
Understanding Web Query Interfaces: Best-Effort Parsing
with Hidden Syntax ∗

Zhen Zhang, Bin He, Kevin Chen-Chuan Chang
Computer Science Department

University of Illinois at Urbana-Champaign
{zhang2, binhe}@uiuc.edu, kcchang@cs.uiuc.edu

ABSTRACT
Recently, the Web has been rapidly “deepened” by many
searchable databases online, where data are hidden behind
query forms. For modelling and integrating Web databases,
the very first challenge is to understand what a query in-
terface says– or what query capabilities a source supports.
Such automatic extraction of interface semantics is challeng-
ing, as query forms are created autonomously. Our approach
builds on the observation that, across myriad sources, query
forms seem to reveal some “concerted structure,” by sharing
common building blocks. Toward this insight, we hypoth-
esize the existence of a hidden syntax that guides the cre-
ation of query interfaces, albeit from different sources. This
hypothesis effectively transforms query interfaces into a vi-
sual language with a non-prescribed grammar– and, thus,
their semantic understanding a parsing problem. Such a
paradigm enables principled solutions for both declaratively
representing common patterns, by a derived grammar, and
systematically interpreting query forms, by a global pars-
ing mechanism. To realize this paradigm, we must address
the challenges of a hypothetical syntax– that it is to be de-
rived, and that it is secondary to the input. At the heart
of our form extractor, we thus develop a 2P grammar and
a best-effort parser, which together realize a parsing mecha-
nism for a hypothetical syntax. Our experiments show the
promise of this approach– it achieves above 85% accuracy
for extracting query conditions across random sources.

1. INTRODUCTION
In the recent years, the Web has been rapidly “deep-

ened” by many searchable databases online. Unlike the sur-
face Web providing link-based navigation, these “deep Web”
sources support query-based access– Data are thus hidden
behind their query interfaces. With the myriad databases
online, at the order of 105 [3, 4], the deep Web has clearly

∗This material is based upon work partially supported by
NSF Grants IIS-0133199 and IIS-0313260. Any opinions,
findings, and conclusions or recommendations expressed in
this publication are those of the author(s) and do not nec-
essarily reflect the views of the funding agencies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2004June 13-18, 2004, Paris, France.
Copyright 2004 ACM 1-58113-859-8/04/06 . . .$5.00.

rendered large-scale integration a real necessity and a real
challenge.

Guarding data behind them, such query interfaces are the
“entrance” to the deep Web. These interfaces, or HTML
query forms, express query conditions for accessing objects
from databases behind. Each condition, in general, specifies
an attribute, one or more supported operators (or modifiers),
and a domain of allowed values. A condition is thus a three-
tuple [attribute; operators; domain], e.g., cauthor = [author;
{"first name. . .", "start. . .", "exact name"}; text] in in-
terface Qam (Figure 3(a)). Users can then use the condi-
tion to formulate a specific constraint (e.g., [author = "tom
clancy"] by selecting an operator (e.g., "exact name") and
filling in a value (e.g., "tom clancy").

For modelling and integrating Web databases, the very
first step is to “understand” what a query interface says–
i.e., what query capabilities a source supports through its
interface, in terms of specifiable conditions. For instance,
amazon.com (Figure 3(a)) supports a set of five conditions
(on author, title, . . ., publisher). Such query conditions estab-
lish the semantic model underlying the Web query interface.
This paper studies this “form understanding” problem: to
extract such form semantics.

Automatic capability extraction is critical for large-scale
integration. Any mediation task generally relies on such
source descriptions that characterize sources. Such descrip-
tions, largely constructed by hands today, have been iden-
tified as a major obstacle to scale up integration scenarios
[14]. For the massive and ever-changing sources on the Web,
automatic capability extraction is essential for many tasks:
e.g., to model Web databases by their interfaces, to classify
or cluster query interfaces [12], to match query interfaces [11]
or to build unified query interfaces.

Such form understanding essentially requires both group-
ing elements hierarchically and tagging their semantic roles:
First, grouping associates semantically related HTML ele-
ments into one construct. For instance, cauthor in Qam is a
group of 8 elements: a text "author", a textbox, three ra-
dio buttons and their associated text ’s. Such grouping is
hierarchical with nested subgroups (e.g., each radio button
is first associated with the text to its right, before further
grouping). Second, tagging assigns the semantic roles to
each element (e.g., in cauthor , "author" has the role of an
attribute, and the textbox an input domain.)

Such extraction is challenging, since query forms are cre-
ated autonomously. This task seems to be rather “heuristic”
in nature: with no clear criteria but only a few fuzzy heuris-
tics– as well as exceptions. First, grouping is hard, because
a condition is generally n-ary, with various numbers of el-

Semantic Model
(Query conditions)

Presentation
(Query Interface)

Hidden Syntax
(Grammar)

parsing

Composition

Figure 1: Hidden-syntax hypothesis.

ements nested in different ways. ([heuristics]: Pair closest
elements by spatial proximity. [exception]: Grouping is of-
ten not pairwise.) Second, tagging is also hard– There is no
semantic labelling in HTML forms. ([heuristics]: A text el-
ement closest to a textbox field is its attribute. [exception]:
Such an element can instead be an operator of this or next
field.) Finally, with various form designs, their extraction
can be inherently confusing – The infamous Florida “butter-
fly” ballots in US Election 2000 indicates that ill-designed
“forms” can be difficult, even for human voters, to simply
associate candidates with their punch holes. This incident
in fact generated discussions1 on Web-form designs.

Our approach builds on the observation that, across myr-
iad sources, query forms seem to reveal some “concerted
structure”: They appear to be “modularly” constructed
upon a small set of building blocks. Those condition patterns
present query conditions in certain visual arrangement– Fig-
ure 3(c) shows several examples. For instance, pattern 1 rep-
resents a common format for conditions of the form [attribute;
{contains}; text], by arranging attribute to the left of a
textbox. Such conditions represent keyword search (by an
implicit contains operator) on a textual attribute (e.g., au-
thor).

To capture this insight, we hypothesize the existence of
a hidden syntax behind Web query interfaces, across dif-
ferent sources. As Figure 1 illustrates, we rationalize the
phenomenon of concerted-structure by asserting query-form
creation as guided by such a hypothetical syntax, which con-
nects semantics to presentations. This hypothesis effectively
transforms the problem into a new paradigm: We view query
interfaces as a visual language, whose composition conforms
to a hidden, i.e., non-prescribed, grammar. Their semantic
understanding, as the inverse, is thus a parsing problem.

This “language” paradigm enables principled solutions–
to a problem that at first appears heuristic in nature– with
the essential notions of a grammar and a parser:

• For pattern specification, the grammar provides a declar-
ative mechanism. Such patterns (e.g., Figure 3(c)) are
simply declared by productions (i.e., grammar rules) that
encode their visual characteristics.

• For pattern recognition, the parser provides a global mech-
anism for systematically constructing a parse tree as a co-
herent interpretation of the entire query interface. Such
a parse naturally groups elements (nested in subtrees)
and tags their semantic roles (by grammar symbols), thus
achieving form understanding.

However, the hypothesis itself entails challenges in its re-
alization: First, as the hidden syntax is hypothetical, we
must derive a grammar in its place– What should such a de-
rived grammar encode, for capturing this “hidden syntax”?
Further, any derived grammar will be inherently incomplete

1
e.g., www.larrysworld.com/articles/ups ballot.htm.

HTML
Layout
Engine

Tokenizer

Best-effort
Parser

Merger

Output:
Query capabilities

Input:
HTML

query form

2P Grammar

[Author; {contains}; text]

[Title; {contains}; text]

[Price; {<}; {5, 20, 50}]

Figure 2: Form extractor for Web query interfaces.

(with uncaptured patterns) and ambiguous (with conflict-
ing patterns). Thus, a derived grammar is only secondary
to any input – Unlike traditional parsing, our parser cannot
reject any input query form, even if not fully parsed, as “il-
legal.” To work with a hypothetical syntax, what should be
the semantics and machinery for such a soft parser?

For understanding Web query interfaces, this paper presents
our form extractor, which essentially realizes the hidden-
syntax hypothesis. As Figure 2 shows, given an HTML
query form, the form extractor tokenizes the page, parses
the tokens, and then merges potentially multiple parse trees,
to finally generate the query capabilities. At its heart, we
develop a 2P grammar and a best-effort parser, which to-
gether realize a non-traditional parsing mechanism for a hy-
pothetical syntax. Our experiments show the promise of
this approach– it achieves above 85% accuracy for extract-
ing query conditions across random sources. In summary,
this paper makes the following contributions:

• Hidden-syntax hypothesis: Motivated by the concerted
structure, our key hypothesis transforms the seemingly
heuristic problem into a novel paradigm (Section 3).

• 2P grammar: For capturing the hidden syntax, we de-
velop a grammar mechanism that encodes not only pat-
terns but also their precedence (Section 4).

• Best-effort parser: Coping with the derived grammar
that is inherently ambiguous and incomplete, we develop
a best-effort parsing algorithm (Section 5).

• Experimental evaluation: We extensively evaluate the
effectiveness of the framework (Section 6).

2. RELATED WORK
While understanding query interfaces automatically is an

important problem for many applications (e.g., integration
of Web databases), the efforts invested are very limited. In
this section, we relate our work to others from three aspects:
works with similar basis on structure regularity, works ad-
dressing the same problem of interface understanding, and
works developing techniques in visual language parsing.

First, many works that address extracting the underly-
ing structure of Web pages rely on the regularities of such
structures, among which wrapper induction [2, 8, 17] has
been extensively studied. While those works deal with re-
sult pages as responses to a submitted query, our work focus
on query interfaces - the entrance to the database. The work
by Crescenzi [2] and Arasu [17] are closest to ours in that we
both view Web pages as generated from a grammar. How-
ever, in their settings, the existence of a grammar is not
an assumption but reality, because the collection of Web
pages studied are homogeneously generated from the same

(4)

(3)

(2)

(1)

(a) Query interface Qam: amazon.com. (b) Query interface Qaa: aa.com. (c) Examples of condition patterns.

Figure 3: Query interfaces examples.

background template. In our problem, the syntax is only hy-
pothetical based on the observations of heterogeneous query
interfaces. Further, their works are essentially addressing a
grammar derivation problem, while ours a parsing problem
with the hypothesis of a hidden syntax.

Second, the problem of understanding query interfaces is
mentioned, but not as focus, in several works [6, 13, 21].
Quite a few works that rely on automatic form filling [6,
9, 18] either only deal with simple keyword query forms or
make use of only selection lists for easy interaction. In par-
ticular, reference [21] proposed to use simple heuristics such
as proximity and alignment to associate pairwise elements
and texts in the forms, while we explore a parsing paradigm
with a hidden syntax to derive a global interpretation for the
input, which can generally capture not only complex compo-
sitions but also sophisticated features other than proximity
or alignment.

Third, by abstracting query interfaces as a visual lan-
guage, we are able to leverage the formalisms [10, 19, 22]
and techniques [10, 15, 16] developed in visual languages,
meanwhile still develop our own strategy to address specific
challenges in our problem, as we will see in the following
sections.

3. TOWARDS PARSING PARADIGM
This section develops our key insight of the hidden-syntax

hypothesis and the approach it enables. We first report our
motivating observations (Section 3.1), which leads to the key
hypothesis (Section 3.2). As the hypothesis brings forward,
we must also address the challenges entailed by a hypothet-
ical syntax (Section 3.3). Overall, our solutions develop a
language-parsing framework for building an automatic form
extractor, which Section 3.4 gives an overview.

3.1 Observations: Concerted Structure
As query interfaces are created autonomously, automatic

extraction of form semantics is clearly challenging. Is such
“form understanding” even possible? As Section 1 hinted,
there seems to be some common “patterns” emerging from
heterogeneous query forms. This impression suggests that
Web forms are not entirely chaotic (which, if so, would ren-
der automatic extraction unlikely). Consider these patterns
as the building blocks, or vocabulary, for constructing query
forms. We ask: What is this vocabulary? How large is it?

To answer these puzzles, we performed an informal sur-
vey: Using search engines (e.g., google.com) and Web di-
rectories (e.g., invisibleweb.com), we collected a total of 150
sources, which we call the Basic dataset, with 50 in each of
Books, Automobiles, and Airfares domains. (Many sources
are familiar ones, e.g., amazon.com and aa.com in Figure 3.)
We chose these domains as they are schematically dissimilar
and semantically unrelated– and thus constitute a diverse

“sample” of Web sources.
Our survey found that the query interfaces reveal some

concerted structure: there are only 25 condition patterns
overall– which is surprisingly small as a vocabulary for on-
line queries. Figure 4(a) summarizes the occurrences of 21
“more-than-once” patterns. The figure marks (x, y) with a
“+” if pattern y occurs in source x. As more sources are
seen (along the x-axis), the growth (along y) of the vocabu-
lary slows down and thus the curve flattens rapidly. Further,
we observe that the convergence generally spans across dif-
ferent domains (e.g., Automobiles and Airfares are mostly
reusing the patterns from Books), which indicates that most
condition patterns are quite generic and not domain specific.

Second, we observe that the distribution is extremely non-
uniform: Figure 4(b) ranks these 21 patterns according to
their frequencies, for each domain and overall. We observe
a characteristic Zipf-distribution, which means that a small
set of top-ranked patterns is very frequently used.

As implications, first, the small and converging vocab-
ulary, which occurs across autonomous sources and even
across diverse domains, indicates that there are conventions
(or “design patterns”) emerging among Web query forms.
While each form is different, together they seem to share a
relatively small set of vocabulary. Second, the non-uniform
distribution of patterns suggests that, to leverage such con-
ventions, even if we can not exhaustively cover all patterns,
a few frequent ones will likely pay off significantly.

3.2 Hypothesis: Hidden Syntax
The concerted-structure hints that form understanding

can be promising, by leveraging presentation conventions.
Intuitively, given a query form, we may build our under-
standing of it by decomposing into some known patterns,
each of which we have seen before– Thus, we assemble an
interpretation of an interface unseen before, by the patterns
we know of. This “divide-and-conquer” approach seems
promising, since we have observed a small vocabulary of
such patterns shared across diverse query forms.

While this approach is intuitively appealing, to realize it,
what would be a principled computation paradigm? The
task seems to be heuristic in nature– To use these layout
patterns (as previous works also explored; Section 2), it is
tempting to “simply” code up each pattern as a rule-of-
thumb, e.g., the pairwise-proximity grouping heuristic (Sec-
tion 1). To specify these patterns, such procedural descrip-
tion will involve convoluted code, lacking both generality
and extensibility. Further, to recognize these patterns, it is
far from clear, beyond individual heuristics, how they to-
gether form a coherent interpretation of the query form.

Toward our insight, we hypothesize the existence of a
hidden syntax behind Web query interfaces, across differ-
ent sources. This hypothesis rationalizes the observed con-

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

0 50 100 150

C
on

di
tio

n
P

at
te

rn
s

Sources

Books Automobiles Airfares

0

30

60

90

120

150

180

210

240

270

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

N
um

be
r

of
 O

bs
er

va
tio

ns

Condition Patterns in Ranked Order

Total
Books

Automobiles
Airfares

(a) Vocabulary growth over sources. (b) Frequencies over ranks.

Figure 4: Query vocabulary: condition patterns as building blocks for query interfaces.

certed structure. As Figure 1 illustrates, we view query-
form creation as guided by such a hypothetical syntax, which
connects semantics (i.e., query conditions) to presentations
(i.e., query forms). Such a hidden syntax represents the
presentation conventions across Web forms. Unlike tradi-
tional string languages (e.g., programming languages), this
syntax uses visual effects to express the embedded semantics
(e.g., pattern 1 in Figure 3(c) arranges the attribute to be
left-adjacent and bottom-aligned to the input field).

This hypothesis brings forward a new paradigm: We now
view query interfaces as a formal language, and in partic-
ular, a visual language, whose composition conforms to a
hidden, i.e., non-prescribed, grammar. Their semantic un-
derstanding, as the inverse, is thus a parsing problem.

This “language” paradigm further enables a principled al-
gorithmic framework for form understanding– a task that
appears inherently heuristic at first. By the hidden-syntax
hypothesis, we can now resort to a formal framework for
languages: The dual notions of a grammar and a parser to-
gether provide a systematic framework for both specifying
and recognizing common patterns.

For pattern specification, the grammar provides a declar-
ative mechanism. Such patterns (e.g., Figure 3(c)) are sim-
ply declared by productions (i.e., grammar rules) that en-
code their visual characteristics. The specification of pat-
terns is thus declarative, fully separated from and indepen-
dent of how they are recognized individually and assembled
globally– by the parser. It is general : By incorporating ar-
bitrary spatial relations (instead of, say, only proximity), we
can describe complex visual patterns. By building produc-
tions upon productions, we can describe patterns of differ-
ent “orders.” It is also extensible: We simply augment the
grammar to add new patterns, leaving parsing untouched.

For pattern recognition, the parser provides a global mech-
anism for systematically constructing a parse tree as a co-
herent interpretation of the entire query interface. Such a
parse naturally structures elements in nested subtrees, thus
satisfying the grouping requirement (Section 1). Further, it
assigns grammatical alphabet symbols (terminals and non-
terminals) to each construct, thus satisfying the tagging re-
quirement. Finally, we stress that, such parsing leverages
not only individual patterns but also their coherent assem-
bly into an entire query form, thus resolving local conflicts
by a global context. Parsing thus systematically realizes the
intuitive “divide-and-conquer” approach.

3.3 Challenges: Hypothetical Syntax
As the hidden syntax is simply hypothetical, while it en-

ables a new paradigm, we must address the challenges it

entails: As this hypothetical nature implies, our grammar
is non-prescribed : Instead of being prescribed before query
forms are created, it is simply derived from whatever conven-
tions naturally emerging. Further, our grammar is thus sec-
ondary to any language instance: Instead of dictating form
creation, it relies on the language’s natural convergence to
derive any convention. Our challenges are thus two-folded:

First, for capturing this hypothetical syntax, what should
such a derived grammar encode? Such a syntax represents
“conventions” used for Web form presentation. What types
of conventions are necessary to enable parsing? While we
want ideally to capture all patterns across many forms, un-
like in a carefully-orchestrated grammar, these patterns may
not be mutually “compatible.” We must thus rethink the
right mechanism for such a derived grammar, to capture
necessary conventions for enabling parsing.

Second, for working with a hypothetical syntax, what
should be the semantics and machinery for a soft parser ? A
derived grammar will be inherently incomplete (with uncap-
tured patterns) and ambiguous (with conflicting patterns).
Thus, such a grammar is only secondary to any input: Un-
like traditional parsing, our parser cannot reject any input
query form, even if not fully parsed, as “illegal.” That is,
our parser is no longer a language “police” for checking and
enforcing grammar rules. It must now be a “soft” parser
that accepts any input. We must thus rethink the right
semantics for such a soft parser, and further, its realization.

3.4 Solutions: 2P Grammar& Best-effort Parser
Our solutions build upon the traditional language frame-

work, dealing with the specific challenges outlined above.
First, as a derived grammar for capturing the hypothetical
syntax, the 2P grammar encodes not only “patterns” but
also their “precedence.” Second, as a soft-parser directed
by a hypothetical syntax, when a single perfect parse does
not exist, the best-effort parser resolves ambiguities as much
as possible and constructs parse trees as large as possible.

2P Grammar: To capture the hidden syntax, we develop
our grammar to encode two complementary types of presen-
tation conventions. On one hand, we must ideally capture
all conventional patterns. On the other hand, however, by
capturing many patterns, some will conflict, and we must
also capture their conventional precedence (or “priorities”).

Our 2P grammar mechanism, as Definition 1 specifies, en-
codes both conventions by productions and preferences re-
spectively (and thus the name). That is, it captures knowl-
edge for both pattern construction (by productions) and am-
biguity resolution (by preferences), as Section 4 will discuss.

Definition 1 (2P Grammar): A 2P grammar is a 5-tuple
〈Σ, N, s, Pd, Pf 〉: Σ is a set of terminal symbols. N is a set
of nonterminal symbols. s ∈ N is a start symbol. Pd is a
set of production rules. Pf is a set of preference rules.

In our framework, we use this 2P grammar mechanism to
express the hypothetical syntax. Such a grammar is to be
derived, from analyzing and abstracting common patterns.
In our implementation, we use a “global” grammar derived
from query interfaces in the Basic dataset– which thus es-
sentially captures the observations that Section 3.1 reported.
We discuss this grammar and the related issues in Section 6.

Best-effort Parser: To work with a hypothetical syntax,
we develop our parser to perform “best-effort.” As explained
earlier, a derived grammar will be inherently ambiguous and
incomplete. We thus need a “soft parsing” semantic– The
parser will assemble parse trees that may be multiple (be-
cause of ambiguities) and partial (because of incomplete-
ness), instead of insisting on a single perfect parse. First, it
will prune ambiguities, as much (and as early) as possible,
by employing preferences (as in the 2P grammar). Second,
it will recognize the structure (by applying productions) of
the input form, as much as possible, by maximizing par-
tial results. Our parser pursues this new “philosophy” of
best-effort parsing, which Section 5 will present.

Overall Framework– The Form Extractor: Upon the
core components of the 2P grammar and the best-effort
parser, we build our form extractor in a language-parsing
framework, as Figure 2 shows. Given an input HTML query
form, the form extractor outputs its semantic model (or
the query capabilities) of the form. At the heart, the best-
effort parser works with a derived 2P-grammar to construct
multiple and partial parse trees. As preprocessing, the to-
kenizer prepares the input to the core parser, by convert-
ing the input HTML form into a set of basic tokens, which
are the atomic units in the visual grammatical composition.
As post-processing, the merger integrates the output of the
parser to generate the final semantic model.

At the front-end, the tokenizer converts an HTML query
form (in a Web page) into a set of tokens, each represent-
ing an atomic visual element on the form. Note that these
tokens are instances of the terminals Σ as the 2P grammar
defines (Definition 1). Each token thus has a terminal type
and some attributes recording properties necessary for pars-
ing. For instance, given the HTML fragment (as part of
interface Qam), as Figure 5 shows, the tokenizer extracts a
set T of 16 tokens. In particular, token s0 is a text termi-
nal, with attributes sval = "Author" (its string value) and
pos = (10, 40, 10, 20) (its bounding-box coordinates). Al-
though different terminals have different attributes, this pos
attribute is universal, as our grammar captures two dimen-
sional layout. Such a tokenizer thus essentially builds on
a layout engine for rendering HTML into its visual presen-
tation. In particular, our tokenizer uses the HTML DOM
API (available in browsers, e.g., Internet Explorer), which
provides access to HTML tags and their positions.

At the back-end, the merger combines the multiple partial
parse trees that the parser outputs, to compile the semantic
model and report potential errors (if any). Since our parser
is rather generic, this step applies application (i.e., query
form) specific processing. First, since our goal is to iden-
tify all the query conditions, the merger combines multiple
parse trees by taking the union of their extracted conditions.
As each parse covers different parts of the form, this union

Author

Title

s0 t0

r1 r2 r3s7

r4 r5 r6

t1

s1 s2 s3

s4 s5 s6

…

text

textbox

Type

…

radio

text

Type

<name, query-0>
<pos, (50,100,10,20)>

t0<sval, Author>
<pos, (10,40, 10,20)>

s0

<name, field-0>
<pos, (50,55,22,32)>

<Attribute, value>

s1

ID

……

<sval, first name/initial
and last name>
<pos, (55,85, 22,32)>

r1

<Attribute, value>ID

Figure 5: Tokens T in fragment of interface Qam.

enhances the coverage of the final model constructed. For
example, given a fragment of interface Qaa, as Figure 14
shows, the parser will generate three partial parses (trees
2, 3, 4 in the figure) (Section 5.3). Their union covers the
entire interface and generates all the conditions.

The merger also reports errors, which will be useful for
further error handling by the “client” of the form extractor.
It reports two types of errors: First, a conflict occurs if the
same token is used by different conditions. In Figure 14,
tree 2 associates the number selection list with number of
passengers, while tree 3 with adults– and thus they conflict
by competing for the number selection. (In this case, tree
3 is the correct association.) Second, a missing element is
a token not covered by any parse tree. The merger reports
both types of errors for further client-side handling.

In summary, for automatic form understanding, we make
the key hypothesis of hidden syntax and thus pursue a pars-
ing framework for the form extractor. As the focus of this
paper, we will now concentrate on the dual cores of this
framework– the 2P grammar and the best-effort parser.

4. 2P GRAMMAR
As the key component in the parsing framework, 2P gram-

mar captures presentation conventions of Web interfaces.
Specifically, the 2P grammar declaratively and comprehen-
sively specifies both condition patterns and their precedence,
as a principled way to express a derived syntax and to re-
solve potential ambiguities. In particular, productions for-
mally specify common condition patterns and preferences
their relative precedence, as Section 4.1 and Section 4.2 will
present respectively.

4.1 Productions: Capturing Patterns
Since the condition patterns establish a small set of build-

ing blocks for Web interfaces, we need to explore appropri-
ate presentational characteristics to capture those condition
patterns as productions. In particular, in query interfaces,
visual effects such as topology (e.g., alignment, adjacency)
and proximity (e.g., closeness) are frequently used for ex-
pressing semantically related components and thus are the
candidates to be captured by productions. We find that
some features such as proximity work well for simple inter-
faces; however, it is hard to be extended to complex inter-
faces and can often result in incorrect interpretations. On
the other hand, we observe that the topology features such
as alignment and adjacency (e.g., left, above) accurately in-
dicate the semantic relationships among the components in
query interfaces. Therefore, in the 2P grammar, we exten-

Attr�textP10

RBU� Left(radiobutton, text)P9

Visual PatternsProduction Rules#

QI� HQI | Above(QI, HQI)P1

RBList � RBU | Left(RBList RBU)P8

HQI� CP | Left(HQI, CP)P2

EnumRB� RBListP7

TextOp� Left(Attr, Val) ∧ Below(Op, Val)P5

P4

P11

P3

P6

CP� TextVal | TextOp | EnumRB

Val�textbox

Op� RBList

TextVal� Left(Attr,Val) | Above(Attr,Val)
| Below(Attr, Val)

Attr Val

Attr Val

RBList

RBURBList

Op

textradiobutton

Figure 6: Productions of the 2P grammar.

sively explore such topological information, in the produc-
tions, to capture condition patterns.

Many two-dimensional grammars have been proposed in
visual languages to realize such specifications of visual pat-
terns, e.g., relational grammar [22], constraint multiset gram-
mar [19], positional grammar [7]. Our 2P grammar (with-
out considering the preferences), is a special instance of at-
tributed multiset grammar [10], where a set of spatial rela-
tions capturing topological information (e.g., left, right) are
used in productions.

The main extension of two dimensional grammars from
string grammars (e.g., for programming languages) is to
support general constraints. In two dimensional grammars,
productions need to capture spatial relations, which essen-
tially are constraints to be verified on the constructs. For
example, consider production P5 in Figure 6. To capture
the pattern TextOp (used by author in interface Qam), we
specify that Attr is left to Val and Op below to Val. (Note
that, in the 2P Grammar, adjacency is implied in all spa-
tial relations and thus omitted in the constraint names). In
contrast, productions in string grammars only use one con-
straint, the sequentiality, among components.

As a consequence, such extension leads to adaptations in
other aspects of the productions. Specifically, to support the
general constraints, each symbol has a set of attributes (e.g.,
pos of Attr, Op and Val), which stores the information used
in constraints evaluation (e.g., left, below). Further, each
production has a constructor, which defines how to instan-
tiate an instance of the head symbol from the components.
For example, after applying the production P5 to generate a
new TextOp instance i, the constructor computes i’s position
from its components. Formally, we define the production as:

Definition 2 (Production): A production P in a 2P gram-
mar G = 〈Σ, N, s, Pd, Pf 〉 is a four-tuple 〈H, M , C, F 〉:
Head H ∈ N is a nonterminal symbol. Components M ⊆
Σ∪N is a multiset of symbols. Constraint C is a boolean ex-
pression defined on M . Constructor F is a function defined
on M , returning an instance of H.

Example 1 (Grammar G): We show a simple grammar
G (without the component Pr) that we will use in later ex-
planations. As Figure 6 shows, grammar G specifies 11 pro-
ductions labelled from P1 to P11. Each production defines
a nonterminal (e.g., TextOp and EnumRB) as its head. The
start symbol is QI and the terminal symbols are text, textbox
and radiobutton. Note that, to simplify the illustration, we
omit the production constructors in Figure 6.

Val

TextVal

text textbox

Attr

Instance I1

Instance A1

s1 t1

P10 P11

P4

First name / initials and last name

textradio

RBU

Instance I2

r1 s1

P9

First name / initials and last name

(a) TextVal instance I1 (b) RBU instance I2

Figure 7: Two interpretations for text s1.

Productions P3 to P11 capture three patterns (patterns
1 and 2 in Figure 3(c) in addition to TextOp introduced
above). Productions P1 and P2 capture the form pattern by
which condition patterns are arranged into query interfaces.
In particular, we consider a query interface QI as composing
of vertically aligned “rows” HQI, where each HQI further
composes of horizontally aligned condition patterns CP.

Our productions provide a quite general and extensible
mechanism for describing patterns. First, it can express pat-
terns of different “orders”: Complex patterns are built upon
simpler ones. For example, pattern TextOp is constructed
from simpler patterns Attr, Op and Val, and in turn serves
as the basis of higher order patterns such as QI. Second,
it is very extensible to incorporate new patterns and new
constraints, while leaving the parsing algorithm untouched.
As we will discuss in Section 7, by changing the grammar,
exactly the same parsing framework can be used for other
applications.

4.2 Preferences: Capturing Precedence
For derived grammars, precedence is essential for resolving

the conflicts among patterns and thus an integral component
of the 2P grammar. While our grammar intends to capture
as many common (but non-prescribed) patterns as possi-
ble, those patterns may not be “compatible,” which results
in significant ambiguities (Section 4.2.1). To resolve those
ambiguities, we explore a preference framework, which cap-
tures the conventional precedence among condition patterns
(Section 4.2.2).

4.2.1 Inherent ambiguities
Ambiguity happens when there exist multiple interpreta-

tions for the same token, and therefore these interpretations
conflict on such a token. Example 2 shows an example of a
conflicting situation.

Example 2 (Ambiguity): To capture the condition pat-
tern TextVal used by from condition in Qaa and pattern
RBU used in Qam, we define productions P4 and P9 respec-
tively. However, such generality brings ambiguities, allowing
a token to be interpreted differently by different patterns.
Consider the text token s1 (i.e.,“first name/initial and last
name”) in Figure 5, pattern TextVal(P4) and RBU(P9) have
different interpretations on s1, as Figure 7 shows. In partic-
ular, TextVal interprets it as an Attr instance A1 in a TextVal
instance I1 (Figure 7(a)). In contrast, RBU interprets it as
the text of a RBU instance I2 (Figure 7(b)). Since conflicting
on s1, I1 and I2 cannot appear in the same parse tree.

The existence of ambiguities may cause parsing inefficient
and inaccurate. It is inefficient because of local ambigui-
ties: The parser may generate “temporary instances” that
will not appear in any complete parse tree. An ambiguity

RBList

RBList

RBList
Instance RB1

RBU RBU RBU

r1 r2 r3 s3s2s1

RBList RBList RBList

Instance RB2 Instance RB3 Instance RB4

RBU

r1 s1

RBU

r2 s2

RBU

r3 s3

(a) Derivation tree 1 (b) Derivation tree 2

Figure 8: Two interpretations for radio button list.

QI

TextOp

ValAttr Op

…
…

…
…

RB1s0 t0

QI

Text

ValAttr
EnumRB EnumRB EnumRB

…
…

…
…

RB2 RB3 RB4s0 t0

(a) Parse tree 1 (b) Parse tree 2

Figure 9: Two parse trees for query interface Q1.

between two instances is local if at least one of them is a
temporary instance. Consider Example 2, I1 is a temporary
instance, since we cannot further derive a complete parse
tree from I1. In contrast, we can derive complete parse trees
from I2 (as Figure 9 shows two). Hence, such ambiguity is
local because it can eventually be resolved at the end of pars-
ing. As we will show in Section 5, the parsers used in visual
language generally follow a bottom-up exhaustive approach
which explores all possible interpretations. Therefore, the
existence of local ambiguities makes parsing very inefficient
due to the generation of many “temporary instances.”

In contrast, global ambiguities make the parsing results
inaccurate: The parsing may generate more parse trees than
the semantically correct one. An ambiguity between two
instances is global if they lead into different parse trees, and
thus cannot be resolved even at the end of parsing.

Example 3 (Global ambiguity): To capture radio but-
ton lists of arbitrary length, production P8 is defined in
a recursive way. As a result, a radio button list of length
three can have four interpretations, depending on how they
are grouped. Figure 8 shows such two - (a) as a single list
or (b) as three individual lists with each of length one. The
ambiguity between these two interpretations is global, be-
cause they eventually lead to two different parse trees, as
Figure 9 shows. The first one takes the entire list as an op-
erator of author, while the second takes each list (of length
1) as a condition pattern EnumRB.

The effect of the inherent ambiguities is significant. For
instance, the simple query interface in Figure 5 has one cor-
rect parse tree containing 42 instances (26 non-terminals
and 16 terminals). However, applying the basic parsing ap-
proach (to be discussed in Section 5) that exhausts all pos-
sible interpretations by “brute-force,” we get 25 parse trees
and totally 773 instances (645 temporary instances and 128
non temporary ones). The reason to have such a significant
amount of ambiguities is that conflicting instances may fur-
ther participate in generating other instances, which in turn
conflict. Such exponential aggregation makes ambiguity a
significant problem in parsing.

4.2.2 Preference
To resolve the significant ambiguities among condition

patterns, it is essential for a derived grammar to prioritize

these patterns. The derived nature of our hidden syntax
implies that such precedence comes from “hidden priority
conventions” across patterns. In predefined grammars, the
creation of a grammar is prior to that of the corresponding
language, therefore how to resolve ambiguity is determined
apriori. However, in derived grammars, the precedence it-
self is part of conventions to be derived from the language,
and thus cannot be arbitrarily decided. In this paper, we
propose to explore preference to encode such conventional
precedence across patterns.

Example 4 (Preference): Consider the two conflicting in-
stances, A1 and I2, in Example 2. Is there any convention
that indicates which one is better? We observe that text and
its preceding radio button are usually tightly bounded to-
gether, therefore when conflicting, I2 is more likely to have a
higher priority than A1. Such convention of the precedence
between patterns establishes our knowledge to resolve the
ambiguities. In particular, we encode such precedence con-
vention as a “preference” R1: When an RBU instance and
an Attr instance conflict on a text token, we arbitrate un-
conditionally the former as the winner.

In general, a convention may also carry a criterion for
picking the winner: For example, for the ambiguity in Ex-
ample 3, we observe that a row of radio buttons is usually
used as a single longer list rather than separate shorter ones.
Therefore, we define a preference R2: When two RBList in-
stances conflict, and if one subsumes the other, we pick the
longer one as the winner.

Specifically, each preference resolves a particular ambi-
guity between two types of conflicting instances by giving
priority to one over the other. As Example 4 motivates,
such a preference needs to specify the situation and the res-
olution. The situation indicates the type of conflicting in-
stances (e.g., RBList in preference R2) and the conflicting
condition (e.g., subsume). The resolution describes the cri-
teria that the winner instance should satisfy (e.g., longer).
Formally, we define the preference as:

Definition 3 (Preference): A Preference R in a 2P gram-
mar G = 〈Σ, N, s, Pd, Pf 〉 is a three-tuple 〈I, U , W 〉:
• Conflicting instances I = 〈v1 : A, v2 : B〉, where A, B ∈

T ∪ Σ, identifies the types of instances v1 and v2 respec-
tively.

• Conflicting condition U : a boolean expression on v1, v2

that specifies a conflicting situation to be handled.

• Winning criteria W : a boolean expression on v1, v2 that
specifies the criteria to pick v1 as winner.

There are several advantages of using preferences to re-
solve ambiguities. First, as the specification of precedence,
preferences are simple and effective mechanism to encode
the precedence conventions deterministically. Such simplic-
ity helps the parser efficiently resolve ambiguities, compared
with other approaches, e.g., probabilistic model for enabling
precedence. As we will discuss in Section 7, although our
preferences only encode a “flat set” of precedence and thus
may be nondeterministic when preferences themselves con-
flict, in practice we never have such a situation, because
semantically meaningful preferences are consistent.

Second, as a mechanism for ambiguity resolution, prefer-
ences are particularly suitable to derived grammars. Tradi-
tional techniques, such as lookahead prediction [1] and gram-
mar transformation [7], impose significant restrictions on

QI
TextOp

parse tree

fix-point
Tokens

TTTT

iterative
construction

…..
…..

TextOp

First name/initials and last name

Start of last name

Exact name

First name/initials and last name Start of last name Exact name

First name/initials and last name Start of last name Exact name

Author:

Title word(s) Start(s) of title word(s) Exact start of title

Title:

Author:

Figure 10: Fix-point parsing process.

the productions, which are difficult to meet for a derived
grammar. In contrast, preferences can be specified indepen-
dently from the productions without any specific constraint
on the grammar. Further, preferences uniformly deal with
both local and global ambiguities by favoring promising in-
terpretations. Such uniform treatment is especially desirable
for a derived grammar because its potential incompleteness
blurs the distinction between local and global ambiguities.

5. BEST-EFFORT PARSER
With 2P grammar capturing the conventions of condi-

tion patterns and their precedences, this section presents a
best-effort parsing algorithm that on one hand makes use of
preferences to prune the wrong interpretations in a timely
fashion, and on the other hand handles partial results to
achieve maximum interpretations for the input. We start
with outlining the best-effort parsing algorithm 2PParser
(Section 5.1), then zoom into two essential components:
just-in-time pruning (Section 5.2) and partial tree maximiza-
tion (Section 5.3).

5.1 Overview
With potential ambiguities and incompleteness, our best

effort parser operates on a basic framework, the fix-point
evaluation [10, 15, 23], that progressively and concurrently
develops multiple parse trees. The essential idea is to con-
tinuously generate new instances by applying productions
until reaching a fix-point when no new instance can be gen-
erated. For example, as Figure 10 conceptually shows, the
parser starts from a set of tokens T (Figure 5), iteratively
constructs new instances and finally outputs parse trees. In
particular, by applying the production P9, we can gener-
ate an RBU instance from the text token s1 and radiobutton
r1. Further, with the production P8, the RBUs in a row
together generate an RBList instance. Continuing this pro-
cess, we eventually reach the fix-point. A complete parse
tree corresponds to a unique instance of the start symbol QI
that covers all tokens, as Figure 10 conceptually shows one.
However, due to the potential ambiguities and incomplete-
ness, the parser may not derive any complete parse tree and
only end up with multiple partial parse trees.

Upon this framework, we realize the “best-effort” philoso-
phy by essentially: First, just-in-time pruning to prune the
parse trees with wrong interpretations as much and as early
as possible; Second, partial tree maximization to favor the
parse trees that interpret an input as much as possible.

Figure 11 shows the best-effort parsing algorithm 2PParser.
Corresponding to the above two components, the algorithm
has two phases: first, parse construction with just-in-time
pruning, and second, partial tree maximization at the end
of parsing. To achieve just-in-time pruning, we schedule the
symbols (by procedure BldSchdGraph) in a proper order so
that false instances are pruned timely before further causing
more ambiguities. According to the scheduled order, we in-

Proc 2PParser(TS, G):
Input: Token set TS, grammar G
Output: Maximum partial trees res
begin:

Y = BldSchldGraph(G)
find a topological order of symbols in Y
for each symbol A in order:

I += instantiate(A)
for each preference R involving A:

F = enforce(R)
for each invalidated instance i ∈ F

Rollback(i)
res = PRHandler()

end
Proc instantiate(A):
Input: Symbol A
Output: Instances of A inst
begin

inst = ∅
repeat

for each production p with head being A:
inst += apply(p)

until no new instance added into inst
end

Figure 11: Parser for 2P grammar.

stantiate the symbols one by one with a fix-point process (by
instantiate). Preferences are enforced at the end of each it-
eration (by enforce) to detect and remove the false instances
in this round. When an instance is invalidated, we need to
erase its negative effect: false instances may participate in
further instantiations and in turn generate more false par-
ents. Procedure rollback is used to remove all those false
ancestors to avoid further ambiguity aggregation. Finally,
after parse construction phase, PRHandler chooses the max-
imum parse trees generated in the parse construction phase
and outputs them.

Inherently, visual language parsing is a “hard” problem.
The complexity of the membership problem (i.e., given gram-
mar G, a sentence S, to determine whether S ∈ L(G)) for
visual languages is NP-complete [20]. Therefore, the algo-
rithm runs in exponential time with respect to the num-
ber of tokens. However, in practice, the use of preferences
gives reasonably good performance. Our implementation2

shows that, given a query interface of size about 25 (num-
ber of tokens), parsing takes about 1 second. Parsing 120
query interfaces with average size 22 takes less than 100
seconds. (The time measured here only includes the parsing
time without tokenization and merger.)

In the next two sections, we zoom into the just-in-time
pruning technique for ambiguity resolution and the partial
tree maximization technique for partial results handling in
more details.

5.2 Just-in-time Pruning
To prune false instances as much and as early as possible,

we need to find a good timing for enforcing the preferences.
Such timing would guarantee that any false instance is re-
moved before participating in further instantiations, there-
fore no rollback is necessary. However, applying preferences
whenever a new instance is generated in the basic fix-point
algorithm cannot achieve so.

2The experiment is conducted with a Pentium IV 1.8GHz
PC with 512MB RAM.

EnumRB

CP

RBU
Attr

TextVal

QI

HQI

Val

RBList

TextOp

Op

EnumRB

CP

RBU

Attr

TextVal

QI

HQI

Val
RBList

TextOp

Op

(a) d-edges (b) r-edges (c) 2P schedule graph

RBU

Attr

Figure 12: The 2P schedule graph for grammar G.
Example 5: With the preference R1 (defined in Example 4)
which resolves the local ambiguity in Example 2, the Attr in-
stance A1 should be removed by the RBU instance I2. What
if A1 is generated at the very beginning of parsing, while I2
at the end? A1 will still instantiate instance I1 (and possibly
others), and only be removed at the end of parsing (when
I2 is generated). This “late pruning” makes the preference
R1 ineffective in controlling ambiguity aggregation.

To address the problem, we want to generate the winner
instance (e.g., I2) before the loser (e.g., A1) so that the loser
can be detected and pruned whenever it is generated. Essen-
tially, we want to schedule the instance generation in some
desired order consistent with the preferences. As preferences
are defined on symbols, to guarantee the order on particu-
lar instances, we enforce such an order on symbols so that
the winner symbol produces all its instances before the loser
does. Therefore, such symbol-by-symbol instantiation and
winner-then-loser order can guarantee that the instances are
produced in a desired order to ensure just-in-time pruning.

To realize the symbol-by-symbol instantiation, the sym-
bols have to be processed in a “children-parent” direction
defined by the productions. For example, consider symbol
TextOp, as the production P5 defines, the symbols that con-
tribute to the instantiation of TextOp are Attr, Op and Val.
Before we can process TextOp, those children symbols must
be processed first. Further, to realize the winner-then-loser
order, the winner symbol (e.g., RBU in Example 5) must be
scheduled before the loser (e.g., Attr).

To schedule the symbols by the above two orders, we build
a 2P schedule graph. The graph consists of the symbols
as nodes and two types of edges - d-edges to capture the
“children-parent” order defined by the productions and r-
edges to capture the winner-then-loser order defined by the
preferences.

Example 6 (2P schedule graph Y): Figure 12(c) shows
the 2P schedule graph Y for the Grammar G (defined in Ex-
ample 1), by merging d-edges (Figure 12(a)) and r-edges
(Figure 12(b)). Y has a d-edge A → B if the grammar has
a production with head symbol A and component symbols
containing B (i.e., A is a parent of B). Y has an r-edge
C 99K D if the grammar has a preference D over C (i.e., D
is the winner and C is the loser). We omit the self-cycles be-
cause they do not affect the scheduling. (More precisely, we
also omit the terminals, as they do not affect the schedula-
bility in this example.) By merging these two types of edges,
we get the 2P schedule graph Y , with solid edges denoting
d-edges and dashed r-edges.

By enforcing a topological order on symbol instantiations,
this 2P schedule graph captures the two requirements needed
for just-in-time pruning. If the graph is acyclic, any topolog-
ical order achieves such a goal. For example, as our sched-

Transformation

B

A

D

C

r-edge

E F

B

A

D

C

Indirect r-edge

E F

(a) Before transformation. (b) After transformation.

Figure 13: Transformation of an r-edge.

ule graph Y (Example 6) is acyclic, we schedule RBU before
Attr. Thus, instance I2 is generated before A1, which then is
pruned promptly when generated. More precisely, as pref-
erences are enforced at the end of each symbol instantiation
to avoid repeated calls for every instance, ambiguities may
aggregate during the instantiation of the symbol, which is
minimal.

However, a 2P schedule graph may be cyclic. For exam-
ple, suppose we have two symbols B and C, which share a
construct A, as Figure 13 illustrates. Let a, b and c denote
instances of A, B and C respectively. Instances b and c may
potentially conflict on a. To resolve the ambiguity, suppose
we define 2 preferences RC99KB and RB99KC . The former
specifies that we prefer b to c if, say, the inter-component
distance of b is smaller than that of c. Similarly, the later
states that we prefer c to b if such distance of c is smaller
than that of b. In other words, the two preferences define
that the winner instance, which can be either b or c, is the
one with smaller inter-component distance. The two r-edges
thus form a cycle C 99K B 99K C.

When the graph is cyclic, there is no such an order that
satisfies both scheduling requirements (i.e., the symbol-by-
symbol and winner-then-loser orders). Therefore, some edges
have to be “relaxed.” The d-edge must be enforced be-
cause symbol-by-symbol instantiation is the prerequisite of
winner-then-loser order. (This implies that we require the
d-edges form an acyclic graph.) In contrast, since the r-edge
is to enhance efficiency by removing false instances early, it
is mainly an “optimization.” Even if we remove the r-edge,
the negative effect is to introduce more false instances. Such
negative effect can be erased by the rollback step, although
it incurs some overhead in efficiency. In fact, removal of the
r-edge is not the only way of relaxation. Transformation, as
we will discuss next, may relax an r-edge without causing
the negative effect of ambiguity aggregation.

Is it possible to relax an r-edge while still achieving just-
in-time pruning? The answer is yes, because the require-
ment imposed by an r-edge is sufficient but not necessary
to achieve our goal. Consider the r-edge C 99K B, assume
we remove this r-edge to break the cycle. We notice that if
we can schedule B before C’s parent symbol D, the winner
B can still prevent any further false instances, which is D
here, to be generated from the loser C.

Therefore, as Figure 13 illustrates, in case of cycle, we
transform an original r-edge C 99K B to a set of indirect
r-edges by, for each C’s parent D (defined by a d-edge),
adding an indirect r-edge D 99K B. By doing so, the cy-
cle in Figure 13(a) is broken. We thus have a scheduling,
e.g., E, F, A, C, B, D, that achieves just-in-time pruning. In
this schedule, since C is scheduled before B, any false in-
stance of B is pruned promptly at generation. On the other
hand, although C is scheduled before B, the false instances

Tree (4)Tree (3)

Tree (2)Tree (1) QI

QI QI

QI

Figure 14: Partial trees for interface Qaa fragment.

of C are removed when the instances of the winner B are
generated, which is still before any instance of C’s parent,
D, is processed. Therefore, by transformation, we achieve
just-in-time pruning. Although such transformation can-
not guarantee to break all cycles in a 2P schedule graph, in
practice, it is very effective to handle all the cycles in our
2P grammar.

If transformations still cannot break cycles, we have to
remove r-edges and use rollback to offset the negative effects
caused by late pruning. As cycles are rare situations, we
employ a greedy algorithm in building 2P schedule graph to
avoid cycles at first place: we add r-edges one by one, and if
an r-edge causes cycle even after transformation, we simply
remove it. When an r-edge is removed, a false instance may
have chance to generate its parents. We then use rollback
to erase those false ancestors caused by late pruning.

An interesting issue, as we will discuss in Section 7, is the
problem of preferences consistency. The preferences are not
consistent if given a set of tokens as input, different orders of
applying the preferences result in different derivation results.
In such case, which order is the right one is not defined.
The algorithm outlined above assumes the consistency of
preferences, and therefore generates a unique result.

5.3 Partial Tree Maximization
While just-in-time pruning addresses the inherent ambi-

guities of the grammar, in this section we briefly discuss how
to handle the partial parse trees. The parsing algorithm gen-
erates partial parse trees when the grammar is incomplete
to interpret the entire query interface.

Specifically, partial parse trees are the derivation trees
that cover a subset of tokens and can not be expanded fur-
ther. For instance, when a query interface contains new con-
dition patterns not covered by the 2P grammar, the parse
construction will stop at those partial trees, since not being
able to further assemble more tokens. For example, consider
the query interface in Figure 14, which is a variation from the
interface Qaa. Grammar G does not completely capture the
form patterns of that interface: The lower part is arranged
“column by column” instead of “row by row.” Therefore,
the parse construction generates only partial parses, as Fig-
ure 14 shows four of them.

To maximize the understanding of query interfaces, our
parser favors the maximum partial trees that interpret as

many tokens as possible. In particular, we use maximum
subsumption to choose parse trees that assemble a maxi-
mum set of tokens not subsumed by any other parse. For
example, Tree 1 in Figure 14 is not maximum because the
tokens covered by Tree 1 is subsumed by those of Tree 2.
The other three, although overlapping, do not subsume each
other. (It is straightforward to see that a complete parse tree
is a special case of maximum partial tree.) In addition to
maximizing the interpretations, such maximum parse trees
also potentially achieve better interpretations, since they are
looking at larger context compared with the non-maximum
ones.

6. EXPERIMENTS
To evaluate the performance, we test our approach ex-

tensively on four datasets. Three of them are mainly se-
lected from the TEL-8 dataset of the UIUC Web Integration
Repository [5] for different purposes (as will be discussed
below). The TEL-8 dataset contains about 500 deep Web
sources across 8 domains. It is manually collected using
Web directories (e.g., invisibleweb.com, brightplanet.com)
and search engines (e.g., google.com). The last dataset we
use in the experiment is collected by randomly sampling the
invisible-web.net.

• Basic dataset, which we used in our motivating survey (as
Section 3 reported), contains 150 sources in three domains
(i.e., Airfares, Automobiles, and Books), mainly from the
TEL-8 dataset.

• NewSource dataset contains 10 extra query interfaces from
each of the above three domains, with a total of 30 sources.

• NewDomain dataset contains query interfaces from six dif-
ferent domains other than the above three (five from the
TEL-8 dataset and a new RealEstates domain). Each do-
main has about 7 sources with a total of 42 sources.

• Random dataset contains 30 query interfaces that we ran-
domly sampled from the Web. In particular, we choose
invisible-web.net as our pool of sampling, which contains
about 1,000 manually complied deep Web sources. As all
the sources are sequentially numbered in the directory, we
can easily draw random samples using the source IDs. The
sampled sources cover 16 out of the 18 top level domains
in the directory.

Our study intends to evaluate whether a single global
grammar can be used for arbitrary domains. The grammar
used in the experiment is derived from the Basic dataset.
We manually observe the 150 query interfaces in the dataset,
and summarize 21 most commonly used patterns. The de-
rived grammar has 82 productions with 39 nonterminals and
16 terminals. The grammar is available online, as we will
discuss later.

We test the derived grammar against the four datasets.
The first one, as a baseline comparison, evaluates the per-
formance over sources from which the grammar is derived.
The other three test how well such a single grammar can per-
form over new sources (NewSource dataset), new domains
(NewDomain dataset) and even random sources (Random
dataset) from highly heterogeneous domains.

The experimental results (Section 6.2) show that our pars-
ing approach can achieve good precisions and recalls (as Sec-
tion 6.1 will introduce) for all these four datasets. Some
sample results of the form extraction (as part of the exper-

0

10

20

30

40

50

60

70

80

90

100

1.0 .9 .8 .7 .6 0

P
er

ce
nt

ag
e

of
 S

ou
rc

es

Precision

Basic
NewSource
NewDomain

Random

0

10

20

30

40

50

60

70

80

90

100

1.0 .9 .8 .7 .6 0

P
er

ce
nt

ag
e

of
 S

ou
rc

es

Recall

Basic
NewSource
NewDomain

Random

(a) Source distribution over precision. (b) Source distribution over recall.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Basic NewSource NewDomain Random

P
re

ci
si

on
 a

nd
 R

ec
al

l

Precision
Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Basic NewSource NewDomain Random

P
re

ci
si

on
 a

nd
 R

ec
al

l

Precision
Recall

(c) Average precision and recall. (d) Overall precision and recall.

Figure 15: Precision and recall over the four datasets.

iments) as well as the grammar we used are available as an
online demo3.

6.1 Metrics
Since the goal of our form extractor is to extract the query

capabilities for each source, as a set of supported query con-
ditions, we adopt precision and recall as our measurement of
performance. For each query interface, we manually extract
the set of conditions in its semantic model and compare with
the ones extracted by the form extractor. We measure the
results in two ways - per-source metric and overall metric.

• Per-source metric measures the result for each source.
Given interface q, let Cs(q) denote the set of conditions
in its semantic model and Es(q) the extracted conditions
by the form extractor. The following formula Ps(q) and
Rs(q) calculate the precision and recall respectively for
the interface q.

Ps(q) = Cs(q)∩Es(q)
Es(q)

, Rs(q) = Cs(q)∩Es(q)
Cs(q)

• Overall metric measures, given a set of query interfaces
w, the precision and recall over all conditions aggregated
in those sources. Let Ca(w) denote all the conditions in w
and Ea(w) the extracted conditions. The overall precision
and recall over w are defined as:

Pa(w) = Ca(w)∩Ea(w)
Ea(w)

, Ra(w) = Ca(w)∩Ea(w)
Ca(w)

6.2 Experimental Results
3
The online demo is available at the MetaQuerier project web site at

http://metaquerier.cs.uiuc.edu.

Figure 15 summarizes the results of the global study: Fig-
ure 15(a) and (b) show the distribution of per-source preci-
sion and recall for the four datasets. For instance, in the Ba-
sic dataset, 69% sources have precision 1.0, and 72% sources
have 1.0 recall. Figure 15(c) shows the average per-source
precision and recall in the four datasets, and (d) the over-
all precision and recall. As we can see, for the Random
dataset, the overall precision Pa(Random) achieves 0.8 and
recall Ra(Random) 0.89, resulting in an accuracy (as the
average of Pa and Ra) of 0.85.

It is interesting to observe that the result from the New-
Source dataset has the best performance, which is even bet-
ter than that of the Basic dataset. The reason may be that
we might have some “bias” during the collection of data in
the survey: We tend to collect complex forms with many
conditions, since we want to know how complex query inter-
faces can be. However, when collecting the new sources, we
are more “random.” Therefore those query interfaces turn
out to be simpler and show better accuracy.

The results from this set of experiments show that a single
global grammar can achieve reasonable good performance
across heterogeneous domains. The performance over the
four datasets are rather even, as Figure 15(d) shows, and
we do not observe significant performance drop when ex-
tending to more heterogenous sources - about 0.85 of overall
precision and recall for first three datasets, and over 0.80 for
randomly sampled sources.

7. CONCLUDING DISCUSSION
During our development of the system, we observe several

interesting issues that deserve more future work. First, while

the current merger reports conflicting and missing elements,
it is appealing to further resolve these problems by exploring
other information. Specifically, to resolve the conflict in a
specific query interface, we can leverage the correctly parsed
conditions from other query interfaces of the same domain
(e.g., using the extraction of flyairnorth.com to help the un-
derstanding of aa.com). Also, to handle missing elements,
we find it promising to explore matching non-associated to-
kens by their textual similarity.

Second, our experiments indicate that a single global gram-
mar seems quite acceptable for the form extraction task (as
Section 6.2 reported) and thus it may not be critical to ex-
ploit other approaches to establish such a grammar. How-
ever, for other potential applications, it may be interesting
to see how techniques such as machine learning can be ex-
plored to automate such grammar creation. In particular,
we are interested in the selection of sources to be used in
the training phase, where techniques such as active learning
can be applied.

Third, as mentioned in Section 5, our preference frame-
work is very simple: Preferences are “equal” (or “flat”),
meaning there is no priority among preferences. Such sim-
ple framework assumes the consistency of the preferences,
i.e., different orders of applying the preferences yield the
same result. In our application, the preferences defined are
indeed simple and consistent. (Even for the seemingly con-
tradictory preferences in the schedule graph of Figure 13,
they are consistent in semantics.) Is such a simple frame-
work sufficient for other applications? If consistency cannot
be guaranteed in such applications, it is interesting to see
how to develop and integrate a more sophisticated prefer-
ence model (e.g., prioritized preferences) into the parsing
framework.

Fourth, can the best-effort parsing framework be used in
other applications? We observe that many Web design “ar-
tifacts” follow certain concerted structure. For instance, the
navigational menus listing available services are often reg-
ularly arranged at the top or left hand side of entry pages
in E-commerce Web sites. Therefore, we believe, by design-
ing a grammar that captures such structure regularities, we
can employ our parsing framework to extract the services
available in E-commerce Web sites.

To conclude, this paper presents a best-effort parsing frame-
work to address the problem of understanding Web query
interfaces. The concerted structure of query interfaces as
we observed motivates our key hypothesis of hidden syntax:
Query interfaces, although constructed autonomously, seem
to be guided by a hidden syntax in the creation. Such a
hypothesis transforms query interfaces as a visual language,
and thus enables parsing as a principled framework to under-
stand the semantic model of such a language. In particular,
we propose a 2P grammar to declaratively and comprehen-
sively capture the conventions of pattern presentations and
their precedence. To address the challenges rendered by the
derived syntax, we realize a “best-effort” parsing philosophy
by a best-effort parser that on one hand prunes wrong in-
terpretations as much and as early as possible, and on the
other hand, understand the interface as much as possible.
The experiments show the effectiveness of our approach.

8. REFERENCES
[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley Pub
Co, 1986.

[2] A. Arasu and H. Garcia-Molina. Extracting structured
data from web pages. In SIGMOD Conference, 2003.

[3] BrightPlanet.com. The deep web: Surfacing hidden value.
Accessible at http://brightplanet.com, July 2000.

[4] K. C.-C. Chang, B. He, C. Li, and Z. Zhang. Structured
databases on the web: Observations and implications.
Technical Report UIUCDCS-R-2003-2321, Department of
Computer Science, UIUC, Feb. 2003.

[5] K. C.-C. Chang, B. He, C. Li, and Z. Zhang. The UIUC
web integration repository. Computer Science Department,
University of Illinois at Urbana-Champaign.
http://metaquerier.cs.uiuc.edu/repository, 2003.

[6] B. Chidlovskii and A. Bergholz. Crawling for
domain-specific hidden web resources. In Proceedings of
4thInternational Conference on Web Information Systems
Engineering, 2003.

[7] G. Costagliola, A. D. Lucia, S. Orefice, and G. Tortora. A
parsing methodology for the implementation of visual
systems. IEEE Transactions on Software Engineering,
23(12):777–799, 1997.

[8] V. Crescenzi, G. Mecca, and P. Merialdo. Roadrunner:
Towards automatic data extraction from large web sites. In
VLDB Conference, pages 109–118, 2001.

[9] R. B. Doorenbos, O. Etzioni, and D. S. Weld. A scalable
comparison-shopping agent for the world-wide web. In
Proceedings of the First International Conference on
Autonomous Agents, pages 39–48, 1997.

[10] E. J. Golin. Parsing visual languages with picture layout
grammars. Journal of Visual Languages and Computing,
4(2):371 – 394, 1991.

[11] B. He and K. C.-C. Chang. Statistical schema matching
across web query interfaces. In SIGMOD Conference, 2003.

[12] B. He, T. Tao, and K. C.-C. Chang. Clustering structured
web sources: A schema-based, model-differentiation
approach. In EDBT’04 ClustWeb Workshop, 2004.

[13] H. He, W. Meng, C. Yu, and Z. Wu. Wise-integrator: An
automatic integrator of web search interfaces for
e-commerce. In VLDB Conference, 2003.

[14] M. A. Hearst. Trends & controversies: Information
integration. IEEE Intelligent Systems, 13(5):12–24, 1998.

[15] R. Helm, K. Marriott, and M. Odersky. Building visual
language parsers. In Proceedings on Human Factors in
Computing Systems (CHI), pages 105–112, 1991.

[16] J. J. and G. E. Online parsing of visual languages using
adjacency grammars. In Proceedings of the 11th
International IEEE Symposium on Visual Languages,
1995.

[17] N. Kushmerick, D. S. Weld, and R. B. Doorenbos. Wrapper
induction for information extraction. In Intl. Joint
Conference on Artificial Intelligence (IJCAI), pages
729–737, 1997.

[18] S. Liddle, S. Yau, and D. Embley. On the automatic
extraction of data from the hidden web. In Proceedings of
the International Workshop on Data Semantics in Web
Information Systems, 2001.

[19] K. Marriott. Constraint multiset grammars. In Proceedings
of IEEE Symposium on Visual Languages, pages 118–125,
1994.

[20] K. Marriott and B. Meyer. On the classification of visual
languages by grammar hierarchies. Journal of Visual
Languages and Computing, 8(4):375–402, 1997.

[21] S. Raghavan and H. Garcia-Molina. Crawling the hidden
web. In VLDB Conference, 2001.

[22] K. Wittenburg and L. Weitzman. Relational grammars:
Theory and practice in a visual language interface for
process modeling. In Proceedings of Workshop on Theory
of Visual Languages, May 30, 1996, Gubbio, Italy, 1996.

[23] K. Wittenburg, L. Weitzman, and J. Talley.
Unification-based grammars and tabular parsing for
graphical languages. Journal of Visual Languages and
Computing, 4(2):347–370, 1991.

