, entry
point dictionaries, and methods. These statements are called Data Definition
Language (DDL). DDL allows you to create, alter, or drop schema objects.

12.1 Classes, Attributes, and Relationships
The CREATE CLASS statement allows you to define a class with attributes and
relationships. To modify the class definition, you can use the ALTER CLASS

statement. It allows you to add, remove, or modify an attribute or relationship.
To remove a class from the database, use the DROP CLASS statement.

CREATE

Syntax CREATE {CLASS | TABLE} class

[{UNDER | INHERIT} superclass [, ...]]

(

<property> [, ...]

<class_constraint> [, ...]

)

<property> ::=

<attribute_name> <attribute_type>

[DEFAULT <literal>] [NOT NULL] |

<relationship_name> [READONLY]

{RELATIONSHIP | REFERENCES} [LIST | SET]

(<succ_class> [, ...])

[CARDINALITY (min, max)]

INVERSE inv_class.inverse_relationship }

<class_constraint> ::=

<unique_constraint> |

<referential_constraint>

<unique_constraint> ::=

[CONSTRAINT <name>] {UNIQUE | PRIMARY KEY}

(<attribute_name> [, ...])

<referential_constraint> ::=
Defining a Schema 79

[CONSTRAINT <name>] FOREIGN KEY (<attribute_name> [, ...])

REFERENCES <referenced_class> (<attribute_name> [, ...])

<attribute_type> ::=

AUDIO [(<max>)]|

IMAGE [(<max>)]|

VIDEO [(<max>)]|

TEXT [(<max>)]| CLOB [(<max>)] |

BOOLEAN |

BYTE | TINYINT

SHORT | SMALLINT

INTEGER | INT

LONG | BIGINT

NUMERIC [(<precision>[,<scale>])]|

FLOAT | REAL

DOUBLE [PRECISION]|

CHAR [(<n>)]| CHARACTER |

STRING |

VARCHAR [(<n>)]|

DATE |

TIMESTAMP |

INTERVAL |

BYTES [(<max>)] |

LIST(BOOLEAN [, <max>]) |

LIST(SHORT [, <max>]) |

LIST(INTEGER [, <max>]) |

LIST(LONG [, <max>])|

LIST(NUMERIC [(<precision>[,<scale>] [, <max>]))|

LIST(FLOAT [, <max>])|

LIST(DOUBLE [, <max>])|

LIST(STRING [, <max>])|

LIST(DATE [, <max>])|

LIST(TIMESTAMP [, <max>])|

LIST(INTERVAL [, <max>])

<literal>: See section 3.1, What Is a Constant?

<succ_class>: Class as a successor type for relationship.

<inv_class>: Class where inverse_relationship is defined.

Inheritance Class inheritance can be specified using the keyword UNDER or INHERIT. For
example, to define the movieDirector class as a subclass of the artist class,

CREATE CLASS movieDirector INHERIT artist (

...
80 Matisse SQL Programmer’s Guide

);

Matisse supports multiple inheritance. The INHERIT clause can have more than
one class. For example, to define the movieDirector class as a subclass of
both the artist class and the director class,

CREATE CLASS movieDirector INHERIT artist, director (

...

);

The INHERIT clause is optional.

Attribute An attribute is defined with its name, type and an optional default value.
Possible types are shown above in the syntax. An attribute can accept only one
type, or a NULL value unless the NOT NULL keyword is specified. For example,
the values for the attribute synopsis in the following example can be STRING
or NULL type:

CREATE CLASS movie (

synopsis STRING,

...

);

while the attribute title in the following example can be only STRING type:

CREATE CLASS movie (

title STRING NOT NULL,

...

);

An attribute may have a default value. For example,

CREATE CLASS movie (

category STRING DEFAULT 'non genre',

...

);

If you do not set a value for the category attribute in a movie object, the object
will have the string “non genre” for the attribute as default value.

For more information about constant literal, please refer to section 3.1, What Is
a Constant?.

Note that the attributes defined in this syntax are local to the class.

Note that attribute definitions and relationships definition can appear in a class
definition in any order.

Maximum Size of
Attribute

With the type VARCHAR(n), you can set the maximum length of characters to n.
The maximum length needs to be between 1 and 2147483648 (2G). The default
maximum length is 2G.
Defining a Schema 81

With the media types like AUDIO(n) or BYTES(n), you can set the maximum
size of bytes. The maximum size needs to be between 1 and 2147483648 (2G).
The default maximum size is 2G. The maximum size can be specified like 10K
or 20M for 10 kilo-bytes or 20 mega-bytes respectively.

CREATE CLASS movie (

title VARCHAR(100),

preview VIDEO(5M),

...

);

NOTE: For ODBC: This maximum length or size is returned as the
maximum column size for these types. If the maximum length of
size is not specified, 2147483648 is returned.

For the list types, you can optionally specify the maximum number of elements
in a list with the following syntax, e.g.,:

LIST(INTEGER, 20)

Relationship A relationship is defined with its name, classes of successor objects, inverse
relationship and optional cardinality numbers. For example, the following
statements define a relationship directedBy whose successor class is
movieDirector and inverse relationship is direct defined in the
movieDirector class:

CREATE CLASS movie (

directedBy RELATIONSHIP (movieDirector)

INVERSE movieDirector.direct,

...

);

CREATE CLASS movieDirector (

direct RELATIONSHIP (movie)

INVERSE movie.directedBy,

...

);

In the above example, the cardinality numbers for the relationship are not
provided. The default values for the minimum relationship cardinality is 0 and
the maximum one is unlimited. The cardinality definition in the following
statement is same as the default:

CREATE CLASS movie (

directedBy RELATIONSHIP (movieDirector)

CARDINALITY (0, -1)

INVERSE movieDirector.direct,

...

);
82 Matisse SQL Programmer’s Guide

To let a single movie director direct a movie, the relationship cardinality should
be (1, 1), or (0, 1) in which case a movie does not necessarily have to have a
director. For example,

CREATE CLASS movie (

directedBy RELATIONSHIP (movieDirector)

CARDINALITY (0, 1)

INVERSE movieDirector.direct,

...

);

By default, the successor objects of a relationship is ordered and keep their
order as you add or remove successor objects. However, if the SET keyword is
following RELATIONSHIP (or REFERENCES), the successor objects do not
keep their order, but Matisse store those objects in any order for best
performance. For example:

CREATE CLASS movie (

directedBy RELATIONSHIP SET (movieDirector)

INVERSE movieDirector.direct,

...

);

In Matisse, relationships can be given an explicit directional orientation, that is,
a regular or an inverse relationship. You cannot manipulate objects through a
relationship that is explicitly defined as an inverse relationship. The
relationships defined above are not given an explicit directional orientation.
You can set a movieDirector object through the directedBy relationship in
a movie object, and you also can set movie objects through the relationship
direct in a movieDirector object.

To define an inverse relationship explicitly, use the READONLY keyword as
shown below, for example:

CREATE CLASS car (

wheels RELATIONSHIP (tire)

INVERSE tire.componentOf,

...

);

CREATE CLASS tire (

componentOf READONLY RELATIONSHIP (car)

CARDINALITY (0, 1)

INVERSE car.wheels,

...

);
Defining a Schema 83

This is useful in application development when you want to prohibit defining
interfaces that manipulate car objects through the componentOf relationship
in the tire class. That is, you can define an interface like setWheels(tire1,
tire2, ...) or replaceWheel(tire, position) in the car class but you
cannot define an interface like detachFrom(car) in the tire class.

Note again that attribute definitions and relationship definitions can appear in a
class definition in any order.

Unique Constraint A class can contain unique constraints and/or referential constraints. Unique
constraint enforces the uniqueness of values of an attribute or a set of up to four
attributes. The attributes used for unique constraint cannot be nullable, i.e., they
need to be NOT NULL. For example, if you want to make each movie title
unique:

CREATE CLASS movie (

title STRING NOT NULL,

CONSTRAINT movie_title_unique UNIQUE (title)

);

A unique constraint can use up to 256 characters when its attribute type is
string. If a unique constraint uses more than one attribute and any of these
attributes are string, you need to specify the maximum size for these string
attributes. For example, if you want to make a pair of movie title and its
category unique:

CREATE CLASS movie (

title VARCHAR(150) NOT NULL,

category VARCHAR(50) NOT NULL,

CONSTRAINT unique_title_category UNIQUE (title, category)

);

Note that using PRIMARY KEY instead of UNIQUE has the same effect for unique
constraint.

Referential
Constraint

The referential constraint is provided for the purposes of compatibility with
relational database products. It generates a relationship (and its inverse
relationship) between the class (table) and the referenced class (table).

For example, the following two statements will generate a relationship
Companies_companyId and its inverse relationship to_Persons_companyId

between class Persons and class Companies:

CREATE TABLE Companies (

companyId VARCHAR(20) NOT NULL,

CONSTRAINT companyId_pk PRIMARY KEY (companyId)

);

CREATE TABLE Persons (

personId VARCHAR(20) NOT NULL,
84 Matisse SQL Programmer’s Guide

companyId VARCHAR(20),

CONSTRAINT workFor_fk FOREIGN KEY (companyId)

REFERENCES Companies (companyId)

);

Note that the referential constraint in Matisse is not provided to define a
relationship between classes, but to make it possible to run the SQL DDL
statements written for relational database products.

ALTER

Syntax ALTER {CLASS | TABLE} class

DROP { ATTRIBUTE attribute

| {RELATIONSHIP | REFERENCES} relationship

| {INHERIT | UNDER} <superclass>

}

ALTER {CLASS | TABLE} class

ADD { ATTRIBUTE attribute attribute_type

[DEFAULT literal] [NOT NULL]

| {RELATIONSHIP | REFERENCES} relationship

[[READONLY] RELATIONSHIP [LIST | SET]]

(succ_class [, ...])

[CARDINALITY (min, max)]

INVERSE inv_class.inverse_relationship

| {INHERIT | UNDER} <superclass>

}

ALTER {CLASS | TABLE} class

ALTER { ATTRIBUTE attribute attribute_type

[DEFAULT literal] [NOT NULL]

| {RELATIONSHIP | REFERENCES} relationship

[[READONLY] RELATIONSHIP [LIST | SET]]

(succ_class [, ...])

[CARDINALITY (min, max)]

INVERSE inv_class.inverse_relationship

}

attribute_type: See CREATE, on page 79.

literal: See section 3.1, What Is a Constant?.

succ_class: Class as a successor type for relationship.

inv_class: Class where inverse_relationship is defined.

Drop Properties To drop an attribute, relationship, or superclass in a class, you can use ALTER
CLASS DROP statement. For example, the following statement drops the
synopsis attribute from the movie class:

ALTER CLASS movie DROP ATTRIBUTE synopsis;
Defining a Schema 85

Add Properties To add a new attribute, relationship, or superclass in a class, you can use ALTER
CLASS ADD statement. For example, the following statement adds a new
attribute releasedDate to the movie class:

ALTER CLASS movie

ADD ATTRIBUTE releasedDate DATE;

The following example adds a new relationship, starring, to the movie class:

ALTER CLASS movie

ADD RELATIONSHIP starring (artist)

INVERSE artist.biography;

The following example adds a new superclass, artist, to the movieDirector
class:

ALTER CLASS movieDirector

ADD INHERIT artist;

Modify Properties To modify an existing attribute or relationship in a class, you can use ALTER
CLASS ALTER statement. For example, the following statement modifies the
category attribute in the movie class so that every movie object must have
some category name:

ALTER CLASS movie

ALTER ATTRIBUTE category STRING NOT NULL;

The following example modifies the starring relationship defined above so
that it can have 10 starrings at most:

ALTER CLASS movie

ALTER RELATIONSHIP starring (artist)

CARDINALITY (0, 10)

INVERSE artist.biography;

DROP

Syntax DROP {CLASS | TABLE} class

Dropping Class To remove a class from the database, you can use the DROP CLASS statement.
The following statement removes the movie class:

DROP CLASS movie;

Note that a DROP CLASS statement removes the attributes and relationships
defined in the class unless they are used by other classes.
86 Matisse SQL Programmer’s Guide

12.2 Indexes
Matisse provides a conventional indexing mechanism, which allows you to
index objects of a class using up to four attributes. You can look up objects by
value intervals. A Matisse index can be created or deleted at any time without
interrupting concurrent operations.

CREATE

Syntax CREATE [UNIQUE] INDEX index ON class (

attribute [ASC | DESC] [criterion_size]

[, ...]

)

Criteria An index can have four attributes as its criteria at most. They must be defined
in the class on which you are going to create the index. Each criterion attribute
may specify a direction, ascending or descending, in which objects are to be
indexed. This is optional and the default direction is ascending.

For fixed size attributes, such as integers, criterion_size is not needed. For
variable size attributes, such as character strings, criterion_size needs to be
provided to specify how many characters, for example, to be used for indexing.
If the indexed string is larger than the size defined for the criterion, it will be
truncated in the index. The total size occupied by all the criteria must be less
than 256 bytes.

If the optional UNIQUE keyword is specified, each entry in the index needs to
be unique, allowing them to be used as primary keys. By default, an index is
defined as non-unique.

The following example shows how to create an index on the movie class using
the two attributes title and runningTime:

CREATE INDEX movieIndex ON movie (

title ASC 32,

runningTime ASC

);

DROP

Syntax DROP INDEX index

Dropping Index To remove an index, you can use DROP INDEX statement. The following
statement removes the index movieIndex:
Defining a Schema 87

DROP INDEX movieIndex;

12.3 Entry Point Dictionaries
Matisse provides another indexing mechanism called entry point dictionary. An
entry point dictionary indexes objects by keywords, also called entry points.
You can then retrieve the objects via their entry points.

CREATE

Syntax CREATE [UNIQUE] ENTRY_POINT DICTIONARY

entry_point_dictionary_name

ON class (attribute)

[CASE SENSITIVE]

[MAKE_ENTRY make_entry_function];

Make-Entry
Function

An entry-point dictionary is defined on an attribute with an entry-point
function. An entry-point function generates an entry-point string for an object,
which is used to index the object. The default value for
make_entry_function is "make-entry". The alternative value is "make-
full-text-entry", which generates entry-point strings for every word
contained in a character string attribute.

If the optional CASE SENSITIVE is specified, entry point dictionary lookups
are case sensitive. By default, the lookups are case insensitive.

If the optional UNIQUE keyword is specified, each entry in the entry-point
dictionary needs to be unique. By default, an entry-point dictionary is defined
as non-unique

The following example defines an entry-point dictionary titleDict on the
title attribute with the make-full-text-entry make-entry function:

CREATE ENTRY_POINT DICTIONARY titleDict ON movie(title)

MAKE_ENTRY "make-full-text-entry";

Note that an entry-point function can generate several entry-point strings for an
object. For more details about entry point dictionary, please refer to the Getting
Started with Matisse.

DROP

Syntax DROP ENTRY_POINT DICTIONARY entry_point_dictionary_name
88 Matisse SQL Programmer’s Guide

Removing Entry
Point Dictionary

To remove an entry point dictionary, you can use the DROP ENTRY_POINT

DICTIONARY statement. The following example removes the entry point
dictionary titleDict defined for the title attribute in the movie class:

DROP ENTRY_POINT DICTIONARY titleDict;

12.4 Methods
Matisse supports SQL Methods, as defined in the SQL-99 standard, enabling
you to define and store programs written in SQL. This provides you a full
fledged object-oriented programming capability in the database server, thus
giving you faster execution, better reuse of code and maintenance.

CREATE

Syntax CREATE [INSTANCE | STATIC] METHOD method_name

(<parameter_declaration [, ...]>)

RETURNS <data_type>

FOR class_name

BEGIN

<statement>;

[...]

END;

<parameter_declaration> ::=

[IN] parameter_name <data_type>

<data_type> ::=

<attribute_type> |

<object_type>

Creating a New
Method

This DDL statement creates a new method, and stores it in the database as an
instance of the meta-schema class MtMethod.

In this release of Matisse, <parameter_declaration> supports
only input parameter, specified by the IN keyword. The other
two types, OUT (output parameter) and INOUT (both for input
and output), will be supported in the next release.

The data a method can return is either of attribute type,
for examle INTEGER or DATE, or of object type such as class
movie. If a method does not return anything, its return type
is NULL.

Current limitation: A method cannot include UPDATE, INSERT,
or DELETE statement. These types of statement in a method
will be supported in the next release.

Static Method CREATE STATIC METHOD statement creates a static method, which belongs to a
class specified after FOR and does not operate on each instance of a class, but
can be used with CALL statement. For example:
Defining a Schema 89

CREATE STATIC METHOD count_movie(a_pattern STRING)

RETURNS INTEGER

FOR movie

BEGIN

DECLARE cnt INTEGER;

SELECT COUNT(*) INTO cnt FROM movie

WHERE title LIKE a_pattern;

RETURN cnt;

END;

CALL movie::count_movie ('R%');

Updating a Method Use CREATE METHOD statement to update an existing method. The statement
updates the definition of a method, if the specified method already exists in the
database.

NOTE: Execute ‘COMPILE ALL’ after any changes to the database
schema including methods, so that all the methods are valid with
the latest schema.

DROP

Syntax DROP METHOD method_name FOR class_name

Removing Method A DROP METHOD statement removes a method defined for class_name from
the database. For example:

DROP METHOD count_movie FOR movie;

COMPILE

Syntax COMPILE METHOD method_name FOR class_name;

COMPILE ALL;

Recompile Methods When you create new methods or update methods using CREATE METHOD

statement, the methods are compiled and stored in the database.

However, as you update the database schema, for example removing an
attribute, adding a new class, or updating methods, some methods could
become inconsistent with the schema, since Matisse does not recompile all the
methods automatically after any changes of schema. You need to run
COMPILE statement to make methods consistent with schema before executing
methods.
90 Matisse SQL Programmer’s Guide

The COMPILE METHOD statement compiles a specific method, while the
COMPILE ALL statement compiles all the methods stored in the database. It’s
safe to use COMPILE ALL when you update the database schema.
Defining a Schema 91

13 Manipulating Data

This section explains how to perform the following functions with SQL:

Update attributes or relationships of objects

Insert new objects into a database

Delete some objects

These statements need to be executed within a transaction, not a version access.

13.1 Updating Data

UPDATE

You can update objects with the UPDATE command. The command updates
attribute values or relationship successors of the objects that qualify the
predicate of an SQL statement. The command returns the number of objects
updated.

Syntax UPDATE class SET

attribute = expression [, ...]

relationship = expression [, ...]

[WHERE search_condition]

In this syntax, attribute is an attribute name, relationship is a
relationship name, expression is a value or an object selection to be set, and
search_condition is a predicate to select objects.

Attributes As a new value for an attribute, you can set a literal constant. For example, the
following statement updates the rank of the movie Thirteen Days for a week:

UPDATE movie SET rankForWeek = 5

WHERE title = 'Thirteen Days';

Relationships You can add, remove, or replace successor objects through a relationship using
the UPDATE statement. There are several ways to manipulate successor objects.

1. Using a selection

A selection is a set of objects created by a SELECT INTO query. If you
create a selection of objects using the INTO clause, you can then use it to set
successor objects for a relationship. In the following statements, the first
92 Matisse SQL Programmer’s Guide

one selects the top 10 movies of a week and saves the result into a selection.
The second statement then assigns the selection to the topTitles
relationship in a boxOffice object.

SELECT REF(m) FROM movie m

WHERE m.rankForWeek >= 1 AND m.rankForWeek <= 10

ORDER BY m.rankForWeek

INTO top10Titles;

UPDATE boxOffice

SET topTitles = top10Titles

WHERE week = DATE '2001-01-22';

2. Using the selection constructor SELECTION

The SELECTION keyword constructs a new selection using relationships,
other selections or OIDs (Object Identifiers).

The following statements show how to append into the topTitles
relationship other movies whose ranks are between 11 and 20.

SELECT REF(m) FROM movie m

WHERE m.rankForWeek >= 11 AND m.rankForWeek <= 20

ORDER BY m.rankForWeek

INTO next10Titles;

UPDATE boxOffice

SET topTitles = SELECTION(topTitles, next10Titles)

WHERE week = DATE '2001-01-22';

The SELECTION operation can take more than two arguments, which are
either relationship or selection.

SELECT REF(m) FROM movie m

WHERE m.rankForWeek >= 21 AND m.rankForWeek <= 30

ORDER BY m.rankForWeek

INTO more10Titles;

UPDATE boxOffice

SET topTitles =

SELECTION(top10Titles, next10Titles, more10Titles)

WHERE week = DATE '2001-01-22';

The SELECTION operation can take OIDs as arguments. OIDs can be either
decimal or hexadecimal (prefixed by 0x). If you know the OIDs for the top
five movie titles, you may write the following statement to update the
topTitles relationship:

UPDATE boxOffice

SET topTitles =

SELECTION('1234', '1236', '1238', '0x4E6', '0x4E8')

WHERE week = DATE '2001-01-22';

3. Empty relationship
Manipulating Data 93

To remove all successor objects of a relationship, you can use the empty
selection SELECTION(). The following statement removes all successor
objects, if any, for the topTitles relationship:

UPDATE boxOffice

SET topTitles = SELECTION()

WHERE week = DATE '2001-01-29';

4. Set operations on selections

You can use set operations to set successor objects. Three kinds of set
operators for selections are provided: UNION, INTERSECT, and EXCEPT.
They take two operands, both of which are selections or another set
operation expression.

selection1 UNION selection2

The UNION operator returns a union of two selections: selection1 and
selection2. The order of objects is not preserved.

selection1 INTERSECT selection2

The INTERSECT operator returns an intersection of two selections:
selection1 and selection2. The order of objects is not preserved.

selection1 EXCEPT selection2

The EXCEPT operator returns a difference of two selection selection1 and
selection2, that is, all objects in selection1 except those in selection2.
The order of objects is preserved.

The following example shows how to filter selected movies by their ratings:

SELECT REF(m) FROM movie m

WHERE m.rating = 'G' OR m.rating = 'PG'

INTO kMovies;

UPDATE boxOffice

SET topTitlesForKids =

SELECTION(top10Titles, next10Titles) INTERSECT kMovies

WHERE week = DATE '2001-01-22';

The second statement above can also be stated as follows:

UPDATE boxOffice

SET topTitlesForKids =

(top10Titles UNION next10Titles) INTERSECT gMovies

WHERE week = DATE '2001-01-22';

The following is another example filtering selected movies by their ratings.
It is excluding movies rated NC-17.

SELECT REF(m) FROM movie m

WHERE m.rating = 'NC-17'

INTO ncMovies;

UPDATE boxOffice

SET topTitles =

SELECTION(top10Titles, next10Titles) EXCEPT ncMovies
94 Matisse SQL Programmer’s Guide

WHERE week = DATE '2001-01-22';

13.2 Inserting Data

INSERT

An INSERT statement creates a new object of a given class, and sets its attribute
values and relationship successors.

Syntax INSERT INTO class

[(properties_list)]

VALUES (property_values_list)

[returning_clause]

properties_list

::= attribute_or_relationship [, ...]

property_values_list

::= expression [, ...]

returning_clause

::= RETURNING [REF(class)] INTO a_selection

Attributes You can set a literal constant as a new value for an attribute, For example, the
following statement creates a new instance of the artist class:

INSERT INTO artist

(lastName, firstName)

VALUES ('Roberts', 'Julia');

The next example creates an instance of the boxOffice class:

INSERT INTO boxOffice

(week)

VALUES (DATE '2001-01-29');

In this example, the new boxOffice object will have a default value of 0 for
the attribute totalReceipts, since its value is not provided in the statement,
and the attribute totalReceipts is defined with this default value. If the
attribute does not have a default value and it allows a NULL value, then the
attribute value for the object remains unspecified.

Relationships You can set a list of objects for a relationship in an INSERT statement. The
following example creates a movie object for the movie Erin Brockovich with
Julia Roberts starring.

SELECT REF(a) FROM artist a

WHERE a.lastName = 'Roberts' and a.firstName = 'Julia'

INTO anActress;
Manipulating Data 95

INSERT INTO movie

(title, category, rating, ... , starring)

VALUES ('Erin Brockovich', 'Drama', 'R', ..., anActress);

As a value for a relationship, you can use a selection, the selection constructor
SELECTION, or set operations on selections as shown in the previous selection
Updating Data.

Returning clause An INSERT statement with a returning clause retrieves the object created and
stores it in a selection. This selection can then be used in other SQL statements
until it is freed.

The following example creates an artist object and store it in a selection,
then creates a movie object using the selection:

INSERT INTO artist (firstName, lastName)

VALUES ('Tom', 'Cruise')

RETURNING REF(artist) INTO aSelection;

INSERT INTO movie (title, starring)

VALUES ('Minority Report', aSelection);

13.3 Deleting Data

DELETE

A DELETE statement deletes a set of objects that qualifies the statement’s where
clause. If the statement does not have a where clause, it deletes all the instances
of the class.

Syntax DELETE FROM class [WHERE search_condition]

Example The following example deletes all the boxOffice objects whose records are
older than Jan. 01, 1985.

DELETE FROM boxOffice

WHERE week < DATE '1985-01-01';
96 Matisse SQL Programmer’s Guide

14 Stored Methods and Statement
Blocks

Matisse supports stored methods, which are like stored procedures for relational
database systems but provide an object-oriented programming environment
with inheritance and polymorphic behavior. Matisse stored methods are stored
and executed in the database server, and offer several advantages:

1. Performance. Methods are precompiled and stored in the server. They
execute much faster than compiling SQL statements upon each execution.
Methods usually contain several SQL statements and generate much less
network traffic compared to executing each SQL statement from the client
one by one.

2. Reusability. A stored method can be used by different client side
applications, ensuring that they use the same business logic, and reducing
the risk of application programming error.

3. Extensibility. When you extend the application by adding new subclasses,
these subclasses can reuse the methods defined in their superclasses, or
redefine them to implement the new behavior. This is also known as
polymorphism.

4. Maintainability. Well defined methods hide all the details of the data
structures. When updating the data structures or database schema, you can
minimize the changes to your application with the use of methods.

Matisse stored methods follow the syntax of SQL-99 PSM.

For information about creation, update, and deletion of methods, please refer to
12.4 Methods.

14.1 A Simple Example
The following example provides a brief overview of Matisse SQL methods.
First, we define a method for class Artist that returns the actor’s full name:

CREATE METHOD full_name()

RETURNS STRING

FOR Artist

BEGIN

RETURN CONCAT(firstName, CONCAT(' ', lastName));

END;

Then, we define another method for class MovieDirector with the same
name, overriding the method defined for Artist, since MovieDirector is
inheriting from Artist:
Stored Methods and Statement Blocks 97

CREATE METHOD full_name()

RETURNS STRING

FOR MovieDirector

BEGIN

-- Put the title 'Director' before the name, and use

-- only the initial letter for the first name.

DECLARE firstInitial STRING;

SET firstInitial = CONCAT(SUBSTR(firstName, 1, 1), '. ');

RETURN CONCAT ('Director ',

CONCAT(firstInitial, lastName));

END;

Now, execute a SELECT statement to check if there are actors or movie
directors who have more than 20 letters in the full name returned by the
full_name() method:

SELECT firstName, lastName FROM Artist a

WHERE LENGTH(a.full_name()) > 20;

firstName lastName

-------------------- --------------------

Steven Spielberg

1 objects selected

Note that the above SELECT query searches for both Artist instances and
MovieDirector instances, and it invokes both the full_name() method
which is defined for Artist instances and the full_name() method which is
defined for MovieDirector instances.

14.2 Method Invocation
A method can be called within a SELECT statement, another method, or almost
anywhere an expression is allowed. The basic form to invoke a method is:

object.method(<parameter list>)

Calling a
Method in
SELECT
Statement

In a SELECT statement, since an alias name for the class in FROM clause is
representing each object in the class, a method can be called as following:

SELECT * FROM MovieDirector d

WHERE LENGTH(d.full_name()) < 30;

Note that currently methods can be called only in the WHERE clause of
SELECT, UPDATE, or DELETE statements.

Calling a
Method in
Method Body

In a method body, there are several ways to invoke a method.

(1) Using FOR statement

The FOR statement, explained later in this section, takes a loop variable of
object type, on which you can call a method. For example,
98 Matisse SQL Programmer’s Guide

CREATE STATIC METHOD total_length()

RETURNS INTEGER

FOR Artist

BEGIN

DECLARE len INTEGER;

FOR obj AS SELECT REF(a) FROM Artist a DO

SET len = len + LENGTH(obj.full_name());

END FOR;

RETURN len;

END;

(2) Using SELF

The SELF keyword is a pseudo variable referring to the object on which the
method operates. You can invoke a method using SELF, for example,

CREATE METHOD foo2()

RETURNS INTEGER

FOR Artist

BEGIN

RETURN LENGTH(SELF.full_name());

END;

Calling a Static
Method

A static method can be called using the CALL keyword. Inside the WHERE-
clause of SELECT, UPDATE, or DELETE statement, it can be called without
using the CALL keyword. An example is shown in the following section.

Syntax CALL <class-name>::<method-name> ([<parameter> [, ...]])

Example Call the static method defined above:

CALL Artist::total_length();

This returns an integer value.

Static Method
and Query
Optimization

When a static method is used with a query statement, the static method will be
executed only once if the method has no correlated reference to the query
statement. For example, if we define a simple static method that returns the
average running time of all the movies for a given rating:

CREATE STATIC METHOD avg_run_time(aRate STRING)

RETURNS DOUBLE

FOR Movie

BEGIN

DECLARE avgtime DOUBLE;

SELECT AVG(runningTime) INTO avgtime FROM Movie

WHERE rating = aRate;

RETURN avgtime;

END;

Then, the next query selects movies rated as ‘PG-13’ and having more running
time than average running time for all the movies rated as ‘PG-13’:
Stored Methods and Statement Blocks 99

SELECT * FROM Movie

WHERE rating = 'PG-13'

AND runningTime > Movie::avg_run_time('PG-13');

For this query, the method avg_run_time does not need to be executed for each
Movie object, but it is sufficient to run it once. Matisse detects this situation,
and optimizes the query so that it executes the static method only once.

14.3 Control Statements
Control statements control the flow of the program, the declaration and
assignment of variables, and handles exceptions, which are allowed to be used
in a method body or a statement block. Control statements allow you to write a
program in a way writing programs in complete programming languages.

Matisse provides the following control statements:

IF

LOOP

REPEAT

WHILE

FOR

LEAVE

ITERATE

RETURN

SET assignment

SIGNAL

RESIGNAL

IF Statement

The IF statement evaluates a condition and selects a different execution path
depending on the result.

Syntax IF <condition> THEN

<list of statements>

[ELSEIF <condition> THEN

<list of statements>]

[ELSE

<list of statements>]

END IF;
100 Matisse SQL Programmer’s Guide

If <condition> evaluates to true, then the following <list of

statements> will be executed. Otherwise, it tries the next <condition>, and
if it is true, the following <list of statements> will be executed.

If no <condition> evaluates to true and ELSE clause is provided, <list of

statements> in ELSE clause is executed.

Example The following method returns the absolute value of an integer:

CREATE METHOD abs (arg INTEGER)

...

BEGIN

IF arg < 0 THEN

RETURN -arg;

ELSE

RETURN arg;

END IF;

END;

LOOP Statement

The LOOP statement repeats the execution of SQL statements. Since the LOOP
statement itself has no condition to terminate the loop, a statement like LEAVE,
RETURN, or SIGNAL is usually used to pass the flow of control outside of the
loop.

Syntax [<loop_label>:]

LOOP

<statement>;

[...]

END LOOP [<loop_label>];

If the beginning label is specified, the label can be used with a LEAVE or
ITERATE statement inside the LOOP statement. If the ending label is also
specified, it needs to match the beginning label.

Example The following example repeats the execution 100 times, then exits from the
loop using the LEAVE statement:

BEGIN

DECLARE cnt INTEGER DEFAULT 0;

the_loop:

LOOP

... -- do something here

SET cnt = cnt + 1;

IF cnt = 100 THEN

LEAVE the_loop;

END IF;

END LOOP the_loop;

END;
Stored Methods and Statement Blocks 101

REPEAT statement

The REPEAT statement repeats the statements until the specified condition
returns true.

Syntax [<label>:]

REPEAT

<statement>;

[...]

UNTIL <condition>

END REPEAT [<label>];

In each iteration of execution, <statement>s are executed first, then
<condition> is tested.

If the beginning label is specified, the label can be used with LEAVE or
ITERATE statement inside the LOOP statement. If the ending label is also
specified, it needs to match the beginning label.

Example The following example repeats the execution 100 times, then exits from the
loop:

BEGIN

DECLARE cnt INTEGER DEFAULT 0;

REPEAT

... -- do something here

SET cnt = cnt + 1;

UNTIL cnt = 100

END REPEAT;

END;

WHILE Statement

The WHILE statement repeats the execution of SQL statements while the
specified condition is true.

Syntax [<label>:]

WHILE <condition> DO

<statement>;

[...]

END WHILE [<label>];

In each iteration of execution, <condition> is first tested, and <statement>s
are executed if <condition> is true.

If the beginning label is specified, the label can be used with a LEAVE or
ITERATE statement inside the LOOP statement. If the ending label is also
specified, it needs to match the beginning label.

Example The following example repeats the execution 100 times, then exits from the
loop:
102 Matisse SQL Programmer’s Guide

BEGIN

DECLARE cnt INTEGER DEFAULT 0;

WHILE cnt < 100 DO

... -- do something here

SET cnt = cnt + 1;

END WHILE;

END;

FOR Statement

The FOR statement executes SQL statements for each object that qualified the
specified SELECT query.

Syntax [<label>:]

FOR <loop_variable> AS <select statement> DO

<statement>;

[...]

END FOR [<label>]

<loop_variable> is used to qualify the names in the select list of <select
statement> when they are used within the FOR body. And, <loop_variable>
represents an object that is selected by <select statement>. You can access the
selected object’s attribute or invoke a method using <loop_variable>.

If the beginning label is specified, the label can be used with a LEAVE or
ITERATE statement inside the LOOP statement. If the ending label is also
specified, it needs to match the beginning label.

Example The following example counts the total length of the full name of all the artists
with some threshold condition:

BEGIN

DECLARE total INTEGER DEFAULT 0;

DECLARE fname STRING;

for_loop:

FOR obj AS SELECT REF(a) FROM Artist a DO

SET fname = obj.full_name();

IF LENGTH(fname) > 20 THEN

SET total = total + 20;

ELSE

SET total = total + LENGTH(fname);

END IF;

END FOR;

RETURN total;

END;

The next example does the same thing using attribute access on the loop
variable instead of method invocation full_name() above:
Stored Methods and Statement Blocks 103

BEGIN

DECLARE total INTEGER DEFAULT 0;

DECLARE fname STRING;

FOR obj AS SELECT REF(a) FROM Artist a DO

SET fname = CONCAT(obj.firstName, obj.lastName);

IF LENGTH(fname) > 20 THEN

SET total = total + 20;

ELSE

SET total = total + LENGTH(fname);

END IF;

END FOR;

RETURN total;

END;

The next example selects all the distinct ratings for each movie category, and
returns it as a list:

BEGIN

DECLARE ratings LIST(STRING) DEFAULT LIST(STRING)();

FOR val AS SELECT DISTINCT category, rating FROM movie DO

ADD (ratings, CONCAT(val.category, val.rating));

END FOR;

RETURN ratings;

END;

Note that these columns in the SELECT list need to be qualified in the DO
body using the loop variable val.

LEAVE Statement

The LEAVE statement passes the control flow out of a loop or a statement
block.

Syntax LEAVE label;

Use the label specified by FOR, LOOP, REPEAT, WHILE statement, or
statement block

Example In the following example, the LEAVE statements moves the execution flow out
of the outer loop directly from the inner loop:

BEGIN

DECLARE cnt INTEGER DEFAULT 0;

outer_loop:

WHILE cnt < 100 DO

... -- do something

inner_loop:

WHILE cnt < 200 DO

... -- do something
104 Matisse SQL Programmer’s Guide

SET cnt = cnt + 1;

IF cnt >= 100 THEN

LEAVE outer_loop; -- the control goes to line (A)

END IF;

END WHILE;

END WHILE;

... -- line (A)

END;

ITERATE Statement

The ITERATE statement moves the execution flow back to the beginning of the
loop and proceeds with the next iteration of the loop.

Syntax ITERATE label;

Use the label specified by FOR, LOOP, REPEAT, or WHILE statement.

Example The following example uses the ITERATE statement to skip some cases in the
iteration of the loop:

BEGIN

DECLARE cnt, i INTEGER DEFAULT 0;

SET i = 1;

while_loop:

WHILE cnt < 100 DO

IF cnt = 50 THEN

SET cnt = 90;

ITERATE while_loop;

END IF;

... -- do something with ‘i’

SET cnt = cnt + i;

END WHILE;

END;

RETURN Statement

The RETURN statement returns the result of the method and exits from the
method.

Syntax RETURN [<expression> | NULL];

If the keyword RETURN is followed by nothing, it is equivalent to returning
NULL.

If the RETURN statement is executed within a loop statement, e.g., WHILE or
FOR, then the loop statement is terminated as well.
Stored Methods and Statement Blocks 105

Example The following statement block returns NULL if it finds an artist object without
any biography:

BEGIN

for_loop:

FOR obj AS SELECT REF(a) FROM Artist a DO

IF obj.biography IS NULL THEN

RETURN NULL;

END IF;

... -- do something else here

END FOR;

END;

SET Assignment Statement

The assignment statement assigns a value to a variable.

Syntax SET <variable> = <source expression> | NULL;

Type Compatibility The data types of both <source expression> and the target <variable>
need to be compatible. The data type compatibility for assignment is shown
below. All the types listed in the same bullet are compatible with each other
except list types.

Numbers: BYTE, SHORT, INTEGER, LONG, FLOAT, DOUBLE, and
NUMBER.

STRING and TEXT

CHARACTER

TIMESTAMP

DATE

INTERVAL

Multimedia types: AUDIO, IMAGE, VIDEO, and BYTES

List type: A list type is compatible only with exactly the same type. For
example, LIST(INTEGER) is compatible with LIST(INTEGER) but not
compatible with LIST(LONG).

Object: The target object type needs to be conformant with the source
object, i.e., the class of the source object is the same or subclass of the
target object’s class.

Pass by Reference When assigning a value of string, list type (e.g., LIST(INTEGER)), or
multimedia types (e.g., BYTES or IMAGE), the assignment is done by passing
its reference, not by copying its content.

Numeric Overflow When assigning a number, an overflow exception could happen because of the
lack of precision in the target type. For example, if you try to assign 1000000 to
a variable of SHORT, Matisse will raise the numeric overflow exception.
106 Matisse SQL Programmer’s Guide

SIGNAL Statement

The SIGNAL statement clears the diagnostic records and raises an exception,
along with an optional text message. For more information about handling
exceptions, see 14.5 Exception Handling.

Syntax SIGNAL <exception_name> [SET MESSAGE_TEXT = <text

message>];

Example See the example in the RESIGNAL statement below.

RESIGNAL Statement

The RESIGNAL statement resignals the exception along with an optional text
message. It does not clear the diagnostic records, but raises the same exception
again. The statement is used only within an exception handler.

Syntax RESIGNAL;

Example In the following example, it raises the out_of_balance exception, which will
be caught by a handler. The handler will do some processing before reraising
the same exception and exiting from the statement block.

BEGIN

DECLARE out_of_balance CONDITION FOR CODE 2005;

DECLARE EXIT HANDLER FOR out_of_balance

SET ...;

BEGIN -- sub-block

DECLARE CONTINUTE HANDLER FOR out_of_balance

BEGIN

... -- do something

RESIGNAL; -- reraise the same exception

END;

...

IF ... THEN

SIGNAL out_of_balance; -- raise an exception

END IF;

END;

END;

14.4 Statement Blocks
A statement block is a group of SQL statements between the keywords BEGIN
and END. Within a statement block, you can declare SQL variables and
exception handlers.
Stored Methods and Statement Blocks 107

Syntax [label:]

BEGIN

[<variable declaration> | <handler declaration>] [...]

<SQL statement> [...]

END [label];

<variable declaration> ::=

DECLARE <variable name> [, ...] <type>

[DEFAULT <literal constant>]

See Declaration of Handler for the definition of <handler

declaration>.

If label is specified, it can be used with the LEAVE statement to exit from the
statement block. If the optional ending label is specified, it needs to match the
beginning label.

Variable
Declaration

<variable declaration> defines local variables with names, a type, and an
optional default value.

All the variable names need to be unique within a statement block. When
statement blocks are nested, the inner block can see the variables declared in
the outer block. If a variable V1 has the same name with another one, say V2,
in outer statement block, V2 cannot be seen within the inner statement block.
For example, the next statement block returns 10:

BEGIN

DECLARE foo INTEGER;

SET foo = 10;

BEGIN

DECLARE foo INTEGER;

SET foo = 20; -- updating ‘foo’ in this block

END;

RETURN foo; -- returns 10, not 20

END;

All the available types for declaration are listed in CREATE.

All the variables are NULL until they are explicitly assigned a value, unless
they are declared with DEFAULT clause.

Direct Execution
of Statement
Block

A statement block can be directly executed from the client application or within
the mt_sql utility. The next example is executed in the mt_sql utility:

C:\>mt_sql -d exampledb@your_host

sql> BEGIN

2> DECLARE total NUMERIC(19, 2) DEFAULT 0.0;

3>

4> loop_label:

5> FOR obj AS SELECT REF(e) FROM Employee e

6> WHERE location = 'SF'
108 Matisse SQL Programmer’s Guide

7> DO

8> IF obj.expenses > 1000.0 THEN

9> -- max amount for each employee is 1000

10> SET total = total + 1000;

11> ELSE

12> SET total = total + obj.expenses;

13> END IF;

14> END FOR;

15>

16> RETURN total;

17> END;

10345.05

Returning
Objects from
Statement Block

A statement block can return a list of objects selected by a SELECT statement.

BEGIN

DECLARE avg_len DOUBLE;

DECLARE long_movies SELECTION(Movie);

SELECT AVG(runningTime) INTO avg_len FROM Movie;

SELECT REF(m) FROM Movie m

WHERE runningTime > avg_len

INTO long_movies;

-- get the selected objects into a selection

RETURN long_movies;

END;

If the example is executed in the mt_sql utility, the returned objects are saved
in a selection named ‘DefaultSelection’, so you can do:

sql> SELECT * FROM DefaultSelection;

14.5 Exception Handling
An exception handler specifies a set of statements to be executed when an
exception occurs in a method or a statement block.

Declaration of
Handler

To declare an exception handler, use the following form:

<handler declaration> ::=

DECLARE <handler type> HANDLER FOR <exception conditions>

<SQL statement>

<handler type> ::= CONTINUE | EXIT

Here is an example of CONTINUE handler, which sets a variable to -1 when the
division-by-zero exception happens:
Stored Methods and Statement Blocks 109

BEGIN

DECLARE cnt INTEGER DEFAULT 0;

DECLARE CONTINUE HANDLER FOR DIVISION_BY_ZERO

SET cnt = -1;

FOR obj AS SELECT REF(e) FROM Employee e DO

-- division-by-zero exception may happen in the next line

IF (obj.salary/obj.workHour) > 200 THEN

SET cnt = cnt + 1;

END IF;

END FOR;

RETURN cnt;

END;

Note that more than one declaration cannot have the same exception condition.
For example, the following declarations are invalid:

-- sample of wrong code

BEGIN

DECLARE EXIT HANDLER FOR MTEXCEPTION

SET res = 0;

DECLARE EXIT HANDLER FOR MTEXCEPTION

SET another = 10;

...

END;

Each handler can contain up to 16 exception conditions.

Handler Types Matisse supports two types of handlers: CONTINUE and EXIT.

EXIT: After the handler is executed successfully, the control is returned to
the end of the statement block that declared the handler.

CONTINUE: After the handler is executed successfully, the control is
returned to the SQL statement that follows the statement that raised the
exception. Note: If the statement that raised the exception is in a FOR, IF,
WHILE, LOOP, or REPEAT statement, the control goes to the statement
that follows END FOR, END IF, END WHILE, END LOOP, or END
REPEAT, unless the handler is defined inside these loop statements.

In the following example, if the division-by-zero error happens at line (A), then
the exception handler is executed and the control goes to line (B), i.e., exits
from the FOR loop.

BEGIN

DECLARE cnt INTEGER DEFAULT 0;

DECLARE CONTINUE HANDLER FOR DIVISION_BY_ZERO

SET cnt = -1;

FOR obj AS SELECT REF(e) FROM Employee e DO

IF (obj.salary/obj.workHour) > 200 THEN -- line (A)

SET cnt = cnt + 1;
110 Matisse SQL Programmer’s Guide

END IF;

END FOR;

RETURN cnt; -- line (B)

END;

The following example declares the exception handler within the FOR loop. If
the division-by-zero error happens at line (A), then the exception handler is
executed and the control goes to line (B), i.e., does not exit from the FOR loop.

BEGIN

DECLARE cnt INTEGER DEFAULT 0;

FOR obj AS SELECT REF(e) FROM Employee e DO

DECLARE CONTINUE HANDLER FOR DIVISION_BY_ZERO

SET cnt = -1;

IF (obj.salary/obj.workHour) > 200 THEN -- line (A)

SET cnt = cnt + 1;

END IF;

... -- line (B)

END FOR;

RETURN cnt;

END;

User Defined
Exceptions

You can define an user exception in a method or a statement block, which can
be used to raise an exception using the SIGNAL statement. The form to declare
a user defined exception is:

DECLARE <exception-name> CONDITION

[FOR <user-exception-code>];

If <user-exception-code> is not provided, the code is set to 0.

Here is an example, which declares a user defined exception and defines a
handler for it as well:

DECLARE too_many_elements CONDITION FOR CODE 1002;

DECLARE CONTINUE HANDLER FOR too_many_elements

...;

An exception name needs to be unique within a statement block.

Unhandled
Exception

If an exception is not handled by anyone, the unhandled exception is returned
to the client application that called the method or the statement block.

For example, if a method raised DIVISION_BY_ZERO exception and is not
handled by anyone, then the client API that called the method, e.g.,
executeQuery() for Java or MtSQLExecDirect() for C, returns the
MATISSE_DIVISION_BY_ZERO exception.
Stored Methods and Statement Blocks 111

If an user defined exception is not handled, then the client returns the
MATISSE_USER_EXCEPTION error. In order to get more information about
the user exception, use the C API MtSQLGetParamValue() or equivalent in
other language bindings. The second parameter for MtSQLGetParamValue()
can be one of the followings:

MTSQL_USER_EXCEPTION_NAME, to get the name of the user
exception

MTSQL_USER_EXCEPTION_CODE, to get the code of the user exception

MTSQL_USER_EXCEPTION_MESSAGE, to get the text message of the
user exception. If no text message was specified by the SIGNAL statement,
then you get MT_NULL as its return type, not MT_STRING.
112 Matisse SQL Programmer’s Guide

Options 113

15 Options

15.1 Setting Options

MAXOBJECTS To limit the number of objects that are actually returned from server to client as
a result of SELECT statement execution, you can use the SET MAXOBJECTS
command. The syntax is as follows:

SET MAXOBJECTS number

where number is a positive integer value.

For example, the following statement sets the maximum number of objects
returned from the server to 50:

SET MAXOBJECTS 50

After setting this option, the projection result shows only 50 objects even if a
SELECT statement selects more than 50 objects. However, the information on
the total number of objects selected by the SQL statement can be obtained
through the Matisse C-API for SQL.

To revert to the default setting, i.e., no limit on the number of objects that are
actually returned from server to client, use the following statement:

SET MAXOBJECTS OFF

Appendix A Sample Application
Schema

This appendix describes the sample application schema most commonly used
throughout the SQL examples in the previous sections. The schema is described
in the Matisse ODL format.

interface Movie : persistent

{

attribute String Name;

mt_entry_point_dictionary "MovieNameDict"

entry_point_of Name

make_entry_function "make-entry";

attribute String Title;

mt_entry_point_dictionary "MovieTitleDict"

entry_point_of Title

make_entry_function "make-full-text-entry";

attribute String Synopsis;

mt_entry_point_dictionary "MovieSynopsisDict"

entry_point_of Synopsis

make_entry_function "make-full-text-entry";

attribute String Rating;

attribute String Category;

attribute Long RunningTime = Long(0);

attribute Long rankForWeek;

attribute Image Thumbnail;

attribute Video Preview;

relationship Set<MovieDirector>

directedBy [0, 1]

inverse MovieDirector::Direct;

relationship Set<Artist>

Starring [0, -1]

inverse Artist::Biography;

relationship Set<boxOffice>

boxOfficeRecords [0,-1]

inverse boxOffice::topTitles;

};

interface Artist : persistent
114 Matisse SQL Programmer’s Guide

{

attribute String LastName;

attribute String FirstName;

mt_entry_point_dictionary "LastNameDict"

entry_point_of LastName

make_entry_function "make-entry";

relationship Set<Movie>

Biography [0, -1]

inverse Movie::Starring;

};

interface MovieDirector : Artist : persistent

{

relationship Set<Movie> Direct

inverse Movie::directedBy;

};

interface boxOffice : persistent

{

attribute Date week;

attribute Long totalReceipts = Long(0);

attribute List<Numeric(10, 2)> topReceipts;

relationship Set <Movie>

topTitles [0,50]

inverse Movie::boxOfficeRecords;

};
115

Index

Symbols
– 38

% 45

* 38

+ 38

/ 38

< 37, 43

<= 37, 43

<> 37, 43

= 37, 43

> 37, 43

>= 37, 43

_ 46

A
AFTER 56

alias 29

ALL 40, 47, 51

ALTER 85

AND 30, 40

ANY 40, 47, 51

arithmetic expression 37

ASC 33

ASCII 44

assignment 106

AT 17

ATTRIBUTE 85

attribute 29

AVG 66, 70, 73

B
BEFORE 56

BETWEEN 40

boolean 16

bytes 18

C

CALL 99

CARDINALITY 79

CASE SENSITIVE 88

CAST 76

CHAR_LENGTH 63

character string constant 16

class statements 79–86

CLASS_ID 25

CLASS_NAME 25

COMMIT 59

COMMIT WORK 59

COMPILE 90

CONCAT 61

conditional join 27

constant 15

CONSTRAINT 79

CONTINUE 110

COUNT 54, 69, 71, 74

CREATE 79, 87, 88, 89

CURRENT_DATE 17, 75

CURRENT_TIMESTAMP 18, 75

D
DATE 17

date constant 17

DECLARE 108

DEFAULT 79

DefaultSelection 109

DELETE 96

DELETED 56

DESC 33

DISTINCT 33

division 39

DIVISION_BY_ZERO 111

DROP 86, 87, 88, 90

DROP SELECTION 28
116 Matissse SQL Programmer’s Guide

E
ELEMENT 67

empty relationship 54

entry point 49

entry point dictionaries 88–89

ESCAPE 47

EXCEPT 94

exception 109

handler 109

unhandled 111

user defined 111

EXIT 110

EXTRACT 76

DAY 76

HOUR 76

MICROSECOND 76

MINUTE 76

MONTH 76

SECOND 76

YEAR 76

F
FALSE 16, 29

filter

CLASS 53, 54

ONLY 53, 54
Index 117

FOR 103

FOREIGN KEY 80

FROM 22

full text search 49

G
GMT 17

GROUP BY 34

H
HAVING 35

I
identifier 19

IF 100

IN 48, 51

indices 87–88

INHERIT 80

INSERT 95

INSERTED 56

INSTR 62

interger constants 15

INTERSECT 94

INTO 28

INVERSE 79

IS NULL 41

ITERATE 105

J
join 26

K
keyword 19

L
LEAVE 104

LENGTH 63

LIKE 46

LIST 79

LIST 70

list functions 66–70

LOCAL 17

LOOP 101

LOWER 63

LTRIM 63

M
MAX 67, 71, 74

METHOD 89

Method Invocation 98

Methods 89

MIN 68, 72, 74

N
natural join 26

navigational queries 52

NOT 32, 40, 41

NULL 42, 51, 54

Null 38

null value 15

numeric constants 15

O
OID 24

ONLY 22

operator

arithmetic 37

comparison 37

negation 39

OR 30

ORDER BY 33

P
pass by reference 106

pattern 45

precedence 31

predecessor 51

predicate 29

BETWEEN 40

entry point 49
118 Matissse SQL Programmer’s Guide

IN 48, 51

IS OF 32

LIKE 46

NULL 41

PRIMARY KEY 79

Projection 23

R
READ ONLY 58

READ WRITE 59

real constants 16

REF 24

REFERENCES 79

REFERENCES 80

Referential Constraint 84

RELATIONSHIP 79

relationship 51

navigation 52
Index 119

REPEAT 102

RESIGNAL 107

result types 38

RETURN 105

RETURNING 96

ROLLBACK 60

ROLLBACK WORK 60

RTRIM 64

S
search criteria 29

SELECT 22

Selection 27

SELF 99

SET 79

SET 106

set functions 70–72

SET TRANSACTION 59

SIGNAL 107

SQL functions 61–66

statement block 107

Static Method 99

string 16

SUBLIST 68

SUBSTR 65

SUBSTRING 65

successor 51

SUM 69, 72, 75

T
text comparison 43

TIMESTAMP 17

timestamp constant 17

TRANSACTION 58

TRUE 16, 29

type compatibility 106

type predicate 32

U
UNDER 80

UNION 94

UNIQUE 87, 88

UNIQUE 79

Unique Constraint 84

UNKNOWN 29, 43

UPDATE 92

UPDATED 56

UPPER 65

UTC 17

V
version 56

version travel 56

W
WHERE 29

WHILE 102

wildcard character 45
120 Matissse SQL Programmer’s Guide

	Matisse® SQL Programmer’s Guide
	Contents
	Tables
	Introduction
	Conventions

	1 Data Accessed with Matisse SQL
	2 The mt_sql Utility
	2.1 Simple Example
	2.2 Basic Usage
	2.3 Command Line Options
	Table�2.1 Command Line Options

	2.4 Online Help
	2.5 Discovering the Schema

	3 Constants and Identifiers
	3.1 What Is a Constant?
	Integer Constants
	Numeric Constants
	Real Constants
	Boolean Constants
	Character String Constants
	Date and Timestamp Constants
	Time Interval Constants
	Bytes Constants
	List Constants

	3.2 What Is an Identifier?
	3.3 What Is a Keyword?
	Table�3.1 Keywords for Formulating SQL Requests�

	4 Selecting Data
	4.1 Using the SELECT Command
	Using the ONLY Keyword
	Specifying a SQL Projection
	OID, REF, and Relationship in SQL Projection
	Table�4.1 Comparison of OID and REF()
	CLASS_NAME and CLASS_ID

	4.2 Join Operation
	Natural Join
	Conditional Join
	Sorting the Result

	4.3 Creating a SQL Selection Using the INTO Keyword
	4.4 Deleting a Selection Result
	4.5 Specifying a Search Criteria with WHERE
	4.6 Using Attributes in Expressions
	Specifying an Attribute in a WHERE Clause

	4.7 Combining Predicates with AND and OR
	Table�4.2 AND Operator Truth Table
	Table�4.3 OR Operator Truth Table
	Precedence of Evaluation of AND and OR
	Table�4.4 Equivalent Logical Expressions

	4.8 Specifying a Negative Condition with NOT
	4.9 Specifying a Type Predicate with IS OF
	4.10 Getting DISTINCT Values
	4.11 Specifying Sort Criteria with ORDER BY
	4.12 Grouping with GROUP BY and HAVING
	Grouping by class
	HAVING clause

	5 Using Numeric Values
	5.1 Introduction
	5.2 Comparison Operators
	Table�5.1 Comparison Operators

	5.3 Performing Arithmetic Operations
	Expressions and Arithmetic Operators
	Evaluating an Expression: An Example

	5.4 Result Types from Arithmetic Expressions
	Table�5.2 Types Resulting from Arithmetic Operation
	Table�5.3 Type Resulting from the Negation Operation

	5.5 Performing an Interval Test
	5.6 Using the ANY and ALL Keywords

	6 Using Null Values
	6.1 Introduction
	6.2 What Is a Null Value?
	6.3 The IS NULL Keyword
	Example: Comparison with Null Values
	Table�6.1 IS [NOT] NULL

	7 Using Text Values
	7.1 Introduction
	7.2 What Does Text Comparison Mean?
	Table�7.1 Text Comparison Operators
	How Character Strings Are Compared
	Table�7.2 ASCII Characters and Their Numeric Values�

	7.3 What Is a Pattern?
	7.4 How to Use the % Wildcard Character
	7.5 How to Use the Underscore Wildcard Character
	7.6 Specifying a Pattern with the LIKE Keyword
	7.7 How to Use an Escape Character
	7.8 Using the ANY and ALL Keywords
	Quantified Comparison with the ANY Keyword
	Comparison with the ALL Keyword
	Equivalent Comparisons
	Table�7.3 Equivalent Expressions Using ANY and ALL
	Alternate Syntax
	Examples

	7.9 Selecting Objects by Entry Points
	Exact Match Search
	Pattern Matching

	8 Using Relationships
	8.1 Introduction
	8.2 What Is a Relationship?
	8.3 The IN Keyword
	Comparing with a List of Successors

	8.4 Navigational Queries
	Using a Single Relationship in the SELECT List
	Using Relationships and Other Columns in the SELECT List
	Using a Relationship in the WHERE Clause
	Relationship COUNT
	Dealing with Empty Relationships

	9 Version Travel
	9.1 Introduction
	9.2 Specifying a Version Travel Query

	10 Managing Transactions and Versions
	10.1 Introduction
	10.2 Starting a Version Access
	10.3 Ending a Version Access
	10.4 Starting a Transaction
	10.5 Committing a Transaction
	10.6 Cancelling a Transaction

	11 SQL Functions
	11.1 Character String Functions
	CONCAT
	Syntax
	Purpose
	Arguments
	Example

	INSTR
	Syntax
	Purpose
	Arguments
	Description
	Example

	LENGTH
	Syntax
	Purpose
	Arguments
	Description
	Example

	LOWER
	Syntax
	Purpose
	Arguments
	Example

	LTRIM
	Syntax
	Purpose
	Arguments
	Description
	Example

	RTRIM
	Syntax
	Purpose
	Arguments
	Description
	Example

	SUBSTR
	Syntax
	Purpose
	Arguments
	Example

	UPPER
	Syntax
	Purpose
	Arguments
	Example

	11.2 List Functions
	AVG
	Syntax
	Purpose
	Argument
	Description
	Example

	ELEMENT
	Syntax
	Purpose
	Argument
	Example

	MAX
	Syntax
	Purpose
	Argument
	Example

	MIN
	Syntax
	Purpose
	Argument
	Example

	SUBLIST
	Syntax
	Purpose
	Argument
	Example
	Example

	SUM
	Syntax
	Purpose
	Argument
	Example

	COUNT
	Syntax
	Purpose
	Argument
	Description

	LIST
	Syntax
	Purpose
	Example

	11.3 Set Functions
	AVG
	Syntax
	Purpose
	Argument
	Description
	Example

	COUNT
	Syntax
	Purpose
	Example

	MAX
	Syntax
	Purpose
	Argument
	Description

	MIN
	Syntax
	Purpose
	Argument
	Description

	SUM
	Syntax
	Purpose
	Argument
	Description
	Example

	11.4 Set functions for relationship aggregation
	AVG
	Syntax
	Purpose
	Argument
	Example

	COUNT
	Syntax
	Purpose
	Example

	MAX
	Syntax
	Purpose
	Argument
	Example

	MIN
	Syntax
	Purpose
	Argument
	Example

	SUM
	Syntax
	Purpose
	Argument

	11.5 Datetime Functions
	CURRENT_DATE
	Syntax
	Purpose

	CURRENT_TIMESTAMP
	Syntax
	Purpose

	EXTRACT
	Syntax
	Purpose
	Example

	11.6 Conversion Functions
	CAST
	Syntax
	Purpose
	Table�11.1 Supported casts between built-in data types
	Example

	12 Defining a Schema
	12.1 Classes, Attributes, and Relationships
	CREATE
	Syntax
	Inheritance
	Attribute
	Maximum Size of Attribute
	Relationship
	Unique Constraint
	Referential Constraint

	ALTER
	Syntax
	Drop Properties
	Add Properties
	Modify Properties

	DROP
	Syntax
	Dropping Class

	12.2 Indexes
	CREATE
	Syntax
	Criteria

	DROP
	Syntax
	Dropping Index

	12.3 Entry Point Dictionaries
	CREATE
	Syntax
	Make-Entry Function

	DROP
	Syntax
	Removing Entry Point Dictionary

	12.4 Methods
	CREATE
	Syntax
	Creating a New Method
	Static Method
	Updating a Method

	DROP
	Syntax
	Removing Method

	COMPILE
	Syntax
	Recompile Methods

	13 Manipulating Data
	13.1 Updating Data
	UPDATE
	Syntax
	Attributes
	Relationships

	13.2 Inserting Data
	INSERT
	Syntax
	Attributes
	Relationships
	Returning clause

	13.3 Deleting Data
	DELETE
	Syntax
	Example

	14 Stored Methods and Statement Blocks
	14.1 A Simple Example
	14.2 Method Invocation
	Calling a Method in SELECT Statement
	Calling a Method in Method Body
	Calling a Static Method
	Syntax
	Example
	Static Method and Query Optimization

	14.3 Control Statements
	IF Statement
	Syntax
	Example

	LOOP Statement
	Syntax
	Example

	REPEAT statement
	Syntax
	Example

	WHILE Statement
	Syntax
	Example

	FOR Statement
	Syntax
	Example

	LEAVE Statement
	Syntax
	Example

	ITERATE Statement
	Syntax
	Example

	RETURN Statement
	Syntax
	Example

	SET Assignment Statement
	Syntax
	Type Compatibility
	Pass by Reference
	Numeric Overflow

	SIGNAL Statement
	Syntax
	Example

	RESIGNAL Statement
	Syntax
	Example

	14.4 Statement Blocks
	Syntax
	Variable Declaration
	Direct Execution of Statement Block
	Returning Objects from Statement Block

	14.5 Exception Handling
	Declaration of Handler
	Handler Types
	User Defined Exceptions
	Unhandled Exception

	15 Options
	15.1 Setting Options
	MAXOBJECTS

	Appendix A Sample Application Schema
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

