
TEAMFL
Y

Team-Fly®

XML Schema Essentials

John Wiley & Sons, Inc.

Wiley Computer Publishing

R. Allen Wyke

Andrew Watt

XML Schema Essentials

John Wiley & Sons, Inc.

Wiley Computer Publishing

R. Allen Wyke

Andrew Watt

Publisher: Robert Ipsen
Editor: Cary Sullivan
Developmental Editor: Scott Amerman
Associate Managing Editor: Penny Linskey
Associate New Media Editor: Brian Snapp
Text Design & Composition: D&G Limited, LLC

Designations used by companies to distinguish their products are often claimed as
trademarks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the product
names appear in initial capital or ALL CAPITAL LETTERS. Readers, however, should contact
the appropriate companies for more complete information regarding trademarks and
registration.

This book is printed on acid-free paper.

Copyright © 2002 by R. Allen Wyke and Andrew Watt. All rights reserved.

Published by John Wiley & Sons, Inc.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copy-
right Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222
Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4744. Requests to the
Publisher for permission should be addressed to the Permissions Department, John Wiley
& Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-
6008, E-Mail: PERMREQ @ WILEY.COM.

This publication is designed to provide accurate and authoritative information in regard to
the subject matter covered. It is sold with the understanding that the publisher is not
engaged in professional services. If professional advice or other expert assistance is
required, the services of a competent professional person should be sought.

Library of Congress Cataloging-in-Publication Data:

ISBN: 0-471-412597

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

Introduction ix

Acknowledgments xi

About the Authors xiii

Part One Getting Started 1

Chapter 1 Elementary XML Schema 3

What Is XML Schema? 5

How Does an XML Schema Processor Work? 6

What Is XML Schema for? 7

XSD Schema Schema Components 7

Other Schema Languages for XML 8

The DTD Descended from SGML 8

XSD Schema Tools 9

XML Schema Document 14

C H A P T E R

Contents

iii

Root of an XML Schema Document 16

Declaring the Location of Your XML Schema Document 16

Declaring Elements and Defining Types 17

Defining Simple Types 17

Defining Complex Types 25

Anonymous Complex Types 25

Named Complex Types 26

Using Anonymous or Named Complex Types 29

Declarations 34

Annotations in Schema 42

Standard XML Comments 42

The <annotation> Element 43

Empty Element Declaration 45

The anyType Type 50

Occurrence Constraints 51

Cardinality in DTDs 51

minOccurs and maxOccurs 51

Defining Your Own Simple Type 56

Model Groups in Schema 57

Sequence Group 57

Choice Group 57

All Group 58

Attribute Groups 61

More about the XML 1.0 DTD Content Model 62

Validation in XSD Schema 63

Validation versus Assessment 64

XML Information Set 67

Post-Schema Validation Infoset 69

Summary 69

Chapter 2 XSD Elements 71

XML Elements 72

Defining within a DTD 72

Limitations 76

iv Contents

Moving On to XSD Elements 77

<xsd:element>: A Closer Examination 81

Default Values 83

Substitution Groups 85

Null Values 92

Attributes 93

Complex Content 99

Importing Elements from Other Locations 107

Redefining Elements 111

More on <xsd:complexType> 112

Using a Sequence 114

Grouping 114

Summary 119

Chapter 3 Adding Attributes 121

What Are Attributes? 122

Additional Metadata 122

Application Uses 125

Storing Data 126

Hybrid Approaches 128

Considerations for Using Attributes 130

XML Attributes Foundation 130

Syntax 130

Capabilities 131

XSD Attributes: The Next Generation 132

Syntax Changes 132

Further Capabilities 134

Using Attributes 136

Scope 136

Qualification 138

Defaults 140

Grouping 141

Inclusion of Other Attributes 142

Summary 142

Contents v

Part Two Going Beyond DTDs 145

Chapter 4 Applying Datatypes 147

What Are Datatypes? 147

Primitive Datatypes 149

Derived Datatypes 152

Defining Our Own Datatypes 152

More on Simple Types 157

Defining Lists 160

Creating a Union 162

Constraining Type Definitions 167

Controlling Digits 171

Handling White Space 174

Pattern Matching 180

Applicability of Facets 181

Summary 183

Chapter 5 Data Facets 185

Fundamental and Constraining Facets 186

Constraining Facets in XSD Schema 186

The length Element 187

The minLength Element 195

The maxLength Element 198

The pattern Element 200

Parts Catalog Example 202

Postal Code Examples 206

The enumeration Element 211

Simple Enumeration Example 212

U.S. States Example 213

The whiteSpace Element 216

Summary 217

Chapter 6 More about Data Facets 219

The maxExclusive Element 220

The maxInclusive Element 223

The minExclusive Element 225

vi Contents

The minInclusive Element 228

The totalDigits and fractionDigits Facets 233

Summary 238

Chapter 7 Grouping Elements and Attributes 239

Reusing Definitions with Groups 240

Nesting Sequence Groups 245

Nesting Choice Groups 246

Substitution Groups 250

Attribute Groups 257

Summary 258

Chapter 8 Deriving Types 259

Deriving Types by Extension 260

Deriving Types by Restriction 271

The enumeration Element 279

The pattern Element 282

The xsi:type Attribute 284

Summary 285

Part Three Next Steps 287

Chapter 9 Uniqueness and Keys in XSD Schema 289

Identity-Constraint Definitions 289

The <xsd:unique> Element 290

The <xsd:key> and <xsd:keyref> Elements 298

Summary 303

Chapter 10 Bringing the Parts Together 305

Modularizing Schemas 305

How to Use Schema Modules 306

Creating the Example 325

Planning the Example 325

Defining the Information Needs 325

Documenting the Schema 326

Basic Schema Templates 327

Modularizing the Schemas 328

Contents vii

Creating the Staff Schema 329

Starting the Schema 332

Creating the Customer Schema 342

Creating the Type Library 342

Part Four Appendixes 347

Appendix A Datatypes 349

Appendix B Data Facets 371

Index 379

viii Contents

TEAMFL
Y

Team-Fly®

Back in February 1998, XML 1.0 was released among the most hype and media
coverage that the Internet community had seen since the first version of Java.
XML was supposed to solve many of the problems that existed in heteroge-
neous environments, where applications were forced to communicate and
exchange data in proprietary formats. The explosion of the Web had intro-
duced the common HTML format for marking up and exchanging documents,
but the structure and potential of HTML to be more than that simply did not
exist.

XML, whose foundation was based on SGML, provided a means for people,
companies, or entire industries to define languages that could be used to
mark up data in a method that others could support and understand. Simply
conforming to the well-formed and valid (which is technically optional)
requirements of XML was a huge step, and if you coupled that with inherit
structure of document type definitions (DTD), users were able to provide a
wealth of knowledge to partners with whom they exchanged data. XML
offered some datatyping, however, and did not really support a more flexible
means of defining schemas.

To help accommodate these deficiencies, other standards such as Datatypes
for DTDs (DT4DTD), Schema for Object-Oriented XML (SOX), XML Data, and

Introduction

ix

Document Definition Markup Language (DDML) were developed and combined
with XML data for exchanges. But while these provided many of the features
that users needed, integrating multiple standards were cumbersome and less
desired than a single, standard approach. Enter XML Schema (XSD).

XSD, which was inspired by all the previously mentioned standards, does
not necessarily replace XML—but in many senses of the word, it can be
thought of as XML on steroids. It can be the perfect solution for large solutions
that include many various types of data integration. When you have applica-
tions or entire systems that need to communicate yet have very diverse meth-
ods of storing data, XSD can act as the bridge between these systems. These
complex solutions need more, and XSD offers that.

What to Expect

In XML Schema Essentials, our job as authors is to expose you to the various
publications that are part of the XSD Recommendations. For those of you who
have attempted to read and study the recommendations, you know that it can
be complex and hard to follow. But just knowing and understanding the stan-
dard is only half the battle. We will also expose you to using it to solve real-
world problems as well as have discussions about best practices and how you
can get the most out of your implementation.

Our goal is simple: for you to finish this book and not only understand XSD
but also understand what you can do with it.

Book Organization

In our attempt to teach you XSD, we have taken the approach of stepping
through the recommendations from a functional standpoint rather than from
top to bottom. The book itself is divided into four parts. The first part, “Get-
ting Started,” introduces you to XSD. You will learn the basic concepts, how to
define elements, and how to add attributes to those elements.

Part Two, “Going beyond DTDs,” will focus on functionality that is open
and beyond that found in XML DTDs. You will learn about datatypes and how
to derive your own datatypes. There are also a couple of chapters that focus on
data facets, which are ways you can constrain things such as datatypes. There
is also a chapter on grouping elements and attributes. One of the things you
will quickly learn about XSD is that you can define more than one root ele-
ment.

The third part of the book, “Next Steps,” is just that: next steps. In the final
two chapters of the book, which are contained in this section, you will learn
about some advanced topics that revolve around the use of XSD schemas and

x Introduction

essentially expose yourself to a deeper level of topics than covered in previous
chapters. You will also work through an example that ties together everything
you have learned up until this point to result in a full understanding of XSD.

Finally, in Part Four, which contains Appendixes A and B, we have included
a reference for both the datatypes (primitive and derived) and the facets avail-
able in the XSD Recommendations. We hope that you will use the material
contained here even after you have finished reading the book, because it can
serve as a valuable reference.

A Final Thought

This brief introduction should basically prepare you for what to expect from
the pages that follow. We did not want to waste your time here rambling on
about random thoughts of how XSD will solve the world’s problems. Simply
put, we want you to come to your own conclusions. So, we have saved our
discussion of why and how XSD could possibly do so, at least in the comput-
ing world, for the chapters and pages within the book itself.

R. Allen Wyke
Andrew Watt

Acknowledgments

R. Allen Wyke
On the publishing side, I would like to thank Bob Kern of TIPS Publishing and
my co-author, Andrew, for their professionalism, hard work, and overall sup-
port in the proposing and writing of this book. I would also like to thank all
the people at Wiley who worked on the book and helped make sure it was the
best it could be.

Andrew Watt
I would like to thank my co-author, Allen, for his contribution to the develop-
ment and writing of this book. Thanks, too, to Scott Amerman, Penny Linskey,
and the team at Wiley for doing all that was necessary to bring this book to
fruition.

Introduction xi

I would like to dedicate this book to the
citizens of New York City, the United States of
America, and the world for their perseverance

and strength following the tragic events that
occurred September 11, 2001.

R . A l l e n W y k e

I would like to dedicate this book to the
memory of my late father, George Alec Watt,

a very special human being.

A n d r e w W a t t

R. Allen Wyke
R. Allen Wyke of Durham, North Carolina is the Vice-President of Technology
at Blue292, a pioneering company on the forefront of environment, health,
safety, and emergency management software and services. At Blue292, he
works with management and engineering to help ensure and create products
that have the proper vision and direction while fulfilling customers’ expecta-
tions. He is constantly working with Java, XML, JavaScript, and other related
Internet technologies—all of which are part of the framework used for the
Blue292 systems.

Allen, who wrote his first computer program at the age of eight, has also
developed intranet Web pages for a leading telecommunications and net-
working company in addition to working on several Internet sites. He has
programmed in everything from C++, Java, Perl, Visual Basic, and JavaScript
to Lingo as well as having experience with both HTML/XHTML and DHTML.
He has also published roughly a dozen books on various Internet technologies
that include topics such as Perl, JavaScript, PHP, and XML. In the past, he has
also written the monthly “Webmaster” column for SunWorld and a weekly
article, “Integrating Windows and Unix,” for ITworld.com.

About the Authors

xiii

xiv About the Authors

Andrew Watt
Andrew Watt is an independent consultant and author based in the United
Kingdom with an interest and expertise in the growing family of XML tech-
nologies. He wrote his first programs in 6502 Assembly Language and BBC
Basic around 1985 and has programmed in Pascal, Prolog, Lotus Domino, and
a variety of Web and other technologies including HTML/XHTML and
JavaScript. He works with XML, XSLT, SVG, and various other XML technolo-
gies on a regular basis and is excited by the progressive transition of the XML
technologies from potential to reality as the pieces of the XML jigsaw puzzle
appear one by one from the World Wide Web Consortium (W3C).

Andrew is the author of Designing SVG Web Graphics (published by New
Riders) and XPath Essentials (published by Wiley) as well as being co-author
or contributing author to XHTML, XML & Java 2 Platinum Edition (published
by Que), Professional XSL, Professional XML 2nd Edition and Professional XML
Meta Data (published by Wrox), and Sams Teach Yourself JavaScript in 21 Days
(in press at Sams).

PA R T

1

Getting Started

3

C H A P T E R

1

Elementary XML Schema

The World Wide Web Consortium’s XML Schema is arguably one of the most
important and far-reaching recommendations related to XML to come from
the W3C.

Since its introduction as a W3C recommendation in 1998, Extensible Markup
Language (XML) has had a rapidly growing impact on the World Wide Web
and as a basis for electronic business. As the impact of XML has grown, the
need to integrate XML with existing technologies, such as programming lan-
guages and relational database management systems, and the need to
exchange information expressed in XML has led to demands for a schema lan-
guage written in XML that will constrain the allowed structure of a class of
XML documents with precision and that can also constrain the datatypes that
are permitted at individual locations within such a structure. The need for a
new schema language arose, in part, from the limitations of the Document Type
Definition (DTD), which was the form of XML schema defined within the XML
1.0 Recommendation of February 1998.

As well as being one of the most important recommendations, the W3C
XML Schema Recommendation is one of the most complex, and at times
abstract, XML technology specifications. In this book, we will be emphasizing
aspects of W3C XML Schema that are practical, using many examples of W3C

4 Chapter 1

<?xml version="1.0"?>

<Book>

<Title>XML Schema Essentials</Title>

<Authors>

<Author>R. Allen Wyke</Author>

<Author>Andrew Watt</Author>

</Authors>

<Publisher>John Wiley</Publisher>

</Book>

Listing 1.1 Simple XML instance document (Book.xml).

XML schemas and introducing the theory that sheds light on the practical use
of schemas.

Let’s take a quick look at a simple XML schema so that you can see what one
looks like. An XML document that is described by an XML schema is called an
instance document. Listing 1.1 shows a very simple XML instance document.

A schema expressed in W3C XML Schema syntax that describes the permit-
ted content of Listing 1.1 is shown in Listing 1.2. The details of the syntax are
not essential for you to understand at this stage.

As you can see, the schema of XML Schema is substantially longer than the doc-
ument it describes or defines. For the moment, do not worry about the detail of
the schema. The <xsd:annotation> and <xsd:documentation> elements enable us
to document the purpose of a schema for a human reader. The <xsd:element> and
<xsd:attribute> elements enable us to declare elements and attributes that are per-
mitted in instance documents. The <xsd:complexType> element enables us to
define the permitted complex type content of certain elements. How to use XSD
Schema elements such as <xsd:element>, <xsd:complexType>, <xsd:attribute>,
and so on will be introduced a little later in this chapter.

The World Wide Web Consortium, or W3C, has termed its version
of a schema language as simply XML Schema. In reality, a number of other
XML schema languages existed for some time before W3C completed the
development of XML Schema. So, to avoid ambiguity, when we refer to the
specification for the W3C flavor of XML Schema, we will use the terms W3C
XML Schema or XSD Schema to refer to W3C’s type of XML Schema, because an
earlier name for the W3C XML Schema was XML Schema Definition Language,
abbreviated to XSD. When we refer to a specific example of a schema written in
the XSD Schema language (with the upper-case initial letter of Schema), we will
use the term XSD schema (with the lower-case initial letter of schema).

Throughout this book, we will be using the indicative namespace prefix xsd
to refer to elements such as <xsd:complexType> (which are part of XSD
Schema).

NOTE

TEAMFL
Y

Team-Fly®

Elementary XML Schema 5

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

<xsd:annotation>

<xsd:documentation>

This is a sample XML Schema for Chapter 1 of XML Schema

Essentials.

</xsd:documentation>

</xsd:annotation>

<xsd:element name="Book">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Title" ref="Title"/>

<xsd:element name="Authors" ref="Authors"/>

<xsd:element name="Publisher" ref="Publisher"/>

</xsd:sequence>

<xsd:attribute name="pubCountry" type="xsd:string"/>

</xsd:complexType>

</xsd:element>

<xsd:element name="Title" type="xsd:string"/>

<xsd:element name="Authors">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Author" ref="Author" minOccurs="1"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="Author" type="xsd:string"/>

<xsd:element name="Publisher" type="xsd:string"/>

</xsd:schema>

Listing 1.2 W3C XML Schema syntax describing content of Listing 1.1 (Book.xsd).

What Is XML Schema?

XML Schema is the W3C-recommended schema definition language, expressed
in XML 1.0 syntax, which is intended to describe the structure and constrain the
content of documents written in XML. It is explicitly intended to improve on the
schema functionality that was provided by the DTD, which was the original
form of schema for XML documents that the W3C recommended in 1998 when
XML was first released.

6 Chapter 1

The W3C XML Schema became a full W3C recommendation in May 2001.
Unusually, the final recommendation was released in three parts. The first
part, Part 0, is a primer that is intended to introduce XML Schema in a non-
formal way (from W3C’s point of view) and is located at www.w3.org/
TR/2001/REC-xmlschema-0-20010502/. Part 1 is a normative W3C docu-
ment, defines structures that XML Schema supports, and is located at
www.w3.org/TR/2001/REC-xmlschema-1-20010502/. Part 2 is also a norma-
tive W3C document, defines the datatypes that W3C XML Schema supports,
describes mechanisms for creating new datatypes, and is located at
www.w3.org/TR/2001/REC-xmlschema-2-20010502/.

An XSD Schema schema is intended to define the structure and constrain
the content of a class of XML documents. Given the terminology “class,” such
documents are often termed instance documents.

Instance “documents” need not exist as document files but can exist as
a stream of bytes or as a collection of XML Information Set items.

How Does an XML Schema
Processor Work?
In much of this book, we will refer to the relationship between an XSD schema
and instance documents as if an XSD schema-aware validating processor actu-
ally directly processed the instance document. In fact, an XSD schema-aware
processor operates on a set (called the information set) of information items
rather than on the instance document itself. This method is similar to the way
that an XSLT/XPath processor operates, in reality, on a source tree of nodes
rather than directly on the elements in a source XML document. Later in this
chapter, we will take a look at the XML Information Set specification and
examine how the XML Information Set is relevant to XSD Schema.

It isn’t surprising that an XSD Schema processor does not operate directly
on an XML instance document; after all, an instance document is simply a
series of characters. An XML parser extracts a series of logical tokens by pars-
ing the characters in the serialized document. In the case of a parser that is
XML Information Set-aware, the logical tokens are termed information items.
There is, for example, a document information item (broadly corresponding to
the document entity) that has several properties. Among the properties of the
document information item is the [children] property. Note that the name of a
property of an information item, such as the [children] property, is written
enclosed in square brackets. One of the information items in the [children]
property of the document information item is the element information item,
which represents the document element of the instance document.

NOTE

Elementary XML Schema 7

What Is XML Schema for?
The purpose of XML Schema is to define the structure of XML instance docu-
ments. By defining and constraining the content of XML instance documents,
it becomes possible to exchange information between applications with
greater confidence and with less custom programming to test and confirm the
structure of an instance document, or to confirm that the data in a particular
part of the document is of a particular datatype.

XSD Schema adds the capability to combine schemas from more than one
source. For example, we could generate an invoice perhaps by combining a
schema from a customer’s purchase order (which includes information such
as shipping address, billing address, and so on) and billing information from
our own accounts department (describing information such as price, discount
allowed, and so on). This technique would enable schemas to be reused in a
variety of combinations, thus improving efficiency.

XSD Schema Schema Components
The W3C XML Schema Recommendation indicates that an XSD schema com-
prises 13 types of schema components that fall broadly into three groups: pri-
mary, secondary, and helper components.

The XSD Schema Recommendation refers to the following primary components:

■■ Simple type definitions

■■ Complex type definitions

■■ Attribute declarations

■■ Element declarations

Primary components that are type definitions can have names. Attribute
declarations and element declarations must have names.

The following are the secondary components:

■■ Attribute group definitions

■■ Identity-constraint definitions

■■ Model group definitions

■■ Notation declarations

The final five XSD Schema components are referred to as helper components
and provide parts of other components:

■■ Annotations

■■ Model groups

8 Chapter 1

■■ Particles

■■ Wildcards

■■ Attribute uses

This chapter introduces the syntax to enable you to use many of the compo-
nents just mentioned. Later chapters will detail how they are to be used.

Other Schema Languages for XML
Other schema languages are written in XML and are designed for use in defin-
ing and describing XML instance documents. This book does not describe
them in detail because that is not its intended purpose. You should be aware of
the existence of these other schema languages, however, and where you can
obtain information about them.

XML-Data Reduced, often known simply as XDR, is a schema language that
antedated the XSD Schema language. XDR is routinely used within the
BizTalk Framework (www.biztalk.org) sponsored by Microsoft and is sup-
ported by Microsoft’s MSXML parser.

Another important alternative schema language for XML is now termed
RELAX NG. RELAX NG, standing for RELAX New Generation, is an amal-
gam of two embryonic schema languages, RELAX and TREX. RELAX NG is
being developed by the Organization for Advancement of Structured Information
Standards (OASIS), found at www.oasis-open.org.

These XML schemas are written for XML as well as being written in XML.
The original schema for XML 1.0 was the DTD that was, however, not written
in XML.

The DTD Descended from SGML
The first form of schema for XML documents was the Document Type Defini-
tion. Definitive information about the XML Document Type Definition is con-
tained in the XML 1.0 Recommendation. At the time that XML became a
recommendation, few people envisaged how it would evolve from being a
document description language into one that would be used for many data-
centric, rather than document-centric, applications. Not surprisingly, then, the
DTD created largely with document-centric use in mind was found to have
inadequacies when routinely applied in a data-centric context.

Among the limitations of the DTD are the following:

■■ Datatyping is very weak.

■■ DTDs have a limited range of content models.

Elementary XML Schema 9

■■ The content cannot be validated precisely where it is of mixed content
type.

■■ Cardinality is limited to being defined to zero, one, or many
occurrences.

■■ DTDs lack named element or attribute groups that would enable us to
reuse them.

■■ XSD Schema was designed, among other things, to provide superior
datatyping to the DTD, to provide greater flexibility but yet with
control of content models, and to provide definitions of cardinality not
possible using a DTD.

Later in the chapter, we will look in a little more detail at comparisons
between DTDs and XSD schemas once you have been introduced to some
commonly used XSD Schema constructs.

XSD Schema Tools
You might well already have your own favorite tools with which to create
XML documents and XSD schemas. If so, then feel free to use these as you
work through the examples in this book. The tools mentioned here include
tools that the authors use on an ongoing basis. We are making no specific
claims for their superiority for a particular purpose, but they do enable us to
work with XSD Schema to explore its capabilities and complexities.

Each of the XSD Schema tools is an early implementation; therefore,
you can expect to find some situations where inappropriate error messages are
issued or where an error in a schema is overlooked.

Schema Checkers

At this writing, an online XSD Schema checking service is available using
XML Schema Validator provided at the W3C Web site. The schema validation
service for the May 2001 Recommendation is located at www.w3.org/
2001/03/webdata/xsv. Figure 1.1 shows part of the form that you must use in
order to get a schema validated. Essentially, your schema needs to be accessi-
ble via a URL in order to be validated.

The online checking service can check an XSD schema for validity (that is,
conformity to the W3C Recommendation), or it can validate an instance docu-
ment against a schema.

The online schema checking service can be used to process files that are
accessible at a URL, or you can upload files for checking.

NOTE

10 Chapter 1

Figure 1.1 Online XSD schema validation service from the W3C.

Figure 1.2 shows the form filled in just prior to asking the processor to vali-
date an instance document (Book.xml, Listing 1.1) against its XSD schema
(Book.xsd, Listing 1.2).

Be careful to include the http:// part of the URL; otherwise, the schema
checker interprets the URL as being a relative one, as shown in Figure 1.3. Rel-
ative URLs are not permitted in XSD Schema.

The output from validating Book.xml, using Book.xsd, is shown in Figure
1.4.

XSV is undergoing continuing development. At this writing, not all parts
of the W3C Recommendation are supported. The download page mentioned
earlier provides details of areas not yet fully implemented.

The W3C schema checker requires that you either make the file(s) available
at a URL or upload them by using the online form. If you are unable or unwill-
ing to do that, an alternate approach is to download the schema checker that
lies behind the W3C schema checking service.

Two schema checkers are available for download. One from Henry Thom-
son at the University of Edinburgh (also of the W3C XML Schema Working
Group) is the basis of the W3C schema checking service. The other download
is available from IBM.

NOTE

Elementary XML Schema 11

Figure 1.2 Using the online schema checker.

Figure 1.3 Error message if http:// is omitted.

The download version of XML Schema Validator, XSV, corresponds to the
online schema checking service at W3C. Further information about downloading
XML Schema Validator can be found at www.ltg.ed.ac.uk/~ht/xsv-status.html.

To check the validity of the Book.xsd schema, copy it to the XSV directory
(or place the directory containing Book.xsd in the PATH) and issue the follow-
ing command:

xsv -i Book.xsd

12 Chapter 1

Figure 1.4 The result from the W3C online schema validator when validation has been
successful.

Figure 1.5 Output of validating Book.xsd by using the XSV schema validator.

and you will see output like that in Figure 1.5. Note that there are zero schema
errors.

Elementary XML Schema 13

Alternatively, you can issue the command

xsv -o output.xml -s xsv.xsl -i Book.xsd

And, if you have MSXML3 installed, you will see output similar to the display
of the output file output.xml, as shown in Figure 1.6.

The IBM XML Schema Quality Checker can be downloaded from
www.alphaworks.ibm.com/tech/xmlsqc. The IBM XML Schema Quality
Checker checks whether or not an XSD schema corresponds to the W3C Rec-
ommendation. It does not, at least at this writing, validate instance documents
against the XSD schema.

As well as standalone schema validation tools such as those just described
schemas can be validated by using schema authoring tools.

Schema Authoring Tools

XSD Schemas can be created by using any XML editor, but editors that are not
XSD Schema-aware are limited as learning and production tools. They can
spot basic XML syntax errors and can indicate that the syntax is well-formed,
but are incapable of providing information about the correctness or incorrect-
ness of a schema you have created. Therefore, you would be well-advised to
consider, if you have not already done so, acquiring a schema editor such as
Turbo XML (from TIBCO Extensibility) or XML Spy (from Altova). Both have
free evaluation downloads available from their respective Web sites. Turbo XML

Figure 1.6 Using XSV schema validator and an XSLT stylesheet to generate an output file,
output.xml.

14 Chapter 1

can be downloaded from www.extensibility.com/downloads/trial_down-
loads.htm, and XML Spy can be downloaded from www.xmlspy.com/.

Turbo XML is available for various flavors of 32-bit Windows operating sys-
tems, multiple flavors of Unix and for Mac OS X. Occasionally version 2.2.1
overlooks schema errors correctly identified by XML Spy.

If you have Turbo XML version 2.2.1 running, you might find that you
cannot start the Netscape 6 browser. If you use Netscape 6, start the browser
before starting Turbo XML.

The generally available version of XML Spy at this writing is version 4.0.
Version 3.5 does not use the final XSD Schema namespace. XML Spy Version 4
supports the full XSD (W3C XML) Schema Recommendation.

XML Spy is generally easy to use. One irritation with XML Spy 4.0 is that it
reformats code, however. For example, it introduces tabs instead of spaces. In
addition, occasional spurious error messages are produced.

Despite the minor problems just mentioned, both Turbo XML and XML Spy
are powerful and useful tools for XSD Schema development. Each is capable
of validating an instance document against a schema as well as validating an
XSD schema for conformity to the W3C XML Schema Recommendation.

XML Schema Document
In this section, we will look briefly at the general structure of an XML Schema
schema such as the one that you saw earlier in Listing 1.2. The description of
each part of a schema document will be brief, and many points will be devel-
oped in greater depth in later chapters.

An XSD Schema document begins, optionally, with an XML declaration with
required version attribute and optional encoding and standalone attributes:

<?xml version="1.0" encoding="UTF-8"?>

Then follows the <xsd:schema> element, which is the element root of all
XSD Schema documents. On the <xsd:schema> element, there is a namespace
declaration for the XSD Schema namespace:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

If you see an XSD schema where the namespace declaration refers to
www.w3.org/2000/10/XMLSchema, that indicates that the schema was created
by using a non-final version of the specification.

<xsd:annotation>

<xsd:documentation>

NOTE

NOTE

TEAMFL
Y

Team-Fly®

Elementary XML Schema 15

This is a sample XML Schema for Chapter 1 of XML Schema Essentials.

</xsd:documentation>

</xsd:annotation>

Optionally, you can include an <xsd:annotation> element nested as above—
within which you can include descriptive information indicating the purpose
of the schema or otherwise documenting it. The content of <xsd:documenta-
tion> elements are intended for use by human readers.

<xsd:element name="Book">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Title" ref="Title"/>

<xsd:element name="Authors" ref="Authors"/>

<xsd:element name="Publisher" ref="Publisher"/>

</xsd:sequence>

<xsd:attribute name="pubCountry" type="xsd:string"/>

</xsd:complexType>

</xsd:element>

An XSD schema will typically include a number of element declarations,
such as the element declaration for the <Book> element shown earlier. In this
example, the <Book> element is to have complex content; that is, either child
elements, an attribute, or both are permitted or required for the <Book> ele-
ment in an instance document. The presence of complex content is indicated
by the <complexType> element. We will return to examine how to define com-
plex types a little later.

<xsd:element name="Title" type="xsd:string"/>

An element declaration can simply associate an element name—in this case,
“Title” with a built-in datatype, in the earlier code, xsd:string.

<xsd:element name="Authors">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Author" ref="Author" minOccurs="1"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="Author" type="xsd:string"/>

<xsd:element name="Publisher" type="xsd:string"/>

</xsd:schema>

The final section of the XSD schema contains other element declarations
and is completed by the end tag, </xsd:schema>.

16 Chapter 1

As we move through the chapter, we will examine other foundational struc-
tures in XSD schemas.

Root of an XML Schema Document
The root of all W3C XML Schema documents is the <xsd:schema> element. A
namespace declaration within the <xsd:schema> element associates it with
the W3C XML Schema namespace:

<xsd:schema

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

Of course, if you are using the xsd prefix, then a namespace declaration is
essential if the namespace prefix is to conform to the requirements of the
Namespaces in XML Recommendation and to be processed by applications
that implement that recommendation.

You might also see the namespace prefix xs associated with the W3C XML
Schema namespace.

Declaring the Location of Your XML
Schema Document
The instance document that you saw in Listing 1.1 made no reference to being
associated with any particular schema. There is no direct equivalent to the
DTD of XML 1.0. XSD Schema uses a more indirect approach.

For the moment, we will look at how we associate an instance document
that does not use namespaces with an applicable schema document. Listing
1.3 shows how this job can be done.

<?xml version="1.0"?>

<Book pubCountry="USA"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="C:\My Writing\XML Schema

Essentials\Ch01\Book.xsd">

<Title>XML Schema Essentials</Title>

<Authors>

<Author>R. Allen Wyke</Author>

<Author>Andrew Watt</Author>

</Authors>

<Publisher>John Wiley</Publisher>

</Book>

Listing 1.3 Instance document that does not use namespaces (Book02.xml).

Elementary XML Schema 17

The association of an instance document is a two-stage process. The name-
space declaration

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

associates the namespace prefix xsi with the URI shown. The xsi:noName-
spaceSchemaLocation attribute, which belongs to the namespace

http://www.w3.org/2001/XMLSchema-instance

indicates the location of the schema. The xsi:noNamespaceSchemaLocation
attribute can only be used when the xsi namespace prefix has been declared.
The value of the noNamespaceSchemaLocation attribute indicates the location
of the schema. In the case of this example, the schema is located on drive C: at
the location indicated:

C:\My Writing\XML Schema Essentials\Ch01\Book.xsd

XSD Schema processors are free to ignore or to override the schema sug-
gested by using the mechanism just described.

Declaring Elements and Defining Types

Because XML instance documents contain one (and typically many more) ele-
ment(s), one of the foundational techniques of W3C XML Schema is the decla-
ration of elements.

In XML Schema, there is a substantive difference between declaring an ele-
ment that has content that is either a simple type or complex type and is per-
mitted to occur in an instance document and defining a new type, which can be
either simple type or complex type.

The terms definition and declaration in XML Schema have no close
relation to the terms Document Type Definition and Document Type Declaration
of XML 1.0.

First, let’s look at how we declare an element the content of which is of sim-
ple type in an instance document.

Defining Simple Types
Elements that contain other elements or that possess attributes are termed
complex types, and we will discuss them in the next section. Elements that have

NOTE

18 Chapter 1

neither child elements nor possess attributes are termed simple types, and we
will discuss these in this section. All attributes have simple type content.

XSD Schema provides three flavors of simple types:

1. Atomic types

2. List types

3. Union types

Each of these is discussed in the paragraphs that follow. XSD Schema sim-
ple types will be discussed in detail in Chapter 4, “Applying Datatypes.”

Simple types can be either those simple types, such as xsd:string, built into
the XML Schema language or can be simple types created by a schema author
by using techniques which we will describe later. All simple types created by a
schema author are derived datatypes. Those datatypes built into XSD Schema
include both primitive datatypes and derived datatypes. Those datatypes are
fully described in Part 2 of the W3C XML Schema Recommendation.

Atomic (Simple) Types

Let’s assume that we wanted to describe the title and authors of this book in
XML. A first, crude attempt at an instance document might look like the fol-
lowing (SimpleBook01.xml).

As you can see, the structure of the document is poor, but a schema for such
an instance document could be created by only declaring a single element of
simple type, as shown in Listing 1.5 (SimpleBook01.xsd). This code declares an
element <Book> whose type is one of the built-in primitive types of XSD
Schema, xsd:string.

<?xml version='1.0'?>

<Book>

XML Schema Essentials, R. Allen Wyke, Andrew Watt, Wiley, USA

</Book>

Listing 1.4 A first attempt at an instance document (SimpleBook01.xml).

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

<xsd:element name="Book" type="xsd:string"/>

</xsd:schema>

Listing 1.5 A schema for Listing 1.4 (SimpleBook01.xsd).

Elementary XML Schema 19

You will recognize the XML declaration and the <xsd:schema> element. To
declare an element with simple type content, we simply use an <xsd:ele-
ment>. The name attribute and the type attribute on the <xsd:element> serve
to associate the element type name of the <Book> element in an instance docu-
ment and its permitted datatype, xsd:string. We will go on to further develop
the structure of an instance document later in the chapter.

From the point of view of XSD Schema, an atomic simple type is indivisible.
An xsd:string, as far as XSD Schema is concerned, cannot be split into simpler
types. Such indivisibility applies to both in-built simple types and to derived
simple types.

Let’s suppose that we have a European-based e-commerce operation that
sells to the United Kingdom, France, and Germany only. The shipping address
part of an invoice or purchase order might look like Listing 1.6.

A schema for the code from Listing 1.6 is shown in Listing 1.7. The point of
interest relating to atomic simple types relates to the <xsd:simpleType
name=”CountryType”> element towards the end of the following schema.

In the declaration for the <CountryType> element, we indicate that the
datatype is a named type that is defined by using the <xsd:simpleType> ele-
ment. The value of the CountryType contained in the <Country> element in
the instance document is “DE”, meaning Deutschland (Germany). This type is
atomic because we cannot take one of its constituent letters and maintain
some of the meaning. The meaning is related to the two-letter code for Ger-
many in this example.

List (Simple) Types

A list type in XSD Schema is made up of a sequence of atomic types. There are
no built-in list types in XSD Schema, so we must define a list type if we wish to

<ShippingAddress type="EUAddress">

<Name>

<FirstName>Hans</FirstName>

<LastName>Schmidt</LastName>

</Name>

<Address>

<Street>123 Hallgarten</Street>

<City>Berlin</City>

<PostalCode>12345</PostalCode>

<Country>DE</Country>

</Address>

</ShippingAddress>

Listing 1.6 Shipping address part of invoice (ShippingAddress.xml).

20 Chapter 1

<?xml version='1.0'?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="ShippingAddress">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Name" type="NameType"/>

<xsd:element name="Address" type="AddressType"/>

</xsd:sequence>

<xsd:attribute name="type" type="xsd:string"/>

</xsd:complexType>

</xsd:element>

<xsd:complexType name="NameType">

<xsd:sequence>

<xsd:element name="FirstName" type="xsd:string"/>

<xsd:element name="LastName" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="AddressType">

<xsd:sequence>

<xsd:element name="Street" type="xsd:string"/>

<xsd:element name="City" type="xsd:string"/>

<xsd:element name="PostalCode" type="PostalCodeType"/>

<xsd:element name="Country" type="CountryType"/>

</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name="PostalCodeType">

<xsd:restriction base="xsd:integer">

<xsd:length value="5" />

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="CountryType">

<xsd:restriction base="xsd:string">

<xsd:length value="2"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

Listing 1.7 A schema for Listing 1.7 (ShippingAddress.xsd).

use one. For example, we could define a list type called SouthEastStatesType,
which is a list type consisting of the values “FL LA GA SC.” The list type has
four string values (each of which happens to be two characters long) that are
separated by a space.

Elementary XML Schema 21

So, we could have an element <SouthEastStates> as follows:

<SouthEastStates>FL LA GA SC</SouthEastStates>

This element uses the SouthEastStatesType simple type. If we wanted to
define a new simple type, we could use the following code:

<xsd:simpleType name="SouthEastStatesType">

<xsd:list itemType="xsd:string"/>

</xsd:simpleType>

A simple instance document is shown in Listing 1.8.
An XSD schema for Listing 1.8 is shown in Listing 1.9.
The <xsd:element> element is the declaration that associates the <SouthEast-

States> element with the datatype SouthEastStatesType. The <xsd:simple-
Type> element is the definition of the datatype SouthEastStatesType. In order
to create a list simple type, we need to nest an <xsd:list> element within the
<xsd:simpleType> element. The base type for a list is known as its itemType.

It is possible to define list types based on the xsd:string type. The
xsd:string type might contain space characters or other whitespace characters,
however, which are the separators for the individual items in a list type. So, you

NOTE

<?xml version='1.0'?>

<SouthEastStates>

FL LA GA SC

</SouthEastStates>

Listing 1.8 Simple instance document for four southeastern states (SouthEastern-
States.xml).

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

<xsd:element name="SouthEastStates" type="SouthEastStatesType"/>

<xsd:simpleType name="SouthEastStatesType">

<xsd:list itemType="xsd:string"/>

</xsd:simpleType>

</xsd:schema>

Listing 1.9 A schema for Listing 1.8 (SouthEasternStates.xsd).

22 Chapter 1

should be careful when attempting to use the xsd:string type as the base type
for a list simple type.

Let’s look briefly at the kind of problems that can arise when using strings
that include whitespace. For example, if we had a simple list datatype
NorthAmericanCountriesType defined as follows,

<xsd:simpleType name="NorthAmericanCountriesType">

<xsd:list itemType="xsd:string"/>

</xsd:simpleType>

and we had an element, <NorthAmericanCountries>, which used the NorthAmer-
icanCountriesType datatype with content like the following,

<NorthAmericanCountries>United States of America Canada

Mexico</NorthAmericanCountries>

this code would be treated in XSD Schema as a list of six items, not as three
countries as you might expect. The first item in the list would be the string
“United,” followed by a whitespace character. The second item in the list
would be “States,” again separated from the third item, “of,” by a whitespace
character (and so on). To avoid this type of problem, avoid the use of spaces if
you are using the xsd:string datatype, or use more appropriate datatypes as
list members. Simple datatypes are discussed further in Chapter 4.

Union (Simple) Types

Union datatypes are always derived datatypes. In XSD Schema, there are no
built-in union datatypes. The maxOccurs attribute uses a union simple
datatype, however, as shown in the following code snippet:

<xsd:attribute name="maxOccurs">

<xsd:simpleType>

<xsd:union>

<xsd:simpleType>

<xsd:restriction base='xsd:nonNegativeInteger'/>

</xsd:simpleType>

<xsd:simpleType>

<xsd:restriction base='xsd:string'>

<xsd:enumeration value='xsd:unbounded'/>

</xsd:restriction>

</xsd:simpleType>

</xsd:union>

</xsd:simpleType>

</xsd:attribute>

Elementary XML Schema 23

The permitted values of the maxOccurs attribute are any non-negative inte-
ger (in other words, any value of type of xsd:nonNegativeInteger) unioned
with the string value of “unbounded.”

A union datatype has memberTypes. In the example you have just seen for
the maxOccurs attribute, the memberTypes are xsd:nonNegativeInteger and
the anonymous datatype derived from xsd:string by restriction.

The default evaluation of memberTypes is that they are evaluated in the
order given in the schema. Evaluation ceases once a first matching member-
Type is found. The order of evaluation can be overridden by the xsi:type
attribute.

Having looked at how we can define the available simple types and use
them in element declarations, let’s move on to look at the situation where an
element might have simple type content but also possesses an attribute.

Simple Type Content and an Attribute

Strictly speaking, we are straying into the territory of complex types—because
in XSD Schema terminology, an element possesses an attribute that by defini-
tion makes it a complex type in XSD Schema. Thus, if we wanted to create an
element that would reflect a selling price for a particular locality, perhaps
including local sales tax (Value Added Tax in the European Union, for exam-
ple), we would need to be able to create an element like the following:

<UKPrice currency="GBP">199.99</UKPrice>

The content of the <UKPrice> element is simply of xsd:decimal type. To
express that notion, we can use the <xsd:simpleContent> element and then
use the <xsd:extension> element with the base type xsd:decimal within which
we nest an <xsd:attribute> element to define the currency attribute:

<xsd:element name="UKPrice">

<xsd:complexType>

<xsd:simpleContent>

<xsd:extension base="xsd:decimal">

<xsd:attribute name="currency" type="xsd:string"/>

</xsd:extension>

</xsd:simpleContent>

</xsd:complexType>

</xsd:element>

What we have done with this fairly verbose syntax is to derive a new com-
plex type from the built-in simple type of xsd:decimal. The <xsd:complex-
Type> element is anonymous, but a named complex type could have been

24 Chapter 1

used if, for example, similar prices in local currency were to be added for a
number of European Union countries.

If we apply this scenario to our simple book instance document so that it
has a PubCountry attribute of the <Book> element, we see the result in Listing
1.10.

Adding the PubCountry attribute means that the content of <Book> element
is now of complex type. Listing 1.11 shows a schema to describe our modified
instance document.

As you can see, the mechanism of adding a single attribute to an element
that has simple type content is pretty verbose in XSD Schema. If you follow
the nesting within the <xsd:element>, you should grasp the logic. Because an
attribute is present, the content in XSD Schema is complex type; therefore, we
use the <xsd:complexType> element. The content of the <Book> element is a
simple datatype, and therefore we use the <xsd:simpleContent> element. As
well as the simple type content, however, an attribute is also present. Thus, the
simple type content is extended, which is shown by the presence of the
<xsd:extension> element. The specific nature of the extension is an attribute
signaled by the presence of an <xsd:attribute> element nested within the
<xsd:extension> element.

<?xml version='1.0'?>

<Book PubCountry="USA">

XML Schema Essentials, R. Allen Wyke, Andrew Watt, Wiley

</Book>

Listing 1.10 Adding an attribute to the <Book> element (SimpleBook02.xml).

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

<xsd:element name="Book">

<xsd:complexType>

<xsd:simpleContent>

<xsd:extension base="xsd:string">

<xsd:attribute name="PubCountry" type="xsd:string"/>

</xsd:extension>

</xsd:simpleContent>

</xsd:complexType>

</xsd:element>

</xsd:schema>

Listing 1.11 A schema to reflect the added PubCountry attribute (SimpleBook02.xsd).

TEAMFL
Y

Team-Fly®

Elementary XML Schema 25

This example is a special case of a complex type. Let’s move on to introduce
how to define complex types.

Defining Complex Types

In the terminology of XML Schema, an element that either has child elements
(sometimes called subelements) or that possesses attributes is termed a com-
plex type. A type that possesses neither child elements nor attributes is termed
a simple type.

A complex type definition will typically contain one or more element decla-
rations, element references, and/or attribute declarations. Elements are
declared by using the <xsd:element> element, and attributes are declared by
using the <xsd:attribute> element.

A declaration, whether of an element or of an attribute, is not (strictly
speaking) a type but is an association between a name and a set of constraints
on the appearance of that name in the XML document governed by the rele-
vant schema that contains the name.

XSD Schema provides mechanisms for us to define anonymous and
named complex types. First, let’s take a look at how we define anonymous
complex types.

Anonymous Complex Types
Anonymous complex types, as you might guess, are complex types that have
no name. In creating an anonymous complex type, typically an <xsd:complex-
Type> element will be nested within an <xsd:element> element.

For example, in an invoice we might typically specify each line item which
was purchased and which is being billed. Listing 1.12 shows a simplified
invoice.

The schema that corresponds to SimpleInvoice.xml is shown in Listing 1.13.
The schema contains both anonymous and named complex types, but we will
focus on the anonymous types in the meantime.

The declaration for the <SimpleInvoice> element has nested within it the
definition of an anonymous complex type as shown here:

<xsd:element name="SimpleInvoice">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Customer" type="CustomerType"/>

<xsd:element name="LineItems" type="LineItemsType"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

26 Chapter 1

<?xml version='1.0'?>

<SimpleInvoice>

<Customer>

<CustomerName>XMML.com</CustomerName>

</Customer>

<LineItems>

<LineItem quantity="2">Mandrake Linux version 8</LineItem>

<LineItem quantity="1">IBM WebSphere Studio Workbench version

4</LineItem>

</LineItems>

</SimpleInvoice>

Listing 1.12 A simple invoice (SimpleInvoice.xml).

Notice that we declare an element named “SimpleInvoice.” We define the
type for a <SimpleInvoice> element in an anonymous complex type by means
of a nested anonymous <xsd:complexType> element; that is, an <xsd:com-
plexType> element that lacks a name attribute. The complex type is defined by
means of an <xsd:sequence> element as a sequence of <Customer> and
<LineItems> elements.

The declaration of the <LineItem> element also contains an anonymous
complex type definition. You will perhaps recognize this definition as similar
to the book example shown in Listing 1.11. The <LineItem> element, too, has a
single attribute and xsd:string content.

Named Complex Types
You have seen the anonymous complex type demonstrated. In many uses of
XML documents, however, you might well want to use a complex type more
than once, for two different purposes, in the same XML document. In an
invoice or purchase order, for example, you might want to define and/or
declare a complex type for an address structure that can be used both for the
billing address and the shipping address. There is unlikely to be any useful
purpose served by creating two separate but essentially identical address
structures. Reuse of type definitions makes practical sense.

XML Schema enables us to create complex types that can be used in the
same XML document for more than one purpose by means of the named com-
plex type.

If you are creating an invoice or purchase order, you are likely to include
addresses for the purchaser and the billing party. To create a complex type that
would describe such an address, you could use code like that in Listing 1.14.

Elementary XML Schema 27

<?xml version='1.0'?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="SimpleInvoice">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Customer" type="CustomerType"/>

<xsd:element name="LineItems" type="LineItemsType"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:complexType name="CustomerType">

<xsd:sequence>

<xsd:element name="CustomerName" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="LineItemsType">

<xsd:sequence>

<xsd:element ref="LineItem" minOccurs="1"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

<xsd:element name="LineItem">

<xsd:complexType>

<xsd:simpleContent>

<xsd:extension base="xsd:string">

<xsd:attribute name="quantity" type="xsd:string"/>

</xsd:extension>

</xsd:simpleContent>

</xsd:complexType>

</xsd:element>

</xsd:schema>

Listing 1.13 A schema for Listing 1.12 (SimpleInvoice.xsd).

The <xsd:complexType> element contains the information that defines the
complex type named “USAddressType.” The element content is defined as a
sequence (note the <xsd:sequence> element) of elements with element type
names of Name, Street, City, State, and Zip—each having simple type content.
We will see in Chapter 8, “Deriving Types,” how we can create new datatypes
that constrain the content of the <State> and <Zip> elements to appropriate

28 Chapter 1

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

<!-- NOTE - This is NOT a complete schema! -->

<xsd:element name="BillingAddress" type="USAddressType"/>

<xsd:element name="ShippingAddress" type="USAddressType"/>

<xsd:complexType name="USAddressType" >

<xsd:sequence>

<xsd:element name="Name" type="xsd:string"/>

<xsd:element name="Street" type="xsd:string"/>

<xsd:element name="City" type="xsd:string"/>

<xsd:element name="State" type="xsd:string"/>

<xsd:element name="Zip" type="xsd:decimal"/>

</xsd:sequence>

<xsd:attribute name="country" type="xsd:NMTOKEN" fixed="USA"/>

</xsd:complexType>

</xsd:schema>

Listing 1.14 A partial schema with a named complex type (USAddress.xsd).

derived datatypes. The <xsd:attribute> element indicates the presence on an
element of USAddressType of a country attribute.

Notice that there are two element declarations declared to be of type USAd-
dressType: the declarations for the <BillingAddress> element and the <Ship-
pingAddress> element. The type attribute of the <xsd:element> references the
appropriate named complex type.

Notice that the type of the country attribute is “xsd:NMTOKEN,” which has
a fixed value of “USA.” An xsd:NMTOKEN is a derived datatype that is derived
from the datatype xsd:token (all lower case). The token derived datatype is
itself derived from the normalizedString derived data type. In XML Schema
terminology, normalizedString is said to be the base type of token.

Let’s get a little more into the jargon of XML Schema. The xsd:token derived
type has the value space that is the set of strings that does not contain a line feed
(character #xA) or a tab (character #x9), nor is there any leading space or a
sequence of two or more spaces within the string. The xsd:NMTOKEN type
constrains the allowed characters further because all whitespace characters
are disallowed.

The NMTOKEN attribute type is defined in the XML 1.0 (Second Edition)
Recommendation.
NOTE

Elementary XML Schema 29

If you wanted to further refine the definition of the USAddressType complex
type, you might want to ensure that you only allow five-digit zip codes. You
could go partway toward achieving that goal by using the code shown here:

<xsd:element name="Zip" type="xsd:decimal" minLength="5" maxLength="5"/>

Two named complex types are shown in Listing 1.13 which you saw earlier.
The complex datatypes CustomerType and LineItemsType are used in the type
attributes of the declaration of the <Customer> element and the <LineItems>
element.

We can use complex type definitions to add more structure to the simple
book example. Listing 1.15 shows a further refinement of the structure of the
instance document.

You might instantly recognize the content of the <Book> element as being a
complex type. We can use an XSD schema as shown in Listing 1.16 to describe
the instance document.

The schema demonstrates several of the kinds of declarations and defini-
tions that you have already seen. The <Book> element is of complex type and
makes use of an anonymous complex type definition. The <Title>, <Author>,
and <Publisher> elements use element declarations that use the predefined
xsd:string simple type. The definition of the <Authors> element again uses an
anonymous complex type definition.

Using Anonymous or Named
Complex Types
You might already have grasped the issues involved with choosing when to
use an anonymous complex type or a named complex type, but these will be
briefly summarized here. There is no rule that says you must use either an
anonymous or named complex type in any particular situation. Whether you

<?xml version="1.0"?>

<Book pubCountry="USA">

<Title>XML Schema Essentials</Title>

<Authors>

<Author>R. Allen Wyke</Author>

<Author>Andrew Watt</Author>

</Authors>

<Publisher>John Wiley</Publisher>

</Book>

Listing 1.15 Adding element content to the simple book (SimpleBook03.xml).

30 Chapter 1

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

<xsd:annotation>

<xsd:documentation>

This is a sample XML Schema for Chapter 1 of XML Schema

Essentials.

</xsd:documentation>

</xsd:annotation>

<xsd:element name="Book">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Title" ref="Title"/>

<xsd:element name="Authors" ref="Authors"/>

<xsd:element name="Publisher" ref="Publisher"/>

</xsd:sequence>

<xsd:attribute name="PubCountry" type="xsd:string"/>

</xsd:complexType>

</xsd:element>

<xsd:element name="Title" type="xsd:string"/>

<xsd:element name="Authors">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Author" ref="Author" minOccurs="1"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="Author" type="xsd:string"/>

<xsd:element name="Publisher" type="xsd:string"/>

</xsd:schema>

Listing 1.16 A schema containing simple and complex types (SimpleBook03.xsd).

use an anonymous complex type or a named complex type is a matter of con-
venience and efficiency.

If you plan to use a structure more than once in an instance document—for
example, an address structure in both the billing address and shipping
address part of an invoice—then it makes sense to avoid duplication of decla-
rations, declare a named complex type once, and then reference it twice by
using the type attribute of the <xsd:element> element.

Elementary XML Schema 31

In Chapter 10, “Bringing the Parts Together,”we will look at how we can reuse
derived types from other schema documents. In order to be able to reference those
type definitions, they must be named. As you will see later, we can also import ele-
ment declarations that always include a name attribute on the <xsd:element>.

If you plan to use a structure only once, then you need to define the structure
once in any case. If you have no plans to use that structure on multiple occa-
sions in an instance document, then little useful purpose is served by naming
the complex type, declaring it globally, and then referencing it by name. In that
situation, you would almost certainly use an anonymous complex type.

Mixed Content

You might be aware that when using a DTD (which defines a mixed content
model), little worthwhile validation can be carried out on an instance docu-
ment. The instance document, or a selected part of it that contains mixed con-
tent, is allowed to contain both elements and character content—but the DTD
cannot say anything about which elements are to be allowed in the mixed con-
tent, what order they might be in, or whether there should be any restrictions
on where character content is to be allowed. XSD Schema can improve signifi-
cantly on what is a significant weakness of the DTD.

Let’s suppose that we want routinely to send out a letter to customers, cre-
ated from XML, which thanks the customer for an order, details the items pur-
chased, and informs the customer of any special offers that we might have
available at the time that the letter is sent. An outline of a possible instance
document might look like that in Listing 1.17.

A full version showing mixed content is shown in Listing 1.18. We needn’t
concern ourselves with where, from, or how the information contained in the
document was assembled; rather, we simply accept it as an approximation of
a finished document.

If we were using a DTD as a schema for our instance document, we could
say little more than that mixed content was to be allowed. XSD Schema gives

<?xml version='1.0'?>

<CustomerLetter>

<CustomerAddress></CustomerAddress>

<Salutation></Salutation>

<Thanks></Thanks>

<ItemsOrdered></ItemsOrdered>

<SpecialOffers></SpecialOffers>

</CustomerLetter>

Listing 1.17 The skeleton of a customer letter (CustomerLetter01.xml).

32 Chapter 1

<?xml version='1.0'?>

<CustomerLetter>

<CustomerAddress>

<Customer>Siegried Idylls</Customer>

<Street>WagnerStrasse 88</Street>

<City>Bayreuth</City>

<Country>Germany</Country>

</CustomerAddress>

Dear <Salutation>Richard</Salutation>,

<Thanks>XMML.com is grateful to you for the order detailed

below and hope that all parts of the order will prove

satisfactory.</Thanks>

<ItemsOrdered>

<Item quantity="2">Some item</Item>

<Item quantity="4">Some other item</Item>

</ItemsOrdered>

We would like to introduce you to some special offers we are currently

making available to selected customers only.

<SpecialOffers>

<SpecialOffer specialPrice="99">Some great bargain</SpecialOffer>

<SpecialOffer specialPrice="250">Some other great

bargain</SpecialOffer>

</SpecialOffers>

These very special offers are available only until October 31st, so if

you want to take

advantage of these contact us immediately to secure this special

pricing.

</CustomerLetter>

Listing 1.18 An instance document illustrating the customer letter (CustomerLetter02.xml).

us significantly more control over element content and ordering. Listing 1.19
shows an XSD Schema for the customer letter.

The key part of the schema, as far as understanding how to control mixed con-
tent by using XSD Schema, is the declaration of the <CustomerLetter> element:

<xsd:element name="CustomerLetter" >

<xsd:complexType mixed="true">

<xsd:sequence>

<xsd:element name="CustomerAddress" type="CustomerAddressType"/>

<xsd:element name="Salutation" type="xsd:string"/>

<xsd:element name="Thanks" type="xsd:string"/>

<xsd:element name="ItemsOrdered" type="ItemsOrderedType"/>

<xsd:element name="SpecialOffers" type="SpecialOffersType"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

Elementary XML Schema 33

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

<xsd:element name="CustomerLetter" >

<xsd:complexType mixed="true">

<xsd:sequence>

<xsd:element name="CustomerAddress" type="CustomerAddressType"/>

<xsd:element name="Salutation" type="xsd:string"/>

<xsd:element name="Thanks" type="xsd:string"/>

<xsd:element name="ItemsOrdered" type="ItemsOrderedType"/>

<xsd:element name="SpecialOffers" type="SpecialOffersType"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:complexType name="CustomerAddressType">

<xsd:sequence>

<xsd:element name="Customer" type="xsd:string"/>

<xsd:element name="Street" type="xsd:string"/>

<xsd:element name="City" type="xsd:string"/>

<xsd:element name="Country" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="ItemsOrderedType">

<xsd:sequence>

<xsd:element name="Item" minOccurs="1" maxOccurs="unbounded">

<xsd:complexType>

<xsd:simpleContent>

<xsd:extension base="xsd:string">

<xsd:attribute name="quantity" type="xsd:decimal"/>

</xsd:extension>

</xsd:simpleContent>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="SpecialOffersType">

<xsd:sequence>

<xsd:element name="SpecialOffer" minOccurs="2"

maxOccurs="unbounded">

<xsd:complexType>

<xsd:simpleContent>

<xsd:extension base="xsd:string">

<xsd:attribute name="specialPrice" type="xsd:decimal"/>

</xsd:extension>

Listing 1.19 An XSD Schema for the customer letter (CustomerLetter02.xsd).

continues

34 Chapter 1

</xsd:simpleContent>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:schema>

Listing 1.19 An XSD Schema for the customer letter (CustomerLetter02.xsd). (Continued)

Notice in the anonymous <complexType> element that a mixed attribute is
present and has a value of true. This situation indicates that mixed content (ele-
ments and text) is permitted within the <CustomerLetter> element. Unlike a
DTD, however, where we could then not constrain the element content in any
way, the declaration of the <CustomerLetter> element goes on to specify that
there is a specific sequence of elements that are permitted. The permitted
sequence of elements is <CustomerAddress>, <Salutation>, <Thanks>, <Items-
Ordered>, and <SpecialOffers>. In addition, we can specify the allowed
datatypes for each of those elements. For example, the <SpecialOffers> element
must conform to the constraints of the SpecialOffersType datatype. Thus, using
XSD Schema, we can permit the flexibility of mixed content while at the same
time constraining the element structure and defining the permitted datatypes
within that element structure. This combination of flexibility with control is a
major improvement over the mixed content mechanisms available with a DTD.

Declarations
A declaration in XSD Schema, whether a global declaration or a local declara-
tion, is the association of a name—either of an element or an attribute—with a
datatype. Thus, if we see code such as

<xsd:element name="FirstName" type="xsd:string"/>

we know that an element <FirstName> is constrained to have content that cor-
responds to the XSD Schema xsd:string datatype.

Let’s move on to examine what the characteristics are of global element dec-
larations and local element declarations.

Global Element Declarations

A global element is declared as the immediate child of an <xsd:schema> ele-
ment. A global element declaration consists of declarations of an element

TEAMFL
Y

Team-Fly®

Elementary XML Schema 35

whose content is a simple type or complex type but must not reference
another global declaration. In addition, a global element must not contain the
cardinality constraints minOccurs or maxOccurs, although those can be used
in local element declarations that reference the global element. Translating
those restrictions to specific syntax requirements, a global element declaration
can contain a type attribute but not a ref attribute. Additionally, a global ele-
ment declaration must not contain minOccurs, maxOccurs, or use attributes.

Declaring an element globally can be more efficient than a local element
declaration, particularly if it is to be reused within a schema. Suppose that we
wish to hold information about both billing and shipping addresses for each
order that our company processes. An instance document is shown in Listing
1.20.

<?xml version='1.0'?>

<Invoice>

<BillingInfo>

<Address>

<Company></Company>

<FAO></FAO>

<Street1></Street1>

<Street2></Street2>

<City></City>

<State></State>

<PostalCode></PostalCode>

<Country></Country>

<Date>2001-08-31</Date>

</Address>

</BillingInfo>

<ShippingInfo>

<Address>

<Company></Company>

<FAO></FAO>

<Street1></Street1>

<Street2></Street2>

<City></City>

<State></State>

<PostalCode></PostalCode>

<Country></Country>

<Date>2001-09-25</Date>

</Address>

</ShippingInfo>

<!-- Item information would go here. -->

</Invoice>

Listing 1.20 An invoice using two addresses (TwoAddresses.xml).

36 Chapter 1

It is clear that the structure of information that we need for the <Billing-
Info> element is the same as the structure of the <ShippingInfo> element. XSD
Schema enables us to declare the required structure once in a global element
declaration and use it more than once by means of a ref attribute in the ele-
ment declarations for the <BillingInfo> and <ShippingInfo> elements, as you
can see in Listing 1.21.

The first part of the schema is the global declaration of the Address element.
That declaration is then referenced from within the declaration of the
<Invoice> element by the following code:

<xsd:element ref="Address" minOccurs="1" maxOccurs="1"/>

(both within the declaration of the <BillingInfo> element and of the <Shipping-
Info> element). Because the declaration of the <Address> element is global, it
can be referenced from anywhere within the schema for reuse. That is achieved
by using an <xsd:element> that possesses a ref attribute. Additionally, we can
specify the permitted cardinality of the referenced element by using the
minOccurs and maxOccurs attributes. In the earlier code, we explicitly stated
values for the minOccurs and maxOccurs attributes but did not need to do that,
because the value of “1” is the default for each of those attributes.

An element that is declared as a global element in an XSD schema can be
used as the element root in the corresponding XML instance document. Thus,
by declaring more than one element globally, substantial flexibility in the
allowed structure of instance documents is possible.

It is possible to declare all elements within a schema as global elements if
the elements so declared are unique within their namespace.

Local Element Declarations

An element declared in an <xsd:element> element that is the child of an
<xsd:schema> element, in the manner you saw in the previous section, is glob-
ally declared. All other element declarations are local.

Listing 1.22 illustrates an instance document that requires comments within
certain elements.

Notice that a <comment> element is located within a <Food> element and
within a <Drink> element.

Listing 1.23 shows a schema to describe this document.
Notice in the definition of the complex type FoodType that a declaration for

a <comment> element is present. That declaration can only be used within the
FoodType complex type definition. We could not, for example, have a refer-
ence to that element declaration within the DrinkType complex type defini-
tion. The first element declaration for a <comment> element is locally
declared and is therefore not accessible globally.

Elementary XML Schema 37

<?xml version='1.0'?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="Address">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Company" type="xsd:string"/>

<xsd:element name="FAO" type="xsd:string"/>

<xsd:element name="Street1" type="xsd:string"/>

<xsd:element name="Street2" type="xsd:string"/>

<xsd:element name="City" type="xsd:string"/>

<xsd:element name="State" type="xsd:string" />

<xsd:element name="PostalCode" type="xsd:decimal"/>

<xsd:element name="Country" type="xsd:string"/>

<xsd:element name="Date" type="xsd:date"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="Invoice">

<xsd:complexType>

<xsd:sequence> <xsd:element name="BillingInfo">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="Address" minOccurs="1" maxOccurs="1"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="ShippingInfo">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="Address" minOccurs="1" maxOccurs="1"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>

Listing 1.21 An XSD Schema showing reuse of a globally declared element (TwoAd-
dresses.xsd).

38 Chapter 1

<?xml version='1.0'?>

<FoodAndDrink>

<Food>

<comment>Many children like eating hamburgers.</comment>

<FoodName>Hamburgers</FoodName>

</Food>

<Drink>

<comment>Many children like drinking cola drinks.</comment>

<DrinkName>A proprietary cola drink</DrinkName>

</Drink>

</FoodAndDrink>

Listing 1.22 An XML document containing two <comment> elements (FoodAndDrink.xml).

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

<xsd:element name="FoodAndDrink">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Food" type="FoodType" maxOccurs="unbounded"/>

<xsd:element name="Drink" type="DrinkType" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:complexType name="FoodType">

<xsd:sequence>

<xsd:element name="comment" type="xsd:string"/>

<xsd:element name="FoodName" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="DrinkType">

<xsd:sequence>

<xsd:element name="comment" type="xsd:string"/>

<xsd:element name="DrinkName" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:schema>

Listing 1.23 An XSD Schema with local declaration of <comment> elements (FoodAnd-
Drink.xsd).

Elementary XML Schema 39

Global Attribute Declarations

Like global elements, global attributes are created by declarations that are chil-
dren of the <xsd:schema> element. Once declared, a global attribute can be
referenced in other declarations by means of the ref attribute.

Fixed and Default Values for Elements and
Attributes

An XSD schema can specify values for the content of an element or attribute in
an instance document by means of default or fixed attributes. First, let’s look
at how default values are specified in XSD Schema and what effect the default
attribute in an XSD schema has on an XML instance document.

The descriptions that follow, of course, only apply to processing by XSD
Schema-aware processors. Other processors can be expected to be unable to
access and apply default values of either elements or attributes.

Default Values of Elements

If a default attribute is present on an <xsd:element> element in an XSD
schema, then three possible situations might arise:

1. If the element is present in the instance document and contains content,
then the default value in the XSD schema is not used.

2. If the element is present in the instance document and is empty, then the
default value of the element content defined in the XSD schema is used.

3. If the element is absent from the instance document, then no element is
inserted.

In summary, the value contained in a default attribute of an <xsd:element>
element is applied to an element in the instance document only when the ele-
ment is present in the instance document and is an empty element.

Default Values of Attributes

An attribute of an XML element can occur only zero or one time. It is an error,
according to the XML 1.0 Recommendation, if an attribute is duplicated on an
element. Therefore, XML Schema makes provision only for zero or one attrib-
utes of any specified name to be present on an XML element.

If a default attribute is present in an XSD schema for an attribute in the
instance document, there are three possible behaviors depending on what is or
is not present in the instance document. A default value for an attribute only
makes sense where use of the attribute is optional in the instance document.

40 Chapter 1

The first possibility is that the attribute is present in the instance document
and has some content. In that case, the value provided in the instance docu-
ment overrides the default content provided in the default attribute of the
<xsd:attribute> element in the schema.

The second possibility is that the attribute is present in the instance docu-
ment but has no content provided by the author of the instance document. In
that situation, the value contained in the default attribute of the
<xsd:attribute> element in the schema is not used to create the content of the
attribute in the instance document.

The third possibility is that the attribute, for which a default attribute exists
in the XSD schema, is absent from the instance document. In that situation, the
attribute is added to the instance document together with its default content.

In summary, the value contained in a default attribute of an <xsd:attribute>
element is applied to an attribute in the instance document only when the
attribute is absent in the instance document. An error occurs if a default value
is specified for an attribute and the use attribute has a value other than
optional.

Fixed Values of Elements

XSD Schema enables us to define a fixed value for one or more elements in an
instance document. In the instance document in the following code (Current-
Members.xml), all three elements are valid against the schema in Listing 1.24.

<?xml version='1.0'?>

<CurrentMembers>

<Member>

<FirstName>Carl</FirstName>

<LastName>Brandt</LastName>

<Membership>Current</Membership>

</Member>

<Member>

<FirstName>Pierre</FirstName>

<LastName>Dumas</LastName>

<Membership></Membership>

</Member>

<Member>

<FirstName>Anna</FirstName>

<LastName>Verova</LastName>

<Membership/>

</Member>

</CurrentMembers>

Listing 1.24 Instance document (CurrentMembers.xml).

Elementary XML Schema 41

<?xml version='1.0'?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="CurrentMembers">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Member" type="MemberType" minOccurs="0"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element> <!-- End tag for <CurrentMembers> element. -->

<xsd:complexType name="MemberType">

<xsd:sequence>

<xsd:element name="FirstName"/>

<xsd:element name="LastName"/>

<xsd:element name="Membership" fixed="Current"/>

</xsd:sequence>

</xsd:complexType>

</xsd:schema>

Listing 1.25 An XSD Schema that provides a fixed value for the <Membership> element
(CurrentMembers.xsd).

Listing 1.25 is a schema that will define the <Membership> element as hav-
ing a fixed value of “Current.”

The line of code that defines the value of the <Membership> element in the
instance document as having the value of “Current” is as follows:

<xsd:element name="Membership" fixed="Current"/>

Let’s consider why each of the three <Membership> elements in the
instance document in Listing 1.24 are considered valid. The first <Member-
ship> element,

<Membership>Current</Membership>

is valid because it corresponds exactly to the fixed value defined for the
<Membership> element. The second <Membership> element,

<Membership></Membership>

is considered valid because when an element is empty for which a fixed value
is defined, then a validating processor processes the element as if that fixed
value is present in the empty element. The third <Membership> element,

<Membership/>

42 Chapter 1

is also an empty element—and, as with the second element in the instance
document, an XSD Schema-aware validating processor will treat that element
as if the value “Current” were its text content.

Both default and fixed values will often be used in conjunction with speci-
fying the occurrence (cardinality) of an element in an instance document.
Combining the use of the default and fixed attributes with XSD Schema’s car-
dinality operators is described later in this chapter.

Fixed Values of Attributes

When a fixed attribute is present on an <xsd:attribute> element, then the effect
is very similar to that just described for fixed values of elements.

If the attribute is present in the instance document, then its value must cor-
respond to the value of the fixed attribute on the <xsd:attribute> element. If
the attribute is absent from the instance document, then an attribute will be
added to the instance document by an XSD Schema-aware processor with the
fixed value specified for the attribute in the schema.

Annotations in Schema

Documentation of any code is a valuable resource when a new user begins to
use a schema or when the time comes for maintenance of the schema code to
be carried out. XML Schema is no exception. Similarly, if you want to create a
schema that is to be used by other parties, then full and expressive documen-
tation improves the likelihood that others will quickly assimilate your inten-
tions and thus make it more likely that the desired schema is accepted.
Viewed from the other angle, if your company decides to adopt an external
schema of some sort—perhaps a budding industry or sector standard—then
full internal documentation makes it much easier for you and your colleagues
to produce the code to support the schema and to communicate any con-
straints to other staff who perhaps have to modify how they enter data into
instance documents.

Good documentation helps everybody who is using a schema for XML
instance documents. The options for documentation in XSD Schema follow.

Standard XML Comments
An XSD schema is an XML document; therefore, standard XML comments

can be used within the schema. One limitation of typical XML comments is
that they are intended solely for human consumption. The XML processing
instruction applies to information intended to be machine readable.

XSD Schema provides an <xsd:annotation> element that can contain infor-
mation intended to be human readable, machine readable, or both, however.

Elementary XML Schema 43

The <annotation> Element
The <xsd:annotation> element is the main annotation element in XSD Schema.
The other annotation elements, <xsd:documentation> and <xsd:appinfo>, are
nested within an <xsd:annotation> element.

The <xsd:annotation> element can be used at the beginning of many XSD
Schema constructs. For example, in a simple schema to define the structure of
a name, we could insert an <xsd:annotation> element together with an
<xsd:documentation> element within the <xsd:annotation> element, as
shown in Listing 1.26.

Notice that the <xsd:annotation> element is a child element of the <xsd:ele-
ment> that it is describing and is the first child element. The nested <xsd:doc-
umentation> element carries an xml:lang attribute that defines the language
of the documentation that is contained within the <xsd:documentation> ele-
ment. An alternative approach is to place the xml:lang attribute in the start tag
of the <xsd:schema> element as follows:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xml:lang="en">

The corresponding instance document could look like that in Listing 1.27.
An <xsd:annotation> element can similarly occur as the first child of the

<xsd:schema> element as you saw in Listing 1.2.

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="Name">

<xsd:annotation>

<xsd:documentation xml:lang="en">This schema provides a simply

structured

definition of a name consisting of first name, middle initial(s)

and last

name.

</xsd:documentation>

</xsd:annotation>

<xsd:complexType>

<xsd:sequence>

<xsd:element name="FirstName" type="xsd:string"/>

<xsd:element name="MiddleInitials" type="xsd:string"/>

<xsd:element name="LastName" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>

Listing 1.26 A schema that includes annotation (NameAnnotation.xsd).

44 Chapter 1

<?xml version='1.0'?>

<Name>

<FirstName>Janet</FirstName>

<MiddleInitials>D</MiddleInitials>

<LastName>Middlebush</LastName>

</Name>

Listing 1.27 Corresponding instance document (NameAnnotation.xml).

The <xsd:documentation> Element

The <xsd:documentation> element is intended for human-readable documen-
tation, such as that shown in Listing 1.26. It can be used, nested within an
<xsd:annotation> element, in multiple places within an XSD schema. It can
also be placed as a child of the <xsd:schema> element or nested within an ele-
ment declaration or within a complex type definition.

A more fully documented version of Listing 1.26 is shown in Listing 1.28.

The <appinfo> Element

The <xsd:appinfo> element is used to contain information to be used by XML
tools, stylesheets, or other applications. The <xsd:appinfo> element is nested
within an <xsd:annotation> element.

Self-Documenting Annotations

XSD Schema annotations provide an opportunity to create documentation
for XSD schemas by creating an XSLT stylesheet that extracts the content of
<xsd:annotation> elements, and their nested <xsd:documentation> ele-
ments, to create a standalone documentation file for each of your XSD
schemas.

We will use Listing 1.28, NameAnnotation02.xsd, as the source document
for the XSLT transformation shown in Listing 1.29.

The XSLT stylesheet in Listing 1.29 produces an HTML file that contains the
content of all the <xsd:documentation> elements in Listing 1.28. The HTML
output is shown in Listing 1.30.

The on-screen output of the XSLT transformation is shown in Figure 1.7.
Creating documentation in this way demands some discipline in the use of

<xsd:documentation> to make sense when read in a standalone HTML docu-
ment. But if that discipline is followed, it makes training of new members of
staff and maintenance of code a significantly easier exercise.

TEAMFL
Y

Team-Fly®

Elementary XML Schema 45

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="Name">

<xsd:annotation>

<xsd:documentation xml:lang="en">This schema provides a simply

structured

definition of a name consisting of first name, middle initial(s)

and last

name.

</xsd:documentation>

</xsd:annotation>

<xsd:complexType>

<xsd:annotation>

<xsd:documentation>The element <Name> is an XSD Schema

complex type, since

it has multiple child elements.</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name="FirstName" type="xsd:string">

<xsd:annotation>

<xsd:documentation>The <FirstName> element has simple type

content of type

xsd:string.</xsd:documentation>

</xsd:annotation>

</xsd:element>

<xsd:element name="MiddleInitials" type="xsd:string">

<xsd:annotation>

<xsd:documentation>The <MiddleInitials> element also has

simple type content

of type xsd:string.</xsd:documentation>

</xsd:annotation>

</xsd:element>

<xsd:element name="LastName" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>

Listing 1.28 A more fully annotated schema (NameAnnotation02.xsd).

Empty Element Declaration

It is sometimes necessary to be able to declare elements that have no content
(in other words, empty elements). In practice, empty elements are (in XSD

46 Chapter 1

<?xml version='1.0'?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsl:output

method="html"

indent="yes"/>

<xsl:strip-space elements="*"/>

<xsl:template match="/">

<html>

<head>

<title>Extracting content of <xsd:annotation> elements using

XSLT.</title>

</head>

<body>

<h3>This documentation has been created using an XSLT stylesheet to

process <xsd:annotation>

and <xsd:documentation> elements in an XSD Schema document.</h3>

<xsl:apply-templates select="//xsd:documentation"/>

</body>

</html>

</xsl:template>

<xsl:template match="xsd:documentation">

<xsl:choose>

<xsl:when test="ancestor::*[position()=2]/@name">

<p>Documentation for the <<xsl:value-of

select="ancestor::*[position()=2]/@name"/>> element.

<xsl:value-of select="."/></p>

</xsl:when>

<xsl:otherwise>

<p>Documentation for the anonymous <<xsl:value-of

select="name(ancestor::*[position()=2])"/>> element.

<xsl:value-of select="."/></p>

</xsl:otherwise>

</xsl:choose>

</xsl:template>

</xsl:stylesheet>

Listing 1.29 An XSLT stylesheet to create HTML documentation from <xsd:annotation>
elements (NameAnnotation02.xsl).

Schema terminology) complex types because they would typically have attrib-
utes. There would be little point in declaring a simple type empty element,
which would have no attributes or text content.

Elementary XML Schema 47

<html xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-

8">

<title>Extracting content of <xsd:annotation> elements

using XSLT.</title>

</head>

<body>

<h3>This documentation has been created using an XSLT stylesheet

to process <xsd:annotation> and <xsd:documentation>

elements in an XSD Schema document.

</h3>

<p>Documentation for the <Name> element.
This

schema provides a simply structured

definition of a name consisting of first name, middle initial(s) and

last name.

</p>

<p>Documentation for the anonymous <xsd:complexType>

element.

The element <Name> is an XSD Schema complex type, since it

has multiple child elements.

</p>

<p>Documentation for the <FirstName>

element.
The <FirstName> element has simple type content

of type xsd:string.

</p>

<p>Documentation for the <MiddleInitials>

element.
The <MiddleInitials> element also has simple

type content of type xsd:string.

</p>

</body>

</html>

Listing 1.30 HTML output using the content of <xsd:annotation> elements (NameAnno-
tationOut.html).

Let’s suppose that in a purchase order, you choose to create line items with
all the relevant information contained in attributes but with no text content.
An instance document might look like that in Listing 1.31.

The corresponding XSD schema is shown in Listing 1.32.
The important part of the schema is contained in the definition for the

LineItemType:

<xsd:complexType name="LineItemType">

<xsd:complexContent>

<xsd:restriction base="xsd:anyType">

48 Chapter 1

Figure 1.7 Self-documentation of XSD Schemas created by using an XSLT transformation.

<?xml version='1.0'?>

<PurchaseOrder>

<Customer>

<CustomerName></CustomerName>

</Customer>

<LineItems>

<LineItem price="99.99" quantity="5" description="widget"/>

<LineItem price="24.99" quantity="3" description="whotsit"/>

</LineItems>

</PurchaseOrder>

Listing 1.31 An instance document with empty <LineItem> elements (EmptyElement.xml).

<xsd:attribute name="price" type="xsd:decimal"/>

<xsd:attribute name="quantity" type="xsd:nonNegativeInteger"/>

<xsd:attribute name="description" type="xsd:string"/>

</xsd:restriction>

</xsd:complexContent>

</xsd:complexType>

Elementary XML Schema 49

<?xml version='1.0'?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="PurchaseOrder">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Customer" type="CustomerType"/>

<xsd:element name="LineItems" type="LineItemsType"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element> <!-- End tag for the <PurchaseOrder> element. -->

<xsd:complexType name="CustomerType">

<xsd:sequence>

<xsd:element name="CustomerName" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType> <!-- End tag for <complexType> element named

"CustomerType" -->

<xsd:complexType name="LineItemsType">

<xsd:sequence>

<xsd:element name="LineItem" type="LineItemType"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType> <!-- End tag for <complexType> element named

"LineItemsType" -->

<xsd:complexType name="LineItemType">

<xsd:complexContent>

<xsd:restriction base="xsd:anyType">

<xsd:attribute name="price" type="xsd:decimal"/>

<xsd:attribute name="quantity" type="xsd:nonNegativeInteger"/>

<xsd:attribute name="description" type="xsd:string"/>

</xsd:restriction>

</xsd:complexContent>

</xsd:complexType> <!-- End tag for <complexType> element named

"LineItemType" -->

</xsd:schema>

Listing 1.32 XSD schema corresponding to Listing 1.31 (EmptyElement.xsd).

The <xsd:complexContent> element is used. The <xsd:restriction> element
(which is nested within it) has a base type of xsd:anyType that is then
restricted, with respect to allowed content, to the three attributes defined in
the <xsd:attribute> elements.

The definition of LineItemType in this example is pretty verbose, so XSD
Schema provides an abbreviated syntax for such situations shown in Listing
1.33.

50 Chapter 1

<?xml version='1.0'?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="PurchaseOrder">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Customer" type="CustomerType"/>

<xsd:element name="LineItems" type="LineItemsType"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element> <!-- End tag for the <PurchaseOrder> element. -->

<xsd:complexType name="CustomerType">

<xsd:sequence>

<xsd:element name="CustomerName" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType> <!-- End tag for <complexType> element named

"CustomerType" -->

<xsd:complexType name="LineItemsType">

<xsd:sequence>

<xsd:element name="LineItem" type="LineItemType"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType> <!-- End tag for <complexType> element named

"LineItemsType" -->

<xsd:complexType name="LineItemType">

<xsd:attribute name="price" type="xsd:decimal"/>

<xsd:attribute name="quantity" type="xsd:nonNegativeInteger"/>

<xsd:attribute name="description" type="xsd:string"/>

</xsd:complexType> <!-- End tag for <complexType> element named

"LineItemType" -->

</xsd:schema>

Listing 1.33 Abbreviated syntax for LineItemType (EmptyElementAbbrev.xsd).

The anyType Type
In the previous section, the base type for the <xsd:restriction> element in List-
ing 1.32 was “xsd:anyType.” The xsd:anyType type is an abstract type that
places no constraints on allowed content; in other words, the type(s) it con-
tains can be of any type, including a mixture of elements and other content,
hence the name. The xsd:anyType type is the default type for XSD Schema
when a type is not otherwise specified. Hence, writing

<xsd:element name="MyElement">

Elementary XML Schema 51

is equivalent to

<xsd:element name="MyElement" type="anyType">

because the anyType type is the default. In practice, you will likely want to
avoid using the anyType type other than as a base type for the <xsd:restric-
tion> element or as a placeholder until you finalize the design of some part of
a schema and define an appropriate type for a particular part of the content.

Occurrence Constraints

One of the ways in which an XML Schema schema constrains the content of an
instance document is with respect to the number of times that an element can
occur in a document. In order to understand how XSD Schema has improved
our control over cardinality, let’s first briefly look at cardinality in DTDs.

Cardinality in DTDs
In the DTDs that are part of XML 1.0, the capability to define cardinality is use-
ful but limited. DTDs provide cardinality constraints that are particularly rel-
evant to document-centric use but that fall short for data-centric applications.
A DTD provides ways to express the following:

■■ Optional occurrence of an element; in other words, zero or one
occurrences expressed by the question mark (?) operator

■■ Zero or more occurrences expressed by the asterisk (*) operator

■■ One or more occurrences expressed by the plus sign (+) operator

If, for example, you wanted to state that a book must have a minimum of
two authors and a maximum of four authors, DTDs provide no way to express
this information. But XSD schemas do.

minOccurs and maxOccurs
XML Schema provides functionality that permits the occurrence constraints
provided in DTDs and also adds control over cardinality, which a DTD is
unable to provide.

The minOccurs and maxOccurs attributes of an <xsd:element> element pro-
vide a mechanism to define permitted cardinality. Because the minimum per-
mitted occurrence specified by the minOccurs attribute and the maximum
permitted occurrence specified by the maxOccurs attribute are defined sepa-
rately, we can create any arbitrary cardinality constraints that we might want.

52 Chapter 1

<?xml version="1.0"?>

<Book>

<Title>The book title</Title>

<Author>Author’s Name</Author>

<Publisher>John Wiley</Publisher>

</Book>

Listing 1.34 Constraining cardinality to exactly 1: The instance document (Book-
Cardin01.xml).

Let’s suppose that in a book catalog we want to constrain the number of
authors for a book to be exactly one, similar to the structure shown in Listing
1.34.

One way to express a schema for this structure is shown in Listing 1.35.
In Listing 1.35, we make it explicit that the minimum number of occur-

rences of, for example, the <Title> element is 1, as is its maximum number of
occurrences. There is no real need for us to express that in this way, however.
In W3C XML Schema, the default for both minOccurs and maxOccurs is 1;
therefore, we can omit both the minOccurs and maxOccurs attributes so we
can express the same constraints (of one and only one occurrence of each ele-
ment) by using the schema shown in Listing 1.36.

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

<xsd:element name="Book">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Title" ref="Title" minOccurs="1"

maxOccurs="1"/>

<xsd:element name="Author" ref="Author" minOccurs="1"

maxOccurs="1"/>

<xsd:element name="Publisher" ref="Publisher" minOccurs="1"

maxOccurs="1"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="Title" type="xsd:string"/>

<xsd:element name="Author" type="xsd:string"/>

<xsd:element name="Publisher" type="xsd:string"/>

</xsd:schema>

Listing 1.35 Constraining cardinality to exactly 1: The XSD schema (BookCardin01.xsd).

Elementary XML Schema 53

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

<xsd:element name="Book">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Title" ref="Title"/>

<xsd:element name="Author" ref="Author"/>

<xsd:element name="Publisher" ref="Publisher"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="Title" type="xsd:string"/>

<xsd:element name="Author" type="xsd:string"/>

<xsd:element name="Publisher" type="xsd:string"/>

</xsd:schema>

Listing 1.36 A more succinct syntax to define a cardinality of exactly 1 (BookCardin02.xsd).

The default value for both minOccurs and maxOccurs is 1. Thus, Listing
1.36 specifies that the instance documents, to be valid, must have exactly one
<Book> element and exactly one of each of the subelements <Title>,
<Author>, and <Publisher>.

Of course in practice, real life is typically not as tidy and consistent as to
have all books with exactly one author. For example, the book you are reading
has more than one author, and to include it in the book catalog we would have
to modify both the instance document and the schema that constrains it.

Listing 1.37 shows an instance document that would appropriately describe
this book in the book catalog.

<?xml version="1.0"?>

<Book>

<Title>The book title</Title>

<Authors>

<Author>Author’s Name</Author>

<Author>Another author</Author>

</Authors>

<Publisher>John Wiley</Publisher>

</Book>

Listing 1.37 A book with more than one author (BookCardin03.xml).

54 Chapter 1

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

<xsd:element name="Book">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Title" ref="Title"/>

<xsd:element name="Authors" type="AuthorsType"/>

<xsd:element name="Publisher" ref="Publisher"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="Title" type="xsd:string"/>

<xsd:complexType name="AuthorsType">

<xsd:sequence>

<xsd:element name="Author" type="xsd:string" minOccurs="1"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

<xsd:element name="Author" type="xsd:string"/>

<xsd:element name="Publisher" type="xsd:string"/>

</xsd:schema>

Listing 1.38 A schema to allow a cardinality of more than 1 (BookCardin03.xsd).

To be able to validate that instance document, we would need to adapt the
XSD schema as shown in Listing 1.38.

Within the <complexType> element for the <Book> element, we simply
replace the declaration of the <Author> element with

<xsd:element name="Authors" type="AuthorsType"/>

and then add an AuthorsType <complexType> element

<xsd:complexType name="AuthorsType">

<xsd:sequence>

<xsd:element name="Author" type="xsd:string" minOccurs="1"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

to the XSD schema.

TEAMFL
Y

Team-Fly®

Elementary XML Schema 55

For instance, for the documents such as the book examples that we have
looked at so far, it is pretty much essential that there be at least one author for
a book. After all, I can testify that books don’t write themselves. In the schema
shown earlier, the maxOccurs attribute has the value unbounded. We could
specify any suitable value of type xsd:nonNegativeInteger for the maxOccurs
attribute, however.

In other situations, we might want to have an optional occurrence of an ele-
ment. First, let’s look at the situation where we want an element to occur
optionally—and, if it does occur, it might only occur once. That is something
that a DTD can also express.

For example, if we want a list of <Item> elements on which a comment is
optional, similar to the instance document shown in Listing 1.39, we can use
an XSD schema like that shown in Listing 1.40.

As you can see, some <Item> elements contain a <comment> element while
others do not. In other words, the <comment> element is optional.

To define optional elements, we use the minOccurs attribute with a value of
zero and a maxOccurs attribute with a value of one. If we wish to allow an ele-
ment to occur a specified number of times, then we can simply set the value of
the maxOccurs attribute to the desired number. Another possibility is that we
wish an element to occur optionally but to occur an unlimited number of
times. In that case, we can set the value of the maxOccurs attribute to
“unbounded” with the minOccurs attribute having a value of zero.

<?xml version='1.0'?>

<StockKeepingUnits>

<Item>

<ItemName>Alpha</ItemName>

<ItemCode>A123</ItemCode>

</Item>

<Item>

<comment>Beta is really great!</comment>

<ItemName>Beta</ItemName>

<ItemCode>B123</ItemCode>

</Item>

<Item>

<comment>Gamma is the pits!</comment>

<ItemName>Gamma</ItemName>

<ItemCode>C123</ItemCode>

</Item>

</StockKeepingUnits>

Listing 1.39 A list of items (StockKeepingUnits.xml).

56 Chapter 1

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

<xsd:element name="StockKeepingUnits">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Item" type="ItemType" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:complexType name="ItemType">

<xsd:sequence>

<xsd:element name="comment" type="xsd:string" minOccurs="0"

maxOccurs="1"/>

<xsd:element name="ItemName" type="xsd:string" />

<xsd:element name="ItemCode" type="xsd:string" />

</xsd:sequence>

</xsd:complexType>

</xsd:schema>

Listing 1.40 A schema to allow for optional <comment> elements (StockKeepingUnits.xsd).

Defining Your Own Simple Type
As well as its built-in primitive and derived simple types, XSD Schema
enables schema authors to create new simple types (for example, by restric-
tion). We might, for example, want to create a five-character string simple
type. We could do so by using the following code:

<xsd:simpleType name="FiveCharacterStringType">

<xsd:restriction base="xsd:string">

<xsd:length value="5"/>

</xsd:restriction>

</xsd:simpleType>

The facility in XSD Schema to derive new datatypes from those defined in
the W3C XML Schema Recommendation or derived types created by our-
selves or other schema authors is an immensely powerful tool. It is a great
improvement over the very limited support for datatyping in XML 1.0 DTDs.
The length facet, which you have just seen, and other facets will be discussed
in detail in Chapters 5, “Data Facets,” and 6, “More about Data Facets.” Deriv-
ing new datatypes will be discussed in greater detail in Chapter 8.

Elementary XML Schema 57

Model Groups in Schema

XSD Schema enables us to group elements in order to use them in a number of
different ways. In this section, we will introduce the use of the <xsd:group>
element.

If we have created a named group, we can reference that group and reuse it
by inserting code like

<xsd:group ref="GroupNameGoesHere" />

within a type definition.

Sequence Group
In many earlier examples, you have seen the use of the <xsd:sequence> ele-
ment to group sequences of element declarations. The <xsd:group> element
enables us to group such sequences of element declarations and name them
for reuse. This process is demonstrated in the following example (SoccerPlay-
ers.xml), which also illustrates choice groups.

Choice Group
A choice group in XSD schemas permits a choice to be made in the structure of
an instance document. Choice groups can be named or unnamed.

There are differences in how names are structured internationally. In the
United States and the United Kingdom, for example, the structure is typically
first name, middle initial(s) (optional), and last name. In some countries, for
example Brazil, names can consist of a single name. We will illustrate how a
schema could be constructed to cope with this necessary choice of structure,
using Listing 1.41 as an instance document.

The XSD schema in Listing 1.42 shows how we can allow for the difference
in structure of the soccer players’ names by using a choice group.

The interesting part of SoccerPlayers.xsd is shown here:

<xsd:choice>

<xsd:group ref="ThreePartName"/>

<xsd:element name="SingleName" type="xsd:string"/>

</xsd:choice>

The <xsd:choice> element enables only one of its child elements to apply
to the relevant part of the instance document. In this instance (forgive the
pun), the choice is either the group represented by the <xsd:group> element

58 Chapter 1

<?xml version='1.0'?>

<SoccerPlayers>

<Player>

<FirstName>David</FirstName>

<MiddleInitials></MiddleInitials>

<LastName>Beckham</LastName>

</Player>

<Player>

<SingleName>Pele</SingleName>

</Player>

<Player>

<SingleName>Ronaldo</SingleName>

</Player>

<Player>

<FirstName>Franz</FirstName>

<MiddleInitials></MiddleInitials>

<LastName>Beckenbauer</LastName>

</Player>

</SoccerPlayers>

Listing 1.41 An instance document with two name structures (SoccerPlayers.xml).

with name equal to “ThreePartName,” which is referenced from within the
<xsd:choice> element:

<xsd:group name="ThreePartName">

<xsd:sequence>

<xsd:element name="FirstName" type="xsd:string"/>

<xsd:element name="MiddleInitials" type="xsd:string"/>

<xsd:element name="LastName" type="xsd:string"/>

</xsd:sequence>

</xsd:group>

or the single element

<xsd:element name="SingleName" type="xsd:string"/>

which is permitted as the content of a <Player> element.

All Group
XSD Schema provides a further type of grouping indicated by the <xsd:all>
element. When an <xsd:all> element is present the content of the <xsd:all> ele-
ment is either applicable in its entirety or not at all.

Elementary XML Schema 59

<?xml version='1.0'?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="SoccerPlayers">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Player" maxOccurs="unbounded">

<xsd:complexType>

<xsd:sequence>

<xsd:choice>

<xsd:group ref="ThreePartName"/>

<xsd:element name="SingleName" type="xsd:string"/>

</xsd:choice>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element> <!-- End tag for <SoccerPlayers> element. -->

<xsd:group name="ThreePartName">

<xsd:sequence>

<xsd:element name="FirstName" type="xsd:string"/>

<xsd:element name="MiddleInitials" type="xsd:string"/>

<xsd:element name="LastName" type="xsd:string"/>

</xsd:sequence>

</xsd:group>

</xsd:schema>

Listing 1.42 A schema to allow a choice between two structure options (SoccerPlay-
ers.xsd).

Listing 1.43 provides a fictional listing of persons who are either law-abiding
or who have a criminal record. Those with a criminal record must have a Web-
based DNA and fingerprint profile. Those with no criminal record likely have
no such profiles on record.

The following schema in Listing 1.44 uses the <xsd:all> element to apply
either all (in this case, both) the profiles or none of them.

The definition of the ProfilesType complex type has an <xsd:all> element.
Thus, the corresponding individual records in an instance document must
have both a <DNAProfile> element and a <FingerPrint> element. If the
instance document contained a record with only one of these two elements,
then an XSD Schema-aware processor would report an error. If you want to
permit such an occurrence, then the <xsd:all> element is unsuitable for that

60 Chapter 1

<?xml version='1.0'?>

<Persons>

<Person status="lawabiding">

<Name>

<FirstName>Phoebe</FirstName>

<MiddleInitials>Z</MiddleInitials>

<LastName>Kruschev</LastName>

</Name>

</Person>

<Person status="criminalrecord">

<Name>

<FirstName>Patrick</FirstName>

<MiddleInitials>Q</MiddleInitials>

<LastName>O’Mahoney</LastName>

</Name>

<Profiles>

<DNAProfile>http://www.criminalrecords.gov/DNA2348899.html</DNAProfile

>

<FingerPrint>http://www.criminalrecords.gov/FP2348899.html</FingerPrin

t>

</Profiles>

</Person>

<Person status="criminalrecord">

<Name>

<FirstName>Cyril</FirstName>

<MiddleInitials>Y</MiddleInitials>

<LastName>Pinkerton</LastName>

</Name>

<Profiles>

<DNAProfile>http://www.criminalrecords.gov/DNA2948899.html</DNAProfile

>

<FingerPrint>http://www.criminalrecords.gov/FP2948899.html</FingerPrin

t>

</Profiles>

</Person>

</Persons>

Listing 1.43 A list of persons (Persons.xml).

purpose. One solution would be to use <xsd:sequence> with each of the ele-
ment declarations indicating optional elements:

<xsd:complexType name = "ProfilesType">

<xsd:sequence>

<xsd:element name="DNAProfile" minOccurs="0" maxOccurs="1"

type=xsd:anyURI"/>

<xsd:element name="FingerPrint" minOccurs="0" maxOccurs="1"

type=xsd:anyURI"/>

Elementary XML Schema 61

<?xml version='1.0'?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="Persons">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="Person" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element> <!-- End tag of <Persons> element. -->

<xsd:element name="Person">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Name" type="NameType"/>

<xsd:element name="Profiles" type="ProfilesType" minOccurs="0"

maxOccurs="1"/>

</xsd:sequence>

<xsd:attribute name="status" type="xsd:string"/>

</xsd:complexType>

</xsd:element> <!-- End tag of <Person> element. -->

<xsd:complexType name="NameType">

<xsd:sequence>

<xsd:element name="FirstName" type="xsd:string"/>

<xsd:element name="MiddleInitials" type="xsd:string"/>

<xsd:element name="LastName" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="ProfilesType">

<xsd:all>

<xsd:element name="DNAProfile" type="xsd:anyURI"/>

<xsd:element name="FingerPrint" type="xsd:anyURI"/>

</xsd:all>

</xsd:complexType>

</xsd:schema>

Listing 1.44 A schema to demonstrate the <xsd:all> element (Persons.xsd).

</xsd:sequence>

</xsd:complexType>

Attribute Groups
Just as XSD Schema provides functionality to group elements, it also provides
a means to group attributes. An attribute group provides an alternate way to

62 Chapter 1

express, and of course group, a number of attributes that have something in
common—typically being used on more than one particular element in an
instance document. If an attribute group is declared as a child of the
<xsd:schema> element, then the attribute group can be referenced in the defi-
nition of more than one element in a schema as appropriate.

Suppose we had a clothing catalog where the information about each gar-
ment was held in the attributes of elements in an instance document, such as
that shown in Listing 1.45.

We could declare each attribute individually, as in Listing 1.46.
Notice that within the <xsd:complexType> element for GarmentType that

three individual attributes are nested within the <xsd:extension> element. In
Listing 1.47 we see the same attributes declared by means of an <xsd:attribute-
Group> element.

More about the XML 1.0 DTD
Content Model
Now that you have seen a number of examples of W3C XML Schema in action,
let’s compare how a DTD and an XSD schema constrain a fairly typical simple
instance document. The instance document, BookCatalog.xml, is shown in
Listing 1.48.

We can create a DTD, BookCatalog.dtd, as shown in Listing 1.49.
It isn’t the purpose of this chapter to teach you about DTDs if you are not

already familiar with them. Notice, however, that for each element that does
not have child elements, that the content is defined as #PCDATA. There is no
way directly to constrain the text content further, although it is possible to add

<?xml version='1.0'?>

<ClothingCatalog>

<Garment size="S" color="aquamarine" manufacturer="XMML">

T-shirt

</Garment>

<Garment size="XL" color="navy" manufacturer="XMML">

Skirt

</Garment>

<Garment size="M" color="green" manufacturer="XMML">

T-shirt

</Garment>

<Garment size="L" color="cerise" manufacturer="XMML">

Sweat shirt

</Garment>

</ClothingCatalog>

Listing 1.45 A simple clothing catalog (ClothingCatalog.xml).

Elementary XML Schema 63

<?xml version='1.0'?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="ClothingCatalog">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Garment" type="GarmentType" minOccurs="1"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element> <!-- End tag for <ClothingCatalog> element. -->

<xsd:complexType name="GarmentType">

<xsd:simpleContent>

<xsd:extension base="xsd:string">

<xsd:attribute name="size" type="xsd:string"/>

<xsd:attribute name="color" type="xsd:string"/>

<xsd:attribute name="manufacturer" type="xsd:string"/>

</xsd:extension>

</xsd:simpleContent>

</xsd:complexType>

</xsd:schema>

Listing 1.46 A schema without grouped attributes (ClothingCatalog01.xsd).

type attributes to elements that describe the type of data that they contain, but
that approach, while helpful, is very much a workaround of intrinsic limita-
tions of the DTD.

An XSD schema provides us with better datatyping facilities such as those
illustrated in Listing 1.50.

You need not attempt to grasp all the detail of this schema. It is there to give
you an impression of the richness of the datatyping structures that XSD
Schema can provide. We will discuss many of the options for datatyping of
both simple types and complex types in later chapters.

Validation in XSD Schema

XSD Schema has two processes that are carried out by an XSD Schema vali-
dating processor:

■■ Determining local schema validity

■■ Assessment

Let’s examine and compare validation and assessment.

64 Chapter 1

<?xml version='1.0'?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="ClothingCatalog">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Garment" type="GarmentType" minOccurs="1"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element> <!-- End tag for <ClothingCatalog> element. -->

<xsd:complexType name="GarmentType">

<xsd:simpleContent>

<xsd:extension base="xsd:string">

<xsd:attributeGroup ref="GarmentGroup"/>

</xsd:extension>

</xsd:simpleContent>

</xsd:complexType>

<xsd:attributeGroup name="GarmentGroup">

<xsd:attribute name="size" type="xsd:string"/>

<xsd:attribute name="color" type="xsd:string"/>

<xsd:attribute name="manufacturer" type="xsd:string"/>

</xsd:attributeGroup>

</xsd:schema>

Listing 1.47 A schema to demonstrate grouping of attributes (ClothingCatalog02.xsd).

Validation versus Assessment
Validation is the simpler of the two concepts to understand because it has
many similarities to validation (which is carried out against a DTD). What the
XSD Schema specification refers to as local schema validity corresponds
closely to the validity of an instance document validated against a DTD. If an
element or attribute is local schema valid, then that element or attribute in the
instance document (or more strictly, the corresponding information item in
the XML information set) corresponds to the relevant definition or declaration
in the appropriate XSD schema.

The W3C XML Schema Recommendation expresses the notion of “deter-
mining local schema-validity” as determining “whether an element or
attribute information item satisfies the constraints embodied in the relevant
components of an XML Schema.”

We need to remember that element declarations and type definitions are
schema components in XSD Schema jargon. Also, an XSD Schema-validating
processor operates on the abstract XML information set, not directly on the

TEAMFL
Y

Team-Fly®

Elementary XML Schema 65

<?xml version="1.0"?>

<BookCatalog>

<Book pubCountry="USA">

<Title series="XML Essentials">XML Schema Essentials</Title>

<Authors>

<Author>R. Allen Wyke</Author>

<Author>Andrew Watt</Author>

</Authors>

<Publisher>John Wiley</Publisher>

<ISBN>0471412597</ISBN>

<DatePublished>2002-02</DatePublished>

<Price>44.99</Price>

</Book>

<Book pubCountry="USA">

<Title series="XML Essentials">XPath Essentials</Title>

<Authors>

<Author>Andrew Watt</Author>

</Authors>

<Publisher>John Wiley</Publisher>

<ISBN>0471205486

</ISBN>

<DatePublished>2001-10</DatePublished>

<Price>44.99</Price>

</Book>

</BookCatalog>

Listing 1.48 A simple book catalog (BookCatalog.xml).

<!ELEMENT BookCatalog (Book)*>

<!ELEMENT Book (Title, Authors, Publisher, ISBN, DatePublished,

Price)>

<!ATTLIST Book pubCountry CDATA #IMPLIED >

<!ELEMENT Title (#PCDATA)>

<!ATTLIST Title series CDATA #IMPLIED>

<!ELEMENT Authors (Author)+>

<!ELEMENT Author (#PCDATA)>

<!ELEMENT Publisher (#PCDATA) >

<!ELEMENT ISBN (#PCDATA) >

<!ELEMENT DatePublished (#PCDATA) >

<!ELEMENT Price (#PCDATA) >

Listing 1.49 A Document Type Definition for the book catalog (BookCatalog.dtd).

serialized version of an instance document. Putting those ideas together, all
that this definition is saying is that the structure and content of an element or
attribute (as represented by the corresponding element information item or

66 Chapter 1

<?xml version='1.0'?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="BookCatalog">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Book" type="BookType" minOccurs="0"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:complexType name="BookType">

<xsd:sequence>

<xsd:element name="Title" type="TitleType"/>

<xsd:element name="Authors" type="AuthorsType"/>

<xsd:element name="Publisher" type="xsd:string"/>

<xsd:element name="ISBN" type="ISBNType"/>

<xsd:element name="DatePublished" type="DatePubType"/>

<xsd:element name="Price" type="xsd:decimal"/>

</xsd:sequence>

<xsd:attribute name="pubCountry" type="xsd:string"/>

</xsd:complexType>

<xsd:complexType name="TitleType">

<xsd:simpleContent>

<xsd:extension base="xsd:string">

<xsd:attribute name="series" type="xsd:string"/>

</xsd:extension>

</xsd:simpleContent>

</xsd:complexType>

<xsd:complexType name="AuthorsType">

<xsd:sequence>

<xsd:element name="Author" type="xsd:string" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name="ISBNType">

<xsd:restriction base="xsd:string">

<xsd:length value="10"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="DatePubType">

<xsd:restriction base="xsd:string">

<xsd:pattern value="\d{4}-\d{2}"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

Listing 1.50 An XSD schema for the book catalog (BookCatalog.xsd).

Elementary XML Schema 67

attribute information item) corresponds to the structure and content allowed
by the corresponding part of an XSD schema.

So, what is “assessment”? The XSD Schema Recommendation defines
assessment as “synthesizing an overall validation outcome for the item, com-
bining local schema validity with the results of schema-validity assessments
of its descendants, if any, and adding appropriate augmentations to the infoset
to record this outcome.”

Let’s take that one part at a time. The first of the three parts is local schema
validation, which we have just discussed: establishing whether or not an ele-
ment or attribute satisfies the constraints of the corresponding part of the XSD
schema. The second part of assessment is putting together the result of that
local schema validation with the local schema validation of its descendant ele-
ments or attributes (if it has any). Thirdly, the information set might have
information added to it to record the outcome of the first two aspects of this
three-part assessment process.

The XML information set has been mentioned in passing, so let’s go on to
take a brief look at what the XML Information Set actually is.

XML Information Set
The W3C has produced three distinct models of XML documents: the Docu-
ment Object Model, the DOM (in its various Levels), the XPath data model,
and the XML Information Set. It is the XML Information set, sometimes
termed the infoset, which is particularly relevant to XML Schema. In addition,
XPath is used in certain parts of XSD Schema; for example, in identity-
constraint definitions (see Chapter 9, “Uniqueness and Keys in XSD Schema”).

Introduction to the XML Information Set

The XML Information Set specification was conceived at a time when XSD
Schema was at an early stage of development and the XML 1.0 Recommenda-
tion (the original 1998 version) and its associated DTDs were stable and
increasingly being widely implemented. Thus, the XML Information Set,
when any type of schema is mentioned within the specification, is expressed
in relation to well-formed XML documents that have a DTD (rather than a
W3C XML Schema).

The W3C XML Information Set specification, sometimes called the infoset,
is a W3C recommendation. W3C XML Schema made use of the infoset,
although at the time that the W3C XML Schema Recommendation was final-
ized, the XML Information Set specification had not been finished.

The full XML Information Set Recommendation is located at
www.w3.org/TR/xml-infoset.
NOTE

68 Chapter 1

The XML Information Set specification views the information contained
within a well-formed XML document as being represented by the XML Infor-
mation Set. The information set consists of a set of information items. Each
information item has associated with it a number of properties. Broadly, the
information set can be looked on as a tree and an information item as a node in
that tree. The XML Information Set specification is careful to state that imple-
mentation detail need not make use of a tree or nodes, however.

The XML Information Set and XSD Schema

Earlier in the chapter, we touched on the concept that an XSD schema-validating
parser can process an instance document and add default attributes, for exam-
ple. In reality, the XSD schema-validating processor makes use of an informa-
tion set, and the default attribute (or more precisely, the corresponding
information item) is added to the information set that the XSD schema validat-
ing processor is using.

While both the XML Information Set specification and the W3C XML
Schema specification refer to properties, the XML Information Set specification
uses square brackets ([and]) to refer to the properties of an information item
and the XSD Schema specification uses curly braces ({ and }) to refer to the
properties of schema components.

Required Infoset Support

A validating processor that supports XSD Schema must provide a specified
minimum support for parts of the XML information set. The following infor-
mation items and properties must be supported:

■■ Attribute Information Item

■■ [local name] property

■■ [namespace name] property

■■ [normalized value] property

■■ Character information item

■■ [character code] property

■■ Element Information Item

■■ [attributes] property

■■ [children] property

■■ [local name] property

■■ [namespace name] property

NOTE

Elementary XML Schema 69

and either
■■ [in-scope namespaces] property

or
■■ [namespace attributes] property

■■ Namespace Information Item

■■ [namespace name] property

■■ [prefix] property

Post-Schema Validation Infoset
The document information item in an XML infoset has a property called [all
declarations processed] which, strictly speaking, is not part of the XML infoset
at all. Instead, it records whether or not processing of the document (for exam-
ple, retrieval of external entities) has been achieved or not. Such a property is
useful, however, because it provides a record of the processing of the infoset
corresponding to a particular XML source document.

Similarly, it is useful for applications (and human beings) to be aware of
how processing of an XSD schema and the corresponding instance documents
has progressed. The [all declarations processed] information item is pretty
simple—it can take a boolean value, either true or false.

After validation an XSD Schema processor can add information to the
infoset to indicate the result of the validation processing. That augmented
information set is termed the post-schema validation infoset, which in a way
is similar to the [all declarations processed] property records within the aug-
mented information set information about the validation process itself.

Summary

The preceding paragraphs have introduced many of the concepts and ele-
ments of XSD Schema in a single chapter in order to give you a broad view of
what W3C XML Schema is and a hint of what it can do.

We have seen how an XSD schema document contains element and
attribute declarations, associating a name with the appearance of an element
or attribute in an instance document. We have also seen how simple types and
complex types are defined in a schema document.

The following chapters show in more detail many of the aspects of XSD Schema
that we have already touched upon in this introduction. In Chapter 2, “XSD Ele-
ments,” we will go on to examine in more detail the <xsd:element> element.

71

C H A P T E R

2

XSD Elements

Elements represent what many consider to be the most important features of
any XML-based language. They enable us to encapsulate data and provide a
home for attributes. They are used as wrappers around the data payload that
we wish to describe, and the attributes within them provide additional meta-
data about that payload. The combination of these two items enables users to
easily mark up their content and exchange information.

One of the few features that help XSD in simplicity is its use of elements to
define the language. As we saw in Chapter 1, “Elementary XML Schema,”defin-
ing an XSD-based language is accomplished through the use of applying XML
1.0-defined elements. In other words, if we are building an XSD-defined lan-
guage that has an element called <customer>, then we actually use an XSD
element called <xsd:element> to define the <customer> element. This concept
of using elements to define elements might seem a little strange at first, but
this approach will be revealed as a means to simplify the XSD structure, core
language semantics, and syntax.

This chapter focuses on elements in general and the <xsd:element> element
in particular. This element is used to define language elements to be used in
XML instance documents. Other elements will be examined as well, because
XSD has several other elements that can be child elements of <xsd:element>.

72 Chapter 2

For that reason, this chapter also explores how to create what is known as
complex content and how to apply attributes and datatypes to our definitions.
Ways of grouping elements, and even ways of importing them from other
schemas, are also shown. The chapter finishes with an example that uses most
of what has been learned in these pages.

XML Elements

Elements are used to wrap most all content, so they are extremely important.
Before XSD elements are examined in detail, a little background on XML 1.0
element definitions will be provided, which should help whoever is making
the transition from XML DTDs to XSD schemas. Both the syntax and a quick
example will be shown, which will enable us to then build the XSD-equivalent
example. This information will help you better understand the XML 1.0 DTD-
to-XSD schema transformation and how the syntax differs.

For more information about XML-based structure languages, check out
the W3C XML Working Group page at www.w3.org/XML. At this site, you will
find lots of information about both XML and XSD.

Defining within a DTD
When defining new elements with the XML 1.0 language, we use the <!ELE-
MENT> declaration. This declaration is followed by the name of the element
being defined and information about the element. The information could
include a list of child elements, or it could specify that the element contains
text or other data. Using this declaration, we are able to define the overall
structure of our markup language, which represents an element’s position in
relation to other elements.

For example, suppose that we have to define an XML 1.0 representation of
the visual model in Figure 2.1. In this model, there is a <parent> name object
with child objects of <first>, <middle>, and <last>. As the figure shows, it is
important to be able to represent the structure of the four elements—because
without the structure, the implied context of the child elements is no longer
there. What does <first> mean as a root element? First what?

Because we want to start with XML 1.0 syntax, let’s look at how you would
define the <name> element with <first>, <middle>, and <last> child elements.
The <name> element itself is defined, followed by the inclusion (or referenc-
ing) of the child elements. The following syntax would be used to accomplish
this goal:

<!ELEMENT name (first , middle , last)>

NOTE

XSD Elements 73

name

first

middle

last

Figure 2.1 A visual representation of a simple model.

<?xml version='1.0' encoding='UTF-8' ?>

<!ELEMENT name (first, middle, last)>

<!ELEMENT first (#PCDATA)>

<!ELEMENT middle (#PCDATA)>

<!ELEMENT last (#PCDATA)>

Listing 2.1 Schema for our <name> element (name.dtd).

This syntax only defines the <name> element and not the <first>, <mid-
dle>, and <last> elements. Just like <name>, each of these elements will have
to have their own corresponding <!ELEMENT> declaration followed by a
content description. Let’s assume that they will only contain text for this sim-
ple example, defined by using the #PCDATA type, which yields the following
code used to define these elements:

<!ELEMENT first (#PCDATA)>

<!ELEMENT middle (#PCDATA)>

<!ELEMENT last (#PCDATA)>

That is all that is required. If we pull these lines together and add the
<?xml?> directive line, then we have successfully created an XML 1.0 DTD
that models our data in Figure 2.1. In Listing 2.1, the entire file is shown.

Once the model has been defined, an instance document can be created to
reference the model (which contains data wrapped with the new elements).
Listing 2.2 shows the new DTD to describe data by placing it within the body
of the <first>, <middle>, and <last> elements:

74 Chapter 2

<?xml version = "1.0" encoding = "UTF-8"?>

<!DOCTYPE name SYSTEM "file://S:/name.dtd">

<name>

<first>Robert</first>

<middle>Allen</middle>

<last>Wyke</last>

</name>

Listing 2.2 DTD description of <first>, <middle>, and <last> elements (allenwyke.xml).

The presence of the file:// protocol identifier indicates that the govern-
ing DTD is located on the s: drive of the filesystem. If you want the instance
document to reside in a different directory or even at a given URL, you must
include the full path to the DTD.

This example is very simple, but it certainly does not represent everything
that XML 1.0 can do. For example, XML DTD has the capability to represent
people’s many varieties of names. Many people have more than one middle
name while others have none. So, an instance document that includes a per-
son’s name will have zero to many middle names. Also, a person might have
more than one last name; perhaps the name is hyphenated. So, how can we
represent this factor in our XML DTD?

The <!ELEMENT> declaration has a means by which you can specify
whether an element is optional or not. For example, to specify a middle name,
the ? character can be used after the <middle> declaration in the <name> con-
tent model. Additionally, the + character can be used to specify whether an
element can occur more than one time (that is, repeatable). If your element is
optional and repeatable, as with our <middle> element, then you use the *
character to signify that both apply.

To allow a DTD to have zero or more <middle> element instances and one
or more <last> element instances, simply change the <name> definition to the
following:

<!ELEMENT name (first, middle*, last+)>

Notice the presence of the * and + characters, because they change the
meaning of the <name> content model. Now that the <name> content has
been defined, which is put in a new file called name_v2.dtd, let’s look at a cou-
ple examples. First, there is Listing 2.3 (johndoe.xml), which contains no mid-
dle name. This situation demonstrates the ability to define the <middle>
element as being optional.

NOTE

TEAMFL
Y

Team-Fly®

XSD Elements 75

<?xml version = "1.0" encoding = "UTF-8"?>

<!DOCTYPE name SYSTEM "file://S:/name_v2.dtd">

<name>

<first>John</first>

<last>Doe</last>

</name>

Listing 2.3 File that contains no middle name (johndoe.xml).

<?xml version = "1.0" encoding = "UTF-8"?>

<!DOCTYPE name SYSTEM "file://S:/name_v2.dtd">

<name>

<first>John</first>

<middle>Smith</middle>

<middle>Franklin</middle>

<last>Doe</last>

<last>Ray</last>

<last>Me</last>

</name>

Listing 2.4 File with multiple <middle> and <last > element instances (reallylong-
name.xml).

Be sure to include the version number of your DTD or XSD schema
either in the name of your definition file or in the directory or URI path to it.
You will then be able to tell quickly on which version you are building an
instance document. Having that number there is also necessary when different
namespaces are being defined for different versions of your schemas.

The next example, Listing 2.4 (reallylongname.xml), contains both multiple
<middle> and <last> element instances. This example demonstrates our abil-
ity to mark an element as repeatable. You can see a copy of this document
loaded into Microsoft’s Internet Explorer browser, which has a built-in XML
parser called MSXML, in Figure 2.2.

These previous definitions are fairly simple ones, and while that simplicity
might make things easier, it could also be restrictive when you need more flex-
ibility. The amount of control that you have as a schema developer might not
be as great as you would like it to be or as your application would demand.

NOTE

76 Chapter 2

Figure 2.2 Internet Explorer displaying the long-name example.

Limitations
XML 1.0 element definitions have several limitations, most of which have
been taken care of in the XSD Recommendations. Note that there is a funda-
mental difference between an enhancement and a limitation. For example, one
of the big native limitations of XML 1.0 is its inability to have datatypes
applied to it. An enhancement, on the other hand, that XSD brings to the table
is its capability to pull in elements defined in other files and restrict or redefine
their models. Several enhancements will be explored later in this chapter, but
for now we are going to look into the two main limitations of XML 1.0 DTDs.

The first limitation of XML 1.0 is its inability to also define the datatype for
a given element. Some standards such as Datatypes for DTDs (DT4DTD) can be
included, but not all parsers support this specification. Using it, however,
enables one to define datatypes such as strings, integers, dates, times, and oth-
ers. For example, we can apply the DT4DTDs specification to our name_
v2.dtd data model and explicitly define <first>, <middle>, and <last> as string
types. We have saved this for the following code (name_v3.dtd), Listing 2.5,
and the complete file is as follows.

For more information about DT4DTDs, read the official W3C Note at
www.w3.org/TR/dt4dtd.
NOTE

XSD Elements 77

<?xml version='1.0' encoding='UTF-8' ?>

<!ELEMENT name (first , middle* , last+)>

<!ELEMENT first (#PCDATA)>

<!ATTLIST first e-dtype NMTOKEN #FIXED 'string' >

<!ELEMENT middle (#PCDATA)>

<!ATTLIST middle e-dtype NMTOKEN #FIXED 'string' >

<!ELEMENT last (#PCDATA)>

<!ATTLIST last e-dtype NMTOKEN #FIXED 'string' >

Listing 2.5 Complete file for our <name> example (name_v3.dtd).

The need for datatypes can clearly be seen when considering defining an
XML DTD to represent a set of database tables. The database schema might
specify that a given element should be an integer; however, there is no way to
represent that in XML 1.0. Of course, DT4DTDs could be used for this pur-
pose, but a problem might occur—especially if you were exchanging these
documents with third parties that might not use a parser that supports this
specification.

A second limitation of XML 1.0 is its inability to define how often an ele-
ment is present as anything other than 0, 1, or unlimited (optional and/or
repeatable). Let’s say, for example, that you wanted to limit the number of last
names that a person could have in the name_v2.dtd example to 2. In XML 1.0,
this task cannot be accomplished. Someone could pass 3, 4, or more and the
instance document would still validate successfully against our DTD.

These are just a couple of the limitations we might run up against if we are
using XML 1.0 to define our schemas. These two have been mentioned here
specifically, because XSD addresses both of them directly.

Moving On to XSD Elements
With the inherent limitations present in XML 1.0 and how it can be used to
define elements, along with the overall desire by developers for XML-related
languages to be more object-oriented (OO), it was only a matter of time before
new standards emerged. Schema for Object-Oriented XML (SOX), which heavily
influenced XSD, was one of the first standards to begin adding needed
enhancements. The last subsection of this chapter introduces XML elements
and discusses XSD’s <xsd:element> element. Let’s first look at the simple syn-
tax for this element.

78 Chapter 2

The <xsd:element> element, as defined in the XML Schema Part 1: Struc-
tures Recommendation, has a basic syntax that looks like the following:

<element

abstract = boolean : false

block = (#all | List of (extension | restriction | substitution))

default = string

final = (#all | List of (extension | restriction))

fixed = string

form = (qualified | unqualified)

id = ID

maxOccurs = (nonNegativeInteger | unbounded) : 1

minOccurs = nonNegativeInteger : 1

name = NCName

nillable = boolean : false

ref = QName

substitutionGroup = QName

type = QName

{any attributes with non-schema namespace . . .}>

Content: (annotation?, ((simpleType | complexType)?, (unique | key |

keyref)*))

</element>

As you can see, the attributes in this element enable you to really control the
definition of your elements. Note that the #all reference means that all of the
items after the OR (| symbol) are present.

“Any attributes with non-schema namespace” simply refers to the
capability of non-XSD-defined attributes to be included through the use of
namespaces in XML. So, for example, if we were to create our own attribute
definition language but we only wanted to extend the XSD method of attrib-
utes, then we would declare a namespace for our language and include our
attributes (with prefix) in this designated location.

This element has a set of attributes as well as rules for the use of these attributes.
Table 2.1 shows a list of the attributes that can be used in the <xsd:element> ele-
ment. Within the definition, you will also notice that the <xsd:element> element
can in fact contain content in the form of an <xsd:annotation>, <xsd:simpleType>,
<xsd:complexType>, <xsd:unique>, <xsd:key>, or <xsd:keyref>. Some of these
were discussed in Chapter 1, and others are covered later in this chapter.

All of this new information might seem a bit alien to you, because some of
the settings (like abstract, block, or nillable) might not make sense without an
example. One will follow (see the next code example, name.xsd). But for now,
let’s begin our learning of <xsd:element> by looking at an XSD version of the
XML 1.0 DTD in the previous example (name_v3.xsd).

NOTE

XSD Elements 79

Table 2.1 Attributes of the < xsd:element> Tag

ATTRIBUTE DESCRIPTION

abstract Boolean value that requires the use of a substitution group

block Allows you to control replacement by restriction, extension, or
both derived types

default Default value for the element

final Allows you to prevent derivations by restriction, extension, or both

fixed A default, but unchangeable, value for the element

form Used to specify if the qualification of an element is to be done
by a local or global declaration

id Unique identifier

maxOccurs Maximum number of times the element can occur within the
parent element

minOccurs Minimum number of times the element can occur within the
parent element

name The name of the attribute being created

nillable Used to specify if an element can contain a nil value (which is
different than not being present)

ref Allows you to reference a global element declaration, and
therefore inherit some of its settings

substitutionGroup Allows you to assign the element to a group whereby any one
element of the group can be substituted for another element
instance

type The datatype of the value of the element being created

As related in Chapter 1, the first thing we need to have is the presence of an
<?xml?> declaration and <xsd:schema> element defining both the start of our
XSD schema and declaring the anxsd: namespace. The code for this looks like the
following:

<?xml version = "1.0" encoding = "UTF-8"?>

<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema"

The next thing needed is an <xsd:element> instance that creates the
<name> element. Because there are subelements and <name> contains no con-
tent other than these elements, there is no use for the type attribute. In fact, for
this simple example, we are only going to use the name attribute:

80 Chapter 2

<xsd:element name = "name">

The fact that our element is named <name> here is completely coinci-
dental. If it were named something else, such as <reference>, then we would
have name=“reference” in our <xsd:element> instance.

At this point, the defining gets a little tricky: How are the <first>, <middle>,
and <last> child elements of our <name> parent element defined? Recall the
discussion of the <xsd:simpleType> and <xsd:complexType> elements in
Chapter 1. There, it was shown that <xsd:simpleType> can only carry content
and that if you have attributes or other elements as part of the definition of an
element, that element must be a <xsd:complexType>. Here is where we apply
that knowledge.

In this situation, we do have child elements of the <name> element, so we
will be using <xsd:complexType>. Additionally, because we want our child
elements to appear in a specific order, we will also use a new element called
<xsd:sequence> in our definition. This element will appear as a child element
of the <xsd:complexType> instance. (See the following section, “Using a
Sequence,” for more detail about <xsd.sequence> instances.)

With <xsd:complexType> and <xsd:sequence> attended to, we can get to
the definitions of the <first>, <middle>, and <last> elements. Recall that the
<name> document in the previous example (name_v3.dtd) used DT4DTDs to
specify datatypes for our elements. Because it did so, and because we should
do it anyway, we will use the type attribute within the definition of these three
elements and specify the type as xsd:string. (For more information about
datatypes, see the detailed discussion in Chapter 4, “Applying Datatypes,”
and Appendix A, “Datatypes.” Also, refer to the “XML Schema, Part 2:
Datatypes” document, which is part of the XSD Recommendation.)

Additionally, we not only specified that <middle> is optional but that it and
<last> could also repeat. We accommodate these settings by using the minOc-
curs and maxOccurs attributes of <xsd:element>. These attributes enable us to
specify zero or an integer value to restrict the number of occurrences that can
appear, or we can specify unbounded for maxOccurs if there is no limit.
According to our needs, we will define these three elements as follows:

<xsd:element name = "first" type = "xsd:string"/>

<xsd:element name = "middle" type = "xsd:string" minOccurs = "0"

maxOccurs = "unbounded"/>

<xsd:element name = "last" type = "xsd:string" maxOccurs = "unbounded"/>

That will suffice for a direct conversion from XML 1.0 DTD to XSD Schema.
The complete, final file will look like Listing 2.6.

The type of file shown in Listing 2.6 is quite simple. But this method is not
the only way to declare child elements for a parent element. They can be

NOTE

XSD Elements 81

<?xml version = "1.0" encoding = "UTF-8"?>

<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema">

<xsd:element name = "name">

<xsd:complexType>

<xsd:sequence>

<xsd:element name = "first" type = "xsd:string"/>

<xsd:element name = "middle" type = "xsd:string" minOccurs =

"0" maxOccurs = "unbounded"/>

<xsd:element name = "last" type = "xsd:string" maxOccurs =

"unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>

Listing 2.6 Complete schema for <name> file from Listing 2.5 (name.xsd).

declared globally and referenced locally. This task is accomplished by using
the ref attribute of the <xsd:element> element. When this approach is taken, as
shown in Listing 2.7 , items like the type attribute are defined in the global def-
inition while any constraining attributes (such as minOccurs and maxOccurs)
are used in the local reference.

Defining elements as we did in the previous two examples is a relatively
straightforward procedure, but there are many other things we can do with
XSD-defined elements. Not only can they be defined in different ways, but
there are a variety of ways in which they can be used as well. Let’s now take a
more detailed move past this simple example and take a harder look at
<xsd:element> and what it can do for you.

< xsd:element >: A Closer Examination

Simply converting our simple example to its XSD representation does not
exhibit the power of the <xsd:element> element and its child elements. It does
not fully demonstrate how we can define complex content and apply attrib-
utes and datatypes, nor does it show how to enforce restrictions or define
extensions. XSD even has the capability to both import elements from other
locations and redefine both elements and attributes when imported.

Because the id attribute is simply a unique identifier for most all XSD
elements, we will not explicitly cover it in this chapter for the <xsd:element>
element. You will see its usage in various places throughout the book, however.

NOTE

82 Chapter 2

<?xml version = "1.0" encoding = "UTF-8"?>

<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema">

<xsd:element name = "name">

<xsd:complexType>

<xsd:sequence>

<!-- local references -->

<xsd:element ref = "first" />

<xsd:element ref = "middle" minOccurs = "0" maxOccurs =

"unbounded"/>

<xsd:element ref = "last" maxOccurs = "unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<!-- defining our elements globally -->

<xsd:element name = "first" type = "xsd:string"/>

<xsd:element name = "middle" type = "xsd:string" minOccurs = "0"

maxOccurs = "unbounded"/>

<xsd:element name = "last" type = "xsd:string" maxOccurs =

"unbounded"/>

</xsd:schema>

Listing 2.7 Declaring elements globally and referencing them locally (name-ref.xsd).

Take our minOccurs and maxOccurs attributes for <xsd:element> and our
name.xsd schema as an example. Is it really realistic for a person to have an
unlimited number of <middle> and <last> names? It is possible, but given
that the data contained in a document referencing name.xsd will most likely
be stored in a database or some other repository, it might be wise to limit the
number of <middle> and <last> instances. For example, we would guess that
a limit of three <middle> instances and two <last> instances would suffice for
most all applications. Redefining this factor in our schema, which is not possi-
ble when using XML 1.0 DTDs, would look like Listing 2.8 (name_v2.xsd).

When minOccurs and maxOccurs are not specified in a schema, the
default values are 1. So, an element without these attributes can occur once
and only once within an instance document.

Up to this point, the topic of moving from XML 1.0 to XSD schemas has
been discussed in general terms. Over the next few sections, we are going to
delve deeper into the <xsd:element> element and its usage.

NOTE

XSD Elements 83

<?xml version = "1.0" encoding = "UTF-8"?>

<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema">

<xsd:element name = "name">

<xsd:complexType>

<xsd:sequence>

<xsd:element name = "first" type = "xsd:string"/>

<xsd:element name = "middle" type = "xsd:string" minOccurs =

"0" maxOccurs = "3"/>

<xsd:element name = "last" type = "xsd:string" maxOccurs =

"2"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>

Listing 2.8 Controlling elements through options and repeatability (name_v2.xsd).

Default Values
Default values are a crucial aspect of the <xsd:element>. It is important to
learn how default values are set and to have a full understanding of how
conforming processors handle default values for elements, because default
values do differ from default attributes. With attributes, if the attribute is
missing in an instance document, the value of the default attribute automat-
ically appears when being processed. An element, on the other hand, also
has a default value but that value only appears when the element has no con-
tent. If the element is missing from the document, then the default value is
not automatically inserted. Let’s look at a short example to see how this
method works.

Let’s build a data model that represents all the actions from which one
might have to select when having their car washed at Joe’s Car Wash. At Joe’s,
there are two categories of service for cars: interior and exterior. For the inte-
rior, Joe can vacuum and/or shampoo the carpet and seats, he can clean the
windows, and he can clean the dashboard. For the exterior, he can wash, wax,
and/or detail the car as well as perform a thorough cleaning of the tires. A
visual representation of what Joe can perform is found in Figure 2.3.

To build the XSD Schema representation of this model, we must first create
a <carwash> element. As you can see in Figure 2.3, this element must have
<interior> and <exterior> elements. Because they are not used anywhere else in
the schema, let’s define those locally. Before moving on to the <exterior> child
elements, let’s first finish the definition of all child elements of the <interior>
element.

84 Chapter 2

carwash

interior

exterior

carpet

seats

windows

string

dash

string

wash

string

wax

string

detail

string

tires

string

vacuum

string

shampoo

string

vacuum

string

shampoo

string

Figure 2.3 Service at Joe’s Car Wash.

Within <interior>, we must define a <carpet>, <windows>, <dash>, and
<seats> set of elements. Additionally, both <carpet> and <seats> have a <vac-
uum> and <shampoo> child element. Because they both have this element,
let’s declare it globally and declare all the others local to <interior>. If we now
look at <exterior>, we can see that it is very simple. It only includes a <wash>,
<wax>, <detail>, and <tires> set of child elements, which we will declare
locally. At this point, we have outlined the basic structure of what we need to
represent our XSD schema, but we are not finished.

One other major point is that all child elements are optional. This feature
will enable us to set the proper minOccurs attributes, and because it is not
repeatable, we will not include a maxOccurs attribute. Why is that? Because

TEAMFL
Y

Team-Fly®

XSD Elements 85

the default value for maxOccurs when it is not present in a schema definition
is equal to 1, which is what we want. Our final bit of information will use the
default attribute. For <dash> and <windows> of the <interior> element,
<detail>, <tires>, <wash>, and <wax> of the <exterior> element, and all
instances of the <vacuum> and <shampoo> elements, we will set the default
attribute equal to the string “Yes.” We will talk more about why a bit later.

Everything with our schema has been defined in a human-readable form.
Our final XSD schema, shown in Listing 2.9 (carwash.xsd), includes our final
schema representation.

<?xml version = "1.0" encoding = "UTF-8"?>

<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema"

elementFormDefault = "qualified">

<xsd:element name = "carwash">

<xsd:complexType>

<xsd:sequence>

<!-- define our interior services -->

<xsd:element name = "interior" minOccurs = "0">

<xsd:complexType>

<xsd:sequence minOccurs = "0">

<!-- define our carpet options -->

<xsd:element name = "carpet" minOccurs = "0">

<xsd:complexType>

<xsd:sequence>

<!-- reference our global elements -->

<xsd:element ref = "vacuum" minOccurs = "0"/>

<xsd:element ref = "shampoo" minOccurs = "0"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name = "windows" type = "xsd:string"

default = "Yes" minOccurs = "0"/>

<xsd:element name = "dash" type = "xsd:string" default =

"Yes" minOccurs = "0"/>

<!-- define our seats options -->

<xsd:element name = "seats">

<xsd:complexType>

<xsd:sequence>continues

Listing 2.9 Schema for our carwash example (carwash.xsd).

86 Chapter 2

<!-- reference our global elements -->

<xsd:element ref = "vacuum" minOccurs = "0"/>

<xsd:element ref = "shampoo" minOccurs = "0"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<!-- define our exterior services -->

<xsd:element name = "exterior" minOccurs = "0">

<xsd:complexType>

<xsd:sequence>

<xsd:element name = "wash" type = "xsd:string" default =

"Yes" minOccurs = "0"/>

<xsd:element name = "wax" type = "xsd:string" default =

"Yes" minOccurs = "0"/>

<xsd:element name = "detail" type = "xsd:string" default

= "Yes" minOccurs = "0"/>

<xsd:element name = "tires" type = "xsd:string" default

= "Yes" minOccurs = "0"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<!-- we have some global elements, so define them here -->

<xsd:element name = "vacuum" type = "xsd:string" default = "Yes"/>

<xsd:element name = "shampoo" type = "xsd:string" default = "Yes"/>

</xsd:schema> continues

Listing 2.9 Schema for our carwash example (carwash.xsd). (Continued)

At Joe’s, the software applications that process car wash orders use this data
model for two things. First, it represents an order form: what the customer
ordered. The presence of an element means that the customer wishes to have
that particular service. Second, this model enables customers to include spe-
cific directions in their requests for services. For instance, let’s say that a cus-
tomer with a Toyota wanted to have her carpet shampooed, windows washed,
dash cleaned, seats vacuumed, and the exterior washed and waxed. Let’s also
say that she had special instructions to not use glossy protectant on the dash.
Listing 2.10 (toyota.xml) shows the document that represents this order.

XSD Elements 87

The customer order in Listing 2.10 explicitly specifies a “Yes” value for sev-
eral of the elements and special instructions for <dash>. But this example does
not demonstrate how the default values work. To show this process, let’s look
at an equivalent document in Listing 2.11. In this document, the “Yes” values
for the elements are not specified; instead, empty elements are included.

<?xml version = "1.0" encoding = "UTF-8"?>

<carwash xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation = "file:///S:/carwash.xsd">

<interior>

<carpet>

<shampoo>Yes</shampoo>

</carpet>

<windows>Yes</windows>

<dash>Please do not use glossy protectant</dash>

<seats>

<vacuum>Yes</vacuum>

</seats>

</interior>

<exterior>

<wash>Yes</wash>

<wax>Yes</wax>

</exterior>

</carwash>

Listing 2.10 A sample car wash order (toyota.xml).

<?xml version = "1.0" encoding = "UTF-8"?>

<carwash xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation = "file:///S:/carwash.xsd">

<interior>

<carpet>

<shampoo></shampoo>

</carpet>

<windows></windows>

<dash>Please do not use glossy protectant</dash>

<seats>

<vacuum></vacuum>

</seats>

</interior>

<exterior>

<wash></wash>

<wax></wax>

</exterior>

</carwash>

Listing 2.11 Using default values (toyota-defaults.xml).

88 Chapter 2

<?xml version = "1.0" encoding = "UTF-8"?>

<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema"

elementFormDefault = "qualified">

<xsd:element name = "carwash">

<xsd:complexType>

<xsd:sequence>

<!-- define our interior services -->

<xsd:element name = "interior" minOccurs = "0">

<xsd:complexType>

<xsd:sequence minOccurs = "0">

<!-- define our carpet options -->

<xsd:element name = "carpet" minOccurs = "0">

<xsd:complexType>

<xsd:sequence>

<!-- reference our global elements -->

<xsd:element ref = "vacuum" minOccurs = "0"/>

<xsd:element ref = "shampoo" minOccurs = "0"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name = "windows" type = "xsd:string"

default = "Yes" minOccurs = "0"/>

<xsd:element name = "dash" type = "xsd:string" default =

"Yes" minOccurs = "0"/>

continues

Listing 2.12 Using fixed default values (carwash-promo.xsd).

Because the processor will insert the default values for <shampoo>, <win-
dows>, <vacuum>, <wash>, and <wax>, both examples are essentially the
same. But what if you want to specify a default and not allow it to be changed?
Is that possible? The answer is yes.

Using our same example here, let’s say that Joe is running a special in which
every customer gets a free car wash when he or she comes in. Additionally,
because the wash is free, Joe is not allowing customers to specify any special
instructions. XSD has an attribute for <xsd:element>, called fixed, that enables
us to perform this task. Rather than say default=“Yes” in our definition of
<wash>, as we did in Listing 2.9, we say fixed=“Yes.” In Listing 2.12, this
change has been made.

XSD Elements 89

<!-- define our seats options -->

<xsd:element name = "seats">

<xsd:complexType>

<xsd:sequence>

<!-- reference our global elements -->

<xsd:element ref = "vacuum" minOccurs = "0"/>

<xsd:element ref = "shampoo" minOccurs = "0"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<!-- define our exterior services -->

<xsd:element name = "exterior" minOccurs = "0">

<xsd:complexType>

<xsd:sequence>

<!-- wash can only be "Yes" now

<xsd:element name = "wash" type = "xsd:string" fixed = "Yes" minOccurs

= "0"/>

<xsd:element name = "wax" type = "xsd:string" default =

"Yes" minOccurs = "0"/>

<xsd:element name = "detail" type = "xsd:string" default

= "Yes" minOccurs = "0"/>

<xsd:element name = "tires" type = "xsd:string" default

= "Yes" minOccurs = "0"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<!- we have some global elements, so define them here -->

<xsd:element name = "vacuum" type = "xsd:string" default = "Yes"/>

<xsd:element name = "shampoo" type = "xsd:string" default = "Yes"/>

</xsd:schema>

Listing 2.12 Using fixed default values (carwash-promo.xsd). (Continued)

90 Chapter 2

Now, when an instance document shows anything other than the presence
of the string “Yes,” an error will result. Setting an unchangeable default value
can be useful in certain circumstances, so be sure to remember that it is there.

Substitution Groups
The <xsd:element> includes many interesting attributes other than the ones
mentioned thus far. The abstract and substitutionGroup attributes are particu-
larly notable because they control element substitutions.

To understand how they are used, suppose that we want to make a list of
items that define a new schema for items that you own, called mythings.xsd,
shown in Listing 2.12. Within this schema are two child elements, <house> and
<vehicle>, both capable of holding xsd:string datatypes. Let’s also set a mini-
mum of zero for both elements and a maximum of 2 for <house> and 3 for
<vehicle>. At this point, which is not our final schema, we have the following:

<?xml version = "1.0" encoding = "UTF-8"?>

<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema">

<xsd:element name = "mythings">

<xsd:complexType>

<xsd:sequence>

<xsd:element name = "house" type = "xsd:string" minOccurs = "0"

maxOccurs = "2"/>

<xsd:element name = "vehicle" type = "xsd:string" minOccurs =

"0" maxOccurs = "3"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>

To make things interesting, suppose that we are not really expecting a
<vehicle> to be contained in the instance document but rather a specific vehi-
cle, like a car, motorcycle, or bicycle. In this case, <vehicle> is really function-
ing just like a placeholder for us. With XSD, individual elements can be used
in this manner by means of substitution groups. Why would we set up ele-
ments this way? The answer is, because we are able to control the overall use
of a defined group within a single element definition—<vehicle>, in this
instance.

For setting up substitution groups, we must first define three new global
elements called <car>, <motorcycle>, and <bicycle>. Next, we must assign
them to the vehicle group by using the substitutionGroup attribute. Code
would look like the following:

<xsd:element name = "car" type = "xsd:string"

substitutionGroup="vehicle"/>

<xsd:element name = "motorcyle" type = "xsd:string"

XSD Elements 91

substitutionGroup="vehicle"/>

<xsd:element name = "bicycle" type = "xsd:string"

substitutionGroup="vehicle"/>

But this step is only part of the process. Up to this point, we have only
defined the group, not specified that one of these elements should be used
instead of our <vehicle> element. To do that, we need to add a single attribute
to the <vehicle> element: the abstract attribute. Because the default value of this
Boolean attribute is False, we must assign it a value of True to enable the group
to represent the attribute. Our final document would look like Listing 2.13.

Now that our schema has been defined, we can create an instance docu-
ment based on it. Because of our specifications, we can have 0, 1, or 2 houses
and 0, 1, 2, or 3 vehicles, and our vehicles must be either car(s), motorcycle(s),
or bicycle(s). Listing 2.14 shows a sample document in which the <vehicle>
element cannot be used explicitly, but the <car> element can be used more
than once.

Null Values
As you begin to design schemas and use them within your enterprise, there
might be times where you need to define and specify null values. What is
meant by null? Let’s say that you had created a schema that represented the
shipment of a product to a consumer (Listing 2.15). During the fulfillment

<?xml version = "1.0" encoding = "UTF-8"?>

<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema">

<xsd:element name = "mythings">

<xsd:complexType>

<xsd:sequence>

<xsd:element name = "house" type = "xsd:string" minOccurs =

"0" maxOccurs = "2"/>

<xsd:element name = "vehicle" type = "xsd:string" abstract =

"true" minOccurs = "0" maxOccurs = "3"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name = "car" type = "xsd:string" substitutionGroup =

"vehicle"/>

<xsd:element name = "motorcyle" type = "xsd:string"

substitutionGroup = "vehicle"/>

<xsd:element name = "bicycle" type = "xsd:string" substitutionGroup

= "vehicle"/>

</xsd:schema>

Listing 2.13 Our final schema for list of your things (mythings.xsd).

92 Chapter 2

<?xml version = "1.0" encoding = "UTF-8"?>

<order>

<name>

<first>Robert</first>

<middle>Allen</middle>

<last>Wyke</last>

</name>

<item>Windows XP Professional</item>

</order>

Listing 2.15 Using null values (processing.xml).

process of taking the order and shipping it, your XML-based shipping docu-
ment might or might not be able to include certain items. For instance, you
might be able to include the customer’s name, address, and item selected but
not have the date that the item ships.

The document in Listing 2.15 is intended to serve as a snapshot of the order
at a certain point in the process. But at that point in time, there might not be a
ship date available. So, how do we define a schema that states that there needs
to be a ship date and no data is available for that date yet?

This need is fulfilled by specifying an element as nillable. This concept is like
that of NULL values in a database. The column/placeholder is there for data,
but the value is zero or blank—it is null. If we apply this concept to our example,
it implies that if we have an item, say <shipdate>, that is not present in an
instance document, it doesn’t mean that it doesn’t exist—only that there is no
data for it yet. It would be like having an empty element, as in the following:

<shipdate></shipdate>

To specify that a given element is nillable, we set the nillable attribute of the
<xsd:element> element to True. So, if we build an XSD schema for Listing 2.15,
we would have a schema as shown in Listing 2.16.

<?xml version = "1.0" encoding = "UTF-8"?>

<mythings xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation = "file:///S:/mythings.xsd">

<house>traditional style</house>

<car>Toyota</car>

<car>Ford</car>

<motorcyle>Honda</motorcyle>

</mythings>

Listing 2.14 Sample document with multiple vehicles (allensthings.xml).

XSD Elements 93

<?xml version = "1.0" encoding = "UTF-8"?>

<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema">

<xsd:element name = "order">

<xsd:complexType>

<xsd:sequence>

<xsd:element name = "name">

<xsd:complexType>

<xsd:sequence>

<xsd:element name = "first" type = "xsd:string"/>

<xsd:element name = "middle" type = "xsd:string"

minOccurs = "0" maxOccurs = "3"/>

<xsd:element name = "last" type = "xsd:string" maxOccurs

= "2"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name = "item" type = "xsd:string"/>

<xsd:element name = "shipdate" type = "xsd:date" nillable =

"true"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>

Listing 2.16 Schema for our order processing (order.xsd).

There is one last requirement for null values to work. In our instance docu-
ment, we will actually include the <shipdate> element, but we will have to
use the null attribute of the XMLSchema-instance namespace (commonly
referred to as the xsi namespace) within the body of the element. The follow-
ing document (Listing 2.17) shows how that is done.

<?xml version = "1.0" encoding = "UTF-8"?>

<order xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation = "file:///S:/order.xsd">

<name>

<first>Robert</first>

<middle>Allen</middle>

<last>Wyke</last>

</name>

<item>Windows XP Professional</item>

<shipdate xsi:null = "true"/>

</order>

Listing 2.17 Final touch on our instance document to ensure null values work correctly
(processing2.xml).

94 Chapter 2

Attributes
Until now, none of the elements that we have defined in our example schemas
have included attributes. Attributes represent a very important function when
markup languages are created, because they enable you to specify additional
information about the elements. This meta-information can be used for a vari-
ety of purposes, like for the inclusion of parameters or processing instructions
for an application parsing the document.

Suppose, for example, that we needed to define a data model that contained
a root <person> element. Let’s also say that there are the following different
kinds of people:

■■ Customer

■■ Employee

■■ Family

■■ Friend

Finally, let’s say that a given person of a given type has a name (first, mid-
dle, and last), address, phone number, and an e-mail address. These are all
optional and can only have a maximum of one occurrence. You can see a
model of the <person> element in Figure 2.4.

When we create the XSD schema that represents the model shown in Fig-
ure 2.4, we will end up declaring our <name>, <address>, <phone>, and
<email> elements globally so that they all can be referenced by <customer>,
<employee>, <family>, and <friend>. Although the main definition of these
elements is global, they still require a line of XSD to reference the global
instance. This function creates a rather long schema, which you can see in
Listing 2.18.

This schema is very verbose. A better way to express it would be through the
use of attributes. A look at our model reveals that the different types of people
could be best represented as attributes and not as elements. In this case, an ele-
ment forces us to re-reference other elements over and over. A better approach
would be to have a solid data model and use an attribute to augment the infor-
mation and apply the context that we need to distinguish the type of user.

In XSD, the addition of an attribute is handled by the <xsd:attribute> ele-
ment. Taking our example, we are able to remove the <employee>, <cus-
tomer>, <friend>, and <family> elements and replace them with a single
attribute called type that will be present in the <person> element. Because
XSD enables us to specify a list of values that must be used, we are also able to
explicitly say that the type can only equal the terms employee, customer,
friend, and family.

To use the <xsd:attribute> element, we will specify both the name of the
attribute and the fact that it is a required element by assigning the use

TEAMFL
Y

Team-Fly®

XSD Elements 95

email

string

phone

string

address

string

person

customer

family

name

first

last

middle

string

string

string

0

3
1

2

email

string

phone

string

address

string

employee

name

first

last

middle

string

string

string

0

3
1

2

email

string

phone

string

address

string

friend

name

first

last

middle

string

string

string

0

3
1

2

email

string

phone

string

address

string

name

first

last

middle

string

string

string

0

3
1

2

Figure 2.4 Our <person> element.

96 Chapter 2

<?xml version = "1.0" encoding = "UTF-8"?>

<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema"

elementFormDefault = "qualified">

<xsd:element name = "person">

<xsd:complexType>

<xsd:sequence>

<xsd:element name = "customer">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref = "name"/>

<xsd:element ref = "address" minOccurs = "0"/>

<xsd:element ref = "phone" minOccurs = "0" maxOccurs =

"unbounded"/>

<xsd:element ref = "email" minOccurs = "0" maxOccurs =

"unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name = "employee">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref = "name"/>

<xsd:element ref = "address" minOccurs = "0"/>

<xsd:element ref = "phone" minOccurs = "0" maxOccurs =

"unbounded"/>

<xsd:element ref = "email" minOccurs = "0" maxOccurs =

"unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name = "friend">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref = "name"/>

<xsd:element ref = "address" minOccurs = "0"/>

<xsd:element ref = "phone" minOccurs = "0" maxOccurs =

"unbounded"/>

<xsd:element ref = "email" minOccurs = "0" maxOccurs =

"unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name = "family">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref = "name"/>

<xsd:element ref = "address" minOccurs = "0"/>

Listing 2.18 Schema for <person> element (person.xsd).

XSD Elements 97

<xsd:element ref = "phone" minOccurs = "0" maxOccurs =

"unbounded"/>

<xsd:element ref = "email" minOccurs = "0" maxOccurs =

"unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name = "name">

<xsd:complexType>

<xsd:sequence>

<xsd:element name = "first" type = "xsd:string"/>

<xsd:element name = "middle" type = "xsd:string" minOccurs =

"0" maxOccurs = "3"/>

<xsd:element name = "last" type = "xsd:string" maxOccurs =

"2"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name = "address" type = "xsd:string"/>

<xsd:element name = "phone" type = "xsd:string"/>

<xsd:element name = "email" type = "xsd:string"/>

</xsd:schema>

Listing 2.18 Schema for <person> element (person.xsd). (Continued)

attribute of <xsd:attribute> to required. The choices of this attribute will be
restricted to person, employee, friend, and family. This restriction is accom-
plished by using the <xsd:restriction> element. The final segment of code that
enables us to define this attribute is as follows:

<xsd:attribute name = "type" use = "optional">

<xsd:simpleType>

<xsd:restriction base = "xsd:string">

<xsd:enumeration value = "person"/>

<xsd:enumeration value = "employee"/>

<xsd:enumeration value = "friend"/>

<xsd:enumeration value = "family"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

Do not worry too much about the details of some of these elements, like
<xsd:enumeration>. We will cover those later. In Listing 2.19, a modified ver-
sion of our schema is shown that represents this change in its entirety.

98 Chapter 2

<?xml version = "1.0" encoding = "UTF-8"?>

<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema"

elementFormDefault = "qualified">

<xsd:element name = "person">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref = "name"/>

<xsd:element ref = "address" minOccurs = "0"/>

<xsd:element ref = "phone" minOccurs = "0" maxOccurs =

"unbounded"/>

<xsd:element ref = "email" minOccurs = "0" maxOccurs =

"unbounded"/>

</xsd:sequence>

<xsd:attribute name = "type" use = "required">

<xsd:simpleType>

<xsd:restriction base = "xsd:string">

<xsd:enumeration value = "person"/>

<xsd:enumeration value = "employee"/>

<xsd:enumeration value = "friend"/>

<xsd:enumeration value = "family"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

</xsd:complexType>

</xsd:element>

<xsd:element name = "name">

<xsd:complexType>

<xsd:sequence>

<xsd:element name = "first" type = "xsd:string"/>

<xsd:element name = "middle" type = "xsd:string" minOccurs =

"0" maxOccurs = "3"/>

<xsd:element name = "last" type = "xsd:string" maxOccurs =

"2"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name = "address" type = "xsd:string"/>

<xsd:element name = "phone" type = "xsd:string"/>

<xsd:element name = "email" type = "xsd:string"/>

</xsd:schema>

Listing 2.19 Restricting our type attribute to a list of choices (person-attri.xsd).

Listing 2.19 is much cleaner than Listing 2.20. Figure 2.5 shows the visual
representation of this approach.

Listing 2.20 shows how the use of this schema might look.
Chapter 3, “Adding Attributes,” will discuss attributes in detail. After you

have completed that chapter, you will have more than enough information to
begin using attributes.

XSD Elements 99

<?xml version = "1.0" encoding = "UTF-8"?>

<person xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance" xsi:

noNamespaceSchemaLocation = "file:///S:/person-attri.xsd"

type = "friend">

<name>

<first>Chad</first>

<last>Walsh</last>

</name>

<address>123 Anywhere, Chapel Hill NC</address>

<phone>999.555.1212</phone>

<email>chad@anywhere.com</email>

</person>

Listing 2.20 Using our newly restricted type attribute (friend.xml).

first

last

middle

string

string

string

person

type

*/string

name

email

string

phone

string

address

string

0

3
1

2

Figure 2.5 Our cleaner schema using an attribute.

Complex Content
Another very important element in XSD is the <xsd:complexContent> ele-
ment. This element can be used as a child element of the <xsd:complexType>,
which is discussed in Chapter 1, but it can only contain other elements. It can-
not contain any character data.

100 Chapter 2

Table 2.2 Attributes of the <xsd:complexContent> Tag

ATTRIBUTE DESCRIPTION

id Unique identifier

mixed Boolean item that specifies whether an element contains mixed
content or not

<?xml version = "1.0" encoding = "UTF-8"?>

<computer type = "emachines" speed = "1GHz"

xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation = "file:///S:/computer.xsd"/>

Listing 2.21 Sample instance document for <computer> (emachines.xml).

The <xsd:complexContent> element is used to restrict or extend the content
model of a complex type. Unlike simple content, which can contain character
data (CDATA) and attributes, complex content can only contain elements or no
content at all. The following is the full definition of the element (Table 2.2
shows the attributes for this element):

<complexContent

id = ID

mixed = boolean

{any attributes with non-schema namespace . . .}>

Content: (annotation?, (restriction | extension))

</complexContent>

As Table 2.2 and the description reveal, <xsd:complexType> is a relatively
simple element. It has the now-common id attribute and one other: mixed.
The mixed attribute contains a boolean value that specifies whether or not an
element contains mixed content. Let’s look at some examples to see how this
feature works.

If we wanted to create an element called <computer>, that would require
both a type and speed attribute. Let’s say that the type of computer can either
be eMachines, Dell, Compaq, or Gateway. An example usage of this model
might look like the one shown Listing 2.21.

In the instance document in Listing 2.21, we referenced a schema called
computer.xsd.

Notice in Listing 2.22 the presence of our <xsd:complexContent> element.
Within this element are two restricted attributes, one of which is restricted to a
list of four computer types itself. The <xsd:restriction> element is discussed in
detail in the next section, but for now notice the use of the anyType datatype

XSD Elements 101

<?xml version = "1.0" encoding = "UTF-8"?>

<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema">

<xsd:element name = "computer">

<xsd:complexType>

<xsd:complexContent>

<xsd:restriction base = "anyType">

<!-- lets define our first attribute -->

<xsd:attribute name = "type" use = "required">

<xsd:simpleType>

<xsd:restriction base = "xsd:string">

<xsd:enumeration value = "emachines"/>

<xsd:enumeration value = "dell"/>

<xsd:enumeration value = "compaq"/>

<xsd:enumeration value = "gateway"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

<!-- lets define our second attribute -->

<xsd:attribute name = "speed" use = "required" type =

"xsd:string"/>

</xsd:restriction>

</xsd:complexContent>

</xsd:complexType>

</xsd:element>

</xsd:schema>

Listing 2.22 Schema for our computer element (computer.xsd).

for the restriction. Essentially, the anyType datatype means that any type of
data can occur here. Listing 2.22 shows an example with an empty element.
With this schema, we are able to create a shorthand version. Because our
<xsd:complexType> element is defined without any <xsd:simpleContent>,
the default is to assume <xsd:complexContent> that restricts anyType. The
result is that we do not have to include the <xsd:restriction> or <xsd:complex-
Content> elements in our definition. Listing 2.23 illustrates what the short ver-
sion would look like.

Now that we have an understanding of what the <xsd:complexContent>
element is used for, let’s look at how both <xsd:restriction> and <xsd:exten-
sion> are used within the context of <xsd:complexContent>. These elements
are used in other places as well, but for now the discussion is limited to their
use with <xsd:complexContent>.

102 Chapter 2

<?xml version = "1.0" encoding = "UTF-8"?>

<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema">

<xsd:element name = "computer">

<xsd:complexType>

<xsd:attribute name = "type" use = "required">

<xsd:simpleType>

<xsd:restriction base = "xsd:string">

<xsd:enumeration value = "emachines"/>

<xsd:enumeration value = "dell"/>

<xsd:enumeration value = "compaq"/>

<xsd:enumeration value = "gateway"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

<xsd:attribute name = "speed" use = "required" type =

"xsd:string"/>

</xsd:complexType>

</xsd:element>

</xsd:schema>

Listing 2.23 Shorthand version of our schema (computer-short.xsd).

Restrictions of Complex Types

In previous codes, we saw how the <xsd:restriction> element is used to
restrict the content model of an element being defined. In Chapter 1, we
learned about simple types in XSD, which can be restricted. Unlike restricting
simple types, complex types do not limit you to simply restricting a range of
values. To understand this concept, one might certainly ask what “restrict” is
relative to. In other words, what makes it a restriction?

The following is a formal definition of a restriction and its attributes:

<restriction

base = QName

id = ID

{any attributes with non-schema namespace . . .}>

Content: (annotation?, (group | all | choice | sequence)?, ((attribute

| attributeGroup)*, anyAttribute?))

</restriction>

The definition shows <xsd:restriction> to contain two attributes that are
described in Table 2.3: the id attribute, already described, and the base
attribute, which will require further explanation.

The <xsd:restriction> must be relative to the element referenced by the base
attribute. That element might or might not contain a namespace prefix,
depending on whether or not the element is in another schema. What the

XSD Elements 103

Table 2.3 Attributes of the <xsd:restriction> Tag

ATTRIBUTE DESCRIPTION

base Base item on which you wish to restrict based

id Unique identifier

<xsd:restriction> element does is enable you to build a new element that is a
subset of another element, located at the base. All you do is change the infor-
mation that needs to be different and then cut and paste in the rest of the defi-
nition. So, why is this feature valuable? The value is that parsers then check to
make sure the new element is actually a subset of the original element and not
a superset.

For example, suppose that we have a model with a parent element called
<policecar> that contains child elements of <body>, <wheels>, <engine>,
and <gear>. Also, the <gear> element has child elements of <siren>, <lights>,
and <radio>—all things specific to police cars. Figure 2.6 is a representation
of this model.

The following is the definition of the XSD version of the policecar element,
with all of our child elements (except <gear>) defined globally:

policecar

gear

body

string

wheels

string

engine

string

siren

string

lights

string

radio

string

Figure 2.6 Representation of our <policecar> model.

104 Chapter 2

body

string

wheels

string

engine

string

Car

Figure 2.7 A look at our new <car> element.

<xsd:element name = "policecar">

<xsd:complexType>

<xsd:sequence>

<!-- referencing child elements defined globally -->

<xsd:element ref = "body"/>

<xsd:element ref = "wheels"/>

<xsd:element ref = "engine"/>

<!-- defining police-specific information -->

<xsd:element name = "gear">

<xsd:complexType>

<xsd:sequence>

<xsd:element name = "siren" type = "xsd:string"/>

<xsd:element name = "lights" type = "xsd:string"/>

<xsd:element name = "radio" type = "xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<!-- global declarations of some elements -->

<xsd:element name = "body" type = "xsd:string"/>

<xsd:element name = "wheels" type = "xsd:string"/>

<xsd:element name = "engine" type = "xsd:string"/>

Now, we need to tap into the power of the <xsd:restriction> element. Let’s
say that we need to define a new top-level element, but this element (<car>)
has all the child elements of <policecar> but does not have <gear> or any of its
child elements. Because what we want is a subset of another element, it is the
perfect time to use a restriction approach to defining the new element (as
shown in Figure 2.7).

The key to being able to accomplish this task is to use the <xsd:restriction>
within this complex type. The snippet of code that would make this task hap-
pen is as follows:

TEAMFL
Y

Team-Fly®

XSD Elements 105

<xsd:complexType name = "car">

<xsd:complexContent>

<xsd:restriction base = "policecar">

<xsd:sequence>

<xsd:element ref = "body"/>

<xsd:element ref = "wheels"/>

<xsd:element ref = "engine"/>

</xsd:sequence>

</xsd:restriction>

</xsd:complexContent>

</xsd:complexType>

In this snippet, both the <car> and <policecar> elements are assumed
to be defined in the same document.

As you can see, we use the <xsd:restriction> element to base our <car> ele-
ment on the <policecar> element. We are even able to use the same globally
declared elements by referencing them in our <car> model. And, because we
use <xsd:restriction>, we can be assured that this element is actually a subset
of <policecar>.

We have included the entire schema in Listing 2.24.

NOTE

<?xml version = "1.0" encoding = "UTF-8"?>

<!-- Generated by XML Authority. Conforms to w3c

http://www.w3.org/2001/XMLSchema -->

<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema"

elementFormDefault = "qualified">

<xsd:element name = "policecar">

<!-- defining police-specific information -->

<xsd:complexType>

<xsd:sequence>

<xsd:element ref = "body"/>

<xsd:element ref = "wheels"/>

<xsd:element ref = "engine"/>

<!-- this element and its children are specific to it -->

<xsd:element name = "gear">

<xsd:complexType>

<xsd:sequence>

<xsd:element name = "siren" type = "xsd:string"/>

<xsd:element name = "lights" type = "xsd:string"/>

<xsd:element name = "radio" type = "xsd:string"/>

continues

Listing 2.24 Schema for our <policecar> element (cars.xsd).

106 Chapter 2

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<!-- defining our car element that is a subset of policecar -->

<xsd:complexType name = "car">

<xsd:complexContent>

<xsd:restriction base = "policecar">

<xsd:sequence>

<xsd:element ref = "body"/>

<xsd:element ref = "wheels"/>

<xsd:element ref = "engine"/>

</xsd:sequence>

</xsd:restriction>

</xsd:complexContent>

</xsd:complexType>

<!-- global declarations of some elements -->

<xsd:element name = "body" type = "xsd:string"/>

<xsd:element name = "wheels" type = "xsd:string"/>

<xsd:element name = "engine" type = "xsd:string"/>

</xsd:schema>

Listing 2.24 Schema for our <policecar> element (cars.xsd). (Continued)

Extensions

Suppose that we want to create a superset rather than a subset. A superscript
can be created with the <xsd:extension> element like the way the subset was
created.

For example, suppose that we have our <name> element , used previously,
but it only has <first> and <last> as the content model. This simple model
might be defined as follows:

<xsd:element name = "name">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref = "first"/>

<xsd:element ref = "last" maxOccurs = "2"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

XSD Elements 107

Table 2.4 Attributes of the <xsd:extension> Tag

ATTRIBUTE DESCRIPTION

base Base item off of which that you want to extend

id Unique identifier

<xsd:element name = "first" type = "xsd:string"/>

<xsd:element name = "last" type = "xsd:string"/>

This model might work for a lot of instances, but it does not work for us. We
need a <middle> name. Rather than build our own, new data model that fits
our needs, let’s use the <xsd:extension> element to create a new element
called <myname> by extending the <name> element. The extension would
add the <middle> element that we need. The syntax for doing so is much the
same as using <xsd:restriction>, except we only need to include a definition
for the new element (we do not have to include the previously defined content
model). This definition would look as follows:

<xsd:complexType name = "myname">

<xsd:complexContent>

<xsd:extension base = "name">

<xsd:sequence>

<xsd:element name = "middle" type = "xsd:string" minOccurs = "0"

maxOccurs = "3"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

As you can see in the code snippet, just as with <xsd:restriction>, we use the
base element to reference a base content model. We then add the definition for
the new <middle> element. Table 2.4 shows attributes of the <xsd:extension>
tag. The following code (extension.xsd, Listing 2.25) shows the entire source
code for this example.

Because we are sure you are interested, we have included the official defin-
ition of the <xsd:extension> element here and described the two attributes of
this element in Table 2.4.

<extension

base = QName

id = ID

{any attributes with non-schema namespace . . .}>

Content: (annotation?, ((group | all | choice | sequence)?,

((attribute | attributeGroup)*, anyAttribute?)))

</extension>

108 Chapter 2

<?xml version = "1.0" encoding = "UTF-8"?>

<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema"

elementFormDefault = "qualified">

<xsd:element name = "name">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref = "first"/>

<xsd:element ref = "last" maxOccurs = "2"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:complexType name = "myname">

<xsd:complexContent>

<xsd:extension base = "name">

<xsd:sequence>

<xsd:element name = "middle" type = "xsd:string" minOccurs =

"0" maxOccurs = "3"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:element name = "first" type = "xsd:string"/>

<xsd:element name = "last" type = "xsd:string"/>

</xsd:schema>

Listing 2.25 Schema for <name> element (extension.xsd).

Importing Elements from Other
Locations
The last section explored the ability to extend and restrict elements. In the
examples, an element was both extended and restricted within the same docu-
ment. It would be convenient if we could extend and restrict elements that
were originally defined in other schemas. We can. That can be accomplished
with a couple of elements within the XSD language: namely, <xsd:import>
and <xsd:include>. Recall the example in Listing 2.25 in which we created a
<myname> element that extended a <name> element. Let’s redo this example
by breaking it into two different schema files to illustrate how <xsd:import>
and <xsd:include> work.

Before we examine how these two elements work in an example, we need to
know what these two elements are. The first element, <xsd:include>, is used
to import (or reference) another schema. This feature is a very powerful piece
of functionality, because it means that you can literally build new schemas
that are nothing more than a collection of other schemas. For example, you

XSD Elements 109

Table 2.5 Attributes of the <xsd:include> Tag

ATTRIBUTE DESCRIPTION

id Unique identifier.

schemaLocation Specifies location of the schema you wish to include.

might take one schema that defines vehicles, another that defines property,
and another that defines boats and pull them all together in a single schema
that represents your assets.

The <xsd:include> element is a very simple element with only two attrib-
utes. The definition of this element is as follows:

<include

id = ID

schemaLocation = anyURI

{any attributes with non-schema namespace . . .}>

Content: (annotation?)

</include>

Table 2.5 identifies each of these attributes and describes what they do. Pay
particular attention to the schemaLocation attribute, which is what is used to
reference (include) additional schemas.

Another schema can be imported into your working schema by using the
<xsd:import> element. Including a schema is only half the battle; you must
now import the definitions and declarations of the imported schema. This
process includes specifying the location of the schema you are importing,
which must be the same as the schemaLocation attribute value used in
<xsd:include>, and the declaration of a target namespace. Other than that, this
element is pretty simple to use. The following is the official definition of the
<xsd:import> element:

<import

id = ID

namespace = anyURI

schemaLocation = anyURI

{any attributes with non-schema namespace . . .}>

Content: (annotation?)

</import>

This element contains three attributes detailed in Table 2.6. Familiarize
yourself with this information.

To build different schemas by using the <xsd:import> and the
<xsd:include> tags, the first thing to do is build our <name> element in a new
file. We have performed this action several times in several examples, so we

110 Chapter 2

<?xml version = "1.0" encoding = "UTF-8"?>

<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema"

elementFormDefault = "qualified">

<xsd:element name = "name">

<xsd:complexType>

<xsd:sequence>

<xsd:element name = "first" type = "xsd:string"/>

<xsd:element name = "last" type = "xsd:string" maxOccurs =

"2"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>

Listing 2.26 Schema for our <name> element (simple-name.xsd).

will spare you the extra description of the process. Listing 2.26 gives the
source code for this schema.

Now, let’s turn our attention to including this schema and importing its ele-
ments into our new schema. The first part of the process is to include our
schema. This job can be accomplished by using the following line of code.

<xsd:include schemaLocation = "file:///S:/simple-name.xsd"/>

Once the schema has been included, we now need to import its definitions
and declarations. We use the <xsd:import> element in the following manner:

<xsd:import namespace = "file:///S:/simple-name.xsd" schemaLocation =

"file:///S:/simple-name.xsd""/>

Before we are able to use these definitions and declarations and now that
they are imported, we must define a namespace prefix for this schema. We are
going to add the following attribute to our <xsd:schema> element:

xmlns:sname = "file:///S:/simple-name.xsd"

Table 2.6 Attributes of the <xsd:import> Tag

ATTRIBUTE DESCRIPTION

id Unique identifier

namespace Specifies target namespace for imported schema

schemaLocation Specifies location of the schema you wish to include

XSD Elements 111

This addition will enable us to reference the newly imported definitions and
declarations by using the name prefix. Now, we are ready to build the schema.
All we have to do is define our new <myname> element with the desired
<middle> element, which will act as an extension to the <name> element
defined in Listing 2.26. This definition is almost the same as our example in
the last section; however, the reference to the base element must contain the
namespace prefix name. You can see that in the following snippet:

<xsd:complexType name = "myname">

<xsd:complexContent>

<xsd:extension base = "sname:name">

<xsd:sequence>

<xsd:element name = "middle" type = "xsd:string" minOccurs = "0"

maxOccurs = "3"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

Notice that this definition is almost exactly the same as the definition for the
<name> element in the previous section. Listing 2.27 shows the complete
schema in which both the declarations and definitions are included and
imported and the new <myname> element (<middle>) is defined.

<?xml version = "1.0" encoding = "UTF-8"?>

<xsd:schema xmlns:sname = "file:///S:/simple-name.xsd"

xmlns:xsd = "http://www.w3.org/2001/XMLSchema"

elementFormDefault = "qualified">

<xsd:import namespace = "file:///S:/simple-name.xsd" schemaLocation

= "file:///S:/simple-name.xsd"/>

<xsd:include schemaLocation = "file:///S:/simple-name.xsd"/>

<xsd:complexType name = "myname">

<xsd:complexContent>

<xsd:extension base = "sname:name">

<xsd:sequence>

<xsd:element name = "middle" type = "xsd:string" minOccurs =

"0" maxOccurs = "3"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

</xsd:schema>

Listing 2.27 Final schema with included schema reference and imported declarations
(myname.xsd).

112 Chapter 2

Table 2.7 Attributes of the <xsd:redefine> Tag

ATTRIBUTE DESCRIPTION

id Unique identifier

schemaLocation Specifies location of the schema you wish to include

Redefining Elements
The definition of an imported element can be changed without extending it. To
do so, we use the <xsd:redefine> element. That element is defined as follows:

<redefine

id = ID

schemaLocation = anyURI

{any attributes with non-schema namespace . . .}>

Content: (annotation | (simpleType | complexType | group |

attributeGroup))*

</redefine>

A description of the <xsd:redefine> attributes is given in Table 2.7.
The <xsd:redefine> element is very much like the <xsd:import> element,

except that with <xsd:redefine> we are able to redefine an item that was pre-
viously defined. This capability might not seem beneficial when the included
schema only has one or two items defined in it. But it can be extremely power-
ful if many items are being defined.

For example, let’s say that we had a large schema that defines the content
model for shipping out goods to a consumer. The business has prospered, and
the company has now decided to expand into international markets. Because
international addresses, phone numbers, and other contact information are
slightly different from domestic ones, we really need to have a different
schema for international orders. Rather than create a new schema with many
of the same and previously defined elements, attributes, and datatypes, we
can simply redefine the ones we want to change.

If we were to take this approach with Listing 2.27, the result would be that
contained in Listing 2.28 (myname-redefine.xsd).

More on <xsd:complexType>

By this point, we have seen how the <xsd:complexType> type is used on many
different occasions. Because it is such an import element in the XSD language,
we should examine it in further detail now and give additional examples of
how it is used. The following is a definition of <xsd:complexType>:

XSD Elements 113

<?xml version = "1.0" encoding = "UTF-8"?>

<xsd:schema xmlns:sname = "file:///S:/simple-name.xsd"

xmlns:xsd = "http://www.w3.org/2001/XMLSchema"

elementFormDefault = "qualified">

<xsd:import namespace = "file:///S:/simple-name.xsd" schemaLocation

= "file:///S:/simple-name.xsd"/>

<xsd:redefine schemaLocation = "file:///S:/simple-name.xsd"/>

<xsd:complexType name = "myname">

<xsd:complexContent>

<xsd:extension base = "sname:name">

<xsd:sequence>

<xsd:element name = "middle" type = "xsd:string" minOccurs =

"0" maxOccurs = "3"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

</xsd:schema>

Listing 2.28 Redefining <myname> (myname-redefine.xsd).

<complexType

abstract = boolean : false

block = (#all | List of (extension | restriction))

final = (#all | List of (extension | restriction))

id = ID

mixed = boolean : false

name = NCName

{any attributes with non-schema namespace . . .}>

Content: (annotation?, (simpleContent | complexContent | ((group | all

| choice | sequence)?, ((attribute | attributeGroup)*, anyAttribute?))))

</complexType>

This element shares many of the same attributes as the <xsd:element> ele-
ment, as shown in Table 2.8.

As we learned in Chapter 1, complex types (items defined by using the
<xsd:complexType> element) represent elements that have child elements and
attributes in their definition as well as potentially carry character data in their
instance documents. In this respect, they differ from simple types (items
defined by using the <xsd:simpleType> element), which cannot have charac-
ter data or attributes.

The definition of <xsd:complexType> reveals that the element can have sev-
eral different child elements. Over the next few pages, we are going to look
specifically at the elements that enable us to control how a content model is
defined.

114 Chapter 2

Using a Sequence
Within XSD, there is an <xsd:sequence> element that enables us to define a series
of elements called a sequence. A sequence is a series of child elements that are sup-
posed to appear within a content model of a parent element. Most of our exam-
ples thus far have used sequences; refer back to them for an illustration of how
they are to appear. The following is the definition of the <xsd:sequence> element:

<sequence

id = ID

maxOccurs = (nonNegativeInteger | unbounded) : 1

minOccurs = nonNegativeInteger : 1

{any attributes with non-schema namespace . . .}>

Content: (annotation?, (element | group | choice | sequence | any)*)

</sequence>

The attributes of <xsd:sequence> should look very familiar, as they have
been used often throughout the book. See Table 2.9 for a brief description of
each. Keep in mind that the order of a sequence is important. So, for example,
if you have a <first> element defined in a sequence before a <last> element,
then an instance document should reflect that same order.

Grouping
On many occasions when defining schemas, you will find it necessary, or at
least desirable, to group elements together. You might want to do so for organi-
zational reasons, or perhaps you might want to have a means to more accu-
rately define your content model. For example, suppose that you had a root
<address> element, and within this element you could either have a <work> or
<home> child element to signify a work or home address. The ability to restrict
the presences of only one of these child elements, a concept that was also pre-
sent in XML 1.0, is needed to force the user to enter only one or the other.

Table 2.8 Attributes of the <xsd:complexType> Tag

ATTRIBUTE DESCRIPTION

abstract Boolean value that requires the use of a substitution group

block Allows you to control replacement by restriction, extension, or both
derived types

final Allows you to prevent derivations by restriction, extension, or both

id Unique identifier

mixed Boolean item that specifies if an element contains mixed content or not

name The name of the attribute you are creating

TEAMFL
Y

Team-Fly®

XSD Elements 115

Table 2.9 Attributes of the <xsd:sequence> Tag

ATTRIBUTE DESCRIPTION

id Unique identifier

maxOccurs Maximum number of occurrences the element can appear within
the parent element

minOccurs Minimum number of occurrences the element can appear within
the parent element

This situation is just one simple example of how one might group elements,
or choices in this sample, together within an XML-based schema definition.
This section of the chapter explores three specific XSD elements that provide a
means to group elements: <xsd:group>, <xsd:choice>, and <xsd:all>. The use
of each of these will be briefly explored as well.

Group

When building schemas, we might run across times when we want to define
reusable groups of elements. For example, if a set of elements is used often,
then it would be to our advantage to group them together and reference the
entire group instead of each element individually. To perform this task, we can
use the <xsd:group> element, which has the following definition:

<group

name = NCName>

Content: (annotation?, (all | choice | sequence))

</group>

Within this element, there is only a single attribute shown in Table 2.10.
To illustrate how this technique would be used, suppose that we wanted to

build a model based on the names of several people. The purpose of this
model, when used in an instance document, would be to outline each person’s
role. For example, if we define an <allen> element for a role-player named
Allen, it might have the following instance when used in the context of Allen’s
role as an employee:

<allen>Hard worker</allen>

Table 2.10 Attributes of the <xsd:group> Tag

ATTRIBUTE DESCRIPTION

name Name of the group being created

116 Chapter 2

<?xml version = "1.0" encoding = "UTF-8"?>

<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema"

elementFormDefault = "qualified">

<xsd:group name = "thegang">

<xsd:sequence>

<xsd:element name = "allen" type = "xsd:string"/>

<xsd:element name = "andrew" type = "xsd:string"/>

<xsd:element name = "donald" type = "xsd:string"/>

</xsd:sequence>

</xsd:group>

<xsd:element name = "friends">

<xsd:complexType>

Listing 2.29 Using <xsd:group> groups (people.xsd).

On the other hand, it might have the following instance when used in the
context of Allen’s role among friends:

<allen>Has good parties</allen>

Our model for people’s roles in a group needs to encompass five people,
each of whom should be listed: <allen>, <andrew>, <donald>, <frank>, and
<john>. Additionally, each person needs to be defined in the context of being
an employee, friend, or both—potential <employees> and <friends> parent
elements. Because <allen>, <andrew>, and <donald> are both <employees>
and <friends>, we are going to pull them together using <xsd:group> into a
group called “thegang.” The grouping aspect is actually very easy to do
because it only requires a parent <xsd:group> element with a name. The fol-
lowing code shows us how to perform this task:

<xsd:group name = "thegang">

<xsd:sequence>

<xsd:element name = "allen" type = "xsd:string"/>

<xsd:element name = "andrew" type = "xsd:string"/>

<xsd:element name = "donald" type = "xsd:string"/>

</xsd:sequence>

</xsd:group>

To reference this group in our <employees> and <friends> models, we sim-
ply include the following:

<xsd:group ref = "thegang"/>

For a complete example, see Listing 2.29, which includes not only this
grouping but also how we would build both the <employees> and <friends>
models that used this group.

XSD Elements 117

<xsd:sequence>

<xsd:group ref = "thegang"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name = "employees">

<xsd:complexType>

<xsd:sequence>

<xsd:group ref = "thegang"/>

<xsd:element ref = "frank"/>

<xsd:element ref = "john"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name = "frank" type = "xsd:string"/>

<xsd:element name = "john" type = "xsd:string"/>

</xsd:schema>

Listing 2.29 Using <xsd:group> groups (people.xsd). (Continued)

Table 2.11 Attributes of the <xsd:choice> Tag

ATTRIBUTE DESCRIPTION

id Unique identifier

maxOccurs Maximum number of occurrences the element can appear within
the parent element

minOccurs Minimum number of occurrences the element can appear within
the parent element

Choices

Another important method of defining content models is through the use of
<xsd:choice>, which is defined as follows:

<choice

id = ID

maxOccurs = (nonNegativeInteger | unbounded) : 1

minOccurs = nonNegativeInteger : 1

{any attributes with non-schema namespace . . .}>

Content: (annotation?, (element | group | choice | sequence | any)*)

</choice>

This element enables us to specify a list of elements where only one can
appear in an instance document. Table 2.11 gives the attributes of this element.

A good example of how one might use this code is to modify Listing 2.29
and say that there can only be one employee. We change our <xsd:sequence>
within our <employees> definition to an <xsd:choice>. The result is found in
Listing 2.30.

118 Chapter 2

<?xml version = "1.0" encoding = "UTF-8"?>

<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema"

elementFormDefault = "qualified">

<xsd:group name = "thegang">

<xsd:sequence>

<xsd:element name = "allen" type = "xsd:string"/>

<xsd:element name = "andrew" type = "xsd:string"/>

<xsd:element name = "donald" type = "xsd:string"/>

</xsd:sequence>

</xsd:group>

<xsd:element name = "friends">

<xsd:complexType>

<xsd:sequence>

<xsd:group ref = "thegang"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name = "employees">

<xsd:complexType>

<xsd:choice>

<xsd:group ref = "thegang"/>

<xsd:element ref = "frank"/>

<xsd:element ref = "john"/>

</xsd:choice>

</xsd:complexType>

</xsd:element>

<xsd:element name = "frank" type = "xsd:string"/>

<xsd:element name = "john" type = "xsd:string"/>

</xsd:schema>

Listing 2.30 Using <xsd:choice> groups (people-choice.xsd).

Using <xsd:all>

The final type of grouping that we can do in XSD revolves around the use of
the <xsd:all> element. This element is defined as follows:

<all

id = ID

maxOccurs = 1 : 1

minOccurs = (0 | 1) : 1

{any attributes with non-schema namespace . . .}>

Content: (annotation?, element*)

</all>

This element provides a simplified version of the SGML &- connector. The
attributes of this element, which are described in Table 2.12, are the same as

XSD Elements 119

Table 2.12 Attributes of the <xsd:all> Tag

ATTRIBUTE DESCRIPTION

id Unique identifier

maxOccurs Maximum number of occurrences the element can appear within
the parent element

minOccurs Minimum number of occurrences the element can appear within
the parent element

we saw in <xsd:choice>. You have the ability to control how many occurrences
are in instance documents.

Using the <xsd:all> group, you are limited to it being at the top level of any
content model. In addition, there can be no <xsd:group> instances within
<xsd:all>, only individual <xsd:element> elements. There is also a restriction
on the <xsd:element> elements defined in that they can be optional but they
cannot be repeatable (that is, maxOccurs cannot be greater than 1, which is the
default when not specified otherwise). So, what can <xsd:all> be used for?

Recall that an <xsd:sequence> has to appear in a specific order. That type of
ordering makes complete sense when we are referring to things like <name>.
But suppose that we were defining something that had no specific order, like a
day planner. One day, a person might exercise before breakfast while on other
days she might do it after dinner. Using the <xsd:all> element, we would be
able to specify that an instance of <exercise> would occur within an instance
of <day>, but it might not be before <breakfast>.

Listing 2.31 shows what the XSD schema for this very scenario would look
like.

<?xml version = "1.0" encoding = "UTF-8"?>

<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema"

elementFormDefault = "qualified">

<xsd:complexType name = "day">

<xsd:all>

<xsd:element name = "breakfast" type = "xsd:string"/>

<xsd:element name = "lunch" type = "xsd:string"/>

<xsd:element name = "dinner" type = "xsd:string"/>

<xsd:element name = "exercise" type = "xsd:string"/>

</xsd:all>

</xsd:complexType>

</xsd:schema>

Listing 2.31 Schema for our day planner (day.xsd).

120 Chapter 2

Summary

This chapter has explored the concept of <xsd:element> in terms of its many
uses as well as some of the child elements it can contain. Complex content has
been examined in detail, as has the topic of adding attributes, which is covered
in detail Chapter 3. We have investigated how to apply datatypes, restrict
them, and extend them, and we have been introduced to the concept of
importing elements and attributes from other XSD schemas. Also, the use of
sequences and various types of groups within complex element types has
been discussed. The final few sections of the chapter have taken us through a
quick example of applying what we have learned.

Elements have been shown to be key in the success of using XML-based lan-
guages to exchange data. This chapter has laid the foundation for using
<xsd:element> to define elements—a portion of the XML Schema Recommend-
ation that is used often throughout the rest of the book.

Chapter 3 augments the information discussed thus far with coverage of
<xsd:attribute> and other attribute-related XSD elements. The next chapter
goes beyond what was covered in this chapter and shows how attributes can
be used to supply all types of additional information about the data being
defined.

121

C H A P T E R

3

Adding Attributes

In Chapter 2, “XSD Elements,”we got into the details of defining XSD ele-
ments by using the <xsd:element> element. We learned that XSD differs from
XML 1.0 in that XSD actually uses elements to define elements versus using an
SGML-based language to define elements. But elements do not represent
everything that is needed when it comes to defining and describing data. On
most every occasion, there is a need for attributes as well.

Attributes are more or less metadata about a given element’s meaning or
content. They are there to provide additional information about that element
or even its uses. For example, an attribute can be used to provide the language
used for the text content wrapped with an element, or maybe it defines an
encryption method for the data that will be used by the receiving application
to decrypt. While elements often get credited with describing data and their
structure, in actuality attributes often provide the real description of the data,
leaving the structure to elements.

The paragraphs that follow discuss attributes and how they are used. XML
attributes are explored first, followed by XSD attributes and how they repre-
sent a new generation in attribute abilities. Also examined are how attributes
are declared, their scope, and common practices. Throughout the chapter,
examples are included to help better your understanding.

122 Chapter 3

To fully understand how attributes are defined and then used in an
instance, one must have a clear technical understanding of what attributes
really are and how they can be used to help describe data.

What Are Attributes?

What do attributes represent? That is, what is attribute data really for? Does it
hold content, or does it hold additional descriptors about the content
described by a beginning and ending set of tags? And what uses this informa-
tion—parsers, applications, or processors? Most everyone has a different opin-
ion as to what attributes are and how they are used.

Unfortunately (or fortunately, depending on how you look at it), none of
these opinions are always wrong or always right. How attributes are used,
like many methods of programming, varies. It’s more of a convention on how
they are used. Like programming guidelines, entire XML-based systems
should at least attempt to utilize attributes in a similar manner, which enables
schema developers to have a common set of rules to adhere to. It also enables
applications to have certain expectations about what to expect for new XML
documents.

Essentially, attributes can be pared down to three main uses. The first usage
is as metadata that further describes the data the element is carrying—for
example, the width of an image or the color of text. The second is information-
specific as to how an application is supposed to use the data, like the parame-
ters that should be passed for authenticating processing. The first two are
related because, like the mention of text color, this metadata could be about
the text, but it also represents information on how an application might use
the data. Finally, attributes have been known to hold the actual data.

The pages that follow examine these uses and show you how an XML doc-
ument might look for them. The objective is not to push you toward one
method versus another but rather to expose you to different methodologies of
approaching the use of attributes.

At this point, you will see how attributes look in XML documents and learn
how they can be used. Later, this chapter will cover the syntax for creating
attributes in schemas. For now, just focus on why attributes are needed.

Additional Metadata
Metadata refers to attributes that are used to further describe the data being
transported in the element, be it empty or open. This method is the most com-
mon way that attributes are used. At the very least, even hybrid approaches
use this method. Using attributes in this manner can be one of the most pow-
erful uses for many reasons.

Adding Attributes 123

<?xml version="1.0" encoding="UTF-8"?>

<contact>

<name>

<first>R.</first>

<middle>Allen</middle>

<last>Wyke</last>

</name>

<address>

<street>123 Somestreet</street>

<city>Anytown</city>

<state_province>NC</state_province>

<postalcode>55555</postalcode>

<country>USA</country>

</address>

<phone>999-555-1212</phone>

</contact>

Listing 3.1 A simple document for exchanging contact information between applications
(simple.xml).

Suppose, for example, that we are exchanging contact information between
applications and have used XML to mark up the data. Listing 3.1 shows what
this document might look like.

The document includes a parent <contact> element that contains <name>,
<address>, and <phone> child elements. This document certainly provides us
with the ability to exchange a single contact record, but it does not really pro-
vide the flexibility to include multiple information sets for a given contact per-
son. For example, let’s say that our applications have the ability to also
exchange work-contact information as well. One approach would be to define
a set of tags that would signify that part of the contact information was home
or work, as shown in Listing 3.2.

But, is the type of document shown in Listing 3.2 really the best way to
accomplish this goal? An application now has to look for the “home” or “work”
sections to perform its processing, when in reality most applications would just
consider this a different “type” of address or phone number versus a completely
new record for an individual. Would it not be best to include a type attribute
within the <address> and <phone> element, as is shown in Listing 3.3?

The <name> element in the document does not change, so with a type
attribute specified, the amount of data that would have to be sent back and
forth would be minimized because the need for the <home> and <work> tags
has been removed. The amount of data exchange in this simple example
would be minimal, but imagine sending 1,000 or a million contact records
between the servers. The number adds up fast. More importantly, a methodol-
ogy is adopted that is easy to understand and follow as developers begin
building integrations with these systems.

124 Chapter 3

<?xml version="1.0" encoding="UTF-8"?>

<contact>

<name>

<first>R.</first>

<middle>Allen</middle>

<last>Wyke</last>

</name>

<home>

<address>

<street>123 Somestreet</street>

<city>Anytown</city>

<state_province>NC</state_province>

<postalcode>55555</postalcode>

<country>USA</country>

</address>

<phone>999-555-1212</phone>

</home>

<home>

<address>

<street>ABC Avenue</street>

<city>Somecity</city>

<state_province>NC</state_province>

<postalcode>88888</postalcode>

<country>USA</country>

</address>

<phone>999-777-8989</phone>

</home>

</contact>

Listing 3.2 A document showing addresses with no attributes (noattribs.xml).

For structural reasons, <addressGroup> and <phoneGroup> elements
are defined the way they are in the document shown in Listing 3.3. Defining
elements in this way enables a limitless number of <address> and <phone>
instances to be added, described by their type, to this <contact>. The same
thing could be done by wrapping the entire <contact> element structure with
an element like <contactGroup>, which would enable many different contact
records to be sent.

This example of a simple document listing addresses points out the power
of using attributes to define additional metadata about data—in this case,
<address> and <phone>. Defining additional metadata in this manner enables
programmers to incorporate better design practices while at the same time
conforming to a common structure differentiated by the type value. Now, let’s
examine how applications can use attributes.

NOTE

TEAMFL
Y

Team-Fly®

Adding Attributes 125

<?xml version="1.0" encoding="UTF-8"?>

<contact>

<name>

<first>R.</first>

<middle>Allen</middle>

<last>Wyke</last>

</name>

<addressGroup>

<address type="work">

<street>123 Somestreet</street>

<city>Anytown</city>

<state_province>NC</state_province>

<postalcode>55555</postalcode>

<country>USA</country>

</address>

<address type="home">

<street>ABC Avenue</street>

<city>Somecity</city>

<state_province>NC</state_province>

<postalcode>88888</postalcode>

<country>USA</country>

</address>

</addressGroup>

<phoneGroup>

<phone type="work">999-555-1212</phone>

<phone type="home">999-777-8989</phone>

</phoneGroup>

</contact>

Listing 3.3 Document using attributes (withattribs.xml).

Application Uses
A second method of using attributes is strictly for application purposes. For
example, you could use the value of an attribute to pass in a parameter or
other bit of information that is agnostic—that is, unrelated—to the data but
that is important to the application processing the data. Although this action
could cause interoperability problems with third parties with whom you
might be exchanging data, it can be very helpful if your system is entirely
internal. To maintain the flexibility and integration promises of XML, you are
advised, if you do use attributes for this method, not to make it a requirement.
It is more of a hint mechanism to the application processing the data. One
could certainly argue that the line between metadata and application uses of
attributes is blurred. For instance, consider the document shown in Listing 3.4.
In this example, a <comments> element is declared that contains the name

126 Chapter 3

<?xml version="1.0" encoding="UTF-8"?>

<comments>

<from>

<name>

<first>R.</first>

<middle>Allen</middle>

<last>Wyke</last>

</name>

</from>

<comment type="complaint" priority="high">

I really wish you would fix your application problem!!!

</comment>

</comments>

Listing 3.4 Using attributes as metadata (comment.xml).

and a particular comment from a person. You should focus on the <comment>
element and its attributes.

As seen in Listing 3.4, a type attribute (metadata) is used that defines the
type of comment it is. The value is set to “complaint,” but it could have been a
suggestion or compliment. The priority attribute, however, is there because
we want the system to know that it should process quickly and properly route
the message to the appropriate application or person to respond.

In this example, the priority does not really describe the data. Priority is a
relative piece of information. A high-priority thing to one person might be a
low-priority thing to another. The document in Listing 3.4, however, contains
a priority because the system knows that it should use that information in its
processing. Again, it would quickly route the complaint instead of waiting 24
hours to process, as it might do for a suggestion or compliment. This example
is very simple, but it certainly illustrates the point of including application-
specific information in attributes.

Storing Data
Although the use of metadata is almost always a given when attributes are
used, its use in storing data is almost guaranteed to cause heated discussions.
The advantages of using metadata to store data include smaller file sizes,
because you are not including extraneous tags, as well as a single program-
matic approach to accessing all information in a given XML document. You
can simply look for attribute values and not the content contained within an
element. The main disadvantage is that you lose the structure of your data and
therefore lose some inherent readability.

For example, suppose that you wanted to pass a customer list from one
application to another. In this document, all you would need to pass are the

Adding Attributes 127

<?xml version="1.0" encoding="UTF-8"?>

<customers>

<user id="1">

<name>

<first>

Allen

</first>

<last>

Wyke

</last>

</name>

<postalcode>

55555

</postalcode>

</user>

<user id="2">

<name>

<first>

Andrew

</first>

<last>

Watt

</last>

</name>

<postalcode>

87878

</postalcode>

</user>

<user id="3">

<name>

<first>

Bob

</first>

<last>

Kern

</last>

</name>

<postalcode>

35476

</postalcode>

</user>

</customers>

Listing 3.5 Customer list with information to be passed included in elements and attrib-
utes (inelements.xml).

customers’ IDs, their first and last names, and their postal codes. If you
included this information in a combination of elements and attributes, you
might have a document that looks like Listing 3.5.

128 Chapter 3

<?xml version="1.0" encoding="UTF-8"?>

<customers>

<user id="1" firstname="Allen" lastname="Wyke" postalcode="55555" />

<user id="2" firstname="Andrew" lastname="Watt" postalcode="87878"

/>

<user id="3" firstname="Bob" lastname="Kern" postalcode="35476" />

</customers>

Listing 3.6 Customer list with items stored in single element per user and all data as val-
ues of attributes (inattributes.xml).

As you can see from Listing 3.5, this document is a little long and most of
the actual characters in the file are used in the tag names; they are not the data
itself. In contrast, look at the document in Listing 3.6. In that document, items
are stored in a single element per user and all the data as values of attributes.
Notice that the number of characters in the file have substantially decreased.

Now, here is where the arguments begin. File size has been reduced, but
there is very little or no structure, which goes against many of XML’s basic
principles. XML is suppose to be verbose, while at the same time larger files
can be directly tied to the speed in processing data as well as the cost for trans-
mitting it between locations.

This book will avoid recommendations as to whether or not to use metadata
to store data. To decide, you must fully evaluate what you are using XML for
and even more importantly what you might use it for in the long run. You
should also take into account the types of machines that you have available
and ensure that whatever decision you make does not cause bottlenecks in
your processing.

Hybrid Approaches
A hybrid approach to adding attributes can be found within the HTML and
XHTML languages. XHTML, and its predecessor HTML, both define an
 tag. This empty tag has five attributes in addition to the common attrib-
utes. These attributes, whether or not they are required, and a brief descrip-
tion of each, are shown in Table 3.1.

For more information about the common attributes, see them defined
in the Modularization of XHTML Recommendation at www.w3.org/TR/xhtml-
modularization/abstract_modules.html#s_common_collection.

To see this tag in action, look at the following one-line example. Each of
these attributes has been utilized to its fullest potential:

NOTE

Adding Attributes 129

Table 3.1 The Non-Common Attributes of the Tag in XHTML

ATTRIBUTE REQUIREMENTS DESCRIPTION

alt Required Contains alternate text that should be used to
describe the image. This is especially useful in
non-image-supporting user agents.

height Optional Provides the height, in pixels, of the image.

continues

<img src="/images/companyinfo.gif"

alt="Company Information"

longdesc="This image contains detailed information about our

company, where we do business, and

how to contact us."

height="500"

width="200"

/>

Looking at Table 3.1 and our example, you can see that with the exception of
src, these attributes represent metadata about the image. The height, width,
alt, and longdesc attributes all further provide information about the image
that is specified by the src attribute. So, in this example we not only have the
data (in other words, the src), but we also have metadata (in other words, all
other attributes).

Taking this one step further, let’s assume that there is an onclick attribute,
which is one of the common attributes. And let’s say that it contains the nec-
essary JavaScript code to pop up an alert box. With this example, which we
have included here, you now have application usage information. We have
included code that causes the rendering application to perform a specific
function of the user clicks on the image, which is not part of the data or any
other description of it. It is information targeted more to the environment
using the data.

<img src="/images/companyinfo.gif"

alt="Company Information"

longdesc="This image contains detailed information about our

company, where we do business, and

how to contact us."

height="500"

width="200"

onclick="javascript:alert('Obtain more information by calling

999-555-1212')"

/>

130 Chapter 3

Considerations for Using Attributes
There is no “right” answer to the question of how to use attributes. At this
point, you have been exposed to two main approaches to using them, includ-
ing a third hybrid approach. This information should provide you with
enough information to make your own assumptions and decisions.

In the next section, we are going to look at how attributes were used in XML
1.0 and then how XSD attributes have redefined and extended that model.

XML Attributes Foundation

XSD essentially reconstructs, and then extends, XML 1.0. So, the attributes in
XML 1.0 need to be understood before XSD can be used properly. The follow-
ing discussion of XML 1.0 is, by necessity, brief. But the overview should help
you to familiarize yourself with the appropriate syntax and capabilities of
XML attributes. Understanding how they operate will help you understand
how XSD relates to XML, and it will help you make better decisions about
whether to implement XML schemas or XSD schemas.

Syntax
Attributes are fairly easy to add to XML DTDs, and can also be shared across
elements. This feature enables us to define an attribute, or set of attributes, in
a common place and then reference and use them in several locations. This
approach is used heavily in standards like XHTML, where attributes such as
the common attributes are defined in groups and then shared. The following
is the basic syntax used for adding attributes (the grouping of attributes will
be discussed in detail in Chapter 7, “Grouping Elements and Attributes”):

<!ATTLIST element name datatype #use >

Table 3.1 The Non-Common Attributes of the Tag in XHTML. (Continued)

ATTRIBUTE REQUIREMENTS DESCRIPTION

longdesc Optional Similar to the alt attribute, this attribute
contains text that further describes the image.
The alt is sometimes displayed when you hold
your mouse pointer over an image, or if you
have images turned off.

src Required Contains a URI pointing to the location of the
image resource.

width Optional Provides the width, in pixels, of the image.

Adding Attributes 131

In this syntax definition, element refers to the element with which the
attribute is associated. The name is the name you give the attribute, such as
type or id. In document instances, such as the ones shown throughout this
chapter, a name=”value” pair is used to assign attribute values. The datatype, at
least in XML 1.0, can be one of three types. It can be a string (CDATA), a set of
tokenized types (ID, IDREF, IDREFS, ENTITY, ENTITIES, NMTOKEN, or
NMTOKENS), or enumerated types. The string type can take any literal
string while the tokenized types have varying lexical and semantic con-
straints. Enumerated types can take one of a list of possible values.
(Datatypes are covered in detail in Chapter 4, “Applying Datatypes,”and
both the primitive and derived datatypes in XSD are explored in Appendix A,
“Datatypes.”) Finally, the #use is a method of specifying whether the attribute
is required or optional or has a default value. If it is required, #use will con-
tain #REQUIRED; if optional, it will contain #IMPLIED; and if there is a
default value, it will contain #FIXED. It is also worth noting that an element
can have more than one attribute, so you can repeat this syntax within the
same <!ATTLIST> instance.

If the use of the attribute is #FIXED, then another parameter is passed
after the #use that specifies the default value.

Let’s look at the syntax that would be required to add our type attribute to
our <address> element earlier in the chapter. Suppose that we want the
attribute to be required, and we want it to contain either home or work as pos-
sible values. The syntax would look as follows:

<!ATTLIST address type (home | work) #REQUIRED >

Capabilities
The capabilities of XML 1.0 to define attributes are quite good. Not only can
one reference attributes for different elements and group them together, but
one can also force them to be present or to contain a default value to represent
valid data. Let’s say, for instance, that we were defining a method attribute for
an <HttpTransmission> element and that our implementation required the
method to equal a value of POST. This situation might look like the following:

<!ATTLIST HttpTransmission method CDATA #FIXED "POST" >

It would also be possible to give the system a choice of POST or GET but
default to POST. This definition would look as follows:

<!ATTLIST HttpTransmission method (POST | GET) "POST" >

NOTE

132 Chapter 3

Several combinations can be devised and used in your XML DTDs, which
ultimately gives you great control over the data you are accepting and pro-
cessing. Because these are inherent checks in an XML 1.0 supporting parser,
you do not have to write the necessary code to ensure that documents contain
all the correct data. If it passes the parser (assuming that you have it checking
for validity), then you only have to act as you see fit on the data.

XSD Attributes: The Next Generation

XSD introduces new enhancements and features to the use of attributes. As
shown in Chapters 1, “Elementary XML Schema,” and 2, “XSD Elements,”
XSD schemas are actually defined by using elements and attributes. Just as the
<xsd:element> tag is used to create elements in schemas, an <xsd:attribute>
tag can be used to create attributes. Does this situation change how instance
documents use attributes or represent them? Do our previous examples
change in any way? The answer is, absolutely not.

To help avoid confusion, elements defined in the XSD Recommendation
are being prefixed with xsd—for example, <xsd:attribute>. This situation will
prevent you from thinking that the reference is to an element defined in an
example.

XSD provides means by which you can further define and have greater con-
trol over your attributes, which furthers the efforts to allow parsers to do
much of the work. You are able to enforce a greater array of datatypes and
place more conditions on the use of attributes. XSD-defined attributes provide
a lot of power, and if you come to know and use them correctly, they can save
you a lot of time and programming in the long run.

The paragraphs that follow examine some of the basic syntax and capabilities
of XSD, and further information about XSD attributes is put to use. Here, we will
look at the scope of attributes, their Qualification, and how to control defaults.

Qualification, with a capital letter Q, refers to an attribute or element
needing to be qualified by a particular namespace.

Syntax Changes
The <xsd:attribute> element, as defined in the XML Schema Part 1: Structures
Recommendation, has a basic syntax that includes the following:

<attribute

default = string

NOTE

NOTE

Adding Attributes 133

Table 3.2 Attributes of the <xsd:attribute> Tag

ATTRIBUTE DESCRIPTION

default Default value for the attribute

fixed A default, but unchangeable value for the attribute

form Used to specify if the qualification of an attribute is to be done by a
local or global declaration

id Unique identifier

name The name of the attribute being created

ref Allows you to reference a global attribute declaration and therefore
inherit some of its settings

type The datatype of the value of the attribute you are creating

use Optional item that allows you to specify whether the attribute is
optional, prohibited, or required

fixed = string

form = (qualified | unqualified)

id = ID

name = NCName

ref = QName

type = QName

use = (optional | prohibited | required) : optional

{any attributes with non-schema namespace . . .}>

Content: (annotation?, (simpleType?))

</attribute>

As you can see, the attributes in this element enable you to control the defi-
nition of your attributes. In Table 3.2, we have listed these attributes alone
with a brief description.

Any attributes with non-schema namespace simply refers to the ability
of non-XSD-defined attributes to be included through the use of namespaces
in XML. So, for instance, if we were to create our own attribute definition
language, but we only wanted to extend the XSD method of attributes, then
we would declare a namespace for our language and include our attributes
(with prefix) in this designated location.

This tag has a set of attributes as well as rules for the use of these attributes.
Table 3.2 gives a list of the attributes that can be used in the <xsd:attribute>
tag. Within the definition, notice that the <xsd:attribute> element can contain

NOTE

134 Chapter 3

content in the form of an <xsd:annotation> or <xsd:simpleType>, which were
discussed in Chapters 1 and 2.

As an example, let’s look at the required line of code that would add the
type attribute to our <address> element earlier in the chapter. If all we wanted
to do was include the attribute with a default value of home, then we would
have the following in our XSD schema. Of course, it would be contained in the
appropriate location, which is inside the <xsd:complexType> child of our
<xsd:element name=”address”> definition.

<xsd:attribute name="type" default="home" type="xsd:string" />

That looks simple, but one thing was forgotten. We wanted to further define
that the value of type had to be either home or work and nothing else. To
accomplish this task, we have to change our approach slightly. We have to
declare a <xsd:simpleType> within the content model of <xsd:attribute>, and
within it we will use <xsd:restriction> to limit our choices to those defined in
child <xsd:enumeration> elements. The following is the markup:

<xsd:attribute name = "type" default = "home">

<xsd:simpleType>

<xsd:restriction base = "xsd:string">

<xsd:enumeration value = "home"/>

<xsd:enumeration value = "work"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

In this example, notice that the type attribute of the <xsd:attribute> element
has been removed and the type of content expected has been defined by using
the base attribute of <xsd:restriction>. The attributes of the <xsd:attribute>
element will be examined in detail later.

Further Capabilities
XSD attribute definitions provide several enhancements over XML 1.0
attribute definitions: datatyping, the ability to specify default or fixed values,
and the ability to apply namespace Qualification—all mentioned in the previ-
ous paragraphs. But these are not the only enhancements that have been
added or at least improved upon.

Another feature that should please many programmers is the ref attribute of
the <xsd:attribute> element. This attribute enables you to, more or less,
declare an attribute in the appropriate place within your schema but define it
elsewhere. So, for example, you could define a type attribute at the bottom of
your schema and then locally declare that attribute within the element or ele-
ments in which you wish to use it.

TEAMFL
Y

Team-Fly®

Adding Attributes 135

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<!-- define car element -->

<xsd:element name="car">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="make" type="xsd:string"/>

<xsd:element name="model" type="xsd:string"/>

<xsd:element name="year" type="xsd:gYear"/>

</xsd:sequence>

<!-- reference type defintion at bottom of schema -->

<xsd:attribute ref="type" />

</xsd:complexType>

</xsd:element>

<!-- define radio element -->

<xsd:element name="radio">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="brand" type="xsd:string"/>

<xsd:element name="model" type="xsd:string"/>

<xsd:element name="year" type="xsd:gYear"/>

</xsd:sequence>

continues

Listing 3.7 Schema for two global elements: <car> and <radio> (car-radio.xsd).

For example, let’s say that we have a schema with two global elements:
<car> and <radio>. Let’s also say that both elements need a type attribute that
contains nothing more than a string—no enumerated list. Let’s also say that
we think our schema is going to grow significantly over time, so we want to
organize it so that common attributes and elements are defined at the bottom
of the schema while instances of these items occur within their proper struc-
ture at the top of the schema. For many programmers, this process no doubt
sounds like defining classes or objects and then instances of those classes or
objects. And so it is.

Following these basic guidelines, we end up with the schema defined in
Listing 3.7. (car-radio.xsd). As you can see, the type attribute is defined at the
bottom of the schema while it is referenced from both the <car> and <radio>
elements. As you probably have guessed, we could have taken the same
approach with the elements (in other words, define at the bottom but declare
at the top).

136 Chapter 3

The schema in Listing 3.7 is just one simple example of some of the
extended functionality present in XSD attribute definitions. The remainder of
the chapter will cover some other features and talk further about local-versus-
global attribute declarations.

Using Attributes

Now is the time to actually define XSD attributes and show how they are
used. Previous paragraphs of this chapter alluded to a few more advanced
features present when XSD is used to define schemas, and those features are
covered in this section of the chapter. First, scope is examined, as are ways in
which you can create both local and global attributes and reference them
appropriately. This discussion naturally leads into a discussion of Qualifica-
tion and how to specify defaults. Shown are ways to properly document and
annotate your <xsd:attribute> definitions so that others can understand your
objective.

Scope
Programmers who work with a particular language, be it C, Java, or Java-
Script, no doubt are familiar with the scope of variables. Scope refers to when
and where variables can be accessed from a given location in a program. For
example, if a variable is defined locally within a function, then that variable
will not be accessible outside of that function. If the variable is defined globally,
then the variable is accessible everywhere in the program.

Scope is an important concept, because failure to adhere to the proper rules
can cause collision. For example, suppose that you defined a global counter vari-
able that you used in one function to count the number of times it has been

<!-- reference type defintion at bottom of schema -->

<xsd:attribute ref="type" />

</xsd:complexType>

</xsd:element>

<!-- attribute definitions here -->

<xsd:attribute name="type" use="required" type="xsd:string" />

</xsd:schema>

Listing 3.7 Schema for two global elements: <car> and <radio> (car-radio.xsd). (Con-
tinued)

Adding Attributes 137

accessed. Suppose, too, that that same variable was used to count the number of
times the other function had been called. Then, one definition of the variable
would overwrite the other. If these variables were declared local to the function,
however, you would achieve the desired results of counting access individually.

This section examines how scope applies to attributes defined in XSD. The
paragraphs that follow also discuss Qualification, which refers to an addi-
tional level of control over what can be accessed and where and how it can be
accessed.

Local Attributes

Locally declared attributes, like the locally declared elements discussed in
Chapter 2, are attributes that are defined locally to an element versus globally
to a schema. When attributes are defined locally, the scope of the attribute is
confined to that of the element within which it is defined.

For example, if we build a schema for our inattributes.xml document (see
Listing 3.6, where we stored all data as values in attributes), then we need to
define a root <customers> element that contains one or more <user> elements.
Within the <user> element, there are four locally declared attributes: id, first-
name, lastname, and postalcode. Both the id and postalcode attributes need to
be positive integers, while we will want to enforce an additional constraint on
postalcode to be no more than 99999. The firstname and lastname attributes,
on the other hand, are simply strings.

We have defined all of these functions in the schema shown in Listing 3.8.
Notice how attributes are defined locally to the <user> element definition.

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<!-- define our root customers element -->

<xsd:element name="customers">

<xsd:complexType>

<xsd:sequence>

<!-- reference our user element which we defined elsewhere -->

<xsd:element ref="user" minOccurs="1" maxOccurs="unbounded" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

continues

Listing 3.8 Schema with locally declared elements (customers.xsd).

138 Chapter 3

<!-- user element definition -->

<xsd:element name="user">

<xsd:complexType>

<xsd:attribute name="id" type="xsd:positiveInteger"/>

<xsd:attribute name="firstname" type="xsd:string"/>

<xsd:attribute name="lastname" type="xsd:string"/>

<!-- postalcode has additional restriction, so we must further

define elsewhere under the name postal_zip -->

<xsd:attribute name="postalcode" type="postal_zip"/>

</xsd:complexType>

</xsd:element>

<!-- define our postal_zip derived datatype that must have a max

value -->

<xsd:simpleType name="postal_zip">

<xsd:restriction base="xsd:positiveInteger"/>

</xsd:simpleType>

</xsd:schema>

Listing 3.8 Schema with locally declared elements (customers.xsd). (Continued)

And if you want to apply the schema in Listing 3.8 to govern our instance
document, simply replace the beginning <customers> element with the fol-
lowing element:

<customers xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="file://customers.xsd">

This new element now specifies the appropriate namespace.
Locally declared attributes are not the only way to declare attributes, as

shown in the schema in Listing 3.7 (car-radio.xsd).

Global Attributes

Global attributes are attributes that are declared outside any parent element
definition. In other words, they have no specific parent elements. Your first
question might be, “Why would we do such a thing? Why would we define
an attribute at all if there were no element for it to go in?” In actuality, there is
an element, but we are not restricting it at the point of definition to a specific
element. A reference to this definition, however, will be local to an element
definition.

One reason to define an attribute in this way, as we saw in Listing 3.7, is if
we wanted to reference that attribute in multiple elements. We are able to

Adding Attributes 139

define a common attribute, or group of attributes (see Chapter 7 for more on
grouping of attributes), globally to the XSD schema and then use it over and
over. The benefit of doing so is that we minimize our chance of errors for ele-
ments with this attribute. If we had to redefine an attribute several times, we
would introduce the chance of inadvertently defining them with different
datatypes or other properties. Having a common attribute avoids such a risk.
With global attributes, we still have the ability, at the element definition level,
to set aspects such as minimum and maximum occurrences.

Qualification
Another important aspect of <xsd:attribute> scope is Qualification, which
refers to whether or not locally declared attributes or elements need to be
qualified by a namespace. How Qualification pertains to XSD elements has
already been discussed in Chapter 2, but now let’s explore how it applies to
XSD attributes. Many of the same concepts apply to both XSD elements and
attributes. For example, a namespace qualification can occur through either an
explicit prefix or an implicit prefix. But, for the sake of brevity, the discussion
that follows will pertain only to attributes.

What does Qualification mean within the overall context of XSD? In
general, it refers to a requirement that locally defined attributes and elements
require or do not require an explicit namespace.

To globally qualify local attributes, which is handled syntactically as one
would when globally qualifying local elements, one would use the attribute-
FormDefault attribute of the <xsd:schema> element and set it either to quali-
fied or unqualified. When this task is done, all locally declared attributes inherit
this setting. Optionally, Qualification can be applied on each local declaration
by using the form attribute in the <xsd:attribute> element. For example, the
following <xsd:schema> element would define, globally, that all attributes
should in fact be qualified to the targetNamespace:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:sample="http://www.wiley.com/xml/sample"

targetNamespace="http://www.wiley.com/xml/sample"

attributeFormDefault="qualified">

By default, the absence of attributeFormDefault has the same meaning
as attributeFormDefault=”unqualified”.

In this example, if we refer to our previous examples where we have a type
attribute declared for our <address> element, then specifying that it had to be

NOTE

NOTE

140 Chapter 3

qualified would mean that we would have to prefix the attribute with a name-
space. Further assuming, for this example, that our namespace prefix was sim-
ple, the relevant snippet of our instance document would look like the
following:

<!-- start of document -->

<address sample:type="home">

<!-- rest of document -->

On the other hand, if we had specified the type attribute to be unqualified,
as we have done locally to the attribute definition, effectively overriding the
attributeFormDefault setting, we would not have to include the namespace
prefix:

<xsd:attribute name="type" default="home" type="xsd:string"

form="unqualified" />

Qualification in this manner applies only to locally declared attributes.
If the author of the schema declared all attributes global to the schema, then
Qualification has no meaning and therefore the attributeFormDefault is
irrelevant.

Defaults
Default values in attributes are often very important because they will remove
a level of ambiguity. We can state, for example, that by default the content of a
conforming XML instance document is written in U.S. English versus U.K.
English unless otherwise specified. We could also make assumptions about
the type of data, such as our assumption that an address sent in our contact
example would default to home:

<xsd:attribute name="type" default="home" type="xsd:string" />

This situation enables us to impose some rules on users of the schema when
it comes to implementation.

Simply specifying a default value for an XSD attribute is not all that needs
to be done with defaults. In addition, the following rules also apply to
defaults, which you should be familiar with and act upon to have valid XSD
schemas:

■■ When the default attribute is specified in an <xsd:attribute> definition,
you cannot use the fixed attribute at the same time.

■■ If both use and default attributes are included in an <xsd:attribute>
definition, then the value of use must be “optional.”

NOTE

Adding Attributes 141

These rules are fairly simple and sensible. For the first one, if an attribute
value is fixed, that implies that there is only one possible value. For example,
suppose we wanted to set our type attribute to a fixed value of home. We
would include the following:

<xsd:attribute name="type" fixed="home" type="xsd:string" />

For the second rule, if use is required, that would imply that the setting is
fixed or prohibited. One way to use the use attribute would be not to specify a
default value. If we looked at an example that required the type attribute, this
type of definition would look like the following:

<xsd:attribute name="type" use="required" type="xsd:string" />

Let’s assume that there is a default setting, but it is optional. Now, our
example becomes:

<xsd:attribute name="type" use="optional" default="home"

type="xsd:string" />

Again, these are just a couple of very simple rules that you will need to fol-
low when creating default attribute values.

Grouping
XSD has another element called <xsd:attributeGroup>. (Groupings of attitudes
will be discussed in detail in Chapter 7, but at this point you should be aware of
the existence of this other element and familiarize yourself with its overall func-
tion.) This element enables you to group together a set of attributes which then
can be used within multiple <xsd:element> instances. This feature not only
improves the organization and readability of many schemas, but also enables
you to import the group into another schema. (Importation into other schema
will be discussed in detail in Chapter 9, “Uniqueness and Keys in XSD Schema.”)

Suppose, for example, that we had an element called <radio> that had
attributes for the types of media it played, the number of speakers, treble,
base, and volume settings. Because treble, base, and volume have to do with
the sound level and quality, we might wish to group them together. A snippet
of XSD code defining this element might look like the following:

<xsd:attributeGroup name="sound">

<xsd:attribute name="treble" type="xsd:integer"/>

<xsd:attribute name="base" type="xsd:integer"/>

<xsd:attribute name="volume" type="xsd:integer"/>

</xsd:attributeGroup>

142 Chapter 3

Now, if we wanted to reference this group within our <radio> element, we
would use the following syntax:

<!-- define radio element -->

<xsd:element name="radio">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="brand" type="xsd:string"/>

<xsd:element name="model" type="xsd:string"/>

<xsd:element name="year" type="xsd:gYear"/>

</xsd:sequence>

<!-- begin defining attributes -->

<xsd:attribute name="mediaType" type="xsd:string"/>

<xsd:attribute name="speakers" type="xsd:integer"/>

<!-- reference our sound attribute group -->

<xsd:attributeGroup ref="sound" />

</xsd:complexType>

</xsd:element>

This approach can provide a very powerful mechanism when XSD schemas
are being defined. Common attributes can be encapsulated while at the same
time the ability to modularize one’s programmatic approach is increased.

Inclusion of Other Attributes
The last section mentioned the ability to import parts of an XSD schema (in
this case, attribute groups) into other XSD schemas. That subject will be dis-
cussed in detail in Chapter 9, but here you should be aware of an attribute-
specific element called <xsd:anyAttribute> that enables any attribute defined
at the referenced namespace to be used within the current scope of the XSD
schema by using the <xsd:anyAttribute> element.

For example, let’s say that we defined a language that allowed us to mark up
content to be displayed at a money-machine kiosk. With the release of XHTML
1.1, and specifically with the Modularization of XHTML Recommendation on
which it relies heavily, building an XHTML-based language to accomplish this
task would be fairly easy. But for argument’s sake, let’s assume that we had to
develop our own language with our own tags. Let’s also say that in doing so,
we found that we were going to have to define many of the same attributes
that have already been defined in XHTML, which would seem rather pointless.
In a situation like this one, the <xsd:anyAttribute> element shines.

Rather than define every attribute again, we can simply add the following
line to our schema:

<xsd:anyAttribute namespace="http://www.w3.org/1999/xhtml"/>

Adding Attributes 143

Inclusion of this line essentially enables an instance document of our
schema to use any of the attributes within the XHTML 1.0 Recommendation
without their having to be defined again. And because the <xsd:anyAttribute>
element can occur with the body of defining elements in XSD or at a top level,
we can control when and where those imported attributes can be used.

Summary

By this point, you should have a new respect for attributes. If used properly,
they can be extremely powerful and useful. Not only do they provide us with
a mechanism to better describe our data, but they also force better integration
among applications. By providing the extra information contained in attrib-
utes, applications are better able to understand and utilize the actual data and
therefore they can create more complete and comprehensive solutions.

This chapter has defined what attributes are and has shown how they fit
into the big picture. XML attributes have been discussed, as have XSD attrib-
utes and how they differ and offer more flexibility. Effective use of attributes
in XSD schemas has been explored, and some common practices have been
suggested. Finally, the elements that enable you to group attributes or refer-
ence already-defined attributes present in another schema have been intro-
duced.

Chapter 4 goes beyond XML DTDs and discusses how you can apply XSD
datatypes to elements. Throughout Chapters 4 to 8, which form Part Two of
this book, we learn about both primitive and derived datatypes, data facets,
and how to group elements and attributes.

TEAMFL
Y

Team-Fly®

PA R T

2

Going Beyond DTDs

147

C H A P T E R

4

Applying Datatypes

In the first three chapters, we examined the rudiments of XSD and focused on
two of the most important aspects of defining a schema: the use of elements
and attributes. There is, however, one additional portion of XSD that is
extremely important when an XSD-based language is defined: the ability to
apply datatypes to elements and attributes. On several occasions thus far,
datatypes have been discussed and used. With the knowledge of elements and
attributes in hand, now is the time for a full explanation of what datatypes are
and how they can be used.

This chapter also explores a number of tangential topics related to the use of
datatypes, including defining your own datatypes and constraining how a
datatype can be used.

What Are Datatypes?

Recall that XML 1.0 DTDs have very little, if any, datatyping abilities without
the help of DT4DTDs. So, what are datatypes really? A simple, if incomplete,
definition is that datatypes specify whether a piece of data is a string, number,
boolean value, or any other type of data that might not necessarily be a con-
crete binary type. For example, what makes a Toyota vehicle a Toyota? Is it

148 Chapter 4

<?xml version = "1.0" encoding = "UTF-8"?>

<vehicle xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation = "file:///S:/vehicle.xsd"

maker = "toyota">

<wheels>4</wheels>

<doors>2</doors>

</vehicle>

Listing 4.1 Instance document for a Toyota (mycar.xml).

because it has different wheels, number of doors, or basic components from
other cars? Not really. When it comes right down to it, the name—the maker of
vehicle—is what makes a Toyota a Toyota. Let’s use this information to define
a schema for Toyotas. Before we define the schema, however, let’s look at what
an instance document might look like (see Listing 4.1).

In Listing 4.1, we see that a <vehicle> is defined as being of maker=”toyota”
and that it has four wheels and two doors. But what is a “toyota”? What does
that really mean? To understand, we must look at the schema, which appears
in Listing 4.2.

In Listing 4.2, we can see that <vehicle> and its two child elements, <wheels>
and <doors>, are defined in the same manner that we always do. We can also
see that the type attribute is defined by using the <xsd:attribute> element as
normal. The first hint that there is more to this schema than first meets the eye
is that the datatype (specified by the type attribute of the <xsd:attribute> ele-
ment) of the <vehicle> element says the type is car. But what is car?

Glance down at the final section of the vehicle.xsd file and notice the presence
of a section starting with the <xsd:simpleType> element. Here, car is defined
within the context of this schema. Within the definition of car, you can see that we
are deriving this new datatype from the xsd:string datatype, which is defined in
the XML Schema Part 2: Datatypes Recommendation (www.w3.org/TR/
xmlschema-2). This task is accomplished with the <xsd:restriction> element.
Next, we have a set of <xsd:enumeration> instances that list the possible values
(toyota, ford, chevy, and nissan) of the car datatype. See Chapter 8, “Deriving
Types,” for more information about <xsd:enumeration> instances.

Like XSD element references in the book, XSD-defined datatypes will
be signified with the xsd: namespace prefix. For example, xsd:string refers to
the string datatype defined within the XML Schema Recommendation.

The definition of <vehicle>—the Toyota—in Listing 2 pointed out that we
can define our own datatypes, but core datatypes can also be defined by the
XML Schema Recommendation. The remainder of this chapter explores these
datatypes as well as means for deriving datatypes of your own.

NOTE

Applying Datatypes 149

<?xml version = "1.0" encoding = "UTF-8"?>

<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema"

elementFormDefault = "qualified">

<!-- define our vehicle element and child elements -->

<xsd:element name = "vehicle">

<xsd:complexType>

<xsd:sequence>

<xsd:element name = "wheels" type = "xsd:string"/>

<xsd:element name = "doors" type = "xsd:string"/>

</xsd:sequence>

<xsd:attribute name = "maker" use = "required" type = "car"/>

</xsd:complexType>

</xsd:element>

<!-- define our car datatype -->

<xsd:simpleType name = "car">

<xsd:restriction base = "xsd:string">

<xsd:enumeration value = "toyota"/>

<xsd:enumeration value = "ford"/>

<xsd:enumeration value = "chevy"/>

<xsd:enumeration value = "nissan"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

Listing 4.2 Schema for our <vehicle> element (vehicle.xsd).

Primitive Datatypes
The first set of datatypes to be examined is primitive datatypes. These represent
the core datatypes that lay the foundation for all other datatypes within the
XSD language, including xsd:anyURI, xsd:date, xsd:decimal, xsd:string, and
xsd:time. There are 19 primitive datatypes in all, as shown in Table 4.1—three
of which were first defined in XML 1.0.

Table 4.1 Primitive Datatypes Present in XSD

ORIGINALLY
DEFINED

DATATYPE IN XML 1.0 DESCRIPTION

anyURI No Represents an absolute or relative URI

baseBinary No Represents Base64-encoded arbitrary binary data

boolean No Represents the ability for an item to be valued as
true or false

continues

150 Chapter 4

Table 4.1 Primitive Datatypes Present in XSD. (Continued)

ORIGINALLY
DEFINED

DATATYPE IN XML 1.0 DESCRIPTION

date No Represents a given day in a given month in a given
year, regardless of time, in the Gregorian calendar
as defined by ISO 8601

dateTime No Represents a given day in a given month in a given
year at a given time (hour, minute, seconds) in the
Gregorian calendar as defined by ISO 8601

decimal No Represents arbitrary precision decimal numbers that
can be either positive or negative

double No Consists of the values m x 2e, where m is an
integer whose absolute value is less than 253, and e
is an integer between -1075 and 970, inclusively

duration No Represents a duration of time made up of a year,
month, day, hour, minute, second within a
Gregorian calendar

float No Consists of the values m x 2e, where m is an
integer whose absolute value is less than 224 and e
is an integer between -149 and 104 inclusively

gDay No Represents a recurring day in a given month in the
Gregorian calendar as defined by ISO 8601

gMonth No Represents a reoccurring month every year in the
Gregorian calendar as defined by ISO 8601

gMonthDay No Represents a recurring day every year in the
Gregorian calendar as defined by ISO 8601

gYear No Represents a given year in the Gregorian calendar
as defined by ISO 8601

gYearMonth No Represents a specific month in a specific year in the
Gregorian calendar as defined by ISO 8601

hexBinary No Represents binary data that has been hex-encoded

NOTATION Yes Represents a NOTATION attribute type as defined in
XML 1.0

QName Yes Represents qualified names. These names are broken
into a Prefix, which represents the appropriate
namespace, and a LocalPart, which defines the local
part, or name, of the qualified name.

string Yes Represents a finite-length sequence of characters

time No Represents an instance in time in a given day, with
values ranging from 00:00:00 (midnight) to
23:59:59c

Applying Datatypes 151

For more information on ISO 8601, go to www.iso.ch and search on this
particular ISO Number to find the specification. Note that there is a substantial
charge to download the document from that site, so you might wish to search
the Web for the specific information you are looking for.

What are these datatypes, and how are they used? Earlier chapters have
shown datatypes to provide the ability to define the type of data that should be
present within an instance document. Most of the primitive datatypes are
numeric or date/time-related, with a few exceptions. The best way to under-
stand this concept is to see it in action. See Listing 4.3, which utilizes several of
these primitive datatypes. To help you understand the same, look at Figure 4.1.

NOTE

<?xml version = "1.0" encoding = "UTF-8"?>

<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema"

elementFormDefault = "qualified">

<xsd:element name = "sampleData">

<xsd:complexType>

<xsd:sequence>

<xsd:element name = "url" type = "xsd:anyURI"/>

<xsd:element name = "numeric">

<xsd:complexType>

<xsd:sequence>

<xsd:element name = "decimal" type = "xsd:decimal"/>

<xsd:element name = "double" type = "xsd:double"/>

<xsd:element name = "float" type = "xsd:float"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name = "detailedDate">

<xsd:complexType>

<xsd:sequence>

<xsd:element name = "day" type = "xsd:gDay"/>

<xsd:element name = "month" type = "xsd:gMonth"/>

<xsd:element name = "date" type = "xsd:gMonthDay"/>

<xsd:element name = "year" type = "xsd:gYear"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name = "time" type = "xsd:time"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>

Listing 4.3 Schema using primitive datatypes (primitivesamples.xsd).

152 Chapter 4

numeric

decimal

decimal

double

double

float

float

detailedDate

day

gDay

month

gMonth

date

gMonthDay

year

gYear

sampleData

url

any URI

time

time

Figure 4.1 Data model of a sample using several of the primitive datatypes.

<?xml version = "1.0" encoding = "UTF-8"?>

<sampleData xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation =

"file:///S:/primitivesamples.xsd">

<url>http://www.wiley.com</url>

<numeric>

<decimal>0.98</decimal>

<double>-0829082907423</double>

<float>987892340892374</float>

Listing 4.4 Example XML document using our primitive datatypes schema (primitive.xml).

Now that our data model is defined, let’s look at a quick example in Listing
4.4 (primitive.xml).

The first thing that grabs our attention are the <day>, <month>, and <date>
elements. These are all defined within the ISO 8601 standard from the Interna-
tional Organization for Standards (ISO).

Applying Datatypes 153

Now that we see what primitive datatypes are and how they can be used, let’s
move on to other datatypes predefined within XML Schema: derived datatypes.

Derived Datatypes
Other datatypes are included within the XSD specification that are equally as
important as primitive datatypes. These datatypes are, by necessity, derived
from the primitive datatypes. Table 4.2 shows some of the more commonly
used derived datatypes.

Many of the data types shown in Table 4.2 will help us control our element
definitions, as shown in the following paragraphs. Datatypes like xsd:posi-
tiveInteger or xsd:language provide a level of detail not present in the primi-
tive datatypes. As with our definition in Listing 4.3, which uses primitive
datatypes, Listing 4.5 contains a data model (shown in Figure 4.2) that will
enable us to create an instance document utilizing some datatypes.

With our schema built, let’s look at Listing 4.6 for samples that correspond
to these datatypes.

Primitive and derived datatypes are the only official datatypes defined in
XML Schema Part 2: Datatypes. They certainly are not the only choices for
using datatypes within your schemas. You can also define your own.

Defining Our Own Datatypes
Deriving your own new datatypes from other datatypes is done in much the
same manner as the derived datatypes are derived from the primitive
datatypes. If you really plan on using XML Schema to its fullest potential, then
you will find that many of the datatypes you use will be ones that you defined
yourself. Why? Because your company, own personal usage, or whatever per-
sonal reason will be what drives your use of XSD. Because of that, you will
desire to use the language in a manner that best reflects your needs.

</numeric>

<detailedDate>

<day>---23</day>

<month>--10--</month>

<date>--10--23</date>

<year>2002</year>

</detailedDate>

<time>06:30:00</time>

</sampleData>

Listing 4.4 Example XML document using our primitive datatypes schema (primitive.xml).
(Continued)

154

Ta
b

le
 4

.2
D

er
iv

ed
 D

at
at

yp
es

 P
re

se
nt

 in
 X

SD

O
R

IG
IN

A
LL

Y

D
E

FI
N

E
D

D
E

R
IV

E
D

D

A
TA

TY
P

E
IN

 X
M

L
1

.0
FR

O
M

D
ES

C
R

IP
TI

O
N

by
te

N
o

sh
or

t
Re

pr
es

en
ts

 a
 v

al
ue

 b
et

w
ee

n
�

12
8

an
d

12
7

EN
TI

TI
ES

Ye
s

EN
TI

TY
A

fin
ite

, n
on

ze
ro

 le
ng

th
 s

eq
ue

nc
e

of
 E

N
TI

TY
 d

at
at

yp
e

in
st

an
ce

s
th

at
ha

ve
 b

ee
n

de
cl

ar
ed

 a
s

un
pa

rs
ed

 e
nt

iti
es

 in
 a

 D
TD

EN
TI

TY
Ye

s
N

C
N

am
e

Se
t o

f a
ll

st
rin

gs
 th

at
 m

at
ch

 th
e

N
C

N
am

e
pr

od
uc

tio
n

in
 n

am
es

pa
ce

s
in

 X
M

L
an

d
 th

at
 h

av
e

be
en

 d
ec

la
re

d
as

 u
np

ar
se

d
en

tit
ie

s
in

 a
 D

TD

ID
Ye

s
N

C
N

am
e

Se
t o

f a
ll

st
rin

gs
 th

at
 m

at
ch

 th
e

N
CN

am
e

pr
od

uc
tio

n
in

 N
am

es
pa

ce
s

in
 X

M
L

ID
RE

F
Ye

s
N

CN
am

e
Se

t o
f a

ll
st

rin
gs

 th
at

 m
at

ch
 th

e
N

CN
am

e
pr

od
uc

tio
n

in
 N

am
es

pa
ce

s
in

 X
M

L

ID
R

EF
S

Ye
s

ID
R

EF
Se

t o
f f

in
ite

, n
on

ze
ro

-le
ng

th
 s

eq
ue

nc
es

 o
f I

D
R

EF
s

in
t

N
o

lo
ng

Re
pr

es
en

ts
 a

 v
al

ue
 b

et
w

ee
n

�
21

47
48

36
48

 a
nd

 2
14

74
83

64
7

in
te

ge
r

N
o

de
ci

m
al

Re
pr

es
en

ts
 a

 w
ho

le
 n

um
be

r,
w

ith
 n

o
de

ci
m

al
 p

la
ce

s
(e

.g
.,

eq
ui

va
le

nt
to

 a
ll

va
lu

es
 a

fte
r

th
e

de
ci

m
al

 e
qu

al
 to

 0
)

la
ng

ua
ge

N
o

to
ke

n
Re

pr
es

en
ts

 n
at

ur
al

 la
ng

ua
ge

 id
en

tif
ie

rs
 a

s
de

fin
ed

 in
 R

FC
 1

76
6

lo
ng

N
o

in
te

ge
r

Re
pr

es
en

ts
 a

 v
al

ue
 b

et
w

ee
n

�
92

23
37

20
36

85
47

75
80

8
an

d
92

23
37

20
36

85
47

75
80

7

N
am

e
Ye

s
to

ke
n

Re
pr

es
en

ts
 N

am
es

 a
s

de
fin

ed
 in

 X
M

L
1.

0

N
C

N
am

e
Ye

s
N

am
e

Re
pr

es
en

ts
 “

no
nc

ol
on

iz
ed

”
na

m
es

 a
s

de
fin

ed
 in

 X
M

L
1.

0

ne
ga

tiv
eI

nt
eg

er
N

o
no

nP
os

iti
ve

In
te

ge
r

Re
pr

es
en

ts
 a

ny
 n

eg
at

iv
e

in
te

ge
r.

Re
m

em
be

r
th

at
 a

n
in

te
ge

r
is

 d
ef

in
ed

as
 a

 w
ho

le
 n

um
be

r,
w

ith
 n

o
de

ci
m

al
 v

al
ue

s.

co
nt

in
ue

s

TEAMFL
Y

Team-Fly®

155

Ta
b

le
 4

.2
D

er
iv

ed
 D

at
at

yp
es

 P
re

se
nt

 in
 X

SD
 (

C
on

tin
ue

d)

O
R

I G
I N

A
LL

Y

D
E

FI
N

E
D

D
E

R
I V

E
D

D

A
TA

TY
P

E
I N

 X
M

L
1

.0
FR

O
M

D
ES

C
R

I P
TI

O
N

N
M

TO
KE

N
Ye

s
to

ke
n

Re
pr

es
en

ts
 th

e
N

M
TO

KE
N

 a
tt

rib
ut

e
as

 d
ef

in
ed

 in
 X

M
L

1.
0

N
M

TO
KE

N
S

Ye
s

N
M

TO
KE

N
Se

t o
f f

in
ite

, n
on

ze
ro

-le
ng

th
 s

eq
ue

nc
es

 o
f N

M
TO

KE
N

s

no
nN

eg
at

iv
eI

nt
eg

er
N

o
in

te
ge

r
Re

pr
es

en
ts

 a
ny

 p
os

iti
ve

 in
te

ge
r.

Re
m

em
be

r
th

at
 a

n
in

te
ge

r
is

 d
ef

in
ed

as
 a

 w
ho

le
 n

um
be

r,
w

ith
 n

o
de

ci
m

al
 v

al
ue

s.

no
nP

os
iti

ve
In

te
ge

r
N

o
in

te
ge

r
Re

pr
es

en
ts

 a
ny

 n
eg

at
iv

e
in

te
ge

r.
Re

m
em

be
r

th
at

 a
n

in
te

ge
r

is
 d

ef
in

ed
as

 a
 w

ho
le

 n
um

be
r,

w
ith

 n
o

de
ci

m
al

 v
al

ue
s

no
rm

al
iz

ed
St

rin
g

N
o

st
rin

g
Re

pr
es

en
ts

 w
hi

te
sp

ac
e

no
rm

al
iz

ed
 s

tr
in

gs
, w

hi
ch

 d
o

no
t

ca
rr

y
a

ca
r-

ria
ge

 r
et

ur
n,

 li
ne

 fe
ed

, o
r

ta
b

ch
ar

ac
te

r

po
si

tiv
eI

nt
eg

er
N

o
no

nN
eg

at
iv

eI
nt

eg
er

Re
pr

es
en

ts
 a

ny
 p

os
iti

ve
 in

te
ge

r.
Re

m
em

be
r

th
at

 a
n

in
te

ge
r

is
 d

ef
in

ed
as

 a
 w

ho
le

 n
um

be
r,

w
ith

 n
o

de
ci

m
al

 v
al

ue
s

sh
or

t
N

o
in

t
Re

pr
es

en
ts

 a
 v

al
ue

 b
et

w
ee

n
-3

27
68

 a
nd

 3
27

67
. T

he
 b

yt
e

da
ta

ty
pe

 is
de

riv
ed

 o
ff

th
e

sh
or

t d
at

at
yp

e

to
ke

n
N

o
no

rm
al

iz
ed

St
rin

g
Se

t o
f s

tr
in

gs
 th

at
 d

o
no

t c
on

ta
in

 a
 li

ne
 fe

ed
 o

r
ta

b
ch

ar
ac

te
r

an
d

th
at

ha
ve

 n
o

le
ad

in
g

or
 tr

ai
lin

g
sp

ac
es

un
si

gn
ed

B
yt

e
N

o
un

si
gn

ed
Sh

or
t

Re
pr

es
en

ts
 a

 n
um

be
r

w
ith

 a
n

up
pe

rb
ou

nd
 o

f 2
55

un
si

gn
ed

In
t

N
o

un
si

gn
ed

Lo
ng

Re
pr

es
en

ts
 a

 n
um

be
r

w
ith

 a
n

up
pe

rb
ou

nd
 o

f 4
2 9

49
67

29
5

un
si

gn
ed

Lo
ng

N
o

no
nN

eg
at

iv
eI

nt
eg

er
Re

pr
es

en
ts

 a
 n

um
be

r
w

ith
 a

n
up

pe
rb

ou
nd

 o
f

18
44

67
44

07
37

09
55

16
15

un
si

gn
ed

Sh
or

t
N

o
un

si
gn

ed
In

t
Re

pr
es

en
ts

 a
 n

um
be

r
w

ith
 a

n
up

pe
rb

ou
nd

 o
f 6

5 5
35

<?xml version = "1.0" encoding = "UTF-8"?>

<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema"

elementFormDefault = "qualified">

<xsd:element name = "sampleData">

<xsd:complexType>

<xsd:sequence>

<xsd:element name = "numeric">

<xsd:complexType>

<xsd:sequence>

<xsd:element name = "negInt" type =

"xsd:negativeInteger"/>

<xsd:element name = "posInt" type =

"xsd:positiveInteger"/>

<xsd:element name = "integer" type = "xsd:integer"/>

<xsd:element name = "unsignedInt" type =

"xsd:unsignedInt"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name = "strings">

<xsd:complexType>

<xsd:sequence>

<xsd:element name = "normalized" type =

"xsd:normalizedString"/>

<xsd:element name = "string" type = "xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>

Listing 4.5 Schema using derived datatypes (derivedsamples.xsd).

For example, let’s say that we are defining a simple schema that would allow
us to track item expenses. The schema would include the type of expense, what
it was, and the cost. The model for this information would look like that of Fig-
ure 4.3.

One of the first things that stand out in this model is the fact that we need to
define the type of expense. For our example, we are going to define it as a per-
sonal type of expense, which would include mortgage, car payment, or bill.
The definition of this type is pretty simple and is as follows:

156 Chapter 4

Applying Datatypes 157

<xsd:simpleType name = "personal">

<xsd:restriction base = "xsd:string">

<xsd:enumeration value = "mortgage"/>

<xsd:enumeration value = "car"/>

<xsd:enumeration value = "bill"/>

</xsd:restriction>

</xsd:simpleType>

sampleData

numeric

strings

negInt

negativeInteger

posInt

positiveInteger

integer

integer

unsignedInt

unsignedInt

normalized

normalizedString

string

string

Figure 4.2 Data model of a sample using several of the derived datatypes.

<?xml version = "1.0" encoding = "UTF-8"?>

<sampleData xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation =

"file:///S:/derivedsamples.xsd">

<numeric>

<negInt>-68756</negInt>

<posInt>7654</posInt>

<integer>-8736</integer>

<unsignedInt>23432</unsignedInt>

</numeric>

<strings>

<normalized>here is a string with carriage returns</normalized>

<string>here is a string</string>

</strings>

</sampleData>

Listing 4.6 Schema that corresponds to derived datatypes from Listing 4.5 (derived.xml).

158 Chapter 4

expense

type

personal

cost

string

item

string

Figure 4.3 Our expense model.

<?xml version = "1.0" encoding = "UTF-8"?>

<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema"

elementFormDefault = "qualified">

<xsd:element name = "expense">

<xsd:complexType>

Listing 4.7 Final XSD schema for expense model, with all elements and datatypes
defined (expense.xsd).

As you can see, this code is very much like the car type we defined in List-
ing 4.3. But another type that really needs to be defined is <cost>. As we now
know, there is no currency datatype in XSD, so we must create one.

If you break down what a currency really is, it is nothing more than a num-
ber that has a maximum of two digits after the decimal point. Because we have
a decimal datatype, let’s derive our current datatype from it. At the same time,
we want to make sure that it has no more than two digits after the decimal. We
can apply the fractionDigits facet to accomplish this task. Finally, one more
thing needs to be done. We want to make sure that the lowest value of our cur-
rency type is 0.00. To perform this action, we can use the minInclusive facet
and set it equal to 0. The end result is as follows:

<xsd:simpleType name = "currency">

<xsd:restriction base = "xsd:decimal">

<xsd:minInclusive value = "0"/>

<xsd:fractionDigits value = "2"/>

</xsd:restriction>

</xsd:simpleType>

And now, we have both of our derived types defined. Now, all we need to
do is define our elements and specify the types appropriately. Listing 4.7
shows the final XSD schema with all the elements and datatypes defined.

Applying Datatypes 159

<xsd:sequence>

<xsd:element name = "cost" type = "xsd:string"/>

<xsd:element name = "item" type = "xsd:string"/>

</xsd:sequence>

<xsd:attribute name = "type" use = "required" type =

"personal"/>

</xsd:complexType>

</xsd:element>

<xsd:simpleType name = "personal">

<xsd:restriction base = "xsd:string">

<xsd:enumeration value = "mortgage"/>

<xsd:enumeration value = "car"/>

<xsd:enumeration value = "bill"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name = "currency">

<xsd:restriction base = "xsd:decimal">

<xsd:minInclusive value = "0"/>

<xsd:fractionDigits value = "2"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

Listing 4.7 Final XSD schema for expense model, with all elements and datatypes
defined (expense.xsd). (Continued)

Listing 4.8 , is an example document that shows how this schema can be used.
In the following section, the <xsd:simpleType> element is reintroduced and

covered in detail. Also, some more facets will be introduced and information
will be given on how to control datatypes.

<?xml version = "1.0" encoding = "UTF-8"?>

<expense xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation = "file:///S:/expense.xsd"

type = "bill">

<cost>76.89</cost>

<item>April 2002</item>

</expense>

Listing 4.8 Sample document showing how the schema from Listing 4.7 can be used
(electricity.xml).

160 Chapter 4

Table 4.3 Attributes of the <xsd:simpleType> Tag

ATTRIBUTE DESCRIPTION

Final Enables you to prevent derivations by lists, unions, restriction, or all

Id Unique identifier

Name The name of the simple type you are creating

More on Simple Types

Recall that simple types refer to the definition of elements that have no child
elements as part of their content model (see Chapter 1). Simple types are
extremely useful when your own datatypes are being defined, which might not
necessary be “true” datatypes as much as certain types of data. For example, we
could define a simple type called friends and then apply that type to a list of
names to specify who is a friend and who is not.

The <xsd:simpleType> element is used to define simple data types. The def-
inition for this element is as follows:

<simpleType

final = (#all | (list | union | restriction))

id = ID

name = NCName

{any attributes with non-schema namespace . . .}>

Content: (annotation?, (restriction | list | union))

</simpleType>

The attributes of the <xsd:simpleType> are listed and described in Table 4.3.
In addition to being able to give it a name, ID, and control its derivations,

we are able to use child elements to define and describe how the new type is to
function. This action is either done by restriction, as we have used several
times before, or by lists or unions, which we discuss in the following sections.

Defining Lists
There are several ways to define lists within XSD. First, there are the primitive
list types NMTOKENS, IDREFS, and ENTITIES, which constitute a list of
NMTOKEN, IDREF, and ENTITY instances, respectively. In addition to these
built-in types, you can also create your own lists by using the <xsd:list> ele-
ment, which is defined as follows:

Applying Datatypes 161

Table 4.4 Attributes of the <xsd:list> Tag

ATTRIBUTE DESCRIPTION

id Unique identifier

itemType References the list type

<list

id = ID

itemType = QName

{any attributes with non-schema namespace . . .}>

Content: (annotation?, (simpleType?))

</list>

As we see in the definition, there are only two attributes to this element.
Both are defined in Table 4.4.

When can <xsd:list> be used, and when is it helpful? Suppose, for example,
that we wanted to call three different painters to get estimates for painting a
house. Let’s limit it to three for now because we have only a limited amount of
time to be at the house with them during the estimations.

In defining this schema, the first thing we need to do is create an enumera-
tion of all the painters’ phone numbers. We will call this type numbers, and it
is defined as follows:

<xsd:simpleType name = "numbers">

<xsd:restriction base = "xsd:positiveInteger">

<xsd:enumeration value = "9195551212"/>

<xsd:enumeration value = "9195551213"/>

<xsd:enumeration value = "9195551214"/>

<xsd:enumeration value = "9195551215"/>

<xsd:enumeration value = "9195551216"/>

<xsd:enumeration value = "9195551217"/>

<xsd:enumeration value = "9195551218"/>

</xsd:restriction>

</xsd:simpleType>

The next thing we need to do is create our list from these phone numbers as
follows:

<xsd:simpleType name = "house">

<xsd:list itemType = "numbers"/>

</xsd:simpleType>

Once the list has been created, we can derive a new datatype from it called
threeHousePainters and restrict the length to 3:

162 Chapter 4

<?xml version = "1.0" encoding = "UTF-8"?>

<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema"

elementFormDefault = "qualified">

<!- single element that is of type threeHousePainters ->

<xsd:element name = "painters" type = "threeHousePainters"/>

<!- define all possible phone numbers ->

<xsd:simpleType name = "numbers">

<xsd:restriction base = "xsd:positiveInteger">

<xsd:enumeration value = "9195551212"/>

<xsd:enumeration value = "9195551213"/>

<xsd:enumeration value = "9195551214"/>

<xsd:enumeration value = "9195551215"/>

<xsd:enumeration value = "9195551216"/>

<xsd:enumeration value = "9195551217"/>

<xsd:enumeration value = "9195551218"/>

</xsd:restriction>

</xsd:simpleType>

<!- create a list out of the phone numbers ->

<xsd:simpleType name = "house">

<xsd:list itemType = "numbers"/>

</xsd:simpleType>

<!- define a new datatype from the list and limit to 3 ->

<xsd:simpleType name = "threeHousePainters">

<xsd:restriction base = "house">

<xsd:length value = "3"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

Listing 4.9 Final schema for house painters (painters.xsd).

<xsd:simpleType name = "threeHousePainters">

<xsd:restriction base = "house">

<xsd:length value = "3"/>

</xsd:restriction>

</xsd:simpleType>

We won’t concern ourselves with the length facet just yet. (See the following
section, “Specifying Lengths,” for more about length facets.)

At this point, we have defined all of our datatypes as needed. The final XSD
schema is defined in Listing 4.9.

Applying Datatypes 163

<?xml version = "1.0" encoding = "UTF-8"?>

<painters xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation = "file:///S:/painters.xsd">

9195551214 9195551217 9195551212

</painters>

Listing 4.10 Instance document for house painters (threepainters.xml).

Table 4.5 Attributes of the <xsd:union> Tag

ATTRIBUTE DESCRIPTION

id Unique identifier

memberTypes Space separated list of datatypes that the union can be made up of

We can now create an instance document listing all three phone numbers to
be called, which is shown in Listing 4.10. Notice that the order of the list does
not matter, but if a fourth number is added, we will get an error.

Lists can be extremely useful when creating schemas, but that it is not the
only method of creating a set of constraining choices for content.

Creating a Union
When defining your own datatypes or even referencing previously defined
datatypes, you are sure to come across instances where you want some new
data to be one of two (or more) types. For instance, if you wanted only a
type=“new” <customer> to be able to purchase a given <item>, or if they were
your type=“friend”, then you would want to be able to define that as part of
your <customer> element. This type of functionality is accomplished through
the use of unions and the <xsd:union> element, which is defined as follows:

<union

id = ID

memberTypes = List of QName

{any attributes with non-schema namespace . . .}>

Content: (annotation?, (simpleType*))

</union>

The <xsd:union> element only has a couple of attributes, which are defined
in Table 4.5.

One of the best ways to see how <xsd:union> can work is through an exam-
ple. In our example, we are going to define an <employee> element that has
<name>, <gender>, and <age> as child elements. With the <age> element, we

164 Chapter 4

are going to specify that it must contain a positive integer number that is
greater than 0 and that <gender> must take on values of male or female:

<!-- only allow male and female as genders -->

<xsd:element name = "gender">

<xsd:simpleType>

<xsd:restriction base = "xsd:string">

<xsd:enumeration value = "male"/>

<xsd:enumeration value = "female"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<!-- specify that age must be greater than 0 -->

<xsd:element name = "age">

<xsd:simpleType>

<xsd:restriction base = "xsd:positiveInteger">

<xsd:minExclusive value = "0"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

The <employee> element, on the other hand, has a required reference
attribute that represents the employee’s ID number. Because instance docu-
ments can contain both current and previous employees, we are going to define
datatypes (with a list of IDs) for previous and current employees as follows:

<!-- id list of current employees -->

<xsd:simpleType name = "current">

<xsd:restriction base = "xsd:decimal">

<xsd:enumeration value = "17242"/>

<xsd:enumeration value = "13456"/>

<xsd:enumeration value = "13456"/>

<xsd:enumeration value = "34566"/>

<xsd:enumeration value = "28766"/>

</xsd:restriction>

</xsd:simpleType>

<!-- id list of previous employees -->

<xsd:simpleType name = "previous">

<xsd:restriction base = "xsd:decimal">

<xsd:enumeration value = "25643"/>

<xsd:enumeration value = "56890"/>

<xsd:enumeration value = "36478"/>

<xsd:enumeration value = "34784"/>

<xsd:enumeration value = "49905"/>

</xsd:restriction>

</xsd:simpleType>

TEAMFL
Y

Team-Fly®

Applying Datatypes 165

There is nothing complex here, just the definition of two new datatypes and
a list of possible values. But how do we specify that the reference attribute of
the <employee> element is to use either of these? Here is where <xsd:union>
comes into play. By using <xsd:union>, we are able to create a grouping
whereby either values of current or previous can be included as the value of
the reference attribute, as shown in the following example:

<xsd:attribute name = "reference" use = "required">

<xsd:simpleType>

<!-- create list of all employees by including current and previous -->

<xsd:union memberTypes = "current previous"/>

</xsd:simpleType>

</xsd:attribute>

In the previous code, we use the memberTypes attribute of the <xsd:union>
element to specify a space-separated list of possible datatypes. Listing 4.11
shows the complete code listing.

<?xml version = "1.0" encoding = "UTF-8"?>

<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema">

<xsd:element name = "employee">

<xsd:complexType>

<xsd:sequence>

<xsd:element name = "name" type = "xsd:string"/>

<!-- only allow male and female as genders -->

<xsd:element name = "gender">

<xsd:simpleType>

<xsd:restriction base = "xsd:string">

<xsd:enumeration value = "male"/>

<xsd:enumeration value = "female"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<!-- specify that age must be greater than 0 -->

<xsd:element name = "age">

<xsd:simpleType>

<xsd:restriction base = "xsd:positiveInteger">

<xsd:minExclusive value = "0"/>

</xsd:restriction>

continues

Listing 4.11 Complete schema for list of employees (employee.xsd).

166 Chapter 4

</xsd:simpleType>

</xsd:element>

</xsd:sequence>

<xsd:attribute name = "reference" use = "required">

<xsd:simpleType>

<!-- create list of all employees by including current and

previous -->

<xsd:union memberTypes = "current previous"/>

</xsd:simpleType>

</xsd:attribute>

</xsd:complexType>

</xsd:element>

<!-- id list of current employees -->

<xsd:simpleType name = "current">

<xsd:restriction base = "xsd:decimal">

<xsd:enumeration value = "17242"/>

<xsd:enumeration value = "13456"/>

<xsd:enumeration value = "13456"/>

<xsd:enumeration value = "34566"/>

<xsd:enumeration value = "28766"/>

</xsd:restriction>

</xsd:simpleType>

<!—- id list of previous employees —->

<xsd:simpleType name = "previous">

<xsd:restriction base = "xsd:decimal">

<xsd:enumeration value = "25643"/>

<xsd:enumeration value = "56890"/>

<xsd:enumeration value = "36478"/>

<xsd:enumeration value = "34784"/>

<xsd:enumeration value = "49905"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

Listing 4.11 Complete schema for list of employees (employee.xsd). (Continued)

We see this schema in action in Listing 4.12.
Note that in this example, we set the reference attribute to 28766, which was

one of the enumerations within the current datatype. If we were to change this
value to a value that is not part of the current or previous datatypes, then the
parser would output an error as shown within the XML Instance (from TIBCO
Extensibility) application in Figure 4.4.

Applying Datatypes 167

<?xml version = "1.0" encoding = "UTF-8"?>

<employee xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation = "file:///S:/employee.xsd"

reference = "28766">

<name>Allen Wyke</name>

<gender>male</gender>

<age>29</age>

</employee>

Listing 4.12 Instance document for list of employees (28766.xml).

Figure 4.4 Getting an error with a value not defined in one of our datatypes.

Constraining Type Definitions

On many occasions when schemas are defined, we often find that we want
more control over how things appear and in what context. Elements, for
example, have the minOccurs and maxOccurs attributes that enable one to
have greater control over how often an element can appear within an instance
document. The need to constrain datatypes is no different. At times, we might
want to both specify that the content of an element can have a string and limit
things like the number of characters that the string can contain. For example, if
that data were to be placed in a database, there would probably be limits as to
how long it could be.

168 Chapter 4

Table 4.6 Attributes of the <xsd:length> Tag

ATTRIBUTE DESCRIPTION

fixed A default, but unchangeable value for the element

id Unique identifier

value Number of items that represent the length

Datatypes can definitely be constrained in this manner through the use of
facets (a concept we briefly introduced in Chapter 1). Facets themselves war-
rant more than just a few pages of coverage because they are not only incredi-
bly powerful but a major aspect of defining schemas. For that reason, several
facets are introduced in this section of the chapter, and there will be more com-
plete coverage in Chapters 5 and 6 (which deal with specifying lengths).

It is just as important to provide boundaries for datatype types as it is to
have the types defined. Being able to limit the number of items in a list or the
maximum value of an integer is very important. This section covers several
of the facets that control datatypes and shows you how they differ according
to the context in which they are placed (for example, the length of a string
and an integer are different). The following are the facets covered in this
chapter:

■■ length

■■ minLength

■■ maxLength

The first facet is <xsd:length>, which is used to control the length of a
datatype. It has the following definition:

<length

fixed = boolean : false

id = ID

value = nonNegativeInteger

{any attributes with non-schema namespace . . .}>

Content: (annotation?)

</length>

The <xsd:length> element has three attributes, all listed in Table 4.6. One of
them specifies whether or not the value can be changed; another is the unique
identifier; and a third contains the number of items that represent the length
we are trying to enforce on the datatype.

For example, suppose that we wanted to define a schema that would
describe an address. This <address> contains a <street>, <city>, <state>,
<postalcode>, and <country> and is shown in Figure 4.5.

Applying Datatypes 169

Address

street

string

city

string

state

string

postalcode

positiveInteger

country

string

Figure 4.5 Our address data model.

The element that we are going to apply the <xsd:length> facet to is <state>.
It will be limited to the two-character abbreviation that is commonly used. To
perform this task, we need to define <state> as we normally would with
<xsd:element> and then restrict it to two characters. The following will
accomplish this task:

<xsd:element name = "state">

<xsd:simpleType>

<xsd:restriction base = "xsd:string">

<xsd:length value = "2"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

This particular example is going to be a work in progress, so the complete
code will not be given at this point. Over the next few sections, however, we
will arrive at a completed XSD schema.

The <xsd:length> facet is not the only one that enables us to control the
length of an item. The <xsd:minLength> facet also enables us to specify a min-
imum length. It is defined as follows:

<minLength

fixed = boolean : false

id = ID

value = nonNegativeInteger

{any attributes with non-schema namespace . . .}>

Content: (annotation?)

</minLength>

170 Chapter 4

This element, unlike <xsd:length>, is not a fixed requirement on instance
documents. It only states that “you need to have at least this many” charac-
ters, where <xsd:length> states that “you have to have exactly this many.” The
attributes, as you can see in Table 4.7, are the same as <xsd:length>.

A good place to use <xsd:minLength> is for our definitions of <city>,
<street>, and <country>. We want to make sure that the users at least pass in
one character for each of these, which might not be as practical as in other
examples, but it will serve our purpose. We are able to enforce this require-
ment by using the following code:

<xsd:element name = "street">

<xsd:simpleType>

<xsd:restriction base = "xsd:string">

<xsd:minLength value = "1"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name = "city">

<xsd:simpleType>

<xsd:restriction base = "xsd:string">

<xsd:minLength value = "1"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name = "country">

<xsd:simpleType>

<xsd:restriction base = "xsd:string">

<xsd:minLength value = "1"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

Is a minimum length really everything we need for these elements, how-
ever? It is not, especially if we are going to insert this data into a database.
More important than a minimum set of information is a maximum set. Conve-
niently, XSD also has a <xsd:maxLength> facet. It has the following definition:

Table 4.7 Attributes of the <xsd:minLength> Tag

ATTRIBUTE DESCRIPTION

fixed A default, but unchangeable value for the element

id Unique identifier

value Number of items that represent the minimum length

Applying Datatypes 171

Table 4.8 Attributes of the <xsd:maxLength> Tag

ATTRIBUTE DESCRIPTION

fixed A default but unchangeable value for the element

id Unique identifier

value Number of items that represent the maximum length

<maxLength

fixed = boolean : false

id = ID

value = nonNegativeInteger

{any attributes with non-schema namespace . . .}>

Content: (annotation?)

</maxLength>

Like <xsd:length> and <xsd:minLength>, <xsd:maxLength> has three
attributes that are defined in Table 4.8.

In our use of <xsd:maxLength>, we are going to put a cap on the number of
characters, including white space, that can occur within our <city>, <street>,
and <country> elements. For <city> and <country>, we are going to limit it to
15. The <street> element might need to hold more information, so we are
going to set it to 25. To perform this task, we only need to add the following
line as part of the <xsd:restriction> definition to each of the <city>, <street>,
and <country> elements:

<xsd:maxLength value = "25"/>

The ability to enforce restrictions on strings is not the only type of control
you have over instance documents. In addition, you can also control digits.

Controlling Digits
There are several constraining facets that enable you to specify how you want
digit-based datatypes handled, two of which will be discussed here:

■■ totalDigits

■■ fractionDigits

The first one of these facets we are going to look at is the <xsd:totalDigits>
element, which has the following definition:

172 Chapter 4

Table 4.9 Attributes of the <xsd:totalDigits> Tag

ATTRIBUTE DESCRIPTION

fixed A default but unchangeable value for the element

id Unique identifier

value Number of items that represent the total number of digits

<totalDigits

fixed = boolean : false

id = ID

value = positiveInteger

{any attributes with non-schema namespace . . .}>

Content: (annotation?)

</totalDigits>

This element enables us to specify the maximum number of digits that are
to appear in an instance document. We like to compare this element to
<xsd:maxLength>, because it is to numerical values what <xsd: maxLength >
is to string values. Like so many of the other facets, it has three attributes,
which are defined in Table 4.9.

In what situation would a person use this facet? Our <postalcode> element
is a great example. A postal code (in the United States, at least) is positive inte-
ger of five digits. Using this facet, we can impose this restriction on our ele-
ment. The definition for this element, which will be derived from the
postiveInteger datatype, is as follows:

<xsd:element name = "postalcode">

<xsd:simpleType>

<xsd:restriction base = "xsd:positiveInteger">

<xsd:totalDigits value = "5"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

The complete schema for the <postalcode> element, with restrictions, is
shown in Listing 4.13.

Now that we have our schema defined, we can create an instance document
that uses it, as shown in Listing 4.14. Notice that all of the content conforms to
the schema that we have defined. If we were to change parts of this schema,
such as making a 16-digit <city>, three-digit <state>, or six-digit <postal-
code>, we would get an error like that shown in Figure 4.6.

Applying Datatypes 173

<?xml version = "1.0" encoding = "UTF-8"?>

<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema"

elementFormDefault = "qualified">

<xsd:element name = "address">

<xsd:complexType>

<xsd:sequence>

<!-- street should be more than 1, less than 25 -->

<xsd:element name = "street">

<xsd:simpleType>

<xsd:restriction base = "xsd:string">

<xsd:maxLength value = "25"/>

<xsd:minLength value = "1"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<!-- city should be more than 1, less than 15 -->

<xsd:element name = "city">

<xsd:simpleType>

<xsd:restriction base = "xsd:string">

<xsd:maxLength value = "15"/>

<xsd:minLength value = "1"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<!-- state should be 2 characters -->

<xsd:element name = "state">

<xsd:simpleType>

<xsd:restriction base = "xsd:string">

<xsd:length value = "2"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<!-- postalcode should be less than 5 -->

<xsd:element name = "postalcode">

<xsd:simpleType>

<xsd:restriction base = "xsd:positiveInteger">

<xsd:totalDigits value = "5"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

continues

Listing 4.13 Schema for the <postalcode> element with restrictions (address.xsd).

174 Chapter 4

<!- country should be more than 1, less than 15 ->

<xsd:element name = "country">

<xsd:simpleType>

<xsd:restriction base = "xsd:string">

<xsd:maxLength value = "15"/>

<xsd:minLength value = "1"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>

Listing 4.13 Schema for the <postalcode> element with restrictions (address.xsd) (Con-
tinued).

<?xml version = "1.0" encoding = "UTF-8"?>

<address xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation = "file:///S:/address.xsd">

<street>123 Anystreet</street>

<city>Some City</city>

<state>NC</state>

<postalcode>27665</postalcode>

<country>USA</country>

</address>

Listing 4.14 Instance document for restricted <postalcode> element (123Anystreet.xml).

Another important facet for controlling digits is <xsd:fractionDigits>. This
facet enables us to specify the number of digits that are to occur after the
decimal point of a positive or negative numerical value. It has the following
definition:

<fractionDigits

fixed = boolean : false

id = ID

value = nonNegativeInteger

{any attributes with non-schema namespace . . .}>

Content: (annotation?)

</fractionDigits>

TEAMFL
Y

Team-Fly®

Applying Datatypes 175

Figure 4.6 Errors from not conforming to our <city>, <state>, and <postalcode>
definitions.

Table 4.10 Attributes of the <xsd:fractionDigits> Tag

ATTRIBUTE DESCRIPTION

fixed A default but unchangeable value for the element

id Unique identifier

value Number of items that represent the total number of fractional digits

This facet can be extremely useful when we want to limit the accuracy of
data coming into our system. Definitions of the attributes of this element are
given in Table 4.10.

Refer to the section, “Defining Your Own Datatypes,” particularly Listing
4.7, for an example of how to use <xsd:fractionDigits>. Just remember that it
represents the number of digits to the right of the decimal point.

176 Chapter 4

<?xml version = "1.0" encoding = "UTF-8"?>

<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema"

elementFormDefault = "qualified">

<xsd:element name = "someText">

<xsd:simpleType>

Listing 4.15 Simple schema using preserve value (preserve.xsd).

Table 4.11 Attributes of the <xsd:whiteSpace> Tag

ATTRIBUTE DESCRIPTION

fixed A default but unchangeable value for the element

id Unique identifier

value Contains a value of collapse, preserve, or replace to signify how
white space is supposed to be handled when encountered

Handling White Space
As previously mentioned, size-limiting constraints include white space when
their values are set. In addition, another facet called <xsd:whiteSpace> deter-
mines how white space is supposed to be handled when encountered. The
description of this element is as follows.

<whiteSpace

fixed = boolean : false

id = ID

value = (collapse | preserve | replace)

{any attributes with non-schema namespace . . .}>

Content: (annotation?)

</whiteSpace>

Like the other facets we have discussed recently, this element has three
attributes, which we cover in Table 4.11.

One interesting thing to note about this element is that the value attribute takes
one of three possible values: preserve, replace, or collapse. These values are impor-
tant because they determine what happens with white space within an instance
document. In most schemas, white space is left as is. For example, the string
“Hello, World!” would be considered 13 characters. That includes the comma, the
space, and the exclamation point. The other 10 characters are alphabetical.

The preserve setting tells the schema processors to perform no normaliza-
tion on the data—to leave it exactly as it was passed. So, for instance, let’s
examine the simple schema defined in Listing 4.15.

Applying Datatypes 177

<xsd:restriction base = "xsd:string">

<xsd:whiteSpace value = "preserve"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

</xsd:schema>

Listing 4.15 Simple schema using preserve value (preserve.xsd). (Continued)

<?xml version = "1.0" encoding = "UTF-8"?>

<someText xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation =

"file:///S:/preserve.xsd">Here is some data followed by a carriage

returns

Another return before this line starts and a last return before the

ending of the element occurs.

</someText>

Listing 4.16 Instance document using the preserve value (preserve.xml).

<?xml version = "1.0" encoding = "UTF-8"?>

<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema"

elementFormDefault = "qualified">

<xsd:element name = "email">

<xsd:complexType>

<xsd:sequence>

<xsd:element name = "header">

<xsd:complexType>

<xsd:sequence>

<xsd:element name = "to" type = "xsd:string"/>

<xsd:element name = "cc" type = "xsd:string" minOccurs =

"0" maxOccurs = "unbounded"/>

continues

Listing 4.17 Schema using the replace value (email.xsd).

If we had Listing 4.16 passed to a processor, all tabs, line feeds, and carriage
returns would be left in.

If, however, we wanted to replace all tabs, line feeds, and carriage returns with
space characters, then we could change our <xsd:whiteSpace> definition. Listing
4.17 shows an example of defining this element for a sample e-mail data model.
We specifically do not want these characters in our e-mails for this example.

178 Chapter 4

<?xml version = "1.0" encoding = "UTF-8"?>

<email xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation = "file:///S:/email.xsd">

<header>

<to>support@wiley.com</to>

<cc>myself@home.com</cc>

<bcc/>

<from/>

<date>2002-05-30</date>

<subject>Great Book!</subject>

</header>

continues

Listing 4.18 Instance document using the replace value (email_support.xml).

<xsd:element name = "bcc" type = "xsd:string" minOccurs

= "0" maxOccurs = "unbounded"/>

<xsd:element name = "from" type = "xsd:string"/>

<xsd:element name = "date" type = "xsd:date"/>

<xsd:element name = "subject" type = "xsd:string"

minOccurs = "0"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name = "body">

<xsd:simpleType>

<xsd:restriction base = "xsd:string">

<!- replace tabs, line feeds, and carriage returns with

spaces ->

<xsd:whiteSpace value = "replace"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>

Listing 4.17 Schema using the replace value (email.xsd). (Continued)

In the schema in Listing 4.17, we have specified that we want our <body>
element to have its tabs, line feeds, and carriage returns replaced with spaces.
The resulting instance document would look like Listing 4.18.

Taking the instance document from Listing 4.18, we would end up with a
<body> that looks like the following:

<body>Just wanted to send you guys a note to say how much I have enjoyed

your Essential series. I already have read the XHTML and XPath books,

and am now finishing the one on XML Schema - love them! Thanx a ton -

John </body>

Our last option is to use collapse. When this option is used, it not only per-
forms the replace operation but also collapses contiguous sequences of spaces
into a single space. It will also remove any leading and trailing spaces.

As an example, let’s build a schema to represent a search. It will contain a
<site> and <phrase> element that provides the URI of the search site as well as
the phrase you want to search. We are going to use the collapse option to
remove all the extra characters in the <phrase> so that we can pass it to the
search engine. In Listing 4.19, we have defined our schema.

Applying Datatypes 179

<body>Just wanted to send you guys a note to say how much I have

enjoyed your Essential series. I already have read the XHTML and XPath

books, and am now finishing the one on XML Schema - love them!

Thanx a ton - John

</body>

</email>

Listing 4.18 Instance document using the replace value (email_support.xml) (Continued).

<?xml version = "1.0" encoding = "UTF-8"?>

<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema"

elementFormDefault = "qualified">

<xsd:element name = "search">

<xsd:complexType>

<xsd:sequence>

<xsd:element name = "site" type = "xsd:anyURI"/>

<xsd:element name = "phrase">

<xsd:simpleType>

<xsd:restriction base = "xsd:string">

<xsd:whiteSpace value = "collapse"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>

Listing 4.19 Schema using the collapse value (search.xsd).

180 Chapter 4

Listing 4.20 shows a sample instance document for this model. Extra car-
riage returns and spaces are included so that you can see what the document
will look like after processing with our collapse setting in place.

In this example, our <phrase> element has a lot of extra trash in it—everything
from carriage returns after hardware as well as two extra ones creating blank lines
before our ending </phrase> element. There are even have some extra spaces
between the words items. If we ran this example through a parser, our resulting
<phrase> element would resemble something like the following:

<phrase>computer hardware misc items as well as other things</phrase>

This code is a little more manageable and does not necessarily detract from
our meaning. This situation might not always be the case for your schemas, so
make sure that the removal of these extraneous characters will not have any
impact on your applications.

Pattern Matching
The facets used thus far have done such things as defined limitations or specified
how certain content should be handled. Another type of facet, <xsd:pattern>,
takes a different approach. This facet has the following definition:

<pattern

id = ID

value = anySimpleType

{any attributes with non-schema namespace . . .}>

Content: (annotation?)

</pattern>

Attributes of this facet, which are defined in Table 4.12, enable you to apply
constraint through regular expression pattern matching. For anyone who is

<?xml version = "1.0" encoding = "UTF-8"?>

<search xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation = "file:///S:/search.xsd">

<site>http://www.google.com</site>

<phrase>computer hardware

misc items as well as other things

</phrase>

</search>

Listing 4.20 Instance document using the collapse value (googlesearch.xml).

Applying Datatypes 181

Table 4.12 Attributes of the <xsd:pattern> Tag

ATTRIBUTE DESCRIPTION

id Unique identifier

value Regular expression pattern

familiar with scripting languages like Perl or JavaScript, regular expression
pattern matching has probably been used before, so the concept should be
familiar.

Recall the restriction of our <state> element to two characters in Listing
4.13. Suppose that we wanted to restrict it to two capitalized characters. We
could do that by using the <xsd:pattern> element as follows:

<xsd:element name = "state">

<xsd:simpleType>

<xsd:restriction base = "xsd:string">

<xsd:pattern value="[A-Z]{2}"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

The expression “[A-Z]{2}” essentially reads “two upper-case ASCII letters.”
Many other types of expressions enable us to search for digits, vary cases, and all
sorts of combinations therein. For example, we could have used <xsd:pattern> in
our currency datatype to ensure that it had the proper currency symbol (such as
$ or £). More detailed information about the <xsd:pattern> element can be found
in Chapter 8.

Regular expressions can be very powerful, but they are beyond the
scope of this book. If you are not familiar with them, the authors highly
recommend that you review Appendix D of the XML Schema Part 0: Primer
Recommendation located at www.w3.org/TR/xmlschema-0#regexAppendix.

Applicability of Facets

Table 4.13 gives an overview of facets and lists to which datatypes they apply.
For more complete coverage of facets, see Chapters 5 and 6.

Table 4.13 summarizes the information about datatypes, constraints, and
facets covered in this chapter. For more detail about how these operate, see
Chapters 5 and 6.

NOTE

182 Chapter 4

Table 4.13 Datatypes to Which Each Facet Applies

FACET APPLIES TO DATATYPE LIST

enumeration ENTITIES, ENTITY, ID, IDREF, IDREFS, NCName, NMTOKEN,
NMTOKENS, NOTATION, Name, QName, anyURI, base64Binary, byte,
date, dateTime, decimal, double, duration, float, gDay, gMonth,
gMonthDay, gYear, gYearMonth, hexBinary, int, integer, language,
long, negativeInteger, nonNegativeInteger, nonPositiveInteger,
normalizedString, positiveInteger, short, string, time, token,
unsignedByte, unsignedInt, unsignedLong, unsignedShort

fractionDigits byte, decimal, int, integer, long, negativeInteger, nonNegativeInteger,
nonPositiveInteger, positiveInteger, short, unsignedByte,
unsignedInt, unsignedLong, unsignedShort

length ENTITIES, ENTITY, ID, IDREF, IDREFS, NCName, NMTOKEN,
NMTOKENS, NOTATION, Name, QName, anyURI, base64Binary,
hexBinary, language, normalizedString, string, token

maxExclusive byte, date, dateTime, decimal, double, duration, float, gDay, gMonth,
gMonthDay, gYear, gYearMonth, int, integer, long, negativeInteger,
nonNegativeInteger, nonPositiveInteger, positiveInteger, short, time,
unsignedByte, unsignedInt, unsignedLong, unsignedShort

maxInclusive byte, date, dateTime, decimal, double, duration, float, gDay, gMonth,
gMonthDay, gYear, gYearMonth, int, integer, long, negativeInteger,
nonNegativeInteger, nonPositiveInteger, positiveInteger, short, time,
unsignedByte, unsignedInt, unsignedLong, unsignedShort

maxLength ENTITIES, ENTITY, ID, IDREF, IDREFS, NCName, NMTOKEN,
NMTOKENS, NOTATION, Name, QName, anyURI, base64Binary,
hexBinary, language, normalizedString, string, token

minExclusive byte, date, dateTime, decimal, double, duration, float, gDay, gMonth,
gMonthDay, gYear, gYearMonth, int, integer, long, negativeInteger,
nonNegativeInteger, nonPositiveInteger, positiveInteger, short, time,
unsignedByte, unsignedInt, unsignedLong, unsignedShort

minInclusive byte, date, dateTime, decimal, double, duration, float, gDay, gMonth,
gMonthDay, gYear, gYearMonth, int, integer, long, negativeInteger,
nonNegativeInteger, nonPositiveInteger, positiveInteger, short, time,
unsignedByte, unsignedInt, unsignedLong, unsignedShort

minLength ENTITIES, ENTITY, ID, IDREF, IDREFS, NCName, NMTOKEN,
NMTOKENS, NOTATION, Name, QName, anyURI, base64Binary,
hexBinary, language, normalizedString, string, token

continues

Applying Datatypes 183

Table 4.13 Datatypes to Which Each Facet Applies (Continued)

FACET APPLIES TO DATATYPE LIST

pattern ENTITY, ID, IDREF, NCName, NMTOKEN, NOTATION, Name, QName,
anyURI, base64Binary, boolean, byte, date, dateTime, decimal,
double, duration, float, gDay, gMonth, gMonthDay, gYear,
gYearMonth, hexBinary, int, integer, language, long, negativeInteger,
nonNegativeInteger, nonPositiveInteger, normalizedString,
positiveInteger, short, string, time, token, unsignedByte, unsignedInt,
unsignedLong, unsignedShort

totalDigits byte, decimal, int, integer, long, negativeInteger, nonNegativeInteger,
nonPositiveInteger, positiveInteger, short, unsignedByte, unsignedInt,
unsignedLong, unsignedShort

whiteSpace ENTITIES, ENTITY, ID, IDREF, IDREFS, NCName, NMTOKEN, NMTOKENS,
NOTATION, Name, QName, anyURI, base64Binary, boolean, byte, date,
dateTime, decimal, double, duration, float, gDay, gMonth, gMonthDay,
gYear, gYearMonth, hexBinary, int, integer, language, long,
negativeInteger, nonNegativeInteger, nonPositiveInteger,
normalizedString, positiveInteger, short, string, time, token,
unsignedByte, unsignedInt, unsignedLong, unsignedShort

Summary

This chapter rounds out the core aspects of the XSD language, also covered at
length in Chapters 1 and 2. Now that we have familiarized ourselves with the
concepts of <xsd:element>, <xsd:attribute>, and datatypes and have seen
many examples of how they are used, the foundation has been laid for us to
really start exploring how to apply XSD. It is time for us to examine in detail
how these elements can be used.

The preceding paragraphs have covered datatypes and how they are
applied to elements and attributes; they also touched on other important
points such as facets and deriving your own datatypes. The next few chapters
delve into more information about these two items and show how to use them
in our schemas.

TEAMFL
Y

Team-Fly®

185

C H A P T E R

5

Data Facets

In this chapter and in Chapter 6, “More about Data Facets,” we are going to
examine how to use the data facets that W3C XML Schema provides in order
to specifically constrain the permitted content of XML elements in the instance
documents that we wish to create or make use of.

First, before considering facets in detail, let’s briefly revisit the setting in which
facets exist. An XSD Schema datatype is a 3-tuple consisting of the following:

■■ A set of distinct values, which is the datatype’s value space

■■ A set of lexical representations called the datatype’s lexical space

■■ A set of facets that characterize properties of the datatype’s value space,
individual values, or lexical items

An xsd:float type would include the value of 100 in its value space. Each
value in the value space of a datatype is designated by one or more represen-
tations of that value in the lexical space of the datatype. For example, the lex-
ical space for that same xsd:float datatype could have included 100 or 1.0E2,
as well as other possibilities, as representations in the lexical space of the
datatype of the value 100.

186 Chapter 5

It is important for you to understand the distinction between the value
space of a datatype and the same datatype’s lexical space. It is the value space
that is constrained by facets of the datatype. When the value space is con-
strained, however, there is a corresponding (although not necessarily one-to-
one) constraint on the lexical space. If we were to exclude the xsd:float of 100
from the value space, then the two representations 100 and 1.0E2, as well as
other possibilities, would be excluded from the lexical space.

For datatypes of xsd:string, the value space and lexical space correspond
one-to-one.

Fundamental and Constraining Facets

Part 2 of the W3C XML Schema Recommendation refers to two types of facets
in XSD Schema: fundamental facets and constraining facets. This chapter and the
next will primarily be concerned with constraining facets.

A fundamental facet is, essentially, the definition of a datatype. Such funda-
mental facets can be difficult to express in words because the basis for them is,
practically speaking, axiomatic. It is quite obvious that the value ABC is not of
the type xsd:integer, for example.

A constraining facet takes the datatype defined by a fundamental facet and
constrains the possible values. For example, XSD Schema enables us to con-
strain the length of types that are of the xsd:string type, and other types, to
being a certain number of characters in length. When constraining (for exam-
ple, the xsd:integer type) to be of length 4, we are essentially constraining the
permitted integer values to be between 1,000 and 9,999, inclusive.

Now, let’s take an overview of all the constraining facets that are available
in version 1.0 of W3C XML Schema.

Constraining Facets in XSD Schema

The W3C XML Schema Recommendation lists 12 constraining facets that
are, in alphabetical order:

■■ enumeration

■■ fractionDigits

■■ length

■■ maxExclusive

■■ maxInclusive

■■ maxLength

■■ minExclusive

Data Facets 187

■■ minInclusive

■■ minLength

■■ pattern

■■ totalDigits

■■ whiteSpace

Each of these facets will be discussed in detail, and many examples of how
they are used will be given in this chapter and in the next. First, let’s look at
the three facets that relate to the length of a datatype: length, minLength, and
maxLength.

The length Element

It is not uncommon for us to want a datatype to be of a particular length. For
example, a U.S. zip code of three digits would be pretty much meaningless as
would a credit card number that is seven digits in length. Similarly, a code for
a U.S. state that had one, three, four, or more characters might be interpretable
by a human reader. “Wyom” is pretty unmistakable, for example, but an
application that expects a two-character description of a U.S. state might well
struggle to interpret a state code of non-standard length.

So, clearly at times we need to define exactly the length that the character
content of an element or the value of an attribute can have. In this section, we
will look at a situation in which the content must be of a fixed length.

The length facet is defined as the number of units of length of the datatype to
which it is being applied. The units of length used vary with the base type from
which a datatype is derived. For example, when a datatype is an xsd:string or
is derived from xsd:string, the units of length are the number of characters in
the string. When a datatype is xsd:hexBinary or base64Binary or a datatype
derived from those types, then the unit of length is an octet, which is eight bits
of binary data. When a list datatype is constrained by the length facet, it is the
number of list items to which we are referring.

The value of the length facet must be a nonNegativeInteger. That is pretty
much common sense. A string, for example, can be of zero length or any arbi-
trary length greater than zero, depending on the number of characters it con-
tains. A string of length �2, however, makes no sense—nor does a string of
length 3.5. Thus, the length facet must be an integer and must not be negative.

Let’s look at the simple situation in which you must create a schema—for
example, one describing a collection of addresses for individual customers. A
possible instance document is shown in Listing 15.1.

The XSD schema for much of that document is straightforward, with a
<CustomerAddress> element being a complex type having <Name> and
<Address> elements as content, each of which contains also a complex type.

188 Chapter 5

<?xml version='1.0'?>

<CustomerAddresses>

<CustomerAddress>

<Name>

<FirstName>Patrick</FirstName>

<MiddleInitials>Z</MiddleInitials>

<LastName>Belladonna</LastName>

</Name>

<Address>

<Street1>999 Calamity Jane Street</Street1>

<Street2></Street2>

<City>Seattle</City>

<State>WA</State>

<PostalCode>98765</PostalCode>

<Country>USA</Country>

</Address>

</CustomerAddress>

<!-- More <CustomerAddress> elements would go here. -->

</CustomerAddresses>

Listing 5.1 List of addresses for individual customers (CustAddresses.xml).

There are two parts for which we might well want to limit the permitted
length of data, however. The data to be entered as content in the <State> ele-
ment should be exactly two characters in length. The <PostalCode> element, if
one assumes that the application only stores U.S. zip codes, should be exactly
five digits in length (assuming that one is not wanting to collect extended zip
codes). Listing 5.2 shows the schema in which, using the length facet, we can
constrain the length of the content of the <State> element to two characters
and the length of the content of the <PostalCode> element to five digits.

Let’s look at the two parts of the code that define the two elements of inter-
est to us as far as the length facet is concerned. The <State> element is declared
to be of type “StateList2letter”:

<xsd:element name="State" type="StateList2letter"/>

which is defined as follows:

<xsd:simpleType name="StateList2letter">

<xsd:restriction base="xsd:string">

<xsd:length value="2"/>

</xsd:restriction>

</xsd:simpleType>

The base type for the StateList2letter datatype is xsd:string. We want to
restrict allowable strings to a length of two characters. That base datatype is

Data Facets 189

<?xml version='1.0'?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="CustomerAddresses">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="CustomerAddress">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Name">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="FirstName" type="xsd:string"/>

<xsd:element name="MiddleInitials" type="xsd:string"/>

<xsd:element name="LastName" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element> <!-- End of the <Name> element. -->

<xsd:element name="Address">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Street1" type="xsd:string"/>

<xsd:element name="Street2" type="xsd:string"/>

<xsd:element name="City" type="xsd:string"/>

<xsd:element name="State" type="StateList2letter"/>

<xsd:element name="PostalCode" type="ZipCode5digit"/>

<xsd:element name="Country" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element><!-- End of the <Address> element. -->

</xsd:sequence>

</xsd:complexType>

</xsd:element> <!-- End of the <CustomerAddress> element. -->

</xsd:sequence>

</xsd:complexType>

</xsd:element> <!-- End of the <CustomerAddresses> element. -->

<xsd:simpleType name="StateList2letter">

<xsd:restriction base="xsd:string">

<xsd:length value="2"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="ZipCode5digit">

<xsd:restriction base="xsd:decimal">

<xsd:length value="5"/>

Listing 5.2 Schema with length of content of <State> element limited to two characters
and <PostalCode> limited to five digits (CustAddresses.xsd).

190 Chapter 5

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

Listing 5.2 Schema with length of content of <State> element limited to two characters
and <PostalCode> limited to five digits (CustAddresses.xsd). (continued)

restricted to a permitted length of two characters by using the <xsd:length> ele-
ment nested within an <xsd:restriction> element, as shown earlier. Using this
technique, we can exclude content of the <State> element that is of inappropri-
ate length. When we come later to consider the enumeration facet, we will show
you how to make sure that only legitimate two character strings are allowed.

Similarly, the <PostalCode> element is, for the purposes of this example,
declared to be of type “ZipCode5digit”:

<xsd:element name="PostalCode" type="ZipCode5digit"/>

which is defined as follows:

<xsd:simpleType name="ZipCode5digit">

<xsd:restriction base="xsd:decimal">

<xsd:length value="5"/>

</xsd:restriction>

</xsd:simpleType>

The base type for the ZipCode5digit datatype is xsd:decimal. That base
datatype is restricted to a length of exactly five digits by means of an
<xsd:length> element nested within an <xsd:restriction> element. Alternative
base datatypes that could have been used are <xsd:nonNegativeInteger> or
<xsd:PositiveInteger>.

Another situation in which the length facet might supply us with a solution
would be if we wanted to store U.S. Social Security numbers (SSNs) for individ-
uals. An SSN has nine meaningful numeric digits commonly displayed as a
ddd-dd-dddd format. Let’s suppose that we wanted, for some reason, to cre-
ate an XML-based data store that also could handle data from U.K. citizens,
who also have a personal identifier that takes the form AB123456C, that is two
characters followed by six numeric digits followed by a single character. We
need to create two different lengths of number, depending on the citizenship
of the individual. We can use the <xsd:length> element to constrain the length
of each of the two elements representing the U.S. and U.K. SSNs to 11 and 9,
respectively. To allow the choice between those two elements, each with a
defined length, we can use an XSD choice group in combination with the
length facet.

Data Facets 191

<?xml version='1.0'?>

<PersonsWithSSN>

<Person>

<Name>

<FirstName>George</FirstName>

<MiddleNames>Walker</MiddleNames>

<LastName>Bush</LastName>

</Name>

<Address>

<Street1>1600 Pennsylvania Avenue</Street1>

<Street2></Street2>

<City>Washington</City>

<State>DC</State>

<Country>USA</Country>

</Address>

<Status>

<Citizenship>US</Citizenship>

<USSSN>123-45-6789</USSSN>

</Status>

</Person>

<Person>

<Name>

<FirstName>Anthony</FirstName>

<MiddleNames></MiddleNames>

<LastName>Blair</LastName>

</Name>

<Address>

<Street1>10 Downing Street</Street1>

<Street2>Westminster</Street2>

<City>London</City>

<State>England</State>

<Country>UK</Country>

</Address>

<Status>

<Citizenship>UK</Citizenship>

<UKSSN>AB123456C</UKSSN>

</Status>

</Person>

</PersonsWithSSN>

Listing 5.3 A listing of U.S. and U.K. citizens with personal identifiers (SSN01.xml).

If we make the simplifying assumption that an individual can have citizen-
ship in only one of the two countries of interest, then an instance document
showing a listing of U.S. and U.K. identifiers could look like that in Listing
5.3.

192 Chapter 5

The XSD schema to describe such an instance document is shown in Listing
5.4.

The interesting part of Listing 5.4 as far as constraining length is concerned
is in the declaration of the <StatusType> element:

<xsd:complexType name="StatusType">

<xsd:sequence>

<xsd:element name="Citizenship" type="xsd:string"/>

<xsd:group ref="SSNChoiceGroup" />

</xsd:sequence>

</xsd:complexType>

The permitted content of the <StatusType> element is a <Citizenship> ele-
ment followed by a group named SSNChoiceGroup. That group is defined by
using the <xsd:group> element within which is nested an <xsd:choice> element:

<xsd:group name="SSNChoiceGroup">

<xsd:choice>

<xsd:element name="USSSN" type="USSSNType"/>

<xsd:element name="UKSSN" type="UKSSNType"/>

</xsd:choice>

</xsd:group>

The choice available is between a <USSSN> element and a <UKSSN> ele-
ment. The permitted length of the content of those elements is constrained
within the definitions of the USSSNType and UKSSNType types to be 11 char-
acters and nine characters, respectively.

When we consider simple list datatypes and apply the length facet to them,
then we see that length, in that context, is interpreted as the number of list
items. For example, Listing 5.5 is a schema that includes a list datatype, named
MyListType.

The definition for the simple type MyListType is as follows:

<xsd:simpleType name="MyListType">

<xsd:list itemType="xsd:string">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:length value="3"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:list>

</xsd:simpleType>

The definition uses the <xsd:list> element, with itemType of xsd:string, to
indicate that it is a list simple type. The <xsd:restriction> element has a nested
<xsd:length> element that defines the length as “3.” As mentioned earlier, that
means a length of three list items.

Data Facets 193

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

<xsd:element name="PersonsWithSSN">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Person" type="PersonType" minOccurs="0"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:complexType name="PersonType">

<xsd:sequence>

<xsd:element name="Name" type="NameType"/>

<xsd:element name="Address" type="AddressType"/>

<xsd:element name="Status" type="StatusType"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="NameType">

<xsd:sequence>

<xsd:element name="FirstName" type="xsd:string"/>

<xsd:element name="MiddleNames" type="xsd:string"/>

<xsd:element name="LastName" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="AddressType">

<xsd:sequence>

<xsd:element name="Street1" type="xsd:string"/>

<xsd:element name="Street2" type="xsd:string"/>

<xsd:element name="City" type="xsd:string"/>

<xsd:element name="State" type="xsd:string"/>

<xsd:element name="Country" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="StatusType">

<xsd:sequence>

<xsd:element name="Citizenship" type="xsd:string"/>

<xsd:group ref="SSNChoiceGroup" />

</xsd:sequence>

</xsd:complexType>

Listing 5.4 A schema using the length facet to control SSN length (SSN01.xsd).

194 Chapter 5

<xsd:group name="SSNChoiceGroup">

<xsd:choice>

<xsd:element name="USSSN" type="USSSNType"/>

<xsd:element name="UKSSN" type="UKSSNType"/>

</xsd:choice>

</xsd:group>

<xsd:simpleType name="USSSNType">

<xsd:restriction base="xsd:string">

<xsd:length value="11"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="UKSSNType">

<xsd:restriction base="xsd:string">

<xsd:length value="9"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

Listing 5.4 A schema using the length facet to control SSN length (SSN01.xsd). (continued)

<?xml version='1.0'?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="MyLists">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="MyList" type="MyListType" minOccurs="1"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:simpleType name="MyListType">

<xsd:list itemType="xsd:string">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:length value="3"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:list>

</xsd:simpleType>

</xsd:schema>

Listing 5.5 A schema using a list simple type with <xsd:length> (MyLists.xsd).

TEAMFL
Y

Team-Fly®

Data Facets 195

<?xml version='1.0'?>

<MyLists>

<MyList>A B C</MyList>

<MyList>ABC DEF GHI</MyList>

<MyList>ABCD EFGH IJKL</MyList>

<MyList>ALongItem ALongerItem ALongerItemStill</MyList>

</MyLists>

Listing 5.6 An instance document using a list type of Length 3 (MyLists.xml).

The instance document in Listing 5.6 would validate against the schema in
Listing 5.5, because the number of items in each <MyList> element is exactly
three, although the length of the text content in a <MyList> element varies
considerably among <MyList> elements.

Remember that if you are using strings of type xsd:string in a list simple type,
you must avoid the use of space separators. In place of the xsd:string type, you
might be better to use the xsd:NMTOKEN type. If you tried to use “My String”
as a string in a list type, then that would be treated as two lists items with the
first list item, “My,” separated by a space character from the second list item,
“String.”

As we have seen, the length facet can be used to define content of specific
length. Often, however, we might want more flexibility in permitted length,
and for example, we might want to constrain the length of the content of an
element to specified minimum and maximum lengths. The minLength and
maxLength facets enable us to achieve that.

The minLength Element

The minLength facet is defined as the minimum number of units of length
permitted for a value. As with the length facet, the units of length vary with
the datatype of the value and/or the datatype from which it is derived.

One use of the minLength facet might be for the (partial) validation of credit
card numbers. Major credit card numbers are at least 13 digits in length. There-
fore, as a partial validation of a credit card number, we could make the simple
check that the number entered as the credit card number was a number and
was at least 13 digits long. In the remainder of this example, we will assume
that users have followed instructions to enter their credit card number without
including spaces. A simple listing for purchase details is shown in Listing 5.7.

As you can see in Listing 5.7, the content of the <CardNumber> element is
entered as a sequence of numeric digits without spaces or other separators. An
XSD schema that defines the instance document is shown in Listing 5.8.

196 Chapter 5

<?xml version='1.0'?>

<PurchaseDetails>

<Name>

<FirstNameInitials>John B</FirstNameInitials>

<LastName>Smith</LastName>

</Name>

<CreditCard>

<Company>Mastercard</Company>

<CardNumber>1234567890123456</CardNumber>

<ExpiryDate>05/03</ExpiryDate>

</CreditCard>

</PurchaseDetails>

Listing 5.7 An XML document describing a purchase using a credit card (Purchase-
Details.xml).

The focus of our interest in this example is the declaration of the <Card-
Number> element,

<xsd:element name="CardNumber" type="CardNumberType"/>

which references a named simple type definition named CardNumberType.

<xsd:simpleType name="CardNumberType">

<xsd:restriction base="xsd:decimal">

<xsd:minLength value="13"/>

</xsd:restriction>

</xsd:simpleType>

The base type for the CardNumberType datatype is xsd:decimal, arbitrary
precision numerical values. Again, the types xsd:nonNegativeInteger, xsd:
positiveInteger, or xsd:unsignedLong would be suitable alternatives. The
<xsd:minLength> element implements the minLength facet and ensures, with
the use of suitable validation, that all values entered into the <CreditCard-
Number> element’s content are numerical values with a length of at least 13
digits. Of course, that is far from a complete validation of a credit card num-
ber, because we might also want to restrict the maximum length of any credit
card number to 16 digits—something that we can achieve by using the
maxLength facet.

We could also use the minLength facet to check that data has been entered
for a particular item. Suppose that we had an XML pizza ordering service, and
we might want to ensure that the customer had not inadvertently forgotten to
choose a topping. An instance document might look like Listing 5.9.

A schema for Listing 5.9 is shown in Listing 5.10.

Data Facets 197

<?xml version='1.0'?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="PurchaseDetails">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Name" type="CreditCardName"/>

<xsd:element name="CreditCard" type="CreditCardDetails"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:complexType name="CreditCardName">

<xsd:sequence>

<xsd:element name="FirstNameInitials" type="xsd:string"/>

<xsd:element name="LastName" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="CreditCardDetails">

<xsd:sequence>

<xsd:element name="Company" type="xsd:string"/>

<xsd:element name="CardNumber" type="CardNumberType"/>

<xsd:element name="ExpiryDate" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name="CardNumberType">

<xsd:restriction base="xsd:decimal">

<xsd:minLength value="13"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

Listing 5.8 A schema to constrain the minimum length of the content of <CardNumber>
(PurchaseDetails.xsd).

The <xsd:minLength> element is used within the named simple type defin-
ition of ToppingsType towards the end of the schema. On this occasion, the
xsd:NMTOKEN type has been used to avoid the potential for ambiguous
entries when using xsd:string types in a list. Notice that we can specify that
the minimum length of the list is one item, that is the list of toppings cannot be
empty, by specifying the value of the value attribute of the <xsd:minLength>
element. If a customer consciously wanted no topping, he or she could enter
“none” as a permitted value.

Often, we might want to specify a maximum length for the content of an ele-
ment, either as an alternative to specifying a minimum length or in conjunction

198 Chapter 5

<?xml version='1.0'?>

<PizzaOrders>

<PizzaOrder DateOrdered="2002-05-30T22:18:23">

<Name>John Doe</Name>

<Address>123 Pennsylvania Avenue</Address>

<Telephone>123 456 7890</Telephone>

<PaymentMethod>COD</PaymentMethod>

<TotalCost>14.00</TotalCost>

<PizzasOrdered>

<Pizza>

<Type>Pepperoni</Type>

<Toppings>Ham Anchovies</Toppings>

</Pizza>

</PizzasOrdered>

</PizzaOrder>

<PizzaOrder DateOrdered="2003-01-31T21:02:45">

<Name>Jane Doe</Name>

<Address>987 5th Avenue</Address>

<Telephone>123 789 0123</Telephone>

<PaymentMethod>CC Mastercard</PaymentMethod>

<TotalCost>12.50</TotalCost>

<PizzasOrdered>

<Pizza>

<Type>Chocolate</Type>

<Toppings>Pepperoni Ham</Toppings>

</Pizza>

</PizzasOrdered>

</PizzaOrder>

</PizzaOrders>

Listing 5.9 A pizza order in XML (PizzaOrders.xml).

with the specification of a minimum length. To specify a maximum length, we
use the maxLength facet.

The maxLength Element

The maxLength facet defines the maximum permitted length of the content of
an element or attribute in an instance document.

We saw in our consideration of the minLength facet how we could ensure a
minimum length for the credit card number entered. We can use the
maxLength facet to similarly determine a maximum length for the credit card
number. We will again use Listing 5.7 as the instance document.

Data Facets 199

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

<xsd:element name="PizzaOrders">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="PizzaOrder" type="PizzaOrderType"

minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:complexType name="PizzaOrderType">

<xsd:sequence>

<xsd:element name="Name" type="xsd:string"/>

<xsd:element name="Address" type="xsd:string"/>

<xsd:element name="Telephone" type="xsd:string"/>

<xsd:element name="PaymentMethod" type="xsd:string"/>

<xsd:element name="TotalCost" type="xsd:decimal"/>

<xsd:element name="PizzasOrdered" type="PizzasOrderedType"/>

</xsd:sequence>

<xsd:attribute name="DateOrdered" type="xsd:dateTime"/>

</xsd:complexType>

<xsd:complexType name="PizzasOrderedType">

<xsd:sequence>

<xsd:element name="Pizza" type="PizzaType"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="PizzaType">

<xsd:sequence>

<xsd:element name="Type" type="xsd:string"/>

<xsd:element name="Toppings" type="ToppingsType"/>

</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name="ToppingsType">

<xsd:restriction base="xsd:NMTOKEN">

<xsd:simpleType>

<xsd:list itemType="xsd:NMTOKEN">

<xsd:simpleType>

<xsd:restriction base="xsd:NMTOKEN">

<xsd:minLength value="1"/>

</xsd:restriction>

</xsd:simpleType>

Listing 5.10 An XSD schema using the <xsd:minLength> element on a list type (Pizza-
Orders.xsd).

200 Chapter 5

</xsd:list>

</xsd:simpleType>

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

Listing 5.10 An XSD schema using the <xsd:minLength> element on a list type (Pizza-
Orders.xsd). (continued)

We need to modify the definition of the CardNumberType <xsd:simple-
Type> element, as shown here:

<xsd:simpleType name="CardNumberType">

<xsd:restriction base="xsd:decimal">

<xsd:minLength value="13"/>

<xsd:maxLength value="16"/>

</xsd:restriction>

</xsd:simpleType>

As before, the minLength facet defines a minimum length of 13 for the
<CardNumber> element, and the maxLength facet defines a maximum length
of 16 digits.

The modified schema is shown in Listing 5.11.
The length, minLength, and maxLength facets enable us to constrain the

length of content of an element or attribute but do nothing to define detail of,
for example, the types of character that might occur in an xsd:string type. The
pattern facet gives us such control.

The pattern Element

The <xsd:pattern> element is one of the most powerful of the XSD Schema
facets and also potentially one of the most complex. The three facets that deal
with the length of a value can be very useful but are pretty straightforward.
The pattern facet offers very precise control of the content of an element, but
particularly if you are not familiar with regular expressions, it can seem pretty
complex and impenetrable (at least, at first sight). So, we will look at several
examples of using the <xsd:pattern> element in this section.

In Listings 5.3 and 5.4, we looked at ways to provide some control over the
information contained in U.S. and U.K. SSNs. The length facet enabled us to
check for entries that are too short or too long but do not prevent entries
such as “123ABC456789,” which of course would not be a valid SSN. Simi-

Data Facets 201

<?xml version='1.0'?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="PurchaseDetails">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Name" type="CreditCardName"/>

<xsd:element name="CreditCard" type="CreditCardDetails"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:complexType name="CreditCardName">

<xsd:sequence>

<xsd:element name="FirstNameInitials" type="xsd:string"/>

<xsd:element name="LastName" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="CreditCardDetails">

<xsd:sequence>

<xsd:element name="Company" type="xsd:string"/>

<xsd:element name="CardNumber" type="CardNumberType"/>

<xsd:element name="ExpiryDate" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name="CardNumberType">

<xsd:restriction base="xsd:decimal">

<xsd:minLength value="13"/>

<xsd:maxLength value="16"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

Listing 5.11 A schema to specify both minimum and maximum length of a simple type
(PurchaseDetails02.xsd).

larly, the U.K. SSN could be entered as “12ABCDEF3,” which also is an
invalid structure.

The <xsd:pattern> element enables us to achieve much greater control over
content. For the U.S. SSN, we can specify that the only allowed structure of the
content is three numeric digits followed by a dash followed by two numeric
digits followed by a dash followed by four numeric digits.

Similarly for the U.K. SSN, we can specify that the allowed structure is two
upper-case letters followed by six numeric digits followed by one numeric

202 Chapter 5

digit. The schema shown in Listing 5.12 enables us to achieve such precise
control.

The <xsd:pattern> elements are used in the two simple type definitions
towards the end of the schema. The reason why we use a pattern facet is to
restrict the allowed entries of type xsd:string. The fact that we intend a restriction
is expressed by using the <xsd:restriction> element within which we nest the
<xsd:pattern> element. The value of the value attribute of each <xsd:pattern>
element is a regular expression. Regular expressions used in XSD Schema use
Perl regular expressions as their basis but apply to Unicode characters (because
XSD Schema is expressed in XML 1.0) rather than to ASCII characters.

The type definition for the USSSNType simple type contains an <xsd:pattern>
element that defines the pattern facet:

<xsd:simpleType name="USSSNType">

<xsd:restriction base="xsd:string">

<xsd:pattern value="[0-9]{3}-[0-9]{2}-[0-9]{4}"/>

</xsd:restriction>

</xsd:simpleType>

The characters [0-9]{3} mean that three digits from 0 to 9 inclusive is the
only pattern of characters permitted at the beginning of the USSSNType. That
is followed by a literal dash. The pattern [0-9]{2} indicates that following the
dash, two digits in the range 0 to 9 inclusive are allowed. That is followed by a
literal dash. Finally, the pattern [0-9]{4} indicates that the pattern must finish
with four digits in the range 0 to 9, inclusive.

The <xsd:pattern> element shown as follows represents the pattern facet for
a U.K. SSN:

<xsd:pattern value="[A-Z]{2}[0-9]{6}[A-Z]{1}"/>

The first part of the pattern [A-Z]{2} indicates that exactly two upper-case
characters in the range A to Z inclusive are allowed. If we wanted also to allow
exactly two lower-case characters from A to Z, as well as the upper-case char-
acters, we would have written [A-Za-z]{2}. Following the initial two alpha-
betic characters, the pattern [0-9]{6} indicates that the alphabetic characters
must be followed by exactly six digits in the range 0 to 9, inclusive. The final
part of the pattern [A-Z]{1} indicates that a single upper-case alphabetic char-
acter completes the pattern.

Parts Catalog Example
Let’s suppose that as part of an XML-based warehouse stock application, we
have a particular structure to the part numbers of individual stock keeping units
(SKUs). An XML instance document might look like the code in Listing 5.13.

Data Facets 203

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

<xsd:element name="PersonsWithSSN">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Person" type="PersonType" minOccurs="0"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:complexType name="PersonType">

<xsd:sequence>

<xsd:element name="Name" type="NameType"/>

<xsd:element name="Address" type="AddressType"/>

<xsd:element name="Status" type="StatusType"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="NameType">

<xsd:sequence>

<xsd:element name="FirstName" type="xsd:string"/>

<xsd:element name="MiddleNames" type="xsd:string"/>

<xsd:element name="LastName" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="AddressType">

<xsd:sequence>

<xsd:element name="Street1" type="xsd:string"/>

<xsd:element name="Street2" type="xsd:string"/>

<xsd:element name="City" type="xsd:string"/>

<xsd:element name="State" type="xsd:string"/>

<xsd:element name="Country" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="StatusType">

<xsd:sequence>

<xsd:element name="Citizenship" type="xsd:string"/>

<xsd:group ref="SSNChoiceGroup" />

</xsd:sequence>

</xsd:complexType>

Listing 5.12 Using the pattern facet to define Social Security numbers (SSN02.xsd).

204 Chapter 5

<xsd:group name="SSNChoiceGroup">

<xsd:choice>

<xsd:element name="USSSN" type="USSSNType"/>

<xsd:element name="UKSSN" type="UKSSNType"/>

</xsd:choice>

</xsd:group>

<xsd:simpleType name="USSSNType">

<xsd:restriction base="xsd:string">

<xsd:pattern value="[0-9]{3}-[0-9]{2}-[0-9]{4}"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="UKSSNType">

<xsd:restriction base="xsd:string">

<xsd:pattern value="[A-Z]{2}[0-9]{6}[A-Z]{1}"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

Listing 5.12 Using the pattern facet to define Social Security numbers (SSN02.xsd).
(Continued)

<?xml version='1.0'?>

<PartsCatalog>

<SKU PartNo="81-ADL">5</SKU>

<SKU PartNo="38-LHM">18</SKU>

<SKU PartNo="19-DAG">21</SKU>

<SKU PartNo="27-HCB">88</SKU>

<SKU PartNo="44-EFI">40</SKU>

</PartsCatalog>

Listing 5.13 A parts catalog expressed in XML (PartsCatalog.xml).

The parts catalog consists of a sequence of <SKU> elements, each of which
possess a PartNo attribute that consists of two numeric digits, a dash, and
three upper-case characters from A to M inclusive, as in the following:

<SKU PartNo="38-ABC">12</SKU>

To constrain the values of the PartNo attribute to the values just mentioned,
we again need to use the pattern facet, as shown in Listing 5.14.

TEAMFL
Y

Team-Fly®

Data Facets 205

<?xml version='1.0'?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="PartsCatalog">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="SKU" type="SKUType" minOccurs="1"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:complexType name="SKUType">

<xsd:simpleContent>

<xsd:extension base="xsd:string">

<xsd:attribute name="PartNo" type="PartNoType"/>

</xsd:extension>

</xsd:simpleContent>

</xsd:complexType>

<xsd:simpleType name="PartNoType">

<xsd:restriction base="xsd:string">

<xsd:pattern value="\d{2}-[A-M]{3}"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

Listing 5.14 An XSD schema to describe the parts catalog (PartsCatalog.xsd).

The part of the XSD schema that is used to constrain the content of the PartNo
attribute in an instance document such as Listing 5.13 makes use of the <xsd:
pattern> element:

<xsd:simpleType name="PartNoType">

<xsd:restriction base="xsd:string">

<xsd:pattern value="\d{2}-[A-M]{3}"/>

</xsd:restriction>

</xsd:simpleType>

The <xsd:restriction> element indicates that a base type of xsd:string is to be
constrained in some way. The <xsd:pattern> element defines exactly which
constraints are to be applied to the PartNo attribute of the <SKU> element.
The value of the <xsd:pattern> element indicates that the structure of the text
content of the PartNo attribute is two numerical digits (the characters \d indi-
cate that it is a numeric digit, and {2} indicates that there are two) followed by

206 Chapter 5

a dash which, in turn, is followed by three upper-case letters between A and
M, inclusive (the [A-M] gives the range of permitted characters and {3} indi-
cates that there are three such characters). To define the pattern for the first
two characters, we could equally have used [0-9]{2}.

Postal Code Examples
In this section, we will look at how we can use the <xsd:pattern> element to
create types that conform to the requirements of U.S. zip codes and U.K.
postal codes. First, let’s take a look at how we could create a schema to require
a strictly conforming short form of a U.S. zip code.

U.S. Zip Code Examples

We will first look at how we can require a U.S. zip code in the five-digit form.
A simple instance document containing billing information for U.S. customers
is shown in Listing 5.15.

The XSD schema that describes such an instance document is shown in List-
ing 5.16.

Within the definition of the USAddressType complex type, there is a decla-
ration for the <ZipCode> element that is defined to be of type USZipCode-
Type. The definition for the USZipCodeType indicates that we want to restrict
the permitted values of type xsd:positiveInteger by using a pattern facet. The
value of the <xsd:pattern> element indicates that we are to expect numeric
digits, indicated by the \d characters, of which there are to be five, as indi-
cated by the {5} characters. An alternative approach would be to define the

<?xml version='1.0'?>

<USBillingInfo>

<Customer>Peter Pan Products</Customer>

<Address>

<Street1>1234 Hamlyn Street</Street1>

<Street2>Fantasy Technology Park</Street2>

<City>New York</City>

<State>NY</State>

<ZipCode>12345</ZipCode>

<Country></Country>

</Address>

</USBillingInfo>

Listing 5.15 Billing information expressed as XML (USBillingInfo.xml).

Data Facets 207

<?xml version='1.0'?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="USBillingInfo">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Customer" type="xsd:string"/>

<xsd:element name="Address" type="USAddressType"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:complexType name="USAddressType">

<xsd:sequence>

<xsd:element name="Street1" type="xsd:string"/>

<xsd:element name="Street2" type="xsd:string"/>

<xsd:element name="City" type="xsd:string"/>

<xsd:element name="State" type="xsd:string"/>

<xsd:element name="ZipCode" type="USZipCodeType"/>

<xsd:element name="Country" type="xsd:string" minOccurs="0"

maxOccurs="1"/>

</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name="USZipCodeType">

<xsd:restriction base="xsd:positiveInteger">

<xsd:pattern value="\d{5}"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

Listing 5.16 An XSD schema to describe the billing information (USBillingInfo.xsd).

base attribute on the <xsd:restriction> element to be of type xsd:string and to
set the value of the value attribute of the <xsd:pattern> element to [0-9]{5}.

Next, let’s extend that example to allow for codes to be entered in either the
five-digit zip code format or the zip+4 extended zip code format. Listing 5.17
includes an extended zip code, in the format of five numeric digits followed
by a dash followed by four numeric digits.

The following XSD schema, Listing 5.18, can be used to validate either List-
ing 5.17 (extended zip code) or Listing 5.15 (standard zip code). It allows both
five-digit and extended zip codes.

The changes that are necessary are to be found in the final simple type defi-
nition of the schema. Because we are using the extended zip code format, we

208 Chapter 5

<?xml version='1.0'?>

<USBillingInfo>

<Customer>Peter Pan Products</Customer>

<Address>

<Street1>1234 Hamlyn Street</Street1>

<Street2>Fantasy Technology Park</Street2>

<City>New York</City>

<State>NY</State>

<ZipCode>12345-6789</ZipCode>

<Country></Country>

</Address>

</USBillingInfo>

Listing 5.17 A billing document in XML including extended zip code (USBillingInfo02.xml).

include a dash (hyphen) that is no longer of the datatype xsd:positiveInteger
that we used in Listing 5.16. So, the base type for the <xsd:restriction> element
has been changed to xsd:string to accommodate the necessary dash. The regu-
lar expression contained in the value element of the <xsd:pattern> element
means that two structures are allowed. The | character, sometimes called a
pipe, means the same as logical OR. The leftmost option consists of numeric
digits (shown by \d), of which there are five (shown by {5}). The rightmost
option, following the pipe, is for the extended zip code and consists first of
numeric digits (shown by \d") of which there are five (shown by {5}) followed
by a literal dash, then numeric digits (shown by \d) of which there are four
(shown by {4}).

Be very careful that you do not include any white space on either side of the
pipe character. If you do include white space, then validation will likely fail
because you are telling the schema processor to expect a literal space character
as part of the value of the zip code. Including a space character inadvertently
can also cause problems if you specify a numeric type such as xsd:integer,
because the space character is not permitted.

U.K. Postal Code Example

Postal codes in the United Kingdom have a more complex structure than U.S.
zip codes. U.K. postal codes have a mixture of digits and characters, and at
least as written by humans also include a space character to separate the first
group of digits and characters and numbers from a second group of characters
and numbers.

Data Facets 209

<?xml version='1.0'?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="USBillingInfo">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Customer" type="xsd:string"/>

<xsd:element name="Address" type="USAddressType"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:complexType name="USAddressType">

<xsd:sequence>

<xsd:element name="Street1" type="xsd:string"/>

<xsd:element name="Street2" type="xsd:string"/>

<xsd:element name="City" type="xsd:string"/>

<xsd:element name="State" type="xsd:string"/>

<xsd:element name="ZipCode" type="USZipCodeType"/>

<xsd:element name="Country" type="xsd:string" minOccurs="0"

maxOccurs="1"/>

</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name="USZipCodeType">

<xsd:restriction base="xsd:string">

<xsd:pattern value="\d{5}|\d{5}-\d{4}"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

Listing 5.18 An XSD Schema allowing standard and extended zip code formats (USBilling-
Info02.xsd).

A U.K. postal code can take forms such as EC1W 8DD or AB33 9UV. So, our
<xsd:pattern> element must have flexibility built in to allow for the considerable
variations that exist. There are other variants that we won’t cover in our example.

The instance document for the U.K. postal code example is shown in List-
ing 5.19.

An XSD schema to describe such an instance document is shown in List-
ing 5.20.

The final simple type definition for the UKPostalCodeType type includes
the pattern for U.K. postal codes. The regular expression is a little more com-
plex than those you have seen so far. The part [A-Z]{2} means that the U.K.

210 Chapter 5

<?xml version='1.0'?>

<UKBillingInfo>

<Customer>Peter Pan Products</Customer>

<Address>

<Street1>1234 Regent Street</Street1>

<Street2></Street2>

<City>London</City>

<County></County>

<PostalCode>WC1E 8XX</PostalCode>

<Country>England</Country>

</Address>

</UKBillingInfo>

Listing 5.19 Billing information in XML for a U.K. customer (UKBillingInfo.xml).

postal code begins with two upper-case characters from A to Z. As mentioned
earlier, if you wished to also allow lower-case characters, you would use the
pattern [A-Za-z]{2} to express that. This pattern is followed by one or two
numeric digits. The \d indicates the requirements for numeric digits, and the
{1,2} indicates that either one or two digits are acceptable. The digit before the
comma within the curly braces indicates the minimum number of digits, and
the digit following the comma indicates the maximum permitted number of
digits. Similarly [A-Z]{0,1} indicates an optional upper case character, fol-
lowed by a literal space character. Finally, we have one numeric digit followed
by two upper-case letters.

XML Schema regular expressions provide very powerful techniques to pre-
cisely define allowed text content. In fact, it can be used as an alternate tech-
nique to define enumerations by simply using the | symbol. Thus, if we
wanted to allow the sizes Small, Medium, and Large as the only sizes allowed
for a clothing catalog, we could do so by using a simple type similar to the
following:

<xsd:simpleType name="SizeType">

<xsd:restriction base="xsd:string">

<xsd:pattern value="Small|Medium|Large"/>

</xsd:restriction>

</xsd:simpleType>

Again, in such situations you must be careful to avoid including a space
character within the pattern. If you inadvertently put a space character, then
(for example) “Medium” will not be accepted if the option within the
<xsd:pattern> element indicates that only “ Medium” (beginning with a space
character) is acceptable as a pattern.

Data Facets 211

<?xml version='1.0'?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="UKBillingInfo">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Customer" type="xsd:string"/>

<xsd:element name="Address" type="UKAddressType"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:complexType name="UKAddressType">

<xsd:sequence>

<xsd:element name="Street1" type="xsd:string"/>

<xsd:element name="Street2" type="xsd:string" minOccurs="0"

maxOccurs="1"/>

<xsd:element name="City" type="xsd:string"/>

<xsd:element name="County" type="xsd:string" minOccurs="0"

maxOccurs="1"/>

<xsd:element name="PostalCode" type="UKPostalCodeType"/>

<xsd:element name="Country" type="xsd:string" minOccurs="0"

maxOccurs="1"/>

</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name="UKPostalCodeType">

<xsd:restriction base="xsd:string">

<xsd:pattern value="[A-Z]{2}\d{1,2}[A-Z]{0,1} \d{1}[A-Z]{2}"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

Listing 5.20 An XSD schema to describe U.K. billing information (UKBillingInfo.xsd).

XSD Schema also provides a facet designed specifically to create enumer-
ated types.

The Enumeration Element

The enumeration facet constrains a simple type to a set of defined values. The
permitted values must each be listed within the XSD schema. For lengthy lists
of permitted values, creating the schema can, at times, become a little tedious.

212 Chapter 5

Using enumerations can often be very useful, however. First, let’s look at a
very simple example.

Simple Enumeration Example
For example, suppose that you were conducting an XML-based online survey
and part of your instance document looked like the following:

<Gender>Male

</Gender>

Then, you could constrain the permitted responses by using the following
code:

<xsd:simpleType name="Gender">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="Male"/>

<xsd:enumeration value="Female"/>

</xsd:restriction>

</xsd:simpleType>

Each of the enumerated values must have its own <xsd:enumeration> ele-
ment nested within an <xsd:restriction> element.

An alternative approach to produce such a simple enumeration is a pattern
facet of the following pattern:

<xsd:pattern value="Male|Female"/>

If we wanted to recreate the size example shown earlier when using <xsd:-
pattern> by using the enumeration facet, we could do so using code like the
following:

<xsd:simpleType name="ClothingSizeType">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="Small"/>

<xsd:enumeration value="Medium"/>

<xsd:enumeration value="Large"/>

</xsd:restriction>

</xsd:simpleType>

The <xsd:pattern> approach is a little more succinct, but the <xsd:enumera-
tion> approach is more readable at the expense of slightly longer code.

Data Facets 213

U.S. States Example
The United States Postal Service (USPS) has a standard abbreviation for each of
the 50 states of the United States, as well as equivalent abbreviations for
some military “states.” In this example, we will focus only on the 50 states,
but if you want the full USPS list, visit www.usps.gov/ncsc/lookups/usps_
abbreviations.html#states.

As our instance document, we will use the addresses of some well-known
corporations, as shown in Listing 5.21.

The schema shown in Listing 5.22 provides an enumeration of all 50 U.S.
states (plus the District of Columbia) and also checks that zip codes conform

<?xml version='1.0'?>

<USAddresses>

<Address>

<Company>John Wiley & Son</Company>

<Street>605 Third Avenue</Street>

<City>New York</City>

<State>NY</State>

<ZipCode>10158-0012</ZipCode>

</Address>

<Address>

<Company>Sun Microsystems Inc</Company>

<Street>901 San Antonio Road</Street>

<City>Palo Alto</City>

<State>CA</State>

<ZipCode>94303-4900</ZipCode>

</Address>

<Address>

<Company>Microsoft Corporation</Company>

<Street>1 Microsoft Way</Street>

<City>Redmond</City>

<State>WA</State>

<ZipCode>98052-8300</ZipCode>

</Address>

<Address>

<Company>International Business Machines Corporation</Company>

<Street>1 New Orchard Road</Street>

<City>Armonk</City>

<State>NY</State>

<ZipCode>10504-1783</ZipCode>

</Address>

</USAddresses>

Listing 5.21 Addresses in the 50 U.S. states (USAddresses.xml).

214 Chapter 5

<?xml version='1.0'?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="USAddresses">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Address" type="USAddressType" minOccurs="1"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:complexType name="USAddressType">

<xsd:sequence>

<xsd:element name="Company" type="xsd:string"/>

<xsd:element name="Street" type="xsd:string"/>

<xsd:element name="City" type="xsd:string"/>

<xsd:element name="State" type="USStateType"/>

<xsd:element name="ZipCode" type="USZipCodeType"/>

</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name="USStateType">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="AK"/>

<xsd:enumeration value="AL"/>

<xsd:enumeration value="AR"/>

<xsd:enumeration value="AZ"/>

<xsd:enumeration value="CA"/>

<xsd:enumeration value="CO"/>

<xsd:enumeration value="CT"/>

<xsd:enumeration value="DC"/>

<xsd:enumeration value="DE"/>

<xsd:enumeration value="FL"/>

<xsd:enumeration value="GA"/>

<xsd:enumeration value="HI"/>

<xsd:enumeration value="IA"/>

<xsd:enumeration value="ID"/>

<xsd:enumeration value="IL"/>

<xsd:enumeration value="IN"/>

<xsd:enumeration value="KS"/>

<xsd:enumeration value="KY"/>

<xsd:enumeration value="LA"/>

<xsd:enumeration value="MA"/>

<xsd:enumeration value="MD"/>

<xsd:enumeration value="ME"/>

<xsd:enumeration value="MI"/>

Listing 5.22 Enumeration of all 50 U.S. states that also checks for conformity of zip+4
format (USAddresses.xsd).

TEAMFL
Y

Team-Fly®

Data Facets 215

<xsd:enumeration value="MN"/>

<xsd:enumeration value="MO"/>

<xsd:enumeration value="MS"/>

<xsd:enumeration value="MT"/>

<xsd:enumeration value="NC"/>

<xsd:enumeration value="ND"/>

<xsd:enumeration value="NE"/>

<xsd:enumeration value="NH"/>

<xsd:enumeration value="NJ"/>

<xsd:enumeration value="NM"/>

<xsd:enumeration value="NV"/>

<xsd:enumeration value="NY"/>

<xsd:enumeration value="OH"/>

<xsd:enumeration value="OK"/>

<xsd:enumeration value="OR"/>

<xsd:enumeration value="PA"/>

<xsd:enumeration value="RI"/>

<xsd:enumeration value="SC"/>

<xsd:enumeration value="SD"/>

<xsd:enumeration value="TN"/>

<xsd:enumeration value="TX"/>

<xsd:enumeration value="UT"/>

<xsd:enumeration value="VA"/>

<xsd:enumeration value="VT"/>

<xsd:enumeration value="WA"/>

<xsd:enumeration value="WI"/>

<xsd:enumeration value="WV"/>

<xsd:enumeration value="WY"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="USZipCodeType">

<xsd:restriction base="xsd:string">

<xsd:pattern value="\d{5}-\d{4}"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

Listing 5.22 Enumeration of all 50 U.S. states that also checks for conformity of zip+4
format (USAddresses.xsd). (Continued)

to the zip+4 format. Refer back to Listing 5.18 if you want to add non-
extended zip codes.

The type definition for the USStateType simple type is a restriction on the
permitted type xsd:string. Therefore, an <xsd:restriction> element is used to

216 Chapter 5

express that. The desired restriction is expressed as a long list of <xsd:enumer-
ation> elements.

The whiteSpace Element

White space in XML jargon is indicated by space (#x20), tab (#x09), line feed
(#x0A), and carriage return (#x0D) characters.

The <xsd:whiteSpace> element is the XML representation of the white-
Space facet.

The whiteSpace facet can take one of three values:

■■ Preserve

■■ Replace

■■ Collapse

In order to understand the role of the whitespace facet, it is necessary to
make use of the concept of normalized value. The XSD Schema Recommenda-
tion defines the normalized value as follows: “The normalized value of an ele-
ment or attribute information item is an initial value whose white space, if
any, has been normalized according to the value of the whitespace facet of the
simple type definition used in its validation.”

When the whiteSpace facet has the value of “preserve,” then no normalization
takes place. The normalized value is identical to the value of an attribute infor-
mation item or element information item. No changes are made in whitespace.

When the whiteSpace facet has the value of “replace,” then all tabs (#x09),
line feed (#x0A), and carriage return (#x0D) characters are replaced by space
characters (#x20).

When the whiteSpace facet has the value of “collapse,” then the changes
just described for “replace” are carried out, any leading or trailing space char-
acters are removed, and any sequences of space characters within the string
are converted to a single-space character.

The definition for the xsd:token type in the XSD Schema schema provides
an example of the use of the collapse value for the whiteSpace facet:

<xsd:simpleType name='xsd:token'>

<xsd:restriction base='xsd:normalizedString'>

<xsd:whiteSpace value='collapse'/>

</xsd:restriction>

</xsd:simpleType>

Any excess white space is collapsed as indicated by the value attribute on
the <xsd:whiteSpace> element.

Data Facets 217

Summary

This chapter has examined several of the XSD Schema constraining facets. The
length, maxLength, and minLength facets constrain the permitted length of con-
tent expressed in units of length that vary according to the datatype being con-
strained. The pattern facet enables powerful and flexible control over the
content of elements or attribute by using regular expressions. The enumeration
facet enables permitted values to be listed explicitly. The whiteSpace facet is
used to control how white space is treated.

In Chapter 6, we will go on to examine the remainder of XSD Schema’s con-
straining facets.

219

C H A P T E R

6

More about Data Facets

In this chapter, we will look at the remaining constraining facets that we did
not explore in Chapter 5, “Data Facets.”

XSD Schema provides four facets that enable us to restrict the allowed range
of values for datatypes. Two of those facets, the <xsd:maxExclusive> element
and the <xsd:maxInclusive> element, enable us to constrain the maximum
allowed value. The other two, the <xsd:minExclusive> and <xsd:minInclusive>
elements, enable us to constrain the minimum permitted value.

Much of this chapter will relate to controlling the maximum and minimum
values allowed in types that have numerical, date, or time values. Such
ordered, scalar values can be constrained by using the facets just mentioned.
Unfortunately, xsd:string types do not allow the use of these facets. The pat-
tern facet can be used to achieve a similar effect on xsd:string types as max-
Exclusive, minExclusive, maxInclusive, or MinInclusive, however, as we will
show later.

There are logical limitations to how these four facets can be used. It makes
no sense, for example, to specify both a maxExclusive and maxInclusive facet
in the same context. These facets can be used singly or can be used in pairs
where one member of the pair defines the minimum permitted value (min-
Exclusive or minInclusive facet) and the other member of the pair defines the
maximum permitted value (maxExclusive or maxInclusive) facet.

220 Chapter 6

<?xml version='1.0'?>

<TemperatureRecord>

<Record>

<Date>2001-10-28</Date>

<Location>London</Location>

<MeanTemp>58</MeanTemp>

<Units>Fahrenheit</Units>

</Record>

<Record>

<Date>2001-10-29</Date>

<Location>London</Location>

<MeanTemp>54</MeanTemp>

<Units>Fahrenheit</Units>

</Record>

<Record>

<Date>2001-10-30</Date>

<Location>London</Location>

<MeanTemp>53</MeanTemp>

<Units>Fahrenheit</Units>

</Record>

<Record>

<Date>2001-10-31</Date>

<Location>London</Location>

<MeanTemp>46</MeanTemp>

<Units>Fahrenheit</Units>

</Record>

</TemperatureRecord>

Listing 6.1 A database of mean daily temperature (TemperatureRecord.xml).

These four facets constrain the value space so that a minimum or maximum
value of the relevant data type is defined as being either included or excluded.
The examples that follow will show these facets in use with a variety of
datatypes.

First, let’s look at the two facets that can be used to define the maximum
permitted value of an element in the instance document.

The maxExclusive Element

The maxExclusive facet enables us to specify a maximum value, with the spec-
ified maximum value excluded from among the allowed values.

Suppose that we wanted to constrain the values for mean daily temperature
allowed in a weather data store, as shown in Listing 6.1, in order to ensure that
any data entered is within realistic limits.

More about Data Facets 221

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

<xsd:element name="TemperatureRecord">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="Record" minOccurs="1" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="Record">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Date" type="xsd:date"/>

<xsd:element name="Location" type="xsd:string"/>

<xsd:element name="MeanTemp" type="MeanTempType"/>

<xsd:element name="Units" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:complexType name="MeanTempType">

<xsd:simpleContent>

<xsd:restriction base="xsd:integer">

<xsd:maxExclusive value="110"/>

</xsd:restriction>

</xsd:simpleContent>

</xsd:complexType>

</xsd:schema>

Listing 6.2 A schema to constrain maximum mean daily temperature (Temperature-
Record.xsd).

If we assumed that the data store was intended for storing mean tempera-
tures from locations worldwide, a realistic maximum allowed temperature for
mean daily temperature might be 109 degrees Fahrenheit. A schema to con-
strain, using the maxExclusive facet, the maximum value of the <MeanTemp>
element is shown in Listing 6.2.

The desired maximum permitted value was 109 degrees. The maxExclu-
sive facet shown in the definition of the MeanTempType simple type indi-
cates that the value of 110 is disallowed but that all integer values below 110
are permitted.

We can use the maxExclusive facet on datatypes other than numeric ones.
For example, if we had a data store for daily sales amounts for Quarter 1 of

222 Chapter 6

<?xml version='1.0'?>

<!-- All sales amounts expressed as $0005-->

<SalesQ12002>

<DailyReport>

<Date>2002-03-29</Date>

<Location>New York</Location>

<SalesAmount>2345.00</SalesAmount>

</DailyReport>

<DailyReport>

<Date>2002-03-30</Date>

<Location>New York</Location>

<SalesAmount>12345.55</SalesAmount>

</DailyReport>

<DailyReport>

<Date>2002-03-31</Date>

<Location>New York</Location>

<SalesAmount>3456.12</SalesAmount>

</DailyReport>

<DailyReport>

<Date>2002-03-31</Date>

<Location>Tokyo</Location>

<SalesAmount>4567.10</SalesAmount>

</DailyReport>

</SalesQ12002>

Listing 6.3 A record of daily sales in Q1 2002 (SalesQ12002.xml).

2002, similar to that in Listing 6.3, we can use the maxExclusive facet to con-
strain the allowed values for the date.

Because the desired period is Quarter 1 of 2002, then the latest allowable
value for the content of the <Date> element is 2002-03-31, or March 31, 2002. A
schema to enforce that constraint is shown in Listing 6.4.

The definition of the Q12002Type simple type is where we have applied the
maxExclusive facet to an xsd:date type. You might recall that the format for
date is CCYY-MM-DD (century, year, month, day). Thus, we want to exclude
the date April 1, 2002 from the permitted values and convey that by the syntax
2002-04-01 in the value attribute of the <xsd:maxExclusive> element.

Listing 6.3 validates against the schema in Listing 6.4. If you edit Listing 6.3 to
include a date of 2002-04-01 or later, an error will be reported during validation.

The maxExclusive facet can also be used with the xsd:duration or xsd:gYear
types. If, for example, we had a collection of annual company reports for the
20th century (Listing 6.5), then we could use the maxExclusive facet to ensure
that the year of a report was no higher than 1999 (assuming that the 21st cen-
tury started in the year 2000).

More about Data Facets 223

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

<xsd:element name="SalesQ12002">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="DailyReport" type="DailyReportType"

maxOccurs="unbounded" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:complexType name="DailyReportType">

<xsd:sequence>

<xsd:element name="Date" type="Q12002Type"/>

<xsd:element name="Location" type="xsd:string"/>

<xsd:element name="SalesAmount" type="xsd:decimal"/>

</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name="Q12002Type">

<xsd:restriction base="xsd:date">

<xsd:maxExclusive value="2002-04-01"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

Listing 6.4 A schema using the maxExclusive facet on a date type (SalesQ12002.xsd).

<?xml version='1.0'?>

<AnnualReports>

<AnnualReport>

<Year>1999</Year>

<Subsidiary>Wonder Fizzy Drink Company</Subsidiary>

<Summary>A year with fizz in our sales.</Summary>

</AnnualReport>

<AnnualReport>

<Year>1997</Year>

<Subsidiary>Widget Manufacturing Company</Subsidiary>

<Summary>Widget sales up 11% on year.</Summary>

</AnnualReport>

<AnnualReport>

<Year>1994</Year>

Listing 6.5 A data store of annual reports from the twentieth century (AnnualReports.xml).

224 Chapter 6

A schema to constrain the maximum permitted value for content in the
<Year> element is shown in Listing 6.6.

The definition of the TwentiethCenturyType simple type toward the end of
the schema uses the base type xsd:gYear. We use the <xsd:exclusive> element
to specify that the year 2000 is too high for inclusion as a permitted value.

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

<xsd:element name="AnnualReports">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="AnnualReport" maxOccurs="unbounded"

type="AnnualReportType"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:complexType name="AnnualReportType">

<xsd:sequence>

<xsd:element name="Year" type="TwentiethCenturyType"/>

<xsd:element name="Subsidiary" type="xsd:string"/>

<xsd:element name="Summary" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name="TwentiethCenturyType">

<xsd:restriction base="xsd:gYear">

<xsd:maxExclusive value="2000"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

Listing 6.6 A schema constraining the <Year> to the 20th century by using <xsd:max-
Exclusive> (AnnualReports.xsd).

<Subsidiary>CPU Computing Books</Subsidiary>

<Summary>DOS and OS/2 book sales collapse.</Summary>

</AnnualReport>

</AnnualReports>

Listing 6.5 A data store of annual reports from the twentieth century (AnnualReports.xml).

TEAMFL
Y

Team-Fly®

More about Data Facets 225

The name of an XML Schema type must correspond to XML 1.0 naming
rules. Using a number as the initial character of a type name—if, for example,
you attempt to create a 20thCenturyType simple type—will cause an error.

The maxInclusive Element

The maxInclusive facet is very similar in syntax and meaning to the max-
Exclusive facet, with the important difference that the maxInclusive facet
specifies the maximum permitted value rather than the lowest excluded value
(which is what maxExclusive does).

If we wanted to create an XML-based data store of examination results for
Quarter 4 of 2001, we could ensure that nobody scores above a perfect mark
(100 percent) by using the maxInclusive facet. Listing 6.7 shows a simple data
store of exam marks.

Listing 6.8 shows an XSD schema that constrains the maximum mark to 100
and the latest date permitted to 2001-12-31 to make sure that dates no later
than December 31, 2001 are stored in this particular data store.

The definitions of the ValidDateType and ValidMarkType simple types use
the maxInclusive facet to constrain the maximum permitted value. The defin-
ition of the ValidMarkType contains an implicit minimum value for a valid
mark of zero because the type is xsd:nonNegativeInteger.

NOTE

<?xml version='1.0'?>

<ExamMarks>

<Person>

<Name>John Doe</Name>

<Course>SVG 101</Course>

<DateOfExam>2001-12-31</DateOfExam>

<Mark>91</Mark>

</Person>

<Person>

<Name>Paul Cohen</Name>

<Course>XML Schema 101</Course>

<DateOfExam>2001-10-08</DateOfExam>

<Mark>84</Mark>

</Person>

</ExamMarks>

Listing 6.7 A data store of examination marks in Quarter 4 of 2001 in XML (Exam-
Marks.xml).

226 Chapter 6

Notice, too, the <xsd:pattern> element where we use a regular expression to
constrain the allowed names of courses that are available. The initial part of the
regular expression [A-Za-z] (note the space character immediately before the
closing square bracket) specifies that any alphabetic character, upper or lower

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

<xsd:element name="ExamMarks">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Person" type="PersonType"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:complexType name="PersonType">

<xsd:sequence>

<xsd:element name="Name" type="xsd:string"/>

<xsd:element name="Course" type="ValidCourseType"/>

<xsd:element name="DateOfExam" type="ValidDateType"/>

<xsd:element name="Mark" type="ValidMarkType"/>

</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name="ValidCourseType">

<xsd:restriction base="xsd:string">

<xsd:pattern value="[A-Za-z]{3,15}[0-9]{3}"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="ValidDateType">

<xsd:restriction base="xsd:date">

<xsd:maxInclusive value="2001-12-31"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="ValidMarkType">

<xsd:restriction base="xsd:nonNegativeInteger">

<xsd:maxInclusive value="100"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

Listing 6.8 A schema using the maxInclusive facet on xsd:nonNegativeInteger and xsd:date
types (ExamMarks.xsd).

More about Data Facets 227

case, and the space character can be used in any combination. The {3,15} indicates
that a minimum of three and a maximum of 15 of those characters can be used.

Having looked at the two facets that can be used to define the maximum
permitted value of an element in an XML instance document, let’s now move
on and look at the minExclusive and minInclusive facets. Both of these facets
can be used to define the minimum permitted value of an element in the
instance document.

The minExclusive Element

The <xsd:minExclusive> element enables us to define the lowest value allowed
for an element in an instance document by stating the highest value that is not
permitted.

Suppose that we had set up a new company and wanted to create an auto-
matically incremented number for the number of invoices sent to customers.
We would not want the absolute newness of the company to be evident to our
first customers, and we might want to start numbering invoices at 3001.

If our instance document was similar to that in Listing 6.9, we could use an
XSD schema similar to that shown in Listing 6.10 to ensure that no invoice can
be numbered below 3001.

<?xml version='1.0'?>

<Invoice>

<InvoiceNumber>3303</InvoiceNumber>

<BillingAddress>

<Name>K9 Services</Name>

<FAO>Ian Barking</FAO>

<Street1>123 Kennel Street</Street1>

<Street2></Street2>

<City>Dachshund City</City>

<ZipCode>98765-4321</ZipCode>

<State>OK</State>

</BillingAddress>

<ShippingAddress>

<Name>K9 Services</Name>

<FAO>Retail Dept.</FAO>

<Street1>888 Dogbowl Street</Street1>

<Street2></Street2>

<City>Pet City</City>

<ZipCode>98765-1234</ZipCode>

<State>OK</State>

continues

Listing 6.9 An invoice expressed in XML (Invoice.xml).

228 Chapter 6

</ShippingAddress>

<BilledItems>

<Item>

<ItemDescription>Studded Collar</ItemDescription>

<ItemCode>K9-1234</ItemCode>

<ItemQuantity>10</ItemQuantity>

<ItemPrice>11.95</ItemPrice>

</Item>

<Item>

<ItemDescription>K9 Pet Coat</ItemDescription>

<ItemCode>K9-2345</ItemCode>

<ItemQuantity>5</ItemQuantity>

<ItemPrice>25.00</ItemPrice>

</Item>

</BilledItems>

</Invoice>

Listing 6.9 An invoice expressed in XML (Invoice.xml). (Continued)

Listing 6.10 uses the minExclusive facet to ensure that the content of the
<InvoiceNumber> element is at least 3001. It also includes further examples of
the minExclusive facet to impact the minimum quantity to be ordered and the
minimum item price. Additionally, there is a pattern facet to constrain the con-
tent of the <ItemCode> element.

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

<xsd:element name="Invoice">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="InvoiceNumber" type="InvoiceNumberType"/>

<xsd:element name="BillingAddress" type="AddressType"/>

<xsd:element name="ShippingAddress" type="AddressType"/>

<xsd:element name="BilledItems" type="ItemsType"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:simpleType name="InvoiceNumberType">

<xsd:restriction base="xsd:positiveInteger">

<xsd:minExclusive value="3000"/>

</xsd:restriction>

</xsd:simpleType>

Listing 6.10 A schema using the minExclusive facet to constrain the content of three ele-
ments (Invoice.xsd).

More about Data Facets 229

<xsd:complexType name="AddressType">

<xsd:sequence>

<xsd:element name="Name" type="xsd:string"/>

<xsd:element name="FAO" type="xsd:string"/>

<xsd:element name="Street1" type="xsd:string"/>

<xsd:element name="Street2" type="xsd:string"/>

<xsd:element name="City" type="xsd:string"/>

<xsd:element name="ZipCode" type="USZipCodeType"/>

<xsd:element name="State" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name="USZipCodeType">

<xsd:restriction base="xsd:string">

<xsd:pattern value="\d{5}|\d{5}-\d{4}"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:complexType name="ItemsType">

<xsd:sequence>

<xsd:element name="Item" type="ItemType" minOccurs="1"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="ItemType">

<xsd:sequence>

<xsd:element name="ItemDescription" type="xsd:string"/>

<xsd:element name="ItemCode" type="ItemCodeType"/>

<xsd:element name="ItemQuantity" type="ItemQuantityType"/>

<xsd:element name="ItemPrice" type="ItemPriceType"/>

</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name="ItemCodeType">

<xsd:restriction base="xsd:string">

<xsd:pattern value="K9-[0-9]{4}"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="ItemQuantityType">

<xsd:restriction base="xsd:nonNegativeInteger">

<xsd:minExclusive value="0" />

<xsd:maxExclusive value="1000" />

</xsd:restriction>

</xsd:simpleType>

continues

Listing 6.10 A schema using the minExclusive facet to constrain the content of three ele-
ments (Invoice.xsd).

230 Chapter 6

<xsd:simpleType name="ItemPriceType">

<xsd:restriction base="xsd:decimal">

<xsd:minExclusive value="0.99" />

<xsd:maxExclusive value="500.00" />

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

Listing 6.10 A schema using the minExclusive facet to constrain the content of three ele-
ments (Invoice.xsd). (Continued)

You can see the use of the minExclusive facet in the definition of the
InvoiceNumberType, ItemQuantityType, and ItemPriceType simple types. In
the InvoiceNumberType, the highest value not allowed is 3000:

<xsd:minExclusive value="3000"/>

In the ItemQuantityType and ItemPriceType type definitions, the minExclu-
sive facet is combined with use of the maxExclusive facet for the same type
definition, providing an allowed range within which the value of the type is
permitted. Of course, the appropriate upper and lower bounds of a value
would be determined by the content in which it is being used.

We similarly could use the minExclusive and maxExclusive facets in combi-
nation to define the allowed dates for the Quarter 1 2002 sales reports that we
saw earlier in Listing 6.4:

<xsd:simpleType name="Q12002Type">

<xsd:restriction base="xsd:date">

<xsd:maxExclusive value="2002-04-01"/>

<xsd:minExclusive value="2001-12-31"/>

</xsd:restriction>

</xsd:simpleType>

The minInclusive Element

The <xsd:minInclusive> element is very similar to the <xsd:minExclusive>
element. The important difference is that the value specified in the value
attribute of the <xsd:minInclusive> element is an allowed value, whereas the
value specified in the value attribute of the <xsd:minExclusive> is the highest
disallowed value.

More about Data Facets 231

<?xml version='1.0'?>

<CustReport Period="Q12003">

<Report>

<Product>XML Training</Product>

<Date>2003-01-28</Date>

<CustID>DD-88D</CustID>

<Summary>Trainer turned up late and seemed ill-prepared.</Summary>

<ActionTaken>Discussed with employee</ActionTaken>

</Report>

<Report>

<Product>SVG Consultancy</Product>

<Date>2003-02-14</Date>

<CustID>RD-93A</CustID>

<Summary>Delighted with quality of solution provided to agreed time

lines.</Summary>

<ActionTaken>Discussed with employee</ActionTaken>

</Report>

<Report>

<Product>XML Schema Consultancy</Product>

<Date>2003-03-08</Date>

<CustID>IB-37M</CustID>

<Summary>Customer needs met. High satisfaction level.</Summary>

<ActionTaken>Employee bonus</ActionTaken>

</Report>

</CustReport>

Listing 6.11 A customer satisfaction report for Q1 2003 in XML (CustReportQ12003.xml).

We might use the minInclusive facet to define the earliest allowed date for a
report of customer satisfaction within a particular time period. Listing 6.11
shows a possible structure for such a report.

A schema using the minInclusive facet is shown in Listing 6.12. It also
includes the use of the maxInclusive facet as well as the pattern and enumera-
tion facets.

The minInclusive and maxInclusive facets are used in the definition of the
Q12003DateType simple type:

<xsd:simpleType name="Q12003DateType">

<xsd:restriction base="xsd:date">

<xsd:minInclusive value="2003-01-01"/>

<xsd:maxInclusive value="2003-03-31"/>

</xsd:restriction>

</xsd:simpleType>

232 Chapter 6

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

<xsd:element name="CustReport">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Report" type="ReportType"

maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="Period" type="PeriodType"/>

</xsd:complexType>

</xsd:element>

<xsd:simpleType name="PeriodType">

<xsd:restriction base="xsd:string">

<xsd:pattern value="Q[1-4]{1}20[0-9]{2}"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:complexType name="ReportType">

<xsd:sequence>

<xsd:element name="Product" type="xsd:string"/>

<xsd:element name="Date" type="Q12003DateType"/>

<xsd:element name="CustID" type="CustIDType"/>

<xsd:element name="Summary" type="xsd:string"/>

<xsd:element name="ActionTaken" type="ActionTakenType"

maxOccurs="3"/>

</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name="Q12003DateType">

<xsd:restriction base="xsd:date">

<xsd:minInclusive value="2003-01-01"/>

<xsd:maxInclusive value="2003-03-31"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="CustIDType">

<xsd:restriction base="xsd:string">

<xsd:pattern value="[A-Z]{2}-\d{2}[A-Z]{1}"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="ActionTakenType">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="None"/>

Listing 6.12 A schema using minInclusive to constrain allowed dates (CustRportQ12003.xsd).

More about Data Facets 233

<\<>xsd:enumeration value="Discussed with employee"/<\>>

<\<>xsd:enumeration value="Discussed with line manager"/<\>>

<\<>xsd:enumeration value="Employee bonus"/<\>>

<\<>/xsd:restriction<\>>

<\<>/xsd:simpleType<\>>

<\<>/xsd:schema<\>>

Listing 6.12 A schema to constrain using minInclusive to constrain allowed dates (Cust-
ReportQ12003.xsd). (Continued)

We also define the PeriodType type using a pattern facet.

<xsd:pattern value="Q[1-4]{1}20[0-9]{2}"/>

First, we have the literal upper-case alphabetic character “Q” followed by a
single digit 1 to 4 inclusive, as specified by [1-4]{1}, followed by the literal dig-
its “20” because we are concerned with 21st century reports. Finally, we have
two numeric digits from 0 to 9 inclusive, as indicated by [0-9]{2}.

The paragraphs at the beginning of the chapter indicated that the maxExclu-
sive, maxInclusive, minExclusive, and minInclusive facets cannot be used on
xsd:string types. There are situations, however, in which you might want to
exercise such control of ranges over string types. For example, if you wanted to
split a personnel listing into separate parts for surnames A-G, H-O, and P-Z,
the <xsd:pattern> element could be used on xsd:string types to provide control
of the upper or lower limits of allowed content comparable to that permitted
on other datatypes by using the maxExclusive, maxInclusive, minExclusive,
and minInclusive facets.

A possible instance document for surnames A-G is shown in Listing 6.13.
The <xsd:pattern> facet used in Listing 6.14 enables us to achieve the desired

range of values in the xsd:string type for surnames beginning with A to G.
The type definition for the AtoGSurnameType enables us to use the pattern

facet to constrain permitted values of the initial letter of the surname.

<xsd:simpleType name="AtoGSurnameType">

<xsd:restriction base="xsd:string">

<xsd:pattern value="[A-G]{1}[a-zA-Z]{1,20}"/>

</xsd:restriction>

</xsd:simpleType>

The initial part of the regular expression, [A-G]{1}, permits only uppercase
alphabetic characters from A to G (inclusive) to be the initial letter of a sur-
name. The final part of the regular expression {1,20} allows from one to 20 fur-
ther alphabetic characters in the allowed surnames.

234 Chapter 6

<?xml version='1.0'?>

<Personnel>

<Person>

<Name>

<FirstName>George</FirstName>

<MiddleNames>Walker</MiddleNames>

<LastName>Bush</LastName>

</Name>

<Address>

<Street>1600 Pennsylvania Avenue</Street>

<City>Washington</City>

<PostalCode>12345-6789</PostalCode>

<HomeEmail>Dubya@bush.gov</HomeEmail>

<OfficeEmail>GWB@bush.gov</OfficeEmail>

</Address>

<CompanyRecord>

<DateJoined>2001-01-20</DateJoined>

<DateLeft></DateLeft>

<HRNumber>GWB1234 5678</HRNumber>

<Assignment>

<Department>President's Office</Department>

<Location>White House</Location>

<JobTitle>President</JobTitle>

<DateAssigned>2001-01-20</DateAssigned>

<DateCompleted></DateCompleted>

<HRAssessment></HRAssessment>

</Assignment>

</CompanyRecord>

</Person>

<!-- Many more person records would go here. -->

</Personnel>

Listing 6.13 Personnel records for surnames A-G (PersonnelAtoG.xml).

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

<xsd:element name="Personnel">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Person" type="PersonType" minOccurs="0"

maxOccurs="unbounded" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

Listing 6.14 Using <xsd:pattern> to set limits for xsd:string type (PersonnelAtoG.xsd).

TEAMFL
Y

Team-Fly®

More about Data Facets 235

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

<xsd:element name="Personnel">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Person" type="PersonType" minOccurs="0"

maxOccurs="unbounded" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:complexType name="PersonType">

<xsd:sequence>

<xsd:element name="Name" type="NameType"/>

<xsd:element name="Address" type="AddressType"/>

<xsd:element name="CompanyRecord" type="CompanyRecordType"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="NameType">

<xsd:sequence>

<xsd:element name="FirstName" type="xsd:string"/>

<xsd:element name="MiddleNames" type="xsd:string"/>

<xsd:element name="LastName" type="AtoGSurnameType"/>

</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name="AtoGSurnameType">

<xsd:restriction base="xsd:string">

<xsd:pattern value="[A-G]{1}[a-zA-Z]{1,20}"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:complexType name="AddressType">

<xsd:sequence>

<xsd:element name="Street" type="xsd:string"/>

<xsd:element name="City" type="xsd:string"/>

<xsd:element name="PostalCode" type="USZipCodeType"/>

<xsd:element name="HomeEmail" type="xsd:string"/>

<xsd:element name="OfficeEmail" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name="USZipCodeType">

<xsd:restriction base="xsd:string">

continues

Listing 6.14 Using <xsd:pattern> to set limits for xsd:string type (PersonnelAtoG.xsd).
(Continued)

236 Chapter 6

<xsd:pattern value="\d{5}|\d{5}-\d{4}"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:complexType name="CompanyRecordType">

<xsd:sequence>

<xsd:element name="DateJoined" type="ValidDateType" />

<xsd:element name="DateLeft" type="LeftDateType" />

<xsd:element name="HRNumber" type="xsd:string"/>

<xsd:element name="Assignment" type="AssignmentType" minOccurs="1"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="AssignmentType">

<xsd:sequence>

<xsd:element name="Department" type="xsd:string" />

<xsd:element name="Location" type="ValidLocationType" />

<xsd:element name="JobTitle" type="xsd:string"/>

<xsd:element name="DateAssigned" type="ValidDateType"/>

<xsd:element name="DateCompleted" type="LeftDateType"/>

<xsd:element name="HRAssessment" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name="ValidDateType">

<xsd:restriction base="xsd:date">

<xsd:minExclusive value="2000-12-31"/>

<xsd:maxExclusive value="2005-02-28"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="LeftDateType">

<xsd:union>

<xsd:simpleType>

<xsd:restriction base="ValidDateType"/>

</xsd:simpleType>

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:enumeration value=""/>

</xsd:restriction>

</xsd:simpleType>

</xsd:union>

</xsd:simpleType>

<xsd:simpleType name="ValidLocationType">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="White House"/>

Listing 6.14 Using <xsd:pattern> to set limits for xsd:string type (PersonnelAtoG.xsd).
(Continued)

More about Data Facets 237

<xsd:enumeration value="Camp David"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

Listing 6.14 Using <xsd:pattern> to set limits for xsd:string type (PersonnelAtoG.xsd).
(Continued)

<?xml version='1.0'?>

<HourlyTemps>

<Temp>34.3</Temp>

<Temp>37.1</Temp>

<Temp>41.6</Temp>

<Temp>48.4</Temp>

</HourlyTemps>

Listing 6.15 A record of hourly temperature readings in XML (HourlyTemps.xml).

The final two facets that we will consider, totalDigits and fractionDigits, are
used to constrain the length of xsd:decimal types. They are closely connected.
The value of the fractionDigits facet can never legally exceed the value of the
corresponding totalDigits facet.

The totalDigits and fractionDigits Facets

The totalDigits facet, not surprisingly, constrains the total number of digits
permitted in a value of type xsd:decimal.

Listing 6.15 shows a record of hourly temperature at some location. If we
could measure temperature to one decimal place and we knew that the tem-
perature would never exceed 90 degrees or go below 15 degrees, we know that
there are two digits before the decimal point and one after (giving a total of
three digits). We could thus use the totalDigits facet set to three and the frac-
tionDigits facet set to one.

The schema in Listing 6.16 applies the totalDigits and fractionDigits facets
to ensure the desired format for the values contained in <Temp> elements. In
addition, the minInclusive and maxInclusive facets ensure that only values in
the temperature range deemed realistic can be recorded.

As you can see in the type definition for the TempType type, we can com-
bine several facets within one <xsd:restriction> element. In this case, we
define a total of three digits with exactly one digit to follow the decimal point.

238 Chapter 6

In addition, we use the minInclusive and maxInclusive facets to define the
permitted temperature range. Applying facets together allows us very useful
control over permitted values.

Summary

In this chapter, we looked at the remaining constraining facets of XSD Schema.
The maxInclusive and maxExclusive facets are used to define the upper allowed
limit for the value of an attribute or an element’s content. The minInclusive and
minExclusive facets define the lower bound of allowed values. We also looked
at how you can use the pattern facet on the xsd:string type to define the upper
and lower bounds of allowed string content.

Finally, you saw how the totalDigits and fractionDigits facets can be used to
constrain the structure of datatypes of type xsd:decimal.

Having examined the constraining facets of XSD Schema in this chapter and
in Chapter 5, we will, in Chapter 7, “Grouping Elements and Attributes,” go
on to look at grouping elements and attributes.

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

<xsd:element name="HourlyTemps">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Temp" type="TempType" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:simpleType name="TempType">

<xsd:restriction base="xsd:decimal">

<xsd:totalDigits value="3"/>

<xsd:fractionDigits value="1"/>

<xsd:minInclusive value="15.0"/>

<xsd:maxInclusive value="90.0"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

Listing 6.16 A schema using the totalDigits and fractionDigits facets to ensure desired
numeric format (HourlyTemps.xsd).

239

C H A P T E R

7
Grouping Elements and

Attributes

In Chapter 1, “Elementary XML Schema,” we looked briefly at a number of
the options for grouping that are provided in W3C XML Schema. In this chap-
ter, we will take a more detailed look at what grouping techniques are avail-
able and how you can use them in your XSD Schema code.

The grouping functionality for elements in XSD Schema is not limited to the
<xsd:group> element. When we globally declare an element or use a named
type definition, we are in a sense creating a group that we can reuse in much
the same way that an <xsd:group> can be reused. We won’t examine those
structures again in detail in this chapter, however.

Grouping elements or attributes allows us to reuse the group, thereby
reducing the number of places where XSD code has to be altered if changes are
desired in the structure of instance documents. In this chapter, we will look at
reusing groups within a single schema. In Chapter 10, “Bringing the Parts
Together,” we will look at how to reuse groups (and other definitions and dec-
larations) across multiple schemas.

240 Chapter 7

<?xml version='1.0'?>

<PersonAddresses>

<Person>

<Name>Patrick D. Carter</Name>

<WorkAddress>

<Address>

<Street>123 Home Street</Street>

<City>Miami</City>

<State>FL</State>

<ZipCode>98765-4321</ZipCode>

</Address>

</WorkAddress>

<HomeAddress>

<Address>

<Street>987 Labor Street</Street>

<City>Miami</City>

<State>FL</State>

<ZipCode>98765-1234</ZipCode>

</Address>

</HomeAddress>

</Person>

<Person>

<Name>Carol J. Whittaker</Name>

<WorkAddress>

<?xml version='1.0'?>

Listing 7.1 An address listing (PersonAddresses.xml).

Reusing Definitions with Groups

Probably the least efficient way to code XSD Schema documents is to repeat
element definitions several times in the same document. Thus, if we wanted to
record both the work address and home address of a series of people, we could
code XSD element declarations for each place in the instance document that
we use, for example, a <Street> element. Coding in that way makes no use of
code that we have already created. We have to check and debug the code at
each place we use it in a schema that we have written. If we want to modify the
structure of an allowed instance document—for example, to constrain a
datatype more tightly—then we have to examine the code carefully to ensure
that we find each (essentially duplicate) piece of information and be sure that
we make each change in exactly the same way. Having a central definition or
declaration that is referenced as often as it is needed is more efficient. XSD
Schema provides us with several ways to group repeating parts of code.

One option that enables us to make use of the fact that address information
is essentially the same in both uses is to reference globally declared elements.
In Listing 7.1, you can see an address listing for a number of individuals.

Grouping Elements and Attributes 241

<PersonAddresses>

<Person>

<Name>Patrick D. Carter</Name>

<WorkAddress>

<Address>

<Street>123 Home Street</Street>

<City>Miami</City>

<State>FL</State>

<ZipCode>98765-4321</ZipCode>

</Address>

</WorkAddress>

<HomeAddress>

<Address>

<Street>987 Labor Street</Street>

<City>Miami</City>

<State>FL</State>

<ZipCode>98765-1234</ZipCode>

</Address>

</HomeAddress>

</Person>

<Person>

<Name>Carol J. Whittaker</Name>

<WorkAddress>

Listing 7.1 An address listing (PersonAddresses.xml). (Continued)

Notice how in the <WorkAddress> and <HomeAddress> elements we use
the same elements in the same sequence within the <Address> element. Thus,
without using groups, we can establish code reuse by using references to a
globally declared element, the <Address> element, as you can see in Listing 7.2.

In the schema, the definitions for both the WorkAddressType type and the
HomeAddressType type are identical. We exploit the identical structure needed

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

<xsd:element name="PersonAddresses">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Person" type="PersonType" minOccurs="0"

maxOccurs="unbounded"/>

</xsd:sequence>

continues

Listing 7.2 A schema for the address listing that references a globally declared element
(PersonAddresses01.xsd).

242 Chapter 7

</xsd:complexType>

</xsd:element>

<xsd:complexType name="PersonType">

<xsd:sequence>

<xsd:element name="Name" type="xsd:string"/>

<xsd:element name="WorkAddress" type="WorkAddressType"/>

<xsd:element name="HomeAddress" type="HomeAddressType"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="HomeAddressType">

<xsd:sequence>

<xsd:element ref="Address"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="WorkAddressType">

<xsd:sequence>

<xsd:element ref="Address"/>

</xsd:sequence>

</xsd:complexType>

<xsd:element name="Address">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Street" type="xsd:string"/>

<xsd:element name="City" type="xsd:string"/>

<xsd:element name="State" type="StateType"/>

<xsd:element name="ZipCode" type="USZipCodeType"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:simpleType name="StateType">

<xsd:restriction base="xsd:string">

<xsd:length value="2"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="USZipCodeType">

<xsd:restriction base="xsd:string">

<xsd:pattern value="\d{5}|\d{5}-\d{4}"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

Listing 7.2 A schema for the address listing that references a globally declared element
(PersonAddresses01.xsd). (Continued)

Grouping Elements and Attributes 243

in the instance document by referencing one globally declared element declara-
tion for the <Address> element.

We could achieve a similar result by recoding the type definitions for the
WorkAddressType and HomeAddressType types as follows so that a named
complex type is used within the two named complex types HomeAddress-
Type and WorkAddressType:

<xsd:complexType name="HomeAddressType">

<xsd:sequence>

<xsd:element name="Address" type="AddressType"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="WorkAddressType">

<xsd:sequence>

<xsd:element name="Address" type="AddressType"/>

</xsd:sequence>

</xsd:complexType>

In parallel with those changes, we would use a named complex type defini-
tion for the AddressType type:

<xsd:complexType name="AddressType">

<xsd:sequence>

<xsd:element name="Street" type="xsd:string"/>

<xsd:element name="City" type="xsd:string"/>

<xsd:element name="State" type="StateType"/>

<xsd:element name="ZipCode" type="USZipCodeType"/>

</xsd:sequence>

</xsd:complexType>

The modified listing using a named complex type definition is shown in
Listing 7.3.

The schemas in Listing 7.2 and 7.3 enable us to achieve code reuse without
making any use of <xsd:group> elements. Groups enable us to reuse type

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

<xsd:element name="PersonAddresses">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Person" type="PersonType" minOccurs="0"

continues

Listing 7.3 A modified schema using named complex types (PersonAddresses02.xsd).

244 Chapter 7

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:complexType name="PersonType">

<xsd:sequence>

<xsd:element name="Name" type="xsd:string"/>

<xsd:element name="WorkAddress" type="WorkAddressType"/>

<xsd:element name="HomeAddress" type="HomeAddressType"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="HomeAddressType">

<xsd:sequence>

<xsd:element name="Address" type="AddressType"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="WorkAddressType">

<xsd:sequence>

<xsd:element name="Address" type="AddressType"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="AddressType">

<xsd:sequence>

<xsd:element name="Street" type="xsd:string"/>

<xsd:element name="City" type="xsd:string"/>

<xsd:element name="State" type="StateType"/>

<xsd:element name="ZipCode" type="USZipCodeType"/>

</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name="StateType">

<xsd:restriction base="xsd:string">

<xsd:length value="2"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="USZipCodeType">

<xsd:restriction base="xsd:string">

<xsd:pattern value="\d{5}|\d{5}-\d{4}"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

Listing 7.3 A modified schema using named complex types (PersonAddresses02.xsd).
(Continued)

TEAMFL
Y

Team-Fly®

Grouping Elements and Attributes 245

definitions in a way that can be a little more efficient than by using referenced
global element declarations. If you look at the instance document in Listing
7.1, you might notice that the only function of the <Address> element is to act
as a grouping element for the <Street>, <City>, <State>, and <ZipCode> ele-
ments. There is no attribute on the <Address> element, so if we use XSD group-
ing, we can dispense with the <Address> element entirely—thus reducing
slightly the size of the content of each <Person> element in the instance docu-
ment. In a sense, we have a choice of creating a grouping element (of whatever
element type name) in the instance document or using an <xsd:group> element
in the schema to achieve the same purpose.

The modified instance document, with the <Address> element removed, is
shown in Listing 7.4.

Notice that the <Address> element has been removed but the information
contained in the file is essentially the same. Notice, too, that the code is around
15 percent shorter than Listing 7.1, although smaller savings in code length are

<?xml version='1.0'?>

<PersonAddresses>

<Person>

<Name>Patrick D. Carter</Name>

<WorkAddress>

<Street>123 Home Street</Street>

<City>Miami</City>

<State>FL</State>

<ZipCode>98765-4321</ZipCode>

</WorkAddress>

<HomeAddress>

<Street>987 Labor Street</Street>

<City>Miami</City>

<State>FL</State>

<ZipCode>98765-1234</ZipCode>

</HomeAddress>

</Person>

<Person>

<Name>Carol J. Whittaker</Name>

<WorkAddress>

<Street>88 Canada Avenue</Street>

<City>Rochester</City>

<State>NY</State>

<ZipCode>12345-6789</ZipCode>

</WorkAddress>

<HomeAddress>

<Street>99 Cammelia Crescent</Street>

continues

Listing 7.4 A modified person addresses data store without the <Address> element
(PersonAddresses02.xml).

246 Chapter 7

likely in most settings. To be able to avoid the unnecessary code in instance
documents, we use the <xsd:group> element in the XSD Schema as shown in
Listing 7.5.

Notice that in the complex type definition for both the WorkAddressType
and the HomeAddressType types that we have replaced the <xsd:element>
element with the <xsd:group> element. The content of the AddressGroup
group is a sequence of elements. We reference the XSD Schema group named
AddressGroup, which contains element declarations for the <Street>, <City>,
<State>, and <ZipCode> elements.

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

<xsd:element name="PersonAddresses">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Person" type="PersonType" minOccurs="0"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:complexType name="PersonType">

<xsd:sequence>

<xsd:element name="Name" type="xsd:string"/>

<xsd:element name="WorkAddress" type="WorkAddressType"/>

<xsd:element name="HomeAddress" type="HomeAddressType"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="HomeAddressType">

<xsd:sequence>

<xsd:group ref="AddressGroup" />

Listing 7.5 A revised schema using the <xsd:group> element (PersonAddresses03.xsd).

<City>Rochester</City>

<State>NY</State>

<ZipCode>12345-9876</ZipCode>

</HomeAddress>

</Person>

<!-- More Person elements can go here. -->

</PersonAddresses>

Listing 7.4 A modified person addresses data store without the <Address> element
(PersonAddresses02.xml). (Continued)

Grouping Elements and Attributes 247

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="WorkAddressType">

<xsd:sequence>

<xsd:group ref="AddressGroup"/>

</xsd:sequence>

</xsd:complexType>

<xsd:group name="AddressGroup">

<xsd:sequence>

<xsd:element name="Street" type="xsd:string"/>

<xsd:element name="City" type="xsd:string"/>

<xsd:element name="State" type="StateType"/>

<xsd:element name="ZipCode" type="USZipCodeType"/>

</xsd:sequence>

</xsd:group>

<xsd:simpleType name="StateType">

<xsd:restriction base="xsd:string">

<xsd:length value="2"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="USZipCodeType">

<xsd:restriction base="xsd:string">

<xsd:pattern value="\d{5}|\d{5}-\d{4}"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

Listing 7.5 A revised schema using the <xsd:group> element (PersonAddresses03.xsd).
(Continued)

Nesting Sequence Groups
We can nest one XSD group within another to create fairly complex structures.
As an example, let’s suppose that we wished for some reason to group the
declarations for the <State> and <ZipCode> elements so that we could create
a StateZipCodeGroup group, which is referenced from within the definition of
the AddressGroup group. The code is shown in Listing 7.6.

In our simple example, this action provides no direct productivity gain, but
by creating groups that we use as reusable components of a schema, we can—
with more extensive schemas—build up a library of code contained in
<xsd:group> elements that has already been tested. With those advantages of
reuse in mind, it is important, in a production setting, to document the pur-
pose and characteristics of each group by adding <xsd:annotation> and

248 Chapter 7

<xsd:documentation> elements to each group of which you plan to make
repeated use. In the more extensive example to be developed in Chapter 10,
“Bringing the Parts Together,” we will see how a schema and an associated
type library can be documented to aid understanding.

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

<xsd:element name="PersonAddresses">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Person" type="PersonType" minOccurs="0"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:complexType name="PersonType">

<xsd:sequence>

<xsd:element name="Name" type="xsd:string"/>

<xsd:element name="WorkAddress" type="WorkAddressType"/>

<xsd:element name="HomeAddress" type="HomeAddressType"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="HomeAddressType">

<xsd:sequence>

<xsd:group ref="AddressGroup" />

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="WorkAddressType">

<xsd:sequence>

<xsd:group ref="AddressGroup"/>

</xsd:sequence>

</xsd:complexType>

<xsd:group name="AddressGroup">

<xsd:sequence>

<xsd:element name="Street" type="xsd:string"/>

<xsd:element name="City" type="xsd:string"/>

<xsd:group ref="StateZipCodeGroup"/>

</xsd:sequence>

</xsd:group>

<xsd:group name="StateZipCodeGroup">

<xsd:sequence>

<xsd:element name="State" type="StateType"/>

Listing 7.6 Nesting element group definitions in a schema (PersonAddresses04.xsd).

Grouping Elements and Attributes 249

<xsd:element name="ZipCode" type="USZipCodeType"/>

</xsd:sequence>

</xsd:group>

<xsd:simpleType name="StateType">

<xsd:restriction base="xsd:string">

<xsd:length value="2"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="USZipCodeType">

<xsd:restriction base="xsd:string">

<xsd:pattern value="\d{5}|\d{5}-\d{4}"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

Listing 7.6 Nesting element group definitions in a schema (PersonAddresses04.xsd).
(Continued)

Nesting Choice Groups
XSD Schema enables us to use the <xsd:group> element to contain a sequence
of elements, as we have just seen, or a choice of either elements or further
groups. Any groups that are referenced must be declared globally.

Just as we can nest sequence groups, we can also nest choice groups. Sup-
pose that we had an online health questionnaire for a life insurance company.
Part of that questionnaire to assess future disease risk might differ depending
on gender. Not many men, for example, are likely to have been pregnant. A
possible instance document is shown in Listing 7.7. Because several nested
choices are to be made within the schema which follows, the instance docu-
ment is fairly long in order to allow testing against the schema.

<?xml version='1.0'?>

<Questionnaire>

<Person gender="Female">

<Name>Jane Doe</Name>

<SmokingHistory>

<NeverSmoked>Yes</NeverSmoked>

</SmokingHistory>

<FemaleGenderRelated>

<NumberofPregnancies>0</NumberofPregnancies>

<LastCervicalSmear>1999-12-14</LastCervicalSmear>

continues

Listing 7.7 A health questionnaire expressed in XML (Questionnaire.xml).

250 Chapter 7

Each person has a <Name> element recording his or her name. A smoking
history is taken, and if the person is a never-smoker, a <NeverSmoked> ele-
ment is used. If the person has ever smoked, however, a series of pieces of
information is collected. The choice between the <NeverSmoked> element
and the supplementary questions for a past or current smoker is guided by a
choice group. Following the smoking-related information, some additional
information is collected that is appropriate to the person’s gender. Again, a
choice group is used to allow data appropriate to the gender of the person to
be collected and stored.

Clearly, there are many choices to be made about what questions might sen-
sibly be asked in the questionnaire. It is pointless asking questions about the
age when a person first smoked and maximum cigarettes per day to someone
who has never smoked. Similarly, if we know that the person’s gender is

<BreastSelfExamination>Yes</BreastSelfExamination>

<GynCaFamilyHistory>No</GynCaFamilyHistory>

</FemaleGenderRelated>

</Person>

<Person gender="Male">

<Name>John Doe</Name>

<SmokingHistory>

<EverSmoked>Yes</EverSmoked>

<AgeFirstSmoked>12</AgeFirstSmoked>

<MaxCigsPerDay>50</MaxCigsPerDay>

<CurrentSmoker>No</CurrentSmoker>

</SmokingHistory>

<MaleGenderRelated>

<TesticularSelfExamination>No</TesticularSelfExamination>

</MaleGenderRelated>

</Person>

<Person gender="Female">

<Name>Jane Smith</Name>

<SmokingHistory>

<EverSmoked>Yes</EverSmoked>

<AgeFirstSmoked>14</AgeFirstSmoked>

<MaxCigsPerDay>25</MaxCigsPerDay>

<CurrentSmoker>Yes</CurrentSmoker>

</SmokingHistory>

<FemaleGenderRelated>

<NumberofPregnancies>3</NumberofPregnancies>

<LastCervicalSmear>2000-01-01</LastCervicalSmear>

<BreastSelfExamination>No</BreastSelfExamination>

<GynCaFamilyHistory>Yes</GynCaFamilyHistory>

</FemaleGenderRelated>

</Person>

</Questionnaire>

Listing 7.7 A health questionnaire expressed in XML (Questionnaire.xml). (Continued)

Grouping Elements and Attributes 251

female, there are aspects of personal or medical history that apply only to
females and need not be asked of males (and vice-versa). Notice how in List-
ing 7.8 we use nested choice groups to reflect the logical flow of which data it
is relevant to seek, and therefore to store.

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

<xsd:element name="Questionnaire">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Person" type="PersonType" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:complexType name="PersonType">

<xsd:sequence>

<xsd:group ref="BasicDataGroup" />

<xsd:element name="SmokingHistory">

<xsd:complexType>

<xsd:group ref="SmokingHistoryGroup"/>

</xsd:complexType>

</xsd:element>

<xsd:group ref="GenderRelatedGroup"/>

</xsd:sequence>

<xsd:attribute name="gender" type="xsd:string"/>

</xsd:complexType>

<xsd:group name="BasicDataGroup">

<xsd:choice>

<xsd:element name="Name" type="xsd:string"/>

<xsd:element name="Anonymous" type="xsd:string"/>

</xsd:choice>

</xsd:group>

<xsd:group name="SmokingHistoryGroup">

<xsd:choice>

<xsd:element name="NeverSmoked" type="xsd:string"/>

<xsd:group ref="EverSmokedGroup"/>

</xsd:choice>

</xsd:group>

<xsd:group name="EverSmokedGroup">

<xsd:sequence>

<xsd:element name="EverSmoked" type="xsd:string"/>

<xsd:element name="AgeFirstSmoked" type="xsd:positiveInteger"/>

continues

Listing 7.8 A schema for the health questionnaire (Questionnaire.xsd).

252 Chapter 7

<xsd:element name="MaxCigsPerDay" type="xsd:positiveInteger"/>

<xsd:group ref="CurrentSmokerGroup"/>

</xsd:sequence>

</xsd:group>

<xsd:group name="CurrentSmokerGroup">

<xsd:annotation>

<xsd:documentation>

Extend this group to another level of nested choice group if you want

to add questions for current smokers only.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name="CurrentSmoker" type="xsd:string"/>

</xsd:sequence>

</xsd:group>

<xsd:group name="GenderRelatedGroup">

<xsd:choice>

<xsd:group ref="FemaleGenderGroup"/>

<xsd:group ref="MaleGenderGroup"/>

</xsd:choice>

</xsd:group>

<xsd:group name="FemaleGenderGroup">

<xsd:sequence>

<xsd:element name="FemaleGenderRelated">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="NumberofPregnancies"

type="xsd:nonNegativeInteger"/>

<xsd:element name="LastCervicalSmear" type="xsd:date"/>

<xsd:element name="BreastSelfExamination" type="xsd:string"/>

<xsd:element name="GynCaFamilyHistory" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:group>

<xsd:group name="MaleGenderGroup">

<xsd:sequence>

<xsd:element name="MaleGenderRelated">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="TesticularSelfExamination" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

Listing 7.8 A schema for the health questionnaire (Questionnaire.xsd). (Continued)

Grouping Elements and Attributes 253

</xsd:element>

</xsd:sequence>

</xsd:group>

</xsd:schema>

Listing 7.8 A schema for the health questionnaire (Questionnaire.xsd). (Continued)

The structure of the schema follows the design of the instance questionnaire
described a little earlier. Hopefully you will be able, having started at the element
declaration for the <Questionnaire> element, to follow the logical flow of allowed
and appropriate choices for the data that is to be collected. The definition of the
SmokingHistoryGroup enables us to choose either a <Never-Smoked> element
or a further choice group named EverSmokedGroup. The final member of the
sequence within the EverSmokedGroup group is a Current-SmokerGroup group.
In the schema as written, that group contains only a single element. The group
could be extended further to explore questions about current smoking habits,
however—perhaps incorporating a choice of CurrentHeavy-SmokerGroup, Cur-
rentModerateSmokerGroup, or CurrentLightSmokerGroup groups.

The GenderRelatedGroup group enables us to include content appropriate
to each gender. Just as with the smoking history questions, we could nest fur-
ther choice or sequence groups. For example, if there was a family history of
gynecological cancer as indicated by the content of the <GynCaFamilyHis-
tory> element, then further questions could be added in another more deeply
nested group.

You should be able to see that <xsd:group> elements can be used to create
complex nested structures that can, when sensibly used, reflect the logic of the
information that it is appropriate to record (depending on the circumstances
that apply).

XSD Schema provides a further mechanism to enable us to choose which
type of element to display in a particular setting. In this case, we are con-
strained to the inclusion of elements of the same datatype. Let’s go on and
examine substitution groups.

Substitution Groups

It can be useful to allow substitution of one element for another in instance
documents without having to create a new schema. In XSD Schema, the notion
of substitution groups provides functionality that achieves this goal. The ele-
ments that can be substituted one for another must be of the same named
datatype, however. Additionally, the element for which a substitution can be
made has to be declared globally.

254 Chapter 7

<?xml version='1.0'?>

<ModesOfTransport>

<Vehicle>

<Type>Car</Type>

<Wheels>4</Wheels>

<Wings>0</Wings>

</Vehicle>

<Vehicle>

<Type>Aeroplane</Type>

<Wheels>5</Wheels>

<Wings>2</Wings>

</Vehicle>

</ModesOfTransport>

Listing 7.9 Modes of transport expressed in XML (Transport01.xml).

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

<xsd:element name="ModesOfTransport">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Vehicle" type="VehicleType"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:complexType name="VehicleType">

<xsd:sequence>

<xsd:element name="Type" type="xsd:string"/>

<xsd:element name="Wheels" type="xsd:nonNegativeInteger"/>

<xsd:element name="Wings" type="xsd:nonNegativeInteger"/>

</xsd:sequence>

</xsd:complexType>

</xsd:schema>

Listing 7.10 A schema (without substitution group) for the modes of transport instance
document (Transport01.xsd).

Let’s suppose that we want to create an instance document that consists of a
data store about modes of transport. It might look a little like Listing 7.9.

A schema for Listing 7.9 is shown in Listing 7.10.
It might be useful, however, to allow a variety of more specific elements

within the instance document so that it looks like the instance document
shown in Listing 7.11. In the example, we would be allowed to use <Car> and

TEAMFL
Y

Team-Fly®

Grouping Elements and Attributes 255

<?xml version='1.0'?>

<ModesOfTransport>

<Aeroplane>

<Type>Boeing 777</Type>

<Wheels>5</Wheels>

<Wings>2</Wings>

</Aeroplane>

<Car>

<Type>Rolls Royce</Type>

<Wheels>4</Wheels>

<Wings>0</Wings>

</Car>

<Aeroplane>

<Type>Boeing 767</Type>

<Wheels>5</Wheels>

<Wings>2</Wings>

</Aeroplane>

<Car>

<Type>Ferrari</Type>

<Wheels>4</Wheels>

<Wings>0</Wings>

</Car>

</ModesOfTransport>

Listing 7.11 A modified instance document allowing element substitution (Transport02.xml).

<Aeroplane> elements in the same place in the content model as <Vehicle>
elements are permitted. Notice that the content model for the <Car> and
<Aeroplane> elements is the same as the content model for the <Vehicle> ele-
ment shown earlier in Listing 7.9.

XSD Schema enables us to specify a collection of elements that are allowed
as substitutes for the <Vehicle> element. In the following schema, the collec-
tion of substitution elements will contain two elements. In this context, the
<Vehicle> element is termed the head element. Listing 7.12 shows a schema that
describes Listing 7.11.

Notice that the schema has been modified. The <Vehicle> element has been
declared as a global element declaration (it has to be, if substitution is to work
correctly). It also now has an abstract attribute with the value of “true.” You
will notice, too, the two new global element declarations for the <Car> and
<Aeroplane> elements. The type attribute of each of those <xsd:element> ele-
ments specifies the datatype to be the same as that of the <Vehicle> element.
The substitutionGroup attribute denotes that each of the two elements can be
substituted in an instance document in the same position in the content model
as the <Vehicle> element is allowed.

256 Chapter 7

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

<xsd:element name="ModesOfTransport">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="Vehicle" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="Vehicle" type="VehicleType" abstract="true"/>

<xsd:element name="Car" type="VehicleType"

substitutionGroup="Vehicle"/>

<xsd:element name="Aeroplane" type="VehicleType"

substitutionGroup="Vehicle"/>

<xsd:complexType name="VehicleType">

<xsd:sequence>

<xsd:element name="Type" type="xsd:string"/>

<xsd:element name="Wheels" type="xsd:nonNegativeInteger"/>

<xsd:element name="Wings" type="xsd:nonNegativeInteger"/>

</xsd:sequence>

</xsd:complexType>

</xsd:schema>

Listing 7.12 A schema using a substitution group (Transport02.xsd).

The presence of an abstract attribute with value true on the element decla-
ration for the <Vehicle> element means that we cannot include a <Vehicle>
element in the instance document. Thus, we can use only <Aeroplane> and
<Car> elements but not the <Vehicle> element itself. Removing the abstract
attribute allows us to mix freely <Vehicle>, <Aeroplane>, and <Car> elements
in the instance document.

Turbo XML 2.2.1 will enable you, incorrectly, to include <Vehicle> ele-
ments when abstract is set to “true.”

Substitution groups used as they are in the previous paragraphs can save us
from having to repeat type definitions for each element. But the alternate tech-
nique of having a choice group with three element declarations each with type
attribute relating to a named VehicleType complex definition would have
achieved the same result.

Having looked at several grouping techniques that are relevant to elements,
let’s go on to look at attribute groups.

NOTE

Grouping Elements and Attributes 257

<?xml version='1.0'?>

<SimpleInvoice>

<InvoiceNumber

checkedBy="Mary"

Department="Despatch"

>

01234

</InvoiceNumber>

<Customer>WonderWidgets</Customer>

<Items>

<Item>A thing</Item>

<Item>Some other thing</Item>

<Item>A third thing</Item>

</Items>

</SimpleInvoice>

Listing 7.13 A simple invoice using attributes (SimpleInvoice.xml).

Attribute Groups

Attribute groups enable us to reuse code in a way similar to the benefits of
using element-related groups. It enables us to declare a group of attributes
that we might want to reuse in several places in the same schema or that we
want to use in a type library so that the group can be referenced from other
XSD schemas. The elements to enable reuse of information contained in exter-
nal schemas are described in Chapter 10, “Bringing the Parts Together.”

A simple invoice document might look like that shown in Listing 7.13.
The <InvoiceNumber> element has two attributes: checkedBy and Depart-

ment. We could add the attribute declarations separately in the schema. Alter-
natively, we could group the attributes using an <xsd:attributeGroup>
element so that we could reuse them, as a group, in some other setting.

A schema using a simple attribute grouping is shown in Listing 7.14. Note
that the <xsd:attributeGroup> element must be global in order to be refer-
enced correctly.

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

<xsd:element name="SimpleInvoice">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="InvoiceNumber" type="xsd:positiveInteger"/>

continues

Listing 7.14 A schema using an attribute group (SimpleInvoice.xsd).

The attribute group we created could be reused in other settings where doc-
uments or actions must be documented as checked by a particular individual
from a particular department.

Summary

In this chapter, we have looked at the improvement in efficiency that grouping
of definitions or declarations within an XSD schema can produce. We have
examined the use of <xsd:group> elements with either sequence or choice
content. We then went on to look at how nesting choice groups can enable us
to represent a hierarchy of choices in an instance document. Finally, we have
looked briefly at the use of attribute groups.

In Chapter 8, we go on to examine how we can create new datatypes cus-
tomized for our particular need from those datatypes that XSD Schema pro-
vides for us.

258 Chapter 7

<xsd:element name="Customer" type="xsd:string"/>

<xsd:element name="Items" type="ItemsType"/>

</xsd:sequence>

<xsd:attributeGroup ref="CheckedAndDeptAttributesGroup"/>

</xsd:complexType>

</xsd:element>

<xsd:complexType name="ItemsType">

<xsd:sequence>

<xsd:element name="Item" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:attributeGroup name="CheckedAndDeptAttributesGroup">

<xsd:attribute name="checkedBy" type="xsd:string"/>

<xsd:attribute name="Department" type="xsd:string"/>

</xsd:attributeGroup>

</xsd:schema>

Listing 7.14 A schema using an attribute group (SimpleInvoice.xsd). (Continued)

259

C H A P T E R

8

Deriving Types

One of the most powerful innovations in XSD Schema is the ability to create
new user-defined datatypes that are derived from datatypes provided by the
XSD Schema Recommendation itself or from derived datatypes created earlier
by you or by other schema authors. The existence of built-in datatypes in XSD
Schema takes it substantially beyond the capabilities of DTDs, but the ability
to derive new datatypes specifically crafted for a particular use (from either
primitive or derived datatypes) is a major advance.

In earlier chapters, we have seen (in passing) many examples of deriving
new data types. In this chapter, we will focus specifically on how we can use
XSD Schema to derive new datatypes in a number of settings.

The facility within XSD Schema to derive new datatypes enables the reuse
of existing types in a way that is similar to that in which object inheritance is
used in object-oriented programming. In creating a derived datatype, we can
simply make use of an existing datatype and modify some part of it for our
specific intended use. There is no need to code or create new datatypes from
scratch—we can, as we gain experience in XSD Schema, make use of a grow-
ing resource of existing XSD Schema code. This functionality has great advan-
tages in allowing the reuse of code, rather than repetitive creation of new code
that then has to go through a full debugging process. As you will see in Chap-
ter 10, “Bringing the Parts Together,” XSD Schema also enables code to be
reused outside the schema in which it was created.

260 Chapter 8

As well as those advantages in reducing repetitive XSD Schema code, the
flexibility and specificity of XSD Schema-derived datatypes enables a signifi-
cant decrease in application-specific coding for type checking. There is no
need for much of the custom-written code that would have been necessary
using documents that were validated by using DTDs.

XSD Schema provides four methods of deriving new datatypes:

■■ By extension (complex types only)

■■ By restriction (simple and complex types)

■■ By list (simple types only)

■■ By union (simple types only)

In conjunction with the elements <xsd:extension>, <xsd:restriction>, <xsd:list>,
and <xsd:union>, we can apply the facets that were discussed in Chapters 5,
“Data Facets,” and 6, “More about Data Facets.” Many of these facets will be
shown in the examples in this chapter. The type from which a new type is derived
is termed the base type, which is typically expressed as a base attribute in one of
the elements just mentioned. In the case of the list type, the type from which the
new type is derived is termed the item type. It is expressed as an itemType
attribute of the <xsd:list> element.

When we apply constraining facets in order to create a new datatype, we
can restrict the allowed values in either the lexical space or the value space of a
datatype. A floating point number can have a single expression of 50 in the
value space of the datatype but can be expressed in several ways, such as 50 or
50.0 or 5.0e1 in the lexical space. Restriction of the value space can be done
directly or indirectly. For example, the value attribute of the <xsd:pattern> ele-
ment, which we discussed in Chapter 5, constrains the lexical space of a type
and thereby indirectly controls the value space of the type.

In the final section of the chapter, we will briefly look at the xsi:type attribute.
First, let’s look at deriving new types by extension.

Deriving Types by Extension

The <xsd:extension> element provides us with several techniques implemented
by XSD Schema facets by which we can extend an existing datatype in order to
create a new datatype. We can extend a type by code reuse without actually
using the <xsd:extension> element, however. First, we will examine a simple
example of code reuse and then go on to use the <xsd:extension> element.

Let’s take a simple example of a short schema for information about a per-
son. An instance document might look like that in Listing 8.1.

An XSD schema that would define the content of the <Person> element in
Listing 8.1 is shown in Listing 8.2.

Deriving Types 261

<?xml version='1.0'?>

<PersonList>

<Person>

<Name>

<FirstName>John</FirstName>

<MiddleInitial>X</MiddleInitial>

<LastName>Smith</LastName>

</Name>

</Person>

<Person>

<Name>

<FirstName>Janet</FirstName>

<MiddleInitial>X</MiddleInitial>

<LastName>Chang</LastName>

</Name>

</Person>

</PersonList>

Listing 8.1 A simple instance document describing a person (PersonList.xml).

<?xml version='1.0'?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:annotation>

<xsd:documentation>

This schema provides only the most basic person related data and will

need to be extended to be used other than for very local purposes.

</xsd:documentation>

</xsd:annotation>

<xsd:element name="PersonList">

<xsd:annotation>

<xsd:documentation>

The <PersonList> element is simply a sequence of

<Person> elements.

The <Person> element can be replaced by the definition of an

extended derived datatype if desired.

</xsd:documentation>

</xsd:annotation>

<xsd:complexType>

continues

Listing 8.2 An XSD schema for Listing 8.1 (PersonList.xsd).

262 Chapter 8

Information that is as limited as this about a person would likely be ade-
quate only in the most localized of settings—in any corporate setting, the pos-
sibility of duplication of names arises as the number of persons increases
beyond a few. As a basic addition to the information about the person, we
could add standard address information. Listing 8.3 shows the modified
instance document.

We have inserted address information into each <Person> element follow-
ing the <Name> element.

An amended schema is shown in Listing 8.4.
The PersonWithAddressType type can be viewed as being the BasicName-

Type from Listing 8.2 with the added property of the BasicAddressType type.
Thus, we have extended the BasicNameType type without using the <xsd:
extension> element directly.

Let’s go on to extend both the content model for the <Person> and
<Address> elements and add a new <CreditHistory> element so that the per-
sonal information is adapted and extended for use in credit rating purposes.
Listing 8.5 shows an instance document.

<xsd:sequence>

<xsd:element name="Person" type="BasicPersonType" minOccurs="0"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:complexType name="BasicPersonType">

<xsd:sequence>

<xsd:element name="Name" type="BasicNameType" minOccurs="1"

maxOccurs="1"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="BasicNameType">

<xsd:sequence>

<xsd:element name="FirstName" type="xsd:string" />

<xsd:element name="MiddleInitial" type="xsd:string" minOccurs="0"

maxOccurs="10"/>

<xsd:element name="LastName" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:schema>

Listing 8.2 An XSD schema for Listing 8.1 (PersonList.xsd). (Continued)

Deriving Types 263

<?xml version='1.0'?>

<PersonList>

<Person>

<Name>

<FirstName>John</FirstName>

<MiddleInitial>X</MiddleInitial>

<LastName>Smith</LastName>

</Name>

<Address>

<Street1>45678 2nd Street</Street1>

<Street2></Street2>

<City>Tampa</City>

<State>FL</State>

<ZipCode>34567</ZipCode>

<Country>USA</Country>

</Address>

</Person>

<Person>

<Name>

<FirstName>Janet</FirstName>

<MiddleInitial>X</MiddleInitial>

<LastName>Chang</LastName>

</Name>

<Address>

<Street1>34567 Ronald Reagan Avenue</Street1>

<Street2></Street2>

<City>Sacramento</City>

<State>CA</State>

<ZipCode>98765</ZipCode>

<Country></Country>

</Address>

</Person>

</PersonList>

Listing 8.3 A person list with added address information (PersonList02.xml).

<?xml version='1.0'?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:annotation>

<xsd:documentation>

This schema provides only basic person related data with added

address data and will need to be extended to be used other than for

local purposes.

</xsd:documentation>

</xsd:annotation>

continues

Listing 8.4 A schema for persons with added address data (PersonList02.xsd).

264 Chapter 8

<xsd:element name="PersonList">

<xsd:annotation>

<xsd:documentation>

The <PersonList> element remains a sequence of <Person>

elements.

The < Person> element can be replaced by the definition of an

extended derived datatype if desired.

</xsd:documentation>

</xsd:annotation>

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Person" type="PersonWithAddressType"

minOccurs="0"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:complexType name="PersonWithAddressType">

<xsd:sequence>

<xsd:element name="Name" type="BasicNameType" minOccurs="1"

maxOccurs="1"/>

<xsd:element name="Address" type="BasicAddressType" minOccurs="1"

maxOccurs="1"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="BasicNameType">

<xsd:sequence>

<xsd:element name="FirstName" type="xsd:string" />

<xsd:element name="MiddleInitial" type="xsd:string" minOccurs="0"

maxOccurs="10"/>

<xsd:element name="LastName" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="BasicAddressType">

<xsd:sequence>

<xsd:element name="Street1" type="xsd:string"/>

<xsd:element name="Street2" type="xsd:string" minOccurs="0"

maxOccurs="1" />

<xsd:element name="City" type="xsd:string" />

<xsd:element name="State" type="xsd:string"/>

<xsd:element name="ZipCode" type="xsd:integer" />

<xsd:element name="Country" type="xsd:string" minOccurs="0"

Listing 8.4 A schema for persons with added address data (PersonList02.xsd). (Continued)

TEAMFL
Y

Team-Fly®

Deriving Types 265

maxOccurs="1" />

</xsd:sequence>

</xsd:complexType>

</xsd:schema>

Listing 8.4 A schema for persons with added address data (PersonList02.xsd). (Continued)

<?xml version='1.0'?>

<PersonList>

<Person>

<Name>

<FirstName>John</FirstName>

<MiddleInitial>X</MiddleInitial>

<LastName>Smith</LastName>

<EmailAddress></EmailAddress>

</Name>

<Address>

<Street1>45678 2nd Street</Street1>

<Street2></Street2>

<City>Tampa</City>

<State>FL</State>

<ZipCode>34567</ZipCode>

<Country>USA</Country>

<TimeAtAddress>3 months</TimeAtAddress>

</Address>

<CreditInformation>

<CreditCards>

<CreditCard number="0987654321098765" type="Mastercard"

status="OK"

time="4 years"/>

<CreditCard number="9876543210987654" type="Visa" status="OK"

time="3 years 9 months"/>

<CreditCard number="5678901234567890" type="Diner's"

status="OK"

time="6 months"/>

</CreditCards>

<CreditHistory status="" NumberEvents="1">

<CreditEvent>Overdue payment on Visa card, September

2002</CreditEvent>

</CreditHistory>

</CreditInformation>

continues

Listing 8.5 An instance document with added credit history information (PersonList03.xml).

266 Chapter 8

</Person>

<Person>

<Name>

<FirstName>Janet</FirstName>

<MiddleInitial>X</MiddleInitial>

<LastName>Chang</LastName>

<EmailAddress></EmailAddress>

</Name>

<Address>

<Street1>34567 Ronald Reagan Avenue</Street1>

<Street2></Street2>

<City>Sacramento</City>

<State>CA</State>

<ZipCode>98765</ZipCode>

<Country></Country>

<TimeAtAddress>2 years</TimeAtAddress>

</Address>

<CreditInformation>

<CreditCards>

<CreditCard number="1234567890123456" type="Visa" status="OK"

time="2 years"/>

<CreditCard number="2345678901234567" type="Mastercard"

status="OK"

time="3 years"/>

</CreditCards>

<CreditHistory status="Clear" NumberEvents="0">

<CreditEvent></CreditEvent>

</CreditHistory>

</CreditInformation>

</Person>

</PersonList>

Listing 8.5 An instance document with added credit history information (PersonList03.xml).
(Continued)

Notice in the instance document that we have extended the <Name> element
by adding an <EmailAddress> subelement, extended the <Address> element
by adding a <TimeAtAddress> subelement, and added a new subelement
<CreditInformation> to the <Person> element. The <CreditInformation> ele-
ment has <CreditCards>, <CreditHistory>, and <CreditEvent> subelements,
some of which in turn have subelements.

A schema reflecting the new elements that we have added is shown in List-
ing 8.6.

Deriving Types 267

<?xml version='1.0'?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:annotation>

<xsd:documentation>

This schema provides basic person related data plus information

directly relevant for credit rating purposes.

</xsd:documentation>

</xsd:annotation>

<xsd:element name="PersonList">

<xsd:annotation>

<xsd:documentation>

The <PersonList> element remains a sequence of <Person>

elements.

The <Person> element can be replaced by the definition of an

extended derived datatype if desired.

</xsd:documentation>

</xsd:annotation>

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Person" type="PersonWithCreditInfoType"

minOccurs="0"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:complexType name="PersonWithCreditInfoType">

<xsd:sequence>

<xsd:element name="Name" type="NameWithEmailType" minOccurs="1"

maxOccurs="1"/>

<xsd:element name="Address" type="AddressWithTimeType" minOccurs="1"

maxOccurs="1"/>

<xsd:element name="CreditInformation" type="CreditInformationType"

minOccurs="1" maxOccurs="1"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="NameWithEmailType">

<xsd:complexContent>

<xsd:extension base="BasicName">

<xsd:sequence>

<xsd:element name="EmailAddress" type="xsd:string" minOccurs="0"

maxOccurs="4"/>

continues

Listing 8.6 A schema with added credit information (PersonList03.xsd).

268 Chapter 8

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="BasicNameType">

<xsd:sequence>

<xsd:element name="FirstName" type="xsd:string" />

<xsd:element name="MiddleInitial" type="xsd:string" minOccurs="0"

maxOccurs="10"/>

<xsd:element name="LastName" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="AddressWithTimeType">

<xsd:complexContent>

<xsd:extension base="BasicAddressType">

<xsd:sequence>

<xsd:element name="TimeAtAddress" type="xsd:string" minOccurs="1"

maxOccurs="1"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="BasicAddressType">

<xsd:sequence>

<xsd:element name="Street1" type="xsd:string"/>

<xsd:element name="Street2" type="xsd:string" minOccurs="0"

maxOccurs="1" />

<xsd:element name="City" type="xsd:string" />

<xsd:element name="State" type="xsd:string"/>

<xsd:element name="ZipCode" type="xsd:integer" />

<xsd:element name="Country" type="xsd:string" minOccurs="0"

maxOccurs="1" />

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="CreditInformationType">

<xsd:sequence>

<xsd:element name="CreditCards" type="CreditCardsType" minOccurs="1"

maxOccurs="1"/>

<xsd:element name="CreditHistory" type="CreditHistoryType"

minOccurs="1"

maxOccurs="1"/>

</xsd:sequence>

</xsd:complexType>

Listing 8.6 A schema with added credit information (PersonList03.xsd). (Continued)

Deriving Types 269

<xsd:complexType name="CreditCardsType">

<xsd:sequence>

<xsd:element ref="CreditCard" minOccurs="0" maxOccurs="20"/>

</xsd:sequence>

</xsd:complexType>

<xsd:element name="CreditCard">

<xsd:complexType>

<xsd:simpleContent>

<xsd:extension base="xsd:string">

<xsd:attribute name="number" type="xsd:long"/>

<xsd:attribute name="type" type="xsd:string"/>

<xsd:attribute name="status" type="xsd:string"/>

<xsd:attribute name="time" type="xsd:string"/>

</xsd:extension>

</xsd:simpleContent>

</xsd:complexType>

</xsd:element>

<xsd:complexType name="CreditHistoryType">

<xsd:sequence>

<xsd:element name="CreditEvent" type="xsd:string" minOccurs="0"

maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="status" type="xsd:string"/>

<xsd:attribute name="NumberEvents" type="xsd:integer"/>

</xsd:complexType>

</xsd:schema>

Listing 8.6 A schema with added credit information (PersonList03.xsd). (Continued)

In Listing 8.6, we have used the <xsd:extension> element in three places: in
the definition of the NameWithEmailType type, in the AddressWithTimeType
type (where we add an element to a complex type definition), and in the defi-
nition of the <CreditCard> element (where we add attributes to an element
that has simple content).

First, let’s look at the NameWithEmailType type:

<xsd:complexType name="NameWithEmailType">

<xsd:complexContent>

<xsd:extension base="BasicNameType">

<xsd:sequence>

<xsd:element name="EmailAddress" type="xsd:string" minOccurs="0"

maxOccurs="4"/>

</xsd:sequence>

270 Chapter 8

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

The base type for the derived NameWithEmailType type is the BasicName-
Type type, which we saw earlier. The <xsd:extension> element adds a further
declaration for an <EmailAddress> element by means of the <xsd:sequence>
and <xsd:element> elements, which is of type xsd:string and has a cardinality of
0 to 4. The resulting type defines a complex type that has a declaration for a
sequence of <FirstName>, <MiddleInitial>, <LastName>, and <EmailAddress>
elements.

The second type which uses the <xsd:extension> element is the Address-
WithTimeType type:

<xsd:complexType name="AddressWithTimeType">

<xsd:complexContent>

<xsd:extension base="BasicAddressType">

<xsd:sequence>

<xsd:element name="TimeAtAddress" type="xsd:string" minOccurs="1"

maxOccurs="1"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

Here, we have used the <xsd:extension> element in a similar way. The base
type is the BasicAddressType type. We add a declaration for a <TimeAtAddress>
element to the definition of the base type.

Finally, let’s look at how we add attributes to the <CreditCard> element:

<xsd:element name="CreditCard">

<xsd:complexType>

<xsd:simpleContent>

<xsd:extension base="xsd:string">

<xsd:attribute name="number" type="xsd:long"/>

<xsd:attribute name="type" type="xsd:string"/>

<xsd:attribute name="status" type="xsd:string"/>

<xsd:attribute name="time" type="xsd:string"/>

</xsd:extension>

</xsd:simpleContent>

</xsd:complexType>

</xsd:element>

Remember that any element with either (or both) element content or one or
more attributes is deemed in XSD Schema to be of complex type. Thus, the
declaration for the <CreditCard> element uses an <xsd:complexType> ele-
ment. We specify that the element will have content of simple type, that it will

Deriving Types 271

<?xml version='1.0'?>

<CreditRatings>

<Person>

<Name>

<FirstName>John</FirstName>

<MiddleInitial>F</MiddleInitial>

<LastName>Kennedy</LastName>

</Name>

<Address>

<Street1>88 East Street</Street1>

<Street2></Street2>

<City>Any Town</City>

<State>OH</State>

<Zip>87654</Zip>

</Address>

<CreditRating>

<RiskRating>Good</RiskRating>

<CreditMaximum>12500</CreditMaximum>

</CreditRating>

continues

Listing 8.7 Credit ratings expressed in XML (CreditRatings.xml).

have no elements as content, by using the <xsd:simpleContent> element. We
then use the <xsd:extension> element to extend the base type xsd:string by
adding four attributes to the <CreditCard> element.

Deriving Types by Restriction

Deriving new types by restriction is a powerful tool in the use of XSD
schemas. If we can precisely define the allowed values of the content of an ele-
ment or the value of an attribute, we can avoid or minimize writing custom
code. XSD Schema provides us with many tools that we can apply singly or
together in order to restrict the permitted values of attributes or content of ele-
ments. In Chapters 5 and 6, you saw examples of how we can use XSD Schema
constraining facets to constrain the permitted values of derived types.

One of the most straightforward types of restriction to achieve is the restric-
tion of allowed values—for example, of purchases or credit. Let’s look first at
a simple credit database that restricts the maximum credit allowed to any
individual to $25,000. Within that global credit ceiling, individuals might have
their personal credit limit, but the schema checks that nobody has a credit
limit in excess of $25,000. The following examples make use of the length and
maxInclusive facets in conjunction with the <xsd:restriction> element.

An instance document might look like CreditRatings.xml in Listing 8.7.

272 Chapter 8

One specific purpose in creating the schema in Listing 8.8 is to define the
maximum ceiling for credit as $25,000. So, we need to restrict the content
allowed in the <CreditMaximum> element. Listing 8.8 shows a schema that
restricts the value of the <CreditMaximum> element as well as defining or
declaring the other parts of the instance document.

The schema in Listing 8.8 contains several <xsd:restriction> elements. The
first is contained within the <xsd:simpleType> element named InitialType:

<xsd:simpleType name="InitialType">

<xsd:restriction base="xsd:string">

<xsd:length value="1"/>

</xsd:restriction>

</xsd:simpleType>

We use the <xsd:restriction> element with the value of the base attribute equal
to xsd:string. Nested within the <xsd:restriction> element is an <xsd:length>
element by means of which we constrain the middle initial to a length of 1.
Note that the <xsd:simpleType> element has no indication of the frequency
with which a middle initial can occur. That is defined by using the minOccurs
and maxOccurs attributes on the declaration of the <xsd:element> element
with name attribute of “MiddleInitial.”

</Person>

<Person>

<Name>

<FirstName>Mary</FirstName>

<MiddleInitial>J</MiddleInitial>

<LastName>Drachmanik</LastName>

</Name>

<Address>

<Street1>99 Bridge Street</Street1>

<Street2>Eastington</Street2>

<City>New Town</City>

<State>MN</State>

<Zip>33388</Zip>

</Address>

<CreditRating>

<RiskRating>Medium</RiskRating>

<CreditMaximum>3000</CreditMaximum>

</CreditRating>

</Person>

<!-- Many other Person records could go here. -->

</CreditRatings>

Listing 8.7 Credit ratings expressed in XML (CreditRatings.xml). (Continued)

Deriving Types 273

<?xml version='1.0'?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="CreditRatings">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Person" type="PersonType" minOccurs="0"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:complexType name="PersonType">

<xsd:sequence>

<xsd:element name="Name" type="NameType"/>

<xsd:element name="Address" type="AddressType"/>

<xsd:element name="CreditRating" type="CreditRatingType"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="NameType">

<xsd:sequence>

<xsd:element name="FirstName" type="xsd:string"/>

<xsd:element name="MiddleInitial" type="InitialType" minOccurs="0"

maxOccurs="5"/>

<xsd:element name="LastName" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name="InitialType">

<xsd:restriction base="xsd:string">

<xsd:length value="1"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:complexType name="AddressType">

<xsd:sequence>

<xsd:element name="Street1" type="xsd:string"/>

<xsd:element name="Street2" type="xsd:string"/>

<xsd:element name="City" type="xsd:string"/>

<xsd:element name="State" type="StateType"/>

<xsd:element name="Zip" type="ZipCodeType"/>

</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name="StateType">

<xsd:restriction base="xsd:string">

continues

Listing 8.8 An XSD Schema for Listing 8.7 (CreditRatings.xsd).

274 Chapter 8

<xsd:length value="2"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="ZipCodeType">

<xsd:restriction base="xsd:positiveInteger">

<xsd:length value="5"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:complexType name="CreditRatingType">

<xsd:sequence>

<xsd:element name="RiskRating" type="xsd:string"/>

<xsd:element name="CreditMaximum" type="CreditMaximumType"/>

</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name="CreditMaximumType">

<xsd:restriction base="xsd:decimal">

<xsd:maxInclusive value="25000.00"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

Listing 8.8 An XSD Schema for Listing 8.7 (CreditRatings.xsd). (Continued)

The second <xsd:restriction> element is used to constrain the length of the
<State> element to strings of two characters in length:

<xsd:simpleType name="StateType">

<xsd:restriction base="xsd:string">

<xsd:length value="2"/>

</xsd:restriction>

</xsd:simpleType>

The restriction that we have used is a very simple one. The <xsd:length>
element nested within the <xsd:restriction> element simply constrains the
length to two characters. For many, it will be obvious that in the context of an
address, the <State> element is intended to use the USPS state codes, which
were shown in full in an example in Chapter 5. In this example, however, there
is nothing in this schema that constrains the content to the USPS codes. We
could have, if we wanted a value in a <State> element of “XX” or “OO.”
Because of the use of the length facet, however, we cannot have “Ohio” or
“Montana” as the content of the <State> element because those words are too
long to be permitted by the schema. In practice, we would likely include the

TEAMFL
Y

Team-Fly®

Deriving Types 275

USStateType type used in Listing 5.22. It is not used in Listing 8.8 for reasons
of space.

The third restriction is used to constrain the length of the zip code:

<xsd:simpleType name="ZipCodeType">

<xsd:restriction base="xsd:positiveInteger">

<xsd:length value="5"/>

</xsd:restriction>

</xsd:simpleType>

The base type of the restriction is xsd:positiveInteger. Nested within the
<xsd:restriction> element is an <xsd:length> element whose value attribute
has a value of “5.” Taken together, these constrain the values permitted within
the <Zip> element to positive integers whose length is no more and no less
than five digits.

The final restriction is on the maximum value of credit permitted for any
person in the database:

<xsd:simpleType name="CreditMaximumType">

<xsd:restriction base="xsd:decimal">

<xsd:maxInclusive value="25000.00"/>

</xsd:restriction>

</xsd:simpleType>

The <xsd:restriction> element has a base attribute with value of xsd:decimal.
Nested within the <xsd:restriction> element, the <xsd:maxInclusive> element
defines the maximum permitted value of the content of the <CreditMaximum>
element as being exactly $25,000.00 Notice, of course, that because the content
is an xsd:decimal, the $ sign and the comma are not included within the con-
tent of the <CreditMaximum> element.

In the following example in this section, we will look at the use of the
<xsd:pattern> element in types that are used as extensions of a schema author
created-derived type.

Let’s look at the situation of an international database of customers—in the
United States, Canada, and the United Kingdom. For the customers, we will
use a base complex type for addresses that we will extend to produce derived
address types for each of the three chosen countries.

Listing 8.9 shows an example of three customers, one for each of the three
address types derived by extension.

A schema for Listing 8.9 is shown in Listing 8.10.
The address for a customer in each of the three countries is based on a derived

complex type called BasicAddressType. For each of the countries, a country-
specific address type is derived by extension from the BasicAddressType type.
See the type definitions for the USAddressType, UKAddressType, and Canada-
AddressType types in the schema. The element that is added to the base type
while added by means of an <xsd:extension> element is itself a derived type

276 Chapter 8

<?xml version='1.0'?>

<Customers>

<Customer>

<Name>

<FirstName>William</FirstName>

<MiddleNames>Jefferson</MiddleNames>

<LastName>Clinton</LastName>

</Name>

<USAddress>

<Street>123 Any Street</Street>

<City>Phoenix</City>

<Locality>Arizona</Locality>

<Country>USA</Country>

<USZipCode>12345-6789</USZipCode>

</USAddress>

<!-- Further customer related information could go here. -->

</Customer>

<Customer>

<Name>

<FirstName>David</FirstName>

<MiddleNames></MiddleNames>

<LastName>Steel</LastName>

</Name>

<UKAddress>

<Street>987 High Street</Street>

<City>Edinburgh</City>

<Locality>Midlothian</Locality>

<Country>UK</Country>

<UKPostalCode>EH1 1XX</UKPostalCode>

</UKAddress>

<!-- Further customer related information could go here. -->

</Customer>

<Customer>

<Name>

<FirstName>Jacques</FirstName>

<MiddleNames>Michel</MiddleNames>

<LastName>Chirac</LastName>

</Name>

<CanadaAddress>

<Street>678 Pierre Street</Street>

<City>Montreal</City>

<Locality>Quebec</Locality>

<Country>Canada</Country>

<CanadaPostalCode>A1A 9Z9</CanadaPostalCode>

</CanadaAddress>

<!-- Further customer related information could go here. -->

</Customer>

</Customers>

Listing 8.9 An international customer database (Customers.xml).

Deriving Types 277

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

<xsd:element name="Customers">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Customer" type="CustomerType"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:complexType name="CustomerType">

<xsd:sequence>

<xsd:element name="Name" type="NameType"/>

<xsd:group ref="AddressChoiceGroup"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="NameType">

<xsd:sequence>

<xsd:element name="FirstName" type="xsd:string"/>

<xsd:element name="MiddleNames" type="xsd:string"/>

<xsd:element name="LastName" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:group name="AddressChoiceGroup">

<xsd:choice>

<xsd:element name="USAddress" type="USAddressType"/>

<xsd:element name="UKAddress" type="UKAddressType"/>

<xsd:element name="CanadaAddress" type="CanadaAddressType"/>

</xsd:choice>

</xsd:group>

<xsd:complexType name="BasicAddressType">

<xsd:sequence>

<xsd:element name="Street" type="xsd:string"/>

<xsd:element name="City" type="xsd:string"/>

<xsd:element name="Locality" type="xsd:string"/>

<xsd:element name="Country" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="USAddressType">

<xsd:complexContent>

<xsd:extension base="BasicAddressType">

continues

Listing 8.10 A schema using restrictions together with extension derived types and
choice groups (Customers.xsd).

278 Chapter 8

<xsd:sequence>

<xsd:element name="USZipCode" type="USZipCodeType"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:simpleType name="USZipCodeType">

<xsd:restriction base="xsd:string">

<xsd:pattern value="[0-9]{5}|[0-9]{5}-[0-9]{4}"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:complexType name="UKAddressType">

<xsd:complexContent>

<xsd:extension base="BasicAddressType">

<xsd:sequence>

<xsd:element name="UKPostalCode" type="UKPostalCodeType"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:simpleType name="UKPostalCodeType">

<xsd:restriction base="xsd:string">

<xsd:pattern value="[A-Z]{1,2}[0-9]{1,2} [0-9]{1}[A-Z]{2}"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:complexType name="CanadaAddressType">

<xsd:complexContent>

<xsd:extension base="BasicAddressType">

<xsd:sequence>

<xsd:element name="CanadaPostalCode" type="CanadaPostalCodeType"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:simpleType name="CanadaPostalCodeType">

<xsd:restriction base="xsd:string">

<xsd:pattern value="[A-Z]{1}[0-9]{1}[A-Z]{1} [0-9]{1}[A-Z]{1}[0-

9]{1}"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

Listing 8.10 A schema using restrictions together with extension derived types and
choice groups (Customers.xsd). (Continued)

Deriving Types 279

that is derived by restriction. Those types derived by restriction are, respectively
for the three countries, the USZipCodeType, UKPostalCodeType, and Canada-
PostalCodeType types.

Let’s look at the type definition of the CanadaAddressType type. As you can
see, it is a complex type. The <xsd:complexContent> element is used to nest the
<xsd:extension> element. The only other permitted child of an <xsd:complex-
Content> element is an <xsd:restriction> element. The <xsd:extension> ele-
ment uses the base type BasicAddressType to which we add a sequence, in
this case a sequence of one, where the declaration for the <CanadaPostal-
Code> element is present:

<xsd:complexType name="CanadaAddressType">

<xsd:complexContent>

<xsd:extension base="BasicAddressType">

<xsd:sequence>

<xsd:element name="CanadaPostalCode" type="CanadaPostalCodeType"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

Let’s take a closer look at the CanadaPostalCodeType type definition. As you
have just seen, it is the type of the <CanadaPostalCode> element that extends
the BasicAddressType type. Its type, however, is derived by restriction:

<xsd:simpleType name="CanadaPostalCodeType">

<xsd:restriction base="xsd:string">

<xsd:pattern value="[A-Z]{1}[0-9]{1}[A-Z]{1} [0-9]{1}[A-Z]{1}[0-9]{1}"/>

</xsd:restriction>

</xsd:simpleType>

The pattern facet reflects the structure of a Canadian postal code: one
upper-case alphabetic character, followed by a single numeric digit, followed
by one upper-case alphabetic character. Then follows a literal space character,
a further single numeric digit, a single upper-case alphabetic character, and
finally comes a single numeric digit.

Notice, too, that the content of the CustomerType complex type involves an
<xsd:group> element that references the AddressChoiceGroup choice group.

The enumeration Element

Enumeration is a special case of restriction. Rather than restricting, say, the
content of an element to a certain length, the enumeration facility in XSD
Schema enables specific values to be specified as the only permitted values
allowed to occur at certain points in an instance document.

280 Chapter 8

<?xml version='1.0'?>

<ClothesCatalog>

<Garment>

<Type>Shirt</Type>

<Size>S</Size>

<Color>Light Blue</Color>

<Price currency="USD">49.99</Price>

</Garment>

<Garment>

<Type>Shirt</Type>

<Size>L</Size>

<Color>Navy Blue</Color>

<Price currency="USD">55.49</Price>

</Garment>

<Garment>

<Type>Shirt</Type>

<Size>XL</Size>

<Color>Cerise</Color>

<Price currency="USD">99.99</Price>

</Garment>

</ClothesCatalog>

Listing 8.11 A clothes catalog expressed in XML (ClothesCatalog.xml).

The XML 1.0 DTD enables the values of attributes to be enumerated. XSD
Schema extends the facility to constrain values in that way to element content.

Listing 8.11 shows a simple example of how the <xsd:enumeration> ele-
ment can be used in a clothes catalog scenario.

The XSD schema shown in Listing 8.12 makes use of two <xsd:enumera-
tion> elements in order to define the allowed sizes for garments.

Let’s take a look at each of the enumerations used in the schema. The first
type definition is as follows:

<xsd:simpleType name="SizeType">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="S"/>

<xsd:enumeration value="M"/>

<xsd:enumeration value="L"/>

<xsd:enumeration value="XL"/>

</xsd:restriction>

</xsd:simpleType>

This type definition limits the possible content of the <Size> element to four
strings representing available sizes: S, M, L, and XL. Notice that the <Size>
element being of SizeType is a simple type—it only contains text content—and
that the xsd:string type is restricted by applying an <xsd:restriction> element

Deriving Types 281

<?xml version='1.0'?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="ClothesCatalog">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Garment" type="GarmentType"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:complexType name="GarmentType">

<xsd:sequence>

<xsd:element name="Type" type="xsd:string"/>

<xsd:element name="Size" type="SizeType"/>

<xsd:element name="Color" type="xsd:string"/>

<xsd:element ref="Price" />

</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name="SizeType">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="S"/>

<xsd:enumeration value="M"/>

<xsd:enumeration value="L"/>

<xsd:enumeration value="XL"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:element name="Price">

<xsd:complexType>

<xsd:simpleContent>

<xsd:extension base="xsd:string">

<xsd:attribute name="currency">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:enumeration value="USD"/>

<xsd:enumeration value="GBP"/>

<xsd:enumeration value="JPY"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

</xsd:extension>

</xsd:simpleContent>

</xsd:complexType>

</xsd:element>

</xsd:schema>

Listing 8.12 An XSD schema demonstrating enumerations (ClothesCatalog.xsd).

282 Chapter 8

with nested <xsd:enumeration> elements with permitted content as just men-
tioned.

The second use of an enumeration is in the declaration for the <Price> ele-
ment, as follows:

<xsd:element name="Price">

<xsd:complexType>

<xsd:simpleContent>

<xsd:extension base="xsd:string">

<xsd:attribute name="currency">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:enumeration value="USD"/>

<xsd:enumeration value="GBP"/>

<xsd:enumeration value="JPY"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

</xsd:extension>

</xsd:simpleContent>

</xsd:complexType>

</xsd:element>

The element declaration includes an anonymous complex type definition
and constrains the permitted currencies to be used in the currency attribute of
the <Price> element to be U.S. dollars, British Pounds, and Japanese Yen,
abbreviated to the three character strings: USD, GBP and JPY.

The pattern Element

We have already looked at the <xsd:pattern> element in Chapter 5. When the
<xsd:pattern> element is being used, then a new datatype is being derived by
restriction of the base type (which is the value of the base attribute located in
the containing <xsd:restriction> element).

Let’s look at a further example of how we can use the <xsd:pattern> ele-
ment to create new datatypes.

Listing 8.13 shows sales figures for XMML.com expressed in a simple
instance document.

A schema for those sales figures that uses the <xsd:pattern> element to
ensure that the value of the Year attribute is between 2001 and 2005, inclusive,
is shown in Listing 8.14.

Deriving Types 283

<?xml version='1.0'?>

<SalesFigures Company="XMML.com">

<Sales Year="2001">1234.56</Sales>

<Sales Year="2002">2345.67</Sales>

<Sales Year="2003">3456.78</Sales>

<Sales Year="2004">4567.89</Sales>

<Sales Year="2005">5678.90</Sales>

</SalesFigures>

Listing 8.13 Sales figures expressed in XML (SalesFigures.xml).

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

<xsd:element name="SalesFigures">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Sales" type="SalesType" maxOccurs="10"/>

</xsd:sequence>

<xsd:attribute name="Company" type="xsd:string"/>

</xsd:complexType>

</xsd:element>

<xsd:complexType name="SalesType">

<xsd:simpleContent>

<xsd:extension base="xsd:string">

<xsd:attribute name="Year" type="FiveYearType"/>

</xsd:extension>

</xsd:simpleContent>

</xsd:complexType>

<xsd:simpleType name="FiveYearType">

<xsd:restriction base="xsd:string">

<xsd:pattern value="200[1-5]{1}"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

Listing 8.14 A schema to constrain figures to years 2001 to 2005 (SalesFigures.xsd).

284 Chapter 8

The value attribute of the <xsd:pattern> element begins with the literal
character “200,” which is followed by one literal character from 1 to 5 (inclu-
sive). In other words, the value of the Year attribute needs to be from 2001 to
2005 (inclusive).

The xsi:type Attribute

The definition of an XSD Schema simple type or complex type is typically
contained within the XSD schema, which is associated with a particular
instance document. The W3C XML Schema Recommendation, however,
enables information about the type of an element to be declared in an instance
document.

If we had an instance document like that in Listing 8.15, you can see that the
type of the <Sales> element is declared to be of type SalesType. The value of
the xsi:type attribute must be a QName that is either a built-in XSD Schema
datatype or a schema author-derived datatype.

Notice that within the start tag of the <SalesFigures> element, there is a
namespace declaration:

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

This declaration associates the URI http://www.w3.org/2001/XMLSchema-
instance with the namespace prefix “xsi.” The XML Schema instance name-
space is what enables us to declare types within the instance document. The
W3C XML Schema specification defines the semantics of the type attribute
within the XML Schema instance namespace. Thus, when an XML Schema
processor meets an xsi:type attribute, it knows how to interpret that because it
is in the XML Schema instance namespace as an indication of the type to be
applied to the <Sales> elements within the instance document.

<?xml version='1.0'?>

<SalesFigures Company="XMML.com"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<Sales Year="2001" xsi:type="SalesType">1234.56</Sales>

<Sales Year="2002">2345.67</Sales>

<Sales Year="2003">3456.78</Sales>

<Sales Year="2004">4567.89</Sales>

<Sales Year="2005">5678.90</Sales>

</SalesFigures>

Listing 8.15 Using the xsi:type attribute (SalesFigures02.xml).

TEAMFL
Y

Team-Fly®

Summary

In this chapter, we have explored the derivation of new datatypes by using
some of the data facets that we examined in Chapters 5 and 6. We have seen,
for example, how we can combine extension and restriction to produce types
that both reuse and build on existing code and yet have precisely focused con-
straints on the extended type. In the final part of the chapter, we have looked
at declaring types within an instance document by using the xsi:type attribute,
which is present in the XML Schema Instance namespace.

In Chapter 9, “Uniqueness and Keys in XSD Schema,” we go on to consider
some further XSD Schema issues and techniques—in particular, identity-
constraint definitions.

Deriving Types 285

PA R T

3

Next Steps

289

C H A P T E R

9
Uniqueness and Keys

in XSD Schema

In this chapter, we will briefly examine some aspects of XSD Schema that are
relevant when you wish to store data in XML but want to maintain some char-
acteristics of the data such that it resembles data stored in a relational database
management system (RDBMS). In particular, we will examine identity-constraint
definitions in W3C XML Schema and how these provide functionality and flex-
ibility, which improves significantly on that provided in XML 1.0 DTDs.

Identity-Constraint Definitions

In Chapter 4, “Applying Datatypes,” you were introduced to the xsd:ID,
xsd:IDREF, and xsd:IDREFS simple types. Those closely mirror the equivalent
functionality provided in XML 1.0 DTDs. When documents were typically
standalone, then it was pretty much appropriate for an identity constraint to
extend document-wide. As documents are increasingly being created by com-
bining components from different sources, however, the potential need of
multiple identity constraints within a single document becomes real.

If, for example, we had an XML-based data store of purchase order and
invoice information, there would be a real potential for conflict, because a cus-
tomer is likely to choose, say, purchase order numbers without attaching great

290 Chapter 9

importance to how our invoices were numbered. In a sizeable database, you
could possibly have a purchase order number from one (or more) customers
with a value of “12345” while your company might also have an invoice num-
bered as “12345.” If these numbers were stored as attributes, which were des-
ignated in an accompanying DTD or DTDs as ID attributes, then in XML 1.0
an error might well occur.

There is no intrinsic reason why an ID attribute should be document-wide
in the scope of its uniqueness, however, just as in a relational database there is
no reason why a particular value couldn’t occur in more than one primary key
database. If it were possible to limit the scope of an ID attribute “12345” to the
purchase order, then another ID attribute with a value of “12345” could legiti-
mately occur in the invoice section of the same data store without causing con-
flict.

XSD Schema provides three categories of identity-constraint definitions:
xsd:key, xsd:keyref, and xsd:unique.

First we will look at the <xsd:unique> element.

The <xsd:unique> Element

The <xsd:unique> element enables us to designate a particular part of an
instance document as having to contain a value, whether in the content of an
element or an attribute, that is unique. The <xsd:unique> element has some sim-
ilarities to an XML ID attribute value but provides functionality over the
approach of using the XML 1.0 ID type. The XML 1.0 ID type is limited in scope
to attribute values only; it has to be unique across a whole document, and such
values are not permitted to start with a number or contain space characters.

XSD Schema offers several advantages over the ID type. An XSD Schema
identity constraint can be applied to both element content and attribute values
and so is not limited to attribute values as the ID type was. A unique value in
XSD Schema can start with a number and can be of any datatype. The value
can be unique within some specified part of the document and need not be
unique document-wide. It is possible in XSD Schema to create unique values
that are made up of a composite of values. For example, we might have num-
bered paragraphs within numbered chapters, in which case we could use the
combined information from the chapter number and paragraph number as an
indicator of uniqueness.

Let’s look at the scenario where a business has business customers and per-
sonal customers and wants to allocate an ID that is unique across the whole
data store of customers but applies to business customers only.

An instance document in Listing 9.1 shows how, in an abbreviated customer
data store, information for a business customer and personal customer are
stored.

Uniqueness and Keys in XSD Schema 291

<?xml version='1.0'?>

<Customers>

<BusinessCustomer uniqueCustomerID="12345">

<BusinessName>ACME Web Design</BusinessName>

<BusinessContact>Jim Smith</BusinessContact>

<BusinessContactEmail>Jim@ACMEWeb.com</BusinessContactEmail>

<BusinessContactTelephone>(999) 123 4567</BusinessContactTelephone>

<BusinessContactFax>(999) 234 5678</BusinessContactFax>

<ShippingAddress>

<Street1>234 Any Street</Street1>

<City>Fiction Town</City>

<State>CA</State>

<ZipCode>99999</ZipCode>

</ShippingAddress>

<Discount Allowed="Yes">

<DiscountTo10k>10</DiscountTo10k>

<DiscountTo50k>12</DiscountTo50k>

<DiscountTo100k>15</DiscountTo100k>

<DiscountOver100k>20</DiscountOver100k>

</Discount>

</BusinessCustomer>

<PersonalCustomer CustomerID="23456">

<PersonName>Anna Jessop</PersonName>

<Address>

<Street1>345678 Long Street</Street1>

<City>Fiction Town</City>

<State>CA</State>

<ZipCode>99999</ZipCode>

</Address>

</PersonalCustomer>

<BusinessCustomer uniqueCustomerID="12346">

<BusinessName>SVGenius.com</BusinessName>

<BusinessContact>Patrick Head</BusinessContact>

<BusinessContactEmail>PatrickHead@SVGenius.com</BusinessContactEmail>

<BusinessContactTelephone>(777) 123 4567</BusinessContactTelephone>

<BusinessContactFax>(777) 234 5678</BusinessContactFax>

<ShippingAddress>

<Street1>897 Any Street</Street1>

<City>None Town</City>

<State>WA</State>

<ZipCode>77777</ZipCode>

</ShippingAddress>

<Discount Allowed="Yes">

<DiscountTo10k>8</DiscountTo10k>

<DiscountTo50k>10</DiscountTo50k>

<DiscountTo100k>12</DiscountTo100k>

continues

Listing 9.1 A data store of customer information in XML (Customers.xml).

As you can see from this code, we collect additional contact information for
business customers: the contact with whom we interact at a business customer
as well as allowing business customers a sliding-scale discount, based on size
of spending.

The schema for the instance document shown in Listing 9.1 is shown in List-
ing 9.2.

292 Chapter 9

<DiscountOver100k>17.5</DiscountOver100k>

</Discount>

</BusinessCustomer>

</Customers>

Listing 9.1 A data store of customer information in XML (Customers.xml). (continued)

<?xml version='1.0'?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="Customers">

<xsd:complexType>

<xsd:sequence>

<xsd:choice minOccurs="1" maxOccurs="unbounded">

<xsd:element name="BusinessCustomer" type="BusinessCustomerType"/>

<xsd:element name="PersonalCustomer" type="PersonalCustomerType"/>

</xsd:choice>

</xsd:sequence>

</xsd:complexType>

<xsd:unique name="uniqueCustomerIDType">

<xsd:selector xpath="BusinessCustomer"/>

<xsd:field xpath="@uniqueCustomerID" />

</xsd:unique>

</xsd:element>

<xsd:complexType name="BusinessCustomerType">

<xsd:sequence>

<xsd:element name="BusinessName" type="xsd:string"/>

<xsd:element name="BusinessContact" type="xsd:string"/>

<xsd:element name="BusinessContactEmail" type="xsd:string"/>

<xsd:element name="BusinessContactTelephone" type="xsd:string"/>

<xsd:element name="BusinessContactFax" type="xsd:string"/>

<xsd:element name="ShippingAddress" type="ShippingAddressType"/>

<xsd:element name="Discount" type="DiscountType"/>

</xsd:sequence>

<xsd:attribute name="uniqueCustomerID" type="CustomerIDType"/>

</xsd:complexType>

Listing 9.2 A schema using the <xsd:unique> element (Customers.xsd).

Uniqueness and Keys in XSD Schema 293

<xsd:complexType name="ShippingAddressType">

<xsd:sequence>

<xsd:element name="Street1" type="xsd:string"/>

<xsd:element name="City" type="xsd:string"/>

<xsd:element name="State" type="xsd:string"/>

<xsd:element name="ZipCode" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="DiscountType">

<xsd:sequence>

<xsd:element name="DiscountTo10k" type="DiscountPercentageType"/>

<xsd:element name="DiscountTo50k" type="DiscountPercentageType"/>

<xsd:element name="DiscountTo100k" type="DiscountPercentageType"/>

<xsd:element name="DiscountOver100k" type="DiscountPercentageType"/>

</xsd:sequence>

<xsd:attribute name="Allowed" type="DiscountAllowedType"/>

</xsd:complexType>

<xsd:simpleType name="CustomerIDType">

<xsd:restriction base="xsd:integer">

<xsd:length value="5"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="DiscountPercentageType">

<xsd:restriction base="xsd:decimal">

<xsd:minInclusive value="5.0"/>

<xsd:maxInclusive value="50.0"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="DiscountAllowedType">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="Yes"/>

<xsd:enumeration value="No"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:complexType name="PersonalCustomerType">

<xsd:sequence>

<xsd:element name="PersonName" type="xsd:string"/>

<xsd:element name="Address" type="ShippingAddressType"/>

</xsd:sequence>

<xsd:attribute name="CustomerID" type="CustomerIDType"/>

</xsd:complexType>

</xsd:schema>

Listing 9.2 A schema using the <xsd:unique> element (Customers.xsd).

The important part of the schema as far as identity constraints are con-
cerned is contained in the element declaration for the <Customers> element as
follows:

<xsd:element name="Customers">

<xsd:complexType>

<xsd:sequence>

<xsd:choice minOccurs="1" maxOccurs="unbounded">

<xsd:element name="BusinessCustomer" type="BusinessCustomerType"/>

<xsd:element name="PersonalCustomer" type="PersonalCustomerType"/>

</xsd:choice>

</xsd:sequence>

</xsd:complexType>

<xsd:unique name="uniqueCustomerIDType">

<xsd:selector xpath="BusinessCustomer"/>

<xsd:field xpath="@uniqueCustomerID" />

</xsd:unique>

</xsd:element>

The declaration for the <Customers> element contains a complex type defi-
nition. The content of the <Customers> element is essentially an unbounded
succession of either <BusinessCustomer> or <PersonalCustomer> elements.

How do we tell which part of that succession of elements and attributes is to
be unique? The scope of application of the <xsd:unique> element is defined by
the subelements <xsd:selector> and <xsd:field>. Each of those subelements
possesses an xpath attribute. Not surprisingly, the value of the xpath attribute
contains an XPath (XML Path Language) location path. The value of the xpath
attribute in the <xsd:selector> element indicates that it is the <BusinessCus-
tomer> element to which the <xsd:unique> element applies. The value of the
xpath attribute of the <xsd:field> element makes it known that it is the
uniqueCustomerID attribute of the <BusinessCustomer> element that is
specifically the focus of the <xsd:unique> element. In other words, through-
out the instance document an error would be reported if a value were present
in more than one uniqueCustomerID attribute belonging to a <BusinessCus-
tomer> element.

In XPath, there is always a context node relative to which a location path is
determined. In this XSD schema, the context node corresponds to the <Cus-
tomers> element (more strictly, it is the element node that represents in mem-
ory the <Customers> element). The xpath attribute of the <xsd:selector>
element has the value of BusinessCustomer. The default axis in XPath is the
child axis. Thus, we know that the <xsd:selector> is indicating a BusinessCus-
tomer element node that is a child of the context node, an element node repre-
senting the <Customers> element. The <xsd:field> element then has the value
of @uniqueCustomerID. The “@” character is abbreviated XPath syntax for an

294 Chapter 9

TEAMFL
Y

Team-Fly®

attribute. The remainder of the value, uniqueCustomerID, tells us which
attribute of the <BusinessCustomer> element to which we are referring.

If we create an instance document such as CustomersB.xml (available for
download), which has identical values in two different uniqueCustomerID
attributes belonging to <BusinessCustomer> elements, then an error is pre-
sent. It is correctly reported by XML Spy but was not reported by Turbo XML
in the version used at this writing. This situation illustrates the types of differ-
ence between XSD Schema tools, such as XML Spy and Turbo XML, which
was mentioned in Chapter 1, “Elementary XML Schema.”

Sometimes uniqueness is appropriately expressed by using a combination
of values rather than a single value. One possible scenario where this situation
might occur is in a collection of data about houses in a city. Inevitably, most
streets will have houses that have a number 1, 2, 3, and so on. So, we could not
base a unique value on house number alone but would need to bring in at
least one other value such as street name (or, in a large city, perhaps a district
or other locality name, too) to provide a meaningful, unique value.

Similar issues arise when we consider the identification of unique para-
graph numbering in an extensive document. Listing 9.3 is a simplified version
of such a document.

Listing 9.4 contains a schema that describes the content of the instance doc-
ument in Listing 9.3.

Uniqueness and Keys in XSD Schema 295

<?xml version='1.0'?>

<Book>

<Introduction>

<Paragraph ParaID="001">This is the first para of the

introduction.</Paragraph>

<Paragraph ParaID="002">This is the second para of the

introduction.</Paragraph>

<Paragraph ParaID="003">This is the third para of the

introduction.</Paragraph>

</Introduction>

<Chapter ChapterID="01">

<Paragraph ParaID="001">This is the first para of the Chapter

1.</Paragraph>

<Paragraph ParaID="001">This is the second para of the Chapter

1.</Paragraph>

<Paragraph ParaID="001">This is the third para of the Chapter

1.</Paragraph>

continues

Listing 9.3 A simulated lengthy document in XML (Book.xml).

296 Chapter 9

<Paragraph ParaID="001">This is the fourth para of the Chapter

1.</Paragraph>

</Chapter>

<Chapter ChapterID="02">

<Paragraph ParaID="001">This is the first para of the Chapter

2.</Paragraph>

<Paragraph ParaID="002">This is the second para of the Chapter

2.</Paragraph>

<Paragraph ParaID="003">This is the third para of the Chapter

2.</Paragraph>

<Paragraph ParaID="004">This is the fourth para of the Chapter

2.</Paragraph>

</Chapter>

<!-- Many more chapters with realistically long paragraphs could go

here. -->

</Book>

Listing 9.3 A simulated lengthy document in XML (Book.xml). (Continued)

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

<xsd:element name="Book">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Introduction" type="IntroductionType"/>

<xsd:element ref="Chapter" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:complexType name="IntroductionType">

<xsd:sequence>

<xsd:element name="Paragraph" type="ParagraphType"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

<xsd:element name="Chapter">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Paragraph" maxOccurs="unbounded">

<xsd:complexType>

<xsd:simpleContent>

<xsd:extension base="xsd:string">

Listing 9.4 A schema using <xsd:unique> on a combination of values (Book.xsd).

Notice how the <xsd:unique> element is used:

<xsd:unique>

<xsd:selector xpath="/Book/Chapter" />

<xsd:field xpath="@ChapterID"/>

Uniqueness and Keys in XSD Schema 297

<xsd:attribute name="ParaID">

<xsd:simpleType>

<xsd:restriction>

<xsd:pattern value="[0-9]{3}"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

</xsd:extension>

</xsd:simpleContent>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

<xsd:attribute name="ChapterID">

<xsd:simpleType>

<xsd:restriction>

<xsd:pattern value="[0-9]{2}"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

</xsd:complexType>

<xsd:unique>

<xsd:selector xpath="/Book/Chapter" />

<xsd:field xpath="@ChapterID"/>

<xsd:field xpath="Paragraph/@ParaID"/>

</xsd:unique>

</xsd:element>

<xsd:complexType name="ParagraphType">

<xsd:simpleContent>

<xsd:extension base="xsd:string">

<xsd:attribute name="ParaID">

<xsd:simpleType>

<xsd:restriction>

<xsd:pattern value="[0-9]{3}"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

</xsd:extension>

</xsd:simpleContent>

</xsd:complexType>

</xsd:schema>

Listing 9.4 A schema using <xsd:unique> on a combination of values (Book.xsd). (Continued)

<xsd:field xpath="Paragraph/@ParaID"/>

</xsd:unique>

The <xsd:selector> element uses an absolute location path, /Book/Chapter,
which indicates that starting from the root node, we select a Chapter element
node that has a Book element node parent that is a child node of the root node.
The presence of two <xsd:field> elements indicates that we must take into
account the value of both xpath attributes before arriving at a knowledge of
what combination of values is to be unique. In other words, we are aiming to
create a unique value that incorporates both the value of the ChapterID
attribute of the <Chapter> element and the ParaID attribute of the <Para-
graph> element. Thus, we might have more than one ParaID attribute with
value of 002, but only when they are in different chapters.

Having looked at some examples of specifying uniqueness, let’s move on to
take a look at the <xsd:key> and <xsd:keyref> elements.

The <xsd:key> and <xsd:keyref> Elements

The ID and IDREF datatypes of XML 1.0 are limited in the extent to which
they can represent relational database structures. The W3C XML Schema
Working Group had as one of its objectives the creation of a schema language
that would better support relational database structures. The <xsd:key> and
<xsd:keyref> elements provide improvements in this context.

An ID/IDREF relationship relates to an entire document. Computationally, it
can be demanding to process the references in large documents. As you will see,
the <xsd:key>/<xsd:keyref> relationships use XPath location paths, thereby
defining the scope of the relationship and allowing a processor to focus on
accessing only relevant parts of a document.

In XML 1.0, an ID type is a datatype. In XSD Schema, it is possible to specify
the identity constraint and the datatype separately.

XSD Schema extends the facility to define identity constraints to element content.
In XML 1.0, the use of the ID attribute was limited to use in attribute values only.

One of the principles of database usage is that information should be
entered in one place only. Doing so reduces the likelihood of entering incorrect
data in one location, of what could be many locations, where the same data is
held. It also facilitates changes, corrections, or updates being made to data
because the data needs to be changed or updated once only.

As an example of the use of the <xsd:key> and <xsd:keyref> elements, let’s
look at the scenario in which employees in a multinational company have
their location specified as part of the data recorded about them.

An instance document for employees of XMML.com is shown in Listing 9.5.
Because it is possible that the company might at some future date relocate

its offices in a particular locality (in the example, it is Langley), it would be

298 Chapter 9

Uniqueness and Keys in XSD Schema 299

<?xml version='1.0'?>

<XMMLPersonnel>

<Staff>

<!-- For brevity only Name and CompanyRecord data will be shown. -->

<Person locationID="3" employeeID="71">

<Name>

<FirstName>Cinder</FirstName>

<MiddleNames>Ella</MiddleNames>

<LastName>Goodfairy</LastName>

</Name>

<CompanyRecord>

<DateJoined>2001-01-20</DateJoined>

<DateLeft></DateLeft>

<HRNumber>CEG1234 1234</HRNumber>

<Assignment>

<Department>Sister support</Department>

<JobTitle>Assistant</JobTitle>

<DateAssigned>2001-01-20</DateAssigned>

<DateCompleted></DateCompleted>

<HRAssessment></HRAssessment>

</Assignment>

</CompanyRecord>

</Person>

<!-- Other Person elements go here. -->

</Staff>

<Locations>

<!-- Content of Location elements abbreviated to Street and City

only -->

<Location LocationID="1">

<Street>123 First Street</Street>

<City>New York</City>

</Location>

<Location LocationID="2">

<Street>23435 Regent Street</Street>

<City>London</City>

</Location>

<Location LocationID="3">

<Street>99 Spook Street</Street>

<City>Langley</City>

</Location>

</Locations>

</XMMLPersonnel>

Listing 9.5 A listing of XMML.com staff (XMMLPersonnel.xml).

inefficient to store information about the street, city, postal code, and so on
within each <Person> element. Thus, it makes sense, and corresponds closely
to how tables in an RDBMS might be set up, for us to store information about
locations separately. If, in the terms of the example, location 3 is relocated, we
need only update street and city information (and other information in a real-
life setting) in one location in the instance document: the <Location> element
for LocationID 3.

A schema corresponding to the instance document in Listing 9.5 that uses
the <xsd:key> and <xsd:keyref> elements is shown in Listing 9.6. As you read
the definition for the <XMMLPersonnel> element, take a close look at the
<xsd:key> and <xsd:keyref> elements.

300 Chapter 9

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

<xsd:element name="XMMLPersonnel">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Staff" type="StaffType"/>

<xsd:element name="Locations" type="LocationsType"/>

</xsd:sequence>

</xsd:complexType>

<xsd:keyref name="PersonToLocationRef"

refer="PersonToLocationKey" >

<xsd:selector xpath="Staff/Person" />

<xsd:field xpath="@LocationID"/>

</xsd:keyref>

<xsd:key name="PersonToLocationKey">

<xsd:selector xpath="Locations/Location"/>

<xsd:field xpath="@LocationID"/>

</xsd:key>

</xsd:element>

<xsd:complexType name="StaffType">

<xsd:sequence>

<xsd:element ref="Person" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

<xsd:element name="Person">

<xsd:complexType >

<xsd:sequence>

<xsd:element name="Name" type="BasicNameType"/>

<xsd:element name="CompanyRecord" type="CompanyRecordType"/>

Listing 9.6 A schema using the <xsd:key> and <xsd:keyref> elements (XMMLPersonnel.xsd).

Uniqueness and Keys in XSD Schema 301

</xsd:sequence>

<xsd:attribute name="locationID" type="xsd:positiveInteger"/>

<xsd:attribute name="employeeID" type="xsd:positiveInteger"/>

</xsd:complexType>

</xsd:element>

<xsd:complexType name="BasicNameType">

<xsd:sequence>

<xsd:element name="FirstName" type="xsd:string"/>

<xsd:element name="MiddleNames" type="xsd:string"/>

<xsd:element name="LastName" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="CompanyRecordType">

<xsd:sequence>

<xsd:element name="DateJoined" type="ValidDateType" />

<xsd:element name="DateLeft" type="LeftDateType" />

<xsd:element name="HRNumber" type="xsd:string"/>

<xsd:element name="Assignment" type="AssignmentType" minOccurs="1"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="AssignmentType">

<xsd:sequence>

<xsd:element name="Department" type="xsd:string" />

<xsd:element name="JobTitle" type="xsd:string"/>

<xsd:element name="DateAssigned" type="ValidDateType"/>

<xsd:element name="DateCompleted" type="LeftDateType"/>

<xsd:element name="HRAssessment" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name="ValidDateType">

<xsd:restriction base="xsd:date">

<xsd:minExclusive value="2000-12-31"/>

<xsd:maxExclusive value="2005-02-28"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="LeftDateType">

<xsd:union>

<xsd:simpleType>

<xsd:restriction base="ValidDateType"/>

continues

Listing 9.6 A schema using the <xsd:key> and <xsd:keyref> elements (XMMLPersonnel.xsd).
(Continued)

Let’s look more closely at the use of the key and the key reference.

<xsd:keyref name="PersonToLocationRef"

refer="PersonToLocationKey" >

<xsd:selector xpath="Staff/Person" />

<xsd:field xpath="@LocationID"/>

</xsd:keyref>

<xsd:key name="PersonToLocationKey">

<xsd:selector xpath="Locations/Location"/>

<xsd:field xpath="@LocationID"/>

</xsd:key>

The <xsd:keyref> element contains an <xsd:selector> element and an
<xsd:field> element. The xpath attributes of those elements indicates by
means of two XPath location paths that the key information (sorry for the
pun!) is located in the LocationID attribute of the <Person> element, which is
a child of the <Staff> element. The <xsd:keyref> element indicates where a ref-

302 Chapter 9

</xsd:simpleType>

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:enumeration value=""/>

</xsd:restriction>

</xsd:simpleType>

</xsd:union>

</xsd:simpleType>

<xsd:complexType name="LocationsType">

<xsd:sequence>

<xsd:element name="Location" type="LocationType"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="LocationType">

<xsd:sequence>

<xsd:element name="Street" type="xsd:string"/>

<xsd:element name="City" type="xsd:string"/>

</xsd:sequence>

<xsd:attribute name="LocationID" type="xsd:positiveInteger"/>

</xsd:complexType>

</xsd:schema>

Listing 9.6 A schema using the <xsd:key> and <xsd:keyref> elements (XMMLPersonnel
.xsd). (Continued)

erence is being made to a key. Its refer attribute contains the name of the key
that is being referenced.

The value in the refer attribute of the <xsd:keyref> element must match the
value of a name attribute of an <xsd:key> element. That is the mechanism by
which, in more complex documents, we can be sure that we are associating the
appropriate pair of key and key reference. Within the <xsd:key> element, we
find an <xsd:selector> element and an <xsd:field> element. The values of the
xpath attributes of those elements define the location of the key in the instance
document. The XPath location paths show that the key is contained in the
LocationID attribute of the <Location> element that is a child of a <Locations>
element.

Summary

In this chapter, we have looked briefly at the improved flexibility in specifying
uniqueness constraints in XSD Schema compared to the fairly primitive con-
straints present in the XML 1.0 DTD. In addition, we have examined how we
can use the <xsd:key> and <xsd:keyref> elements to represent data structures
similar to those that you can expect to find in the tables of a relational data-
base.

In Chapter 10, “Bringing the Parts Together,” we will explore the use of type
definitions and element declarations across multiple schema documents and
also bring many of the ideas and techniques that you have seen together in a
more substantial example than we have created so far.

Uniqueness and Keys in XSD Schema 303

TEAMFL
Y

Team-Fly®

305

C H A P T E R

10

Bringing the Parts Together

In this chapter, we will bring the parts together in two senses. First, we will
examine how we can modularize XSD schemas and reassemble the parts to
enable code reuse and thereby achieve improvements in maintenance of
schemas. Second, we will create a significantly longer example than we have
seen in earlier chapters, because the document uses many of the techniques
already discussed in this book.

Modularizing Schemas

You might have already noticed that schemas, even in examples in earlier chap-
ters, can become fairly complex. Particularly with longer schemas, it can be a con-
siderable task to orient yourself within the schema. Increasingly, as you apply
schemas to real-world situations, it makes good sense, on grounds of convenience
alone, to modularize schemas and then reference those modularized schemas.

The modular approach also has advantages in efficiency of maintenance of
the information in schemas. If the schema structure for a particular type of
information, let’s say addresses, is held in a separate schema file, it is easy to
locate the schema and update the necessary structure of address information
in one file. Any other schemas that reference the definitions or declarations
within the modified file will reflect those updates. A nonmodular approach

306 Chapter 10

would require updating address information in, perhaps, several places with
additional time spent on the task and the attendant risks of creating inconsis-
tencies in structure by unintentionally making slightly different changes in
each schema document.

We might want others to be able to access and use type definitions that we
have created. Alternatively, we might want to access type definitions in XSD
Schema documents created by others. While we might want to use an industry-
standard schema as it stands, we might alternatively want to adapt the standard
schema to reflect our company’s data needs. In any of these scenarios, the abil-
ity to access more than one schema document is a typical requirement.

The notion of modular schemas is one of growing importance throughout
the XML world. You might be aware that XHTML has been modularized in
version 1.1 (see www.w3.org/TR/xhtml11). Profiles for different types of user
agents will make use of a range of the XHTML 1.1 modules appropriate to the
user agent capabilities. To do that, the user agent must be able to make use of
schema information from several schema modules. Similar modularization
changes are proposed for other XML-based languages, such as the Scalable
Vector Graphics specification in version 1.1 (see www.w3.org/TR/SVG11). So,
you can see that an understanding of how to combine schema modules will be
a highly relevant skill in the future of XML application languages.

In some settings, we might well be satisfied with simply using definitions
from a referenced schema exactly as they are defined in the schema that we
have referenced. Sometimes, however, it might be advantageous to adapt def-
initions from the referenced schema to the specific needs of information stor-
age in a particular setting. You have seen how useful it can be to derive new
datatypes from types within the same schema as the derived type. We will
look at the syntax that we need to use to exploit referenced schema definitions
to create new datatypes or elements within the referencing schema.

Let’s move on to look at the syntax we need in order to be able to make use
of schema information contained in referenced schema modules.

How to Use Schema Modules
In order to make use of schema components in a referenced schema, we need
the schema components to be named. There is no way to reference an anony-
mous type in another module. In addition, we can reference only globally
declared or defined schema components. Thus, the schema components that
we can use include element and attribute declarations (which, of course, are
named), named complex type definitions, named simple type definitions,
named model groups, and named attribute groups.

First, let’s look at the mechanism that enables us to make use of external
XSD Schema documents but that limits us to using the referenced elements,
types, or groups exactly as they are specified in the referenced schema.

The <xsd:include> Mechanism

For example, let’s look at a simple scenario in which we have a staff and a cus-
tomer database—a situation similar to the example that we will be developing
later in the chapter.

An instance document for staff would, in a highly simplified form, be simi-
lar to Listing 10.1.

A simplified instance document for customer data is shown in Listing 10.2.
I hope you can see that both Listing 10.1 and Listing 10.2 contain name

information with identical structures. We could, of course, simply create XSD
schema components in each of two schemas for these instance documents, or
we could, perhaps unwisely, attempt to create one large schema that would
allow the structures of both instance documents in one schema document. We
want to look at how to reuse schema components, however, so we will create
a simple schema that we will reference from the schema that we will use for
our instance documents. In other words, we will have two instance docu-
ments and two schemas, and each of those two schemas will reference a type
library (which itself is an XSD Schema schema). The common definitions or
declarations go in the type library.

The schema to be referenced, which is sometimes called a type library, is
shown in Listing 10.3.

Notice that a type library must have, as document element, an <xsd:schema>
element with an appropriate namespace declaration for the xsd namespace
prefix. It is important to include some documentation in a type library in order
to ensure that the overall purpose of the type library is clear and that each type

Bringing the Parts Together 307

<?xml version='1.0'?>

<SimpleStaff>

<Person>

<Name>

<FirstName>John</FirstName>

<MiddleNames>Rivaldo</MiddleNames>

<LastName>Doe</LastName>

</Name>

<EmployeeInformation>

<EmployeeID>98765</EmployeeID>

<DateJoined>2003-01-08</DateJoined>

<!-- Other information would go here -->

</EmployeeInformation>

</Person>

</SimpleStaff>

Listing 10.1 A simplified staff instance document (SimpleStaff.xml).

308 Chapter 10

<?xml version='1.0'?>

<SimpleCustomer>

<Customer>

<Name>

<FirstName>John</FirstName>

<MiddleNames>Pyotr</MiddleNames>

<LastName>Mikhailovich</LastName>

</Name>

<CustomerAddress>

<Street>444 Fore Street</Street>

<City>Fore Town</City>

<State>MN</State>

<ZipCode>54321</ZipCode>

</CustomerAddress>

<!-- More customer information would go here. -->

</Customer>

<!-- More customers would go here. -->

</SimpleCustomer>

Listing 10.2 A simplified customer instance document (SimpleCustomer.xml).

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

<xsd:annotation>

<xsd:documentation>

This is a simplified type library for use in Chapter 10 of XML

Schema Essentials.

It has been designed to be referenced by SimpleStaff.xsd and

SimpleCustomer.xsd [and in real life probably others]

</xsd:documentation>

</xsd:annotation>

<xsd:complexType name="Name">

<xsd:annotation>

<xsd:documentation>

This is a complex type containing basic name information.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name="FirstName" type="xsd:string"/>

<xsd:element name="MiddleNames" type="xsd:string"/>

<xsd:element name="LastName" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:schema>

Listing 10.3 A simple type library (SimpleTypeLib.xsd).

definition, element declaration, and so on is clearly described. I suggest that in
practice you document each type definition, too. If you take that approach and
make the text in the documentation clear and comprehensive, you can apply
the XSLT stylesheet demonstrated in Chapter 1, “Elementary XML Schema,”
to the type library to produce basic documentation for it in HTML—thereby
enabling you or colleagues to quickly get an overview of the purpose and con-
tent of the type library.

Now that we have created our type library, let’s move on to look at how we
can reference it from the schemas to be created for SimpleStaff.xml and Sim-
pleCustomer.xml. Listing 10.4 shows the schema for SimpleStaff.xml.

Bringing the Parts Together 309

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

<xsd:include schemaLocation="SimpleTypeLib.xsd"/>

<xsd:annotation>

<xsd:documentation>

This schema references SimpleTypeLib.xsd to reference the structure

for the Name element.

Ensure that the SimpleTypeLib.xsd schema is in the same directory as

this schema if the reference is to work correctly.

</xsd:documentation>

</xsd:annotation>

<xsd:element name="SimpleStaff">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Person" type="PersonType"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:complexType name="PersonType">

<xsd:annotation>

<xsd:documentation>

The Name element declaration in this complex type definition uses

a complex type definition from the SimpleTypeLib.xsd schema and we use

the type attribute as normal.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name="Name" type="NameType"/>

continues

Listing 10.4 A schema for SimpleStaff.xml using <xsd:include> (SimpleStaff.xsd).

The third line of the schema,

<xsd:include schemaLocation="SimpleTypeLib.xsd"/>

is the mechanism by which we can reference the type definition in Simple-
TypeLib.xsd. In effect, it is equivalent to copying code from the type library
and pasting into the referencing schema all the type definitions (and so on)
that such a referenced schema might contain. Notice the schemaLocation
attribute of the <xsd:include> element, which is essential for the XML Schema
processor to locate the desired type library. The value of the schemaLocation
attribute can be any URI. In the present example, the file SimpleTypeLib.xsd
must be in the same directory as SimpleStaff.xsd because it is from that file
that the reference is being made. If you want to share a type library among
several groups of colleagues, you will likely want to choose a full URL on an
intranet or position the type library publicly on the Internet depending on the
scope of access to the type library that you desire.

In this instance, the referenced type library contains only one complex type
definition—for the NameType complex type. Because conceptually, the <xsd:
include> element effectively copies the complex type definition into the Sim-
pleStaff.xsd schema, we can reference the NameType type by using the ele-
ment declaration in the normal way:

<xsd:element name="Name" type="NameType"/>

The type definition is for a NameType type contained in SimpleTypeLib.xsd.
Because it has been “included” in the SimpleStaff.xsd schema, however, we use

310 Chapter 10

<xsd:element name="EmployeeInformation"

type="EmployeeInformationType"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="EmployeeInformationType">

<xsd:sequence>

<xsd:element name="EmployeeID" type="xsd:string"/>

<xsd:element name="DateJoined" type="xsd:date"/>

</xsd:sequence>

</xsd:complexType>

</xsd:schema>

Listing 10.4 A schema for SimpleStaff.xml using <xsd:include> (SimpleStaff.xsd). (Con-
tinued)

syntax identical to that we would use if it were physically included (written) in
SimpleStaff.xsd.

Similarly, Listing 10.5 shows a schema, SimpleCustomer.xsd, that also uses
an <xsd:include> element for SimpleCustomer.xml.

Bringing the Parts Together 311

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

<xsd:include schemaLocation="SimpleTypeLib.xsd"/>

<xsd:annotation>

<xsd:documentation>

This schema references SimpleTypeLib.xsd to reference the structure

for the Name element.

Ensure that the SimpleTypeLib.xsd schema is in the same directory as

this schema if the reference is to work correctly.

</xsd:documentation>

</xsd:annotation>

<xsd:element name="SimpleCustomer">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Customer" type="CustomerType"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:complexType name="CustomerType">

<xsd:annotation>

<xsd:documentation>

The Name element declaration in this complex type definition uses

a complex type definition from the SimpleTypeLib.xsd schema and we use

the type attribute as normal.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name="Name" type="NameType"/>

<xsd:element name="CustomerAddress" type="CustomerAddressType"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="CustomerAddressType">

<xsd:sequence>

continues

Listing 10.5 A schema using <xsd:include> for SimpleCustomer.xml
(SimpleCustomer.xsd).

We can post type libraries at URIs that are publicly accessible. If, for exam-
ple, we wanted the file SimpleTypeLib.xsd to be accessible on the XMML.com
Web site, we could amend the schemaLocation attribute to have the value of
“http://www.XMML.com/TypeLibraries/SimpleTypeLib.xsd”.

If we consider Listings 10.1 to 10.5, we have two separate instance documents—
each of which has its own XSD schema document. Each of those XSD Schema doc-
uments is incomplete on its own, however, and references—by using the <xsd:
include> element—a type definition contained in a type library.

This type of interrelationship enables us to reuse code only when the code in
the type library is exactly in the form that we want to use. In many situations,
we might want to extend or restrict the types or elements contained in the type
library. Suppose that we wanted to add <Title> and <FormOfAddress> ele-
ments to the Name element. The following section shows how to do that. If we
want to extend or otherwise adapt the code in the type library, we need to
make use of the <xsd:redefine> element.

The <xsd:redefine> Mechanism

As mentioned in the previous section on the <xsd:include> element, we can
consider a referenced type definition, named group, named element, or
attribute as being copied and pasted into the referencing schema. If we had
simply written a type definition in the referencing schema, we would expect
to be able to derive new datatypes from it by the methods we looked at in
Chapter 8, “Deriving Types.” If we want to be able to derive new types from a
type definition in a referenced type library, we need to use the <xsd:redefine>
element rather than the <xsd:include> element to reference the type library.
When we use the <xsd:include> element, we use the referenced definition or
declaration unchanged. If we want to change it, we use the <xsd:redefine>
element and nest the syntax to derive the new datatype within the <xsd:
redefine> element.

312 Chapter 10

<xsd:element name="Street" type="xsd:string"/>

<xsd:element name="City" type="xsd:string"/>

<xsd:element name="State" type="xsd:string"/>

<xsd:element name="ZipCode" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:schema>

Listing 10.5 A schema using <xsd:include> for SimpleCustomer.xml
(SimpleCustomer.xsd). (Continued)

If we add <Title>, <FormOfAddress>, and <Comment> elements to our
instance document for customer data, we have an instance document, Simple-
Customer02.xml, shown in Listing 10.6.

We could, of course, remove the reference to NameType in SimpleType-
Lib.xsd and create a CustomerNameType type from scratch, but we don’t
need to perform this task. We can derive a new CustomerNameType from the
existing NameType by extension, as you were shown in Chapter 8.

Listing 10.7 shows a schema using <xsd:redefine> to extend the NameType
type definition so that we can use the modified structure of the customer
information that you saw in Listing 10.6. The schema has internal documenta-
tion to help you understand how the parts fit together.

Bringing the Parts Together 313

<?xml version='1.0'?>

<SimpleCustomer>

<Customer>

<Name>

<FirstName>John</FirstName>

<MiddleNames>Pyotr</MiddleNames>

<LastName>Mikhailovich</LastName>

<Title>Mr</Title>

<FormOfAddress>Mr. Mikhailovich</FormOfAddress>

<Comment>He hates being called John.</Comment>

</Name>

<CustomerAddress>

<Street>444 Fore Street</Street>

<City>Fore Town</City>

<State>MN</State>

<ZipCode>54321</ZipCode>

</CustomerAddress>

<!-- More customer information would go here. -->

</Customer>

<!-- More customers would go here. -->

</SimpleCustomer>

Listing 10.6 Adding elements to the instance document (SimpleCustomer02.xml).

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

<xsd:redefine schemaLocation="SimpleTypeLib.xsd">

continues

Listing 10.7 A schema using <xsd:redefine> to extend the NameType type definition
(SimpleCustomer02.xsd).

314 Chapter 10

<xsd:complexType name="NameType">

<xsd:annotation>

<xsd:documentation>

This complex type definition redefines the NameType type.

Note that the base complex type definition NameType is contained

in SimpleTypeLib.xsd not in this schema.

</xsd:documentation>

</xsd:annotation>

<xsd:complexContent>

<xsd:extension base="NameType">

<xsd:sequence>

<xsd:element name="Title" type="xsd:string"/>

<xsd:element name="FormOfAddress" type="xsd:string"/>

<xsd:element name="Comment" type="xsd:string"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

</xsd:redefine>

<xsd:annotation>

<xsd:documentation>

This schema references SimpleTypeLib.xsd to reference the complex

type for the Name type.

Ensure that the SimpleTypeLib.xsd schema is in the same directory as

this schema if the reference is to work correctly.

</xsd:documentation>

</xsd:annotation>

<xsd:element name="SimpleCustomer">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Customer" type="CustomerType"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:complexType name="CustomerType">

<xsd:annotation>

<xsd:documentation>

The Name element declaration in this complex type definition uses

a complex type definition from the SimpleTypeLib.xsd schema and we use

the type attribute as normal.

Listing 10.7 A schema using <xsd:redefine> to extend the NameType type definition
(SimpleCustomer02.xsd). (Continued)

TEAMFL
Y

Team-Fly®

Notice that the <xsd:redefine> element comes immediately after the <xsd:
schema> element. There are four elements in XSD Schema that must occur (if
they are present at all) before type definitions and element declarations:
<xsd:include>, <xsd:import>, <xsd:redefine>, and <xsd:annotation>. We will
look at the <xsd:import> element soon. Within that prioritized group, the four
named elements can occur in any order. Of course, <xsd:annotation> can also
be used as a child element of other XSD Schema elements within a schema
document, not only as a child of the <xsd:schema> element.

In the element redefinition that follows, you can see the syntax to extend the
type definition for the NameType type:

<xsd:redefine schemaLocation="SimpleTypeLib.xsd">

<xsd:complexType name="NameType">

<xsd:annotation>

<xsd:documentation>

This complex type definition redefines the NameType type.

Note that the base complex type definition NameType is contained in

SimpleTypeLib.xsd not in this schema.

</xsd:documentation>

Bringing the Parts Together 315

The type definition CustomerNameType extends the Name type

referenced from SimpleTypeLib.xsd.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name="Name" type="NameType"/>

<xsd:element name="CustomerAddress" type="CustomerAddressType"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="CustomerAddressType">

<xsd:sequence>

<xsd:element name="Street" type="xsd:string"/>

<xsd:element name="City" type="xsd:string"/>

<xsd:element name="State" type="xsd:string"/>

<xsd:element name="ZipCode" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:schema>

Listing 10.7 A schema using <xsd:redefine> to extend the NameType type definition
(SimpleCustomer02.xsd). (Continued)

</xsd:annotation>

<xsd:complexContent>

<xsd:extension base="NameType">

<xsd:sequence>

<xsd:element name="Title" type="xsd:string"/>

<xsd:element name="FormOfAddress" type="xsd:string"/>

<xsd:element name="Comment" type="xsd:string"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

</xsd:redefine>

Like the <xsd:include> element, there is a schemaLocation attribute on the
<xsd:redefine> element. It, too, can take any URI value. In this case, the type
library is in the same directory as the referencing schema.

To achieve the derivation of a new datatype, we nest a <xsd:complexContent>
element within the <xsd:complexType> element. Within the <xsd:complex-
Content> element is nested an <xsd:extension> element. We specify the Name-
Type type (located in the type library) as the base type from which the new
datatype is derived. We add a sequence of element declarations to the end of the
existing type definition, which we express by a sequence of <xsd:element> ele-
ments nested within an <xsd:sequence> element.

Use of the <xsd:redefine> element enables us to modify the structure of
types or elements referenced from the type library.

Let’s move on to examine how we can use the <xsd:import> element to
make use of namespace-qualified documents.

The <xsd:import> Mechanism

The third of the mechanisms that XSD Schema provides to reference schema
components in external schema documents is the <xsd:import> element.

Use of the <xsd:import> element can involve the use of namespaces, which
is a topic we haven’t yet looked at in detail in this book.

Namespace and W3C XML Schema

Up to this point in the book, we have simply used XSD schemas without con-
sidering namespace issues in any detail. In order to use the <xsd:import> ele-
ment, we must have some understanding of how namespaces are treated in
XSD Schema. The good news is that XSD Schema, unlike DTDs in XML 1.0,
has namespace support built in. The not-so-good news is that expressing
namespaces and the relevant syntax correctly can become a little complex.

316 Chapter 10

Review of XML Namespaces

In this section, we will briefly review key points of XML namespaces. The
Namespaces in XML Recommendation is the background for the use of name-
spaces in XSD Schema and is located at www.w3.org/TR/REC-xml-names/ if
you wish to review the official documentation.

The Namespaces in XML Recommendation addresses the difficulties that
would likely arise when we mix elements or attributes from different XML
application languages together in one document. Listings 10.8 and 10.9 show
two simple XML documents that use a <Title> element. If we create a compos-
ite document that combines information about Wiley books and Wiley
authors, the potential ambiguity as to which <Title> element is being referred
to and what its content should be is probably obvious to you. We would have
two <Title> elements with identical element type names but different context
and meaning.

Listing 10.8 shows a simple data store that contains brief descriptions of a
couple of Wiley titles on XML.

Listing 10.9 shows a simple data store expressed as XML that lists a couple
of Wiley authors.

So, how do we handle the situation in which we might want to combine in
one document the <Title> element that gives us some information about an
author with the <Title> element that gives us some information about a book?
The Namespaces in XML Recommendation provides a solution to mixing ele-
ments from different vocabularies by means of the namespace URI, the associ-
ation of a namespace URI with a namespace prefix by means of a namespace
declaration, and the use of the namespace prefix in element type names in
XML documents. The following is an example start tag that contains a name-
space declaration:

<myPrefix:AnElement xmlns:myPrefix="http://www.XMML.com/Namespace">

Bringing the Parts Together 317

<?xml version='1.0'?>

<BookList>

<Book>

<Title>XPath Essentials</Title>

<Series>XML Essentials</Series>

</Book>

<Book>

<Title>XML Schema Essentials</Title>

<Series>XML Essentials</Series>

</Book>

</BookList>

Listing 10.8 A simple book list in XML (BookList.xml).

To use a namespace prefix, it must have been declared as just shown. Typically,
the namespace declaration occurs either in the outermost element in an XML
document or in the outermost element where the namespace prefix is actually
used. The namespace declaration is the string xmlns followed by a single colon
character followed by the namespace prefix that we will use in the relevant part
of the XML document. The string in quotes following the xmlns:myPrefix is the
namespace URI (sometimes also called the namespace name).

To use a declared namespace but to avoid needing to use namespace pre-
fixes, we can use a default namespace declaration that uses xmlns (with no fol-
lowing colon and no namespace prefix):

<AnElement xmlns="http://www.XMML.com/Namespace">

This element has no namespace prefix but is declared as being associated
with the namespace URI http://www.XMML.com/Namespace.

In a namespace prefix, only certain XML names are permitted. It is not per-
mitted to use a colon character, which is a legal XML names character. An XML
name in which a colon character is not used is called an NCName: a non-colon
name. The reason for that, hopefully, will be obvious. If the colon character
were permitted in a namespace prefix, a namespace-aware XML processor
would have difficulty in interpreting an element called

my:Element:Name

Is the namespace prefix my and the element type name Element:Name? Or
is the namespace prefix my:Element and the element type name Name?
Excluding the use of the colon character in NCNames avoids such ambiguity.

318 Chapter 10

<?xml version='1.0'?>

<Authors>

<Author>

<Title>Mr.</Title>

<FirstAndMiddleNames>R. Allen</FirstAndMiddleNames>

<LastName>Wyke</LastName>

</Author>

<Author>

<Title>Mr.</Title>

<FirstAndMiddleNames>Andrew</FirstAndMiddleNames>

<LastName>Watt</LastName>

</Author>

</Authors>

Listing 10.9 A list of authors in XML (Authors.xml).

Returning to our example, if we add a namespace declaration to our two
XML documents that contain <Title> elements and consistently use the rele-
vant namespace prefix, the source of potential confusion to a document author
and to an XML processor is removed. The <bk:Title> element is distinguish-
able from the <au:Title> element to both human readers and to an XML
processor.

Listings 10.10 and 10.11, respectively, show the book list and the list of
authors with a namespace declaration and namespace prefix.

Listing 10.11 shows the authors list rewritten by using a namespace URI
and namespace prefix.

Bringing the Parts Together 319

<?xml version='1.0'?>

<bk:BookList

xmlns:bk="http://www.WileyBooks.com/Namespace">

<bk:Book>

<bk:Title>XPath Essentials</bk:Title>

<bk:Series>XML Essentials</bk:Series>

</bk:Book>

<bk:Book>

<bk:Title>XML Schema Essentials</bk:Title>

<bk:Series>XML Essentials</bk:Series>

</bk:Book>

</bk:BookList>

Listing 10.10 The book list with namespace prefix (BookList02.xml).

<?xml version='1.0'?>

<au:Authors

xmlns:au="http://www.WileyAuthors.com/Namespace">

<au:Author>

<au:Title>Mr.</au:Title>

<au:FirstAndMiddleNames>R. Allen</au:FirstAndMiddleNames>

<au:LastName>Wyke</au:LastName>

</au:Author>

<au:Author>

<au:Title>Mr.</au:Title>

<au:FirstAndMiddleNames>Andrew</au:FirstAndMiddleNames>

<au:LastName>Watt</au:LastName>

</au:Author>

</au:Authors>

Listing 10.11 The authors list with namespace prefix (Authors02.xml).

Thus, we could use the <bk:Title> element and <au:Title> element in a sin-
gle document without fear of ambiguity, because for the human reader the
two are distinguishable by the different namespace prefixes—and for XML
processors, they are distinguishable because they refer to different namespace
URIs. Of course, at appropriate places in the document we would need to
include namespace declarations for each of the two namespace URIs that we
intend to use.

Let’s move on to look at a simple schema that uses namespaces and name-
space prefixes.

Schemas for Instance Documents
That Use Namespaces

Let’s look, for example, at how to express a schema that we could use as the
schema for the namespace-qualified authors list shown earlier in Listing 10.11.
The schema is shown in Listing 10.12.

Notice that on the <xsd:schema> element, the targetNamespace attribute
and the default namespace declaration (xmlns=”http://www.WileyAuthors

320 Chapter 10

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.WileyAuthors.com/Namespace"

xmlns="http://www.WileyAuthors.com/Namespace"

elementFormDefault="qualified"

attributeFormDefault="unqualified">

<xsd:element name="Authors">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Author" type="AuthorType"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:complexType name="AuthorType">

<xsd:sequence>

<xsd:element name="Title" type="xsd:string"/>

<xsd:element name="FirstAndMiddleNames" type="xsd:string"/>

<xsd:element name="LastName" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:schema>

Listing 10.12 A schema for the authors list including namespaces (Authors02.xsd).

.com/Namespace”) both refer to the same namespace URI. The elementForm-
Default attribute has a value of “qualified,” meaning that when the elements
defined in the schema are used in an instance document, a namespace prefix
is, by default, to be used.

Notice, too, that when we declare an element in the namespace in the
schema

<xsd:element name="Authors">

we don’t include the namespace prefix. As indicated by the elementForm-
Default attribute, however, we do use the element type name in “qualified”
form in an instance document. A qualified name, or QName, includes the
namespace prefix and the colon character. So, although we see “Authors” in the
element declaration in the XSD schema, in the instance we see <au:Authors> or
the use of some other specified namespace prefix.

Let’s move on and look at how we can use the <xsd:import> element.

Using the <xsd:import> Element

To illustrate the use of <xsd:import>, we need an instance document that
includes namespaces, an XSD Schema document, and a type library that is ref-
erenced by the XSD Schema document.

The instance document that includes elements from two namespace is
shown in Listing 10.13. Notice that there are two namespace prefixes in use.
The namespace prefix XMML is associated with the namespace URI http://
www.XMML.com/CoreSchema (which, as we will see in a moment, relates to
the type library), and the namespace prefix cust is associated with the name-
space URI http://www.XMML.com/Customers.

Bringing the Parts Together 321

<?xml version='1.0'?>

<cust:SimpleCustomer

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.XMML.com/Customers

SimpleCustomer03.xsd"

xmlns:cust="http://www.XMML.com/Customers"

xmlns:XMML="http://www.XMML.com/CoreSchema"

>

<cust:Customer>

<XMML:Name xmlns:XMML="http://www.XMML.com/CoreSchema">

<XMML:FirstName>John</XMML:FirstName>

continues

Listing 10.13 An XML document using two namespaces (SimpleCustomer03.xml).

Notice the attributes on the document element for Listing 10.13. We use the
xsi:schemaLocation attribute to associate the namespace URI, http://www
.XMML.com/Customers, with an actual file location. So that the XSD Schema
processor will understand what the namespace prefix xsi refers to, we must
also include a namespace declaration association: the namespace prefix xsi
with the URI http:www.w3.org/2001/XMLSchema-instance, the W3C XML
Schema Instance namespace URI.

<cust:SimpleCustomer

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.XMML.com/Customers

SimpleCustomer03.xsd"

xmlns:cust="http://www.XMML.com/Customers"

xmlns:XMML="http://www.XMML.com/CoreSchema"

>

In addition, we associate the cust and XMML namespace prefixes with their
respective URIs.

The XSD Schema associated with the instance document is shown in Listing
10.14. Notice the namespace declarations on the <xsd:schema> element that
declare the namespace URIs http://www.XMML.com/Customers and http://
www.XMML.com/CoreSchema. Notice, too, the namespace and schemaLoca-
tion attributes of the <xsd:import> element. In the schema, the namespace
URI http://www.XMML.com/Customers is now the default namespace.
Notice, too, that the <xsd:import> element comes earlier in the schema than
element declarations or type definitions.

And finally, Listing 10.15 shows the type library using namespaces. Notice that
the namespace URI in the type library is also declared in the SimpleCustomer03.xsd
schema and in the instance document SimpleCustomer03.xml.

322 Chapter 10

<XMML:MiddleNames>Pyotr</XMML:MiddleNames>

<XMML:LastName>Mikhailovich</XMML:LastName>

</XMML:Name>

<cust:CustomerAddress >

<cust:Street>444 Fore Street</cust:Street>

<cust:City>Fore Town</cust:City>

<cust:State>MN</cust:State>

<cust:ZipCode>54321</cust:ZipCode>

</cust:CustomerAddress>

<!-- More customer information would go here. -->

</cust:Customer>

<!-- More customers would go here. -->

</cust:SimpleCustomer>

Listing 10.13 An XML document using two namespaces (SimpleCustomer03.xml). (Con-
tinued)

Bringing the Parts Together 323

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns="http://www.XMML.com/Customers"

xmlns:XMML="http://www.XMML.com/CoreSchema"

targetNamespace="http://www.XMML.com/Customers"

elementFormDefault="qualified">

<xsd:import namespace="http://www.XMML.com/CoreSchema"

schemaLocation="SimpleTypeLib02.xsd"/>

<xsd:annotation>

<xsd:documentation>

This schema references SimpleTypeLib02.xsd to reference the Name

element.

Ensure that the SimpleTypeLib02.xsd schema is in the same directory

as this schema if the reference is to work correctly.

</xsd:documentation>

</xsd:annotation>

<xsd:element name="SimpleCustomer">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Customer" type="CustomerType"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:complexType name="CustomerType">

<xsd:annotation>

<xsd:documentation>

The XMML:Name element declaration in this complex type definition

references an element declaration from the SimpleTypeLib02.xsd schema.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element ref="XMML:Name" />

<xsd:element name="CustomerAddress" type="CustomerAddressType"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="CustomerAddressType">

<xsd:sequence>

<xsd:element name="Street" type="xsd:string"/>

<xsd:element name="City" type="xsd:string"/>

<xsd:element name="State" type="xsd:string"/>

continues

Listing 10.14 An XSD schema that uses the <xsd:import> element (SimpleCus-
tomer03.xsd).

324 Chapter 10

<xsd:element name="ZipCode" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:schema>

Listing 10.14 An XSD schema that uses the <xsd:import> element (SimpleCus-
tomer03.xsd). (Continued)

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.XMML.com/CoreSchema"

xmlns="http://www.XMML.com/CoreSchema"

elementFormDefault="unqualified"

>

<xsd:annotation>

<xsd:documentation>

This is a simplified type library for use in Chapter 10 of XML

Schema Essentials.

It has been designed to be referenced by SimpleStaff.xml and

SimpleCustomer.xml

</xsd:documentation>

</xsd:annotation>

<xsd:element name="Name">

<xsd:complexType >

<xsd:annotation>

<xsd:documentation>

This is a complex type containing basic name information.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name="FirstName" type="xsd:string"/>

<xsd:element name="MiddleNames" type="xsd:string"/>

<xsd:element name="LastName" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>

Listing 10.15 The type library using a namespace. (SimpleTypeLib02.xsd).

TEAMFL
Y

Team-Fly®

Notice that within the <xsd:schema> element, we set both the targetName-
space attribute and the default namespace declaration to point to the same
URI.

In the available space, it isn’t possible to give an exhaustive description of
the use of <xsd:include>, <xsd:redefine>, and <xsd:import>. The examples
given for the use of these elements provide working code to illustrate one way
to use them.

Having looked at putting things together, in the sense of combining XSD
Schema modules, using <xsd:include>, <xsd:redefine>, and <xsd:import>,
let’s move on to create an example that makes use of many, but not all, of the
techniques of XSD Schema that you have been introduced to earlier in the
book.

Creating the Example

The earlier chapters in this book have introduced you to many of the most
useful techniques available in XSD Schema, but inevitably, because we were
introducing topics individually, the examples used were short and relatively
simple in order to help you understand how each part of XSD Schema is used.
In this chapter, we will create a more substantial schema that will incorporate
many techniques that you have already seen but will apply them in combina-
tion rather than individually as self-contained techniques. We will also use the
example to reinforce your understanding of techniques for accessing type def-
initions that are spread across more than one XSD Schema document.

The example that we will create will relate to the data store of XMML.com,
a consultancy in XML and related technologies. Later, we will consider what
information a company of that type might need to store and discuss options as
to how we might create a schema to ensure that instance documents are
appropriately and consistently structured.

Planning the Example

In order to plan the schemas we want to create, we must define what the exist-
ing data stores might be and the information needs of the company. To simplify
the situation, we will assume that there are no existing relevant data stores.

Defining the Information Needs
In this section, we will consider what information a consultancy might need to
store as XML. Of course, although this example will be more complex than

Bringing the Parts Together 325

others you have seen, it will still, because of space constraints, be significantly
more limited than is likely to adequately meet the information needs of all but
the least ambitious companies. We will assume that you are familiar with the
process of information needs gathering from a client and the importance of lis-
tening to what the client needs to do and needs to know.

The business needs of a consultancy are many. We will focus only on the
information needs about people which are relevant to XMML.com and so create
two XML instance documents: one a data store of information about staff of the
company, and the second a data store about customers. Because both XML data
stores will contain information about people, there will be a commonality of
data structures that will enable us to explore the reuse of XSD Schema code as
well as several other techniques that you have seen applied in shorter schemas.

We will assume that XMML.com operates in three countries: the United
States, Canada, and the United Kingdom. Staff will be relocated from one
country to the other as workload requires, so we will need to be able to handle
address and telephone information from three countries.

In the staff data store, we will need to have information about names of staff
members. In addition, we will store address information and information
about an individual’s history of employment at XMML.com. The latter infor-
mation is specific to the staff data store.

In the customer data store, we will need to store information about cus-
tomers’ names. Contact information and form of address will be directly rele-
vant in that context.

Because we will store information about names in both the staff and cus-
tomer data stores, we will create a type library with basic name information
and address information.

Documenting the Schema
As soon as we make the transition from creating example schemas, such as
those you have seen earlier in this book, to the preparation of production (or
similar) schemas, the issue of documentation becomes immensely important.
Good documentation allows easier revision of the schema by the schema
author or someone else at a future date. If we want our schema to be accessed
and used by schema authors, it is much easier to spread the use of a schema
we have authored if it is well documented and if other parties find it easy to
understand and apply.

As we work through the creation of the individual parts of the schemas
developed in this chapter, we will ensure that we consider what we should
document and provide sufficient information in the <xsd:documentation> ele-
ments so that anyone reading the schemas at a future date will be able to inter-
pret the structure and also understand the business process or practice reasons
for the design choices that we make.

326 Chapter 10

Basic Schema Templates
If you are planning to do any hand coding in XSD Schema, you should create
a file of templates to save you a lot of typing. A good setup of files is to keep
copies, for example, of the basic template for an XSD schema as well as com-
mon structures for complex type and simple type definitions in one file. Note
that Listing 10.16, which you might want to adapt for your own template
needs, is not a well-formed XSD Schema. It simply has code snippets that are
suitable for cutting and pasting.

Of course, if you and your colleagues are going to adopt an approach like
this one, it makes sense to ensure that you are all using the same namespace
prefix in such templates. If you don’t, then you will, unless you take appropri-
ate precautions, run into problems on any schema where you are working
jointly or where you mix schemas from different authors. We discussed
importing existing schemas earlier in this chapter.

Bringing the Parts Together 327

<?xml version='1.0'?>

<XSDTemplates>

<!-- A bare XSD Schema document template. -->

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

</xsd:schema>

<!-- An XSD Schema document template with xsd:annotation. -->

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

<xsd:annotation>

<xsd:documentation>

</xsd:documentation>

</xsd:annotation>

</xsd:schema>

<!-- A simple type definition template for restriction with pattern. -->

<xsd:simpleType name="">

<xsd:restriction base="">

<xsd:pattern value=""/>

</xsd:restriction>

</xsd:simpleType>

<!-- A simple type definition template for restriction with

enumeration. -->

continues

Listing 10.16 A set of XSD Schema text templates in an XML file (XSDTemplates.xml).

Modularizing the Schemas
The data in the staff and customer information requirements suggests that it
would be appropriate to create a type library to hold information about names
and addresses.

So, we will plan to create three schema documents. XMMLHRFile.xsd will
be the schema document for the staff file, and XMMLCustomers.xsd will be

328 Chapter 10

<xsd:simpleType name="">

<xsd:restriction base="">

<xsd:enumeration value=""/>

</xsd:restriction>

</xsd:simpleType>

<!-- A simple type definition template for union type. May not use

xsd:pattern and xsd:enumeration -->

<xsd:simpleType>

<xsd:union>

<xsd:simpleType>

<xsd:restriction base="">

<xsd:pattern value=""/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType>

<xsd:restriction base="">

<xsd:enumeration value=""/>

</xsd:restriction>

</xsd:simpleType>

</xsd:union>

</xsd:simpleType>

<!-- Complex type definition -->

<xsd:complexType name="">

<xsd:sequence>

<xsd:element name="" type=""/>

<xsd:element ref=""/>

</xsd:sequence>

</xsd:complexType>

</XSDTemplates>

Listing 10.16 A set of XSD Schema text templates in an XML file (XSDTemplates.xml).
(Continued)

the schema document for the customers file. XMMLCore.xsd will be the type
library, which will be referenced by both of the other schemas.

For ease of presentation, the creation of the various schemas will be described
as separate processes. In practice, you would plan out top-level design for each
of the schemas and the type library and analyze those initial decisions for any
inappropriate interactions between the proposed schemas.

Creating the Staff Schema

Having looked at some of the issues that we need to bear in mind when creat-
ing a production schema, let’s proceed to construct the schema step by step.

An instance document that is to be described by the schema we want to
develop is shown in Listing 10.17. Notice that the instance document is much
longer than those used previously. In part, this reflects the fact that we want to
collect a more real-life set of data. Also, variants of the possible data structures
within the instance document have been constructed so as to test many of the
cardinality and other constraints in the XSD Schema that we will construct
later. If you make your instance documents too simple or too short during the
development process, you won’t be testing the possible constraints ade-
quately with possible errors arising later when the untested situations arise in
the use of real data. For the schema author, that is an embarrassing situation.

Bringing the Parts Together 329

<?xml version='1.0'?>

<XMMLHRFile>

<Person>

<Name>

<FirstName>Nelson</FirstName>

<MiddleNames>Zebulun</MiddleNames>

<LastName>Mandela</LastName>

</Name>

<Demographics>

<DateOfBirth>1975-12-03</DateOfBirth>

<Gender>Male</Gender>

</Demographics>

<Residence>

<CurrentAddress>

<Street1>888 Uptown Avenue</Street1>

<Street2></Street2>

<City>Any Town</City>

continues

Listing 10.17 An instance document for the staff list (XMMLHRFile.xml).

330 Chapter 10

<State>FL</State>

<ZipCode>12345-6789</ZipCode>

<Country>USA</Country>

</CurrentAddress>

<PastAddresses>

<PastAddress>

<Street1>85 Regent Street</Street1>

<Street2></Street2>

<City>London</City>

<County></County>

<UKPostalCode>WC8 9XX</UKPostalCode>

<Country>UK</Country>

</PastAddress>

</PastAddresses>

</Residence>

<CompanyExperience>

<DateJoined>1999-10-08</DateJoined>

<DateLeft></DateLeft>

<HRNumber>NZM1234</HRNumber>

<CurrentAssignment>

<Department>Sales</Department>

<Location>USA</Location>

<JobTitle>VP Sales</JobTitle>

<DateAssigned>2001-01-20</DateAssigned>

<DateCompleted></DateCompleted>

<HRAssessment></HRAssessment>

</CurrentAssignment>

<PreviousAssignments>

<PreviousAssignment>

<Department>Sales</Department>

<Location>Canada</Location>

<JobTitle>Sales Manager</JobTitle>

<DateAssigned>1999-10-08</DateAssigned>

<DateCompleted>2001-01-19</DateCompleted>

<HRAssessment>Excellent progress. Promoted to VP Sales. Relocated

to US office.</HRAssessment>

</PreviousAssignment>

</PreviousAssignments>

</CompanyExperience>

</Person>

<Person>

<Name>

<FirstName>Jacqui</FirstName>

<MiddleNames>Mary</MiddleNames>

<LastName>Kennedy</LastName>

</Name>

<Demographics>

<DateOfBirth>1958-10-07</DateOfBirth>

Listing 10.17 An instance document for the staff list (XMMLHRFile.xml). (Continued)

Bringing the Parts Together 331

<Gender>Female</Gender>

</Demographics>

<Residence>

<CurrentAddress>

<Street1>999 Sylvia Street</Street1>

<Street2></Street2>

<City>Vancouver</City>

<Province>British Columbia</Province>

<CanadaPostalCode>A1A 8A8</CanadaPostalCode>

<Country>Canada</Country>

</CurrentAddress>

<PastAddresses>

<PastAddress>

<Street1>97 Peter Street</Street1>

<Street2></Street2>

<City>London</City>

<County></County>

<UKPostalCode>W1 8DB</UKPostalCode>

<Country>UK</Country>

</PastAddress>

<PastAddress>

<Street1>888 Camellia Avenue</Street1>

<Street2></Street2>

<City>Miami</City>

<State>FL</State>

<ZipCode>23456-7890</ZipCode>

<Country>USA</Country>

</PastAddress>

</PastAddresses>

</Residence>

<CompanyExperience>

<DateJoined>2000-09-18</DateJoined>

<DateLeft></DateLeft>

<HRNumber>JMK7890</HRNumber>

<CurrentAssignment>

<Department>Customer Support</Department>

<Location>Canada</Location>

<JobTitle>Customer Support Representative</JobTitle>

<DateAssigned>2001-09-18</DateAssigned>

<DateCompleted></DateCompleted>

<HRAssessment>Good initial progress.</HRAssessment>

</CurrentAssignment>

<PreviousAssignments>

</PreviousAssignments>

</CompanyExperience>

</Person>

<!-- A third person and subsequent persons would go here. -->

</XMMLHRFile>

Listing 10.17 An instance document for the staff list (XMMLHRFile.xml). (continued)

The instance document contains an unbounded number of <Person> ele-
ments. Within each <Person> element, you will see <Name>, <Demographics>,
<Residence>, and <CompanyExperience> elements. The structures within
those elements vary depending on the personal situation of the individuals
being described. In addition, there are differing constraints for the permitted
content of some elements and attributes.

Let’s move on and begin to create the schema. In practice, you might be
using a tool, such as XML Spy or Turbo XML, which will assist you in creating
a schema. As we create the example, we will hand code each step in the
process of building up the final schema.

Starting the Schema
Each XSD schema has a standard template that includes the <xsd:schema>
element and a namespace declaration for the W3C XML Schema namespace.
To that, we add some documentation about the nature and the overall purpose
of the schema, as shown in Listing 10.18.

Notice that a version number is used in the filename for the schema. The
version number and date is also expressed in the <xsd:documentation> ele-
ment. If those are out of synchronization, it is a marker that something is not
quite right.

The next step is to add an element declaration for the element root of the
human resources instance document. This is shown in Listing 10.19.

The declaration for the <XMMLHRFile> element indicates that it contains a
sequence of <Person> elements, each of PersonType type. The next step,
shown in Listing 10.20, is to add the complex type definition for the Person-
Type type.

332 Chapter 10

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

<xsd:annotation>

<xsd:documentation>

A hypothetical schema for the human resources information needs for

XMML.com.

This version is dated 2001-11-10. Version 0.01.

The schema accesses and uses type definitions from the XMMLCore.xsd

file.

</xsd:documentation>

</xsd:annotation>

</xsd:schema>

Listing 10.18 A first version of the Human Resources schema
(XMMLHRSchema001.xsd).

Bringing the Parts Together 333

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

<xsd:annotation>

<xsd:documentation>

A hypothetical schema for the human resources information needs for

XMML.com.

This version is dated 2001-11-10. Version 0.02.

The schema accesses and uses type definitions from the XMMLCore.xsd

file.

</xsd:documentation>

</xsd:annotation>

<xsd:element name="XMMLHRFile">

<xsd:annotation>

<xsd:documentation>

The XMMLHRFile element is the document element for the XMMLHR

schema. It has a sequence of Person child elements, which are

unbounded in number.

</xsd:documentation>

</xsd:annotation>

<xsd:complexType>

<xsd:element name="Person" type="PersonType" maxOccurs="unbounded"/>

</xsd:complexType>

</xsd:element>

</xsd:schema>

Listing 10.19 A second version of the human resources schema
(XMMLHRSchema002.xsd).

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

<xsd:annotation>

<xsd:documentation>

A hypothetical schema for the human resources information needs for

XMML.com.

This version is dated 2001-11-10. Version 0.03.

The schema accesses and uses type definitions from the XMMLCore.xsd

file.

</xsd:documentation>

</xsd:annotation>

<xsd:element name="XMMLHRFile">

continues

Listing 10.20 The staff schema after the type definition for PersonType has been added
(XMMLHRFile003.xsd).

Notice that we have updated the version information in the documentation.
In addition, within the documentation of the PersonType complex type defin-
ition, design decisions (which might have to be changed at a later time if there
is some flaw in the design logic) are documented so it is explicit what the
design intentions are.

In practice, you will build up the schema by analyzing element by element
or type by type the content of an element or type and creating further element
declarations or type definitions. At each step, you will be considering—in the
light of the overall information requirements—whether there is any informa-

334 Chapter 10

<xsd:annotation>

<xsd:documentation>

The XMMLHRFile element is the document element for the XMMLHR

schema. It has a sequence of Person child elements, which are

unbounded in number.

</xsd:documentation>

</xsd:annotation>

<xsd:complexType>

<xsd:element name="Person" type="PersonType" maxOccurs="unbounded"/>

</xsd:complexType>

</xsd:element>

<xsd:complexType name="PersonType">

<xsd:annotation>

<xsd:documentation>

The PersonType complex type consists of a sequence of four elements.

The Name element is referenced from the XMMLCore.xsd type library.

The Demographics element is of a complex type derived in this

schema.

The Residence element is of a complex type derived in this schema.

The CompanyExperience element is of type derived in this schema.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element ref="Name" />

<xsd:element name="Demographics" type="DemographicsType"/>

<xsd:element name="Residence" type="ResidenceType"/>

<xsd:element name="CompanyExperience" type="CompanyExperienceType"/>

</xsd:sequence>

</xsd:complexType>

</xsd:schema>

Listing 10.20 The staff schema after the type definition for PersonType has been added
(XMMLHRFile003.xsd). (Continued)

TEAMFL
Y

Team-Fly®

tion in the schema that you are creating that is common with some other
schema that you will need to create. In our example, there are only two XSD
Schema documents (as well as the type library). As we progress through con-
sideration of the design, however, it will become clear that there is a common
structure to address information within the staff and customer schemas.
Therefore, address information will be stored in the type library, XMML-
Core.xsd.

This process of design and review continues until the final schema and the refer-
enced documents are completed. The final schema, XMMLHRFileFinal.xsd, is
shown in Listing 10.21. The schema is copiously documented with <xsd:documen-
tation> elements, partly so that it provides an example of a documented schema of
reasonable length and partly to help you understand what is happening as you
read through the code. If you take time to read through the schema, you should
find sufficient information to enable you to understand what the schema is about
and how it relates to XMMLCustomers.xsd and XMMLCore.xsd.

Bringing the Parts Together 335

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

<xsd:annotation>

<xsd:documentation>

A hypothetical schema for the human resources information needs for

XMML.com.

This version is dated 2001-11-10. Version 1.0.

The schema accesses and uses type definitions and/or element

declarations from the XMMLCore.xsd file.

</xsd:documentation>

</xsd:annotation>

<xsd:include schemaLocation="XMMLCore.xsd"/>

<xsd:element name="XMMLHRFile">

<xsd:annotation>

<xsd:documentation>

The XMMLHRFile element is the document element for the XMMLHR

schema. It has a sequence of Person child elements, which are

unbounded in number.

</xsd:documentation>

</xsd:annotation>

<xsd:complexType>

<xsd:sequence>

continues

Listing 10.21 The final Human Resources schema (XMMLHRFileFinal.xsd).

336 Chapter 10

<xsd:element name="Person" type="PersonType" minOccurs="0"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:complexType name="PersonType">

<xsd:annotation>

<xsd:documentation>

The PersonType complex type consists of a sequence of four elements.

The Name element is referenced from the XMMLCore.xsd type library.

The Demographics element is of a complex type derived in this

schema.

The Residence element is of a complex type derived in this schema.

The CompanyExperience element is of type derived in this schema.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element ref="Name" />

<xsd:element name="Demographics" type="DemographicsType"/>

<xsd:element name="Residence" type="ResidenceType"/>

<xsd:element name="CompanyExperience" type="CompanyExperienceType"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="DemographicsType">

<xsd:annotation>

<xsd:documentation>

The DemographicsType complex type consists of two elements, the

DateOfBirth element and the Gender element.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name="DateOfBirth" type="DOBType"/>

<xsd:element name="Gender" type="GenderType"/>

</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name="DOBType">

<xsd:annotation>

<xsd:documentation>

The DOBType is a simple type for defining a date of birth. We

restrict the xsd:date type. We apply minInclusive and maxInclusive

facets to represent what we see as realistic limits of age and youth

for recruits to XMML.com.

</xsd:documentation>

</xsd:annotation>

Listing 10.21 The final Human Resources schema (XMMLHRFileFinal.xsd). (Continued)

Bringing the Parts Together 337

<xsd:restriction base="xsd:date">

<xsd:minInclusive value="1935-01-01"/>

<xsd:maxInclusive value="1984-01-01"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="GenderType">

<xsd:annotation>

<xsd:documentation>

For obvious biological reasons the GenderType simple type is an

enumeration of two possible values.

</xsd:documentation>

</xsd:annotation>

<xsd:restriction base="xsd:string">

<xsd:enumeration value="Female"/>

<xsd:enumeration value="Male"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:complexType name="ResidenceType">

<xsd:annotation>

<xsd:documentation>

The ResidenceType complex type has two compulsory elements declared

within it.

The CurrentAddress type is defined later but references

XMMLCore.xsd.

The PastAddresses element is of PastAddressesType type described

later in this schema.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name="CurrentAddress" type="CurrentAddressType"/>

<xsd:element name="PastAddresses" type="PastAddressesType"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="CurrentAddressType">

<xsd:annotation>

<xsd:documentation>

This type definition references a group definition in the

XMMLCore.xsd type library.

It could have been omitted by creating an additional Address element

in the instance document and a corresponding Address element

declaration in XMMLCore.xsd.

</xsd:documentation>

</xsd:annotation>

continues

Listing 10.21 The final Human Resources schema (XMMLHRFileFinal.xsd). (Continued)

338 Chapter 10

<xsd:sequence>

<xsd:group ref="AddressGroup"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="PastAddressesType">

<xsd:annotation>

<xsd:documentation>

The PastAddressesType type simply consists of a sequence of zero or

more past addresses.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name="PastAddress" type="PastAddressType" minOccurs="0"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="PastAddressType">

<xsd:annotation>

<xsd:documentation>

This type definition references a group definition in the

XMMLCore.xsd type library.

It could have been omitted by creating an additional Address element

in the instance document and a corresponding Address element

declaration in XMMLCore.xsd.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:group ref="AddressGroup"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="CompanyExperienceType">

<xsd:annotation>

<xsd:documentation>

The CompanyExperienceType type contains information specific to the

XMMLHRFile.xml instance document.

Therefore there is no reference out to any other type library from

it.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name="DateJoined" type="DateJoinedType"/>

<xsd:element name="DateLeft" type="DateLeftType"/>

<xsd:element name="HRNumber" type="HRNumberType"/>

<xsd:element name="CurrentAssignment" type="CurrentAssignmentType"/>

Listing 10.21 The final Human Resources schema (XMMLHRFileFinal.xsd). (Continued)

Bringing the Parts Together 339

<xsd:element name="PreviousAssignments"

type="PreviousAssignmentsType"/>

</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name="DateJoinedType">

<xsd:annotation>

<xsd:documentation>

The DateJoinedType is a simple type for defining the date an

individual joined XMML.com.

We restrict the xsd:date type. We apply a minInclusive facet to

represent the date XMML.com was founded.

</xsd:documentation>

</xsd:annotation>

<xsd:restriction base="xsd:date">

<xsd:minInclusive value="1995-01-01"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="DateLeftType">

<xsd:annotation>

<xsd:documentation>

The DateLeftType is a simple type for defining the date an

individual left XMML.com.

We restrict the xsd:date type. We apply a minInclusive facet to

represent the date XMML.com was founded since a staff member can't

have left the company before it was founded.

A union type is created to allow for the empty string, which would

occur during the period a member of staff was employed by XMML.com

</xsd:documentation>

</xsd:annotation>

<xsd:union>

<xsd:simpleType>

<xsd:restriction base="xsd:date">

<xsd:minInclusive value="1995-01-01"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType>

<xsd:restriction base='xsd:string'>

<xsd:enumeration value=''/>

</xsd:restriction>

</xsd:simpleType>

</xsd:union>

</xsd:simpleType>

continues

Listing 10.21 The final Human Resources schema (XMMLHRFileFinal.xsd). (Continued)

340 Chapter 10

<xsd:simpleType name="HRNumberType">

<xsd:annotation>

<xsd:documentation>

The HRNumberType type is a simple type which uses the pattern facet.

The regular expression indicates three upper case characters

followed by four digits in the range from zero to nine inclusive.

The three uppercase characters represent the initials of the staff

member (first initial, first middleinitial if any plus initial of last

name)

If no middle initial then X is substituted.

</xsd:documentation>

</xsd:annotation>

<xsd:restriction base="xsd:string">

<xsd:pattern value="[A-Z]{3}[0-9]{4}"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:complexType name="CurrentAssignmentType">

<xsd:annotation>

<xsd:documentation>

The CurrentAssignmentType type references an xsd:group named

AssignmentGroup.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:group ref="AssignmentGroup"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="PreviousAssignmentsType">

<xsd:sequence>

<xsd:element name="PreviousAssignment" type="PreviousAssignmentType"

minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="PreviousAssignmentType">

<xsd:sequence>

<xsd:group ref="AssignmentGroup" minOccurs="0" maxOccurs="5"/>

</xsd:sequence>

</xsd:complexType>

<xsd:group name="AssignmentGroup">

<xsd:annotation>

<xsd:documentation>

The DateAssigned element uses the DateJoinedType since similar

constraints apply.

Listing 10.21 The final Human Resources schema (XMMLHRFileFinal.xsd). (Continued)

Bringing the Parts Together 341

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name="Department" type="xsd:string"/>

<xsd:element name="Location" type="LocationType"/>

<xsd:element name="JobTitle" type="xsd:string"/>

<xsd:element name="DateAssigned" type="DateJoinedType"/>

<xsd:element name="DateCompleted" type="DateLeftType"/>

<xsd:element name="HRAssessment" type="xsd:string"/>

</xsd:sequence>

</xsd:group>

<xsd:simpleType name="LocationType">

<xsd:annotation>

<xsd:documentation>

The LocationType type may take one of three enumerated values

corresponding to the three countries in which XMML.com is assumed to

operate.

</xsd:documentation>

</xsd:annotation>

<xsd:restriction>

<xsd:enumeration value="UK"/>

<xsd:enumeration value="USA"/>

<xsd:enumeration value="Canada"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="DateCompletedType">

<xsd:annotation>

<xsd:documentation>

The DateCompletedType is a simple type for defining the date an

individual completed a past assignment for XMML.com.

We restrict the xsd:date type. We apply a minInclusive facet to

represent the date XMML.com was founded since a staff member can't

have left the company before it was founded.

A union type is not created to allow for the empty string, since

unlike the DateLeftType the DateCompletedType is only used for past

(completed) assignments.

</xsd:documentation>

</xsd:annotation>

<xsd:restriction base="xsd:date">

<xsd:minInclusive value="1995-01-01"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

Listing 10.21 The final Human Resources schema (XMMLHRFileFinal.xsd). (Continued)

As you read through Listing 10.21, you should have recognized uses of
techniques to which you have been introduced in earlier chapters and with
which you have begun to have some familiarity and comfort.

Let’s move on to consider how to create the schema for the customer data
store.

Creating the Customer Schema

To create the XMMLCustomers.xsd schema, we would follow a similar
process: Define the company’s information needs, create an instance docu-
ment that will reflect the allowed variability in customer information that is
likely to be held when the data store goes live, then proceed in an iterative
way to build up an appropriately structured XSD schema to reflect the chosen
structure of needed customer information. Then, we create the type library.

Creating the Type Library

The type library, XMMLCore.xsd, will contain element declarations and type def-
initions that will be referenced by each of the two other XSD Schema documents:
XMMLHRSchemaFinal.xsd and (the hypothetical) XMMLCustomers.xsd.

In Listing 10.22, you see the type library that is referenced by XMMLHR-
SchemaFinal.xsd. The name-related structures you should find straightfor-
ward. When looking at the structures that relate to addresses, remember that
the United States, United Kingdom, and Canada use different names for local-
ities (state, county, and province) and have different structure for zip or postal
codes.

342 Chapter 10

Listing 10.22 The type library referenced by the two schemas (XMMLCore.xsd).

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

<xsd:annotation>

<xsd:documentation>

This schema contains type definitions which are accessed by XSD

schemas which define the Human Resources and Customer data stores.

The referencing schemas are held in XMMLHRSchema.xsd and

XMMLCustomers.xsd.

</xsd:documentation>

</xsd:annotation>

Bringing the Parts Together 343

<xsd:element name="Name">

<xsd:annotation>

<xsd:documentation>

This element declaration is reference by XMMLHRFinal.xsd and

XMMLCustomers.xsd.

It has three subelements each of which is of type xsd:string.

</xsd:documentation>

</xsd:annotation>

<xsd:complexType>

<xsd:sequence>

<xsd:element name="FirstName" type="xsd:string"/>

<xsd:element name="MiddleNames" type="xsd:string"/>

<xsd:element name="LastName" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:group name="AddressGroup">

<xsd:annotation>

<xsd:documentation>

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name="Street1" type="xsd:string"/>

<xsd:element name="Street2" type="xsd:string"/>

<xsd:element name="City" type="xsd:string"/>

<xsd:group ref="CountryChoiceGroup"/>

</xsd:sequence>

</xsd:group>

<xsd:group name="CountryChoiceGroup">

<xsd:choice>

<xsd:group ref="USAddressGroup"/>

<xsd:group ref="UKAddressGroup"/>

<xsd:group ref="CanadaAddressGroup"/>

</xsd:choice>

</xsd:group>

<xsd:group name="USAddressGroup">

<xsd:annotation>

<xsd:documentation>

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

continues

Listing 10.22 The type library referenced by the two schemas (XMMLCore.xsd). (Continued)

344 Chapter 10

<xsd:element name="State" type="USStateType"/>

<xsd:element name="ZipCode" type="USZipCodeType"/>

<xsd:element name="Country" type="USCountryType"/>

</xsd:sequence>

</xsd:group>

<xsd:simpleType name="USStateType">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="AK"/>

<xsd:enumeration value="AL"/>

<xsd:enumeration value="AR"/>

<xsd:enumeration value="AZ"/>

<xsd:enumeration value="CA"/>

<xsd:enumeration value="CO"/>

<xsd:enumeration value="CT"/>

<xsd:enumeration value="DC"/>

<xsd:enumeration value="DE"/>

<xsd:enumeration value="FL"/>

<xsd:enumeration value="GA"/>

<xsd:enumeration value="HI"/>

<xsd:enumeration value="IA"/>

<xsd:enumeration value="ID"/>

<xsd:enumeration value="IL"/>

<xsd:enumeration value="IN"/>

<xsd:enumeration value="KS"/>

<xsd:enumeration value="KY"/>

<xsd:enumeration value="LA"/>

<xsd:enumeration value="MA"/>

<xsd:enumeration value="MD"/>

<xsd:enumeration value="ME"/>

<xsd:enumeration value="MI"/>

<xsd:enumeration value="MN"/>

<xsd:enumeration value="MO"/>

<xsd:enumeration value="MS"/>

<xsd:enumeration value="MT"/>

<xsd:enumeration value="NC"/>

<xsd:enumeration value="ND"/>

<xsd:enumeration value="NE"/>

<xsd:enumeration value="NH"/>

<xsd:enumeration value="NJ"/>

<xsd:enumeration value="NM"/>

<xsd:enumeration value="NV"/>

<xsd:enumeration value="NY"/>

<xsd:enumeration value="OH"/>

<xsd:enumeration value="OK"/>

<xsd:enumeration value="OR"/>

<xsd:enumeration value="PA"/>

Listing 10.22 The type library referenced by the two schemas (XMMLCore.xsd). (Continued)

TEAMFL
Y

Team-Fly®

Bringing the Parts Together 345

<xsd:enumeration value="RI"/>

<xsd:enumeration value="SC"/>

<xsd:enumeration value="SD"/>

<xsd:enumeration value="TN"/>

<xsd:enumeration value="TX"/>

<xsd:enumeration value="UT"/>

<xsd:enumeration value="VA"/>

<xsd:enumeration value="VT"/>

<xsd:enumeration value="WA"/>

<xsd:enumeration value="WI"/>

<xsd:enumeration value="WV"/>

<xsd:enumeration value="WY"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="USZipCodeType">

<xsd:restriction base="xsd:string">

<xsd:pattern value="\d{5}|\d{5}-\d{4}"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="USCountryType">

<xsd:restriction base="xsd:string">

<xsd:pattern value="USA"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:group name="UKAddressGroup">

<xsd:annotation>

<xsd:documentation>

The three elements which make up a UK address.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name="County" type="xsd:string"/>

<xsd:element name="UKPostalCode" type="UKPostalCodeType"/>

<xsd:element name="Country" type="UKCountryType"/>

</xsd:sequence>

</xsd:group>

<xsd:simpleType name="UKPostalCodeType">

<xsd:restriction base="xsd:string">

<xsd:pattern value="[A-Z]{1,2}\d{1,2} \d{1}[A-Z]{2}"/>

</xsd:restriction>

</xsd:simpleType>

continues

Listing 10.22 The type library referenced by the two schemas (XMMLCore.xsd). (Continued)

This creation of a more substantial example should help to reinforce or illu-
minate the techniques that you read about earlier in the book. In a book of this
length, only the essentials of XSD Schema can be discussed—but the W3C
XML Schema Recommendation is of great complexity and flexibility. Under-
standing it fully is a demanding task. Hopefully, you are glad that you have
started on that journey.

346 Chapter 10

<xsd:simpleType name="UKCountryType">

<xsd:restriction base="xsd:string">

<xsd:pattern value="UK"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:group name="CanadaAddressGroup">

<xsd:annotation>

<xsd:documentation>

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name="Province" type="xsd:string"/>

<xsd:element name="CanadaPostalCode" type="CanadaPostalCodeType"/>

<xsd:element name="Country" type="CanadaCountryType"/>

</xsd:sequence>

</xsd:group>

<xsd:simpleType name="CanadaPostalCodeType">

<xsd:restriction base="xsd:string">

<xsd:pattern value="[A-Z]{1}[0-9]{1}[A-Z]{1} [0-9]{1}[A-Z]{1}[0-

9]{1}"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="CanadaCountryType">

<xsd:restriction base="xsd:string">

<xsd:pattern value="Canada"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

Listing 10.22 The type library referenced by the two schemas (XMMLCore.xsd). (Continued)

PA R T

4

Appendixes

349

A P P E N D I X

A

Datatypes

Datatypes are very important when defining schemas. While XSD enables you
to easily describe the structure of a set of data, knowing and understanding
the types of data, such as a date or a decimal, enables applications to properly
interpret and process the data. Having this information will make it easier to
create database tables that might be ultimately storing the data or even dis-
playing in user interfaces (you don’t want a date showing up as a numerical
value).

Within this appendix, two types of datatypes are examined: primitive
datatypes, which represent the core datatypes present in XML Schema, and
derived datatypes, which are derived from the core datatypes and other
derived datatypes.

Primitive Datatypes

These are datatypes that are not derived from other datatypes. In other words,
they are not built on top of, nor do they represent a collection of other
datatypes. Within this section of the appendix, we are going to examine each
of the primitive datatypes present in the XML Schema Part 2: Datatype Rec-
ommendation. We also are going to include what datatypes have been derived

350 Appendix A

from these primitive types, and in Appendix B, what facets are associated
with them.

anyURI
The anyURI datatype represents an absolute or relative URI. While many
seemingly valid characters can be used to represent a URI, you are encour-
aged to use the proper encoding for special characters (for example, space is
represented by %20).

The following list contains the facets available in the anyURI datatype:

■■ enumeration

■■ length

■■ maxLength

■■ minLength

■■ pattern

■■ whiteSpace

base64Binary
The base64Binary datatype represents Base64-encoded arbitrary binary data.
In other words, the data is encoded by using the Base64 Content-Transfer-
Encoding defined in Section 6.8 of RFC 2045.

For more information about RFC 2045, see www.ietf.org/rfc/rfc2045.txt.

The following list contains the facets available in the base64Binary datatype:

■■ enumeration

■■ length

■■ maxLength

■■ minLength

■■ pattern

■■ whiteSpace

boolean
The boolean datatype represents the ability of an item to be valued as true or
false, as in mathematical binary-valued logic. With this type, possible values
are true, false, 1, and 0, where 1 is analogous to true and 0 is analogous to false.

NOTE

Datatypes 351

The following list contains the facets available in the boolean datatype:

■■ pattern

■■ whiteSpace

date
The date datatype represents a given day in a given month in a given year,
regardless of time, in the Gregorian calendar as defined by ISO 8601 (www.iso
.ch/markete/8601.pdf). For instance, you could write 2002-10-23 (October 23,
2002). The following list contains the facets available in the date datatype:

■■ enumeration

■■ maxExclusive

■■ maxInclusive

■■ minExclusive

■■ minInclusive

■■ pattern

■■ whiteSpace

dateTime
The dateTime datatype represents a given day in a given month in a given
year at a given time (hour, minute, seconds) in the Gregorian calendar as
defined by ISO 8601 (www.iso.ch/markete/8601.pdf). For instance, 2002-10-
23T00:10:00 (October 23, 2002 12:10 A.M.). Optionally, if you wish to specify a
time zone, you can accomplish this task by passing the offset from Coordi-
nated Universal Time (UTC). Using our previous example, 2002-10-23T00:
10:00-05:00 signifies Eastern Standard Time (EST), which is five hours behind
UTC.

The following list contains the facets available in the date datatype:

■■ enumeration

■■ maxExclusive

■■ maxInclusive

■■ minExclusive

■■ minInclusive

■■ pattern

■■ whiteSpace

352 Appendix A

decimal
The decimal datatype represents arbitrary precision decimal numbers that can
be either positive or negative. Negative decimals must have a preceding
– sign, while the lack thereof assumes positive. As defined in XSD, a minimal
supporting processor must support at least 18 decimal digits. Additionally, the
built-in integer datatype is derived from decimal.

The following list contains the facets available in the decimal datatype:

■■ enumeration

■■ fractionDigits

■■ maxExclusive

■■ maxInclusive

■■ minExclusive

■■ minInclusive

■■ pattern

■■ totalDigits

■■ whiteSpace

double
The double datatype, which corresponds to IEEE double-precision 64-bit
floating point type, consists of the values m x 2^e, where m is an integer
whose absolute value is less than 2^53 and e is an integer between –1,075 and
970, inclusively. A double consists of the decimal part of a logarithm (in other
words, digits after decimal) followed by an optional e or E to represent an
integer exponent. Additionally, double has defined special values for positive
and negative zero, positive and negative infinity, and not-a-number. These are
0, –0, INF, –INF, and NaN, respectively.

A float datatype is different from a double in that it is a 32-bit floating
point number. It is essentially half the size of the double.

The following list contains the facets available in the double datatype:

■■ enumeration

■■ maxExclusive

■■ maxInclusive

NOTE

Datatypes 353

■■ minExclusive

■■ minInclusive

■■ pattern

■■ whiteSpace

duration
The duration datatype represents a duration of time made up of a year, month,
day, hour, minute, and second within a Gregorian calendar. These components
are defined by ISO 8601 (www.iso.ch/markete/8601.pdf). For instance,
P28Y10M23DT10H30M45S represents a duration of 28 years, 10 months, 23
days, 10 hours, 30 minutes, and 45 seconds. Note that not all items are required
(such as P28Y10 would represent 28 years and 10 months). Additionally, a neg-
ative value can be passed, such as –P28H, to represent a duration of minus 28
hours. The following list contains the facets available in the duration datatype:

■■ enumeration

■■ maxExclusive

■■ maxInclusive

■■ minExclusive

■■ minInclusive

■■ pattern

■■ whiteSpace

float
The float datatype, which corresponds to the IEEE single-precision 32-bit
floating point type, consists of the values m x 2^e, where m is an integer
whose absolute value is less than 2^24 and e is an integer between –149 and
104, inclusively. A float consists of the decimal part of a logarithm (in other
words, digits after decimal) followed by an optional e^ or ^E to represent an
integer exponent. Additionally, float has defined special values for positive
and negative zero, positive and negative infinity, and not-a-number. These are
0, –0, INF, –INF, and NaN, respectively.

A double datatype is different from a float in that it is a 64-bit floating
point number. It is essentially double the size of the float.
NOTE

354 Appendix A

The following list contains the facets available in the float datatype:

■■ enumeration

■■ maxExclusive

■■ maxInclusive

■■ minExclusive

■■ minInclusive

■■ pattern

■■ whiteSpace

gDay
The gDay datatype represents a reoccurring day in a given month in the Gre-
gorian calendar as defined by ISO 8601 (www.iso.ch/markete/8601.pdf); for
instance, the 23rd of each month. The following list contains the facets avail-
able in the gDay datatype:

■■ enumeration

■■ maxExclusive

■■ maxInclusive

■■ minExclusive

■■ minInclusive

■■ pattern

■■ whiteSpace

gMonth
The gMonth datatype represents a reoccurring month every year in the Gregorian
calendar as defined by ISO 8601 (www.iso.ch/markete/8601.pdf)—for instance,
October. The following list contains the facets available in the gMonth datatype:

■■ enumeration

■■ maxExclusive

■■ maxInclusive

■■ minExclusive

■■ minInclusive

■■ pattern

■■ whiteSpace

TEAMFL
Y

Team-Fly®

Datatypes 355

gMonthDay
The gMonthDay datatype represents a reoccurring day every year in the Gre-
gorian calendar as defined by ISO 8601 (www.iso.ch/markete/8601.pdf)—for
instance, the 23rd of October. The following list contains the facets available in
the gMonthDay datatype:

■■ enumeration

■■ maxExclusive

■■ maxInclusive

■■ minExclusive

■■ minInclusive

■■ pattern

■■ whiteSpace

gYear
The gYear datatype represents a given year in the Gregorian calendar as
defined by ISO 8601 (www.iso.ch/markete/8601.pdf)—for instance, 2002. The
following list contains the facets available in the gYear datatype:

■■ enumeration

■■ maxExclusive

■■ maxInclusive

■■ minExclusive

■■ minInclusive

■■ pattern

■■ whiteSpace

gYearMonth
The gYearMonth datatype represents a specific month in a specific year in the
Gregorian calendar as defined by ISO 8601 (www.iso.ch/markete/8601.pdf)—
for instance, October 2002. The following list contains the facets available in
the gYearMonth datatype:

■■ enumeration

■■ maxExclusive

■■ maxInclusive

356 Appendix A

■■ minExclusive

■■ minInclusive

■■ pattern

■■ whiteSpace

hexBinary
The hexBinary datatype represents binary data that has been hex-encoded.
The following list contains the facets available in the hexBinary datatype:

■■ enumeration

■■ length

■■ maxLength

■■ minLength

■■ pattern

■■ whiteSpace

NOTATION
The NOTATION datatype represents a NOTATION attribute type as defined
in XML 1.0. It is illegal for NOTATION to be used directly in a schema, and
therefore only datatypes that derive from NOTATION can be used. You per-
form this task by specifying a value for enumeration.

The following list contains the facets available in the NOTATION datatype:

■■ enumeration

■■ length

■■ maxLength

■■ minLength

■■ pattern

■■ whiteSpace

QName
The QName datatype represents XML qualified names. These names are bro-
ken into a Prefix, which represents the appropriate namespace, and a Local-

Datatypes 357

Part, which defines the local part, or name, of the qualified name. The follow-
ing list contains the facets available in the QName datatype:

■■ enumeration

■■ length

■■ maxLength

■■ minLength

■■ pattern

■■ whiteSpace

string
The string datatype represents a finite-length sequence of character as defined
in XML 1.0. The string datatype is simple type and therefore cannot contain
child elements. In these cases, you should consider the use of a complex type
that allows for mixed content, of which one could be a string. The built-in nor-
malizeString datatype is derived from string.

The following list contains the facets available in the string datatype:

■■ enumeration

■■ length

■■ maxLength

■■ minLength

■■ pattern

■■ whiteSpace

time
The time datatype represents an instance in time in a given day, with values
ranging from 00:00:00 (midnight) to 23:59:59. Optionally, if you wish to specify
a time zone, this task can be accomplished by passing the offset from UTC.
Using our previous example, 00:00:00-05:00 signifies midnight EST, which is
five hours behind UTC.

The following list contains the facets available in the time datatype:

■■ enumeration

■■ maxExclusive

■■ maxInclusive

358 Appendix A

■■ minExclusive

■■ minInclusive

■■ pattern

■■ whiteSpace

Derived Datatypes

Derived datatypes, which are also defined in the XML Schema Part 2:
Datatype Recommendation, refer to datatypes that are in fact derived from the
core primitive datatypes. This section of the appendix includes a comprehen-
sive reference for the derived datatypes that are defined in the recommenda-
tion so that it will be easy for you to learn and better understand how to use
them. Also included are what facets are associated with these datatypes (see
Appendix B for more on facets), as well as any additional datatypes that might
be further derived.

byte
The byte datatype, which is derived from short, represents a value between
–128 and 127. The following list contains the facets available in the byte
datatype:

■■ enumeration

■■ fractionDigits

■■ maxExclusive

■■ maxInclusive

■■ minExclusive

■■ minInclusive

■■ pattern

■■ totalDigits

■■ whiteSpace

ENTITIES
The ENTITIES datatype, which is derived from ENTITY, represents the
ENTITIES attribute as defined in XML 1.0. It is a finite, non-zero-length sequence
of ENTITY datatype instances that have been declared as unparsed entities

Datatypes 359

in a DTD. The following list contains the facets available in the ENTITIES
datatype:

■■ enumeration

■■ length

■■ maxLength

■■ minLength

■■ whiteSpace

ENTITY
The ENTITY datatype, which is derived from NCName, represents the
ENTITY attribute as defined in XML 1.0. It is the set of all strings that match
the NCName production in Namespaces in XML and that have been declared
as unparsed entities in a DTD. The ENTITIES datatype is derived from the
ENTITY datatype.

The following list contains the facets available in the ENTITY datatype:

■■ enumeration

■■ length

■■ maxLength

■■ minLength

■■ pattern

■■ whiteSpace

ID
The ID datatype, which is derived from NCName, represents the ID attribute
as defined in XML 1.0. It is the set of all strings that match the NCName pro-
duction in Namespaces in XML. The following list contains the facets avail-
able in the ID datatype:

■■ enumeration

■■ length

■■ maxLength

■■ minLength

■■ pattern

■■ whiteSpace

360 Appendix A

IDREF
The IDREF datatype represents the IDREF attribute as defined in XML 1.0. It is
the set of all strings that match the NCName production in Namespaces in
XML. The IDREFS datatype is derived from the IDREF datatype.

The following list contains the facets available in the IDREF datatype:

■■ enumeration

■■ length

■■ maxLength

■■ minLength

■■ pattern

■■ whiteSpace

IDREFS
The IDREFS datatype, which is derived from IDREF, represents the IDREFS
attribute as defined in XML 1.0. It is the set of finite, non-zero-length sequences
of IDREFs. The following list contains the facets available in the IDREFS
datatype:

■■ enumeration

■■ length

■■ maxLength

■■ minLength

■■ whiteSpace

int
The int datatype, which is derived from long, represents a value between
�2147483648 and 2147483647. The short datatype is derived from the int
datatype. The following list contains the facets available in the int datatype:

■■ enumeration

■■ fractionDigits

■■ maxExclusive

■■ maxInclusive

■■ minExclusive

■■ minInclusive

Datatypes 361

■■ pattern

■■ totalDigits

■■ whiteSpace

integer
The integer datatype, which is derived from the decimal primitive datatype,
represents a whole number with no decimal places (in other words, equivalent
to all values after the decimal equal to 0). The following list contains a list of
datatypes that are additionally derived from integer:

■■ long

■■ nonNegativeInteger

■■ nonPositiveInteger

The following list contains the facets available in the integer datatype:

■■ enumeration

■■ fractionDigits

■■ maxExclusive

■■ maxInclusive

■■ minExclusive

■■ minInclusive

■■ pattern

■■ totalDigits

■■ whiteSpace

language
The language datatype, which is derived from token, represents natural lan-
guage identifiers as defined in RFC 1766 (www.ietf.org/rfc/rfc1766.txt). The
following list contains the facets available in the language datatype:

■■ enumeration

■■ length

■■ maxLength

■■ minLength

■■ pattern

■■ whiteSpace

362 Appendix A

long
The long datatype, which is derived from integer, represents a value between
–223372036854775808 and 9223372036854775807. The int datatype is derived
from the long datatype. The following list contains the facets available in the
long datatype:

■■ enumeration

■■ fractionDigits

■■ maxExclusive

■■ maxInclusive

■■ minExclusive

■■ minInclusive

■■ pattern

■■ totalDigits

■■ whiteSpace

Name
The Name datatype, which is derived from token, represents Names as defined in
XML 1.0. The NCName datatype is derived from the Name datatype. The follow-
ing list contains the facets available in the Name datatype:

■■ enumeration

■■ length

■■ maxLength

■■ minLength

■■ pattern

■■ whiteSpace

NCName
The NCName datatype, which is derived from Name, represents “noncolo-
nized” Names as defined in XML 1.0. The following list contains a list of
datatypes that are additionally derived from NCName:

■■ ENTITY

■■ ID

■■ IDREF

The following list contains the facets available in the NCName datatype:

Datatypes 363

■■ enumeration

■■ length

■■ maxLength

■■ minLength

■■ pattern

■■ whiteSpace

negativeInteger
The negativeInteger datatype, which is derived from nonPositiveInteger, rep-
resents any negative integer. Remember that an integer is defined as a whole
number with no decimal values (for example, equivalent to all values after
the decimal equal to 0). The following list contains the facets available in the
negativeInteger datatype:

■■ enumeration

■■ fractionDigits

■■ maxExclusive

■■ maxInclusive

■■ minExclusive

■■ minInclusive

■■ pattern

■■ totalDigits

■■ whiteSpace

NMTOKEN
The NMTOKEN datatype, which is derived from token, represents the
NMTOKEN attribute as defined in XML 1.0. This datatype is a set of tokens
that match the Nmtoken production. The NMTOKENS datatype is derived
from the NMTOKEN dataype. The following list contains the facets available
in the NMTOKEN datatype:

■■ enumeration

■■ length

■■ maxLength

■■ minLength

■■ pattern

■■ whiteSpace

364 Appendix A

NMTOKENS
The NMTOKENS datatype, which is derived from NMTOKEN, represents the
NMTOKENS attribute as defined in XML 1.0. This datatype is a set of finite,
non-zero-length sequences of NMTOKENs. The following list contains the
facets available in the NMTOKENS datatype:

■■ enumeration

■■ length

■■ maxLength

■■ minLength

■■ whiteSpace

nonNegativeInteger
The nonNegativeInteger datatype, which is derived from integer, represents
any positive integer. Remember that an integer is defined as a whole number
with no decimal values (in other words, equivalent to all values after the deci-
mal equal to 0). The following list contains a list of datatypes that are addi-
tionally derived from nonNegativeInteger:

■■ positiveInteger

■■ unsignedLong

The following list contains the facets available in the nonNegativeInteger
datatype:

■■ enumeration

■■ fractionDigits

■■ maxExclusive

■■ maxInclusive

■■ minExclusive

■■ minInclusive

■■ pattern

■■ totalDigits

■■ whiteSpace

nonPositiveInteger
The nonPositiveInteger datatype, which is derived from integer, represents
any negative integer. Remember that an integer is defined as a whole number

TEAMFL
Y

Team-Fly®

Datatypes 365

with no decimal values (in other words, equivalent to all values after the deci-
mal equal to 0). The negativeInteger datatype is derived from the nonPosi-
tiveInteger datatype.

The following list contains the facets available in the nonPositiveInteger
datatype:

■■ enumeration

■■ fractionDigits

■■ maxExclusive

■■ maxInclusive

■■ minExclusive

■■ minInclusive

■■ pattern

■■ totalDigits

■■ whiteSpace

normalizedString
The normalizedString datatype, which is derived from the string primitive
datatype, represents whiteSpace normalized strings that do not carry a car-
riage return, line feed, or tab character. The token datatype is derived from the
normalizedString datatype.

The following list contains the facets available in the normalizedString
datatype:

■■ enumeration

■■ length

■■ maxLength

■■ minLength

■■ pattern

■■ whiteSpace

positiveInteger
The positiveInteger datatype, which is derived from nonNegativeInteger, rep-
resents any positive integer. Remember that an integer is defined as a whole
number with no decimal values (for example, equivalent to all values after the
decimal equal to 0). The following list contains the facets available in the posi-
tiveInteger datatype:

366 Appendix A

■■ enumeration

■■ fractionDigits

■■ maxExclusive

■■ maxInclusive

■■ minExclusive

■■ minInclusive

■■ pattern

■■ totalDigits

■■ whiteSpace

short
The short datatype, which is derived from int, represents a value between
�32768 and 32767. The byte datatype is derived from the short datatype. The
following list contains the facets available in the short datatype:

■■ enumeration

■■ fractionDigits

■■ maxExclusive

■■ maxInclusive

■■ minExclusive

■■ minInclusive

■■ pattern

■■ totalDigits

■■ whiteSpace

token
The token datatype, which is derived from normalizedString, represents tok-
enized strings. This datatype refers to a set of strings that do not contain a line
feed or tab character and that have no leading or trailing spaces. They also
cannot have internal sequences of two or more spaces. The following list con-
tains a list of datatypes that are additionally derived from token:

■■ language

■■ Name

■■ NMTOKEN

Datatypes 367

The following list contains the facets available in the token datatype:

■■ enumeration

■■ length

■■ maxLength

■■ minLength

■■ pattern

■■ whiteSpace

unsignedByte
The unsignedByte datatype, which is derived from unsignedShort, represents
a number with an upper bound of 255. The following list contains the facets
available in the unsignedByte datatype:

■■ enumeration

■■ fractionDigits

■■ maxExclusive

■■ maxInclusive

■■ minExclusive

■■ minInclusive

■■ pattern

■■ totalDigits

■■ whiteSpace

unsignedInt
The unsignedInt datatype, which is derived from unsignedLong, represents a
number with an upper bound of 4294967295. The unsignedShort datatype is
derived from the unsignedInt datatype. The following list contains the facets
available in the unsignedInt datatype:

■■ enumeration

■■ fractionDigits

■■ maxExclusive

■■ maxInclusive

■■ minExclusive

368 Appendix A

■■ minInclusive

■■ pattern

■■ totalDigits

■■ whiteSpace

unsignedLong
The unsignedLong datatype, which is derived from nonNegativeInteger, repre-
sents a number with an upper bound of 18446744073709551615. The unsignedInt
datatype is derived from the unsignedLong datatype.

The following list contains the facets available in the unsignedLong
datatype:

■■ enumeration

■■ fractionDigits

■■ maxExclusive

■■ maxInclusive

■■ minExclusive

■■ minInclusive

■■ pattern

■■ totalDigits

■■ whiteSpace

unsignedShort
The unsignedShort datatype, which is derived from unsignedInt, represents a
number with an upper bound of 65535. The unsignedByte datatype is derived
from the unsignedShort datatype.

The following list contains the facets available in the unsignedShort
datatype:

■■ enumeration

■■ fractionDigits

■■ maxExclusive

■■ maxInclusive

■■ minExclusive

Datatypes 369

■■ minInclusive

■■ pattern

■■ totalDigits

■■ whiteSpace

Summary

In this appendix we provided a reference for the two types of datatypes
defined with XML Schema. As we discussed throughout the book, primitive
datatypes represent the core datatypes present in XML Schema, while derived
datatypes are derived from these core primitive datatypes. Datatypes are
extremely important, so we hope you found this reference beneficial.

This appendix will summarize the characteristics of the data facets provided by
XSD Schema. A brief summary of the fundamental facets will be followed by
information about the constraining facets that XSD Schema provides. Examples
of usage of the constraining facets are to be found in Chapters 5 and 6.

Facets are defined fully in Chapter 4.2 of Part 2 of the W3C XML Schema Rec-
ommendation, located at www.w3.org/TR/2001/REC-xmlschema-2-20010502/.

The names of datatypes and elements in this appendix will be
expressed as QNames, such as xsd:string, indicating that the type (or element)
is in the namespace of W3C XML Schema. An appropriate namespace declara-
tion will be assumed to apply.

A facet is a single defining aspect of a value space. Most facets work in sepa-
rate axes; that is, the way in which you set one facet generally leaves you free
to define others as you choose within the set of facets available in a particular
context of a datatype.

NOTE

A P P E N D I X

B

Data Facets

371

Fundamental Facets

XSD Schema lists five fundamental facets:

■■ equal

■■ ordered

■■ bounded

■■ cardinality

■■ numeric

The fundamental facets of a datatype determine which operations, includ-
ing comparisons, can be performed on values of that type.

The equal Facet
The equal facet applies in all value spaces. In other words, it applies to all XSD
Schema datatypes.

The equal facet enables comparisons to be made between values and equal-
ity (for example, X=Y) to be determined or not (X!=Y). Comparisons of string
values for equality are case sensitive, thus ABC != abc.

There is no schema component corresponding to the equal facet.

The ordered Facet
The ordered facet applies in all value spaces.

Number, date, and some other datatypes have values that are ordered. This
feature permits comparisons of the type greater than (X>Y) or less than (X<Y).

There is an ordered schema component for the ordered facet. It can take the
values of false, partial, or total.

The bounded Facet
The bounded facet applies in all value spaces.

For ordered datatypes, by setting a maximum permitted value and a mini-
mum permitted value, bounds of permissible values can be defined. Thus, for
a value of X, we can expect a minimum value to be less than or equal to X
(which, in turn, is less than or equal to a maximum value).

There is a bounded schema component that can take the boolean values of
true or false.

372 Appendix B

The cardinality Facet
The cardinality facet applies in all value spaces.

The cardinality facet defines the permitted number of values in a value
space. The cardinality can be zero, one, unbounded, or some specified positive
integer number.

There is a cardinality schema component that can take the values finite or
countably infinite.

The numeric Facet
The numeric facet applies in all value spaces.

The numeric facet distinguishes values that are a number from those that
are not.

There is a numeric schema component that can take the boolean values of
true or false.

Constraining Facets

XSD Schema describes 12 constraining facets:

■■ enumeration

■■ fractionDigits

■■ length

■■ maxExclusive

■■ maxInclusive

■■ maxLength

■■ minExclusive

■■ minInclusive

■■ minLength

■■ pattern

■■ totalDigits

■■ whiteSpace

Examples of how to use each of these constraining facets are to be found in
Chapters 5, Data Facets,” and 6, “More about Data Facets.”

Data Facets 373

The enumeration Facet
The enumeration facet applies in all value spaces except for xsd:boolean.

The enumeration facet constrains the permitted values in a value space to a
specified set of values.

The schema component for the enumeration facet is the <xsd:enumeration>
element. The enumeration schema component has a value property and an
optional annotation property. The value property is expressed as the value
attribute of the <xsd:enumeration> element. The annotation property is
expressed by using an <xsd:annotation> element.

The fractionDigits Facet
The fractionDigits facet applies in the xsd:decimal value space, and the value
spaces of types derived from xsd:decimal.

The fractionDigits facet specifies the number of digits that can occur after
the decimal point in a value of type xsd:decimal.

The schema component for the fractionDigits facet is the <xsd:fractionDig-
its> element. The fractionDigits facet has value, fixed, and annotation proper-
ties. The value property is expressed as the value of the value attribute of the
<xsd:fractionDigits> element. The fixed property of the fractionDigits facet is
expressed as the value of the fixed attribute of the <xsd:fractionDigits> ele-
ment. The annotation property is expressed as an <xsd:annotation> element.

The length Facet
The length facet applies in the value spaces xsd:string (and types derived from
xsd:string, such as xsd:normalizedString and xsd:token) and binary encoding
types (xsd:hexBinary and xsd:base64Binary).

The length facet constrains the length of a type, as specified in units of length.
The units of length vary by the type being constrained. For xsd:string types
(and derived types from xsd:string), the unit of length is the character. For
binary encoding types, the unit of length is an octet of bits. For list simple
types, the unit of length is a list item.

The schema component for the length facet is the <xsd:length> element. It
has value, fixed, and annotation properties. The value and fixed properties are
expressed as attributes of the <xsd:length> element. An annotation is optional
and is expressed by using an <xsd:annotation> element.

The maxExclusive Facet
The maxExclusive facet applies in the value spaces for numeric and date/time
datatypes.

374 Appendix B

TEAMFL
Y

Team-Fly®

The maxExclusive facet defines the lowest value that exceeds the permitted
values of the type.

The schema component for the maxExclusive facet is the <xsd:maxExclu-
sive> element. The maxExclusive facet has value, fixed, and annotation prop-
erties. The value property is expressed as the value of the value attribute of the
<xsd:maxExclusive> element. The fixed property is expressed as the fixed
attribute of the <xsd:maxExclusive> element and takes a boolean value. The
optional annotation property is expressed in an <xsd:annotation> element.

The maxInclusive Facet
The maxInclusive facet applies in the value spaces for numeric and date/time
datatypes.

The maxInclusive facet defines the maximum permitted value of the type.
The schema component for the maxInclusive facet is the <xsd:maxInclu-

sive> element. The maxInclusive facet has value, fixed, and annotation prop-
erties. The value property is expressed as the value of the value attribute of the
<xsd:maxInclusive> element. The fixed property is expressed as the fixed
attribute of the <xsd:maxInclusive> element and takes a boolean value. The
optional annotation property is expressed in an <xsd:annotation> element.

The maxLength Facet
The maxLength facet applies in the value spaces xsd:string (and types derived
from xsd:string, such as xsd:normalizedString and xsd:token) and binary
encoding types (xsd:hexBinary and xsd:base64Binary).

The maxLength facet is defined as units of length that vary by datatype, as
described for the length facet.

The schema component for the maxLength facet is the <xsd:maxLength>
element.

It has value, fixed, and annotation properties. The value and fixed proper-
ties are expressed as attributes of the <xsd:maxLength> element. An annota-
tion is optional and is expressed by using an <xsd:annotation> element.

The minExclusive Facet
The minExclusive facet applies in the value spaces for numeric and date/time
datatypes.

The minExclusive facet defines the maximum value that is less than the per-
mitted values of the type.

The schema component for the minExclusive facet is the <xsd:minExclu-
sive> element. The minExclusive facet has value, fixed, and annotation prop-
erties. The value property is expressed as the value of the value attribute of the

Data Facets 375

<xsd:minExclusive> element. The fixed property is expressed as the fixed
attribute of the <xsd:minExclusive> element and takes a boolean value. The
optional annotation property is expressed in an <xsd:annotation> element.

The minInclusive Facet
The minInclusive facet applies in the value spaces for numeric and date/time
datatypes.

The minInclusive facet defines the minimum permitted value of the type.
The schema component for the minInclusive facet is the <xsd:minInclu-

sive> element. The minInclusive facet has value, fixed, and annotation prop-
erties. The value property is expressed as the value of the value attribute of the
<xsd:minInclusive> element. The fixed property is expressed as the fixed
attribute of the <xsd:minInclusive> element and takes a boolean value. The
optional annotation property is expressed in an <xsd:annotation> element.

The minLength Facet
The minLength facet applies in the value spaces xsd:string (and types derived
from xsd:string, such as xsd:normalizedString and xsd:token) and binary
encoding types (xsd:hexBinary and xsd:base64Binary).

The minLength facet declares the minimum length of a datatype and is
defined as units of length that vary by datatype, as described for the length
facet.

The schema component for the minLength facet is the <xsd:minLength>
element.

It has value, fixed, and annotation properties. The value and fixed proper-
ties are expressed as attributes of the <xsd:minLength> element. An annota-
tion is optional and is expressed by using an <xsd:annotation> element.

The pattern Facet
The pattern facet applies in all value spaces except those for xsd:IDREFS and
xsd:ENTITIES.

The pattern facet indirectly constrains the value space type by limiting the
values permitted in the lexical space to those that match a specified pattern.
The value of the pattern must be a regular expression.

The schema component for the pattern facet is the <xsd:pattern> element.
The pattern schema component has a value property and an optional annota-
tion property. The value property is expressed, by means of a regular expres-
sion, as the value of the value attribute of an <xsd:pattern> element.

376 Appendix B

The totalDigits Facet
The totalDigits facet applies in the xsd:decimal value space and the value
spaces of types derived from xsd:decimal.

The totalDigits facet specifies the number of digits that can occur before and
after the decimal point in a value of type xsd:decimal.

The schema component for the totalDigits facet is the <xsd:totalDigits> ele-
ment. The totalDigits facet has value, fixed, and annotation properties. The
value property is expressed as the value of the value attribute of the
<xsd:totalDigits> element. The fixed property of the totalDigits facet is
expressed as the value of the fixed attribute of the <xsd:totalDigits> element.
The annotation property is expressed as an <xsd:annotation> element.

The whiteSpace Facet
The whiteSpace facet applies in the xsd:string value space and the value
spaces of types derived from xsd:string.

The whiteSpace facet specifies how white space is to be handled in terms of
XML normalization as described in the XML 1.0 Recommendation. Three val-
ues are permitted: preserve, replace, or collapse. When the value is preserve,
then the value is not changed. When the value is replace, then any #x9 (tab),
#xA (line feed), or #xD (carriage return) characters are replaced by space char-
acters (#x20). When the value is collapse, then the normalization described for
replace is carried out. In addition, any sequences of space characters are col-
lapsed to a single space character.

The schema component for the whiteSpace facet is the <xsd:whiteSpace>
element. The whiteSpace facet has value, fixed, and annotation properties.
The value property may take the values of preserve, replace, or collapse and is
expressed as the value of the value attribute of the <xsd:whiteSpace> element.
The fixed property may take the boolean values, true or false. The optional
annotation property is expressed in an <xsd:annotation> element.

Data Facets 377

A
abstract, 78, 90–91
[all declarations processed] property, 69
all group, using <xsd:all> element, 58—61,

118—119
#all reference, 78
<all> element, 58—61, 118—119
Altova Co., 13
ampersand (&-) connector in SGML, 118
annotations, <xsd:annotation> element, 4, 7, 15,

42—45, 247—248, 315
anonymous complex types, 25—26, 29—34
anxsd:namespace, 79
<anyAttribute>, 142—143
<anyType> type, 50—51
<anyURI> datatype, 149, 350
<appinfo> element, 44
applications using attributes, 125—126
assessment versus validation, 63—67
asterisk (*) operator and zero occurrence, 51,

74—75
atomic (simple) types, 18—19
<!ATTLIST> in, 131
attribute declarations, 7
attribute groups, 7, 9, 61—62

<xsd:attributeGroup>, 257—258
attribute uses, 8
<attribute> element, 4, 24–25, 28, 40, 42, 97

<attributeGroup>, 141—142, 257—258
attributes, 90—99, 102–103, 107, 121—143

CDATA, 131
creation of, using <xsd:attribute> tag for, 132
datatypes and, 131, 134, 148
default values for, 39—42, 83—90, 131, 133–134,

140—141
elements and, 72, 78, 81
ENTITIES, 131
fixed values for, 39—42, 88—89, 133–134,

140–141
#FIXED in, 131
global declaration/definition of, 39, 136—139
grouping of, 61—62, 130, 141—142, 239, 243, 246
hybrid approach to use of, 128—130
id or ID, 81, 102–103, 107, 131, 133
IDREFS, 131
information sets and, required support for,

68—69
metadata characteristic of, 121–126
multiple on one element, <!ATTLIST> in, 131
nesting choice groups in, 249—253
nesting sequence groups in, 247—249
new enhancements and features for, 132—136
nillable, 92—93
NMTOKENS, 131
nonschema namespace and, 78, 133
optional, 131, 140–141

Index

379

Qualification of, 132, 134, 139—140
ref attribute in, 36, 133—136
required/#REQUIRED in, 131
restricting, using <xsd:restriction>, 97, 134
reusing definitions by grouping, 240—253
simple type, 23—25
storing data using, 126—128
substitution groups, <xsd:substitutionGroup>

in, 90—91, 253—256
unique, <xsd:unique>, 290—298
#use method for, 131
XML foundation for, 130—132
<xsd:anyAttribute> in, 142—143
<xsd:attribute> tag for, 97, 132
<xsd:attributeGroup>, 141—142

authoring tools for XML Schema, 13—14

B
base attribute, 102–103, 107
base type, 28
<base64Binary>, 149, 350
BizTalk Framework, 8
block, 78
<boolean>, 149, 350—351
bounded facet, 372
<byte>, 154, 358

C
cardinality, 373

DTD, 9, 51
carriage returns, 178
character data (CDATA), 100, 131
characters, information sets and, required

support for, 68—69
child elements, 18, 71–72, 80—81, 83—84

<xsd:complexType>, 113—114
[children] property, 6
choice group in, using <xsd:choice> element,

57—58, 117—118, 249—253
nesting, 249—253

class of XML documents, 6
collapse setting, 179—180, 216
combining datatypes (see unions)
combining schemas, 7
comments and <comment> element, 36, 38, 42,

55, 125—126
common attributes, 128—129
complex content, <complexContent>, 49, 72, 81,

99—108
complex types, <complexType> element, 4, 7, 15,

17, 25—42, 80, 99, 112, 114
attribute groups in, 62
empty elements as, 46—51
enumeration and, for special restriction,

279—282
extension, <xsd:extension> and, 260—271, 316
minOccurs and maxOccurs in, 54—56
pattern, <xsd:pattern> for, 282—284
restriction of, <xsd:restriction> and, 102—106,

260, 271—279
reusing element/attribute definitions by

grouping, 243—253
<xsd:complexContent> and, 99—108

<xsd:complexType>, 112—114
components of XML Schema, 7—8, 64
constraining facets, 186—187, 373—377
constraints

cardinality and, 51
datatypes and, 167—181
facets for, 186—187, 373—377
identity constraint definitions, 289—290
minOccurs and maxOccurs, 51—56
operators indicating, 51

content control
pattern matching, <xsd:pattern>, 200—211
simple type, 23—25

content model in XML Schema, 62—63
content models of DTD, 8
core datatypes, 148
creating a schema, 325—346

Customer schema example in, 342
Staff schema example in, 329—342
starting the schema in, 332—342
type libraries in, 335, 342—346

Customer schema example, 342

D
database management, 3
datatypes, 9, 17—42, 56, 131, 134, 147—183,

259–285, 316, 318, 349—369
anyType type in, 50—51
combining (see unions)
constraining facets for, 186—187
constraint type definitions and, 167—181
element type name in, 19
elements and, 72, 76—77, 81, 148
enumeration, <xsd:enumeration> facet, 131,

161, 166, 211—216, 374
facets in, 168, 181—183, 185, 371—377
fractionDigits facet for, <xsd:fractionDigits>,

171, 174—175, 237—238, 374
fundamental facets for, 186
length constraints in, <xsd:length>, 168,

187—195
lexical space of, 185, 260
maxExclusive, <xsd:maxExclusive> facet,

219—225
maxInclusive, <xsd:maxInclusive> facet, 219,

225—227
maxLength facet for, <xsd:maxLength>, 168,

170—171, 198—200
minExclusive, <xsd:minExclusive> facet, 219,

227—230
minInclusive, <xsd:minInclusive>, 219,

230—237
minLength facet for, <xsd:minLength>,

168–171, 195—198
minOccurs and maxOccurs in, 167
pattern matching, <xsd:pattern>, 180—181, 183,

200—211
#PCDATA in, 62–63, 73
3—tuple of, 185
totalDigits facet for, <xsd:totalDigits>,

171—174, 183, 237—238
unions and <xsd:union>, 163—167

380 Index

Index 381

user defined (see also derived types), 56, 148,
153, 156—159, 259

value space of, 185, 260, 371
whitespace and, <xsd:whiteSpace> in,

176—180, 183, 216
<xsd:complexType>, 112—114
<xsd:list> element in, 160—163
<xsd:simpleType> element and, 159—167
<xsd:string>, 148
xsi:type attribute and, 284

Datatypes for DTDs (DT4DTD), xiii, 8, 76—77, 147
dates and <xsd:date>, 149–150, 351

minInclusive, <xsd:minInclusive>, 230—237
maxExclusive, <xsd:maxExclusive>, 221—225

<dateTime>, 150, 351
decimal datatype, 149–150
<decimal>, 352
declaration of XML Schema, 34—42

global elements, 34—36
local elements, 35—38

declaring an element, 17—25
declaring namespaces, 318
default attributes, 133–134, 140—141
default namespaces, 318
default values for attributes, 39—42, 131
default values for elements, 39—42, 83—90
defining elements, 71—76
derived datatypes, 18, 28, 31, 56, 131, 148,

153—159, 259—285, 316, 349, 358—369
restriction for, <xsd:restriction>, 260, 271—279
union for, <xsd:union>, 260
value space of, 260
xsi:type attribute and, 284

digit control, in datatypes and, 171—175
Document Definition Markup Language

(DDML), xiv
document object model (DOM), 67
document of XML Schema, 14—16
document type definition (DTD), xiii, 3, 5, 8—9,

51, 62–63, 72–76
information sets and, 67—68
minOccurs and maxOccurs in, 51—56
mixed content and, 31—34
validation versus assessment in, 64—67

documentation and <xsd:documentation>, 4, 15,
43—44, 247—248, 326, 332, 335

<double>, 150, 352—353
downloadable schema checkers, 10
<duration>, 150, 353

maxExclusive, <xsd:maxExclusive> facet,
222—225

E
electronic business (ebusiness/ ecommerce), 3
element declarations, 7, 15
<!ELEMENT> declaration, 72—76
element type name, 19
elements and <xsd:element>, 4, 17–25, 28, 30–31,

36, 39–42, 71—120
attributes for (see also attributes), 72, 78, 81,

94—99, 121—143
complex content and, 72, 81, 99—108
<complexType> and, 80, 112—114

datatypes and, 72, 76—77, 81, 148
default values for, 39—42, 83—90
defining, within a DTD, 72—76
<element> element in, 71, 77–78
<!ELEMENT> declaration, 72—76
empty, 41—42, 45—51, 87—88
extending, <xsd:extension>, 81, 106—108
global declaration of, 34—36, 84, 94
global declaration/local reference of child

elements, 81
grouping of, using <xsd:group>, 57, 115—119,

239, 243, 246
head, 255
id attribute and, 81, 102–103, 107
importing, <xsd:import?>, 81, 108—112
including, <xsd:include>, 108—112
information sets and, required support for,

68—69
limiting number of occurrences of, 77
local declaration/definition of, 35—38, 83—84
minOccurs and maxOccurs in, 51—56, 82, 84—85
mixed content and, 100
multiple attributes for, <!ATTLIST> in, 131
<name> element in, 79—80
nesting choice groups in, 249—253
nesting sequence groups in, 247—249
nillable, 78, 92—93
null values in, 91—93
optional and repeatable, asterisk (*) operator

and, 74—75
optional, and ? operator, 74—75, 84—85
#PCDATA in, 62—63, 73
repeatable, and plus sign (+) operator, 74—75
restricting, <xsd:restriction>, 81, 97—99,

101—106
reusing definitions by grouping, 240—253
<schema> element, 79
sequence of, using <xsd:sequence>, 80,

114–115
simple type, <xsd:simpleType>, 17—25, 80
sub-, 294, 302—303
substitution groups and, 90—91, 253—256
unique, <xsd:unique>, 290—298
<?xml?> directive in, 73, 79
XMLSchemainstance (xsi) namespace in, 93
XSD, 77—81

empty elements, 41—42, 45—51, 87—88
encoding attributes, 14
end tag </xsd:schema>, 15
<ENTITIES>, 131, 154, 160, 358—359
enumeration and <xsd:enumeration>, 97, 131,

161, 166, 182, 186, 211—216, 374
State Abbreviation example using

<xsd:enumeration>, 213—216
special restriction using, 279—282

equal facet, 372
expressions, regular, 181
extensible markup language (XML), 3
extension, <xsd:extension>, 24, 81, 106—108

derived datatypes and, 260—271, 316
external XML Schema documents

including components, <xsd:include> for,
307—312

modularized schema and, 306
redefining components, <xsd:redefine> for,

312—316

F
facets, 168, 181—183, 185—238, 260, 371—377
field, <xsd:field>, 294, 302—303
file:// protocol identifier, DTD, 74
fixed attribute, 39—42, 88—89, 133–134, 140–141
fixed values for elements, 39—42
#FIXED, 131
<float>, 150, 185, 353—354
form attributes, 133
fractionDigits, <xsd:fractionDigits> facet, 171,

174—175, 182, 186, 237—238, 374
fundamental facets, 186, 372—373

G
<gDay>, 150, 354
global declaration of XML Schema, 34
global declaration/definition of attributes, 39,

136—139
global declaration of element, 34—36, 81, 84, 94,

253–256
<gMonth>, 150, 354
<gMonthDay>, 355
group, <xsd:group>, 57, 115—117, 239, 243, 246
grouping elements and attributes, 57—63,

114—119, 130, 141—142, 239—258
attribute groups in, <xsd:attributeGroup>,

61—62, 257—258
choice group in, using <xsd:choice> element,

57—58, 117—118, 249—253
content model in XML Schema, 62—63
documenting, using <xsd:annotation> and

<xsd:documentation>, 247—248
group, <xsd:group> element in, 57, 115—117,

239, 243, 246
sequence group in, using <xsd:sequence>, 57,

60—61, 247—249
substitution groups in, 253—256

<gYear>, 150, 355
maxExclusive, <xsd:maxExclusive> facet,

222—225
<gYearMonth>, 150, 355—356

H–I
head elements, 255
helper components of XML Schema, 7—8
<hexBinary>, 150, 356
hypertext markup language (HTML), xiii

attributes in, 128—130

IBM downloadable schema checker, 10
IBM XML Schema Quality Checker, 13
ID or id attribute, 81, 102–103, 107, 131, 133, 154,

289, 359
identity constraint definitions, 7, 289—290
IDREFS, 131, 154, 160, 289, 360
importing elements, <xsd:import>, 81, 108—112,

315–316, 321—325
including components, <xsd:include> for,

108—112, 307—312, 315

information exchange using XML Schema, 7
information items, 6, 68
information sets, 6, 67—69
instance documents, 4, 6–7, 329—332

location of, 16—17
mixed content in, 31—34
namespace use in, 320—321
no namespace with, 16—17
whitespace and, 176—180, 216

<int>, 154, 360—361
<integer>, 154, 361
International Organization for Standardization

(ISO), 152
ISO 8601, 151–152

J—L
key, <xsd:key>, 290, 298—303
keyref;<xsd:keyref>, 290, 298—303

<language>, 154, 361
length constraints, 374

fractionDigits, <xsd:fractionDigits> facet, 171,
174—175, 182, 186, 237—238, 374

length, <xsd:length>, 168, 182, 187—195, 374
maxExclusive, <xsd:maxExclusive>, 182, 186,

219—225, 374—375
maxInclusive, <xsd:maxInclusive>, 182, 186,

219, 225—227, 375
maxLength, <xsd:maxLength>, 168, 170—171,

182, 186, 198—200, 375
minExclusive, <xsd:minExclusive>, 182, 186,

219, 375—376
minInclusive, <xsd:minInclusive>, 182, 187,

219, 230—237, 376
minLength, <xsd:minLength>, 168—171, 182,

187, 195—198, 376
totalDigits, <xsd:totalDigits> facets, 237—238

length, <xsd:length>, 168, 182, 187—195, 374
lexical space of datatype, 185, 260
limitations to elements, 76—77
line feeds, 178
list (simple) types, 18—22
list, <xsd:list>, 160—163, 260

enumeration, <xsd:enumeration> facet,
211—216, 374

length constraints in, <xsd:length>, 192—195
reusing element/attribute definitions by

grouping, 240—253
<xsd:list> element in, 160—163

local declaration of XML Schema, 16—17, 34
local declaration/definition of elements, 35—38,

83—84
local definition of attributes, 136—139
<long>, 154, 362

M
maxExclusive, <xsd:maxExclusive>, 182, 186,

219—225, 374—375
maximum and minimum values

maxExclusive, <xsd:maxExclusive>, 182, 186,
219—225, 374—375

maxInclusive, <xsd:maxInclusive>, 182, 186,
219, 225—227, 375

382 Index

Index 383

maxLength, <xsd:maxLength>, 168, 170—171,
182, 186, 198—200, 375

minExclusive, <xsd:minExclusive>, 182, 186,
219, 375—376

minInclusive, <xsd:minInclusive>, 182, 187,
219, 230—237, 376

minLength, <xsd:minLength>, 168—171, 182,
187, 195—198, 376

maxInclusive, <xsd:maxInclusive>, 182, 186, 219,
225—227, 375

maxLength, <xsd:maxLength>, 168, 170—171,
182, 186, 198—200, 375

maxOccurs, 22—23, 35–36, 51—56
datatypes and, 167
elements and, 82, 84—85

memberTypes, 23
metadata, attributes as, 121–126
Microsoft, 8
minExclusive, <xsd:minExclusive>, 182, 186, 219,

375—376
minInclusive, <xsd:minInclusive>, 182, 187, 219,

230—237, 376
minLength, <xsd:minLength>, 168—171, 182, 187,

195—198, 376
minOccurs, 35–36, 51—56, 167

elements and, 82, 84—85
mixed content, 31—34, 100
model groups (see also grouping elements and

attributes), 7
modularized schema, 305—325, 328—329

importing in, <xsd:import>, 315–316,
321—325

including components, <xsd:include> for,
307—312

namespaces and, 316—321
naming schema components for, 306
redefining components, <xsd:redefine> for,

312—316
type libraries in, 307—309
uses for, 306—325

MSXML parser, 8, 13

N
name attributes, 133
name/value pairs in attributes, 131
<Name> element, 79—80, 154, 362
named complex types, 26—34
named elements, DTD, 9
named types, 31
names for attributes, 131
namespace declaration, 14, 17
namespaces, 4, 16, 36, 316—325

attributes with nonschema namespace and,
78, 133

importing and, <xsd:import>, 110, 321—325
information sets and, required support for,

68—69
instance document schemas using, 320—321
instance documents without, 16—17
prefixes for, 102, 110, 317—320
qualification of, 139—140
type library, 307—309
xsi:type attribute and, 93, 284

naming schema components, modularized
schema and, 306

<NCName>, 154, 362—363
<negativeInteger>, 154, 363
nesting choice groups in, 249—253
nesting sequence groups in, 247—249
nillable, 78, 92—93
<NMTOKENS>, 28, 131, 155, 160, 195, 363–364
nodes, 6
noNamespaceSchemaLocation attribute, 17
<nonNegativeInteger>, 55, 155, 364

length constraints in, <xsd:length>, 187—195
<nonPositiveInteger>, 155, 364—365
non-schema namespace attributes, 78, 133
normalization, 176, 216
<normalizedString>, 155, 365
notation declarations, 7
<NOTATION>, 150, 356
null values, elements and, 91—93
numeric data

fractionDigits, <xsd:fractionDigits> facet, 171,
174—175, 182, 186, 237—238, 374

maxExclusive, <xsd:maxExclusive>, 182, 186,
219—225, 374—375

maxInclusive, <xsd:maxInclusive>, 182, 186,
219, 225—227, 375

maxLength, <xsd:maxLength>, 168, 170—171,
182, 186, 198—200, 375

minExclusive, <xsd:minExclusive>, 182, 186,
219, 375—376

minInclusive, <xsd:minInclusive>, 182, 187,
219, 230—237, 376

minLength, <xsd:minLength>, 168—171, 182,
187, 195—198, 376

totalDigits, <xsd:totalDigits> facets,
237—238

numeric facet, 373

O
object oriented (OO) languages, 77
occurrence constraints, 51—56

cardinality in DTDs, 51
minOccurs and maxOccurs in, 22—23, 35–36,

51—56, 82, 84—85, 167
online schema checking service, 9—10
optional attributes, 131, 140–141
optional occurrence and question mark (?)

operator, 51, 74—75, 84—85
ordered facet, 372
Organization for Advancement of Structured

Information Standards (OASIS), 8

P
parser for XML, 6
particles, 8
Parts Catalog example using <xsd:pattern facet>,

202—206
pattern matching, patterns, and <xsd:pattern>,

180—181, 183, 187, 200—211, 226—227, 376
derived types and, 282—284
minInclusive, <xsd:minInclusive>, 233—237
Parts Catalog example using <xsd:pattern>,

202—206

Postal Code example using <xsd:pattern>,
206—211

#PCDATA content, 62—63, 73
plus sign (+) operator, 51

repeatable elements and, 74—75
<positiveInteger>, 155, 365—366
Postal Code example using <xsd:pattern facet>,

206—211
prefixes for namespaces, 102, 110, 284, 317—320
preserve setting, 176, 216
primary components of XML Schema, 7
primitive datatypes, 18, 131, 149—153, 160,

349—358
processor for XML Schema, 6

normalization in, 176, 216
preserve setting for, 176, 216
validating, 63—69
whitespace and, 176—180, 216

programming languages, 3
properties, 6, 68
purpose of XML Schema, 7

Q
<QName>, 150, 356—357, 371
Qualification of attributes, 132, 134, 139—140
question mark (?) operator, optional occurrence,

51, 74—75

R
redefining components, <xsd:redefine> for, 112,

312—316
ref attribute, 36, 81, 133—136
referencing, 94

ID, <xsd:ID>, 289, 359
IDREF, <xsd:IDREF>, 289, 360
IDREFS, <xsd:IDREFS>, 289, 360
importing, <xsd:import>, 315–316, 321—325
including components, <xsd:include> for,

108—112, 307—312
key, <xsd:key>, 290, 298—303
keyref; <xsd:keyref>, 290, 298—303
modularized schema and, 306
redefining components, <xsd:redefine> for,

312—316
ref attribute and, 134—136
type libraries in, 307—309
unique, <xsd:unique>, 290—298

regular expressions, 181
relational databases (see also database

management), 3, 289
key, <xsd:key>, 298—303
keyref; <xsd:keyref>, 298—303

RELAX NG, 8
repeatable elements and plus sign (+) operator,

74—75
replace setting, 179, 216
required attributes, 131
#REQUIRED in, 131
restriction, <xsd:restriction>, 49—51, 81, 97—99,

101—106, 134
derived datatypes and, 260, 271—279
enumeration and, for special restriction,

279—282

enumeration, <xsd:enumeration> facet,
212—216

fractionDigits, <xsd:fractionDigits> facet,
237—238

length constraints in, <xsd:length>, 190—195
pattern matching, <xsd:pattern facet>, 202—211
<pattern> and, for special restriction, 282—284
totalDigits, <xsd:totalDigits> facets, 237—238

reusing element/attribute definitions by
grouping, 240—253

root elements, 36, 94
root of XML Schema document, 16

S
Scaleable Vector Graphics (SVG), modularized

schema and, 306
schema authoring tools, 13—14
schema checkers, 9—13
schema components, 64
Schema for Object Oriented XML (SOX), xiii, 77
Schema Quality Checker, 13
Schema Validator (XSV), 10—13
<schema> element, 34
schemaLocation

<xsd:import> element and, 110
<xsd:include> element and, 109
<xsd:redefine> element and, 112

scope of attributes, 132, 136—139
secondary components of XML Schema, 7
selector, <xsd:selector>, 294, 302—303
self-documenting annotations, 44—45
separators, list or string, 21–22
sequence group in, using <xsd:sequence>, 57,

60—61, 247—249
nesting, 247—249

sequence of elements, <xsd:sequence>, 34, 57,
60—61, 80, 114–115

SGML, xiii, 8—9, 118
<short>, 155, 366
simple type and <simpleType>, 7, 17—25, 56, 80,

159—167
enumeration for special restriction, 279—282
enumeration, <xsd:enumeration> facet,

211—216, 374
lists, <xsd:list> and, 260
pattern, <xsd:pattern> for, 282—284
restriction, <xsd:restriction> and, 260, 271—279
union, <xsd:union> and, 260

single/one occurrence and plus sign (+)
operator, 51

spaces, 178
Spy (see XML Spy)
Staff schema example, 329—342
standalone attributes, 14
standard generalized markup language

(see SGML)
starting the schema, 332—342
State Abbreviation example using

<xsd:enumeration>, 213—216
storing data using attributes, 126—128
strings and <xsd:string>, 15, 18–19, 34,

148—150, 357
collapse setting for, 179—180, 216

384 Index

TEAMFL
Y

Team-Fly®

Index 385

length, <xsd:length>, 168, 182, 187—195, 374
maxExclusive, <xsd:maxExclusive>, 182, 186,

219—225, 374—375
maxInclusive, <xsd:maxInclusive>, 182, 186,

219, 225—227, 375
maxLength, <xsd:maxLength>, 168, 170—171,

182, 186, 198—200, 375
minExclusive, <xsd:minExclusive>, 182, 186,

219, 375—376
minInclusive, <xsd:minInclusive> facet, 182,

187, 219, 230—237, 376
minLength, <xsd:minLength>, 168—171, 182,

187, 195—198, 376
NMTOKEN and, 195
pattern matching and, <xsd:pattern>, 180—181,

200—211
preserve setting for, 176, 216
replace setting for, 179, 216
separators in, 21–22
whitespace and <xsd:whiteSpace>, 176—180,

183, 187, 216, 377
subelements, 294, 302—303
substitution groups, <xsd:substitutionGroup>,

90—91, 253—256
syntax of attributes and, 130—131
syntax of XML Schema, 5, 13—14

T
tabs, 178
templates for XML Schema, 327—328
Thomson, Henry, 10
3—tuple of XSD datatype, 185
TIBCO Extensibility Co., 13, 166
<time>, 149–150, 357—358
<token>, 28, 155, 366—367
tokenized types, 131
tokens for parser (see information items)
tools for XML Schema, 9—14
totalDigits, <xsd:totalDigits>, 171—174, 183, 187,

237—238, 377
tree hierarchy, 6
TREX, 8
tuple, 185
Turbo XML, 13—14
type attributes, 133
type libraries, 307—309, 335, 342—346

posting to URI, 312
types (see datatypes)

U
union (simple) types, 18, 22—23
union, <xsd:union>, 163—167, 260
unique, <xsd:unique>, 290—298
uniqueness and keys in XML Schema,

289—303
University of Edinburgh downloadable schema

checker, 10
<unsignedByte>, 155, 367
<unsignedInt>, 155, 367—368
<unsignedLong>, 155, 368
<unsignedShort>, 155
URIs/URLs

file:// protocol identifier in, 74

online schema checking service for documents
at, 9—10

type libraries posted to, 312
<xsd:anyURI>, 350
xsi:type attribute and, 284

use attributes, 133
#use method, 131
user defined datatypes (see also derived types),

148, 153, 156—159, 259

V
validation of content, 9–13, 63—69
value space of datatype, 28, 185, 260, 371
version attribute, 14
version numbers, DTD or XSD schema, 75

W
Watt, Andrew, xx
weak typing of DTD, 8
whitespace and <xsd:whiteSpace>, 176—180, 183,

187, 216, 377
collapse setting for, 179—180, 216
datatypes and, 176—180, 216
lists and separators using, 21–22
preserve setting for, 176, 216
replace setting for, 179, 216

wildcards, 8
World Wide Web, 3
World Wide Web Consortium (W3C), 3—6
Wyke, R. Allen, xix

X
XHTML

attributes in, 128—130
modularized schemas and, 306
<xsd:anyAttribute> in, 142—143

XML, 5, 8
XML Data Reduced (XDR), 8
XML Data, xiii
xml declaration, 14
XML Schema Definition Language (XSD), xiv, 4
XML Schema Quality Checker, 13
XML Schema Validator (XSV), 9—13
XML Spy, 13—14
<?xml?> directive, 73, 79
XMLSchemainstance (see xsi namespace)
XPath, 6, 67

key, <xsd:key>, 298—303
keyref;<xsd:keyref>, 298—303

xs prefix for namespace, 16
XSD schema, XML information set and, 68
<xsd:all>, 58—61, 118—119
<xsd:annotation>, 15, 42—45, 78, 247—248, 315, 377
<xsd:anyAttribute> in, 142—143
<xsd:anyType>, 50—51
<xsd:anyURI>, 149, 350
<xsd:appinfo> element, 44
<xsd:attribute>, 23—25, 28, 40, 42, 97, 132
<xsd:attributeGroup>, 141—142, 257—258
<xsd:base64Binary>, 350
<xsd:baseBinary>, 149
<xsd:boolean>, 149, 350—351
<xsd:byte>, 154, 358

<xsd:choice>, 57—58, 117—118, 249—253
<xsd:complexContent>, 49, 99—108
<xsd:complexType>, 23—27, 78, 80, 99, 112—114

attribute groups in, 62
<xsd:date>, 149–150, 351

maxExclusive, <xsd:maxExclusive> facet,
220—225

minInclusive, <xsd:minInclusive>, 230—237
<xsd:dateTime>, 150, 351
<xsd:decimal>, 149–150, 352
<xsd:documentation>, 15, 43—44, 247—248, 326,

332, 335
<xsd:double>, 150, 352—353
<xsd:duration>, 150, 353

maxExclusive, <xsd:maxExclusive> facet,
222—225

<xsd:element>, 21, 25, 28, 30–31, 36, 39, 71, 77–78,
81—112

attributes of, 78—79
ref attribute and, 81

<xsd:ENTITIES>, 154, 160, 358—359
<xsd:ENTITY>, 154, 160, 359
<xsd:enumeration>, 97, 182, 186, 211—216, 374

special restriction using, 279—282
<xsd:extension>, 23–24, 106—108

derived datatypes and, 260—271, 316
<xsd:field>, 294, 302—303
<xsd:float>, 150, 185, 353—354
<xsd:fractionDigits>, 171, 182, 186, 237—238, 374
<xsd:gDay>, 150, 354
<xsd:gMonth>, 150, 354
<xsd:gMonthDay>, 355
<xsd:group>, 57, 115—117, 239, 243, 246
<xsd:gYear>, 150, 355

maxExclusive, <xsd:maxExclusive> facet,
222—225

<xsd:gYearMonth>, 150, 355—356
<xsd:hexBinary>, 150, 356
<xsd:ID>, 154, 289, 359
<xsd:IDREF>, 154, 160, 289, 360
<xsd:IDREFS>, 154, 160, 289, 360
<xsd:import>, 108—112, 315–316, 321—325
<xsd:include>, 108—112, 307—312, 315
<xsd:int>, 154, 360—361
<xsd:integer>, 154, 361
<xsd:key>, 78, 290, 298—303
<xsd:keyref>, 78, 290, 298—303
<xsd:language>, 154, 361
<xsd:length>, 168, 182, 186—195, 374
<xsd:list>, 21, 160—163

derived datatypes and, 260
length constraints in, <xsd:length>, 192—195

<xsd:long>, 154, 362
<xsd:maxExclusive>, 182, 186, 219—225, 374—375
<xsd:maxInclusive>, 182, 186, 219, 225—227, 375
<xsd:maxLength>, 168, 170—171, 182, 186,

198—200, 375
<xsd:minExclusive>, 182, 186, 219, 227—230,

375—376
<xsd:minInclusive>, 182, 187, 219, 230—237, 376

<xsd:minLength>, 168—171, 182, 187,
195—198, 376

<xsd:Name>, 154, 362
<xsd:NCName>, 154, 362—363
<xsd:negativeInteger>, 154, 363
<xsd:NMTOKEN>, 28, 155, 160, 195, 363
<xsd:NMTOKENS>, 155, 160, 364
<xsd:nonNegativeInteger>, 23, 55, 155, 364
<xsd:nonPositiveInteger>, 155, 364—365
<xsd:normalizedString>, 155, 365
<xsd:NOTATION>, 150, 356
<xsd:pattern>, 180—181, 183, 187, 200—211,

226—227, 376
derived types and, 282—284
minInclusive, <xsd:minInclusive facet>,

233—237
<xsd:positiveInteger>, 155, 365—366
<xsd:QName>, 150, 356—357
<xsd:redefine>, 112, 312—316
<xsd:restriction>, 49—51, 97—99, 101—106, 134

derived datatypes and, 260, 271—279
enumeration and, for special restriction,

279—282
enumeration, <xsd:enumeration> facet,

212—216
fractionDigits, <xsd:fractionDigits> facet,

237—238
length constraints in, <xsd:length>, 190—195
pattern matching, <xsd:pattern facet>,

202—211, 282—284
totalDigits, <xsd:totalDigits> facets, 237—238

<xsd:schema>, 14, 16, 19, 34, 79, 332
attribute groups in, 62
qualified versus unqualified, 139—140

<xsd:selector>, 294, 302—303
<xsd:sequence>, 57, 60—61, 80, 114–115, 247—249
<xsd:short>, 155, 366
<xsd:simpleType>, 19, 21, 78, 80, 159, 160—167
<xsd:string>, 15, 18–19, 21, 34, 148–150, 357

length constraints in, <xsd:length>, 188—195
NMTOKEN and, 195

<xsd:time>, 149–150, 357—358
<xsd:token>, 28, 155, 366—367
<xsd:totalDigits>, 171—174, 183, 187,

237—238, 377
<xsd:union>, 163—167, 260
<xsd:unique>, 78, 290—298
<xsd:unsignedByte>, 155, 367
<xsd:unsignedInt>, 155, 367—368
<xsd:unsignedLong>, 155, 368
<xsd:unsignedShort>, 155, 368
<xsd:whiteSpace>, 176—180, 183, 187, 216, 377
xsi prefix for namespace, 17, 93
xsi:type attribute and, 23, 284
XSLT stylesheet, 6

self-documenting annotations and, 44—45
XSV (see XML Schema Validator)

Y–Z
zero occurrence and asterisk (*) operator, 51

386 Index

	XML Schema Essentials
	Contents
	Introduction
	What to Expect
	Book Organization
	A Final Thought
	Acknowledgments

	About the Authors

	Getting Started
	Elementary XML Schema
	What Is XML Schema?
	Declaring Elements and Defining Types
	Defining Complex Types
	Annotations in Schema
	Empty Element Declaration
	Occurrence Constraints
	Model Groups in Schema
	Validation in XSD Schema
	Summary

	XSD Elements
	XML Elements
	< xsd: element > : A Closer Examination
	More on < xsd: complexType>
	Summary

	Adding Attributes
	What Are Attributes?
	XML Attributes Foundation
	XSD Attributes: The Next Generation
	Using Attributes
	Summary

	Going Beyond DTDs
	Applying Datatypes
	What Are Datatypes?
	More on Simple Types
	Constraining Type Definitions
	Applicability of Facets
	Summary

	Data Facets
	Fundamental and Constraining Facets
	Constraining Facets in XSD Schema
	The length Element
	The minLength Element
	The maxLength Element
	The pattern Element
	The Enumeration Element
	The whiteSpace Element
	Summary

	More about Data Facets
	The maxExclusive Element
	The maxInclusive Element
	The minExclusive Element
	The minInclusive Element
	The totalDigits and fractionDigits Facets
	Summary

	Grouping Elements and Attributes
	Reusing Definitions with Groups
	Substitution Groups
	Attribute Groups
	Summary

	Deriving Types
	Deriving Types by Extension
	Deriving Types by Restriction
	The enumeration Element
	The pattern Element
	The xsi: type Attribute
	Summary

	Next Steps
	Uniqueness and Keys in XSD Schema
	Identity- Constraint Definitions
	The < xsd: unique> Element
	The < xsd: key> and < xsd: keyref> Elements
	Summary

	Bringing the Parts Together
	Modularizing Schemas
	Creating the Example
	Planning the Example
	Creating the Staff Schema
	Creating the Customer Schema
	Creating the Type Library

	Appendixes
	Datatypes
	Primitive Datatypes
	Derived Datatypes
	Summary

	Data Facets
	Fundamental Facets
	Constraining Facets

	Index

