Oracle XML DB Technical White Paper

ORACLE DATABASE 10G RELEASE 2
XMLDB

An Oracle Technical White Paper
May 2005

Page 1 of 97 ORACLE

Oracle XML DB Technical White Paper

What is the Oracle XIML Database?cccccuiiiiiiriiiiiiiiieiiiereiciseesee e 4
Oracle XML DB Major FEatUres......ociuiuiiiiiiiiiciciiicicsic et 5
XIMLTYPE ottt 6
XML SCREMA. ettt 9
NAMESPACES .ot 9
XML Schema and NAMESPACEScuviuiiiiiiiiiiiiii s 9
Registering an XML SChema.......ccceiiiiiiiiiiccice e 10
DOM FIAEHLY o.voiiirciciic s 11
Annotating an XML SChema ..o 11
Identifying and Processing Instance DOCUMENLESc.vucuieiiiieiiieiiriiieiieicecececccnicne 11
Structured Vs UnStructured STOTAZEccvuevuiueveuriecirieieieieiciee et senecaeeae 12
XML Schema EVOIUONc.viieiiciieciriiciiecieiceteeeie ettt 13
XML / SQL DUALLY .ottt 14
SQL/XML .ottt 15
XPAth RE-WIIEEC ..ttt 16
Oracle Database-INative XQUELY c....ccuiciricirieiiciieiiecireeiee et seescsenas 17
FLWOR Expressions i XQUETY ..c.cciiriiiiiiiiiinccscii s sss 18
XMLQuery SQL FUNCHOMN ...ttt 18
XMLTable SQLL CONSLITUCT. cevevevevereiirereieieieieieieieieteieteteteteterereseserese et sesesesesesesetesesesesesesesesesesesesens 19
Rewtite fOr XQUETY ..o 19
XML DB REPOSILOLY w.ouiiiiiiiiiiiiiiiici i 20
The Oracle XML DB Protocol AfChIteCturecccuiiiiuiiviriicieiicicieiccieece e 25
Programmatic ACCESS ...ttt 26
Oracle XML DB perfOrmance.......ocviiiiiciiiiciciecieeeeccsis e cesssaeas 27
XML Storage REQUITEMENEScuiuiiiiiiiiiiiiciiicicic it 27
XML Memory Management ... ssssaenes 27
XML Parsing OPptmiZatiOns.......ccueuirucuririieiiiiiiiieiisiss et 28
Node Searching OptmMIZAIONSc..c.cueueuiucurieeiiieirieirieiries e seses e seeaes 28
XML Schema OptmIZAtIONSc.cucieiiieiieiiiiiiieicieie e ssee 29
Load BalanCing........c.coieiiiciiciiciicicceee e 29
NON-NAUVE COAE ittt 29
TYPE CONVELSIONS ...ttt 30

Page 2 of 97 ORACLE

Oracle XML DB Technical White Paper

XML Manageabilityc.ccuviiiiiiiiiiiiciice s 31
Managing Oracle XML DB Applications with Oracle Enterprise Manager..........ccocveevriecicnns 31
Sample Application: Using Oracle XML DB to manage Purchase Orders.......cccoveuvicinicinicnaee 33
Loading Configuration Documents into the Oracle XML DB Repository........cccocviciiicinnas 33
Oracle XML DB and the W3C XML Schema Standard.........cccoveeviencnicnicnicncrcrieenees 34
Creating an XML SCheMa ..o 34
Annotating an XML SChEemac.cccuviiiviiiecce e 35
Registering an XML SChemac.coiiiiiiiiie e 38
Storing XML in Oracle XML DB...c.coiiiiiiiiiiiiic s 42
Adding Database Integtity t0 XML dataccooeueveuriiuriiiriieiieiececiceceeeeceeceeceeeeeeeeees 46
Querying and Indexing XML with Oracle XML DBc.ccooviiiiiiiiiiiicicccccncs 52
QUETYING XML ...ttt s 52
Query Plan ANAlysiS.......cciiiiiiiiiiiiii s 56
Indexing XML CONTENT ..uvuiuieieeiiieicieitiericieei ettt sae s aeeae 61
Path-based Access and Update of XML CONENL ... 66
Relational Access t0 XIML CONTENL...uuiueiiueriiriiiriiiecietie ettt seeae 81
XML Access to relational CONENTvviiiriirieiinieicieree s 86
SQL/XML OPEIALOLS «.uvrireerieniiriiicisiaiatiseiaesssseesis s ssesas e sss st sasas 86

The DBUIL SEIVIEE w.oviiiiiiiiiiiicic s 90
XSL TTaNSTOIMAtION ...ttt 93
XSL Transformation with the DBUIT Servlet ..., 95
SULTMIIALY oottt nenaes 97

Page 3 of 97 ORACLE

Oracle XML DB
extends the Oracle
relational database,
adding all of the
functionally associated
with native XML
databases

Oracle XML DB Technical White Paper

WHAT IS THE ORACLE XML DATABASE?

Oracle XML DB is the term used to describe technology in the Oracle Database 10g that
delivers high-performance storage and retrieval of XML. This technology extends the popular
Oracle relational database, delivering all of the functionality associated with a native XML
database, in addition to all of the functionality provided by the most sophisticated and complete
relational database currently available.

Oracle XML DB provides a storage-independent, content-independent and programming-
language-independent infrastructure to store and manage XML data. It delivers new methods
for navigating and querying XML content stored inside the database and introduces an XML
Repository for managing XML document hierarchies. With Oracle XML DB, you get all the
advantages of relational database technology and XML technology at the same time.

Oracle XML DB delivers the following functionality:
e A native XML data-type that is used to store and manage XML documents.

e A set of methods and SQL operators which allow XML operations to be performed on
XML content.

e The ability to absorb a standard W3C XML Schema data model into the Oracle database.

e XML/SQL duality, allowing XML operations on SQL data and SQL operations on XML
content.

e Industry-standard methods for accessing and updating XML, including XPath and
SQL/XML.

e A simple, light-weight XML Repository that allows XML content to be organized and
managed using a file / folder / URL metaphor.

e Native database support for industry-standard, content-oriented, protocols including FTP,
HTTP and WebDAYV making it possible to move XML content into and out of the Oracle
database.

e Multiple, industry-standard APIs that allow programmatic access and update of XML
content from Java, ‘C’ and PL/SQL.

e XML-specific memory management and optimizations.

e The ability to bring the enterprise class management capabilities of the Oracle database, --
reliability, availability, scalability and unbreakable security -- to bear on XML content.

Page 4 of 97 ORACLE

Oracle XML DB Technical White Paper

ORACLE XML DB MAJOR FEATURES

Any database that is going to be used manage XML must be capable of doing more than simply
providing persistent storage for XML documents. It must provide standard database features
like transaction control, data integrity, replication, reliability, availability, security and scalability.
It must also provide the features required to efficiently index, query, update and search XML
content in an XML centric manner.

One of the major challenges with using a traditional relational database to manage XML content
is the hierarchical nature of the XML world. Examples of this include

Uniquely identifying an XML document: The standard way of identifying an XML
document is via a URL.

Defining relationships between XML documents: The standard way of defining a
relationship between two documents is via URL based standards like XLink.

Accessing and updating the content of an XML document. The standard ways of
addressing and updating content is via WC3 standards like XPath.

URLs and XPath expressions are both intrinsically hierarchical in nature. A URL uses a path
through a folder hierarchy to uniquely identify a document. An XPath expression uses a path
through the XML document’s node hierarchy to identify a particular piece of an XML
document.

At first glance, the hierarchical metaphors used with XML do not map easily into the relational
model. A relational database uses a table-row metaphor to organize content. Rows are identified
using Unique Keys. Primary-Key Foreign-Key relationships are used to define the relationships
between content. Content is accessed and updated using table-row-column based operations.

Oracle XML DB addresses these challenges by introducing new SQL operators and methods
that provide direct support for the hierarchical nature of XMI.. These operators allow XML
centric metaphors, such as XPath expressions and URLSs, to be used to query and update XML
documents that are stored in an Oracle database.

The major features of Oracle XML DB are as follows:

Page 5 of 97 ORACLE

XMLType is a native
data-type that is used
to store and manage
XML documents in
columns or tables

Oracle XML DB Technical White Paper

XMLTYPE

XMLType is a native server data-type that allows the database to understand that a column or
table contains XML,; in the same way that the DATE data-type allows the database to
understand that a column contains a date. XMLType also provide methods that allow common
operations such as schema validation and XSL Transformations to be performed on XML
content.,

The XMLType data-type can be used just like any other data-type. It can be used when creating
a column in a relational table. It can be used when declaring PL/SQL variables, and when
defining and calling PL/SQL procedures and functions. Since XMLType is an object type, it is
also possible to create a table of XMLType.

The XMLType data type can also be used when defining views. Creating an XMLType view, or
a relational view that includes an XMLType column, allows Oracle XML DB to be used to
expose content stored relational tables and external data sources as XML documents.

By default, an XMLType table or column can contain any well formed XML document. The
content of the document is stored as XML text using the CLOB data type. This allows for
maximum flexibility in terms of the shape of the XML structures that can be stored in a single
table or column and the highest rates of ingestion and retrieval.

An XMLType table or column can be constrained to an XML Schema. Constraining a column
or table to an XML Schema has a number of advantages associated with it:

e The database will ensure that only XML documents that validate against the XML Schema
can be stored in the column or table.

e Since the contents of the table or column are conformant with a known XML structure,
Oracle XML DB can use the information contained in the XML Schema to provide more
intelligent query and update processing of the XML.

e Constraining the XMLType to an XML Schema provides the option of storing the content
of the document using structured-storage techniques. Structured-storage decomposes or
‘shreds’ the content of the XML document and stores it as a set of SQL objects rather than
simply storing the document as text in CLOB. The object-model used to store the
document is automatically derived from the contents of the XML Schema.

Page 6 of 97 ORACLE

XML can be stored
one of two ways:

An XMLType
column in a
relational table.

An XML object in

an XMLType table.

Non Schema based
XML is always
stored as CLOB.

Schema based
XML can be stored
asa CLOBor as a
set of objects.

Relational and
external data can
be exposed as XML
using views.

The view can be a
relational view
containing a
column of
XMLType or can
be a XMLType
View.

Oracle XML DB Technical White Paper

The following diagram shows how XML can be stored and retrieved using Oracle XML DB
and the XMLType data type:

Non Schema
Based XML

Non Schema|
Based XML

CLOB
Storage

External
Data
Sources

Relational
Tables

Object
Relational
Storage

Figure 1. XML Type storage options

The XMLType data-type provides constructors that allow an XMLType to be created from a
VARCHAR, CLOB or BFILE data-type. It also provides a number of XML specific methods
which can operate on XMLType objects. The methods provided by XMLType provide support
for common operations like extracting a subset of the nodes contained in the XMLType (
extract(), extractValue()), checking whether or not a particular node exists in the XMLType (
existsNode()), validating the contents of the XMLType against an XML Schema (
schemaValidate()), and performing XSI. Transformation (transform()).

Page 7 of 97 ORACLE

The XMLType
data type can be
used just like any
other data type.

The constructors of
the XMLType
allow XMLType to
be created from
VARCHAR and
CLOB.

Inserting into a
table with an
XMLType column
is like inserting into
any other table.

New SQL
operators make it
possible to perform
SQL queries over
XML content.

Oracle XML DB Technical White Paper

The following screen shot shows creating a simple table with an XMLType column and then
performing insert and query options against the table.

+ Oracle SQL*Plus
File Edit Search Options Help

SOL=*Plus: Release 18.1.68.2.8 - Production on Tue Jan & 18:57:13 20084
Copyright {c) 1982, 2803, Oracle. All rights reserved.

Connected to:

J0racle Database 18q Enterprise Edition Release 18.1.8.2.8 - Production

With the Partitioning, OLAP and Data Mining options

SOL> create table XML_DOCUMENT_TABLE

2 {
3 FILEHAHE varchar2{64},
y XML_DOCUHENT XHLType
5
[
Table created.
S0L> declare
2 SML_TEXT CLOB := *<Purchaselrder>
3 <Reference>AMCEYEN-200304089123336271PDT</Reference’>
4 <Actions/>
5 <Reject/>
[} <Requestor>Allan D. McEwen</Requestor>
7 <User>AHCEWENL fUser>
8 <CostCenter>538<{/CostCenter’
2 <ShippingInstructions/>
18 <Speciallnstructions>Expidite<{/Speciallnstructions>
11 <{Lineltems>
12 <Lineltem ItemMumber="1">
13 {Description>Traffic{/Description>
14 <Part Id="69638603892%"" UnitPrice=""39.95" Quantity="2"/>
15 </Lineltem>
16 </Lineltems>
17 </Purchaselrder>";
18 begin
19 insert into XHML_DOCUMEHT_TABLE values {'AMCEWEH-28838489123336200830%.xml1" ,SHLTYPE{SHL_TEXT));
28 end;
21 4

PL/SQL procedure successfully completed.

SOL> commit
2o

Commit complete.

SQL) select extractUalue{XHL_DOCUHMENT,'/PurchaselOrder/Reference’') REFEREHCE,
extractUalue (XHML_DOCUMENT, ' /PurchaseOrder/CostCenter®) COSTCEWTER,

3 extractUValue{XML_DOCUMENT, * fPurchaselOrder/Requestor') REQUESTOR

4 from XML_DOCUMENT_TABLE

5 4

COST REQUESTOR

£38 Allan D. HMcEwen

IREFERENCE

IHMCEWEN—ZBﬂ3ﬂh091233362?1PDT

sqL> |
< >

Figure 11. creating a relational table with a column of XMI Type

ORACLE

Page 8 of 97

XML Schema is a
W3C standard
for specifying the
structure,
content, and
certain semantics
of a set of XML
documents

Oracle XML DB Technical White Paper

XML SCHEMA

Comprehensive support for the W3C XML Schema standard is one of the key features of
Oracle XML DB. XML Schema is a W3C standard for specifying the structure, content, and
certain semantics of a set of XML documents. The XML Schema standard is described by the
W3C in http://www.w3.org/ TR /xmlschema-0/. Since an XML Schema is used to define a
class of XML documents, the term “instance document” is often used to describe an XML
document that conforms to a particular XML Schema.

The W3C Schema Working Group publishes an XML Schema, often referred to as the “Schema
for Schemas”. This XML Schema provides the definition, or vocabulary, of the XML Schema
language. An XML Schema is an XML document, which is compliant with the vocabulary
defined by the “Schema for Schemas”. An XML Schema document uses the vocabulary defined
by W3C XML Schema Working Group to create a collection of type definitions and element
declarations which declare a shared vocabulary that describe the contents and structure of a new
class of XML documents.

The XML Schema language defines 47 scalar data types. This provides for strong typing of the
elements and attributes. The XML Schema standard also supports the use of object-oriented
techniques like inheritance and extension, making is possible for the schema designer to create
complex objects from the base data types defined by the XML Schema language. The W3C
XML Schema vocabulary also includes constructs that can be used to define ordering, default
values, mandatory content, nesting, repeated sets, etc. Oracle XML DB supports all of
constructs defined by the XML Schema standard, except for redefines.

The most common usage of an XML Schema is as a mechanism for validating that instance
documents are conformant with a given XML Schema. The XMLType data type provides the
methods isSchemaValid() and schemaValidate() that allow Oracle XML to use an XML
Schema in this manner.

NAMESPACES

It is possible for two different XML Schemas to use the same name when defining an object
(element, attribute, complex type, simple type, etc). Since the two objects are in different XML
Schemas they cannot be treated as being the same item. This means that an instance document
must identify which XML Schema a particular node is based on. The XML Namespace
specification defines a mechanism which accomplishes this. An XML namespace is a collection of
names, identified by a URI reference which are used in XML documents as element types and
attribute names.

XML, SCHEMA AND NAMESPACES

The targetNamespace attribute is used to define the namespace associated with a given XML
Schema. The attribute is included in the definition of the ‘schema’ element. If an XML Schema
specifies a targetNamespace, all elements and types defined by the schema are associated with
this namespace. This implies that any XML document that contains these elements and types
must identify which namespace the elements and types are associated with. If the XML Schema
does not specify a targetNamespace, all elements and types defined by the schema are
associated with the NULL namespace.

Page 9 of 97 ORACLE

Oracle XML DB Technical White Paper

The XML Schema standard also defines a mechanism that allows an instance document to
identify which XML Schemas are required in order to process or validate the document. The
XML Schemas in question are identified on a namespace by namespace basis using attributes
defined in the WC3 XMLSchema-Instance namespace.

In order to use this mechanism the instance document must first declare the XMLSchema-
instance namespace. The XMLSchema-Instance namespace is declared by including a variant of
the following namespace declaration in the root element of the instance document:

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

Once the XMLSchema-instance namespace has been declared the set of required XML
Schemas is defined by adding schemaLocation and noNamespaceSchemalLocation attributes to the
root element of the document.

The noNamespaceSchemalocation attribute is used to identify any XML Schemas that did not
provide an explicit namespace declaration for the objects they define. The content of the
noNamespaceSchemalocation attribute is a hint, typically in the form of a URL, which describe
where to find the required XML Schema. This hint is often referred to as the “Schema Location
Hint”

The schemalLocation attribute is used to identify all of the XML Schemas that declared an
explicit namespace using the targetNamespace attribute. The content of the schemaLocation
attribute is a set of entries, once for each XML Schema. Each entry consists of a pair of values.
The left hand value is the namespace declared by the XML Schema. The right hand value is the
“Schema Location Hint”.

REGISTERING AN XMI. SCHEMA

Before Oracle XML DB can make use of the information contained in an XML Schema, the
XML Schema must be registered with the database. An XML Schema is registered by calling the
PL/SQL procedure named dbms_xmlschema.register_schema(). The XML Schema is
registered under a URL. The URL a used internally as a unique key used to identify the XML
Schema. At no point does Oracle XML DB require direct access to the URL specified when
registering the XML Schema.

When an XML Schema is registered with the database, a default table is created for each global
element defined by the XML Schema. When an instance document is loaded in the Oracle
XML DB repository, the content of the document will be stored in the default table. The
default tables created by registering an XML Schema are XMLType tables, i.c. they are Object
Tables, where each row in the table is represented as an instance of the XMLType data type.

Oracle XML DB can use the information contained in an XML Schema to derive an object
model that allows XML content that is compliant with the XML Schema to be decomposed and
stored in the database as a set of objects. The constructs defined by the XML Schema are
mapped directly into SQL Types generated using the SQL 1999 Type Framework that is part of
the Oracle database.

Page 10 of 97 ORACLE

Oracle XML DB Technical White Paper

Using the SQL 1999 Type Framework to manage XML provides a number of significant
benefits:

e Itallows Oracle XML DB to leverage the full power of the Oracle database when managing
XMI..

e It can lead to significant reductions in the amount of space required to store the document.
e It can reduce the amount of memory required to query and update XML content.

e Capturing the XML Schema objects as SQL Types helps share the abstractions across
schemas, and also across their SQL storage counterparts.

e Itallows Oracle XML to support constructs defined by the XML Schema standard that do
not easily map directly into the conventional relational model.

DOM FIDELITY

Using SQL 1999 objects to persist XML allows Oracle XML DB to guarantee DOM fidelity.
DOM, or the Document Object Model, is a W3C standard that defines a set of platform- and
language-neutral interfaces that allow a program to dynamically access and update the content,
structure and style of a document. In order to provide DOM fidelity Oracle XML DB must
ensure that a DOM generated from a document that has been shredded and stored in Oracle
XML DB will be identical to a DOM generated from the original document.

Providing DOM Fidelity requires Oracle XML DB to preserve all of the information contained
in an XML document. This includes maintaining the order in which elements appear within a
collection and within a document as well as storing and retrieving out-of-band data like
comments, processing instructions and mixed text. By guaranteeing DOM fidelity, Oracle XML
DB is able to ensure that there is no loss of information when the database is used to store and
manage XML documents.

ANNOTATING AN XMI. SCHEMA

Oracle XML DB provides the application developer or database administrator with control over
how much decomposition, or ‘shredding’, takes place when an XML document is stored in the
database. The XML Schema standard allows vendors to define schema annotations that add
directives for specific schema processors. The Oracle XML DB schema processor recognizes a
set of annotations that make it possible to customize the mapping between the XML Schema
data types and the SQL data types, control how collections are stored in the database, and
specify how much of a document should be shredded.

If you do not specify any annotations to your XML Schema to customize the mapping, Oracle
XML DB will make certain default choices that may or may not be optimal for your application.

IDENTIFYING AND PROCESSING INSTANCE DOCUMENTS

Oracle XML DB assumes that instance documents will use the W3C approved mechanism for
identifying which XML Schemas they are associated with. It assumes that the Document
Location Hint contained in an instance document will map directly to the URL that was
specified when registering the associated XML Schema with the database.

Page 11 of 97 ORACLE

XML documents can
be persisted using
Structured or
Unstructured storage

Oracle XML DB Technical White Paper

For example, assume an XML Schema defines a global element PurchaseOrder. The XML
Schema does not include a targetNamespace declaration. The XML Schema has been registered
under the URL http://xmins.oracle.com/demo/purchaseOrder.xsd. In order for an XML
document to be recognized as an instance of the XML Schema the root element of an instance
document would need to look like

<PurchaseOrder xmlns:xsi=http://www.w3.0rg/2001/XMLSchema-instance
xsi:noNamespaceSchemaLocation="http://xmlns.oracle.com/demo/purchaseOrder.xsd”>

STRUCTURED VS UNSTRUCTURED STORAGE

One of the key decisions to be made when using Oracle XML DB is persist XML documents is
when to use structured-storage and when to use unstructured storage.

Unstructured-storage provides for the highest possible throughput when inserting and
retrieving entire XML documents. It also provides the greatest degree of flexibility in terms of
the structure of the XML that can be stored in a XMLTYype table or column. These throughput
and flexibility benefits come at the expense of certain aspects of intelligent processing. There is
little that the database can do to optimize queries or updates on XML that has been stored
using a CLOB data type.

Structured-storage provides a number of advantages for managing XML, including optimized
memory management, reduced storage requirements, b-tree indexing and in-place updates.
These advantages come at a cost of somewhat increased processing overhead during ingestion
and retrieval and reduced flexibility in terms of the structure of the XML that can be managed
by a given XMLType table or column.

The relevant merits of Structured and Unstructured storage are outlined in the following table

Unstructured Storage Structured Storage

Throughput | Highest possible throughput | The decomposition process results in
when ingesting and retrieving | slightly reduced throughput when

the entire content of an XML | ingesting or retrieving the entire content
document. of an XML document.

Flexibility Provides the maximum Limited Flexibility. Only documents that
amount of flexibility in terms | conform to the XML Schema can be

of the structure of the XML | stored in the XMLType table or column.
documents that can be stored
in an XMLType column or Changes to the XML Schema will

table. require evolution of the registered
Schema.
XML Delivers Document Fidelity: | DOM Fidelity: A DOM created from an
Fidelity Maintains the original XML XML document that has been stored in
byte for byte, which may be the database will be identical to a DOM
important to some created from the original document.
applications However trailing new lines, white space

characters between tags and some data
formatting may be lost

Page 12 of 97 ORACLE

Oracle XML DB

Technical White Paper

Optimized Optimized update operations | The majority of update operations can
Update are not possible. When any be optimized using Query re-write. This
Operations part of the document is allows in-place, piece-wise update,
updated the entire document | leading to significantly reduced response
must be written back to disk. | times and greater throughput.
XPath based | XPath operations are Where possible, XPath operations are
queries. evaluated by constructing evaluated using XPath-Rewrite, leading
DOM from CLOB and using | to significantly improved performance,
functional evaluations. This particularly with large collections of
can be very expensive when | documents.
performing operations on
large collections of
documents.
SQL SQL constraints are not SQL constraints are supported.
Constraint currently available.
Support
Indexing Text and Functional indexes. | B-Tree, Text and Functional Indexes.
Support
Optimized XML operations on the XML operations can be optimized to
Memory document require creatinga | reduce memory requirements.
Management | DOM from the document

Table 1: Pros and cons of XML storage options

XML SCHEMA EVOLUTION

XML Schema evolution is the term used to describe the process that takes place when the
structure of an XML Schema changes. Oracle Database 10g Release 1 introduces support for
XML Schema evolution, allowing a developer to register a new version of a registered XML
Schema with Oracle Database 10g Release 1.

The current implementation of XML Schema evolution requires that all instance documents be
compliant with the current version of the registered schema. Oracle XML DB allows an XSL
style sheet to be used to transform any existing documents into documents that are compliant
with the new version of the XML Schema as part of the XML Schema evolution process.

In Oracle Database 10g Release 1, XML Schema evolution makes a complete copy of all of the
instance documents as part of the migration process. This means that, like most application
upgrades, an upgrade involving XML Schema evolution requires careful planning to ensure that
adequate resources are available and application downtime is minimized.

Page 13 of 97 ORACLE

Oracle XML DB
erases the traditional
boundaries between
structured, semi-
structured and
unstructured content.

SQL operations can
be performed on
XML content.

XML operations can
be performed on
relational data

Oracle XML DB Technical White Paper

XML / SOL DUALITY

Much of the valuable information within an organization is in the form of semi-structured and
unstructured data. Typically this data is contained in files stored on a file server or in a CLOB
column inside a database. The information in these files is in proprietary or application specific
formats. It can only be accessed via specialist tools, such as word processors or spreadsheets, or
programmatically using complex, proprietary APIs. Searching across this information is limited
to the facilities provided by a crawler or full text indexing.

One of the major drivers behind the rapid adoption of XML is that it allows for stronger
management and more open access to semi-structured and unstructured content. Replacing
proprietary file formats with XML allows organizations to achieve much higher levels of reuse
of their semi-structured and unstructured data. The content can be accurately described using
XML Schema. The content can be easily accessed and updated using standard APIs based on
DOM and XPath.

For instance, information contained in an Excel spreadsheet is only accessible to the Excel
program, or to a program that uses Microsoft’s COM APIs. The same information, stored in an
XML document is accessible to any tool that can leverage the XML programming model.

Structured data on the other hand does not suffer from these limitations. Structured data is
typically stored as rows in tables within a relational database. These tables are accessed and
searched using the relational model and the power and openness of SQL from a variety of tools
and processing engines.

By delivering on the promise of XML / SQL duality, Oracle XML DB erases the traditional
boundary between applications that work structured data and those that work with semi-
structured and unstructured content. With Oracle XML DB the relational and XML metaphors
become interchangeable. XML/SQL duality means that the same data can be exposed as rows
in a table and manipulated using SQL or exposed as nodes in an XML document and
manipulated using techniques like DOM or XSL transformation. The access metaphor and
processing techniques used are totally independent of the underlying storage format.

This means that the XML programmer can leverage the power of the relational model when
working with XML content and the SQL programmer can leverage the flexibility of XML when
working with relational content. This provides application developers with maximum flexibility,
allowing them to use the most appropriate tools to solving a particular business problem.

This allows Oracle XML DB to be used to provide new, simple solutions to a number of
common business problems.

e Relational data can quickly and easily be converted into HTML pages. Oracle XML DB
provides new SQL operators that make it possible to generate XML directly from a SQL
query. The XML can be transformed into other formats, such as HTML using the database-
resident XSLT processor.

e Organizations can easily leverage all of the information contained in their XML documents
without having to incur the overhead of converting back and forth between different
formats. Oracle XML DB makes it possible to access XML content using SQL queries, On-
line Analytical Processing (OLAP) and Business-Intelligence/Data Warchousing
operations.

e Text, Spatial Data, and Multimedia operations can be performed on XML content.

Page 14 of 97 ORACLE

Oracle XML DB Technical White Paper

SOL/XMIL,

Oracle XML DB also provides an implementation of the majority of the operators that will be
incorporated into the forthcoming SQL/XML standard. SQL/XML is defined by specifications
prepared by the International Committee for Information Technology Standards (Technical
Committee H2), which is the main standards body for developing standards for the syntax and
semantics of database languages, including SQL. See http://sqlx.org and

http://www.ncits.org/tc_home/h2.htm for more information.)

The SQL/XML operators fall into two categories. The first category consists of a set of
operators that make it possible to query and access XML content as part of normal SQL
operations. The second category consists of a set of operators that provide an industry standard
method for generating XML from the result of a SQL Select statement.

The SQL/XML operators make it possible to address XML content in any part of a SQL
Statement. The SQL/XML operators use XPath notation is used to traverse the XML structure
and identify the node or nodes on which to operate. XPath is a popular syntax (see
http://www.w3.org/ TR /xpath) familiar to both programmer and content-creators, and the
ability to embed XPath expressions within SQL statements greatly simplifies XML access.

The existsnode() operator is used in the where clause of a SQL statement to restrict the set of
documents returned by a query. The existsnode() operator takes an XPath expression and
expression and applies it an XML document. The operator and returns true (1) or false (0)
depending on whether or not the document contains a node which matches the XPath
expression.

The extract() operator takes an XPath expression and returns the node or nodes that matches
the expression as an XML document or fragment. If a single node matches the XPath
expression the result will be a well-formed XML document. If multiple nodes match the XPath
expression the result will be a document fragment.

The extractvalue() operator takes an XPath expression and returns the corresponding leaf level
node. The XPath expression passed to extractvalue() should identify a single attribute, or an
element which has precisely one text node child. The result is returned in the appropriate SQL

data type.

The updatexml() operator allows partial updates to be made to an XML document, based on a
set of XPath expressions. Each XPath expression identifies a target node in the document, and
a new value for that node. The updatexml() operator allows multiple updates to be specified for
a single XML document.

The xmlsequence() operator converts a document fragment into a set of well formed XML
documents.

Detailed examples of the way in which these functions are used are provided in the
PurchaseOrder example.

Page 15 of 97 ORACLE

Query Re-Write
makes it possible to
execute select and
update operations
that include XPath
expressions at near-
relational speeds

Oracle XML DB Technical White Paper

XPATH RE-WRITE

The SQL/XML operators, and the corresponding XMLType methods, allow XPath expressions
to be used to search collections of XML documents and to access a subset of the nodes
contained within an XML document. Oracle XML DB has two methods of evaluating XPath
expressions that operate on XMLType columns and tables.

For XML that has been stored using structured storage techniques, Oracle XML DB
will attempt to translate the XPath expression in a SQL/XML operator into an
equivalent SQL query. The SQL query references the Object-Relational data structures
that underpin a schema-based XMLType. While this process is referred to as XPath-
Rewrite, it can also occur when performing update operations.

For XML that has been stored using unstructured storage, Oracle XML DB will
evaluate the XPath using functional evaluation. Functional evaluation builds a DOM
tree for each XML document and then resolves the XPath programmatically using the
methods provided by the DOM API. If the operation involves updating the DOM tree,
the entire XML document has to be written back to disc when the operation is
completed.

XPath-Rewrite makes it possible for the database to efficiently process SQL statements
containing one or more XPath expressions using conventional relational SQL. By translating
the XPath expression into a conventional SQL statement, Oracle XML DB insulates the
database optimizer from having to understand XPath notation and the XML data model. The
database optimizer simply processes the re-written SQL statement in the same manner as it
would any other SQL statement.

This means that the database optimizer is able derive an execution plan based on conventional
relational algebra. This allows Oracle XML DB to leverage all of the features of the database
and ensure that SQL Statements containing XPath expressions are executed in a highly
performant and efficient manner. There is very little overhead associated with the process of
XPath-Rewrite, and this means that XPath-Rewrite allows Oracle XML DB to execute XPath
based queries at near-relational speed while still preserving the XML abstraction.

Page 16 of 97 ORACLE

Oracle XML DB Technical White Paper

XPath-Rewrite is possible in the following circumstances.

e The SQL statement contains SQL/XML operators or XMLType methods that use XPath
expressions to refer to one or more nodes within a set of XML documents.

e The XMLType column or table containing the XML documents is associated with a
registered XML Schema.

e The XMLType column or table uses structured storage techniques to provide the
underlying storage model.

e The nodes referenced by the XPath expression can be mapped, via the XML Schema, to
attributes of the underlying SQL object model.

The XPath-Rewrite process is as follows:
e Identify the set of XPath expressions included in the SQL statement.

e Translate each XPath expression into an Object Relational SQL expression that references
the tables, types and attributes of the underlying SQL: 1999 object model.

e Re-write the original SQL statement into an equivalent Object Relational SQL statement

e Pass the new SQL statement to the database optimizer for plan generation and query
execution.

In certain cases XPath-Rewrite is not possible. This can occur when there is no SQL equivalent
for a particular XPath expression. In this situation Oracle XML DB will create a DOM and
then use the DOM to perform a functional evaluation of the XPath expressions.

In general, functional evaluation of a SQL statement will be much more expensive than XPath-
Rewrite, particularly if the number of documents that needs to be processed is large. However
the advantage of functional evaluation is that it is can be used to evaluate any XPath expression,
regardless of whether or not the XMLTYype is stored using structured storage and regardless of
the expression’s complexity. When documents are stored using unstructured storage (in a
CLOB), functional evaluation will be necessary any time the extract(), extractvalue() ,
updatexml() operators are used. The existsNode() operator will also result in functional
evaluation unless a CTXPATH index or functional index can be used to resolve the query.

Understanding the concept of Query-re-write, and the conditions under which query re-write
can take place, is one of the key steps in developing Oracle XML DB applications that will
deliver the required levels of scalability and performance

ORACLE DATABASE-NATIVE XQUERY

XQuery 1.0 is an XML Query Language developed by W3C that will become the recommended
query language to query XML from a variety of data sources. Various companies are adopting
XQuery as the way to query XML stored in database rows or from WebServices and to construct
new XML values.

On the SQL side, the XML datatype was introduced in SQL 2003 as a way to encapsulate XML
in SQL. The SQL committee is now working to integrate the querying of XML using XQuery.
This is being accomplished by introducing a new SQL function: XMLQuery, and a new
construct: XMLTable both of which operate on XML and SQL values using XQuery. The former

Page 17 of 97 ORACLE

Oracle XML DB Technical White Paper

is known as XQuery-centric approach as it allows querying and constructing XML using
XQuery. The latter is known as SQL-centric approach as it allows breaking apart the XQuery
values into relational values.

Oracle Database 10g Release2 enables XQuery support in the database server through these SQL
standard functions.

FLWOR EXPRESSIONS IN XQUERY

At the heart of XQuery is the FLWOR expression that supports iteration and binding of variables
to intermediate results. This kind of expression is often useful for computing joins between two
or more documents and for restructuring data. The name FLWOR, pronounced "flower", reflects
the keywords for, let, where, order by,and return.

Similar to the FROM clause in SQL, the for and 1et clauses in a FLWOR expression generate a
sequence of tuples of bound variables called the tuple stream. Performing the same function as
the WHERE clause in SQL, the where clause serves to filter the tuple stream, retaining some
tuples and discarding others. The order by clause mimics the ORDER BY clause in SQL to
impose an ordering on the tuple stream. Finally, the return clause works like the SELECT
clause in SQL to construct the result of the FLWOR expression. The return clause is evaluated
once for every tuple in the tuple stream, after filtering by the where clause, using the variable
bindings in the respective tuples. The result of the FLWOR expression is an ordered sequence
containing the concatenated results of these evaluations.

XMILOUERY SOIL FUNCTION

The XMLQuery function takes an XQuery expression as a string literal, an optional context item
and other bind variables and returns the result of evaluating the XQuery expression using these
input values.

Below is the syntax that will be supported in Oracle Database 10g Release 2:
XMLQUERY (<XQuery-string-literal>
[PASSING [BY VALUE] <expression-returning-XMLType>]
RETURNING CONTENT)

The XQuery string literal is a complete XQuery expression including the prolog etc. The
PASSING clause must be followed by an expression returning an XMLType that is used as the
context for evaluating the XQuery expression.

To run XQuery on XMLType columns, tables, views, or expressions generated by SQL/XML
functions, it is recommended that users pass the value as an argument to the XMLQuery
function. However, to query any relational table or view as XML without having to first create
SQL/XML views on top of them, users can use Oracle provided XQuery function: ora:view()
within an XQuery expression.

Page 18 of 97 ORACLE

Oracle XML DB Technical White Paper

XML TABLE SQL CONSTRUCT

The XMLTable construct is used to map the result of an XQuery evaluation into relational rows
and columns so that the user can query the XQuery result as a virtual relational table using SQL.
The XMLTable construct can only be used in the from clause of SQL queries.

Below is the syntax that will be supported in Oracle Database 10g Release 2:

<XML table> ::=
“XMLTable” “(“ <XQuery-string-literal>
[WPASSING” [“BY” “WALUE”] <xml-value-expression>]
[WCOLUMNS” <XML-table-columns>]

\\) ”

<XML-table-columns> ::= <XML-table-column>
[V, ” <XML-table-column>]...

<XML-table-column> ::= <column-name> [<data-type>]
[PATH <string-literal>][“DEFAULT” <value-expression>]

REWRITE FOR XQUERY

Similar to XPath-rewrite for XPath-based SQL/XML functions, Oracle’s database-native
XQuery implementation excels with extensive XQuery rewrites. XQuery rewrites take full
advantage of Oracle’s high performance relational query engine. With XML documents stored
using the structured storage approach, XQuery can be rewritten into pure relational queries to
completely avoid building DOM trees of XML documents in memory. Query performance can
be orders of magnitude faster with rewrites applied.

In the example below, the XQuery can be rewritten into an equivalent relational query to attain
the same performance level as pure relational queries.

SELECT XMLQuery (
"for $b in ora:view ("SITE TAB")/site/people/person
where $b/@id = "person("
return S$b/name' returning content)

FROM dual;

SELECT (SELECT XMLAgg (XMLElement ("name", p.name))
FROM SITE TAB s, PERSON TAB p

WHERE p.id ='personO' AND

p.NESTED TABLE ID=s."SYS NC0004700048$"

)
FROM dual;

Page 19 of 97 ORACLE

The Oracle XML DB
Repository makes it
possible to use a
familiar file/folder
metaphor to store,
organized and access
XML content stored
in the database

Oracle XML DB Technical White Paper

XML DB REPOSITORY

The relational model, with its powerful table-row-column metaphor, is widely accepted as the
most effective mechanism for managing structured data. The relational metaphor is not so
effective when it comes to managing semi-structured and unstructured data, such as document-
or content-oriented XML. A book does not easily lend it self to being represented as a set of
rows in a table. It is more natural to represent a book as a hierarchy, book — chapter — section —
paragraph, and to represent the hierarchy as a set of folders and subfolders.

Relational databases are traditionally considered to be poor at managing hierarchical structures
and performing the kind hierarchical traversal operations that are required to resolve a path. In
order to resolve this problem, Oracle XML DB introduces the concept of a query-able,
hierarchically organized XML Repository. The Oracle XML DB repository allows the
hierarchical metaphor to be used to manage document-centric XML content. Using the
repository, it is possible to represent XML content as documents in a folder hierarchy, and use
hierarchical metaphors, such as paths and URLs, to access documents and represent the
relationships between documents.

Oracle XML DB includes a new, patented hierarchical index which speeds up folder- and path-
traversals with-in the Oracle XML DB Repository. The hierarchical index is totally transparent
to the end-user, and allows Oracle XML DB to perform folder and path traversals at speeds
that are comparable to or faster than conventional file-systems.

One of the major advantages of the Oracle XML DB repository is that it allows content authors
and editors to work directly with XML content stored in the database. The majority of the tools
used to author XML are now able to access content using internet protocols like HTPP, FTP
and WebDAV. Oracle XML DB adds native support for these popular protocols to the
database, allowing authors and editors direct access to content managed by the Oracle XML DB
repository. Oracle XML DB also provides the application programmer with direct access to the
repository from both SQL and PL/SQL. This makes it possible to develop applications which
access and update content managed by the Oracle XML DB repository.

The WebDAYV protocol is an IETF standard that defines a set of extensions to HTTP that
allow an HTTP Server to act as a file server for a DAV enabled client. The WebDAV standard
uses the term resource to describe a file or a folder. Every resource managed by a WebDAV
server is identified by a URL. This terminology is adopted by the Oracle XML DB repository.

Since the HTTP, FTP and WebDAYV protocols were designed with document-centric
operations in mind, they are typically more efficient than Oracle NET for manipulating large
volumes of content. By providing support for these protocols at the database level Oracle XML
DB allows Windows Explorer™, Microsoft Office™ and products from vendors like Altova™,
Macromedia™ and Adobe™ to work directly with XML content stored in the Oracle XML DB
repository.

Oracle Database 10g Release 1 adds NLS support for the Protocols supported by Oracle XML
DB. This allows documents to be loaded into the repository from clients using different
character sets. While content is loaded into the Oracle XML DB repository, it is converted into
the database character set. When documents are retrieved from the repository they are
converted back into the client’s character set. With HTTP and WebDAYV this process is
automatic, based on the mechanisms defined by the HTTP protocol. With FTP, quot
commands are provided that allows the client to identify the client character set.

Page 20 of 97 ORACLE

Oracle XML DB Technical White Paper

The following screen shot shows the root level directory of the Oracle XML DB repository as
Support for standard

Internet Protocols
like WebDAYV and
FTP allow standard
tools like Windows File Edit ‘iew Favorites Tools Help :i",'
Explorer to access

content stored in the @Batk 5 _&;J Lﬁ @):j Search || Folders v

seen from Microsoft’s Windows Explorer™.

& http://localhost:BOBO/

Oracle XML DB
repository Address |15 http:fflocalhost: 5080/ v| e
(A O @ &
Qehes Pt public hiorme: sYs wdbconfig, xml

g Web Folders

ﬂ My Docurnents
|3 Shared Docurments
‘d My Metwork Places

Figure 111. Microsoft Web Folder™% view of Oracle XMI. DB repository.

As can be seen, WebDAYV clients, such as Microsoft’s Windows Explorer™, can connect
directly to the XML DB repository. No additional Oracle or Microsoft specific software or
other complex middleware needs to be installed in order to enable this functionality. This
means that end users can work directly with the Oracle XML DB Repository using the tools
and interfaces that they are already familiar with.

Each document in the Oracle XML DB is secured with an Access Control List. An Access
Control List (ACL) is an XML document that contains a set of Access Control Entries (ACE).
Each ACE grants or revokes a set of permissions to a particular user or group (database role).
This access control mechanism is based on the WebDAYV specification. The repository also
provides support for basic versioning based on the WebDAV standard.

Another benefit of the XML DB Repository is that it is query-able from SQL. Content stored in
the Oracle XML DB repository can be accessed and updated from SQL and PL/SQL. It is
possible to interrogate the structure of the repository in complex ways (“how many documents
with a .xsl extension are under a location other than /home/mystylesheetdir”?). It is also possible
to mix path-based repository access with content-based access to the documents (“how many
documents not under /home/purchaseOrders have a node named “/PurchaseOrder/User/text()
with a value of “SBELL’?)

All the meta-data required to manage the Oracle XML DB repository is stored in a database
schema owned by the database user XIDB. This user is created as part of the Oracle XML DB
installation procedure. The primary table in this schema is an XMLType table called
XDBSRESOURCE. The table contains one row for each file or folder managed by the Oracle
XML DB repository. The documents in this table are referred to as resource documents.

Page 21 of 97 ORACLE

A new type of Index,
the Hierarchical
Index, makes path-
based access as fast
as Primary Key
based access

Oracle XML DB Technical White Paper

The XDBSRESOURCE table is not directly exposed to the SQL programmer. Instead the
contents of the repository are exposed via two public views, the RESOURCE_VIEW and the
PATH_VIEW. The RESOURCE_VIEW and PATH_VIEW provide the SQL programmer the
ability to access and update both the meta-data and content of a document stored in the Oracle
XML DB repository.

Both the RESOURCE_VIEW and the PATH_VIEW contain a column called RES. This is an
XMLType column that can be used to access and update the resource asscociated with a
document stored in the Oracle XML DB repository. These views also make it possible to create
SQL statements which access and update resource documents based on a path notation.
Operations on these views translate into operations on the underlying tables in the Oracle XML
DB repository.

Oracle XML DB includes two new repository specific SQL operators: exists_path() and
under_path(). These operators make it possible to include path based predicates in the where
clause of a SQL statement. This means that SQL operations can select repository content based
on the location of the content within the folder hierarchy. The Hierarchical Index ensures that
path-based queries are executed very efficiently.

When Schema Based XML documents are stored in the Oracle XML DB repository the
document content is stored as an object in the default table identified by the XML Schema. The
repository contains the meta-data about the document and a pointer (REF of XMLTYPE) that
identifies the row in the default table that contains the content.

It is also possible to store other kinds of documents in the repository. When non-xml and non-
schema based XML documents are stored in the repository, the content of the document is
stored in a LOB alongside the meta-data about the document

Since the Oracle XML DB repository can be accessed and updated using SQL, any application
capable of calling a PL./SQL procedure can work with the Oracle XML DB repository. All SQL
and PL/SQL repository operations ate transactional, and access to the repository and its
contents is subject to database security as well as XML DB Repository Access Control Lists
(ACLs). When repository content is accessed via SQL ACL based security is enforced via Row
Level security.

The supplied PL/SQL packages DBMS_XDB, DBMS_XDBZ and DBMS_XDB_VERSION
provide the SQL programmer the ability to perform common tasks on the repository itself. The
methods provided by these packages make it possible to create, delete and rename documents
and folders, to move a file or folder within the folder hierarchy, to set and change the access
permissions on a file or folder and the ability to initiate and manage versioning.

Page 22 of 97 ORACLE

SQL and non SQL
clients access the
repository using the
Oracle Net Services
Listener

SQL clients access
the repository via
the PATH_VIEW
and
RESOURCE_VIEW
or the DBMS_XDB
PL/SQL package

Non-SQL clients
access content via
the Oracle XML DB
protocol servers.

The protocol servers
are Oracle MTS
processes

All meta-data is
managed by the
Oracle XML DB
repository.

All content, other
than schema-based
XML is stored in the
repository.

The content of
Schema-based XML
documents is stored
in the default table
defined by the
Schema.

The Hierarchical
Index enables high
speed lookup based
on a path

SQL clients can
access schema-based
XML directly or via
the repository

Oracle XML DB Technical White Paper

The following diagram show the overall architecture of the Oracle XML DB repository

SQL Client | i

WebDAV
or FTP
Client

HTTP
Client

Oracle Net Services Listener

— ‘\

A
iV

B —-/

\ 4 \ 4

Resource View DBMS_XDB HTTP, FTP and
and PL/SQL WebDAV Protocol
Path View Package Servers

Figure IV . Oracle XMI. DB repository architecture overview

Page 23 of 97 ORACLE

Oracle XML DB Technical White Paper

The following screen shot shows the PL/SQL package DBMS_XDB being used to create a set
of subfolders beneath the folder /home/SCOTT.

% Oracle SQL*Plus

File Edit Search Options Help
Bl
SOL*Plus: Release 18.1.8.2.8 — Production on Tue Jan 6 11:87:24 2084 =
ICopyright (c) 1982, 2883, Oracle. All rights reserved.
Connected to:
Oracle Database 18g Enterprise Edition Release 18.1.8.2.8 - Production
With the Partitioning, OLAP and Data HMining options
sQL> —-
SQL> declare
2 result boolean;
3 begin
] result := dbms_xdb.createFolder (' /home/SCOTT/poSource’);
5 result := dbms_xdb.createFolder (' /home/SCOTT/poSources®sd”);
6 result := dbms_xdb.createFolder (' /home/SCOTT/poSources®sl™);
7 result := dbms_xdb.createFolder (' /home/SCOTT/purchaselrders®);
8 end;
9 7
IPL/SQL procedure successfully completed.
SOL> commit
2 7
ICommit complete.
sqL> ~
£ | >

Figure V. Using PL/ SQL. fo update Oracle XML DB Repository

Note that as a consequence of the transactional semantics enforced by the database, folders
created using SQL statements will not be visible to other database users until the transaction is
committed. Concurrent access to the Oracle XML DB repository is controlled by the same
mechanism as is used to control concurrency in the database. The integration of the repository
with the database brings the benefits of strong management to XML content.

One common problem encountered when using a relational database to maintain hierarchical
folder structures is the problem of ensuring a high degree of concurrency when adding and
removing items in a folder. In conventional file system there is no concept of a transaction.
Each operation (add a file, create a subfolder, rename a file, delete a file, etc.) is treated as an
atomic transaction. Once the operation has completed the change is immediately available to all
other users of the file system.

As the above example shows, one of the key advantages of the Oracle XML DB Repository is
the ability to use SQL to perform repository operations in the context of a logical transaction.
This means that applications can create long-running transactions that include updates to one or
more folders. In this situation a conventional locking strategy that takes an exclusive lock on
each updated folder or directory tree would quickly result in significant concurrency problems
and performance degradation.

Page 24 of 97 ORACLE

Oracle XML DB Technical White Paper

XML DB solves this problem by providing for name-level locking rather than folder-level locking.
Repository operations such as creating, renaming, moving or deleting a sub-folder or file do not
require that the user performing the operation be granted an exclusive write lock on the target
folder. The Repository manages concurrent folder operations by locking the name within the
folder rather than the folder itself. The name and the modification type are put on a queue.
Only when the transaction is committed is the folder locked and the contents of the folder
modified. This model allows Oracle XML DB to allow multiple applications to perform
concurrent updates on the contents of a folder. The queue is also used to manage concurrency
with the folder by preventing two applications from creating objects with the same name.
Queuing folder modifications until commit time also has the side benefit of minimizing I/O
when a number of changes are made to a single folder in the same transaction.

This concurrency problem is seen most commonly in situations where a number of applications
are generating files quickly in the same directory, such as when generating trace or log files, or
when maintaining a spool directory for printing or email delivery.

THE ORACLE XML DB PROTOCOL ARCHITECTURE

One of the key features of the Oracle XML DB architecture is that the HTTP, WebDAYV and
FTP protocols are supported using the same architecture that is used to support Oracle Net
Services in a Shared Server configuration. The Listener listens for HTTP and FTP requests in
the same way that is listens for Oracle Net Services requests. When the listener receives an
HTTP or FTP request it hands it off to an Oracle Shared Server process which services it and
sends the appropriate response back to the client.

As can be seen from the following screen short, the TNS Listener command Isnretl status can
be used to verify that HTTP and FTP support has been enabled.

1.1.2 Listener Status

LSHRCTL for 32-bit Windows: Version 18.1.8.2.8 - Production on B6—JAN-2884 11:13:87 i—
Copyright <c> 1991, 2883, Oracle. All rights reserved.

Connecting to (DESCRIPTION=(ADDRESS={(PROTOCOL=IPC>{KEY=EATPROCEA)>>
STATUS of the LISTENER

fAlias LISTENER

Version TNSLSNR for 32-bit Windows: Uersion 168.1.8.2.8 — Production
Start Date A6—-JAN-2804 B8:52:37

Uptime B days 2 hr. 28 min. 29 sec

Trace Level of f

Security gg; Local 08 Authentication

Listener Parameter File c :voraclenORCL1A28vnetworksadminslistener.ora

Listener Log File c:soracle~ORCL182B network~log~listener.log

Listening Endpoints Summary...
¢DESCRIPTION=(ADDRESS =(PROTOCOL=1ipc > (PIPENAME="*_“pipe~EXTPROCAipc>>>

¢DESCRIPTION=(ADDRESS =(PROTOCOL=tcp>(HOST =mdrake-lap){PORT=152133>

¢DESCRIPTION=(ADDRESS =(PROTOCOL=tcp><HOST =mdrake—1lap){PORT=8B88)) (Presentation=HITP>{8ession=RAWD>
¢DESCRIPTION={ADDRESS =(PROTOCOL=tcp><HOST =mdrake—1lap>{PORT=2180>>(Presentat ion=FIP>{Session=RAW>>
Services Summary...

Service "ORCL18ZB.xp.mark.drake.oracle.com' has 2 instance(s).

Instance "ORCL1828". status UNKNOUN. has 1 handler{s> for this service...

Instance “orcliB28",. status READY, has 2 handler<{s> for this service...

Zervice "ORCL1AZBXDB.xp.mark.drake.oracle.com" has 1 instance(s).

Instance "orcliB28",. status READY,. has 1 handler<{s> for this service...

Service "PLSExtProc' has 1 instance(s).

Instance "PLSExtProc'. status UNKNOUN. has 1 handler{s> for this service...

The command completed successfully

C:soraclesDemo BDE~18.1.8.2 B~basicDemo~LOCAL>_ =4
Figure V1. Listener Status, with FTP and HTTP protocol support enabled

Page 25 of 97 ORACLE

Oracle XML DB Technical White Paper

PROGRAMMATIC ACCESS

All of the Oracle XML DB functionality is accessible from ‘C’, PL/SQL and Java. Today, the
most popular methods for building web-based applications are servlets/JSPs (Java Server Pages)
and XSL/XSPs (XML Style sheets / XML Server Pages). Typically, servlets and JSPs access
data via JDBC, while XSL/XSPs expect data in the form of XML documents, which are
processed via a DOM (Document Object Model) API implementation. Oracle XML DB
supports both styles of application development. ‘C’, Java and PL/SQL implementations of the
DOM API are provided.

Applications that make use of JDBC, such as those based on servlets, need to have some
advance knowledge of the structure of the data they are going to process. The Oracle JDBC
drivers allow application programmers to access and update XMLType tables and columns, and
to call the PL/SQL procedures that access the Oracle XML DB repository.

Applications that make use of DOM, such as those based on XSLT transformations; typically
require less knowledge of the data structure. A DOM based application uses string names to
identify pieces of content, and must dynamically walk through the DOM tree to find the
required information. Oracle XML DB allows application developers to use the DOM API to
access and update XMLType columns and tables. Programming to a DOM API is more flexible
than programming via JDBC, but it may require more resources at run time.

Page 26 of 97 ORACLE

Oracle XML DB Technical White Paper

ORACLE XML DB PERFORMANCE

One common objection to using XML to represent data is that it generates higher overhead
than other representations. Oracle XML DB incorporates a number of features that are
specifically designed to address this issue by significantly improving the performance of XML
processing.

XML STORAGE REQUIREMENTS

Surveys have shown that data represented in XML and stored in a text file is three times the size
of the same data in a Java object or in relational tables. There are two reasons for this. First, tag
names (metadata describing the data) and white space (formatting characters) take up a
significant amount of space in the document, particularly for highly structured, data-centric
XML. Secondly, all of the data in an XML file is represented in human readable (string) format.
In the case of numeric data the string representation of a numeric value needs about twice as
many bytes as the native (binary) representation

When XML documents are stored in Oracle XML DB using the structured storage option, the
‘shredding’ process discards all of the tags and white space contained in the document. The
amount of space saved by this optimization depends on the ratio of tag names to data, and the
number of collections in the document. For highly-structured, data-centric XML the savings
can be significant. When a document is printed, or when node-based operations such as XPath
evaluations take place, Oracle XML DB uses the information contained in the associated XML
Schema to dynamically reconstruct any necessary tag information.

XML MEMORY MANAGEMENT

The Document Object Model (DOM) is the dominant programming model for XML
documents. The DOM APIs are very easy to use but the DOM Tree that underpins them is
expensive to generate, in terms of memory. A typical DOM implementation maintains approx
80 — 120 bytes of system overhead for each node in the DOM tree. This means that for highly
structured data the DOM tree can require 10-20 times more memory than the document on
which it is based.

A conventional DOM implementation requires that the entire contents of an XML document
be loaded into the DOM tree before any operations can take place. If an application only needs
to process a small percentage of the nodes in the document this is extremely inefficient in terms
of both memory and processing overhead. The alternative SAX approach reduces the amount
of memory required to process an XML document, but has the major disadvantage that it only
allows linear processing of the nodes contained in the XML Document.

Oracle XML DB reduces the memory overhead associated with the DOM programming model
by managing schema-based XML documents using an internal in-memory structure called a
XML Object (XOB). A XOB is much smaller than the equivalent DOM since it does not
duplicate information like tag names and node types, which can easily be obtained from the
associated XML Schema. Oracle XML DB will automatically use a XOB whenever an
application is working with the contents of a schema-based XMLType. The use of the XOB is
transparent to the application developer; it is hidden behind the XML Type data-type and the
‘C”, PL/SQL and Java APIs.

Page 27 of 97 ORACLE

Oracle XML DB Technical White Paper

The XOB is also able to reduce the amount of memory required to work with an XML
document via a feature called the Lazily-Loaded Virtual DOM. This feature allows Oracle XML
DB to defer loading the in-memory representation of nodes that are part of sub-elements or
collection until some methods attempt to operate on a node within that object. Consequently, if
an application only operates on few nodes in a document, only those nodes and their immediate
siblings will be loaded into memory.

The XOB can only used in conjunction with a XML document that is based on an XML
Schema. If the contents of the XMI. document are not based on an XMI. Schema, a traditional
DOM will be used instead of the XOB..

XML PARSING OPTIMIZATIONS

In order to populate a DOM tree the application must parse the XML document. The process
of creating a DOM tree from an XML file is very CPU- intensive. In a typical DOM based
application, where the XML documents are stored as text, every document has to be parsed and
loaded into the DOM tree before the application can work with it. If the contents of the DOM
tree are updated the whole tree has to be serialized back into a text format and written out to

disk.

Oracle XML DB eliminates the need to keep re-parsing documents. Once an XML document
has been stored using structured storage techniques no further parsing is required when the
document is loaded from disk into memory. Oracle XML DB is able to map directly between
the on-disk format and in-memory format using information derived from the associated XML
Schema. When changes are made to the contents of a schema-based XMLType, Oracle XML
DB is able to write just the updated data back to disk.

Once again, when the contents of the XML Type are not based on an XML Schema a traditional
DOM will be used instead.

NODE SEARCHING OPTIMIZATIONS

Most DOM implementations suffer from the fact that they use string comparisons when
searching for a particular node within the DOM tree. The means that performing even a simple
search of a DOM tree can require hundreds or thousands of instruction cycles.

Searching for a node in a XOB is much more efficient than searching for a node in a DOM. A
XOB is based a computed offset model (similar to a C/C++ object) and it uses dynamic hash-
tables rather than string comparisons to perform node searches.

Page 28 of 97 ORACLE

Oracle XML DB Technical White Paper

XML SCHEMA OPTIMIZATIONS

Making use of the powerful features associated with XML Schema in a conventional XML
application typically generates significant amounts of additional overhead. For instance, before
an XML document can be validated against an XML Schema, the schema itself must be located,
parsed and validated.

Oracle XML DB minimizes the overhead associated with using XML Schema. When an XML
Schema is registered with the database it is loaded in the Oracle XML DB Schema cache, along
with all of the meta-data required to map between the XML, XOB and on-disk representations
of the data. This means that once the XML Schema has been registered with the database no
additional parsing or validation of the XML Schema is required before it can be used. The
schema cache is shared by all users of the database. Whenever an Oracle XML DB operation
requires information contained in the XML Schema it is able access the required information
directly from the cache.

L.OAD BALANCING

Some operations, such as performing a full Schema validation, or serializing an XML document
back into text form can still require significant memory and CPU resources.

Oracle XML DB allows these operations to be off-loaded to the client or mid tier processor.
The OCI interface and thick JDBC driver both allow the XOB to be managed by the client.
The cached representation of the XML Schema can also be downloaded to the client. This
allows operations like XML printing, and XML Schema validation to performed using client or
mid-tier resources, rather than server resources.

NON-NATIVE CODE

Another bottleneck for XMI.-based Java applications is the cost associated with parsing an
XML file. Even natively compiled or JIT compiled Java performs XML passing operations
twice as slowly as native ‘C’ implementations. One of the major performance bottlenecks in
implementing XML applications is the cost of transforming the data contained in an XML
document between text, Java and the native server representations. The cost of performing
these transformations is proportional to the size and complexity of the XML file and becomes
quite severe with even moderately sized files.

Oracle XML DB addresses these issues by implementing all of the Java and PL/SQL intetfaces
as very thin facades over a native ‘C’ implementation. This provides for language-neutral XML
support (Java, ‘C’, PL/SQL and SQL are all using the same underlying implementation), as well
as for high performance XMP parsing and DOM processing.

Page 29 of 97 ORACLE

Oracle XML DB Technical White Paper

TYPE CONVERSIONS

One of the biggest bottlenecks in using Java in conjunction with XML is the cost of type
conversions. Internally Java uses UCS-2 to represent all character data. Most XML files and
databases do not contain UCS-2 encoded data. This means that all the data contained in an
XML file has to be converted from 8 Bit or UTT8 encoding into UCS-2 encoding before it can
be manipulated inside a Java program.

XML DB addresses these problems with lazy type conversions. Lazy type conversions mean
that the contents of a given node will be not be converted into the format required by Java until
the application attempts to access the contents of the node. Data remains in the internal
representation until the last possible moment. Avoiding unnecessary type conversions can result
in significant performance improvements in the cases where an application only needs to access
a few of the nodes contained in an XML document.

Consider the case of a JSP that wants to load a name from the database and print it out in the
generated HTML output. Typical JSP implementations would read the name from the database
(which probably contains data in the ASCII or ISO8859 character sets) convert the data to
UCS-2, and return it to Java as a String. The JSP wouldn't look at the contents of the string, but
merely print it out after printing the enclosing HTML, probably converting back to the same
ASCII or ISO8859 for the client browser. XML DB provides a write interface on XMLTYPE
so that any element can write itself directly to a stream (such as a ServletOutputStream) without
conversion through Java character sets.

‘C’ XMLType JAVA XMLType JAVA XMLType || PL/SQL XMLType
and DOM and DOM and DOM and DOM

Schema-Based Non-Schema-
XML based XML
(XOB) (DOM)

XML Schema Structured Storage Unstructured
Cache (Objects) Storage (CLOB)

Figure V1. Oracle XMI. DB Application Programming Stack

Page 30 of 97 ORACLE

Oracle XML DB Technical White Paper

XMI. MANAGEABILITY

Unlike niche ‘native XML’ database, with Oracle XML DB there is no need to compromise on
the enterprise-class database features in order to get native XML support. Oracle XML DB is
not a separate server; it is an integral part of the Oracle database, providing all of the reliability,
high availability, scalability and unbreakable security features needed to run mission-critical
applications.

MANAGING ORACLE XML DB APPLICATIONS WITH ORACLE
ENTERPRISE MANAGER

You can use Oracle Enterprise Manager (Enterprise Manager) to manage and administer your
Oracle XML DB application. Enterprise Manager's graphical user interface facilitates your
performing the following tasks:

e Configuration
o Configuring Oracle XML DB, including protocol server configuration
o Viewing and editing Oracle XML DB configuration parameters
o Registering XML schema
e Create resources
o Managing resource security, such as editing resource ACL definitions
o Granting and revoking resource privileges
o Creating and editing resource indexes
o Viewing and navigating Oracle XML DB Repository
e Create XML schema-based tables and views
o Creating your storage infrastructure based on XML schemas
o Editing an XML schema
o Creating an XMLType table and a table with XMLT ype columns
o Creating a view-based XML schema

o Creating a function-based index based on XPath expressions

Page 31 of 97 ORACLE

Oracle XML DB Technical White Paper

ORACLE Enterprise Manager 10g Setup Preferences Help Logout
Database Control

Database Instance: orallor? = ¥ML Schemas Logged in As 5Y5
XML Schemas

Chject Type ¥ML Schema hd

Search
Select an object type and optionally enter a scherma name and an object name to filter the data that is
displayed in your results set.

Schema |SCOW s

Ohbject Mame | |

(Go)
Bty default, the search returns all uppercase matches beginning with the string yvou entered. To run an exact or caze-sensitive
match, double quote the search string. You can uze the wildcard symbol (%) 0 & double quoted string.

Selection Made (create)
| wiew) Delete ith Options)Actions| Show Dependencies v L"'Go)

[selectOwner/ |XML Schema URL |Public
® |scoTT http:#localhost:B080/home/SCOT T poSourcedsd/purchase Order xsd MO |

Database | Setup | Preferences | Help | Logout
Copyright & 1996, 2005, Oracle. All rights reserved.
About Oracle Enterprise Manager 10y Database Cortrol

Figure V1II. Oracle Enterprise Manager XML Schema management

The rest of this white paper will take a detailed look at the above features in terms of a simple
example of using Oracle XML DB to manage XML documents.

Page 32 of 97 ORACLE

Oracle XML DB Technical White Paper

SAMPLE APPLICATION:
USING ORACLE XML DB TO MANAGE PURCHASE ORDERS

This sample application attempts to show how some of the concepts outlined in the first
section of the white paper can be used. It based around the idea of a XML representation of a
Purchase Order. In this example, A Purchase Order is represented by a data-centric, highly
structured XML document. Hach Purchase Order is compliant with a XML Schema.

LOADING CONFIGURATION DOCUMENTS INTO THE ORACLE XML DB
REPOSITORY

Many of the operations associated with configuring and using Oracle XML DB are based on
processing one or more XML documents. Examples of this include registering an XML Schema
and performing an XSL transformation. The easiest way to make the necessary documents
available to Oracle is to load them into the Oracle XML DB repository.

WebDAYV support makes it possible to load these documents from a local file system into the

Oracle XML DB repository using Windows Explorer™. The following screen shot shows a
simple drag and drop operation being used to copy the contents of the poSource folder from
the local hard drive into the Oracle XML DB Repository.

& C:\oracle\Demo\XDBY10.1.0. 2.0\basicDemoM OCALAconfigurationFiles

File Edit Wiew Favorites Tools Help

) oack @ - lﬁ @)ﬁ search [t' Folders 23]~

Address (2 CihoracelDemot DB 10, 1.0, 2.0 basicDemot LOC AL configurationFiles V| Go

File and Folder Tasks

Other Places

Details

poSource
Falder

Copying purchaseCrder . xsd ko
Date Modified: Yesterday, httpsfflocalhost: 8050/homelSCOT T /poSourcefxsd,

January 05, 2004, 4:17 PM

(NEEEEREEEEE Cancel I

Figure IX.Using Windows Explorer ™ to load content into the Oracle XMI. DB Repository

KEY POINTS:

e Windows Explorer™ and similar tools that support the WebDAV protocol can be used to
upload documents into the XML DB repository.

e This procedure uploaded a directory tree containing an XML Schema document, an HTML
page and a couple of XSLT style sheets.

e The Oracle XML DB repository can be used to store non XML content, such as HTML
files, JPEG images, word documents etc, as well as Schema based and non-Schema based
XML content.

Page 33 of 97 ORACLE

Oracle XML DB Technical White Paper

ORACLE XML. DB AND THE W3C XML SCHEMA STANDARD

CREATING AN XMI1. SCHEMA

The following screen shots show a simple XML Schema being displayed using XMLSpy.
XMLSpy is a XML Schema and document editing tool created by Altova. See
http://www.altova.com for more details about the tool and its features

One of the major features of the XMLSpy IDE is that it provides a developer with a graphical,
easy to use, interface for creating and editing an XML Schema. XMLSpy also supports both
WebDAV and FTP protocols. This allows XMLSpy to directly access content stored in Oracle
XML DB Repository.

In this example XMLSpy is displaying a graphical representation of a simple XML Schema that
defines a PurchaseOrder XML document.

X XMLSPY - [hitp:fflocalhost: BOBO/home/SCOTT/poSource/xsd/purchaseOrder. xsd]

Ele Edit Project %ML DTDySchema Schemadesign ®SL Authentic Convert Wiew Browser WSDL SOAP Tools Window Help

NE2@ HE S| saR oo Mdh Yyl |aa @:a5

Project —————————————— . x EI e — — — — — — — — — — — & || Comporents —————+ x
IE 2.0 Show XML Schema | P dmeemdfl e ||| [purchasecrder
=ML Files "Reference
H5L Files |
HTHML Files -Antions
DTD/Schemas l Elm | Gip | Com | Sim | Att| AGrp
Defalls ——— . x
isAef O
minDee
maxlee
= content complex
derivedBy =]
mized =
nillable (=
block =
g 4 i =
Info - %
A0 I i
Attributes I Identity constraints |
=,
x|
Name Type Use Default Fixed
] [is:stiing [[| Detals -
Quantity moneyTupe
UnitPrice quantityType Facets S X
Test | Gid |[Schema/WSDL | Authertic | Browser |
http:fflacalhost: 5080fhome/SCOTT/poSourcefxsdfpurchaseOrder . xsd | Facets
HMLSPY w2004 rel. 2 11 Registered bo Mark D. Drake (Oracle =ML DE) ©1998-2003 Altova GmbH & Alkova, Inc. F ==

Figure X. XMILSpy showing a Graphical Representation of an XML Schema

Page 34 of 97 ORACLE

Oracle XML DB Technical White Paper

KEY POINTS:

e The PurchaseOrder schema is a relatively simple XML Schema that demonstrates the key
features of a typical XML document.

e The global element PurchaseOrder is an instance of the complexType PurchaseOrderType.

o PurchaseOrderType defines the set of nodes that make up a PurchaseOrder element.
e 'The Lineltems element consists of a collection of Lineltem elements.

e Fach Lineltem elements consists of two elements, Description and Part.

e The Part element has attributes Id, Quantity and UnitPrice.

ANNOTATING AN XMI. SCHEMA

Database administrators and Application developers can annotate the XML Schema to control
the naming of the Tables, SQL Objects and SQL Attributes derived from the XML Schema.
Annotations can also override the default mapping between the XML Schema data types and
SQL data types.

Annotations also make it possible to control how collections with the XML Schema are stored
in the database. The available options include storing the collection as CLOB; storing the entire
collection as a VARRAY of objects stored in a LOB column; storing the collection as a set of
rows in an Index Organized Nested Table, or storing the collection as a set of rows in a
separate XMLType table. These options provide significant opportunities to tune the
performance of applications that make use of the XMLType data-type to store XML in the
database.

Page 35 of 97 ORACLE

Oracle XML DB

Technical White Paper

XMLSpy also allows the XML Schema editor to work directly with the XML Schema in its
native form as can be seen from the following screen shot. This screen shot show how
annotations are added to the XML Schema.

X, XMLSPY - [hitp:{flocalhost: BOBO/home/SCOTT{poSource/xsdipurchaseOrder. xsd]

E\Ie Edit Project XML DTDjSchema Schemadesign ¥SL Authentic Conwert Wisw Browser WSDL SOAP Toals Window Help

0O = -

Project - X

E 0 Show XML Schema

#ML Files

5L Files

HTML Files
DTD/Schemas
 httpedAocalhost: 8080/
nlities

S 4B

08y 0y 2l |3 (e [em

=x5 schema xmins: <ch="httpl=mins oracle. comMdb” <mins:=s="rttp: My w3 orgi2000 HMLSchema”
version="1 0" xob:storearray Az Table="true"s

== element name="Reference” type="ReferencaType" xib: SGLHame="REFERENCE" =
=xselement rame="Actions" type="ctionsType" xdk SCLName="ACTIONS"/=

<xsielement name="Reject" type="RejectionType" minOccurs="0" xel SALName="REJECTION 1=
= element name="Resuestor” type="RequestorType® «db Sallame="REQUESTOR "t
=xselement rame="User" type="User Type" xdb SOLHame="USERID" >

<xsielement name="CostCenter" type="CostCenter Type" xel:SALName="COST_CENTER"

sl SQLName="SHIPPING_INSTRUCTIONS"=
=x5 element name="Specialnstructions" type="Specialnstructions Type"
ol SALName="SPECIAL_INSTRUCTIONS =
=xg glement name="Linetems" type="LinetemsType" xdb:SGLMName="LINETEMZ">
< SEGUENCES
=z oomplexTypes
=xz:complexType name="LinetemsType" xob: 20LType="LINEITEMS _T"~
=zESeUences
=z element name="Lingtem" type="LinetemType" maxOccurs="unbounded” xdi SQLMName="LINEITEM"
sl SQLCollType="LINETEM_V"%=
=S SEUENCES
= oomplexTypes
=xz:complexType name="LinetemType" xdb:SGLType="LINETEM_T">
=mESegUences
=xz element name="Description” type="DescriptionType" xdb: SGLMame="DESCRIPTICN"f=
=xg:element name="Part" type="PartType" xdh SGLMName="PART"/=
< SEUENCES
=cearattribute name="temMumber" type="x= integer" wolbr SQLMame="ITEMMUMBER"
xclh: SQLType="NUMBER"/>
=fsicomplexTypes
=xzcomplexType name="PartType" xdi SOL Type="PART_T"=
=xzattribute name="1d" xdb: SGLName="PART_NUMBER" xdh: 2CLType="VARCHAR2"=
<x5 simpleTypes=
=xarrestriction base="xastring"s
=xzminLength value="10">
=rzmaxlencth value="14"f=
=/xairestriction=
s simpleTypes
=hezattribute=
=xzattribute name="Quantity" type="maney Type" xob:SELHName="GUANTTY" >
=earattribute name="UnitPrice" type="guantity Type" ok SCLName="LINTPRICE" /= hd

Text Grid Schema/SDL Authertic Browser

=l-- edited with XML Spy w4.0 U (http: e smlspy .com) by Mark (Drake) --» s

=xs element name="Shippinginstructions” type="ShippinginstructionsType" m

| http:fflocalhost: 8080/ homefSCOTT/poSource/xsd/purchaseOrder xsd |

SMLSPY v2004 rel, 2) Registered to Mark D, Drake (Oracle =ML DB) ©1998-2003 Altova GmbH & Alkova, Inc,

Fignre X1. XMIL.Spy showing the native Representation of an XML Schena

KEY POINTS:

| Elements - x

{3 xs:all A
{} x=annotation Bt
{3} xzany

{} xsanyattribute

{} xs:appinto

£} o atiribute s

Attributes . %

Entities . x

L4, Col2

This schema defines two namespaces.

The first,

http://www.w3c.org/2001 /XMI.Schema, is the namespace reserved by the
W3C for the Schema for Schemas. This namespace is used to define the structure of
the XML document.

The second, http://xmlns.oracle.com/xdb is the namespace reserved by Oracle for the
Oracle XML DB schema annotations. This namespace is used to add annotations to
the schema that control how the instance documents will be stored in the database.

The annotation mechanism is the W3C approved mechanism for adding vendor specific
information to a W3C XML Schema.

Oracle XML DB can register an XML Schema that contains no annotations. It makes use
of a set of default assumptions to register the XML Schema. The annotations provide the
application developer or database administrator with the ability to override these

assumptions.

Page 36 of 97

ORACLE

Oracle XML DB Technical White Paper

XMLSpy provides an Oracle tab that allows Oracle XML DB Schema Annotations to be
entered while working in graphical editing mode.

X, XMLSPY - [hitp:/flocalhost: BOBO/home/SCOTT/poSource/xsd/purchaseOrder. xsd]

Ele Edit Project %ML DTDySchema Schemadesign XSL Authentic Conwvert Wiew Browser WSDL SOAP Tools Window Help -8 X
= el A R Y e AR e i L
Project —————————————— . x EI Components = + x
IE Show XML Schema PurchaseOrder
HTML Filss [Puehascordernpe |
L ype -
DTD/Schemas o | Elm | Grp | Com | Sim | Att | AGrp
| =
| Details ————— . x
| | ol |
: 5 | SOLTyee | -l
| R o | SULSchema
| = JavaType =
| | defTable PURCHASEORDER
defSchema
_ tableProps |
| | 50LInine -
| | maintDOM | =
Shippinginstructions BeanClass
’ ' | Shippinginstructions
—IQ | = | defaultaCL |
| = Specialinstructions isFalder =
Info - = |]
userPriv
| |
L =
Attributes I Identity constraints
ElE]
Name Type Use D efault Fixed
Detalls Oracle
Fargts —————— « x
Test | Gid |[Schema/wSDL | Authertic | Browser |
http:fflacalhost: 8080fhome/SCOTT poSourcefxsdfpurchasetrder. xsd | Facets
¥MLSPY v2004 rel. 2 U_Redistered ko Mark D. Drake (Oracle XML DE) _©)1998-2003 altova GmbH & Altova, Inc. F e

Figure X11. XMI_Spy showing support for Oracle XMI. DB Schema Annotations
KEY POINTS:

e In this schema the following annotations are being used:

e The storeVarrayAsTable annotation is used to force collections to be stored as Nested
Tables.

e 'The defaultTable annotation is used in the PurchaseOrder element to define that XML
documents, compliant with this schema will be stored in a table called
PURCHASEORDER

e The SQLType annotation is used to provide an explicit name for the SQL Type that will be
generated from the complexType PurchaseOrderType.

Page 37 of 97 ORACLE

Oracle XML DB Technical White Paper

REGISTERING AN XMIL. SCHEMA

Before Oracle XML DB can manage the instance documents associated with a given XML
Schema the XML Schema must be registered with the database. XML Schema registration is
performed using a simple PL/SQL procedure: called dbms_xmlschema.registerschema(). By
default, when the XML Schema is registered, Oracle XML DB will automatically generate all of
the SQL Object Types and Object tables required to manage the instance documents.

The following screen shot show the process of registering an XML Schema stored in the Oracle
XML DB repository.

£ Oracle SQL*Plus |Z“-§|rs_—(|
File Edit Search Options Help

SOL#Plus: Release 18.1.8.2.8 - Production on Tue Jan 6 11:48:82 2084

Icopyright {c) 1982, 2883, Oracle. All rights reserved.

Connected to:
Oracle Database 18g Enterprise Edition Release 18.1.8.2.8 - Production
With the Partitioning, OLAP and Data Mining options

SQL> —-
SOL> alter session Set events='31098 trace name context forewver'
2 7

Session altered.

SOL> begin
2 dbms_xmlschema.registerSchema
{
schemalRL = ‘http://localhost: 8880/ /home/SCOTT/poSource/ sd/purchaselrder . xsd’,
schemaDoc =2 xdbURIType(' fhome/SCOTT/poSource/xsd/purchaselrder ®¥sd’).getClob(),
local => TRUE,
genTypes => TRUE,
genBean => FALSE,
genTables => TRUE

=B Y I)

18);
11 end;
12 7

IPL/SOL procedure successfully completed.

SQL> »
£ | >

Figure XI1I1. Using the DBMS_XMI.SCHEMA package to register an XML Schema

By default the XML Schema registration process generates the SQL Objects and XMLType
tables required to manage the instance documents.

Page 38 of 97 ORACLE

Oracle XML DB Technical White Paper

The following screen shot shows the XMLType Table, and some of the SQL Objects that were
created as a result of registering the PurchaseOrder XML Schema.

£ Oracle SQL*Plus

File Edit Search ©Options Help
E
SOL*Plus: Release 16.1.8.2.8 - Production on Tue Jan 6 16:49:42 2004
Copyright (c) 1982, 2883, Oracle. All rights reserved.
Connected to:
Oracle Database 18g Enterprise Edition Release 18.1.8.2.8 - Production
With the Partitioning, OLAPF and Data HMining options
SOL>
SQL> describe purchaseorder
Hame Hull? Type
TABLE of SYS_.XHLTYPE{XHLSchema "http://localhost:8888/home/SCOTT/poSource/xsd/purchaselrder . xsd”
Element "PurchaseOrder’) STORAGE Object-relational TYPE "PURCHASEORDER_T™

SQL> —-
SQL> describe PURCHASEORDER_T

PURCHASEORDER_T is MOT FINAL

Name Hull? Type

SYS_XDBPDS XDB.XDBSRAW LIST T

REFERENCE UARCHAR2(38 CHAR})

ACTIONS ACTIONS_T

REJECTIDH REJECTIOH_T

REQUESTOR UARCHARZ2({128 CHAR)

USERID UARCHARZ2{18 CHAR)

COST_CEHNTER UARCHAR2({4 CHAR)
SHIPPING_IHSTRUCTIOHNS SHIPPING_INSTRUCTIONS_T
SPECIAL_INSTRUCTIDNS UARCHAR2{2 A48 CHAR)

LINEITEMS LINEITEMS_T
SQL>
SOL> desc LIMEITEMS_T

LIHEITEMS T is HOT FIHAL

Hame Hull? Type

SYS_XDBPD$ XDB.XDBSRAW LIST T

LINEITEM LINEITEHM U
SOL>
SOL> desc LIHEITEM VU

LINEITEM VU UARRAY{2147483647) OF LINEITEM T

LINEITEM T is MOT FINAL

Hame Hull? Type

SYS_XDBPDS XDB.XDBSRAW LIST_T

ITEMHUMBER HUMBER({38)

DESCRIPTION UARCHARZ2({256 CHAR)

PART PART_T
SOL> v
£ L) >

Figure X1V, Tables and Objects created as a result of XML Schema registration

Page 39 of 97 ORACLE

Oracle XML DB

KEY POINTS:

Technical White Paper

e The following objects were created a result of registering the Schema.

A table called PURCHASEORDER.

The PURCHASEORDER table is an XMLType table. Each row in the table
consists of a single XMLType object.

The table is constrained so that it can only contain documents which conform
to the definition of the global element PurchaseOrder contained in the XML
Schema that was registered with Oracle XML DB under the URL
http://localhost:8080/home/SCOTT/posource/xsd/purchaseOrder.xsd

The XMLType is persisted using structured or object-relational storage.

A SQLType called PURCHASEORDER_T.

This SQLType provides the definition of the underlying storage model for
PurchaseOrder documents. The definition of PURCHASEORDER T is derived
from the complexType PurchaseOrderType. When a PurchaseOrder is inserted
into the PURCHASEORDER table it is shredded and stored as an instance of
PURCHASEORDER_T.

SQLTypes called LINEITEMS_T, LINEITEMS_V and LINEITEM_T.

Page 40 of 97

During the schema registration process a SQLType is generated for each
complexType defined by the XML Schema.

The PurchaseOrder XML Schema defines a complexType LineltemsType that
can contain one or more Lineltem elements. The definition of a Lineltem
element is provided by the complexType LineltemType. When an XML Schema
defines that an element can occur more than once, Oracle XML DB uses a
VARRAY to manage the members of the collection.

The SQLType LINEITEM_T is derived from the complexType LineltemType.
Each LineItem element in the PurchaseOrder will be persisted as an instance of
the SQLType LINEITEM_T.

The SQLType LINEITEM_V is used to manage the set of LINEITEM_T objects
generated from a particular PurchaseOrder document. LINEITEM_V is defined
as a VARRAY of LINEITEM_T objects.

The SQLType LINEITEMS_T is detived from the complexType LineltemsType.
It contains a single attribute called LINEITEM of type LINEITEMS_V.

ORACLE

Oracle XML DB Technical White Paper

—»

Since the Oracle XML DB Schema annotation storeVarrayAsTable=""true” was specified in the
root element of the PurchaseOrder XML Schema the default tables generated by schema
registration use nested tables to persist the contents of a VARRAY. There will be one nested
table for each collection defined by the XML Schema. Each member of the VARRAY will be
stored as a separate row in the nested table. The nested tables created by the schema registration
process are given system-generated names

Storing collections as nested tables makes it possible to create conventional b-tree indexes over
the members of a collection making queries over the collection much more efficient. However
in order to create an index on a particular collection it is necessaty to know the name of the
nested table that manages that collection.

The following screen shot shows the process of renaming the Nested Tables generated by the
schema registration process in order to provide more meaningful names.

+ Oracle SQL*Plus
Flle Edit Search Options Help

SOL*Plus: Release 18.1.8.2.8 - Production on Tue Jan 6 16:57:16 2004
Copyright (c) 1982, 2883, Oracle. All rights reserved.

Connected to:

[0racle Database 18g Enterprise Edition Release 18.1.8.2.8 - Production
With the Partitioning, OLAP and Data Mining options

SQL> call xdb_utilities.renameCollectionTable ('PURCHASEORDER', "XMLDATA"."LIMEITEWS™”."LIMEITEW'','LINEITEM TABLE")
2 7

Call completed.

SQL> call xdb_utilities.renameCollectionTable ('PURCHASEORDER','"XMLDATA" ."ACTIONS"."ACTION"','ACTION_TABLE'}
2 4

Call completed.

SOL> select PARENT_TABLE_HAME, PARENT_TABLE_COLUHN, TABLE_HNAHE
2 from USER_MESTED_TABLES

3
PARENT_TABLE_NAME PARENT_TABLE_COLUHN TABLE_HNAHE

PURCHASEORDER “XHLDATA" ."ACTIONS" ."ACTION" ACTION_TABLE

PURCHASEORDER “XHMLDATA" ."LINEITEWMS"."LINEITEH" LINEITEM TABLE

soL> B
| I

Figure X17. Renaming Nested Tables

Page 41 of 97 ORACLE

Oracle XML DB Technical White Paper

STORING XML IN ORACLE XML DB

There are several ways of storing XML in an XMLTYype.

From SQL or PL/SQL, a simple insert statement can be used to load data. The data can
come from a variety of sources. Before the data can be stored as an XMLType is must first
be converted from the source form into an XMLType instance using one of the XMLType
constructors.

There are a number of variants of the XMLType constructor that allow an XMLType to be
created from a number of different sources including VARCHAR and CLOB data types.
The constructors also provide options for reducing the amount of processing associated
with creating the XMLType. For instance, if the source XML Document is known to be
both Well formed and Valid, the constructor allows flags to be passed that disable the
default checking that is typically performed when instantiating the XMLType.

It is also possible to use the Oracle XML DB repository to store XML in an XMLType
table. The XML in question must be schema-based, and it will be stored in the Default
Table associated with the XML Schema. For the SQL programmer the PL/SQL package
DBMS_XDB provides methods that can be used to load an XML Document into the
Oracle XML DB repository. XML documents can also be loaded into the repository using
the FTP, HTTP and WebDAYV protocols.

When a schema-based XML document is loaded into the Oracle XML DB repository
Oracle XML DB will automatically recognize the document, shred it and store it in the
Default Table defined by the XML Schema.

Page 42 of 97 ORACLE

Oracle XML DB Technical White Paper

The following example shows the noNamespaceSchemal.ocation attribute being used to
identify that a PurchaseOrder XML document is associated with the PurchaseOrder XML
Schema

<PurchaseOrder xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="http://localhost:8080/home/SCOT T/poSource/xsd/purchaseOrder.xsd">
<Reference>EABEL-20030409123336251PDT</Reference>
<Actions>
<Action>
<User>EZLOTKEY</User>
</Action>
</Actions>
<Reject/>
<Requestor>Ellen S. Abel</Requestor>
<User>EABEL</User>
<CostCenter>R20</CostCenter>
<Shippinglnstructions>
<name>Ellen S. Abel</name>
<address>300 Oracle Parkway
Redwood Shores
CA
94065
USA</address>
<telephone>650 506 7300</telephone>
</Shippinglnstructions>
<Speciallnstructions>Counter to Counter</Speciallnstructions>
<Lineltems>
<Lineltem ltemNumber="1">
<Description>Samurai 2: Duel at Ichijoji Temple</Description>
<Part 1d="37429125526" UnitPrice="29.95" Quantity="3"/>
</Lineltem>
<Lineltem ltemNumber="2">
<Description>The Red Shoes</Description>
<Part |d="37429128220" UnitPrice="39.95" Quantity="4"/>
</Lineltem>
<Lineltem ltemNumber="3">
<Description>A Night to Remember</Description>
<Part |d="715515009058" UnitPrice="39.95" Quantity="1"/>
</Lineltem>
</Lineltems>

</PurchaseOrder>

Figure X171. A XML Document with noNamespaceS chemal ocation tag

Page 43 of 97 ORACLE

Oracle XML DB Technical White Paper

The next two screen shots show Windows Explorer™ being used to load content into an
XMLType table. In this example the documents are loaded by copying an entire directory tree
from the local hard drive into the Oracle XML DB repository. Each of the documents in the
folder hierarchy includes the noNamespaceSchemal.ocation attribute that allows Oracle XML
DB to determine which table will be used to store the contents of the document.

& C:\oracle\DemoXXDB10.1.0. 2.0\basicDemol\ OCAL \sampleData
Edit Wiew Favorites Tools Help .ﬂ.

File

() Search |(Folders

v| Go
| \
i
“DB
Details User name; |ﬂ SCOTT v|
2003 Password: | Y |
Folder
Date Modifie [CIremember my passward
January 05,
L K J [Cancel
& C:\oracle\Demo\XDBY10.1.0. 2.0\basicDemo\ OCAL \sampleData (=13
File Edit View Favorites Tools Help 1"‘"
\(») Back. @ i lﬁ @ J',_,—) Search lL:' Falders v
address |23 Ciloracle\Demal DBy 10.1.0,2, MbasicDemaiL OCAL \sampleData V| Go

File and Folder Tasks ¥ | 2002
Other Places ¥ —
i Ireealid 1 r5 on localhost

|
Details A

2003
Folder

Date Modified: Yesterday,
January 05, 2004, 4:17 PM

Copying LSMITH-20031209123338535P0T.xml ko
http: fflocalhost:E050 /home/SCOTT/purchaseCrders) 2003 Dec.,

NEEENEE Carcel |

Figure X1711. File Copy Operation in progress

Page 44 of 97 ORACLE

Oracle XML DB Technical White Paper

The sequence of events that takes place here is as follows:

The user selects a directory tree and drops it into the Oracle XML DB repository.

The WebDAV client, in this case Windows explorer, generates a series of MKDIR and
PUT commands that will copy the contents of the selected directory from the local hard
drive into the Oracle XML DB repository.

The Client attempts to create the first directory or upload the first file.

The Oracle XML DB repository requests authentication from the client. Since the client has
does not have access the required token, the user is prompted for the appropriate username
and password.

The user and password are authenticated using Database LDAP based authentication.

Oracle XML DB recognizes that the files being transferred are XML files. It then looks at
the root element of each document to see if it is associated with a known (registered) XML
Schema.

Since the file is based on a known XMIL Schema the meta data for the XMI. Schema is
loaded from the XML Schema cache

The document is parsed and decomposed into a set the SQL Objects that were derived
from the XML Schema.

The SQL Objects created from the XML file are stored in the default table that was
generated when the XML Schema was registered with the database.

A resource document is created for each document stored in the default table. This allows
the content of the document to be accessed using the Oracle XML DB repository.

Each file operation is considered to be an atomic operation.

Page 45 of 97 ORACLE

Oracle XML DB Technical White Paper

ADDING DATABASE INTEGRITY TO XML DATA

XML Schema is a very powerful language. However there are some simple data management
concepts that are not addressed in the current version of the XML Schema standard. These
include the ability to define that the value of an element or attribute has to be unique across of a
set of XML documents (a UNIQUE constraint), ot that the value of an element or attribute must
exist in some data source outside of the current document (a FOREIGN KEY constraint).

Oracle XML DB allows database-enforced integrity to be applied to XML content. The
mechanisms used to enforce integrity on XML are the same as the mechanisms that are used to
enforce integrity on conventional relational data. Simple rules, like uniqueness and foreign-key
relationships, are enforced by specifying constraints. More complex rules are enforced by
specifying database triggers.

The following screen shot shows how constraints and triggers can be used to enforce a set of
business rules associated with the PurchaseOrder documents.

+ Oracle SQL*Plus Ml=1E3

File Edit Search Options Help
B
|Copyright (c) 1982, 20803, Oracle. All rights reserved. 7
Connected to:
Oracle Database 18g Enterprise Edition Release 18.1.8.2.8 - Production
With the Partitioning, OLAP and Data Mining options
SQL> alter table PURCHASEORDER
2 add constraint REFERENCE_IS_UNIQUE
3 unique {xmldata."REFEREMNCE")
4 7
Table altered.
SQL> alter table PURCHASEORDER
2 add constraint USER_IS_UALID
3 foreign key (xmldata."USERID") references HR.EMPLOYEES{EMAIL}
4 7
Table altered.
SQL> create or replace trigger UALIDATE_PURCHASEORDER
2?2 before insert on PURCHASEORDER T
3 for each rou
4 begin
5 if (:new.object_value is not null) then
[new.object_walue.schemavalidate({);
7 end if;
8 end;
9 7
Trigger created.
SqL> 24
£ | >

Figure XVIII. Applying Database Integrity Constraints and Triggers to an XMI . Type table.

Page 46 of 97 ORACLE

Oracle XML DB Technical White Paper

KEY POINTS:

e The unique constraint REFERENCE_IS_UNIQUE will enforce the rule that the value of the
node /PurchaseOrder/Reference/text() is unique across all documents stored in the
PURCHASEORDER table

e The foreign key constraint USER_IS_VALID will enforce the rule that the value of the node
/PurchaseOrder/User/text() corresponds to one of the values in the EMAIL column in the
EMPLOYEES table in the HR schema.

e The trigger VALIDATE_PURCHASEORDER will enforce the rule that the PurchaseOrder
document must be in full compliance with the XML Schema associated with the XML
document. By default performs a simple ‘lax’ validation of the incoming XML Document
which ensures that mandatory information is present and that there are no unexpected
elements or attributes in the document. In order to enforce a full schema validation the
schemaValidate() method has to be called on the XMLType.

Performing a full XML Schema validation is a fairly expensive process. This design allows
the developer to determine if a full validation is required. If the developer is sure that the
XML is always valid, they can avoid overhead of performing a full validation on the
incoming XML document. If the developer is not sure about the validity of the XML, a
simple trigger is all that is required to enforce a full validation.

e In the current release of Oracle XML DB it is necessary to define a constraint in terms of
attributes of the associated SQL type. The SQL keyword object_value is used to refer to
the content of row in an XMLType table from within a trigger.

Page 47 of 97 ORACLE

Oracle XML DB Technical White Paper

The following screen shots show what happens when an attempt is made to load an XML
document that does not conform to the constraints that have been defined for the
PURCHASEORDER table. In this example case, the XML document is a valid XML document
according to the XML Schema. However, the value of the node /PurchaseOrder/Reference/text()
is a duplicate of one of the documents that has already been loaded into Oracle XML DB.

‘% 1.3.1 Duplicate Reference]

ttp> open lTocalhost 2100 i
Connected to mdrake-Tap. —
220 mdrake-lap FTP Server (Oracle ML DE/Oracle Database 10g Enterprise Edition Release 10.1.0.2.0 -
Production) ready.
ftp> user SCOTT TIGER
331 pass required for SCOTT
230 SCOTT logged in
ftp> cd Jhome/SCOTT purchaselrders
250 CWD Command successful
ftp> !type DuplicateReference.xml
<Purchasedrder xmlns:xsi="http:/Awwwd . org, 2001, ML 5chema-instance"” xs1:noNamespaceSchemalocation="
http://Tocalhost 8080,/ home,SC0TT /poSource S«sd/purchasedrder. xsd' »
¢ReferencesSBELL-2003030912333601P0T ¢ /References
cActions:
<Action:
clUsersSYOLLMAN Users
o Action:
<fActionss
<Reject/s
¢<Requestor:Sarah J. Bell«/Requestor:
¢lser:5BELL ¢ /Users
«CostCenter:»530:,/CostCenter:
<ShippingInstructionss:
name:Sarah J. Bell</names
caddress»400 Oracle Parkway
rRedwood Shores
A
94065
USA < addresss
ctelephone>650 506 F400< telephones
2/ShippingInstructionss
cSpeciallnstructionssair Maile</ Speciallnstructions:
cLineltemss
¢cLineltem ItemNumber="1":
cDescription:& Night to Remember</Description:
¢Part Id="715515009058" UnmitPrice="39.95" Quantity="2"/>
</Lineltem:
cLineltem ItemNumber="2":
¢Description:The Unbearable Lightness Of Beinge</Description:
cPart Id="37429140222" UnitPrice="29,95" Quantity="2"/:
</Lineltem:
¢LineTtem ItemNumber="3":
Description:Sisterse/Description:
«Part Id="7F15515011020" UnitPrice="29,95" Quantity="4"/»
</Lineltem:
</Lineltemss
</Purchasedrders

ftp> put DuplicateReference.=ml

200 PORT Command successful

150 ASCII Data Connection

550- Error Response

OEA-00604 : error occurred at recursiwve QL Tewel 1

OEA-QDOC1: unigue constraint (SCOTT.REFEREMCE_IS_UNIQUE) wiolated
550 End Error Eesponse

ttp: 1274 bytes sent 1n 0.00%econds 1274000.00Kbytes sec.

ftps L]
Figure XIX. Violating a Unigune Constraint via FTP

KEY POINTS:

e Since there already is a document in the database that contains a reference element with the
same value, the constraint REFERENCE_IS_UNIQUE is violated. Since the unique key
constraint is violated the ftp ‘put’ operation fails.

Page 48 of 97 ORACLE

Oracle XML DB Technical White Paper

In the second case, the XML document is a valid XML document according to the XML
Schema. However the node /PurchaseOrder/User/text() contains the value ‘HACKER’.

ttp> open lTocalhost 2100
Connected to mdrake-Tap.
220 mdrake-lap FTP Serwer (Oracle ML DE/Oracle Database 10g Enterprise Edition Release 10.1.0.2.0 -
Production) ready.
ftp> user SCOTT TIGER
331 pass required for SCOTT
230 SCOTT logged in
ftp> cd Jhome/SCOTT purchaselrders
250 CWD Command successful
ttp> !type InvalidUser.xml
<Purchasedrder xmlns:xsi="http:/ /A wd . org 2001, ML 5chema-instance"” xs1:noNamespaceSchemalocation="
http://localhost ;8080 home,SC0TT /poSource S«sd/purchasedrder. xsd"»
¢ReferencesHACKER-2003100912333601P0T ¢ /Reference:
cActions:
<Action:
clser:SVOLLMAN: /User:
<fAhctions
<fAhctionss
<Reject/s
¢<Requestor:Sarah J. Bell«/Requestor:
¢lser:HACKER ¢« /User:
«CostCenter»530¢,/CostCenter:
zShippingInstructionss
chames>Sarah J. Belle/names
caddress»400 Oracle Parkway
rRedwood Shores
A
94065
UsA < addresss
ctelephone>650 506 7400q/telephones
</ShippingInstructions:
¢specialInstructionssAir Mailc/SpecialInstructions:s
cLineltemss
¢cLineltem ItemNumber="1":
cDescription:& Night to Remember</Description:
<Part Id="7F15515009058" UnitPrice="39.95" Quantity="2"/»
</Lineltem:
¢LineTtem ItemNumber="2":
«Description:zThe Unbearable Lightness Of Beinge</Description:
cPart Id="37429140222" UnitPrice="29,95" Quantity="2"/:
</Lineltem:
¢LineTtem ItemNumber="3":
DescriptionsSisterse/Descriptions
cPart Id="F15515011020" UnitPrice="29.95" Quantity="4"/»
/Lineltems
< /Lineltemss
</Purchasedrders

ttp> put InwvalidUser.xml

200 PORT Command successful

150 ASCII Data Connection

550- Error Eesponse

OEA-ODECY : error occurred at recursiwve QL lewel 1

OEA-02291: inmtegrity constraint (SCOTT.USEE_IS_WALID) wiolated - parent key not found
550 End Error Response

ftp: 1276 bytes sent in 0.01%econds 127.60Kbytes/sec.

ftps L]
Figure XX. Violating a Foreign Key Constraint via F1P

KEY POINTS:

e Since the value “HACKER” does not appear in the EMAIL column of the EMPLOYEES table, the
constraint USER_IS_VALID is violated. Since the foreign key constraint is violated the ftp
‘put’ operation fails.

Page 49 of 97 ORACLE

Oracle XML DB Technical White Paper

In the final case, the XML document is a not a valid XML document according to the XML
Schema. The XML Schema defines a minimum length of 18 characters for the node
/PurchaseOrder/Reference/text(). In this document the node contains the value “SBELL-
20031009, which is only 15 characters long,.

‘& 1.3.3 Invalid Document HE x.

Ftp> open localhost 2100
Connected to mdrake-Tap. —
220 mdrake-lap FTP Serwver (Oracle ML DE/Oracle Database 10g Enterprise Edition Release 10.1.0.2.0 -
Production) ready.
ftp> user SCOTT TIGER
331 pass required for SCOTT
230 SCOTT logged in
ftp> cd JhomeSCOTT purchaselrders
250 CWD Command successful
ftp> ltype InvalidReference.=ml
cPurchasedrder xmlnsxsi="http: /A, wl . org 2001 5MLSchema—instance” xsi rnoNamespacesSchemalocations="
http://1ocalhost 18080 /home /SCOTT /poSource fxsdpurchasedrder. xsd' >
cReference»SBELL-20031009 < /References
cActionss
cActions T
clsersSYOLLMANc/Users
o Action:
o fActionss
cReject/s
¢RequestorzSarah J. Bellc</Requestor:
¢cUser:5BELL ¢/ Users
cCostCenter>530 ¢/ CostCenters
<ShippingInstructionss:
name:Sarah J. Bell</names
zaddress:400 Oracle Parkway
rRedwood Shores
o
94065
UsA < addresss
«telephone»650 506 F400¢ telephones
2/ShippingInstructionss
<SpecialInstructionssair Maile</Speciallnstructions:s
¢cLineltemss
¢LineItem ItemNumber="1"s:
DescriptionsA Might to Rememberc/Description:
cPart Id="F15515009058" UnitPrice="39.95" Quantity="2"/»
</Lineltem:
cLineltem ItemNumber="2":
¢cDescription:The Unbearable Lightness Of Beinge/Description:
¢Part Id="37429140222" UnitPrice="29.95" Quantity="2"/:
</Lineltem:
¢cLineltem ItemNumber="3":
cDescription:Sisterse/Description:
¢cPart Id="F15515011020" UnitPrice="29,95" Quantity="4"/»
</Lineltem:
</Lineltemss
</Purchasedrder:

ftp> put InwvalidReference.=ml

200 PORT Command successful

150 ASCII Data Connection

550- Error Response

ORA-00604 : error occurred at recursive SGL Tewel 1

OEA-31154: invalid XML document

ORA-19202: Error occurred in XML processing

LSx-00221: "SBELL-20031009" s too short (minimum length is 18)
ORA-06512: at "SYS.XMLTYPE", line 333

OEA-D6512: at "SCOTT.VALIDATE_PURCHASEORDER", line 3

OEA-04088: error during execution of trigger 'SCOTT.VALIDATE_PURCHASEORDER'
550 End Error Eesponse

ttp: 1263 bytes sent 1n 0.00%econds 1263000.00Kbytes/sec.

ftps ﬂ
Fignre XX1. Violating a Schemal’ alidate constraint via FTP

Pa

Ul

rC

0 of 97 ORACLE

O

Oracle XML DB Technical White Paper

KEY POINTS:

e The full XML Schema validation performed by the VALIDATE_PURCHASEORDER trigger
catches the fact that the document is not valid according to the XML Schema. Since the
trigger returns an error, the ftp ‘put’ operation fails and the document is not uploaded.
Without the trigger the document would pass the default ‘lax’ validation performed when a
document is loaded into an XMLType table.

e When a document is being uploaded via a protocol, Oracle XML DB always provides the
client with the full SQL Error Stack. How the error is interpreted and reported to the user
is determined by the error handling built into the client application. Some clients will report
the error returned by Oracle XML DB, while others will simply report a generic error
message.

The above examples demonstrate two key features of Oracle XML DB. First, Oracle XML DB
makes it possible to implement database enforced business rules on XML Content, in addition
to those rules that can be specified using the constructs of XML Schema. Second, the database
will enforce these business rules regardless of whether XML is inserted directly into a table, or

uploaded using a protocol.

Page 51 of 97 ORACLE

Oracle XML DB Technical White Paper

QUERYING AND INDEXING XML WITH ORACLE XML DB
QUERYING XML,

Oracle XML DB defines a set of operations that make it possible to query XML content in a
very efficient manner. These operations are implemented as a set of methods on the XMLType
data-type and as a set of functions that ate defined in the SQL/XML standard.

The following screen shot shows some simple, XPath-based queries:

+ Oracle SQL*Plus =S

File Edit Search Options Help
o
SOQL*Plus: Release 18.1.8.2.8 - Production on Wed Jan 7 ©9:84:52 2884
ICopyright (c) 1982, 2883, Oracle. All rights reserved.
Connected to:
Oracle Database 18g Enterprise Edition Release 18.1.8.2.8 - Production
With the Partitioning, OLAP and Data Mining options
S0QL> select count{=) from PURCHASEORDER
2 7
COUNT { *)
133
SQL> select count({*) from purchaseorder
2 where existsHode(object_value,'/PurchaselOrder[User="SBELL"]") = 1
3 7
COUNT { *)
13
sQL> | v
o | 3
Figure XXI1I. Stmple SOQL Queries against XML content
KEY POINTS:

e The first query finds the number of PurchaseOrder documents stored into the Oracle XML
DB repository. Since each PurchaseOrder document is stored as a row in the default table
defined by the PurchaseOrder XML Schema, the number of documents can be found by
counting the number of rows in the PURCHASEORDER table.

e The second query uses a simple XPath expression and the existsnode() operator to find the
number of PurchaseOrder documents where the value of the node
/PurchaseOrder/User/text() contains the value “SBELL”.

Page 52 of 97 ORACLE

Oracle XML DB Technical White Paper

The following screen shot shows a query that returns an entire document based on the value of
the node /PurchaseOrder/Reference/text().

+ Dracle SQL*Plus

File Edit Search ©Options Help
~
SQL*Plus: Release 108.1.8.2.8 - Production on Wed Jan 7 89:10:55 2004
fCopyright {c) 1982, 2883, Oracle. nll rights reserved.
Connected to:
Oracle Database 18g Enterprise Edition Release 18.1.8.2.8 - Production
With the Partitioning, OLAP and Data Mining options
SOL> select object_value from purchaseorder
2 uwhere existsHode{object_walue,'/Purchaselrder[Reference="SBELL-20830830912333601PDT"]"') = 1
3 7
JOBJECT_UALUE
<PurchaseOrder xmlns:xsi="http://wwuw.w3.org/20081/XHLSchema-instance” xsi:noNamespaceSchemalocation=
“http://localhost:8080/home/SCOTT/poSource/xsd/purchaselrder .xsd™>
<Reference>SBELL-2083038912333601PDT</Reference>
<Actions>
<Action>
<User>SUDLLHANS /User>
</Action>
{/Actions>
{Reject/>
<{Requestor>Sarah J. Bell{/Requestor>
<User>SBELL</User>
<CostCenter>338<{/CostCenter>
<ShippingInstructions>
<name>3arah J. Bell<{/name>
<address>488 Oracle Parkway
Redwood Shores
CA
24065
UsA</address>
{telephone>658 586 74808<{/telephone>
</ShippingInstructions>
{Speciallnstructions>Air Mail<{/Speciallnstructions>
{Lineltems>
<Lineltem ItemNumber='"1"'>
<Description>A Night to Remember</fDescription>
<Part Id=""715515809058" UnitPrice="39.95" Quantity="2"/>
</Lineltem>
{Lineltem ItemHumber="2">
{Description>The Unbearable Lightness Of Being</Description>
{Part Id=""37429148222" UnitPrice=""29.95" Quantity="2"/>
<fLineltem>
<{Lineltem ItemHumber="3">
{Description>Sisters{/Description>
{Part Id="7155158118208" UnitPrice="29._95" Quantity="u"/>
{/Lineltem>
</Lineltens>
</PurchaseOrder>
SQL> v
& | >
Figure XXIII. retrieving the entire XML content
KEY POINTS:

e The object_value operator returns the entire contents of the XML Document. It is used
when accessing the content of a row in an XMLType table.

Page 53 of 97 ORACLE

Oracle XML DB Technical White Paper

The previous queries operated on the values of the text nodes associated with elements that
are direct decedents of the root node of the XML document. The following query shows
how Oracle XML DB can perform queries against collections, and nodes that are inside
collections.

% Oracle SQL*Plus

File Edit Search Options Help
S
SOL=*Plus: Release 18.1.8.2.8 - Production on Wed Jan 7 A9:21:58 20684 =
Copyright (c) 1982, 26883, Oracle. All rights reserved.
Connected to:
loracle Database 18g Enterprise Edition Release 18.1.8.2.8 - Production
With the Partitioning, OLAP and Data Mining options
S0L> select count(=)
2 from purchaseorder,
2 table (xmlsequence{extract{object_value,'/PurchaseOrder/Lineltems/Lineltem'}}) 1
Y 7
COUNT(=)
2236
SOL> select extractVUalue{object_value,'/PurchaseOrder/Reference’) "Reference"
2 from purchaseorder
3 where existsHode
4 {
5 object_value,
6 ' fPurchaselrder/Lineltens/Lineltem[@I temMumber="1"]/Part[@Id="7155150090858"]"
7 }y =1
8 7
|Reference
SBELL-2883838912333681PDT
SOL> select extractValue{value{d),’'/Description’)
2 from purchaseorder,
3 table (xmlsequence{extract{object_walue,'/PurchaselOrder/Lineltems/Linelten/Description’))) d
4 where existsHode
5 (
[} object_value,
7 *fPurchaselrder[Reference="SBELL-28838368912333601PDT"] "
8 Y=
9 7
EXTRACTVALUE{VALUE(D), ' /DESCRIPTION"}
|A Night to Remember
The Unbearable Lightness Of Being
Sisters
SoL> i
e &
Figure XXIV. querying the contents of Collections
KEY POINTS:

e The first query counts the number of Lineltem elements in all of the PurchaseOrder
documents.

The first step is to use the extract() operator to get the set of Lineltem elements from
each PurchaseOrder document. The result of using the extract() operator on a
PurchaseOrder document will be an XML Fragment containing the set of Lineltem
elements contained in that document

Page 54 of 97 ORACLE

Oracle XML DB Technical White Paper

The next step is to use the xmlsequence() operator to generate a VARRY of XMLType
objects from the XMLType objects containing the fragments returned by the extract()
operator. Each XMLType will contain a single Lineltem element. There will be one
member of the VARRAY for each Lineltem element contained in the fragment.

The next step is to use the SQL table() operator to create a virtual table from the set of
XMLType object contained in the VARRAY's generated by the xmlsequence()
operator. This means that the virtual table will contain one row for each Lineltem
element in the set of XML documents processed by the extract() operator.

The last step is to obtain the required result by counting the number of rows in the
virtual table.

e There is a correlated join between the set of documents in the PURCHASEORDER table and
the result set generated by the extract() operator. This means that the set of Lineltem
elements from each document will only be processed once by the xmlsequence() operator.

e The second query demonstrates that Oracle XML DB can evaluate complex XPath
expressions that reference nodes inside a collection. In this example the extractvalue()
operator is used to find the value of the node /PurchaseOrder/Reference/text() in documents
that contain a /PurchaseOrder/Lineltems/Lineltem element where the value of ItemNumber
attribute is ‘1’ and the value of the Id attribute for the associated Part element is
‘75515009058,

e The third query demonstrates that Oracle XML DB allows normal SQL operations to be
performed on the contents of a collection. In this case a virtual table is created from the
elements identified by the XPath expression /PurchaseOrder/Lineltems/Lineltem/Description.
Operations can then be performed directly on each element, as if they were rows in an
XMLType table.

Page 55 of 97 ORACLE

Oracle XML DB Technical White Paper

QUERY PIAN ANALYSIS

Oracle XML DB delivers high performance execution of queries over XML content. This is
possible only if the query plans chosen are able to make use of appropriate indexes. This means
that it is extremely important for application developers to analyze their queries and ensure that
the query plan chosen is an optimal one. Fortunately, XPath-Rewrite makes it possible to
generate conventional query plans for queries that use XPath expressions to query XML
content.

The following screen shot shows the output generated by the Explain Plan statement for the

13

query “select PurchaseOrder documents where the value of the node
/PurchaseOrder/Reference/text() is ‘SBELL-2003030912333601PDT"”’.

£ Oracle SQL*Plus
File Edit Search Options Help

SQL*Plus: Release 18.1.8.2.8 - Production on Wed Jan 7 @9:55:29 2@04

Copyright {c) 1982, 2883, Oracle. All rights reserved.

Connected to:
[0racle Database 189 Enterprise Edition Release 18.1.8.2.8 - Production
With the Partitioning, OLAP and Data HMining options

sQL> —-
SQL> explain plan for
2 select object_value
3 from purchaseorder
4 where existsNode(object_value,’'/PurchaseOrder[Reference="SBELL-20803030912333681PDT"]") = 1
5 f

Explained.
SOQL> set echo off

PLAN_TABLE_OUTPUT

Plan hash value: B77147341

Id	Operation	Hame	Rows	Bytes	Cost {%CPU)	Time
8	SELECT STATEMENT		1	22227	1 (8)] Bo:@0:01	
* 1	TABLE ACCESS BY INDEX ROWID	PURCHASEORDER	1	22227	1 (8)	eo:88:81
* 2	INDEX UNIQUE SCAN	REFERENCE_IS_UNIQUE	1]	8 (@8)	ee:8@:81	

Predicate Information (identified by operation id):

PLAN_TABLE_OUTPUT

1 - filter{SYS_CHECKACL("ACLOID","OWHERID",xmltype("'’'<{privilege
zmlns=""http://2mlns.oracle.com/xdb/acl.xsd" xmlns:xsi="http://wwu.u3.org/20801/5HLSchema-ins
tance” xsi:schemalLocation="http://xmlns.oracle.com/xdb/acl.xsd
http://xmlns.oracle.com/xdb/acl.xsd DAV:http://xmlns.oracle.con/xdb/dav.xsd"><{read-properti
es/><{read-contents/><{/privilege>''})=1)

2 - access({"PURCHASEORDER"."SYS_HCO80@94"='SBELL-20803630912333601PDT")

19 rows selected.

sQL> | v
=

Figure XXV, Simple Explain plan for existsnode() query

Page 56 of 97 ORACLE

Oracle XML DB Technical White Paper

KEY POINTS:

e The query will be resolved using the unique index REFERENCE_IS_UNIQUE. The index was
created as result of adding the unique constraint on /PurchaseOrder/Reference/text() to the
PURCHASEORDER table. Using this index will ensure the fastest possible response time for
this kind of query.

e Query-Re-write converts the XPath expression into a SQL expression. This allows the
database optimizer to determine that the index used to enforce uniqueness can also be used
to resolve the XPath expression.

e Animplicit filter is added to the query. This filter uses the sys_checkacl() operator to

enforce ACL based security using Row Level Security Policies that are generated from the
ACL.

Page 57 of 97 ORACLE

Oracle XML DB Technical White Paper

The next screen shot shows the results generated by the Explain Plan statement for the query
“count the number of PurchaseOrder documents where the value of the node
/PurchaseOrder/User/text() is ‘SBELL”.

£ Oracle SQL*Plus

File Edit Search Options Help
e

SOQL*Plus: Release 18.1.8.2.8 - Production on Wed Jan 7 ©9:55:36 2884 5
ICopyright {c) 1982, 2883, Oracle. All rights reserved.
Connected to:
Oracle Database 18g Enterprise Edition Release 18.1.8.2_8 - Production
With the Partitioning, OLAP and Data Mining options
SQL> explain plan for

2 select count{#*) from purchaseorder

3 where existsHode{object_walue,’/PurchaseOrder[User="SBELL"]') = 1

4 7
JExplained.
SOL> set echo off
PLAN_TABLE_OUTPUT
Plan hash value: 426285498
Id	Operation	Hame	Rows	Bytes	Cost (%CPU)	Time
8	SELECT STATEMENT		1	22227	4 (8)	@8:88:81
1	SORT AGGREGATE		1	22227		
= 2	TRABLE ACCESS FULL	PURCHASEORDER	1	22227	4 (B8)	@8:08:81
IPredicate Information (identified by operation id):

2 - filter("PURCHASEORDER"."SYS HCO0@22%"='SBELL' AHND
S$¥S_CHECKACL(“ACLOID","OWHERID" ,xmltype(" '<{privilege
xmlns="http://xmlns.oracle.com/xdb/acl.xsd"
Zmlns:xsi="http://www.w3.org/2081/XML.Schema-instance”
®¥si:schemaLocation="http://xmlns.oracle.con/xdb/acl.xsd
http://fxmlns.oracle.con/xdb/facl. ®sd DAU:http://xmlns.oracle.com/xdb/dav_xsd"”
><{read-properties/><read-contents/><{/privilege>'"'))=1)

28 rows selected.

soL> | v

< 3 ..
Figure XX V1. Simple Explain plan for existsnode() query

KEY POINTS:

e The query plan shows that the query will be resolved by performing a full table scan of the
PURCHASEORDER table

e This plan may be acceptable when there are only a few hundred documents in the table, but
would be unacceptable if there 1000’s or 1,000,000’s of documents in the table.

Page 58 of 97 ORACLE

Oracle XML DB Technical White Paper

The final screen shot shows the results generated by the Explain Plan statement for the query
“find the value of the node /PurchaseOrder/Reference/text() in documents that contain a
/PurchaseOrder/Lineltems/Lineltem clement where the value of ItemNumber attribute is ‘1’ and

995

the value of the Id attribute for the associated Part element is ‘75515009058,

% Dracle SQL*Plus
File Edit Search Options Help

S0L*Plus: Release 18.1.8.2.8 - Production on Wed Jan 7 @9:55:41 28684

Copyright {c) 1982, 2883, Oracle. A1l rights reserved.

Connected to:
J0racle Database 18g Enterprise Edition Release 18.1.8.2.8 - Production
With the Partitioning, OLAP and Data Mining options

SOL> explain plan for
select extractUalue{object_value,'/PurchaseOrder/Reference’)
from purchaseorder
vhere existsHode
{
object_value,
' fPurchaseOrder/Lineltems/Lineltem[@I temNunber="1"]/Part[@Id=""715515009058"]"
P

C--- RN I]

!
Explained.
SOL> set echo off

FLAN_TABLE_OUTPUT

Flan hash value: 1182755974

| Id | Dperation | NHame | Rows | Bytes | Cost (%CPU)Y| Time

| 8 | SELECT STATEHENT | | 1] 26858 | 819 (1) @8:08:18 |
| 1| HESTED LDOPS | | 1] 26858 | 819 {1)| 68:90:18

| 2] SORT UNIQUE | | 1] 4621 | 817 (@)| 80:08:18 |
1= 3| INDEX FAST FULL SCAN | LINEITEH_TABLE_DATA | 1] 4621 | 817 (8)| 8B:08:1D |
|*= & | TABLE ACCESS BY INDEX ROWID| PURCHASEORDER | 1 | 22237 | 1 (@8)| e@:88:81
|* 5| INDEX UNIQUE SCAN | LINEITEH_TABLE_MEMBERS | 1] | 8 (@) oo:08:01 |

Predicate Information (identified by operation id):

3 - filter("ITEMNUMBER"=1 AND "SYS_HNCO0811$"='7155150089058")

4 - filter{SYS_CHECKACL("ACLOID","DWNERID",xmltype(" *<{privilege
xmlns="http://xmlns.oracle.com/xdb/acl.xsd" xmlns:xsi="http://wuw.v3.org/20801/5HLSchema-instanc
e" xsi:schemalocation="http://xmlns.oracle.com/xdb/acl.xsd http://xmlns.oracle._comn/xdb/acl.xsd
DAV :http://xmlns.oracle.con/xdb/dav.xsd"><read-properties/><{read-contents/></privilege>’*)})=1)

5 - access{"NESTED_TABLE_ID"="PURCHASEORDER" ."'SY$_NCOBO3400035%")

- dynamic sampling used for this statement
26 rows selected.

soL> v
< 3

Figure XXV11. Simple Excplain plan for existsnode() operation on collection

Page 59 of 97 ORACLE

Oracle XML DB Technical White Paper

KEY POINTS:

e In this example the Lineltem elements are stored in an Index Organized Table (IOT).
There is an automatic foreign key relationship between the IOT containing the set of
Lineltem elements and the PURCHASEORDER Table.

e The query plan shows that the query will be resolved by performing a full table scan of the
1OT containing the Lineltem elements. It will then use the foreign key value to join back to
the PURCHASEORDER table to get the value of the node /PurchaseOrder/Reference/text().

e This plan may be acceptable when there are only a few hundred documents in the table, but
would be unacceptable if there 1000’s or 1,000,000’s of documents in the table.

Page 60 of 97 ORACLE

Oracle XML DB Technical White Paper

INDEXING XML CONTENT

In a conventional relational database the standard way to ensure query response time is to create
indexes that allow the query to be resolved in an efficient manner. Oracle XML DB allows the
same techniques to be used to ensure optimal response times for queries over XML content.

Three kinds of indexes can be created on XML Content. Conventional B-Tree indexes can be
created on XML content that is XML Schema based, and which is stored using structured
storage techniques. Functional and Text based indexes can be created on any kind of XML
document, regardless of whether or not the content is stored using structured storage.

Oracle XML DB allows XPath expressions to be used when creating indexes on XML content.
During the index creation process Oracle XML DB uses XPath-Rewrite to determine whether
or not the XPath expressions included in the Create Index statement can be re-written into
equivalent Object Relational SQL expressions. If the XPath expression can be restated using
Object Relational SQL, then the index is created as a conventional B-Tree index on the
underlying SQL objects. If the XPath expression cannot be restated using Object Relational
SQL then a functional index is created.

The following screen shot shows the creation of two B-Tree indexes on the PurchaseOrder
documents

2+ Oracle SQL*Plus E@

File Edit Search Options Help
~
SQL*=Plus: Release 18.1.8.2.8 - Production on Wed Jan 7 18:19:58 2884 =
|Copyright (c) 1982, 2883, Oracle. A1l rights reserved.
Connected to:
Oracle Database 18g Enterprise Edition Release 18.1.8.2.8 - Production
With the Partitioning, OLAP and Data Hining options
SQL> create index iPurchaseOrderUser on PurchaseOrder =
2 (extractValue{value{x),’'sPurchaselrder/User"})
3 7
Index created.
SQL> create index iLineItemPartNumber on LINEITEM_TABLE x
2 (x.ITEMNHUMBER, =.PART.PART_MHUMBER, x.NESTED_TABLE_ID}
3 7
Index created.
S0L>» create index iPartHumber on LIMEITEM TABLE =
2 (%.PART.PART_MUMBER, = .MESTED_TRABLE_ID)
3 /
Index created.
S0L>» analyze table Purchaselrder compute statistics for table
2 7
Table analyzed.
SOL> analyze table LIMEITEM TABLE compute statistics for table
2/
Table analyzed.
SQL> »
< 3.

Fignre XXV/1II. Indexing XMI. Content

Page 61 of 97 ORACLE

Oracle XML DB Technical White Paper

KEY POINTS:

e The first index created is on the node /PurchaseOrder/User/text(). The XPath-Rewrite
process will use the XML Schema to determine the SQL Object and Attribute that
corresponds to this node. The create index will result in a B-Tree index being created on
the PURCHASEORDER table.

e The second index is a compound index on /PurchaseOrder/Lineltems/Lineltem/@ItemNumber
and /PurchaseOrder/Lineltems/Lineltem/Part/@ld. In the PurchaseOrder XML Schema the
Lineltem element is allowed to occur multiple times within a single document. Each
LineItem element is stored as a separate row in a Nested Table called LINEITEM_TABLE. Since
a Nested Table is being used to manage the node being indexed the Create Index statement
has to be specified in terms of an attribute of the Nested Table.

Page 62 of 97 ORACLE

Oracle XML DB Technical White Paper

In a relational database application developers are not required to change their application
because the indexes on the data change. This is also true for Oracle XML DB.

The following screen shot shows how indexing the node /PurchaseOrder/User/text() alters the
query plan for the query “count the number of PurchaseOrder documents where the value of
the node /PurchaseOrder/User/text() is ‘SBELL™.

+ Dracle SQL*Plus
File Edit Search Options Help

SQL*Plus: Release 18.1.8.2.8 - Production on Wed Jan 7 18:83:48 2004
Copyright {c) 1982, 2883, Oracle. All rights reserved.
Connected to:
l0racle Database 18g Enterprise Edition Release 18.1.8.2.8 - Production
With the Partitioning, OLAP and Data Hining options
SQL> explain plan for
2 select count{*) from purchaseorder
3 where existsNode(object_wvalue,’/PurchaseOrder[User="SBELL"]') = 1
4 7
Explained.
S0L> set echo off

PLAN_TABLE_OUTPUT

Plan hash value: 3299043326

| Id | Operation | Hame | Rows | Bytes | Cost (%CPU)| Time |

8 | SELECT STATEMENT | |
1 | SORT AGGREGATE | |
2 | TABLE ACCESS BY INDEX ROWID| PURCHASEORDER |
3| INDEX RANGE SCAN | IPURCHASEORDERUSER |

526	3 (@)	668:08:01
526		
528	3 (0)] 88:08:-01	
	1 (8)] @e:e0:01	

R

*
*

Predicate Information (identified by operation id):

2 - filter(SYS_CHECKACL("ACLOID" ,"OWNERID" ,xmltype("''<{privilege
%nlns="http://xmlns.oracle.com/xdb/acl .xsd" xmlns:xsi="http://wuw.w3.org/20081/%HLSchema-ins
tance” xsi:schemalLocation="http://xmlns.oracle.com/xdb/acl.xsd
http://xmlns.oracle.com/xdb/acl.xsd DAV:http://xmlns.oracle.con/xdb/dav.xsd"><{read-properti
es/><{read-contents/></privilege>’'*)})=1)

3 - access("PURCHASEORDER" ."SYS_NC080228"="SBELL")

28 rows selected.

SQL> | v
] >

Figure XXIX. simple XPath Query Plan showing correct use of XPath Index

KEY POINTS:
e The query plan shows that the query will be resolved using the IPURCHASEORDERUSER
index.

Page 63 of 97 ORACLE

Oracle XML DB Technical White Paper

The following screen shot shows how creating a compound index on the attributes ItemNumber
and Part.PARTNO of the LINEITEM_TABLE alters the query plan for a query that references those
nodes. This example shows the query plan generated for the query “find the value of the node
/PurchaseOrder/Reference/text() in documents that contain a /PurchaseOrder/Lineltems/Lineltem
element where the value of ItemNumber attribute is ‘1’ and the value of the Id attribute for the
associated Part element is 75515009058

£ Oracle 5QL*Plus
File Edit Search Options Help

SQL*Plus: Release 18.1.8.2.0 - Production on Wed Jan 7 108:084:31 2004

Copyright (c) 1982, 2883, Oracle. A1l rights reserved.

Connected to:
Joracle Database 18g Enterprise Edition Release 18.1.8.2.8 - Production
With the Partitioning, OLAP and Data Mining options

SOL> explain plan for
2 select extractValue{object_walue,'/PurchaseOrder/Reference’}
3 from purchaseorder
4 vhere existsHode
5 {
6 object_value,
7 '/PurchaseOrder/Lineltens/Lineltem[@ItenNumber="1"]/Part[R@Id="715515009058"]"
8)y =1
9 7

Explained.
3QL> set echo off

PLAN_TABLE_OUTPUT

Plan hash value: 728299625

Id	Operation	Hame	Rows	Bytes	Cost (%CPU)	Time
B	SELEGT STATEMENT		1] 64	4 (25)] Be:ed:e1		
1	MHESTED LOOPS		1] 646	4 (25)] e@8:ee:01		
2] SORT UNIQUE		1] 128	2 (8)] BA:e@:e1			
1= 3	INDEX UNIQUE SCAN	LINEITEH_TABLE_DATA	1] 12e	2 (8)] eo:od:ed		
= 4	INDEX RANGE SCAN	ILINEITEMPARTHUMBER	1]	2 (@8)]	Ba:@@:01	
= 5	TABLE ACCESS BY INDEX ROWID	PURCHASEORDER	1	526	1 (8)]	ea:e@:01
= 6	INDEX UNIQUE SCAN	LINEITEH_TABLE_MEMBERS	1		8 (8)] #9:80:01	

Predicate Information (identified by operation id):

- access{"ITEHNUMBER"=1 AND "SY¥S_NCBOO11$"='7155150090858")

- access("ITEMNUMBER=1 AND "SYS_NCOOA11$"="'715515009058")

- filter{SYS_CHECKACL{"ACLOID" ,"OWNERID" ,xmltype(''<{privilege
xmlns="http://xnlns.oracle.com/xdbs/acl.xsd" xmlns:xsi="http://www.w3.org/20081/XMLSchema-instanc
e" xsiischemaLocation=""http://xmlns.oracle.com/xdb/acl.xsd http://xmlns.oracle.com/xdb/acl.xsd
DAVU:http://xkmlns.oracle.com/xdb/dav.xsd"><read-properties/><{read-contents/><{/privilege>'"')}=1)

6 - access{"NESTED_TABLE_ID"="PURCHASEORDER"."'SYS_NCO0034000355")

oo

24 rows selected.

SQL> b
23m) 3

Figure XXX. query plan for complex: XPatlh based query, showing correct use of Indexes

Page 64 of 97 ORACLE

Oracle XML DB Technical White Paper

KEY POINTS:
e The query will be resolved using the compound index ILINEITEMPARTNUMBER.

e In both cases the syntax used to define the query has not changed. XPath-Rewrite has
allowed the optimizer to analyze the query and determine that the new indexes provide a
more efficient way of resolving the queries.

e The XMLType and XPath abstractions make it possible for an application programmer to
develop applications independently of the underlying storage technology. Just as with
conventional relational applications, creating and dropping indexes makes it possible to
tune the performance of an application without having to re-write it.

Page 65 of 97 ORACLE

Oracle XML DB Technical White Paper

PATH-BASED ACCESS AND UPDATE OF XML, CONTENT

Oracle XML DB provides developers with multiple ways of accessing XML Content. From
SQL, a conventional Table / Row metaphor is used to access and update XML content. This
approach will be very familiar to SQL programmers who have experience of working with
relational database technology.

Content managed by Oracle XML DB can be accessed and updated using a path-based
metaphor. This allows a URL to be used when accessing or updating content stored in Oracle
XML DB. This approach will appeal to XML developers, who are used to using constructs like
URLs and XPath expressions to identify content. Supporting path-based access allows client
applications, such as Microsoft Word or XMLSpy to use the FTP, HTTP or WebDAV
protocols to access and update content managed by Oracle XML DB.

The following screen shot shows how a standard Web browser, such as Internet Explorer™,
can use a URL to access content stored in the Oracle XML DB repository.

File Edit Wiew Favorites Tools Help

) Badl D EilF A ,-:l Search 7 Favorites @ Media & (0~ -‘-p' & - [@ - §
Address |@ http: fflocalhost: 5050 home!SCOTT/purchaseCrders/ 2003 Mar /SBELL-200303091 233360 1PDT.xml v| Go Links **
Google -| v| @osearchweb - | g Fh1541 blocked | O | R ontons 2

- <PurchaseCrder xmins:zsi="http: f fwww.w3.0rgf2001 fXMLSchema-instance”
wsi:nolamespaceSchemalocation="http:f flocalhost:8080fhome fSCOTT/poSource frsdfpurchaseOrder.nsd" =
«Reference>SBELL-2003030912333601PDT</Reference=
< fctions =
- «Action=
«Jser=S¥0OLLMAN=</Usar>
</action =
</Bctions =
“Reject /=
<Requestor=Sarah 1. Bell</Requestor=
<User=SBELL=/User=
«CostCenter=S30</CostCentar>
< ShippingInstructions >
<name=Sarah 1, Bell=/name =
<address=400 Oracle Parkway Redwood Shores CA 94065 USA-</address>
<telephone=650 506 7400« /telephone =
</ShippingInstructions =
< Speciallnstructions =Air Mail</Speciallnstructions =
- «Lineltems =
- «Lineltemn ItemMumber="1"=
«Description=A Night to Remember</Description>
<Part [d="715515009058" UnitFrice="39.95" Quantity="2" /=
< /Lineltermn=
- <Lineltern IternMumber="2">
<Description=The Unbearable Lightness Of Being</Description=
<Part [d="37429140222" UnitPrice="29.95" Quantity="2" /=
=/Lineltermn =
- «<Lineltemn ItemMumber="3"=
<Description=Sisters</Description=
<Part Id="715515011020" UnitPrice="29.95" Quantity="4" /=
< /Lineltermn=
=< /Lineltems =
=/PurchaseCrder=>

€] Dane % Local intranet
Fignre XXXI. path-based access via HTTP and a URL

Page 66 of 97 ORACLE

Oracle XML DB Technical White Paper

KEY POINTS:

e No additional software is required in order to use a browser to access content stored in
Oracle XML DB. The combination of the HT'TP protocol server and path-based access
mean that, given the appropriate access permissions, a simple HTTP URL is all that is
required to access content.

The path-based mechanism for accessing content is also available to the SQL programmer. The
XDBUriType data-type makes it easy to use a path to access the content of a document stored
on the Oracle XML DB repository. Oracle XML DB also includes new SQL Operators such as
equals_path(), which make it possible to perform path-based queries against both the
PATH_VIEW and the RESOURCE_VIEW. The DBUriType data-type and related DBUri
Servlet allow a path to be used to identify any row in any table via a path.

Page 67 of 97 ORACLE

Oracle XML DB Technical White Paper

The following screen shot shows the XDBUriType data-type being used to access content:

+ Oracle SQL*Plus
File Edit 3Search Options Help

SOL*Plus: Release 18.1.8.2.8 - Production on Wed Jan 7 18:17:26 20804

Copyright (c) 1982, 2003, Oracle. All rights reserved.

Connected to:

[0racle Database 18g Enterprise Edition Release 18.1.8.2.8 - Production

With the Partitioning, OLAP and Data HMining options

SOL> select xdbURIType{'/home/SCOTT/purchaseOrders/208083/Har/SBELL-200303609123336601PDT.xml") .getXHL()
2 from dual

3 7

JEDBURITYPE(' /JHOME/SCOTT/PURCHASEORDERS /20083 /MAR/SBELL-2003030912333601PDT . XHL") .GETXHL()

<PurchaseOrder xmlns:xsi="http://wwu.wd.org/2801/XHLSchema-instance’ xsi:noMamespaceSchemalLocation=
“http://localhost:8888/home/SCOTT/poSource/xsd/purchaselrder . xsd™>
<Reference>SBELL-2083630912333681PDT<{/Reference>
<Actions>
<Action>
<User>SUDLLHAN fUser?
<fAction>
</Actions>
{Reject/>
<Requestor>Sarah J. Bell</Requestor>
<User>SBELL</User>
{CostCenter>538<{/CostCenter>
<ShippingInstructions>
<name>3arah J. Bell<{/name>
<address>488 Oracle Parkway
Redwood Shores
CA
04865
UsSA</address>
<telephone>658 586 7488<{/telephone’>
</ShippingInstructions>
<Speciallnstructions>pir Mail<{/Speciallnstructions>
{Lineltens>
<Lineltem ItemNumber="1'">
<Description>A Hight to Remember</Description>
<Part Id="715515809058" UnitPrice="39.95" Quantity="2"/>
</Lineltem>
<Lineltem ItemMumber=""2"3
<Description>The Unbearable Lightness Of Being<{/Description>
{Part Id="37429148222" UnitPrice="29.95" Quantity="2"/>
</Lineltem>
<Lineltem ItemNumber="3">
<Description>Sisters<{/Description>
<Part Id="715515611828" UnitPrice="29.95" Quantity="'%"/>
</Lineltem>
</Lineltems>
</Purchaselrder>

SQL> o
L] >

Fignre XXXII. Using XDBUriType to access content

Page 68 of 97 ORACLE

Oracle XML DB

Technical White Paper

Applications can also leverage the path-based metaphor when updating content managed by
Oracle XML DB. The following screen shot shows Microsoft Word 2003 using WebDAYV to
update a row in the PURCHASEORDER table by updating a document stored in the Oracle XML

DB repository.

104 SBELL-2003030912333601PDT.xml - Microsoft Word

i| Bl | Edit Yiew Insert Format Tools Table Window Help Type a question for help = X
i L] ew,]l o7 80% » (@ | QHRead !
1% Open. Chr0 :
[+ i XML Structure L
Clase | e -
= ®|®|
|Lg LR il 3 | Elements in the document:
Save fs = PurchaseOrder ~
4 Print... Chrl+p Reference
(=] Actions
Properties (=) Action
User
1 httpifflocalhost: 030/ homefSCOTT purchaseOrder sy 2003 Mar ISBELL-200303091 233360 1PDT. =nil Reject
2 <:\...\10g_Technical_Whitepaper.doc Requestor
3 4.1 10g_Technical_Whitepaper.xml Lt
CostZenter
4 C:4...110g_Technical_Whitepaper.doc = ShippingInstructions
¥ Lo name
= - address
.
- telephone
[2name5srsh J. Fell name ¥ Epediallnstruckions
[<address 1400 Oracle Parkway Redwood Shores CA 94065 U Jaddwss v) =) LineTtems
[4telephone (650 506 7400 Jtelephone = = LineItem
g |
_ounter tc untey B
& 8
Hight to Remes Descipton) @) B
Saving as:
http: flacalhost:B080{homelSCOTT purchaseOrders{ 003 Mar /SBELL-20
03030912333601P0 T =ml' pE
RDESBIaR The nbeazable Ligktess Of BeingIDascmpion] | L) ~
[aPart [JPar)
_ {2pan [Pars) B address
LineItem * @Comments =
@CostCenter
[4Description [Sistays IDescrption *| @Date
@Description
v ;@Llneltem | 5 i
2 z .
o [List anly child elements of current
element
F
= EI = i iZ AML Oplions. ..
YA English (U5 3K

Figure XXXIII. updating content with Microsoft Word and WebDAV”

Page 69 of 97

ORACLE

Oracle XML DB Technical White Paper

KEY POINTS:

e The client sends a URL via the appropriate POST or PUT command and then submits the
updated document to Oracle XML DB.

e When Oracle XML DB receives the request it identifies which database objects manage the
content associated with the URL, and uses the revised document to update these objects
accordingly.

e When working via a protocol, each PUT or POST request is treated as a separate atomic
transaction. This means that changes made to a document via a protocol are visible to other
users as soon as the request has been processed.

The RESOURCE_VIEW and PATH_VIEW allow the path-based metaphor to be used when
updating content from SQL or PL/SQL. The updatexml() operator makes it possible to update
the content of an XML document. Two techniques can be used to perform path-based updates
of content managed by Oracle XML DB from SQL.

e The first is to use updatexml() to update or replace the content of a document by updating
the resource associated with the document. The resource is obtained from the RES column
in the PATH_VIEW or RESOURCE_VIEW. Once the resource has been located, the body
or content of the document can be accessed or updated via the XPath expression
/Resource/Contents. This technique has the advantage that it can be used to access or update
any kind of content stored in the XML DB repository.

e The second is to use updatexml() to directly update the default table which contains the
content of the target document. This technique can only be used when updating an XML
document that is based on a registered XML Schema. The rows to be updated are identified
by joining the PATH_VIEW or RESOURCE_VIEW and the default table. The join is
based on the value of the node /Resource/XMILRef.

Since the updatexml() operator is now referencing the content of the default table, XPath-
Rewrite can be used to map the updatexml() operation into a set of updates to the
underlying SQL object model. This means that the update will execute many thousands of
times faster.

Page 70 of 97 ORACLE

Oracle XML DB Technical White Paper

The following screen shot shows the updatexml() operator being used to update the content of
a row in the default table associated with the PurchaseOrder XML Schema.

+ Dracle SQL*Plus
File Edit Search Options Help

SQL*Plus: Release 18.1.8.2.8 - Production on Wed Jan 7 12:44:33 2004

Copyright {c) 1982, 2883, Oracle. All rights reserved.

Connected to:
l0racle Database 18g Enterprise Edition Release 16.1.8.2.8 - Production
With the Partitioning, OLAP and Data Mining options

SOL> update PURCHASEORDER p
2 set object_value = updateXHML(object_value,'/Purchaselrder/User/text{)"', KCHUNG")
3 where ref{p) = (select extractValue(res,'/Resource/XHLRef"})

4 from RESOURCE_VIEW
5 where equals_path
6 {
7 res,
8 *fhomes* || USER || */purchaseOrders/2083/Mar/SBELL-2803830912333601PDT.xml"
9 Yy =13
18 7
1 row updated.
SQL> commit
2 wf
Commit complete.
sQL> [
0| | >
Figure XXXIV. updating content using updatexml() and EQUALS_PATH|)
KEY POINTS:

e The target row is located by using the equals_path() operator to search the
RESOURCE_VIEW for the resource associated with the specified path.

e The resource contains a node /Resource/XMLRef which contains a REF to the XMLType
object in the default table that contains the content associated with the resource.

e The updatexml() operator is used to update the row.

When working from SQL normal transactional behavior is enforced. Multiple updatexml()
statements can be used within a single logical unit of work. Changes made via updatexml() are
not visible to other database users until the transaction is committed. At any point rollback can
be used to back the set of changes made since the last commit.

When an editor like Microsoft Word updates an XML document stored in Oracle XML DB the
database receives an input stream containing the new contents of the document. There is no
indication of what has changed in the document. Consequently it is necessary to re-parse the
entire document, and update all of the objects that were derived from the original document
with the new content.

When updatexml() is used to update a schema-based XML document. Oracle XML DB is able
to perform a partial-update. XPath-Rewrite is used to translate the updatexml() operation into
an equivalent SQL statement. The update is performed by directly updating the attributes of
underlying objects. This means that an updatexml() operation will often execute thousands of
times faster than a document based update.

Page 71 of 97 ORACLE

Oracle XML DB Technical White Paper

When updatexml() is used to update a non-schema-based XML document, Oracle XML DB
performs the update by using DOM methods to update the specified nodes and writing the
updated DOM back to the underlying CLOB. This means that the updatexml() operator is still
more efficient than using a XML editor, even with non-schema-based XML..

The following screen shot shows that a simple refresh of the browser is all that is required to
see the updated content.

http:fflocalhost: BOBOShome/SCOTT/purchaseOrdersf2003/Mar/SBELL -2003030912333601PDT.xml - Micro..

File Edit View Favorites Tools Help ;1."
Qoack = O - ¥ &) (0 FPseach rFavortes @rMeda & - L B - [€9 L3
Address |@ http: { flacalhost: 3080 hame/SC 0T T /purchase Orders) 2003 Mar /SBELL-200303091 2353601 PO T xml V| Go Links *

<7xrml version="1.0" encoding="UTF-8" 7=
- «PurchaseOrder
MES0:noMamespaceSchemalocation="http:f flocalhost:8080 fhome fSCOTT fpoSource fxsd fpurchaseOrder.xsd"
xmins:NS0="http:/ fwww.w3.org/ 2001 fXMLSchema-instance">
<Reference=SBELL-2003030912333601PDT+/Referance=
< fctions =
- <Action=
<lser=SYOLLMAN=/Users
</Aaction >
</hctions >
<Reject /=
<Requestor=Sarah 1. Bell</Requestor=
<User=KCHUNG=/User>
< CostCenter=S30</CostCenters
- «ShippingInstructions >
<name=Sarah 1. Bell=/name =
<address=400 Oracle Parkway Redwood Shores CA 94065 USA<//address=
«telephone =650 506 7400« /telephone =
</ShippingInstructions =
<Speciallnstructions =Counter to Counter</Speciallnstructions =
<Linelterns =
- «Lineltern ItemMumber="1">
<Description=A Night to Remember</Description=>
<Part I[d="715515009058" UnitPrice="39.95" Quantity="2" /=
</Lineltern=
- «Lineltermn ItemMumber="2"=
«Description=The Unbearable Lightness Of Being</Description=
<Part [d="37429140222" UnitPrice="29.95" Quantity="2" /=
=< /Lineltermn=
- <Lineltern IternMumber="3">
<Description > Sisters«/Description =
<Part [d="715515011020" UnitFrice="29.95" Quantity="4" /=
=/Lineltern =
< /Lineltemns =
</PurchaseCrder=

@ Dane ‘rj Local intranet
Figure XXXV, Using a Web browser to view updated content

Page 72 of 97 ORACLE

Oracle XML DB Technical White Paper

The RESOURCE_VIEW and PATH_VIEW provide the SQL programmer the ability to access
and update the content of a document stored in the Oracle XML DB repository. A SQL
programmer can query and update the meta-data contained in the RESOURCE_VIEW and
PATH_VIEW.

The following screen shot shows some simple queries against the RESOURCE_VIEW

£ Oracle SQL*Plus

File Edit Search Options Help
-

SQL*Plus: Release 18.1.8.2.8 - Production on Wed Jan 7 12:58:51 2004

Copyright (c) 1982, 2883, Oracle. nll rights reserved.

Connected to:
[0racle Database 168g Enterprise Edition Release 18.1.8.2.8 - Production

With the Partitioning, OLAP and Data Mining options

SQL> describe RESOURCE_UIEW

Hame Hull? Type

RES SYS.XMLTYPE({XHLSchema "http://zmlns.
oracle.com/xdb/XDBResource.xsd” Elem
ent ""Resource™)

ANY_PATH UARCHAR2(4008)

RESID RAY({16)

sqL>

SQL> describe PATH_VIEW

Hame Hull? Type

PATH UARCHAR2(1824)

RES SYS.XMLTYPE{XHMLSchema "http://xmlns.
oracle.com/xdb/XDBResource.xsd” Elem
ent ""Resource")

LINK SYS.XMLTYPE

RESID RAY{16)

sQL>

S0L> select count{=) from RESOURCE_VIEW

2 7
COUNT (=}
197
S0L> select count{=) from RESOURCE_VIEW
2 where under_path{RES, ' /home/SCOTT/purchaselrders') = 1
3 7
COUNT (=}
146

sqL> v

< >

Figure XXXV'1. Simple Queries against the RESOURCE_IVIEW

Page 73 of 97 ORACLE

Oracle XML DB Technical White Paper

KEY POINTS:

The RESOURCE_VIEW contains one entry for each file or folder stored in the XML DB
repository. It consists of three columns. RES is the XML document that contains the meta-
data properties associated with the document. ANY_PATH is a valid path that can be used
by the current user to access the document. RESID is the OID of the underlying row in the
underlying table XDBSRESOURCE

The PATH_VIEW contains one entry for each path that can be used to access a file or
folder stored in the XML DB repository. It consists of three columns. RES is the XML
document that contains the meta-data properties associated with the document. PATH is
the path that can be used by the current user to access the document. LINK is the an XML
document that contain the link properties for this path to the document. RESID is the
OID of the underlying row in the underlying table XDB$RESOURCE

The first query uses the count() operator to count the number of objects currently stored in
the Oracle XML DB repository. This query will not return the total number of documents
stored in the repository, it will return the number of documents that the user issuing the
query has read access to.

The second query uses the under_path() operator to restrict a query to a particular tree
within the repository. In this example the count(*) operation is being restricted to the
number of objects that are in the tree whose root is identified by the path
/home/SCOTT/purchaseOrders.

The WebDAYV Specifications defines the set of meta-data properties that a WebDAV server is
expected to maintain for each resource. It also defines that a WebDAV server and a DAV
enabled client will exchange meta-data as an XML document. Oracle XML DB maintains the
meta-data for each resource as an XML document. This document is compliant with the XML
Schema XDBResource.xsd.

The resource documents can be accessed, queried and updated just like any other XML stored
in Oracle XML DB.

Page 74 of 97 ORACLE

Oracle XML DB Technical White Paper

The following screen shot shows the XML representation of the standard set of meta-data
properties for the folder /home/SCOTT/purchaseOrders.

+ Oracle SQL*Plus M=

File Edit 3Search Options Help
P
SOL*Plus: Release 18.1.8.2.8 - Production on Wed Jan 7 12:55:80 2664
[Copyright {c) 1982, 2883, Oracle. All rights reserved.
Connected to:
Oracle Database 18qg Enterprise Edition Release 18.1.8.2.8 - Production
With the Partitioning, OLAP and Data Mining options
S0L> select v .RES.getClobVal()
2 from RESOURCE_UIEW r
3 uwhere equals path{RES,'/home/SCOTT/purchaselrders”)} = 1
y /
IR .RES .GETCLOBUAL{)
<Resource xmlns="http://xmlns.oracle.con/xdb/iDBEResource.xsd” Hidden="false" Inwv
alid="false" Container=""true" CustomRslv="false" UersionHistory="false" StickyRe
F=""true">
{CreationbDate>2804-01-B6T23:87 :50.850008</CreationDate>
{ModificationDate>Z8B4-B1-B6T23:89:05.5180088</HodificationDate>
<DisplayHame>purchaselrders<{/DisplayHame>
<Language>en-US</Language’
<Character3et>UTF-8<{/Character3iet>
{ContentType>application/octet-stream{/ContentType>
<RefCount>1<{/RefCount’
<ACL>
<acl description="Private:nll privileges to OWHER only and not accessible to
others” =xmlns="http://xmlns.oracle.comn/xdb/acl.xsd"” xmlns:dav="DAU:" xmlns:xsi=
"“http://www. wi.org/2081/5HLSchema-instance” xsi:schemaLocation="http://xmlns.ora
cle.com/xdb/acl.xsd http://mlns.oracle.com/xdbfacl.®s
d"'>
<ace’
{principal>dav:ouner{fprincipal>
<grant>true{fgrant>
{privilege>
<alls>
</privilege>
<face}
<facl>
</ACL>
<0uwner>3COTT</0wner>
<Creator>SCOTT<{/Creator>
{LastModifier>SCOTT</LastHodifier>
</Resource’
sOL> 7
/) 3 ..
Fignre XXXV1I. Viewing a Resource
KEY POINTS:

o 'The resource XML contains standard meta-data such as Creation Date, Creator, Owner,
Last Modification Date and Display Name.

e This content can be accessed and updated using the SQL/XML opetatots.

Page 75 of 97 ORACLE

el

Oracle XML DB Technical White Paper

The following screen shot shows the under_path() operator and the PATH_VIEW being used
to find the set of documents in a particular folder.

=+ Oracle SQL*Plus
File Edit Search Options Help

SOL*Plus: Release 18.1.8.2.8 - Production on Wed Jan 7 13:28:21 2004

ICopyright {c) 1982, 2803, Oracle. All rights reserved.

Connected to:
Oracle Database 18g Enterprise Edition Release 18.1.8.2.8 - Production
With the Partitioning, OLAP and Data Mining options

SQL> select path from PATH_VIEW
2 where under_path{res,1, /hone/3COTT/purchaselrders/2803/Har") = 1
3 7

Fhome /SCOTT/purchaseOrders/208083/Har /AWALSH-28038309123335871PDT .xml
Fhome /SCOTT/purchaseOrders/20883/Har /AWALSH-28038309123335911PDT .xml
Fhome /SCOTT/purchaseOrders/20883/Har /AWALSH-280383091233361601PDT .xml
Fhome /SCOTT/purchaseOrders/2883/Har /CJOHNS0ON-20830309123335851PDT . xml
Fhome /SCOTT/purchaselrders/2883/Har /DAUSTIN-20038389123335931PDT .xml
Fhome /SCOTT/purchaseOrders/20883/Har/JCHEN-208303089123335961PDT .xml
Fhome /SCOTT/purchaseOrders/2083/Har /LSHITH-2803830912333661PDT .xml
Fhome /SCOTT/purchaseOrders/2883/Har /SBELL-20830830912333681PDT .xnl
Fhome /SCOTT/purchaseOrders/2083/Har /SKING-20830309123336131PDT .xml
fhome/SCOTT/purchaselrders/2083/Har /TFOX-20030308912333681PDT . xml
Fhome /SCOTT/purchaseOrders/2883/Har fUJONES-280838309123335971PDT .xml

11 rows selected.

sQL> v
%)/ >

Figure XXXVTII. Querying the Folder Hierarchy

Page 76 of 97 ORACLE

Oracle XML DB Technical White Paper

The following screen shots show some simple queries against the meta-data contained in the
RESOURCE_VIEW

£ Oracle SQL*Plus g@

File Edit Search Options Help

SOL*Plus: Release 18.1.8.2.8 - Production on Wed Jan 7 13:19:12 2084

Icopyright {(c) 1982, 2083, Oracle. All rights reserved.

Connected to:
Oracle Database 18g Enterprise Edition Release 18.1.8.2.8 - Production
With the Partitioning, OLAP and Data Hining options

SQL> select any_path
2 from resource_view r
3 where extractUalue(r.res,’/Resource/DisplayHame’) like "% ._xsl’
L

§AHY_PATH

/home /SCOTT/poSource/evolution/evoluePurchaselrder . xsl
Shome/SCOTT fpoSourcesxslfempdept. %5l
fhome/SCOTT/po3ource/xsl/purchasedrder .xs1

S0L> select any_path

2 from resource_view r
3 where under_path{res,'/homes" || USER |]|’'/purchaseOrders’) = 1
L and extractValue(r.res,’/Resource/DisplayHame’) like 'SBELL%"
5

/home/SCOTT/purchaselrders/2883/Apr/SBELL-20038409120030431PDT .xml
JShome/SCOTT/purchaselrders/2803/Apr/SBELL-200304089123336200304 .xml
/home f/SCOTT/purchaseOrders/2003/Aug/SBELL-20030809123337353PDT .xml
Shome/SCOTT/purchaselrders/20803/Dec/SBELL-200312089123338304PDT .xml
/home/SCOTT/purchaselrders/2003/Dec/SBELL-20031209123338505PDT .xml
/home /SCOTT/purchaselrders/2803/Feb/SBELL-28038289123335771PDT . xml
JShome/SCOTT/purchaselrders/2803/.Jan/SBELL-200301089123335280PDT .xml
/home /SCOTT/purchaselrders/2803/Jul /SBELL-20B3878912333763PDT .xnl

Shome /SCOTT/purchaselrders/2803/Mar/SBELL-20038308912333601PDT .xml

/home /SCOTT/purchaselrders/2803/Hay/SBELL-28030589123336362PDT . xml
/home /SCOTT/purchaselrders/20803/Hay/SBELL-28038582123336532PDT . xml
JShome/SCOTT/purchaselrders/20803/Hov/SBELL-20031189123338204PDT .xml
/home /SCOTT/purchaselrders/2803/0ct/SBELL-200310889123337673PDT.2nl

13 rows selected.

sqQL> v
e [»

Figure XXXIX. Querying the Resource View

KEY POINTS:

e The first query finds a path to each XSL style sheet stored in the Oracle XML DB
repository. It finds the set of documents by using a SQL ‘like” query on the contents of the
node /Resource/DisplayName to find documents with names that end with the file extension
‘xsl.

e The second query finds the path to all the documents under the folder
/home/SCOTT/purchaseOrders that starts with ‘SBELL’. In this case the under_path() operator
restricts which tree is searched, and the like condition restricts which documents in the tree
are returned.

Page 77 of 97 ORACLE

Oracle XML DB Technical White Paper

The next screen shot shows a query that performs a join between the default table (that
contains the content of a Schema based XML document) and the meta-data associated with the
document.

=+ Oracle SQL*Plus
File Edit Search Options Help

SQL*Plus: Release 18.1.8.2.8 - Production on Wed Jan 7 13:24:46 20084

ICopyright (c) 1982, 28083, Oracle. All rights reserved.

Connected to:
Oracle Database 18g Enterprise Edition Release 18.1.8.2_.8 - Production
With the Partitioning, OLAP and Data HMining options

SQL> select any_path
2 from resource_view v, purchaseorder p
3 where ref{p) = extractValue{res,’'/Resource/SHLAef"}
4 and existsHode{object value,
5 ‘*/Purchaselrder/Lineltems/Linelten/Part[@Id="7155150889058"]") = 1
6

fhome/SCOTT/purchaselrders/20803/Hou/WSHITH-20831189123338154PDT . xml
Shome/SCOTT/purchasedrders/2003/Feb/USHITH-28030209123335711PDT . Zml
fhome/SCOTT/purchaselOrders/28083/Mar /CJOHNSON-208038389123335851PDT .xml
fhome/SCOTT/purchasel0rders/2003/Jan/SKING-28030109123335560PDT .xml
fhome/SCOTT/purchasedrders/2883/Jul /LSHITH-2883878912333722PDT .xml
Fhome/SCOTT/purchaselrders/20803/Mar /SBELL-2083838912333601PDT . xml
fhome/SCOTT/purchasedrders/2883/Hov/TFDX-288311891233379924PDT .xml
Shome/SCOTT/purchaselrders/20803/Apr /EABEL-2083040891233362008304 _xml
fhome/SCOTT/purchasel0rders/20083/Jan/SBELL-28030109123335280PDT .xml
fhome/SCOTT/purchaselOrders/208083/May/JCHEN-28830509123336462PDT .xml
fhome/SCOTT/purchaseOrders/2003/0ct/TFOX-20031009123337653PDT .xml
Fhome/SCOTT/purchasedrders/208083/5ep/SHCCAIN-2083090891233374083PDT .xml
fhome/SCOTT/purchaselrders/20803/Mar /LSHITH-288308308912333661PDT .xml
fhome/SCOTT/purchaselrders/20803/Feb/WSHITH-28830209123335650PDT . xml
fhome /SCOTT/purchaselrders/2803/Dec/CJOHHSON-280831289123338595PDT .xml
fhome/SCOTT/purchase0rders/2003/Dec/LSHITH-20031209123338535PDT .xml
fhome/SCOTT/purchasedrders/2883/Apr/SBELL-20838489128838431PDT .xml
fhome/SCOTT/purchaselOrders/2883/Apr /PTUCKER-20030409123336200304 . xml
fhome/SCOTT/purchasedrders/2883/Jun/UVJONES-208386089123336882PDT .xml
Shome/SCOTT/purchaselrders/2003/Hou/SBELL-20831189123338204PDT .xml

28 rouws selected.

sQL> v
< >

Figure X1.. Joining meta-data and Content

Page 78 of 97 ORACLE

Oracle XML DB Technical White Paper

KEY POINTS:

e In this example the query on the PURCHASEORDER table locates the set of documents that
contain an order for the Part whose ‘Id” is 75515009058. The results of this query are joined
with the RESOURCE_VIEW, using the node /Resource/ XMLRef. The
RESOURCE_VIEW is then used to obtain a valid path to each of the documents that
contained an order for the part.

e The ability to perform joins between the RESOURCE_VIEW and the default tables is
extremely important as it allows a developer to create queries that include conditions based
on both meta-data and content.

e In this example the path returned by the query forms the local part of a URL that can be
used to access the document directly from a web browser.

Using conventional relational techniques, path-based queries become very inefficient as the
depth of the hierarchy increases. The reason for this is that performing a path-based query in a
relational database typically requires a CONNECT BY operation. A CONNECT BY query is
difficult for a traditional relational database to resolve in an efficient manner. Oracle XML DB
introduces a new index called the hierarchical index. This index allows the database to resolve a
path-based query without using a ‘connect by’ operation. This means that path-based queries
are resolved in an extremely efficient manner.

Page 79 of 97 ORACLE

Oracle XML DB Technical White Paper

The following screen shot shows the explain plan output for a path-based query.

% Oracle SQL*Plus
File Edit Search Options Help

SQL*Plus: Release 18.1.8.2.8 - Production on YWed Jan 7 13:28:48 2804

Copyright {c) 1982, 28683, Oracle. A1l rights reserved.

Connected to:
|0racle Database 18g Enterprise Edition Release 18.1.8.2_8 - Production
With the Partitioning, OLAP and Data HMining options

Connected.
Connected.
SOL> explain plan for
2 select any_path
3 from resource_view r, purchaseorder p
4 where ref(p) = extractValue{res,'/Resource/SHLRef"}
5 and existsHode(object_value,
6 '/PurchaseOrder/Lineltems/Linelten/Part[@Id="715515089058"]") = 1
77

Explained.
SQL> set echo off

PLAM_TABLE_OUTPUT

Plan hash value: 2353948853

| Id | Operation | Hame | Rows | Bytes | Cost (%CPU)Y| Time |

SELECT STATEMENT
HASH JOIN SEHMI

| 323
|

NESTED LOOPS |
|

323
203
292

12 (0)
12 (8)
6 (@)
4 (8)

a6:88: 81
a6:88: 61
ag:aa:m
60:80:81

*

[[CQE

| |
I I
| TABLE AGCESS BY INDEX ROWID| XDBSRESOURCE |
| DOMAIN TMDEX | XDBHI_IDX |
| TABLE AGCESS BY INDEX ROWID| PURCHASEORDER | 57 00:00: 61
| | | 00:00: 61
| | | 06:00: 61
| | |

a0:08: 81

IHDER UNIQUE SCAH
INDEX UNHIQUE SCAH
INDEX RANGE SCAH

SYS_CA82945
LINEITEH TABLE DATA
IPARTHUHBER

22
186

2648

BNV EWON -

LN Y

* K K K

Predicate Information (identified by operation id):

-
I

access("MESTED_TABLE_ID"="PURCHASEORDER"."SYS_NCOOB34000355")

5 - filter({3¥S_CHECKACL{“ACLOID","OWHERID" ,xmltype(" '<privilege
#mlns="http://xmlns.oracle.com/xdbfacl.xsd"” xmlns:xsi=""http://www.w3 . org/2881/XHLSchema-insta
nce'" ®sizschemaLocation="http://xnlns.oracle.con/xdb/acl.xsd
http://xmlns_oracle.com/xdb/acl.xsd DAU:http://xmlns_oracle . com/xdb/dav_xsd"><{read-properties
/r<read-contents/><{/privilege>'"'})=1)

6 - access{"PURCHASEORDER"."SYS_NC_0ID§"="P"."SYS_NCOOOZ45")

7 - access{"SYS_NCA@A11$"="715515009058")

8 - access{"SYS_NCBABA11$"="715515009858")

28 rows selected.

SOL> v
4

Figure X1LI. Explain plan for path-based query showing use of Hierarchical Index

KEY POINTS:

e The hierarchical index is used to resolve the path-based query. No connect by processing is
required to resolve the query.

e The hierarchical index is implemented as an Oracle domain index. This is the same
technique that is used to add support for text indexing and many other advanced index
types to the database.

e Oracle Database 10g Release 1 introduces cost-based optimization of queries on
RESOURCE_VIEW and PATH_VIEW, making access to repository content up to 100
times faster than Oracle Database 9ir2.

Page 80 of 97 ORACLE

Oracle XML DB Technical White Paper

RELATIONAL ACCESS TO XML CONTENT

Oracle XML DB allows XML content, stored in the database, to be exposed as conventional
relational views. This means that tools, applications and programmers who have no
understanding of XML, but understand the Oracle database, can work with XML content. The
views use the SQL/XML operators and XPath expressions to map nodes in the XML
document into columns in the view.

The following screen shot shows the definition of a relational view that will expose the header
information contained in a PurchaseOrder document as a conventional relational view.

% Oracle SQOL*Plus

File Edit Search ©Options Help
~
SQL=Plus: Release 18.1.8.2.8 - Production on Wed Jan 7 14:27:48 2004 =
|Copyright (c) 1982, 2883, Oracle. All rights reserved.
Connected to:
Oracle Database 18g Enterprise Edition Release 10.1.8.2.8 - Production
With the Partitioning, OLAP and Data Hining options
SQL> create or replace view PURCHASEORDER_MASTER_VIEW
2 (REFERENCE, REQUESTOR, USERID, COSTCENTER,
3 SHIP_TO_NAME ,SHIP_TO_ADDRESS, SHIP TO_PHONE,
4 INSTRUCTIONS)
5 as
[select extractValue{object_walue,'/PurchaseOrder/Reference'},
¥ extractValuef{object_value,’ fPurchaselrder/Requestor'),
8 extractValue{object_value, ' fFurchaselrder/fUser'},
9 extractValue({object_value,' fPurchaseOrder/CostCenter’),
18 extractValue{object_value, ' /PurchaseOrder/ShippingInstructions/name’},
11 extractValue{object_value,'/Purchaselrder/ShippingInstructions/address'),
12 extractValue{object_walue,'/Purchaselrder/ShippingInstructions/telephone’},
13 extractUalue{object_value, ' fPurchaselrder/Speciallnstructions”)
14 from PURCHASEORDER
15 /7
|View created.
SQL> describe PURCHASEORDER_MASTER_VIEW
Hame Hull? Type
REFERENCE UARCHAR2(38 CHAR)
REQUESTOR UARCHAR2(128 CHAR)
USERID UARCHAR2{18 CHAR}
COSTCENTER UARCHAR2({4 CHAR)
SHIP_TO_NAME UARCHAR2(28 CHAR)
SHIP_TO_RDDRESS URRCHAR2 (256 CHAR)
SHIP_TO_FHONE URARCHAR2(24 CHAR)
INSTRUCTIONS UARCHAR2{2848 CHAR)
soL> | =
1) (| »

Figure X111 creating a simple relational view over an XMI Type table

Page 81 of 97 ORACLE

Oracle XML DB Technical White Paper

KEY POINTS:

e The view defines the required set of columns. A set of XPath expressions and the
extractvalue() operator are used to define which node in the document maps to which
columns in the view.

e The view appears to be a standard relational view.

e This technique is used when there is a 1:1 relationship between the documents in the
XMLType table and the rows in the view.

The following screen shot show how SQL/XML operators to can be used to expose the set of
elements in a collection as a set of rows in a relational view.

+ Oracle SQL*Plus

File Edit Search Options Help
ey
SQL=Plus: Release 18.1.8.2.8 - Production on Wed Jan 7 14:28:83 2884 =
|Copyright {c) 1982, 28683, Oracle. All rights reserved.
Connected to:
Oracle Database 18g Enterprise Edition Release 18.1.8.2.8 - Production
With the Partitioning, OLAP and Data Hining options
SQL> create or replace view PURCHASEORDER_DETRIL_VIEW
2 (REFERENCE, ITEWMO, DESCRIPTIOM, PARTHO, QUANTITY, UNITPRICE}
3 as
L select extractValue{object_walue,'/PurchaseOrder/Reference'},
5 extractvalue{value{l)}, ' /Linelten/GltenHumnber '},
6 extractvalue{value{1l), ' /LineIten/Description’),
7 extractvalue{value{l),’'/Linelten/Fart/@Id"},
8 extractvalue{value{1l),'/Lineltem/Part/@Quantity'},
9 extractvalue{value{l),'/Linelten/Part/@BUnitPrice"')
18 from PURCHASEORDER,
11 table {xmlsequence{extract{object_value,’'/Purchasedrder/Lineltens/Lineltem'}}} 1
12 7
|View created.
SOL> describe PURCHASEORDER_DETAIL_UIEW
Hame Hull? Type
REFERENGE UARCHARZ2{308 CHAR)
ITEHND NUMBER{38)
DESCRIPTION UARCHAR2(1824)
PARTHO UARCHARZ (56)
QUANTITY NUMBER{12,2}
UMITPRIGE NUMBER{ 8,4}
soL> | v
£ | | >

Figure X1I1I. creating a simple relational view over a XML collection

Page 82 of 97 ORACLE

Oracle XML DB Technical White Paper

KEY POINTS:

e 'The view looks and behaves like a normal relational view.

e The create view statement defines the required set of columns. The view is based on a
virtual table that is created using the SQL table(), xmlsequence() and extract() operators.
The virtual table will contain one document for each element in the target collection.

e A sect of XPath expressions and the extractvalue() operator are used to define which node
in the virtual table maps to which column in the view.

e The virtual table is created as follows

The extract() operator is used to generate an XML fragment for each document in the
PURCHASEORDER table. The fragment will contain the set of nodes that match the
XPath expression passed to the extract() operator. In this case the extract() operator
will generate an XML fragment that contains the set of Lineltem elements present in
the original PurchaseOrder document. Each Lineltem will appear as a top level node.

The fragment is passed to the xmlsequence() operator. The xmlsequence()operator
takes the XML fragment and generates a separate row from each top level node in the
fragment. Each row will consist of a single XML Type.

The set of rows generated by the xmlsequence() operator are based to the SQL table()
operator. The table() operator generates a virtual table from the set of rows generated
by xmlsequence().

e There is an implicit correlated join between the base table and the argument passed to
extract() operator. This ensures that the query does not generate a Cartesian product.

Page 83 of 97 ORACLE

Oracle XML DB Technical White Paper

The following screen shot shows how the views allow standard relational queries to be executed
on XML content.

+ Oracle SQL*Plus

File Edit Search Options Help
ey

SQL=Plus: Release 18.1.8.2.8 - Production on Wed Jan 7 14:28:21 2884 =
|Copyright {c) 1982, 28683, Oracle. All rights reserved.
Connected to:
Oracle Database 18g Enterprise Edition Release 18.1.8.2.8 - Production
With the Partitioning, OLAP and Data Hining options
SOL> select REFERENCE, COSTCENTER, SHIP_TO_NAME

2 from PURCHASEORDER_MASTER_UIEW

3 where USERID = 'KCHUHG'

4 /7
IREFEREHCE COST SHIP_TO_NAME
SBELL-28838308912333681PDT 538 Sarah J. Bell
SQL> select d.REFEREMCE, d.ITEMNO, d.PARTHO, d.DESCRIPTIOHN

2 from PURCHASEORDER_DETAIL_VUIEYW d, PURCHASEORDER_MASTER_VIEW m

3 where m.REFEREHCE = d.REFEREHCE

4 and m.USERID = 'KCHUHG'

5 /7
IREFERENCE ITEMHD PARTHO DESCRIPTION
SBELL-28838308912333681PDT 1 7155158824858 A Hight to Remember
SBELL-28838308912333681PDT 2 37429149222 The Unbearable Lightness Of Being
SBELL-2883838912333681PDT 3 715515811828 Sisters
SOL>

M
< | >
Figure XIIV .using a view to perform simple relational queries over XML Type content.

KEY POINTS:

e The first query shows a simple query against the master view. The second query shows a
query based on a join between the master view and the detail view.

e Since the views look and act like standard relational views they can be queried using
standard relational syntax. There is no XML specific syntax in either the query syntax or the
generated result set.

Page 84 of 97 ORACLE

Oracle XML DB Technical White Paper

The following screen shot shows a simple business intelligence query being executed on XML
content.

2+ Oracle SQL*Plus .'_ i| rg|

File Edit Search Options Help
~
SOL=*Plus: Release 18.1.8.2.8 - Production on Wed Jan 7 14:44:38 2884 =
ICopyright {c) 1982, 2883, Oracle. All rights reserved.
Connected to:
Oracle Database 18g Enterprise Edition Release 18.1.8.2.8 - Production
With the Partitioning, OLAP and Data Hining options
SOL> select partno, count{=) "No of Orders", quantity "Ho of Copies™
2 from purchaseorder_detail_view
3 where partno in { 7155150889126, 7155150889858)
4 group by rollup{partno, quantity)
5 7/
IPARTHNO Ho of Orders Ho of Copies
7155158020658 7 1
7155158020858 8 2
7155158020858 5 3
7155158020658 2 4
7155158020858 22
715515802126 L 1
715515882126 7 3
715515802126 1M
33
9 rows selected.
sQL>
]
< | >
Figure X117 using a relational view to perforn complex SOL queries on XML content.
KEY POINTS:

e The query performs an analysis of the PurchaseOrder documents to determine the number
of copies of each title that are being ordered on each PurchaseOrder. For example, looking
at PurchaseOrders that contain an order fro part ’715515009058’, there are 7
PurchaseOrders where 1 copy of the item is ordered and 2 PurchaseOrders where 4 copies
of the item are ordered.

e By exposing XML content as relational data Oracle XML DB allows advanced features of
the Oracle Database 10g, such as the Business Intelligence and Analytic capabilities, to be
applied to XML content. Even though the B.I. features themselves are not XML aware, the
XML/SQL duality provided by Oracle XML DB makes it possible for these featutes to be
applied to XML content.

Page 85 of 97 ORACLE

Oracle XML DB Technical White Paper

XML ACCESS TO RELATIONAL CONTENT
SQL /XML OPERATORS

Oracle XML DB allows XML documents to be generated directly from relational content.
Using The SQL/XML operators, developers can create SQL statements which generate a single
XML document or a set of XML documents, rather than a conventional tabular result set.

Oracle XML DB also allows the results of a SQL statement that generates one or more XML
documents can be persisted as an XMLType view. This makes it possible to use the SQL/XML
operators to provide a persistent XML view of relational content.

Page 86 of 97 ORACLE

Oracle XML DB Technical White Paper

The following screen shot shows how the contents of the relational tables DEPARTMENTS,
EMPLOYEES, JOBS, LOCATIONS and COUNTRIES, located in the HR Schema can be exposed as a
set of XML documents. In this case the view will contain one document for each row in the
DEPARTMENTS table.

£ Oracle SQL*Plus

File Edit Search Options Help
-~
SQL*Plus: Release 18.1.8.2_.8 - Production on Yed Jan 7 14:48:45 20084
Copyright {(c) 1982, 2883, Oracle. All rights reserved.
Connected to:
Joracle Database 18g Enterprise Edition Release 18.1.8.2.8 - Production
Mith the Partitioning, OLAP and Data Mining options
SOL> create or replace wiew DEPARTHENT_XHL of xmltype
2 with object id
3 (
4 substr({extractUalue(sys_nc_rowinfo$, ' /Department/Mame’),1,128)
5) from columns (d.DEPARTHENT_MAME}
6 as
7 select xmlElement
8
9 “Department”,
18 xmlAttributes(d.DEPARTHMENT_ID as "DepartmentId”},
11 ¥mlElement(‘Hame*, d.DEPARTHMENT_MNAME},
12 ¥mlElement
13
14 "Location",
15 xnlForest
16 {
17 STREET_ADDRESS as "'Address', CITY as “City”, STATE_PROVINCE as “"State",
18 POSTAL_CODE as *'2ip",COUNTRY_NAHME as “Country"
19)
28),
21 xmlElement
22 {
23 "EmployeelList™,
24 {
25 select =xmlAgg
26 (
27 xmlElement
28 {
29 “Employee"’,
38 xmlAttributes { e.EMPLOYEE_ID as "employeeNumber'),
31 xnlForest
32 {
33 e.FIRST_NAME as "FirstMame, e.LAST_NAME as "LastName", e.EMAIL as “EmailAddress”,
34 e.PHONE_NUHBER as "Telephone", e.HIRE_DATE as *"'StartDate", j.JOB_TITLE as "JobTitle",
35 e_SALARY as "Salary"™, m.FIRST_HNAHE || ' * || m.LAST_HAME as "Hanager"
36),
37 xmlElement { "Commission™, e.COWMISSION PCT)
38)
39)
48 from HR.EMPLOYEES e, HR.EMPLOYEES m, HR.JOBS j
41 where e .DEPARTHENT_ID = d.DEPARTHENT_ID
Y] and j.JOB ID = e_JOB_ID
43 and m.EMPLOYEE_ID = e.MANAGER_ID
ny)
45)
45) as ML
47 from HR .DEPARTHMENTS d, HR_COUNTRIES c, HR_LOCATIONS 1
48 where d.LOCATION ID = 1.LOCATION_ID
49 and 1.COUNTRY_ID = c.GOUNTRY_ID
a8 7
View created.
sQL> o
£ ¥

Figure XIV1. Using SQL/ XML aperators to create an XML Type View over relational content

Page 87 of 97 ORACLE

Oracle XML DB Technical White Paper

KEY POINTS:
e The SQL/XML standard defines a set of operators that allow any shape of XML to be

generated from the tabular result set returned by a conventional relational query.

e SQIL/XML defines operators that can be used to aggregate the results of sub-queries into
XML collections.

e XMLType views allow an XML representation of the relational data to be persisted in the
database.

e Oracle Database 10g Release 1 includes support for XPath re-write over XMLType views
created using the SQL/XML operators. This means that the XPath based operators
extract(), extractValue() and existsNode() can be used to efficiently query these views.

Page 88 of 97 ORACLE

Oracle XML DB Technical White Paper

The following screen shot shows a simple query against an XMLType View. In this case the
XPath expression restricts the result set to the node that contains the information related to the
Department named “Executive”.

2 Oracle SQL*Plus
File Edit Search ©Options Help
With the Partitioning, OLAP and Data HMining options ~

SOL> select XHMLTYPE.extract{object_wvalue,'/=*")
2 from DEPARTHENT_XHL
3 where existsHode{object_walue,'/Department[Hame="Executive”]’') = 1
4/

XMLTYPE .EXTRACT{DBJECT_UALUE, "' /*")
<Department DepartmentId="98">
{Name>Executive{/Name>
{Location>
{Address>2884 Charade Rd</Address>
{City>Seattle</City>
<State>Washington</State>
<Zip>98199</2ip>
{Country>United States of America</Country>
</Location>
{Employeelist>
<Employee employeeNumber="181">
{FirstName>MNeena<{/FirstName>
<LastHame>Kochhar<{/LastName>
<{EmailfAddress>NKOCHHARS fEmailAddress>
<Telephone>515.123 _4568<{/Telephone’
<StartDate>21-3EP-89</StartDate>
{JobTitle>Administration Vice President</JobTitle>
<Salary>17888{/Salary>
<{Manager>Steven King<{/Manager>
<Commission/>
</Employee>
<Employee employeeNumber="-182">
<FirstName>Lex</FirstHame>
<LastHame>De Haan</LastHame>
<Emailaddress>LDEHAANY /EmailAddress’
{Telephone>515.123.4569<{/Telephone>
{StartDate>13-JAH-93</StartDate>
<JobTitle>Administration Vice President</JobTitle> =
<Salary>17888</Salary>
<Manager>Steven King</Manager>
{Commission/>
<fEmployee>
</Employeelist>
</Department

sqL> v
g

Figure XILVIL. Querying an XML Type using XML metaphors.

KEY POINTS:

e The XMLType view allows relational data to be persisted as XML content.

e Rows in an XMLType view can be persisted as documents in the Oracle XML DB
repository.

e Rows in an XMLType view can be quetied using the SQL/XML opetatots.

e XPath re-write will translate the queries into the operations on the underlying tables.

Page 89 of 97 ORACLE

Oracle XML DB Technical White Paper

THE DBURI SERVLET

The database-resident DBUri Serviet allows the functionality of the DBUri data-type to be
accessed directly from any browser that supports XMIL. The DBUri Serviet allows a simple URL
to be used to view the entire contents of any table in an Oracle database. The contents of the
table are returned as a single XML Document. The local part of the URL takes the form of
/oradb/HR/DEPTARTMENTS, whete oradb is the default virtual root of the DBUri Servlet, HR is the
name of the target database schema, and DEPTARTMENTS is the name of the table.

The following screen shot shows the results using the DBUri Servlet to access the contents of the
DEPARTMENTS table:

A http:fflocalhost: B0B0foradb/HR/MEPARTMENTS?contenttype=text/xml - Microsoft Internet Explorer
File Edit ‘Wiew Favorites Tools Help

Qoack -) - [¥ @) @8 S search srFavorites @ Meda & | (- @] - [€9 i3

Aiddress | @] htp: flocalhost 050 oradh JHRDEPARTMENTS?contenttype—text fxm v B ks

<7xml version="1.0" encoding="UTF-8" 7=
- «DEPARTMENTS =
— RO =
<DEPARTMENT_ID =10</DEFARTMENT_ID =
<DEPARTMENT_MAME =Administration</DEPARTMENT_MAME =
<MANAGER_ID=200</MANAGER_ID =
<LOCATION_ID=1700-</LOCATION_ID =
= AR =
+ = RO =
+ < RO =
+ < RO =
+ = RO =
+ < RO =
+ = RO =
+ < RO =
+ < RO =
+ = RO =
+ < RO =
+ < RO =
+ = RO =
+ = RO =
+ < RO =
+ = RO =
+ < ROW =
— =< ROy =
<DEPARTMENT_ID =180</DEPARTMENT _ID=
<DEPARTMENT_MAME =Construction=/DEPARTMENT_MAME =
<LOCATION_ID=1700</LOCATION_ID =
< /RO =
+ < RO =
+ < RO =
+ < RO =
+ = RO =
+ = ROy =
+ < RO =
+ < RO =
+ = RO =
- RO =
<DEPARTMENT_ID »270</DEPARTMENT _ID =
<DEPARTMENT_MNAME=Payroll</DEPARTMENT_MAME =
<LOCATION_ID=1700-=/LOCATION_ID =
= SR =
</DEPARTMENTS =

@ '3 Local intranet

Figure XLVIII. Using the DBUri Servlet to access relational content.

Page 90 of 97 ORACLE

Oracle XML DB Technical White Paper

KEY POINTS:

e Each row in the table becomes a complex element called ROW.
e 'The ROW element contains one element for each column in the table.

e 'The set of ROW elements is enclosed in a ROOT whose name is derived from the name of
the table.

The URL passed to the DBUri Servlet controls the content of the generated XML document.
The URL can contain XPath expressions that control the set of rows and columns that are
included in the generated XML document. The URL passed to the DBUri Serviet can also
include parameters that provide control over the features like the name of the root element, or
the mime type of content being generated.

The following example shows how a more complex URL can be used to control the output of
the DBUri Serviet. The complete URL used in this case is
http://localhost:8080/oradb/HR/DEPARTMENTS/ROW[LOCATION ID="2400”%200r%20LOCA

TION ID="1800"]/DEPARTMENT NAME?contenttype=text/xml&rowsettag=DepartmentName
s

A http:fflocalhost: B0B0foradb/HR/MEPARTMENTS/ROW[LOCATION_ID="2400" or LOCATION_ID="1B800"]/DEPART ...
File Edit View Favorites Tools Help ‘?F

Qebak = O - X @ @ Psearch rFavorites @ Meda & | (- S (B 7 [9 o §

address |@ http:,l’,l'localhost:8080,!'0radb,l’HR,l’DEPnRTMENTS,l'ROW[LOCATION_ID="24DD"%2Dor%2DLOCATION_ID="IBDD"]J’DEPARTMIVlGU Links **

- =DepartrmentMarmes =
<DEPARTMEMT_MAME=Marketing</DEFARTMENT_MAME =
<DEPARTMEMNT_MAME>Human Resources</DEPARTMEMNT_MAME =

«/DepartmentMames >

€] Done %.J Localintranet
Figure X1IX. Using a complex URL to control content and formatting.

KEY POINTS:

e The URL uses the XPath notation [LOCATION_ID="2400" or
LOCATION_ID="1800"] to limit which rows are included in the generated XML
document.

e The URL uses the XPath notation ROW[..]/DEPARTMENT_NAME to limit which
columns are included in the generated document.

e The URL uses the rowsettag parameter to specify the name of the root element of the
generated document.

Page 91 of 97 ORACLE

Oracle XML DB Technical White Paper

The DBUri Serviet can also be used to access XML content stored in an XMLType table or view.
When accessing XML content the URL can contain XPath notations which control which
documents are returned and which nodes are included. In the case of an XMLType the URL is
allowed to reference any node in the document.

The following screen shot shows the DBUr Servlet being used to access a row in the
PURCHASEORDER table.

hitp://localhost: BOBOJoradb/SCOTT/PURCHASEORD ER/ROW/PurchaseOr der[Reference="SBELL-200303091... [Z |[B][X]
File Edit Wiew Favorites Tools Help 'E_l

) Barl 2 - ¥ @ ¢8| P oearch sleFavortes @ Meda & G- b (9] - [€9 E 3

Address |@ http: flacalhost: 3080/ oradb SCOTT/PURCHASEOR DERROW PurchaseOrder[Reference="SEELL-2003030912333601PL V| Go Links *

<txrnl version="1.0" encoding="UTF-&" 7=
- =PurchaseOrder
ME0:noMamespaceSchemalocation="http: f flocalhost:8080 fhome fSCOTT fpoSource fxsd fpurchaseOrder.xsd"
xmins:NS0="http:/ fwww.w3.orgf 2001 f%MLSchema-instance">
<Reference>SBELL-2003030912333601PDT</Reference=
< &ctions =
- «fction=
<User=S¥OLLMAN</User>
</Ackion=
</Actions >
“<Reject /=
<Requestor=Sarah 1. Bell</Requestor=
<User=KCHUNG</User>
« CostCenter=8§30</CostCentar>
<ShippingInstructions >
<name=Sarah 1, Bell=/name =
<address=400 Oracle Parkway Redwood Shores CA 94065 USA-</address >
<telephone =650 506 7400« /telephone =
</ShippingInstructions =
< Speciallnstructions »Counter to Counter</Speciallnstructions =
- «Lineltems =
- «Lineltemn ItemMumber="1"=
«Description>=A Night to Remember</Description>
<Part [d="715515009058" UnitFrice="39.95" Quantity="2" /=
< /Lineltermn=
- <Lineltern IternMumber="2">
<Description=The Unbearable Lightness Of Being</Description=
<Part [d="37429140222" UnitPrice="29.95" Quantity="2" /=
=/Lineltern >
- «<Lineltern ItemMumber="3"=
<Description =Sisters</Description=
<Part [d="715515011020" UnitPrice="29.95" Quantity="4" /=
< /Lineltermn=
=</Lineltems =
=/PurchaseOrders=

@ Done ‘-rj Local intranet
Figure L. Using the DBUri Servlet to access XML content.

KEY POINTS:

e 'The URL accesses the document as a row in the PURCHASEORDER table rather than as a
resource in the XML DB repository.

e The generated document will include only documents where the node
/PurchaseOrder/Reference/text() contains the value specified in the condition.

e The contenttype parameter is used to set the mime type of the generated document to
text/xml.

Page 92 of 97 ORACLE

Oracle XML DB Technical White Paper

XSL TRANSFORMATION

Oracle XML DB provides support for performing XSL transformations inside the database.
Traditionally, since XSL transformation is based on the DOM memory Model, XSL
transformation has required very large amounts of memory. By performing XSL transformation
inside the database, alongside the data, Oracle XML DB is able to use XML specific memory
optimization to significantly reduce the amount of memory required to perform the
transformation.

The SQL xmlTransform() operator provides the SQL programmer with access to the XSL
transformation capability. The xmlTransform() operator takes two arguments; the first is the
XML document to be transformed, the second if the XSL style sheet which defines the
transformation. Both parameters are XMLType. The result of the transformation is also
expected to be a valid XML document. This means that any HTML generated by the
transformation must be XHTML, which is valid XML, as well as valid HTML.

The most efficient way to make a style sheet available to the xmlTransform() operator is to
store it as a document in the Oracle XML DB repository. The following screen shot shows a
standard style sheet stored in the Oracle XML DB repository being accessed from a Web
browser.

A http:#localhost:B0BO/home/SCOTT/poSourcelxsl/purchaseOrder. sl - Microsoft Internet Explorer,

File Edit Wiew Favorites Tools Help ﬁ‘
@Back ~ 0 ¥ [2] (» D search rFavortes @ Meda & (- L B[@ i 3
Address |@ http: {flocalhost: 8080/home/ SCOTT/poSource/xslfpur chaseOrder, xsl V| Go Links **

<7xml version="1.0" encoding="UTF-8" 7=
- <xslistylesheet version="1.0" xmins:xsl="http: f fwww.w3.0rgf 1999 fXSL/Transform"
xmilns:xdb="http:f fxmlins.oracle.com/xdb" xmins:xsi="http: f fwww.w3.0rgf2001 fXMLSchema-instance">
- «<xsl:itemnplate match="7">
- <html=
<head />
- «body bgcolor="#003333" text="#FFFFCC" link="#FFCCOD" vlink="#66CC99" alink="#669999">
-
<xslifor-each select="PurchaseOrder" /=
- =uxslifor-each select="PurchaseOrder">
+ <centers>

+ <centers>
- <table border="0" width="100%" BEGCOLOR="#000000">
- <thbody =
+ <tr=
</thody >
</table=

- =B=
<FOMT COLOR="#FFD0OO0D" SIZE="+1"=Items:
=/ B>
<br /=
<hbr />
- «table border="0">
- «<tbody =
- =xslifor-each select="LineItems" >
+ <tr bgcolor="#COCOCD">
+ <yslifor-each select="LineItem">
<fuslifor-gach =
</thody =
</table=
</uslifor-each=
</FONT =
</body =
«/htrl=
</ usliternplate =
<fuslistyleshest=

@ ‘ﬂ Local intranet
Figure L1 Standard W3C XSL style sheet stored in Oracle XN DB repository.

Page 93 of 97 ORACLE

Oracle XML DB Technical White Paper

KEY POINTS:

e The style sheet is an absolutely standard XSL style sheet. These is nothing Oracle XML DB
specific about the styles sheet

e The style sheet is simply stored as non-schema based XML inside the Oracle XML DB
repository.

Page 94 of 97 ORACLE

Oracle XML DB Technical White Paper

XSL. TRANSFORMATION WITH THE DBURI SERVLET

The XML accessed by the DBUri Serviet can be transformed using the XSLT processor built
into Oracle XML DB. This allows the XML generated by the DBUri Servlet to be presented to in
a more user-friendly manner, such as HTML.

Style sheet processing is initiated by adding a transform parameter to the URL passed to the
DBUFri Serviet. The style sheet is specified using a URI that references a style sheet stored in the
database. The style sheet is applied directly to the generated XML before the document is
returned to the client. When using the DBUri Servlet to perform XSLT processing it is good
practice to use the contenttype parameter to explicitly specify the mime type of the generated
output.

The following screen shot shows how an XSL Transformation can be applied to XML content
generated by the DBUri Serviet. In this example the complete URL is
http://localhost:8080/oradb/SCOTT/PURCHASEORDER/ROW/PurchaseOrder [Reference=""

SBELL-2003030912333601PDT"] ?contenttype=text/html&transform=/home/SCOTT/poSou
rce/xsl/purchaseOrder.xsl

2} http:#Hlocalhost: B0BO/oradb/SCOTT/PURCHASEORDER/ROWPurchaseOr der[@Reference="SBELL-20030309123 - Micr... |

File Edit “iew Favorites Tools Help
@Back = 0 - [¥ [2] ») search 7 Favorites @ Media &2 - B3 L3

Address l@ﬂ Reference="SBELL-2003030912333601PDT" Pcontenttype=texthtmigkr ansform=/horme/SCOTT/poSourcexslfpurchaseOrder xsl - ™| Go

SBELL-2003030912333601PDT
Name
Actions Address

Requestor ah J. Be Telephone
User
Cost Center

itemiumber [Description Partld (Cuantity [Unit Price|Total Price

A Mightto Remember 715515009058 39.95 79.900000000000006
The Unbearable Lightness Of Being|37429140222 29.95 59.899999999999999
The \Wizard of Oz Sisters 29.95 119.799999999999997

&] Dore S Local intranet

Figure LII.Database XSL transformation of a PurchaseOrder using the DBUri Servlet.
KEY POINTS:

e The URL passed to the DBUri Serviet will retrieve one PurchaseOrder document from the
PURCHASEORDER table.

e The DBUri Servlet will apply the style sheet /home/SCOTT/poSource/xsl/purchaseOrder.xsl to
the PurchaseOrder document before returning the document to the browser. This style
sheet will transform the XML into the HTML..

e The contenttype parameter is used to ensure that the mime type of the generated document
is set to text/html.

e The XSLT processing is performed inside the database using the Oracle XML DB XSLT

processor.

Page 95 of 97 ORACLE

The following screen shot show how a combination of XMLType views and the DBUri Servlet
can be used to simplify the process of exposing relational data as HTML. First a persistent
XML representation of the relational content is created by using the SQL/XML operators to
create an XMLType view. Next the DBUri Serviet is used to apply an XSL Transformation to the
XMLType view, producing HTML that can be viewed directly from a web browser.

A http:/flocalhost:B0B0Joradb/SCOTT/DEPARTMENT_XMI ?contenttype=text/htmi&rowsettag-ROWSETRtransfo - Microsoft Inte...

Fle Edit ‘“ew Favorites Tools Help
& Back ~ ERER Search Favorites @' Media 42 = BHLE 3

Address ’&J http:fflocalhost:8080jor adb/SCOTT/DEPARTMEMT _¥ML?cantenttype=textihtmltrowsettag=ROMWSET&transForm=/home/SCOTT/poSaurcefx a Go

LOCATION

2004 Charade Rd

Seatile

Washington

08109

TUnited States of America
147 Spadina Ave

Toronto

Oniario

M5V 2LT

Canada

2004 Charade Rd

Seattle

Washington

08109

TUnited States of America

Human Resources 8204 Arthur St
London
United Kingdom
Shipping 2011 Interiors Bhd
South San Francisco
California
90236
United States of America

&] Done &4 Local intranet

Figure LII1.Database XSL. transformation of relational content using the DBUri Servlet.
KEY POINTS:

e Oracle XML DB makes it possible to expose the content of relational tables as an HTML
document without very little code.

e All that was required was a simple XMLType view, based on SQL/XML opetators, an
industry standard XSL style sheet and the DBUri Servlet.

ORACLE

Oracle XML DB Technical White Paper

SUMMARY

Oracle XML DB adds native support for the emerging XML standards to the popular Oracle
database, brings SQL and XML processing together, and introduces a number of innovations
needed for efficient storage and retrieval of XML.

More information on XML DB can be found at the following Locations:

The Oracle Technology Network (OTN) page for XML DB:
http://otn.oracle.com/tech/xml/xmldb/content.html,

The Oracle Technology Network (OTN) page for XML:
http://otn.oracle.com/tech/xml/content.html

The Oracle Documentation, in the book titled XML Database Developet's Guide - Oracle
XML DB.

ORACLE

Oracle XML DB White Paper

May 2005
Author: Mark Drake
Contributing Authors: Sandeepan Banerjee, Geoff Lee

Oracle Corporation

World Headquarters

500 Oracle Parkway
Redwood Shores, CA 94065
US.A.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200
www.oracle.com

Oracle Corporation provides the software
that powers the internet.

Oracle is a registered trademark of Oracle Corporation. Various
product and service names referenced herein may be trademarks
of Oracle Corporation. All other product and service names
mentioned may be trademarks of their respective owners.
Copyright © 2005, Oracle. All rights reserved.

This document is provided for information purposes only and the contents hereof are subject to change without notice. This document is not
warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including implied
warranties and conditions of merchantability or fitness for a particular purpose. We specifically disclaim any liability with respect to this
document and no contractual obligations are formed either directly or indirectly by this document. This document may not be reproduced or
transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

Page 97 of 97 ORACLE

