Definição do Plano de Execução

- Analisar alternativas de processamento
- Escolher a melhor alternativa
- Diversas medidas podem ser consideradas
 - tempo CPU, comunicação, acessos a disco
 - medida mais relevante ("gargalo"): acessos a disco
 - para avaliar o custo de uma alternativa
 - análise de estimativas sobre os dados
 - tamanho das tabelas, existência de índices, seletividade, ...
 - custo dos algoritmos de processamento de operações algébricas
 - supõe armazenamento clusterizado de dados e índices
 - supõe que o DD mantém localização física de arquivos de dados e índices

Estimativas sobre os Dados

n_R	número de tuplas na tabela R
t_R	tamanho (em bytes) de uma tupla de R
$t_R(a_i)$	tamanho (em bytes) do atributo a_i de R
f_R	fator de bloco de R (quantas tuplas de R cabem em um bloco *) * bloco: unidade de R / W em disco (medida básica de avaliação) $f_R = \lfloor t_{bloco} / t_R \rfloor$
$V_R(a_i)$	número de valores distintos do atributo a_i de R
$V_R(a_i)$ $C_R(a_i)$	cardinalidade (estimada) do atributo a_i de R (tuplas de R que satisfazem um predicado de igualdade sobre a_i) (estimando distribuição uniforme: $C_R(a_i) = n_R / V_R(a_i)$)
$GS_R(a_i)$	grau de seletividade do do atributo a_i de R (estimando distribuição uniforme : $GS_R(a_i) = 1 / V_R(a_i)$)
b_R	número de blocos necessários para manter tuplas de R $b_R = \lceil n_R / f_R \rceil$

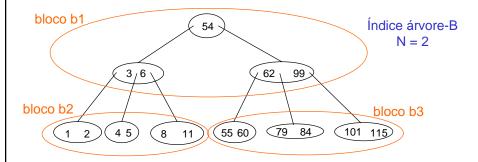
Exemplo de Estimativas de Tabela

- Existem 100 médicos cadastrados na tabela Médicos; cada tupla possui 60 bytes e 1 bloco lê/grava 1 kb
- Estimativas
 - $-n_{M\'edicos}$ = 100 tuplas
 - $-t_{M\'edicos}$ = 60 bytes
 - $-f_{M\'edicos} = \lfloor 1024 / 60 \rfloor = 17 \text{ tuplas}$
 - $-b_{M\'edicos} = \lceil 100 / 18 \rceil = 6$ blocos

Estimativas sobre os Índices

f_i	fator de bloco do índice i (fan-out do índice)
h _i	número de níveis (de blocos) do índice para valores de um atributo a_i ("altura" do índice) (assume-se armazenamento clusterizado "em largura") $h_i = \lceil \log_{fi} \lceil V_R(a_i) / N \rceil \rceil \text{ (para índices árvore-B)}$ (N é o número de valores que cabem em um nodo) $h_i = 1 \text{ (para índices } hash)$ (assume-se que tabelas $hash$, por não conterem muitos atributos, cabem inteiramente em um bloco)
bf _i	número de blocos de índice no nível mais baixo do índice (número blocos "folha")

Exemplo de Estimativas de Índice



- Estimativas
 - $-f_{indice-CRM} = 3 \text{ nodos}$
 - $-h_{indice-CRM} = \lceil \log_{fi} \lceil V_R(a_i) / N \rceil \rceil = \log_3 \lceil 17 / 2 \rceil = 2$
 - $-bf_{indice-CRM} = 2$

Processamento de Seleções (σ)

- Alternativas e suas estimativas de custo
 - A1: pesquisa linear
 - A2: pesquisa binária
 - A3: índice primário para atributo chave
 - A4: índice primário para atributo não-chave
 - A5: índice secundário para atributo chave
 - A6: índice secundário para atributo não-chave
 - A7: desigualdade (>, >=) com índice primário
 - A8: desigualdade (<, =) com índice primário</p>
 - A9: desigualdade com índice secundário

Pesquisa Linear (A1)

- Varre todo o arquivo para buscar os dados desejados
 - acessa todos os blocos do arquivo
- Em alguns casos, é a única alternativa possível
- Custo para uma tabela R
 - $\text{custo} = b_R$

Pesquisa Binária (A2)

- Aplicado sobre uma tabela R quando
 - dados estão ordenados pelo atributo de seleção
 a_i
 - há uma condição de igualdade sobre a;
- Custo
 - custo para acessar o bloco da 1ª tupla: [log₂ b_R]
 - custo para acessar os blocos das demais tuplas:

```
(C_R(a_i)/f_R) desconta-se o bloco da primeira tupla (já foi localizada)
```

- $-\operatorname{custo} = \left[\log_2 b_R\right] + \left[\left(C_R(a_i) / f_R\right)\right] 1$
- se a_i é chave: custo = $\lceil \log_2 b_R \rceil$

Seleções Utilizando Índices

- Atributo a_i com índice primário
 - leitura do índice corresponde à leitura na ordem física do arquivo
 - arquivo fisicamente ordenado por valores de a_i
 - se a_i é chave (A3)
 - custo = h_i + 1 \rightarrow acesso ao bloco onde está a tupla com o valor de a_i
 - se a; é não-chave (A4)
 - custo = h_i + $(C_R(a_i)/f_R)$ \longrightarrow número de blocos contíguos acessados a partir do 1º bloco que contém o valor da chave

Seleções Utilizando Índices

- Atributo a_i com índice secundário
 - arquivo n\(\tilde{a}\) est\(\tilde{a}\) fisicamente ordenado por valores de \(\ta_i\)
 - se a_i é chave (A5)
 - custo = h_i + 1
 - se a_i é não-chave (A6)
 - supor que o bloco folha do índice aponta para uma lista de apontadores para as tuplas desejadas
 - estimar que esta lista cabe em um bloco
 - custo = h_i + $C_R(a_i)$ \rightarrow pior caso: cada tupla com o valor desejado está em um bloco \neq

acesso adicional à * lista de apontadores

Exercício 1

- Dado Pac(<u>codp</u>, nome, idade, cidade, doença) e as seguintes estimativas: n_{Pac} = 1000 tuplas; t_{Pac} = 100 bytes; V_{Pac}(codp) = 1000; V_{Pac}(doença) = 80; V_{Pac}(idade) = 700; um índice primário árvore-B para codp (I1) com N = 5; f_{I1} = 10; um índice secundário árvore-B para doença (I2) com N = 3; f_{I2} = 5; e 1 bloco = 2 kb
- Supondo a seguinte consulta:

```
σ<sub>doença = 'câncer'</sub> (Pac)
```

- a) qual a melhor estratégia de processamento para σ?
- b) se agora 1 bloco = 8 kb, a estratégia escolhida no item anterior continua sendo a melhor?

Comparação por Desigualdade

- Supõe-se que aproximadamente metade das tuplas satisfazem a condição
 - $-a_i \le x \Rightarrow$ número de tuplas $\approx \lceil n_R/2 \rceil$
- DD mantém valores mínimo/máximo de a_i
 - $-a_i \le X$
 - número de tuplas = 0, se x < MIN(a_i)
 - número de tuplas = n_R , se x >= MAX(a_i)
 - $-a_i>=x$
 - número de tuplas = 0, se \times > MAX(a_i)
 - número de tuplas = n_R , se x <= MIN(a_i)

Desigualdade e Índices

- Atributo a; com índice primário
 - comparações do tipo $a_i > x$ ou $a_i >= x$ (A7)
 - custo para buscar $a_i = x$ através do índice: h_i
 - custo (médio) para varredura do arquivo: [b_R/2]
 - custo = $h_i + \lceil b_R / 2 \rceil$
 - comparações do tipo $a_i < x$ ou $a_i <= x$ (A8)
 - varre o arquivo até a_i = x
 - custo (médio) = [b_R / 2]

Desigualdade e Índices

- Atributo a_i com índice secundário (A9)
 - custo para buscar $a_i = x$ através do índice: h_i
 - custo para varredura dos blocos folha do arquivo de índice (em média, metade dos blocos é acessado): $bf_i/2$
 - custo para varredura das listas de apontadores em cada bloco folha: $bf_i/2$ * f_i * N
 - custo para acesso a blocos de dados $(n_R/2)$
 - custo = $h_i + \lceil bf_i / 2 \rceil + \lceil bf_i / 2 \rceil * f_i * N + \lceil n_R / 2 \rceil$

com N listas de apontadores

cada bloco possui f, nodos e cada nodo pior caso: cada tupla em um bloco ≠ e, em média, metade dos dados atende a condição

Exercício 2

- Considere a relação Pac e as estimativas dadas no exercício 1
- Dada a consulta

```
ocodp > 10000 ∧ cidade = 'Florianópolis' (Pac)
```

- a) qual a melhor estratégia de processamento para σ?
- b) supondo agora a existência de um índice secundário árvore-B para cidade (I3) com N = 3, f_{I3} = 5, bf_{I3} = 10 e $V_{Pac}(cidade)$ = 100, qual a melhor estratégia de processamento para σ ?

Conjunções – Estimativa de Tamanho

- Dada uma seleção
 _{c1 ∧ c2 ∧ ... ∧ cn} (R)
 - estima-se a cardinalidade de cada condição c_i
 C(c_i)
 - tamanho da relação resultante é dado por
 - \lceil n_R . (C(c_1). C(c_2). C(c_n)) / (n_R) $^\mathsf{n}$ \rceil
- Exemplo

R(
$$\underline{a}$$
, b, c) $n_R = 100$ tuplas $V_R(a) = 100$ $V_R(b) = 20$ Dado $\sigma_{a>5 \land b=10}$, temos: $C(a>5) = \lceil n_R / 2 \rceil = 50$ tuplas $C(b=10) = \lceil n_R / V_R(b) \rceil = 5$ tuplas Estimativa tamanho = $\lceil 100 (50.5) / 100^2 \rceil = 3$ tuplas

Disjunções – Estimativa de Tamanho

- Dada uma seleção $\sigma_{c1 \vee c2 \vee ... \vee cp}$
 - tamanho da relação resultante é dado por

$$[n_R .(1 - (1 - C(c_1) / n_R).(1 - C(c_2) / n_R).(1 - C(c_n) / n_R))]$$

Exemplo

```
R(\underline{a}, b, c) n_R = 100 \text{ tuplas } V_R(a) = 100 V_R(b) = 20

Dado \sigma_{a>5 \lor b=10}, temos:

C(a>5) = \lceil n_R / 2 \rceil = 50 \text{ tuplas}

C(b=10) = \lceil n_R / V_R(b) \rceil = 5 \text{ tuplas}

Estimativa tamanho = 100.(1 - (1 - 50/100).(1 - 5/100))

= 53 tuplas
```

Negações – Estimativa de Tamanho

- Dada uma seleção σ_{¬θ}
 - tamanho da relação resultante é dado por

```
n_R – estimativaTamanho(\sigma_{\theta})
```

• Exemplo

Estimativa tamanho($\sigma_{a > 5 \vee b = 10}$) = 53 tuplas

Estimativa tamanho($\sigma_{\neg(a > 5 \lor b = 10)}$) = 100 – 53 = 47 tuplas

Processamento de Produtos ("X")

- Estimativa de tamanho (R "X" S)
 - produto cartesiano (R X S)
 - tamanho = n_R * n_S
 - junção por igualdade ("equi-join" natural ou theta)
 - junção natural sem atributo em comum

```
- tamanho = n_R * n_S
```

- junção por referência (fk(R) = pk(S))
 - tamanho estimado <= n_R
- junção entre chaves candidatas (atributos *unique*)
 - tamanho <= MIN (n_R , n_S)

Processamento de Produtos ("X")

- Estimativa de tamanho (R "X" S)
 - junção por igualdade ("equi-join" natural ou theta)
 - junção entre atributos não-chave (a_i(R) = a_i(S))
 - cada tupla de R associa-se com $C_s(a_i)$
 - se tenho n_R tuplas ⇒ $\lceil n_R * C_S(a_i) \rceil$
 - idem para as tuplas de S: $\lceil n_S * C_R (a_i) \rceil$
 - tamanho estimado = MIN($\lceil n_R * C_S(a_i) \rceil$, $\lceil n_S * C_R(a_i) \rceil$) » menor estimativa geralmente é mais précisa
 - junção theta por desigualdade $(a_i(R) > a_i(S))$
 - estimativa: cada tupla de R > [n_s / 2] tuplas de S e viceversa
 - tamanho estimado = MAX($n_R * \lceil n_s / 2 \rceil$, $n_S * \lceil n_R / 2 \rceil$) (pior caso)

Processamento de Produtos ("X")

- Alternativas e suas estimativas de custo
 - A1: laço aninhado ("nested-loop")
 - A2: laço aninhado com índice
 - A3: merge-junção ("balanced-line")
 - A4: hash-junção

Laço Aninhado (A1)

 Dois laços para varredura de blocos das relações a serem combinadas

```
para cada bloco B_R de R faça para cada bloco B_S de S faça início se uma tupla t_R \in B_R satisfaz a condição de junção com uma tupla t_S \in B_S então adicione t_R * t_S ao resultado fim
```

Laço Aninhado - Custo

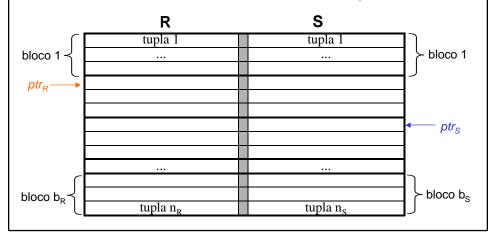
- Melhor caso
 - os blocos de R e S cabem todos na memória
 - $\text{custo} = b_R + b_S$
- Pior caso
 - apenas um bloco de cada relação pode ser lido por vez
 - $\text{ custo} = \text{MIN}(b_R + b_R^* b_S, b_S + b_S^* b_R)$

Laço Aninhado com Índice (A2)

- Aplicada se existir um índice para o atributo de junção do laço interno
- Custo
 - para cada tupla externa de R, pesquisa-se o índice para buscar a tupla de S
 - custo diretamente associado ao tipo de índice
 - exemplo com índice primário árvore-B para atributo chave em S (I_S)
 - custo = $b_R + n_R * (h_{ls} + 1)$

Merge-Junção (A3)

 Aplicada se R e S estiverem fisicamente ordenadas pelos atributos de junção



Merge-Junção - Custo

- Pressupõe que pelo menos um bloco de cada relação cabe na memória
 - geralmente isso é possível
 - exige uma única leitura de cada relação
 - $-\operatorname{custo}_{\mathsf{M}\text{-}\mathsf{J}} = b_{\mathsf{R}} + b_{\mathsf{S}}$
- Se R e/ou S não estiverem ordenadas, elas podem ser ordenadas
 - − custo = custo ordenação R e/ou S + custo_{M-J}

Exercício 3

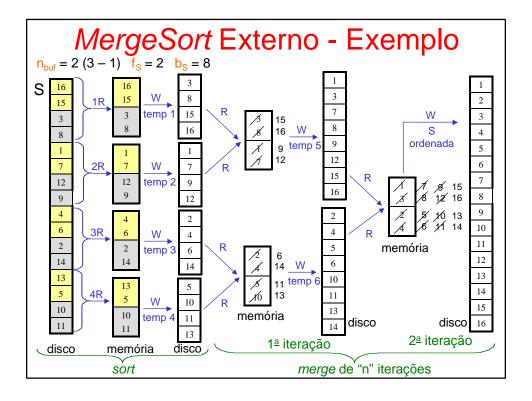
 Proponha um algoritmo de alto nível para executar a alternativa merge-junção

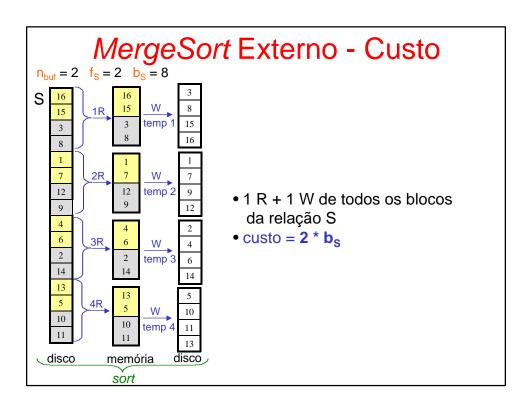
Ordenação Externa

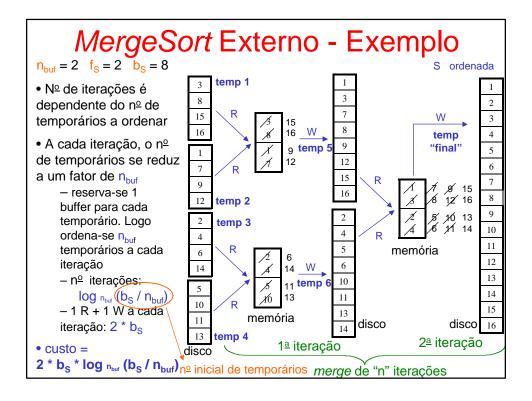
- Ordenação interna
 - ordenação feita totalmente em memória
- Ordenação externa
 - ordenação na qual os dados não cabem inteiramente na memória
 - útil no processamento de consultas
 - exibição ordenada de dados (ORDER BY)
 - avaliação de planos de execução
 - técnica mais utilizada para ordenação de relações
 - MergeSort Externo

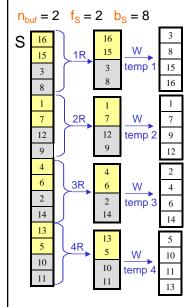
MergeSort Externo

- Executa em 2 etapas
- Etapa 1 Sort
 - ordena partições da relação em memória
 - tamanho da partição depende da disponibilidade de buffers em memória (n_{buf} = nº de buffers disponíveis)
 - gera um arquivo temporário ordenado para cada partição
- Etapa 2 Merge de "n" iterações
 - ordena um conjunto de temporários a cada iteração
 - gera um novo temporário resultante da ordenação
 - ordenação termina quando existir somente um temporário que mantém a relação inteira ordenada









Custo total =
$$2 * b_S + 2 * b_S * log n_{buf} (b_S / n_{buf})$$

= $2 * b_S (log n_{buf} (b_S / n_{buf}) + 1)$
Exemplo = $2 . 8 (log_2 (8 / 2) + 1)$
= $16 (2 + 1) = 48$ acessos

Merge-Junção - Custo

 Se ambas as relações (R e S) estão ordenadas

$$-\operatorname{custo} = b_R + b_S$$

• Se uma delas (R) não está ordenada

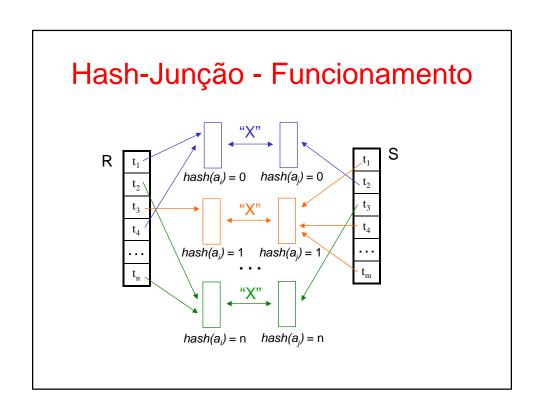
$$- \text{ custo} = 2 * b_R (\log n_{\text{buf}} (b_R / n_{\text{buf}}) + 1) + b_R + b_S$$

Se ambas as relações não estão ordenadas

- custo = 2 *
$$b_R$$
 (log n_{buf} (b_R / n_{buf}) + 1) +
2 * b_S (log n_{buf} (b_S / n_{buf}) + 1) +
 $b_R + b_S$

Hash-Junção

- Aplicada se existir um índice hash com a mesma função definido para os atributos de junção de R e S
- Executa em 2 etapas
 - 1. Particionamento
 - separa em partições as tuplas de R e S que possuem o mesmo valor para a função de hash
 - 2. Junção
 - analisa e combina as tuplas de uma mesma partição



Hash-Junção - Custo

- Fase de Particionamento
 - lê R e S e as reescreve, organizadas em partições
 - sempre que um conjunto de tuplas com o mesmo valor de hash adquire o tamanho de um bloco, este bloco é anexado a um arquivo temporário para a partição
 - considera-se geralmente um melhor caso
 - função hash distribui uniformemente os valores das tuplas
 - » evita escrita de muitas pequenas partições. Assim, assume-se custo "W" = custo "R" e não custo "W" > custo "R"
 - custo = $2 * b_R + 2 * b_S = 2 * (b_R + b_S)$

Hash-Junção - Custo

- Fase de Junção
 - lê as partições de mesmo hash e combina as tuplas
 - equivale aproximadamente a uma nova leitura de todos os blocos de R e S
 - custo = (b_R + b_S)
- Custo Total
 - custo = $2 * (b_R + b_S) + (b_R + b_S) = 3 * (b_R + b_S)$

Escrita ("W") do Resultado

- Qualquer alternativa de processamento deve considerar este custo
 - b_{res} = número de blocos de resultado a ser "W"
- Exemplo: estimativa de "W" do resultado de um produto
 - $b_{res} = \lceil tamanho Produto / f_{res} \rceil$
 - estimativa do fator de bloco do resultado (f_{res})
 - $f_{res} = tamanhoBloco / (t_R + t_S)$

arredonda "para baixo" pois uma tupla do resultado não pode estar parcialmente escrita em um bloco

Exemplo

```
Med(\underline{CRM}, nome, ...) com n_{Med} = 50 e t_{Med} = 50 b Cons(\underline{\overline{CRM}}, codp, ...) com n_{Cons} = 500 e t_{Cons} = 20 b e 1 bloco = 2 kb
```

Dado Med X $\theta = \sigma_{Med.CRM = Cons.CRM}$ Cons, temos:

- junção por referência (fk(Cons) = pk(Med))
 - tamanho resultado = n_{Cons} = 500 tuplas
- $f_{res} = \lfloor tamanhoBloco / (t_R + t_S) \rfloor$
 - $f_{res} = [2048 / (50 + 20)] = 29 \text{ tuplas}$
- $b_{res} = \lceil tamanhoResultado / <math>f_{res} \rceil$
 - $b_{res} = [500 / 29] = 18 blocos$

Tamanho de Buffer

- Influencia o custo
 - quanto maior o número de buffers (n_{buf}) para blocos, melhor!
- Exemplos de custos de produtos
 - se n_{buf} >= $(b_R + b_S + b_{res}) \Rightarrow custo = b_R + b_S$ (não é preciso "W" o resultado)
 - se n_{buf} é capaz de manter R e S, mas apenas 1 bloco p/ o resultado ⇒ custo = b_R + b_S + (b_{res} - 1)

Exemplo

Med(<u>CRM</u>, nome, ...) Cons(<u>CRM, codp</u>, ...)

$$b_{Med} = 10$$
; $b_{Cons} = 20$; $n_{buf} = 5$

Dado Med X $\theta = \sigma_{Med,CRM = Cons,CRM}$ Cons, temos:

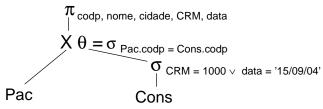
- Custo do laço aninhado (s/ considerar buffers) custo = $b_{Med} + b_{Med} * b_{Cons} + (b_{res} - 1) = 10 + 10*20 + 17 = 227$
- Custo do laço aninhado (considerando 3 buffers p/ Med, 1 buffer p/ Cons e 1 buffer para o resultado)
 - melhor manter em memória + blocos da relação menor

custo =
$$b_{Med}$$
 + b_{Med} / 3 * b_{Cons} + (b_{res} -1) = 10+4*20+17 = 107 reduz em 1/3 o número de acessos a blocos da tabela Cons

Exercício 4

Dado $Pac(\underline{codp}, nome, idade, cidade, doença)$ e $Cons(\underline{CRM}, \underline{codp}, data, hora)$ e as seguintes estimativas: $n_{Pac} = 500$ tuplas; $t_{Pac} = 50$ bytes; $t_{Pac}(codp) = 5$ bytes; $t_{Pac}(nome) = 15$ bytes; $t_{Pac}(cidade) = 15$ bytes; $t_{Cons} = 1000$ tuplas; $t_{Cons} = 20$ bytes; $t_{Cons}(CRM) = 5$ bytes; $t_{Cons}(data) = 10$ bytes; $t_{Cons}(data) = 50$; $t_{Cons}(codp) = 500$; $t_{Cons}(CRM) = 200$; um índice primário árvore-B para codp (I1) em $t_{Cons}(codp) = 10$ e $t_{Cons}(codp) = 10$ e $t_{Cons}(codp) = 10$ e $t_{Cons}(codp) = 10$ e $t_{Codp}(codp) = 10$ e $t_{Codp}(codp)$

Dada a seguinte árvore algébrica de consulta:



Estime custos e o tamanho do resultado desta consulta.

Produtos Complexos - Custo

- Dada uma operação produtória complexa conjuntiva R "X"_{θ = σ c1 ∧ c2 ∧ ... ∧ cn} S
 - estima-se o custo de cada condição c;
 - R "X" θ = σ ci S
 - escolhe-se a condição c_i de menor custo para ser implementada
 - as demais condições c₁, c₂, ..., c_{i-1}, c_{i+1}, ..., c_n são verificadas a medida que as tuplas de R "X" _{θ = σ ci} S são geradas

Produtos Complexos - Custo

- Dada uma operação produtória complexa disjuntiva R "X"_{θ = σ c1 ∨ c2 ∨ ... ∨ cn} S, tem-se as seguintes alternativas
 - aplica-se o algoritmo de laço aninhado
 - mais simples e independente de condição de junção
 - aplica-se (R "X" $_{\theta = \sigma c1}$ S) \cup (R "X" $_{\theta = \sigma c2}$ S) \cup ... \cup (R "X" $_{\theta = \sigma cn}$ S)
 - custo total é a soma dos menores custos de cada junção individual

Processamento de Projeções (π)

- Custo (na teoria) de $\pi_{a1, a2, ..., an}$ (R)
 - custo = (1) varredura de R + (2) eliminação de duplicatas
 - custo de (1) = b_R (gera b_{Res} blocos de resultado)
 - custo de (2) = custo de classificar o resultado pelos atributos da projeção = 2 * b_{Res} (log n_{buf} (b_{Res} / n_{buf}) + 1)
 - tuplas iguais estarão adjacentes e apenas uma delas é mantida (deve-se ainda varrer o resultado ordenado)
 - custo = b_R + 2 * b_{Res} (log n_{buf} (b_{Res} / n_{buf}) + 1) + b_{Res}
- Custo (na prática) de π _{a1, a2, ..., an} (R)
 - $custo = b_R$
 - SQL não faz eliminação de duplicatas

Processamento de Projeções (π)

- Tamanho de $\pi_{a1, a2, ..., an}$ (R) (na prática) - tamanho = n_R * ($t_R(a_1) + ... + t_R(a_n)$)
- Na teoria, é difícil estimar o tamanho do resultado pois é difícil estimar quantas duplicatas serão eliminadas
 - o que é possível estimar?
 - se a projeção é apenas da chave primária (pk(R))
 tamanho = n_R * t_R(pk(R))
 - se a projeção é de um único atributo a_i
 tamanho = V_R(a_i) * t_R(a_i)

Processamento de Operações de Conjunto $(\cup, ---- e \cap)$

- Aplica-se uma estratégia merge-junção
 - (1) classificação de R e S
 - facilita a verificação de tuplas iguais em R e S
 - (2) varredura de R e S para obtenção do resultado
 - custo (pior caso) = $2 * b_R (log n_{buf} (b_R / n_{buf}) + 1) + 2 * b_S (log n_{buf} (b_S / n_{buf}) + 1) + b_R + b_S$

Processamento de Operações de Conjunto $(\cup, --- e \cap)$

- Estimativas de tamanho
 - pior caso
 - tamanho (R \cup S) = $n_R + n_S$
 - tamanho $(R S) = n_R$
 - tamanho (R \cap S) = MIN(n_R, n_S)
 - melhor caso
 - tamanho (R \cup S) = MAX(n_R , n_S)
 - tamanho (R S) = 0
 - tamanho $(R \cap S) = 0$
 - caso médio
 - média aritmética do melhor e pior casos

Funções de Agregação e Group By

- Função de agregação (count, max, sum, ...)
 - custo da varredura da relação R = b_R
 - tamanho = lenght (int ou float)
- Group By + Função de Agregação
 - processamento: ordenação de R pelos atributos de agrupamento + varredura de R ordenada para definir grupos e aplicar função
 - custo = 2 * b_R (log n_{buf} (b_R / n_{buf}) + 1) + b_R
 - tamanho de group by $a_1, ..., a_n$
 - número de grupos * (t_R(a₁) + ... + t_R(a_n)) + lenght (int ou float)

Índice Temporário

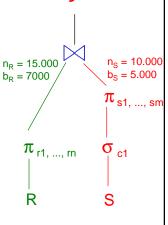
- Um índice temporário pode ser criado para o processamento de uma operação algébrica opx
- Objetivo
 - gerar um custo menor que outras alternativas de processamento de op,
 - este custo envolve
 - "W" total ou parcial dos blocos do índice no disco
 - acesso a ele durante o processamento de op,
 - estes custos devem ser estimados antes da criação do índice, para decidir por criá-lo ou não

Índice Temporário - Motivação

- Processamento da junção
 - A1: laço aninhado
 - custo = b_S + b_S * b_R
 = 5 + 5 * 7 = 40 mil acessos
 - A3: merge-junção (n_{buf} = 3)
 - custo = ordenação de R + ordenação de S + b_R + b_S
 = 126 + 80 + 7 + 5 = 218 mil acessos
 - e se houvesse um índice *lx* sobre o

resultado de R? Poderíamos estimar A2: laço aninhado indexado

- custo = $\frac{b_s}{n_s} + \frac{n_s}{n_s} * (h_{lx} + 1)$
- se Ix tiver h_{lx} < 3, A2 será a alternativa de menor custo! Exemplo: h_{lx} = 2:
 - custo = 5 + 10 * (2+1) = 35 mil acessos



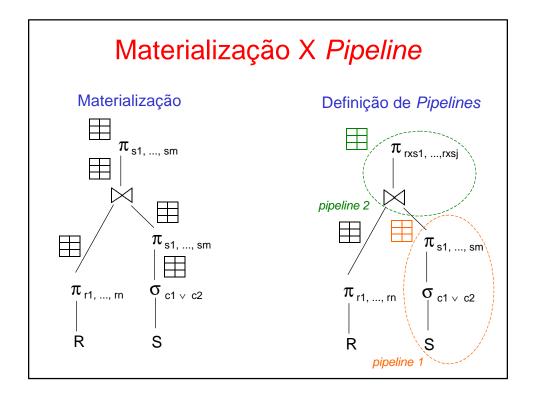
Índice Temporário - Exemplo

- Avaliando custo de criação de índice árvore-B sobre o resultado de R
 - supondo que o atributo de junção em R é chave, deve-se indexar 15.000 dados
 - supondo que se consegue um máximo de f₁
 55 nodos, com N = 50 valores, temos:
 - nível 0 ⇒ indexa 50 valores
 - nível 1 ⇒ indexa 51x50 = 2.550 valores
 - nível 2 ⇒ indexa 51x51x50 = 130.050 valores (máximo 3 níveis na árvore-B)
 - se f_I = 55, o primeiro nível (1 nodo) e o segundo nível (51 nodos) da árvore podem ficar em um bloco e os restantes em outros blocos. Logo, teremos no máximo 2 acessos (h_I = 2)! Vale a pena criar o índice!
 - custo total de A2 = 35 mil + "W" do índice
 - custo "W" do índice = 15.000 valores / N = 300 nodos / f_I = "W" de 6 blocos de índice (pior caso o índice não cabe na memória)



Materialização X Pipeline

- Materialização
 - cada operação da álgebra é materializada em uma relação temporária (se necessário) e utilizada como entrada para a próxima operação
 - situação default no processamento de consultas
- Pipeline
 - uma seqüência de operações algébricas é executada em um único passo
 - cada tupla gerada por uma operação é passada para a operação seguinte
 - cada tupla passa por um canal (pipe) de operações
 - somente o resultado ao final do pipeline é materializado (se necessário)



Pipeline de Operações

- + : evita a materialização de todos os resultados intermediários no processamento de uma consulta
- : resultado não é passado de forma completa para uma próxima operação dentro do pipeline
 - algoritmos de processamento das operações algébricas deve ser modificados para invocar outras operações para cada tupla gerada
 - algoritmos "dinâmicos"
 - algumas alternativas não podem ser estimadas
 - exemplos: merge-junção; operações de conjunto
 - exigem um resultado completo e ordenado para processar

Exemplo: um Produto sem Pipeline

- custo σ (pior caso) = 4 acessos (não é preciso "W" resultado)
- 2) custo π = 0 (tudo em memória) custo "W" resultado = 1 acesso (reserva apenas 1 buffer para os dados que vêm de S)
- 3) custo π = 5 acessos custo "W" resultado = 2 acessos (reserva apenas 1 buffer para os dados que vêm de R)
- 4) custo \bowtie (pior caso laço aninhado) = $(b\pi_S - 1) + b\pi_S * b\pi_R = 1 + 2*3 = 7$ acessos custo "W" resultado = $b_x - 1 = 4$ acessos

CUSTO TOTAL = 4+1+5+2+7+4 = 23 acessos

 $n\pi_{R} = 200$

 $b\pi_R = 3$

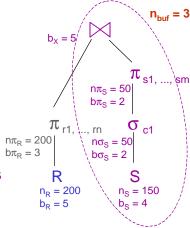
Produto dentro de um Pipeline

- o produto vai recebendo uma a uma as tuplas filtradas de S
- as tuplas de S não são recebidas ordenadas pelo atributo de junção
 - não dá para usar merge-junção
- custo (pior caso laço aninhado):

$$= b_S + n\pi_S * b\pi_R$$

= 4 + 50 * 3

 custo π = 5 acessos custo "W" resultado = 2 acessos (reserva apenas 1 buffer para os dados que vêm de R)



 $b\pi_S = 2$

 $n\sigma_S = 50$

 $n_{\rm S} = 150$

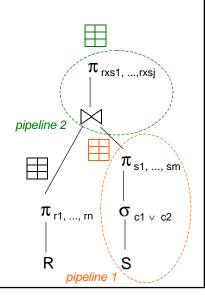
 $\pi_{\,r1,\,...,\,rn}$

 $n_R = 200$

CUSTO TOTAL = 158+5+2 = 165 acessos

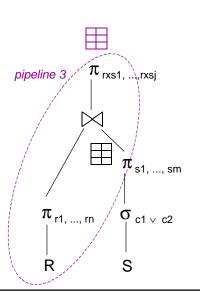
Uso mais Comum de Pipelines

 Em uma seqüência de operações que inicia em um nodo folha ou uma operação binária e termina ou no resultado da consulta ou em uma operação binária ob_x, sem incluir ob_x



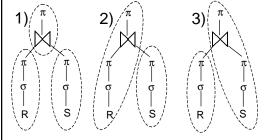
Uso mais Comum de Pipelines

- Em uma seqüência composta apenas por operações π e operações produtórias, a partir de um nodo folha ou uma operação binária ob_x, incluindo ob_x
 - considera que o tamanho dos resultados intermediários das operações π são muito grandes para serem materializadas
 - mesmo assim, avaliar se o custo das operações produtórias não aumenta com o pipeline...



Exercício 5

a) qual alternativa de *pipeline* para a árvore ao lado possui o menor custo de pior caso?



b) se $b\pi_R = 1$, a resposta do item anterior é diferente?

