

Essential XML
Quick Reference

A Programmer’s Reference to XML, XPath,
XSLT, XML Schema, SOAP, and More

Aaron Skonnard
Martin Gudgin

Boston • San Francisco • New York • Toronto • Montreal
London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Skonnard.book Page v Monday, October 1, 2001 10:50 AM

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and Addison-Wes-
ley, Inc., was aware of a trademark claim, the designations have been printed in initial capital
letters or in all capitals.

The authors and publisher have taken care in the preparation of this book but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omissions.
No liability is assumed for incidental or consequential damages in connection with or arising
out of the use of the information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for special sales. For
more information, please contact

Pearson Education Corporate Sales Division
201 W. 103

rd

Street
Indianapolis, IN 46290
(800) 428-5331
corpsales@pearsoned.com

Visit AW on the Web:

www.aw.com/cseng/

Library of Congress Cataloging-in-Publication Data

Skonnard, Aaron
Essential XML Quick Reference : a programmer’s reference to XML, XPath, XSLT,
XML Schema, SOAP, and more / Aaron Skonnard, Martin Gudgin.

p. cm. — (The DevelopMentor series)
ISBN 0-201-74095-8
1. XML (Document markup language) I. Gudgin, Martin. II. Title. III. Series.

QA76.76.H94 S59 2001
005.7'2—d21

2001034105

Copyright © 2002 by Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher. Printed in the United
States of America. Published simultaneously in Canada.

0-201-74095-8
Text printed on recycled paper
1 2 3 4 5 6 7 8 9 10—ML—0504030201
First printing, October 2001

Skonnard.book Page vi Monday, October 1, 2001 10:50 AM

Praise for

Essential XML
Quick Reference

“I think it is a wonderfully clear and concise summary of a great deal of key XML
material. I expect it to find a well-thumbed home on my bookshelf.”

—Mary Holstege, PhD,

XML Architect, mathling.com, and W3C XML Schema Working Group Member

“This book is a unique collection of reference material on the most relevant XML-
related standards, which takes the important W3C recommendations and puts
them all in context. Something that definitely needs to be on every XML devel-
oper's desk!”

—Alexander Falk,

President and CEO of Altova, Inc. - The XML Spy Company

“

Essential XML Quick Reference

 proves that Aaron Skonnard and Martin Gudgin
can distill the essence of a very large, complicated topic like XML into easy to
understand, bite-sized pieces. It’s an invaluable asset!”

—Brad Wilson,

Principal Software Architect, Quality Software Development

“

Essential XML Quick Reference

 is one of the few printed references I would actu-
ally buy.”

—Don Box,

Series Editor, The DevelopMentor Series

“The full specification is quite verbose. Having the pocket reference makes life
simpler when it comes to the ‘What was the name of that element again?’ or ‘What
were the order of the parameters to that function?’ type questions. When I need a
quick, concise, answer, I don’t want to have to thumb through hundreds of pages
before getting the answer I need. This book is a very welcome, often relied upon,
addition to my developer tool belt.”

—Drew Marsh,

 Senior Architect, Mimeo.com, Inc.

Skonnard.book Page i Monday, October 1, 2001 10:50 AM

“I’ve read most of the documents regarding XML on the W3C site; the language
definitions and standardization jargon makes them unapproachable to most devel-
opers. This book makes the concepts make sense by giving concrete examples
showing the different syntax variations.

Essential XML Quick Reference

 is a com-
prehensive reference book that will bridge a gap that hasn’t been filled. Almost
anyone from basic to advanced skills will be able to use this book and I know I will
keep it within arm’s reach at work. It’s a source that I will be able to go to in order
to lookup subtle syntactic information that eludes me.”

—Justin Burtch,

Software Engineer, Integrated Data Systems

Skonnard.book Page ii Monday, October 1, 2001 10:50 AM

Aaron’s dedication:

To my son Nathan, for the glimpse of heaven that
you brought to my life

Martin’s dedication:

To Matthew and Sam, with love

Skonnard.book Page vii Monday, October 1, 2001 10:50 AM

Skonnard.book Page viii Monday, October 1, 2001 10:50 AM

ix

Chapter Contents

1 XML 1.0 and Namespaces

1

2 Document Type Definitions

15

3 XPath 1.0

35

4 XPointer, XInclude, and XML Base

69

5 XSL Transformations 1.0

85

6 SAX 2.0

159

7 DOM Level 2

193

8 XML Schema Datatypes

227

9 XML Schema Structures

287

10 SOAP 1.1

357

Skonnard.book Page ix Monday, October 1, 2001 10:50 AM

Skonnard.book Page x Monday, October 1, 2001 10:50 AM

xi

Detailed Contents

List of Acronyms

xxi

Preface

xxiii

Acknowledgments

xxv

1 XML 1.0 and Namespaces

1

1.1 Elements

1

1.2 Elements, namespaces, and namespace declarations

2

1.3 Attributes

5

1.4 Attributes and namespaces

6

1.5 Processing instructions

6

1.6 Comments

7

1.7 Whitespace

8

1.8 Prohibited character literals

9

1.9 CDATA sections

11

1.10 XML declaration

11

1.11 Character references

13

1.12 Well-formed XML

13

1.13 References

14

2 Document Type Definitions

15

2.1 Introduction to DTDs

15

2.2

DOCTYPE

15

2.2.1 Internal declarations

16

2.2.2 External declarations

17

2.2.3 Internal and external declarations

18

2.3

ELEMENT

19

2.4

ATTLIST

21

2.5

ENTITY

24

2.5.1 Internal parameter entities

25

2.5.2 External parameter entities

28

Skonnard.book Page xi Monday, October 1, 2001 10:50 AM

xii

Essential XML Quick Reference

2.5.3 Internal general entities

29

2.5.4 External general parsed entities

30

2.5.5 Unparsed entities

30

2.6

NOTATION

31

2.7

INCLUDE

 and

IGNORE

32

2.8 References

33

3 XPath 1.0

35

3.1 Introduction to XPath

35

3.2 Location path expressions

39

3.2.1 Location steps

40

3.2.2 Axis

41

3.2.3 Node test

44

3.2.3.1 Node test by name

44

3.2.3.2 Node test by type

45

3.2.4 Predicate

46

3.2.5 Location path abbreviations

47

3.3 Basic expressions

48

3.3.1 Boolean expressions

48

3.3.2 Equality expressions

48

3.3.3 Relational expressions

51

3.3.4 Numerical expressions

51

3.4 Core Function Library

52

3.4.1

boolean

53

3.4.2

ceiling

54

3.4.3

concat

55

3.4.4

contains

55

3.4.5

count

56

3.4.6

false

56

3.4.7

floor

56

3.4.8

id

57

3.4.9

lang

58

3.4.10

last

58

3.4.11

local-name

59

3.4.12

name

59

3.4.13 namespace-uri 60

3.4.14 normalize-space 60

3.4.15 not 61

Skonnard.book Page xii Monday, October 1, 2001 10:50 AM

Detailed Contents xiii

3.4.16 number 61

3.4.17 position 62

3.4.18 round 62

3.4.19 starts-with 63

3.4.20 string 63

3.4.21 string-length 64

3.4.22 substring 64

3.4.23 substring-after 65

3.4.24 substring-before 65

3.4.25 sum 66

3.4.26 translate 66

3.4.27 true 67

3.5 References 67

4 XPointer, XInclude, and XML Base 69

4.1 XPointer version 1.0 69

4.1.1 Full XPointers 70

4.1.2 Bare names 71

4.1.3 Child sequences 72

4.1.4 XPointer extensions to XPath 72

4.1.5 XPointer node tests 74

4.1.6 XPointer function library 74

4.1.6.1 end-point 74

4.1.6.2 here 75

4.1.6.3 origin 75

4.1.6.4 range 76

4.1.6.5 range-inside 77

4.1.6.6 range-to 77

4.1.6.7 start-point 78

4.1.6.8 string-range 78

4.2 XInclude 79

4.2.1 include 79

4.3 XML Base 81

4.3.1 xml:base 81

4.4 References 82

5 XSL Transformations 1.0 85

5.1 Introduction to XSLT programming 86

Skonnard.book Page xiii Monday, October 1, 2001 10:50 AM

xiv Essential XML Quick Reference

5.2 XSLT types and expressions 89

5.3 Patterns 90

5.4 Conflict resolution 91

5.5 Built-in templates 92

5.6 Exemplar-based transformation syntax 94

5.7 Attribute value templates 94

5.8 Whitespace 95

5.9 Element library 96

5.9.1 apply-imports 99

5.9.2 apply-templates 100

5.9.3 attribute 102

5.9.4 attribute-set 104

5.9.5 call-template 106

5.9.6 choose 107

5.9.7 comment 108

5.9.8 copy 109

5.9.9 copy-of 110

5.9.10 decimal-format 111

5.9.11 element 113

5.9.12 fallback 114

5.9.13 for-each 115

5.9.14 if 116

5.9.15 import 117

5.9.16 include 118

5.9.17 key 119

5.9.18 message 121

5.9.19 namespace-alias 122

5.9.20 number 124

5.9.21 otherwise 128

5.9.22 output 128

5.9.23 param 130

5.9.24 preserve-space 132

5.9.25 processing-instruction 133

5.9.26 sort 133

5.9.27 strip-space 135

5.9.28 stylesheet 136

5.9.29 template 136

5.9.30 text 140

Skonnard.book Page xiv Monday, October 1, 2001 10:50 AM

Detailed Contents xv

5.9.31 transform (stylesheet) 141

5.9.32 value-of 143

5.9.33 variable 144

5.9.34 when 147

5.9.35 with-param 148

5.10 XSLT function library 148

5.10.1 current 149

5.10.2 document 150

5.10.3 element-available 152

5.10.4 format-number 153

5.10.5 function-available 154

5.10.6 generate-id 155

5.10.7 key 155

5.10.8 system-property 156

5.10.9 unparsed-entity-uri 157

5.11 References 157

6 SAX 2.0 159

6.1 SAX UML quick reference 159

6.2 SAX interfaces and classes 161

6.2.1 Attributes 162

6.2.2 ContentHandler 166

6.2.3 DTDHandler 175

6.2.4 EntityResolver 177

6.2.5 ErrorHandler 179

6.2.6 Locator 181

6.2.7 XMLFilter 183

6.2.8 XMLReader 185

6.3 Features and properties 190

6.4 References 191

7 DOM Level 2 193

7.1 DOM UML 193

7.2 DOM interfaces 193

7.2.1 Attr 195

7.2.2 CDATASection 197

7.2.3 CharacterData 197

7.2.4 Comment 199

Skonnard.book Page xv Monday, October 1, 2001 10:50 AM

xvi Essential XML Quick Reference

7.2.5 Document 199

7.2.6 DocumentFragment 205

7.2.7 DocumentType 205

7.2.8 DOMImplementation 206

7.2.9 Element 207

7.2.10 Entity 211

7.2.11 EntityReference 212

7.2.12 NamedNodeMap 212

7.2.13 Node 215

7.2.14 NodeList 223

7.2.15 Notation 225

7.2.16 ProcessingInstruction 225

7.2.17 Text 226

7.3 References 226

8 XML Schema Datatypes 227

8.1 Datatype grouping 227

8.2 Datatypes 229

8.2.1 anyURI 229

8.2.2 base64Binary 231

8.2.3 boolean 232

8.2.4 byte 232

8.2.5 date 233

8.2.6 dateTime 234

8.2.7 decimal 235

8.2.8 double 236

8.2.9 duration 237

8.2.10 ENTITIES 238

8.2.11 ENTITY 239

8.2.12 float 240

8.2.13 gDay 241

8.2.14 gMonth 242

8.2.15 gMonthDay 242

8.2.16 gYear 243

8.2.17 gYearMonth 244

8.2.18 hexBinary 245

8.2.19 ID 245

8.2.20 IDREF 246

Skonnard.book Page xvi Monday, October 1, 2001 10:50 AM

Detailed Contents xvii

8.2.21 IDREFS 246

8.2.22 int 247

8.2.23 integer 248

8.2.24 language 249

8.2.25 long 250

8.2.26 Name 251

8.2.27 NCName 251

8.2.28 negativeInteger 252

8.2.29 NMTOKEN 253

8.2.30 NMTOKENS 253

8.2.31 nonNegativeInteger 254

8.2.32 nonPositiveInteger 255

8.2.33 normalizedString 256

8.2.34 NOTATION 257

8.2.35 positiveInteger 258

8.2.36 QName 259

8.2.37 short 259

8.2.38 string 260

8.2.39 time 261

8.2.40 token 262

8.2.41 unsignedByte 263

8.2.42 unsignedInt 264

8.2.43 unsignedLong 265

8.2.44 unsignedShort 266

8.3 Facets 267

8.3.1 enumeration 267

8.3.2 fractionDigits 268

8.3.3 length 269

8.3.4 maxExclusive 270

8.3.5 maxInclusive 271

8.3.6 maxLength 272

8.3.7 minExclusive 274

8.3.8 minInclusive 275

8.3.9 minLength 276

8.3.10 pattern 277

8.3.11 totalDigits 278

8.3.12 whiteSpace 279

Skonnard.book Page xvii Monday, October 1, 2001 10:50 AM

xviii Essential XML Quick Reference

8.4 Language constructs 280

8.4.1 simpleType 281

8.4.2 restriction 282

8.4.3 list 283

8.4.4 union 284

8.5 References 286

9 XML Schema Structures 287

9.1 Schema element groupings 287

9.2 Structures 290

9.2.1 all 291

9.2.2 annotation 293

9.2.3 any 293

9.2.4 anyAttribute 297

9.2.5 appinfo 300

9.2.6 attribute 301

9.2.7 attributeGroup 306

9.2.8 choice 307

9.2.9 complexContent 309

9.2.10 complexType 310

9.2.11 documentation 313

9.2.12 element 314

9.2.13 extension 320

9.2.14 field 324

9.2.15 group 325

9.2.16 import 327

9.2.17 include 329

9.2.18 key 330

9.2.19 keyref 333

9.2.20 notation 333

9.2.21 redefine 335

9.2.22 restriction 337

9.2.23 schema 340

9.2.24 selector 345

9.2.25 sequence 346

9.2.26 simpleContent 348

9.2.27 unique 349

Skonnard.book Page xviii Monday, October 1, 2001 10:50 AM

Detailed Contents xix

9.3 XML Schema structures: instance attributes 350

9.3.1 nil 350

9.3.2 noNamespaceSchemaLocation 351

9.3.3 schemaLocation 352

9.3.4 type 353

9.4 References 355

10 SOAP 1.1 357

10.1 Introduction to SOAP messages 357

10.2 Elements in SOAP messages 358

10.2.1 Body 358

10.2.2 Envelope 360

10.2.3 Fault 360

10.2.4 Header 363

10.3 Attributes in SOAP messages 364

10.3.1 actor 364

10.3.2 encodingStyle 365

10.3.3 mustUnderstand 366

10.4 Introduction to SOAP serialization rules 367

10.4.1 Serialization of simple structured data 369

10.4.2 Serialization of structured data with multiple references 371

10.4.3 Dealing with null references in complex data structures 372

10.4.4 Serializing dynamically typed data 374

10.4.5 Arrays 375

10.4.6 Multidimensional arrays 376

10.4.7 Partial transmission of arrays 377

10.4.8 Sparse arrays 378

10.4.9 Jagged arrays 379

10.5 Introduction to the SOAP HTTP binding 381

10.5.1 Content-Type 381

10.5.2 Content-Length 382

10.5.3 SOAPAction 383

10.6 References 383

Index 385

Skonnard.book Page xix Monday, October 1, 2001 10:50 AM

Skonnard.book Page xx Monday, October 1, 2001 10:50 AM

xxi

List of Acronyms

ASP Active Server Pages

API Application Programming Interface

BOM Byte Order Mark

CR Carriage Return

CSS Cascading Style Sheets

COM Component Object Model

UTC Coordinated Universal Time

DOM Document Object Model

DTD Document Type Definition

XML Extensible Markup Language

XSL Extensible Stylesheet Language

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IDL Interface Definition Language

ISO International Standards Organization

IETF Internet Engineering Task Force

JDK Java Development Kit

JSP Java Server Pages

LF Line Feed

MIME Multipurpose Internet Mail Extensions

Skonnard.book Page xxi Monday, October 1, 2001 10:50 AM

xxii Essential XML Quick Reference

NCName Non-colonized Name

OMG Object Management Group

QName Qualified Name

RPC Remote Procedure Call

RFC Request For Comments

SAX Simple API for XML

SOAP Simple Object Access Protocol

SQL Strutured Query Language

UTF Unicode Transformation Format

UML Unified Modelling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

URN Uniform Resource Name

UCS Universal Character Set

VB Visual Basic

WD Working Draft

W3C World Wide Web Consortium

XInclude XML Inclusions

Infoset XML Information Set

XLink XML Linking Language

XPointer XML Pointer Language

XSLT XSL Transformations

Skonnard.book Page xxii Monday, October 1, 2001 10:50 AM

xxiii

Preface

This book is for anyone working with today’s mainstream XML technologies. It
was specifically designed to serve as a handy but thorough quick reference that
answers the most common XML-related technical questions.

It goes beyond the traditional pocket reference design by providing complete cov-
erage of each topic along with plenty of meaningful examples. Each chapter pro-
vides a brief introduction, which is followed by the detailed reference information.
This approach assumes the reader has a basic understanding of the given topic.

The detailed outline (at the beginning), index (in the back), bleeding tabs (along
the side), and the page headers/footers were designed to help readers quickly
find answers to their questions.

Skonnard.book Page xxiii Monday, October 1, 2001 10:50 AM

Skonnard.book Page xxiv Monday, October 1, 2001 10:50 AM

xxv

Acknowledgments

Special thanks to all of the reviewers for their thoughtful comments and detailed
work, which has vastly improved this book. In particular, thanks to Mary Holstege,
Mark Fussell, Chris Lovett, Amit Misra, Alexander Falk, Reyes Ponce, Gary
Bushey, Drew Marsh, Brad Wilson, Robert Brunner, Greg Hack, Dan Sullivan,
Scott Bloom, Ranjiv Sharma, Tim Ewald, Stuart Halloway, and Don Box. Another
special thanks to Kristin Erickson, Stephane Thomas, and Patrick Peterson for
their outstanding editorial support throughout the project as well as to the rest of
the production staff at Addison Wesley whose hard work turned our vision into
reality. We couldn’t have done it without you.

We also thank our families and friends who have contributed in countless non-
technical ways. We couldn’t have done it without you either.

Skonnard.book Page xxv Monday, October 1, 2001 10:50 AM

Skonnard.book Page xxvi Monday, October 1, 2001 10:50 AM

1

XM
L

Chapter 1

XML 1.0 and Namespaces

XML 1.0 and Namespaces in XML provide a tag-based syntax for structuring data
and applying markups to documents. Documents that conform to XML 1.0 and
Namespaces in XML specifications may be made up of a variety of syntactic con-
structs such as elements, namespace declarations, attributes, processing instruc-
tions, comments, and text. This chapter provides a description of each of the
structural elements in XML along with their syntax.

1.1 Elements

<tagname></tagname>
<tagname/>
<tagname>children</tagname>

Elements typically make up the majority of the content of an XML document.
Every XML document has exactly one top-level element, known as the

document
element

. Elements have a name and may also have children. These children may
themselves be elements or may be processing instructions, comments, CDATA
sections, or characters. The children of an element are ordered. Elements may
also be annotated with attributes. The attributes of an element are unordered. An
element may also have namespace declarations associated with it. The namespace
declarations of an element are unordered.

Elements are serialized as a pair of tags: an open tag and a close tag. The syntax
for an open tag is the less-than character (

<

) immediately followed by the name of
the element, also known as the

tagname

, followed by the greater-than character
(

>

). The syntax for a close tag is the character sequence

</

 immediately followed
by the tagname, followed by the greater-than character. The children of an ele-
ment are serialized between the open and close tags of their parent. In cases
when an element has no children, the element is said to be

empty

. A shorthand
syntax may be used for empty elements consisting of the less-than character
immediately followed by the tagname, followed by the character sequence

/>

.

Skonnard.book Page 1 Monday, October 1, 2001 8:57 AM

2

Essential XML Quick Reference

XML does not define any element names; rather, it allows the designer of an XML
document to choose what names will be used. Element names in XML are case
sensitive and must begin with a letter or an underscore (

_

). The initial character
may be followed by any number of letters, digits, periods (

.

), hyphens (

-

), under-
scores, or colons (

:

). However, because colons are used as part of the syntax for
namespaces in XML, they should not be used except as described by that speci-
fication (see Section 1.2). Element names that begin with the character sequence

xml

, or any recapitalization thereof, are reserved by the XML specification for
future use.

Examples

An element with children

An element with a tagname of

Person

. The element has children with tagnames
of

name

 and

age

. Both of these child elements have text content.

An empty element

An empty element with a tagname of

Paid

Empty element shorthand

An empty element with a tagname of

Paid

 using the shorthand syntax

1.2 Elements, namespaces, and namespace declarations

<prefix:localname xmlns:prefix='namespace URI'/>
<prefix:localname xmlns:prefix='namespace URI'></

prefix:localname/>
<prefix:localname xmlns:prefix='namespace URI'>children</

prefix:localname/>

<Person>
 <name>Martin</name>
 <age>33</age>
</Person>

<Paid></Paid>

<Paid/>

Skonnard.book Page 2 Monday, October 1, 2001 8:57 AM

XML 1.0 and Namespaces

3

XM
L

Because XML allows designers to chose their own tagnames, it is possible that
two or more designers may choose the same tagnames for some or all of their
elements. XML namespaces provide a way to distinguish deterministically
between XML elements that have the same local name but are, in fact, from differ-
ent vocabularies. This is done by associating an element with a namespace. A
namespace acts as a scope for all elements associated with it. Namespaces
themselves also have names. A namespace name is a uniform resource identifier
(URI). Such a URI serves as a unique string and need not be able to be derefer-
enced. The namespace name and the local name of the element together form a
globally unique name known as a

qualified name

.

Namespace declarations appear inside an element start tag and are used to map
a namespace name to another, typically shorter, string known as a

namespace
prefix

. The syntax for a namespace declaration is

xmlns:prefix='URI'

. It is
also possible to map a namespace name to no prefix using a default namespace
declaration. The syntax for a default namespace declaration is

xmlns='URI'

. In
both cases, the URI may appear in single quotes (

'

) or double quotes (

"

). Only
one default namespace declaration may appear on an element. Any number of
nondefault namespace declarations may appear on an element, provided they all
have different prefix parts. It is legal, although not particularly useful, to map the
same URI to more than one prefix.

All namespace declarations have a scope—that is, a set of elements to which
they may apply. A namespace declaration is in scope for the element on which it
is declared and all of that element’s descendants. The in-scope mapping of a
given prefix to a namespace name can be overridden by providing a new mapping
for that prefix on a descendant element. The in-scope default namespace can be
overridden by providing a new default namespace declaration on a descendant
element.

The names of all elements in a document that conforms to the Namespaces in the
XML specification are QNames. Syntactically, all QNames have a local name and
an optional prefix. Both the local name and the prefix are NCNames. An NCName
is a name without a colon in it. The syntax for an element with a prefix is the pre-
fix, followed by a colon, followed by the local name. The namespace of an ele-
ment with a given prefix is the namespace specified by the in-scope namespace
declaration for that prefix. It is an error if no such namespace declaration is in
scope. The namespace of unprefixed elements is the namespace specified by the
in-scope default namespace declaration, if any. If no default namespace declara-
tion is in scope, then such elements are not in any namespace. Elements not in
any namespace are known as

unqualified elements

. The namespace name of

Skonnard.book Page 3 Monday, October 1, 2001 8:57 AM

4

Essential XML Quick Reference

unqualified elements is the empty string

""

. If a default namespace declaration is
in scope and an unqualified element is required, the default namespace declara-
tion can be masked by providing a namespace declaration of the form

xmlns=''

 on the element.

Examples

Qualified and unqualified elements

An element with a local name of

Person

 and a prefix of

pre

 that is mapped to
the namespace name

urn:example-org:People

. The element has children
with local names of

name

 and

age

. Both of these child elements are unqualified;
that is, they are not in any namespace.

Qualified and unqualified elements using a default namespace declaration

An element with a local name of

Person

 and no prefix. The element is in the
namespace

urn:example-org:People

 by virtue of an in-scope default
namespace declaration for that URI. The element has children with local names of

name

 and

age

. Both of these child elements are unqualified; that is, they are not
in any namespace. This example is equivalent to the previous example.

Qualified elements

An element with a local name of

Person

 and a prefix of

pre

 that is mapped to
the namespace URI

urn:example-org:People

. The element has children
with local names of

name

 and

age

. Both of these child elements also have a pre-
fix of

pre

 and are in the

urn:example-org:People

 namespace.

<pre:Person xmlns:pre='urn:example-org:People' >
 <name>Martin</name>
 <age>33</age>
</pre:Person>

<Person xmlns='urn:example-org:People' >
 <name xmlns=''>Martin</name>
 <age xmlns=''>33</age>
</Person>

<pre:Person xmlns:pre='urn:example-org:People' >
 <pre:name>Martin</pre:name>
 <pre:age>33</pre:age>
</pre:Person>

Skonnard.book Page 4 Monday, October 1, 2001 8:57 AM

XML 1.0 and Namespaces

5

XM
L

Qualified elements using a default namespace declaration

An element with a local name of

Person

 and no prefix. The element is in the
namespace

urn:example-org:People

 by virtue of an in-scope default
namespace declaration for that URI. The element has children with local names of

name

 and

age

. Both of these child elements are also in the

urn:example-
org:People

 namespace. This example is equivalent to the previous example.

1.3 Attributes

name='value'
name="value"

Elements can be annotated with attributes. Attributes can be used to encode
actual data or to provide metadata about an element—that is, provide extra infor-
mation about the content of the element on which they appear. The attributes for
a given element are serialized inside the start tag for that element. Attributes
appear as name/value pairs separated by an equal sign (

=

). Attribute names have
the same construction rules as element names. Attribute values are textual in
nature and must appear either in single quotes or double quotes. An element may
have any number of attributes, but they must all have different names.

Examples

Data attributes

A person represented using attributes rather than child elements

Metadata attributes

Some elements with metadata attributes

<Person xmlns='urn:example-org:People' >
 <name>Martin</name>
 <age>33</age>
</Person>

<Person name='Martin' age='33' />

<age base='16' units='years' >20</age>
<age base="10" units="years" >32</age>

Skonnard.book Page 5 Monday, October 1, 2001 8:57 AM

6

Essential XML Quick Reference

1.4 Attributes and namespaces

prefix:localname='value'
prefix:localname="value"

Attribute names are QNames. The namespace of an attribute with a given prefix is
the namespace specified by the in-scope namespace declaration for that prefix. It
is an error if no such namespace declaration is in scope. Unprefixed attributes
are not in any namespace even if a default namespace declaration is in scope.

Examples

Qualified attributes

An attribute with a local name of

base

 in the namespace

urn:example-
org:People:base

 and an attribute with a local name of

units

 in the
namespace

urn:example-org:units

Unqualified attributes

Attributes that are in no namespace, even though a default namespace declara-
tion is in scope

1.5 Processing instructions

<?target data?>

Processing instructions are used to provide information to the application pro-
cessing an XML document. Such information may include instructions on how to
process the document, how to display the document, and so forth. Processing

<Person xmlns='urn:example-org:People'
 xmlns:b='urn:example-org:People:base'
 xmlns:u='urn:example-org:units' >
 <name>Martin</name>
 <age b:base='10' u:units='years' >33</age>
</Person>

<Person xmlns='urn:example-org:People' >
 <name>Martin</name>
 <age base='10' units='years' >33</age>
</Person>

Skonnard.book Page 6 Monday, October 1, 2001 8:57 AM

XML 1.0 and Namespaces

7

XM
L

instructions can appear as children of elements. They can also appear as top-
level constructs (children of the document) either before or after the document
element.

Processing instructions are composed of two parts: the target or name of the
processing instruction and the data or information. The syntax takes the form

<?target data?>

. The target follows the same construction rules as for ele-
ment and attribute names. Apart from the termination character sequence (

?>),
all markup is ignored in processing instruction content. Processing instructions
defined by organizations other than the World Wide Web Consortium (W3C) may
not have targets that begin with the character sequence xml or any recapitaliza-
tion thereof.

Namespace declarations do not apply to processing instructions. Thus, creating
targets that are guaranteed to be unique is problematic.

Example
Processing instructions

Various processing instructions

1.6 Comments
<!-- comment text -->

XML supports comments that are used to provide information to humans about
the actual XML content. They are not used to encode actual data. Comments can
appear as children of elements. They can also appear as top-level constructs
(children of the document) either before or after the document element.

Comments begin with the character sequence <!-- and end with the character
sequence -->. The text of the comment is serialized between the start and the
end sequences. The character sequence -- may not appear inside a comment.
Other markup characters such as less than, greater than, and ampersand (&),
may appear inside comments but are not treated as markup. Thus, entity refer-
ences that appear inside comments are not expanded.

<?display table-view?>
<?sort alpha-ascending?>
<?textinfo whitespace is allowed ?>
<?elementnames <fred>, <bert>, <harry> ?>

Skonnard.book Page 7 Monday, October 1, 2001 8:57 AM

8 Essential XML Quick Reference

Examples
Legal comments

Some syntactically legal comments

Illegal comments

Some syntactically illegal comments

1.7 Whitespace
Whitespace characters in XML are space, tab, carriage return, and line feed char-
acters. XML requires that whitespace be used to separate attributes and
namespace declarations from each other and from the element tagname.
Whitespace is also required between the target and data portion of a processing
instruction and between the text portion of a comment and the closing comment
character sequence (-->) if that text ends with a hyphen (-). XML allows
whitespace inside element content, attribute values, processing instruction data,
and comment text. Whitespace is also allowed between an attribute name and the
equal character and between the equal character and the attribute value. The
same is true for namespace declarations. Whitespace is allowed between the tag-
name of an open or close tag and the ending character sequence for that tag.
Whitespace is not allowed between the opening less-than character and the ele-
ment tagname or between the prefix, colon, and local name of an element or
attribute. Nor is it allowed between the start processing instruction character
sequence <? and the target.

<!-- This is a comment about how to open (<![CDATA[) and
close (]]>) CDATA sections -->

<!-- I really like having elements called <fred> in my
markup languages -->

<!-- Comments can contain all sorts of character literals
including &, <, >, ' and". -->

<!-- If entities are used inside comments (< for
example) they are not expanded. -->

<!-- Comments cannot contain the -- character sequence -->
<!-- Comments cannot end with a hyphen --->
<!-- Comments cannot <!-- be nested --> -->

Skonnard.book Page 8 Monday, October 1, 2001 8:57 AM

XML 1.0 and Namespaces 9

XM
L

Examples
Legal use of whitespace

Whitespace used in various places in an XML document: between the tagname,
namespace declaration, attribute, and closing greater-than character on the top-
level element start tag, between each element, in the character content of the
seats and colour elements, between the tagname and the /> sequence of
the petrol element, between the tagname and the closing greater-than charac-
ter of the end tag for the engine element and the top-level element.

Illegal use of whitespace

Whitespace used incorrectly in various places in an XML document: between pre
and :Vehicle in the start tag of the top-level element, between xmlns: and
pre of the namespace declaration of the top-level element, between the opening
less-than character and seats in the start tag of the child element, and between
</ and seats in the end tag of the child element.

1.8 Prohibited character literals
<
&
>
'
"

<pre:Vehicle xmlns:pre='urn:example-org:Transport'
type='car' >

 <seats> 4 </seats>
 <colour> White </colour>
 <engine>
 <petrol />
 <capacity units='cc' >1598</capacity>
 </engine >
</pre:Vehicle >

<pre :Vehicle xmlns:pre='urn:example-org:Transport'
type='car'>

 < seats>4</ seats>
</pre:Vehicle>

Skonnard.book Page 9 Monday, October 1, 2001 8:57 AM

10 Essential XML Quick Reference

Certain characters cause problems when used as element content or inside
attribute values. Specifically, the less-than character cannot appear either as a
child of an element or inside an attribute value because it is interpreted as the
start of an element. The same restrictions apply to the ampersand because it is
used to indicate the start of an entity reference. If the less-than or ampersand
characters need to be encoded as element children or inside an attribute value,
then a character entity must be used. Entities begin with an ampersand and end
with a semicolon (;). Between the two, the name of the entity appears. The entity
for the less-than character is < the entity for the ampersand is &.

The apostrophe (') and quote characters (") may also need to be encoded as
entities when used in attribute values. If the delimiter for the attribute value is the
apostrophe, then the quote character is legal but the apostrophe character is not,
because it would signal the end of the attribute value. If an apostrophe is needed,
the character entity ' must be used. Similarly, if a quote character is
needed in an attribute value that is delimited by quotes, then the character entity
" must be used.

A fifth character reference is also provided for the greater-than character.
Although strictly speaking such characters seldom need to be “escaped,” many
people prefer to “escape” them for consistency with the less-than character.

Examples
Built-in entity in element content

Use of the built-in entity & inside element content

Built-in entity in attribute content

Use of the built-in entity ' inside attribute content

<IceCream>
 <name>Cherry Garcia</name>
 <manufacturer>Ben & Jerry</manufacturer>
</IceCream>

<sayhello word=''Hi'' />

Skonnard.book Page 10 Monday, October 1, 2001 8:57 AM

XML 1.0 and Namespaces 11

XM
L

1.9 CDATA sections
<![CDATA[text content possibly containing literal < or &

characters]]>

CDATA sections can be used to “block escape” literal text when replacing prohib-
ited characters with entity references is undesirable. CDATA sections can appear
inside element content and allow < and & character literals to appear. A CDATA
section begins with the character sequence <![CDATA[and ends with the char-
acter sequence]]>. Between the two character sequences, an XML processor
ignores all markup characters such as <, >, and &. The only markup an XML pro-
cessor recognizes inside a CDATA section is the closing character sequence
]]>. The character sequence that ends a CDATA section]]> must not appear
inside the element content. Instead, the closing greater-than character must be
escaped using the appropriate entity >. CDATA sections cannot be nested.

Example
CDATA section

Use of literal less-than characters in a CDATA section

1.10 The XML declaration
<?xml version='1.0' encoding='character encoding'

standalone='yes|no'?>

XML documents can contain an XML declaration that if present, must be the first
construct in the document. An XML declaration is made up of as many as three
name/value pairs, syntactically identical to attributes. The three attributes are a
mandatory version attribute and optional encoding and standalone
attributes. The order of these attributes within an XML declaration is fixed.

The XML declaration begins with the character sequence <?xml and ends with the
character sequence ?>. Note that although this syntax is identical to that for process-
ing instructions, the XML declaration is not considered to be a processing instruction.
All XML declarations have a version attribute with a value that must be 1.0.

<sometext>
<![CDATA[They're saying "x < y" & that "z > y" so I guess

that means that z > x]]>
</sometext>

Skonnard.book Page 11 Monday, October 1, 2001 8:57 AM

12 Essential XML Quick Reference

The character encoding used for the document content can be specified through
the encoding attribute. XML documents are inherently Unicode, even when stored
in a non-Unicode character encoding. The XML recommendation defines several pos-
sible values for the encoding attribute. For example, UTF-8, UTF-16, ISO-10646-
UCS-2, and ISO-10646-UCS-4 all refer to Unicode/ISO-10646 encodings, whereas
ISO-8859-1 and ISO-8859-2 refer to 8-bit Latin character encodings. Encodings for
other character sets including Chinese, Japanese, and Korean characters are
also supported. It is recommended that encodings be referred to using the encod-
ing names registered with the Internet Assigned Numbers Authority (IANA).

All XML processors are required to be able to process documents encoded using
UTF-8 or UTF-16, with or without an XML declaration. The encoding of UTF-8- and
UTF-16-encoded documents is detected using the Unicode byte-order-mark. The XML
declaration is mandatory if the encoding of the document is anything other than
UTF-8 or UTF-16. In practice, this means that documents encoded using US-ASCII
can also omit the XML declaration because US-ASCII overlaps entirely with UTF-8.

Only one encoding can be used for an entire XML document. It is not possible to
“redefine” the encoding part of the way through. If data in different encodings
needs to be represented, then external entities should be used.

If an XML document can be read with no reference to external sources, it is said
to be a stand-alone document. Such documents can be annotated with a stan-
dalone attribute with a value of yes in the XML declaration. If an XML document
requires external sources to be resolved to parse correctly and/or to construct
the entire data tree (for example, a document with references to external general
entities), then it is not a stand-alone document. Such documents may be marked
standalone='no', but because this is the default, such an annotation rarely
appears in XML documents.

Example
XML declarations

<?xml version='1.0' ?>
<?xml version='1.0' encoding='US-ASCII' ?>
<?xml version='1.0' encoding='US-ASCII' standalone='yes' ?>
<?xml version='1.0' encoding='UTF-8' ?>
<?xml version='1.0' encoding='UTF-16' ?>
<?xml version='1.0' encoding='ISO-10646-UCS-2' ?>
<?xml version='1.0' encoding='ISO-8859-1' ?>
<?xml version='1.0' encoding='Shift-JIS' ?>

Skonnard.book Page 12 Monday, October 1, 2001 8:57 AM

XML 1.0 and Namespaces 13

XM
L

1.11 Character references
&#DecimalUnicodeValue;
&#xHexadecimalUnicodeValue;

Many character encodings cannot natively represent the full range of ISO-10646
characters. When an XML document contains characters that cannot be represented
natively in the chosen encoding, then these nonrepresentable characters must be
written as character references. Character references begin with the character
sequence &# followed by the ISO-10646 value of the character to be written in
either decimal or hexadecimal form. If the character value is represented in hexa-
decimal form, then it must be preceded by an x. Character references end with ;.

Character references can only be used for attribute and element content. Nonrep-
resentable characters appearing as part of element or attribute names or as part
of processing instructions or comments cannot be written using character refer-
ences; rather, a more suitable encoding must be used instead.

Example
Character references

Character references appearing in element and attribute content

1.12 Well-formed XML
All XML must be well formed. A well-formed XML document is one in which, in
addition to all the constructs being syntactically correct, there is exactly one top-
level element, all open tags have a corresponding close tag or use the empty element
shorthand syntax, and all tags are correctly nested (that is, close tags do not
overlap). In addition, all the attributes of an element must have different names. If
attributes are namespace qualified then the combination of namespace name and
local name must be different. Similarly, all the namespace declarations of an ele-
ment must be for different prefixes. All namespace prefixes used must have a cor-
responding namespace declaration that is in scope.

<?xml version='1.0' encoding='US-ASCII' ?>
<Personne occupation='étudiant' >
 <nom>Martin</nom>
 <langue>Français</langue>
</Personne>

Skonnard.book Page 13 Monday, October 1, 2001 8:57 AM

14 Essential XML Quick Reference

Examples
Well-formed XML

A well-formed XML document

XML that is not well formed

An XML document that is not well formed because it has two top-level elements,
the and <i> tags inside the age element overlap, the height element has
duplicate unqualified attribute names, the weight element has duplicate quali-
fied attribute names, and the namespace prefix p is not in scope

1.13 References
Extensible Markup Language (XML) 1.0 (Second Edition).
Available at http://www.w3.org/TR/REC-xml. Tim Bray et al. October, 2000.

Namespaces in XML.
Available at http:// www.w3.org/TR/REC-xml/-names. Tim Bray et al. 1998, 2000.

<?xml version='1.0' encoding='UTF-8' ?>
<p:Person xmlns:p='urn:example-org:People' >
 <name>Martin</name>
 <!-- Young and spritely -->
 <age>33</age>
 <height units='inches' >64</height>
</p:Person>

<?xml version='1.0' encoding='UTF-8' ?>
<p:Person>
 <name>Martin</name>
 <age value='33' >A young <i>and</i> spritely

person</age>
 <height units='inches' units='in'>64</height>
 <weight xmlns:x1='urn:example-org:People'

xmlns:x2='urn:example-org:People'
x1:units='stone' x2:units='shekels' >10</weight>

</p:Person>
<p:Person/>

Skonnard.book Page 14 Monday, October 1, 2001 8:57 AM

15

D
TD

Chapter 2

Document Type Definitions

Document type definitions (DTDs) serve two general purposes. They provide the
syntax for describing/constraining the logical structure of a document, and com-
posing a logical document from physical entities. Element/attribute declarations
are used to deal with the former, and entity/notation declarations are used to
accomplish the latter.

2.1 Introduction to DTDs

DTDs contain several types of declarations including

DOCTYPE

,

ENTITY

,

NOTA-
TION

,

ELEMENT

, and

ATTLIST

.

ENTITY

 and

NOTATION

 declarations are used
to compose the logical structure of the document, whereas

ELEMENT

 and

ATTLIST

 declarations are used to describe/constrain the details of the resulting
logical structure (for example, what elements are allowed as children of a

person

element, and so on). In addition to these declarations, DTDs may also contain
comments and processing instructions.

The rest of this chapter defines the details of each type of declaration and pro-
vides examples of each.

2.2

DOCTYPE

<!DOCTYPE ... >

The

DOCTYPE

 declaration is the container for all other DTD declarations. It’s
placed at the top of an XML document to associate the given document with a set
of declarations. The

name

 of the

DOCTYPE

 must be the same as the name of the
document’s root element.

DOCTYPE

 is not used in external DTDs, but rather in
XML document instances that contain or reference a DTD.

Skonnard.book Page 15 Monday, October 1, 2001 8:57 AM

16

Essential XML Quick Reference

DOCTYPE

 may contain internal declarations (referred to as the

internal DTD sub-
set

), may refer to declarations in external files (referred to as the

external DTD
subset

), or may use a combination of both techniques. Figure 2–1 illustrates the

DOCTYPE

 syntax for each approach.

The following subsections outline the syntax for each technique.

2.2.1 Internal declarations

<!DOCTYPE name [
 <!-- insert declarations here -->
]>

Description

The simplest way to define a DTD is through internal declarations. In this case, all
declarations are simply placed between the open/close square brackets. The
obvious downside to this approach is that you can’t reuse the declarations across
different XML document instances.

Example

Using internal declarations

Figure 2–1

DOCTYPE

 syntax.

<!DOCTYPE name [

ext ID

>

must match
document
element

]decls

internal
declarations

PUBLIC

SYSTEM

"publicId"

"systemId"

references external DTD

ext ID

<!DOCTYPE person [
 <!-- internal subset -->
 <!ELEMENT person (name, age)>
 <!ELEMENT name (#PCDATA)>

Skonnard.book Page 16 Monday, October 1, 2001 8:57 AM

D
TD

Document Type Definitions

17

2.2.2 External declarations

<!DOCTYPE name PUBLIC "publicId" "systemId">

<!DOCTYPE name SYSTEM "systemId">

Description

DOCTYPE

 can also contain a reference to an external resource containing the
declarations. This type of declaration is useful because it allows you to reuse the
declarations in multiple document instances. The

DOCTYPE

 declaration refer-
ences the external resource through public and system identifiers.

A system identifier is a URI that identifies the location of the resource; a public
identifier is a location-independent identifier. Processors can use the public identi-
fier to determine how to retrieve the physical resource if necessary. As an exam-
ple, some processors are built to recognize certain public identifiers to avoid ever
having to dereference their associated system identifiers. This allows processors
to cache a set of well-known entities for better performance.

The

PUBLIC

 token identifies a public identifier followed by a backup system iden-
tifier. If you don’t wish to use a public identifier, simply use the

SYSTEM

 token fol-
lowed by the system identifier.

Examples

Using external declarations (public identifier)

 <!ELEMENT age (#PCDATA)>
]>
<person>
 <name>Billy Bob</name>
 <age>33</age>
</person>

<!-- person.dtd -->
<!ELEMENT person (name, age)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT age (#PCDATA)>

<!-- person.xml -->
<!DOCTYPE person PUBLIC

Skonnard.book Page 17 Monday, October 1, 2001 8:57 AM

18

Essential XML Quick Reference

Using external declarations (system identifier)

2.2.3 Internal and external declarations

<!DOCTYPE name PUBLIC "publicId" "systemId" [
 <!-- insert declarations here -->
]>

<!DOCTYPE name SYSTEM "systemId" [
 <!-- insert declarations here -->
]>

Description

A

DOCTYPE

 declaration can also use both the internal and external declarations.
This is useful when you’ve decided to use external declarations but you need to
extend them further or override certain external declarations. (Note: only

ENTITY

 and

ATTLIST

 declarations may be overridden.) See Section 2.5 for an
example of overriding

ENTITY

 declarations.

 "uuid:d2d19398-4be3-4928-a0fc-26d572a19f39"
 "http://www.develop.com/people/person.dtd">
<person>
 <name>Billy Bob</name>
 <age>33</age>
</person>

<!-- person.dtd -->
<!ELEMENT person (name, age)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT age (#PCDATA)>

<!-- person.xml -->
<!DOCTYPE person SYSTEM "person.dtd">
<person>
 <name>Billy Bob</name>
 <age>33</age>
</person>

Skonnard.book Page 18 Monday, October 1, 2001 8:57 AM

D
TD

Document Type Definitions

19

Example

Using both internal and external declarations

2.3

ELEMENT

<!ELEMENT name content-model>

An

ELEMENT

 declaration defines an element of the specified name with the spec-
ified content model. The content model defines the element’s allowed children. A
content model can consist of a keyword

ANY/EMPTY

 or a child group definition
enclosed within parentheses. Parentheses may be nested to create additional
groups within groups.

Content model basics

There is also a set of occurrence modifiers that can be used to control how many
times a particular child or group occurs in the content model.

<!-- globals.dtd -->
<!ELEMENT name (#PCDATA)>
<!ELEMENT age (#PCDATA)>

<!-- person.xml -->
<!DOCTYPE person SYSTEM "globals.dtd" [
 <!ELEMENT person (name, age)>
]>
<person>
 <name>Billy Bob</name>
 <age>33</age>
</person>

Syntax Description

ANY

Any child is allowed within the element.

EMPTY

No children are allowed within the element.

(#PCDATA)

Only text is allowed within the element.

(child1,child2,...)

Only the specified children in the order given are
allowed within the element.

(child1|child2|...)

Only one of the specified children is allowed within the
element.

Skonnard.book Page 19 Monday, October 1, 2001 8:57 AM

20

Essential XML Quick Reference

Occurrence modifiers

A mixed content model is a special declaration that allows a mixture of text and
child elements in any order. Mixed content models must use the following syntax:

<!ELEMENT name (#PCDATA | child1 | child2 | ...)*>

Examples

Element and text content models

Syntax Description

No modifier means the child or child group must appear exactly once at
the specified location (except in a choice content model).

*

Annotated child or child group may appear zero or more times at the
specified location.

+

Annotated child or child group may appear one or more times at the
specified location.

?

Annotated child or child group may appear zero or one time at the spec-
ified location.

<!-- person.dtd -->
<!ELEMENT person (name, age, children?)>
<!ELEMENT name (fname, (mi|mname)?, lname)?>
<!ELEMENT fname (#PCDATA)>
<!ELEMENT lname (#PCDATA)>
<!ELEMENT mi (#PCDATA)>
<!ELEMENT mname (#PCDATA)>
<!ELEMENT age (#PCDATA)>
<!ELEMENT children (person*)>

<!-- person.xml -->
<!DOCTYPE person SYSTEM "person.dtd">
<person>
 <name>
 <fname>Billy</fname>
 <lname>Smith</lname>
 </name>
 <age>43</age>
 <children>
 <person>
 <name/>
 <age>0.1</age>

Skonnard.book Page 20 Monday, October 1, 2001 8:57 AM

D
TD

Document Type Definitions

21

Mixed content model

2.4

ATTLIST

<!ATTLIST eName aName1 aType default
 aName2 aType default ...>

An

ATTLIST

 declaration defines the set of attributes that is allowed on a given
element. Each attribute in the set has a name, type, and default declaration. The
following sections describe attribute types and default declarations.

Attribute types

Attribute types make it possible to constrain the attribute value in different ways.
See the following list of type identifiers for details.

 </person>
 <person>
 <name>
 <fname>Jill</fname>
 <mi>J</mi>
 <lname>Smith</lname>
 </name>
 <age>21</age>
 </person>
 </children>
</person>

<!-- p.dtd -->
<!ELEMENT p (#PCDATA | b | i)*>
<!ELEMENT b (#PCDATA)>
<!ELEMENT i (#PCDATA)>

<!-- p.xml -->
<!DOCTYPE p SYSTEM "p.dtd">
<p>This <i>is</i> an example of <i>mixed</i>
<i>content</i>!</p>

Type Description

CDATA

Arbitrary character data

ID

A name that is unique within the document

Skonnard.book Page 21 Monday, October 1, 2001 8:57 AM

22

Essential XML Quick Reference

Default declarations

After the attribute type, you must specify either a default value for the attribute or
a keyword that specifies whether it is required.

Attribute enumerations

<!ATTLIST eName aName (token1 | token2 | token3 | ...)>
<!ATTLIST eName aName NOTATION (token1 | token2 | token3 |

...)>

It’s also possible to define an attribute as an enumeration of tokens. The tokens
may be of type

NMTOKEN

 or

NOTATION

. In either case, the attribute value must
be one of the specified enumerated values.

Examples
Using attribute types

IDREF A reference to an ID value in the document

IDREFS A space-delimited list of IDREF values

ENTITY The name of an unparsed entity declared in the DTD

ENTITIES A space-delimited list of ENTITY values

NMTOKEN A valid XML name (see Chapter 1)

NMTOKENS A space-delimited list of NMTOKEN values

Type Description

Declaration Description

"value" Default value for attribute. If the attribute is not explicitly used
on the given element, it will still exist in the logical document
with the specified default value.

#REQUIRED Attribute is required on the given element.

#IMPLIED Attribute is optional on the given element.

#FIXED "value" Attribute always has the specified fixed value. It may be used
on the given element but it must have the specified fixed value.
If the attribute is not explicitly used on the given element, it will
still exist in the logical document with the specified fixed value.

<!-- emp.dtd -->
<!ELEMENT employees (employee*)>
<!ELEMENT employee (#PCDATA)>

Skonnard.book Page 22 Monday, October 1, 2001 8:57 AM

D
TD

Document Type Definitions 23

Using attribute enumerations

<!ATTLIST employee
 name CDATA #REQUIRED
 species NMTOKEN #FIXED "human"
 id ID #REQUIRED
 mgr IDREF #IMPLIED
 manage IDREFS #IMPLIED>

<!-- emp.xml -->
<!DOCTYPE employees SYSTEM "emp.dtd">
<employees>
 <employee name="Billy Bob" id="e100" manage="e101 e102"/>
 <employee name="Jesse Jim" id="e101" mgr="e100"/>
 <employee name="Sarah Sas" id="e102" mgr="e100"
 manage="e103" species="human"/>
 <employee name="Nikki Nak" id="e103" mgr="e102"/>
 <employee name="Peter Pan" id="e104"/>
</employees>

<!-- emp.dtd -->
<!ELEMENT employee (address)>
<!-- NMTOKEN enumeration -->
<!ATTLIST employee
 title (president|vice-pres|secretary|sales)

 #REQUIRED>
<!ELEMENT address (#PCDATA)>
<!-- NOTATION enumeration -->
<!ATTLIST address
 format NOTATION (cs|lf) "cs">
<!NOTATION cs PUBLIC "urn:addresses:comma-separated">
<!NOTATION lf PUBLIC "urn:addresses:line-breaks">

<!-- emp.xml -->
<!DOCTYPE employee SYSTEM "emp.dtd">
<employee title='vice-pres'>
 <!-- notation informs consuming application how to
 process element content -->
 <address format='cs'>1927 N 52 E, Layton, UT, 84041

</address>
</employee>

Skonnard.book Page 23 Monday, October 1, 2001 8:57 AM

24 Essential XML Quick Reference

2.5 ENTITY
<!ENTITY ... >

Entities are the most atomic unit of information in XML. Entities are used to con-
struct logical XML documents (as well as DTDs) from physical resources. An XML
document that contains a DOCTYPE declaration is known as the document entity.
There are several other types of entities, each of which is declared using an
ENTITY declaration. A given entity is either general or parameter, internal or
external, and parsed or unparsed:

General versus parameter entities

Internal versus external entities

Parsed versus unparsed entities

All of these are declared using an ENTITY declaration. Figure 2–2 illustrates how
the syntax varies for each type:

General Entity may only be referenced in an XML document (not the DTD).

Parameter Entity may only be referenced in a DTD (not the XML document).

Internal Entity value defined inline.

External Entity value contained in an external resource.

Parsed Entity value parsed by a processor as XML/DTD content.

Unparsed Entity value not parsed by XML processor.

Figure 2–2 ENTITY syntax.

<!ENTITY
%

name

"value "

ext ID

NDATA nname

>

unparsed (must be
general)

parsed
internal

general

parameter

parsed

PUBLIC

SYSTEM

"publicId"

"systemId"

external

ext ID

Skonnard.book Page 24 Monday, October 1, 2001 8:57 AM

D
TD

Document Type Definitions 25

As you can see from Figure 2–2, unparsed entities are always general and exter-
nal whereas parameter/internal entities are always parsed. In reality, there are
only five distinct entity types (besides the document entity), each of which is
defined in more detail in the following subsections. Note that although the syntax
for external entities only shows using a system identifier, public identifiers may
also be used as shown in Figure 2–2.

Distinct entity types

The previous syntax is for declaring entities. Once an entity has been declared, it
can be used in either the DTD (parameter) or the XML document (general) through
an entity reference. The following table shows the syntax for entity references:

Entity references

2.5.1 Internal parameter entities

<!ENTITY % name "value">

Description
Internal parameter entities are used to parameterize portions of the DTD (for
example, other declarations) or they can contain one or more complete declara-
tions. Internal parameter entities are always parsed. A reference to an internal
parameter entity (%name;) is replaced with the parsed content.

Syntax Description

<!ENTITY % name "value"> Internal parameter

<!ENTITY % name SYSTEM "systemId"> External parameter

<!ENTITY name "value"> Internal general

<!ENTITY name SYSTEM "systemId"> External parsed general

<!ENTITY name SYSTEM "systemId" NDATA nname> Unparsed

Syntax Description

&name; General

%name; Parameter

Name is used as the value of an attribute of type ENTITY or
ENTITIES (see Section 2.4)

Unparsed

Skonnard.book Page 25 Monday, October 1, 2001 8:57 AM

26 Essential XML Quick Reference

Parameter entities may not be referenced within other declarations in the internal
subset but they may be used in place of a complete declaration. This does not
apply to the external subset, however, in which parameter entities may also be
referenced within other declarations. Parameter entities may be referenced within
ELEMENT, ATTRIBUTE, NOTATION, and even other ENTITY declarations. It’s
common to override parameter entities defined in the external subset with decla-
rations in the internal subset (see the following example).

When parameter entity references are expanded, they are enlarged by attaching
one leading and trailing space character to the entity value, except when parame-
ter entities are referenced within other entity values. As a result, parameter entity
references may not be used as part of a name (because XML names may not con-
tain whitespace) as shown here:

<!ELEMENT %prefix;:person (child1, child2)> <!-- illegal -->

But they may be used to parameterize a complete name, as shown here:

<!ELEMENT %completeName; (child1, child2)> <!-- legal -->

Examples
Parameter entities in the internal subset

Parameter entities in the external subset

<!DOCTYPE person [
 <!ELEMENT person (name)>
 <!ENTITY % nameDecl "<!ELEMENT name (#PCDATA)>">
 <!-- parameter entity expands to
 complete declaration -->
 %nameDecl;
]>
<person><name>Billy Bob</name></person>

<!-- person.dtd -->
<!ENTITY % person-content "name, age">
<!ELEMENT person (%person-content;)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT age (#PCDATA)>

<!-- person1.xml -->
<!DOCTYPE person SYSTEM "person.dtd">

Skonnard.book Page 26 Monday, October 1, 2001 8:57 AM

D
TD

Document Type Definitions 27

This example illustrates how the person element’s content model can be speci-
fied through the person-content parameter entity.

Parameterizing an external DTD with respect to namespace prefixes

<person>
 <name>Billy Bob</name>
 <age>33</age>
</person>

<!-- person2.xml -->
<!DOCTYPE person SYSTEM "person.dtd" [
 <!-- change person's content model -->
 <!ENTITY % person-content "age, name">
]>
<person>
 <age>33</age>
 <name>Billy Bob</name>
</person>

<!-- person.dtd -->
<!ENTITY % prefix "p">
<!ENTITY % personName "%prefix;:person">
<!ENTITY % nameName "%prefix;:name">
<!ENTITY % ageName "%prefix;:age">
<!ENTITY % xmlnsPerson "xmlns:%prefix;">
<!ELEMENT %personName; (%nameName;, %ageName;)>
<!ATTLIST %personName;
 %xmlnsPerson; CDATA #REQUIRED>
<!ELEMENT %nameName; (#PCDATA)>
<!ELEMENT %ageName; (#PCDATA)>

<!-- person1.xml -->
<!DOCTYPE p:person SYSTEM "person.dtd">
<p:person xmlns:p='urn:person:demo'>
 <p:name>Billy Bob</p:name>
 <p:age>33</p:age>
</p:person>

<!-- person2.xml -->
<!DOCTYPE x:person SYSTEM "person.dtd" [
 <!-- override the prefix to be 'x' -->

Skonnard.book Page 27 Monday, October 1, 2001 8:57 AM

28 Essential XML Quick Reference

This external DTD was designed for a person document that uses namespace
prefixes. Because the actual namespace prefix used doesn’t matter, it has been
defined as a parameter entity that is then used to construct the other names used
in the DTD. By default, the prefix is expected to be 'p'. However, a given
instance document can override its value by providing a new declaration for the
prefix parameter entity.

2.5.2 External parameter entities

<!ENTITY % name PUBLIC "publicId" "systemId">

<!ENTITY % name SYSTEM "systemId">

Description
External parameter entities are used to include declarations from external
resources. External parameter entities are always parsed. A reference to an
external parameter entity (%name;) is replaced with the parsed content. The
restrictions on where internal parameter entity references are used also apply to
external parameter entity references (see previous section for more details).

Example
Using external parameter entities

 <!ENTITY % prefix "x">
]>
<x:person xmlns:x='urn:person:demo'>
 <x:name>Billy Bob</x:name>
 <x:age>33</x:age>
</x:person>

<!-- person-decls.dtd -->
<!ELEMENT person (name, age)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT age (#PCDATA)>

<!-- person.xml -->
<!DOCTYPE person [
 <!ENTITY % decls SYSTEM "person-decls.dtd">
 %decls;

Skonnard.book Page 28 Monday, October 1, 2001 8:57 AM

D
TD

Document Type Definitions 29

This example uses an external parsed entity (decls) to include the set of decla-
rations that are contained in person-decls.dtd.

2.5.3 Internal general entities

<!ENTITY name "value">

Description
Internal general entities always contain parsed XML content. The parsed content
is placed in the logical XML document everywhere it’s referenced (&name;).

Example
Using internal general entities

The resulting logical document could be serialized as follows:

]>
<person>
 <name>Billy Bob</name>
 <age>33</age>
</person>

<!DOCTYPE person [
 <!ENTITY n "<fname>Billy</fname><lname>Smith</lname>">
 <!ENTITY a "<age>33</age>">
]>
<person>
 <name>&n;</name>
 &a;
</person>

<person>
 <name>
 <fname>Billy</fname>
 <lname>Smith</lname>
 </name>
 <age>33</age>
</person>

Skonnard.book Page 29 Monday, October 1, 2001 8:57 AM

30 Essential XML Quick Reference

2.5.4 External general parsed entities

<!ENTITY name PUBLIC "publicId" "systemId">

<!ENTITY name SYSTEM "systemId">

Description
External general parsed entities are used the same way as internal general enti-
ties except for the fact that they aren’t defined inline. They always contain parsed
XML content that becomes part of the logical XML document wherever it’s refer-
enced (&name;).

Example
Using external general parsed entities

The result of this example would be the same as the previous example, assuming
that the name.xml and age.xml files contain the same content as the inline
definitions used in the previous example. Notice that name.xml wouldn’t be a
well-formed XML document (although it is a well-formed external entity), but the
resulting document is indeed well-formed.

2.5.5 Unparsed entities

<!ENTITY name PUBLIC "publicId" "systemId" NDATA nname>

<!ENTITY name SYSTEM "systemId" NDATA nname>

Description
Unparsed entities make it possible to attach arbitrary binary resources to an XML
document. Unparsed entities are always general and external. They simply point

<!DOCTYPE person [
 <!ENTITY n SYSTEM "name.xml">
 <!ENTITY a SYSTEM "age.xml">
]>
<person>
 <name>&n;</name>
 &a;
</person>

Skonnard.book Page 30 Monday, October 1, 2001 8:57 AM

D
TD

Document Type Definitions 31

to a resource via the resource’s public or system identifier. It’s up to the consum-
ing application to dereference and process the resource at the appropriate time.
Because unparsed entities can reference any binary resource, applications require
additional information to determine the resource’s type. The notation name (nname)
provides exactly this type of information (see Section 2.6 for more details).

Because unparsed entities don’t contain XML content, they aren’t referenced the
same way as other general entities (&name;), but rather through an attribute of
type ENTITY/ENTITIES.

Example
Using unparsed entities

2.6 NOTATION
<!NOTATION name PUBLIC "publicId">

<!NOTATION name PUBLIC "publicId" "systemId">

<!NOTATION name SYSTEM "systemId">

Notation declarations associate a name with a type identifier, which can be either
a public or a system identifier. The actual type identifiers are application specific,
although it’s common to see MIME types used within public identifiers. Unparsed
entities are associated with notation names to associate type with the referenced
binary resource.

Example
Using NOTATIONs with unparsed entities

<!DOCTYPE person [
 <!ELEMENT person (#PCDATA)>
 <!ATTLIST person photo ENTITY #REQUIRED>
 <!ENTITY imgEntity SYSTEM "aaron.gif" NDATA pic>
 <!NOTATION pic PUBLIC "urn:mime:img/gif">
]>
<person photo='imgEntity'>Aaron</person>

<!DOCTYPE person [
 <!-- person declarations -->

Skonnard.book Page 31 Monday, October 1, 2001 8:57 AM

32 Essential XML Quick Reference

2.7 INCLUDE and IGNORE
<![INCLUDE[
 ...
]]>
<![IGNORE[
 ...
]]>

There are two conditional statements, INCLUDE and IGNORE, that may be used
to control what declarations are processed as part of the DTD at a given point in
time. Declarations within INCLUDE blocks are included in the DTD whereas dec-
larations within IGNORE blocks are ignored. When used in conjunction with a
parameter entity, it's possible for instance documents to control what sections of
the DTD are included or ignored (see the following example).

Example
Using INCLUDE and IGNORE

 <!ELEMENT person (#PCDATA)>
 <!ATTLIST person bio ENTITY #REQUIRED>
 <!ENTITY bioEntity SYSTEM "aaron.htm" NDATA html>
 <!NOTATION html PUBLIC "urn:mime:text/html">
]>
<person bio="bioEntity">Aaron</person>

<!-- person.dtd -->
<!ENTITY % v1 'INCLUDE' >
<!ENTITY % v2 'IGNORE' >

<![%v1;[
<!ELEMENT person (fname, lname, age)>
]]>
<![%v2;[
<!ELEMENT person (name, age)>
<!ELEMENT name (fname, lname)>
]]>

<!-- person-v1.xml -->
<!DOCTYPE person SYSTEM "person.dtd">

Skonnard.book Page 32 Monday, October 1, 2001 8:57 AM

D
TD

Document Type Definitions 33

This example allows users to switch easily between person content models by
changing the values of the v1/v2 parameter entities.

2.8 References
Extensible Markup Language (XML) 1.0 (Second Edition) Recommendation.
Available at http://www.w3.org/TR/REC-xml. Tim Bray et al. October 2000.

Tim Bray's Annotated XML 1.0 Specification.
Available at http://www.xml.com/axml/testaxml.htm.

XML Information Set.
Available at http://www.w3.org/TR/xml-infoset.

<person>
 <fname>Billy</fname>
 <lname>Bob</lname>
 <age>33</age>
</person>

<!-- person-v2.xml -->
<DOCTYPE person SYSTEM "person.dtd" [
 <!-- toggle values for v2 content model -->
 <!ENTITY % v1 'IGNORE'>
 <!ENTITY % v2 'INCLUDE'>
]>
<person>
 <name>
 <fname>Billy</fname>
 <lname>Bob</lname>
 </name>
 <age>33</age>
</person>

Skonnard.book Page 33 Monday, October 1, 2001 8:57 AM

Skonnard.book Page 34 Monday, October 1, 2001 8:57 AM

35

XP
at

h

Chapter 3

XPath 1.0

The XML Path Language version 1.0 (XPath) defines the W3C-sanctioned syntax
for addressing parts of an XML document. XPath expressions are evaluated
against a document’s logical tree structure to identify a set of nodes (for example,
elements, attributes, text, and so on).

This layer of abstraction shields developers from the complexity of a document’s
physical structure and greatly simplifies processing. After a brief introduction, this
chapter presents the syntax for building XPath expressions.

3.1 Introduction to XPath

XPath defines a

tree model

 against which all expressions are evaluated. The
XPath tree model codifies the logical structure of an XML document, which has
since been formally defined as the XML Information Set (Infoset). Figure 3–1 illus-
trates the XPath tree model.

Most XPath expressions identify a set of nodes in the tree. For example, the fol-
lowing XPath expression identifies the two

price

 elements:

/invoice/item/price

This type of expression is called a

location path

. Location path expressions look
like file system paths only they navigate through the XPath tree model to identify
a set of nodes (known as a

node-set

).

Because XPath is an abstract language, it can be used in many environments. It’s
heavily used throughout XSL Transformations (XSLT) to identify nodes in the input
document (see Chapter 5 for details). It’s also used in most Document Object Model
(DOM) implementations for richer querying capabilities. The following JavaScript
illustrates how XPath can be used with Microsoft’s MSXML 3.0 DOM implementation:

Skonnard.book Page 35 Monday, October 1, 2001 8:57 AM

36

Essential XML Quick Reference

var nl = doc.selectNodes("/invoice/item/price");
for (i=0; i<nl.length; i++) {
 ... // process price element here
}

This code could be rewritten in a variety of languages using a variety of XML pro-
cessors. XPath is even used in some of today’s modern data access technologies
to expose the underlying data store as XML to consumers. Remember that XPath
expressions simply define how to traverse a logical XML structure to identify a

node-set

, but where the logical structure actually comes from is an implemen-
tation detail.

Figure 3–1 XPath tree model.

<invoice id='123'>
 <item>
 <sku>100</sku>
 <price>9.95</price>

 </item>
 <item>
 <sku>101</sku>
 <price>29.95</price>

 </item>
</invoice>

physical document

logical structure
(Infoset)

invoice

item

root

sku price

101 29.95

item

sku price

100 9.95

id='123'

Skonnard.book Page 36 Monday, October 1, 2001 8:57 AM

XPath 1.0

37

XP
at

h

By default, XPath traverses the tree in

document order

. Document order is the
order in which the nodes would appear in a serialized XML document, as illus-
trated in Figure 3–2. In some cases, however, it’s necessary to traverse nodes in

reverse document order

, which is simply the reverse of the order shown in Figure
3–2 (more on this later).

In addition to

node-set

s, XPath supports three other data types:

boolean

s,

number

s, and

string

s. XPath defines how

node-set

s are both coerced and
compared with each of these types.

Figure 3–2 Document order.

<invoice id='123'>
 <item>
 <sku>100</sku>
 <price>9.95</price>
 </item>
 <item>
 <sku>101</sku>
 <price>29.95</price>
 </item>
</invoice>

physical document

document
order

2

9

1

10 12

11 13

4

5 7

6 8

3

Skonnard.book Page 37 Monday, October 1, 2001 8:57 AM

38

Essential XML Quick Reference

XPath type system

Every XPath expression yields an object of one of these types. One can explicitly
coerce an object to another type through the

boolean()

,

number()

, or

string()

 function. Objects are also implicitly coerced when necessary (for
example, when you pass a

node-set

 to a function that expects a

string

).

To convert/compare

node-set

s to objects of other types, nodes from XPath’s
tree model need to be mapped back to a

string

. XPath defines how to evaluate
a node’s

string-value

 for this purpose.

Node string-value

Figure 3–3 illustrates the string-value of each node in the sample

invoice

 doc-
ument shown earlier.

Mapping nodes back to

string

s makes it easy to convert/compare them with
other objects. It also makes it possible to build a wide variety of other expressions.

The following summarizes the types of expressions supported by XPath. The
operators used to build these expressions are shown in order of increasing prece-
dence (top to bottom, left to right). As usual, parentheses may be used to control
precedence explicitly.

Data type Description

node-set

A collection of nodes without duplicates

boolean true

 or

false

number

A floating point number (see IEEE 754 standard)

string

A sequence of UCS characters

Node type String-value

Root Concatenation of all descendant text nodes

Element Concatenation of all descendant text nodes

Attribute Normalized attribute value

Text Character data

Processing instruction Character data following the processing instruction target

Comment Character data within comment delimiters

Namespace Namespace URI

Skonnard.book Page 38 Monday, October 1, 2001 8:57 AM

XPath 1.0

39

XP
at

h

XPath expressions and operators

The rest of this chapter covers the details of each expression type along with
XPath’s function library.

3.2 Location path expressions

/step/step/step/... | step/step/...

A location path expression yields a

node-set

. Location paths can be absolute
or relative. Absolute location paths begin with a forward slash (

/

) whereas relative
location paths do not. A location path consists of one or more

location step

s,
each separated by a forward slash.

XPath defines two terms—

context node-set

 and

context node—

to help describe
how the location path evaluation process works. The context

node-set

 is

Figure 3–3 Node string-values.

Expression type Operators

Location paths /, //, |

Boolean expressions or, and

Equality expressions =, !=

Relational expressions <=, <, >=, >

Numerical expressions +, –, div, mod, *, – (unary)

invoice

item

root

sku price

101 29.95

item

sku price

100 9.95

id='123'

'1009.9510129.95'

'1009.9510129.95''123'

'1009.95' '10129.95'

'100'

'100'

'29.95'

'29.95'

'101'

'101''9.95'

'9.95'

Skonnard.book Page 39 Monday, October 1, 2001 8:57 AM

40

Essential XML Quick Reference

defined as the current set of nodes that has been identified up to a given point in
the expression. The context node is defined as the current node being processed.

The location steps are evaluated in order (left to right) one at a time. Each loca-
tion step is evaluated against the nodes in the context

node-set

. If the location
path is absolute, the original context

node-set

 consists of the root node; other-
wise, it consists of the current context node (what this means depends on where
the expression is being used).

The first location step is then evaluated with each node in the context

node-set

serving as the context node. The resulting

node-set

s are then “unioned” into a
new

node-set

, which becomes the context

node-set

 for the next step. This
process continues for each location step in the path. The

node-set

 produced
by the final location step is the result of the expression.

Location paths may be “unioned” together through the

|

 operator. The combina-
tion of the two

node-set

s excluding duplicates is the result of the union.

Examples

3.2.1 Location steps

axis::node-test[predicate1][predicate2][...]

Description

A location step identifies a new

node-set

 relative to the context

node-set

.
The location step is evaluated against each node in the context

node-set

, and
the union of the resulting

node-set

s becomes the context

node-set

 for the
next step. Location steps consist of an

axis

 identifier, a

node test

, and zero or
more

predicate

s (see Figure 3–4). For more information on axes, node tests, and
predicates, see the following sections.

/invoice/item

Identifies the child

item

 elements of the root

invoice

element.

item/sku

Identifies the child

sku

 elements of the context node’s
child

item

 elements.

sku | price | desc

Identifies the context node’s child

sku

,

price

, and

desc

 elements.

Skonnard.book Page 40 Monday, October 1, 2001 8:57 AM

XPath 1.0 41

XP
at

h

3.2.2 Axis

Description
XPath defines several axes, each of which identifies a set of nodes relative to the
context node.

Axis descriptions

Figure 3–4 Location step syntax.

child::item[1]/child::sku[.>100][1]/child::text()

location step location step

axis node test (by name) predicates

location step

node test (by type)

Axis Description

self Identifies the context node.

child Default axis. Identifies the children of the context node.
When the axis is omitted, the child is assumed.

parent Identifies the parent of the context node.

descendant Identifies the descendants of the context node. A descen-
dant is a child, a grandchild, a great-grandchild, and so
on. Warning: descendant typically requires the proces-
sor to search the entire tree below the context node.

descendant-or-self Identifies the context node and the descendant axis.

ancestor Identifies the ancestors of the context node. The ances-
tors of the context node consist of the parent, the grand-
parent, the great-grandparent, and so on.

ancestor-or-self Identifies the context node and the ancestor axis.

following Identifies all nodes that are after the context node in doc-
ument order, excluding descendants, attributes, and
namespace nodes (for example, all start tags that come
after the context node’s end tag). Warning: following
typically requires the processor to search the entire docu-
ment after the context node (excluding descendants).

following-sibling Identifies the siblings of the context node from the follow-
ing axis.

Skonnard.book Page 41 Monday, October 1, 2001 8:57 AM

42 Essential XML Quick Reference

Each axis has a direction and a principal node type. The direction of an axis is
either forward or reverse. Forward axes traverse nodes in document order
whereas reverse axes traverse nodes in reverse document order. The axis direc-
tion is significant when locating nodes by position. For example, the first child ele-
ment is the first child element in document order. The first ancestor element, how-
ever, is the first ancestor element in reverse document order, which is the
ancestor element nearest the context node.

When identifying nodes by name or the * wildcard, only nodes of the axis’ princi-
pal node type are considered. For example, child::foo identifies the child
foo elements whereas attribute::foo identifies the attribute nodes named
foo. Likewise, the expression child::* only identifies the child element nodes
(child text, comment, or processing instruction nodes are not identified).

Axis direction and principle node type

preceding Identifies all nodes that are before the context node in
document order, excluding ancestors, attributes, and
namespace nodes (for example, all end tags that come
before the context node’s start tag). Warning: preced-
ing typically requires the processor to search the entire
document before the context node (excluding ancestors).

preceding-sibling Identifies the siblings of the context node from the pre-
ceding axis.

attribute Identifies the attributes of the context node.

namespace Identifies the namespace nodes of the context node.

Axis Description

Axis Direction Principle node type

self Not applicable Element

child Forward Element

parent Not applicable Element

descendant Forward Element

descendant-or-self Forward Element

ancestor Reverse Element

ancestor-or-self Reverse Element

following Forward Element

following-sibling Forward Element

preceding Reverse Element

Skonnard.book Page 42 Monday, October 1, 2001 8:57 AM

XPath 1.0 43

XP
at

h

Figure 3–5 illustrates the group of nodes identified by each axis, assuming E is
the context node.

preceding-sibling Reverse Element

attribute Not applicable Attribute

namespace Not applicable Namespace

Figure 3–5 XPath axes.

Axis Direction Principle node type

A

B

F

IEC J

H K L

M

N

G

Axis

self

parent

child

descendant

descendant-or-self

ancestor

ancestor-or-self

preceding

preceding-sibling

following

following-sibling

Nodes (relative to E)

E

B

F,H

F,G,H

E,F,G,H

B,A,root

E,B,A,root

D,C

C

I,J,K,L,M,N

I,J

root

D

Skonnard.book Page 43 Monday, October 1, 2001 8:57 AM

44 Essential XML Quick Reference

Examples

3.2.3 Node test

Description
Nodes tests are used to identify nodes within an axis. If a node test evaluates to
true for a given node, it remains in the node-set; otherwise, it’s removed. Node
tests can be performed by name or by type.

3.2.3.1 Node test by name
When performing name tests, all nodes that are not of the specified axis’ principal
node type are automatically discarded. Then the names of the remaining nodes
are compared with the QName (prefix:local name) specified in the location step.
The QName is expanded to a namespace name (local name + namespace URI),
which is then compared with the namespace name of each node in question. If the
namespace names match, the node remains in the set; otherwise, it’s discarded.

In order for an XPath processor to expand a QName into a namespace name, it
needs access to namespace bindings. Hence, XPath processors need to provide
a mechanism for establishing namespace bindings that will be used while evaluat-
ing expressions. In XSLT, this can be accomplished through a standard XML 1.0
namespace declaration (in the XSLT document). In the DOM, however, extra imple-
mentation-specific configuration is required. The following line of code illustrates
the approach taken by Microsoft’s MSXML version 3.0 DOM implementation:

doc.setProperty("SelectionNamespaces",
 "xmlns:i='urn: example:ns1' xmlns:x='urn: example:n2'
 xmlns:x='urn:invoice:ids'");

/child::invoice/child::customer Identifies the child customer elements
of the root invoice element.

child::item/attribute::id Identifies the id attribute of each of the
context node’s child item elements.

preceding::sku Identifies the sku elements that come
before the context node.

Skonnard.book Page 44 Monday, October 1, 2001 8:57 AM

XPath 1.0 45

XP
at

h

Every XPath processor should provide an equivalent mechanism for establishing
namespace bindings. The prefixes used in node tests can then be resolved
against these bindings when the processor compares names.

Name tests that do not include a prefix (for example, child::foo) identify
nodes that belong to no namespace (default namespaces never come into play).

The name wildcard (*) can also be used to identify all nodes of the axis’ principal
node type. This wildcard can also be used in conjunction with a namespace prefix
(for example, child::f:*) to identify all nodes (of the axis’ principal node type)
from a given namespace.

Examples

3.2.3.2 Node test by type
A node test by type is true if the node in question is of the type specified. XPath
defines several node type identifiers for use in node tests.

Name test Description

QName true for all nodes that have the specified expanded namespace
name and are of the axis’ principal node type

* true for all nodes of the axis’ principal node type

child::i:item Assuming i is mapped to urn:exam-
ple-org:invoices for these exam-
ples, this step identifies the child item
elements in the urn:example-
org:invoices namespace.

child::i:* Identifies all child elements from the
urn:example-org:invoices
namespace.

/child::sku Identifies the child sku elements that
belong to no namespace.

/child::i:invoice/attribute::id Identifies the id attribute (from no
namespace) of the root invoice ele-
ment from the urn:example-
org:invoices namespace.

/descendant::price Identifies all price elements in the
document from no namespace.

Skonnard.book Page 45 Monday, October 1, 2001 8:57 AM

46 Essential XML Quick Reference

Examples

3.2.4 Predicate

Description
Predicates are placed inside square brackets [...] at the end of a location step
(see location step syntax described earlier). A predicate filters a node-set to pro-
duce a new node-set. For each node in the node-set to be filtered, the predicate
expression is evaluated with that node as the context node and the result is
coerced to a boolean. If the result is true, the node remains in the node-set; oth-
erwise, it’s removed. The predicate expression can be any basic expression (see
Section 3.3 on basic expressions).

Examples

Type identifier Description

text() Identifies text nodes.

comment() Identifies comment nodes.

processing-instruction(target?) Identifies processing instruction nodes
that match the (optionally) specified
target string.

node() Identifies all nodes in an axis regard-
less of type.

child::text() Identifies the child text nodes.

/child::invoice/child::comment() Identifies the child comment nodes of
the root invoice element.

/child::invoice/child::node() Identifies all child nodes (regardless of
type) of the root invoice element.

/child::processing-
instruction('xsl-stylesheet')

Identifies the root node’s child pro-
cessing instruction node with a target
of 'xsl-stylesheet'.

child::item[position()=1] Returns the first child item ele-
ment (same as item[1]; see the
following section).

Skonnard.book Page 46 Monday, October 1, 2001 8:57 AM

XPath 1.0 47

XP
at

h

3.2.5 Location path abbreviations

Description
XPath defines several abbreviations that can be used when building location path
expressions. This facilitates building compact expressions that can be used in URI
fragment identifiers (for example, XPointer) and XML attribute values (for exam-
ple, XLink). The syntactical constructs that may be abbreviated are as follows,
along with their corresponding abbreviation.

Examples

child::invoice[child::item][2] Returns the second child
invoice element that has at
least one child item element.

descendant::sku[attribute::id > 100] Identifies the descendant sku ele-
ments that have an id attribute
greater than 100.

Verbose form Abbreviation

child:: omitted

attribute:: @

self::node() .

parent::node() ..

/descendant-or-
self::node()/

//

[position()=number] [number]

/child::reviews/child::review /reviews/review

child::review/attribute::id review/@id

self::node()/descendant-or-self::node()/
child::book

.//book

parent::node()/child::review[position()=1] ../review[1]

Skonnard.book Page 47 Monday, October 1, 2001 8:57 AM

48 Essential XML Quick Reference

3.3 Basic expressions
In addition to location path expressions, there are several other basic expression
constructs including boolean, equality, relational, and numerical. These expres-
sions may be used in any situation in which the resulting object isn’t required to be
a node-set. They are commonly used within XPath predicates as well as vari-
ous XSLT constructs (for example, if/when statements). The details of these
expression types are described in the following subsections.

3.3.1 Boolean expressions

Operators: or, and

XPath supports standard and/or boolean expressions. Each operand is evalu-
ated and coerced to a boolean (as if by calling the boolean function) before
evaluation.

Examples

3.3.2 Equality expressions

Operators: =, !=

Equality expressions test two objects for equality. When one of the objects is a
node-set, the definition of equality is far from intuitive. Two node-sets are
equal if there is at least one node in each node-set with string-values that are
equal. But at the same time, two node-sets are unequal if there is at least one
node in each node-set with string-values that are unequal. This makes it possible

/invoice/item or
/invoice/foo

Returns true (assuming there are at least child item
elements under the root invoice element).

item[sku and price] Identifies the child item elements that have both sku
and price child elements.

item[(sku < 100) or
(price > 50.0)]

Identifies the child item elements that have either a
price child element with a value less than 100 or a
sku child element with a value greater than 50.

Skonnard.book Page 48 Monday, October 1, 2001 8:57 AM

XPath 1.0 49

XP
at

h

(and actually quite common) to have two objects that are both equal and unequal
at the same time (assuming one is a node-set). The following summarizes how
node-set equality is determined for each object type:

Node-set equality/inequality

Examples

Type Description

node-set Two node-sets are equal if there is at least one node in each node-
set with string-values that are equal. Two node-sets are unequal if
there is at least one node in each node-set with string-values that are
unequal.

number A node-set equals a number if it contains a node with a string-value
converted to a number that matches the number in question. A node-
set is not equal to a number if it contains a node with a string-value
converted to a number that does not equal the number in question.

string A node-set equals a string if it contains a node with a string-value
that matches the string in question. A node-set is not equal to a
string if it contains a node with a string-value that does not equal the
string in question.

boolean A node-set equals a boolean if the result of converting the node-
set to a boolean is the same as the boolean value in question. A
node-set does not equal a boolean if the result of converting the
node-set to a boolean is not the same as the boolean value in
question.

price = 3.95 true if there is at least one child price ele-
ment with a string-value that equals 3.95.

price != 3.95 true if there is at least one child price ele-
ment with a string-value that does not equal
3.95.

not(price = 3.95) true if there is not a single child price ele-
ment with a string value that equals 3.95.

not(price != 3.95) true if all child price elements have a
string-value equal to 3.95.

/descendant::invoice[@id =
100]

Identifies all invoice elements that have an
id attribute equal to 100.

Skonnard.book Page 49 Monday, October 1, 2001 8:57 AM

50 Essential XML Quick Reference

If neither of the objects is a node-set and the operands are of different types,
implicit coercions happen according to type precedence. Objects of lower type
precedence are always coerced into an object of the other type before evaluating
equality.

Examples

sku != preceding::sku Returns true if there is at least one child
sku element with a string-value that does
not equal that of one of the preceding sku
elements. (Note: This is not the same as
not(sku = preceding::sku). See next
example.)

not(sku = preceding::sku) Returns true if there is not a single child sku
element with a string-value that equals that
of one of the preceding sku elements.
(Note: This is not the same as sku !=
preceding::sku. See previous example.)

/descendant::sku[not(. =
preceding::sku)]

Identifies the descendant sku elements with
string-values that do not equal those of one of
the preceding sku elements. This expression
only identifies the first sku with a given value;
all other sku elements with the same value
are excluded from the result node-set (like
doing a SELECT DISTINCT in SQL). Note:
Using != does not return the same result (see
previous examples).

Equality type precedence (not involving node-sets) Type

1 (highest) boolean

2 number

3 string

true() = "foo" true (foo coerced to true)

true() != 1.32 false (1.32 coerced to true)

"1.2" = 1.2 true (1.2 coerced to 1.2)

Skonnard.book Page 50 Monday, October 1, 2001 8:57 AM

XPath 1.0 51

XP
at

h

3.3.3 Relational expressions

Operators: <=, <, >=, >

Relational expressions make it possible to compare two objects. Relational
expressions are evaluated by converting both operands to numbers, which are
then compared. If one of the operands is a node-set, the numerical value of
each node in the set is compared against the other operand as described for
equality expressions. In this case, the comparison is true if there is at least one
node in the node-set with a numerical value that makes the comparison true.

Examples

3.3.4 Numerical expressions

Operators: +, -, div, mod, *, - (unary)

Numerical expressions make it possible to perform basic arithmetic operations
on numbers. Each operand is evaluated and coerced to a number (as if by calling
the number function) before evaluation. The operators shown above are listed in
order of increasing precedence, left to right.

price <= 100 true if there is at least one child price
element with a numerical value that is
less than or equal to 100.

/descendant::item[price <= 100] Identifies all item elements that have a
child price element with a numerical
value that is less than or equal to 100.

price > preceding::price true if there is a child price element
with a numerical value that is greater
than one of the preceding price
elements.

/descendant::item[price >
preceding::price]

Identifies all item elements for which
the numerical value of one child price
element is greater than at least one of
the preceding price elements.

Skonnard.book Page 51 Monday, October 1, 2001 8:57 AM

52 Essential XML Quick Reference

Examples

3.4 Core Function Library
XPath defines a core function library that all implementations are required to sup-
port. There are three functions available for explicitly converting between the
XPath data types: string(), number(), and boolean(). (Note: You cannot
coerce a string, number, or boolean to a node-set.) If a function expects
an argument of a specific type and an object of a different type is used, it’s implic-
itly coerced to the expected type as if by calling the appropriate coercion
function.

All of the functions in the core library belong to no namespace, so their names
don’t require a namespace prefix. XPath implementations may augment the core
library with proprietary extension functions. When this is the case, the extension
function names must be qualified with a namespace prefix. The following summa-
rizes the functions in the core function library.

2 + 3.5 * 2 9.0

5 div 2.0 - '1.0' 1.5

5 mod -2 1

-5 mod 2 -1

item[(price mod 2) = 0] Identifies the child item elements that have an
even price.

Node-set function Description

id Identifies nodes by ID.

lang Checks the context node for the specified
language.

last Returns the size of the context node-set.

local-name Returns the local name of a node.

name Returns the QName of a node.

namespace-uri Returns the namespace URI of a node.

position Returns the index of the context node in the con-
text node-set.

Skonnard.book Page 52 Monday, October 1, 2001 8:57 AM

XPath 1.0 53

XP
at

h

Each function is described in the following subsections in alphabetical order.

3.4.1 boolean

boolean boolean(object)

Description
boolean converts its argument into a boolean. The conversion details depend
on the type of argument object.

Boolean function Description

boolean Converts an object to a boolean.

false Returns false.

not Returns the logical not of the argument.

true Returns true.

Number function Description

ceiling Rounds up to the next integer.

count Returns the number of nodes in a node-set.

floor Rounds down to the next integer.

number Converts an object to a number.

round Rounds to the nearest integer.

sum Totals of a list of numbers.

String function Description

concat Concatenates multiple strings.

contains Determines if a string contains a substring.

normalize-space Strips leading/trailing whitespace from a string.

starts-with Determines if a string starts with a substring.

string Converts an object to a string.

string-length Returns the length of a string.

substring Returns a substring identified by position.

substring-after Returns the substring after a specified string.

substring-before Returns the substring before a specified string.

translate Translates letters in a string.

Skonnard.book Page 53 Monday, October 1, 2001 8:57 AM

54 Essential XML Quick Reference

Examples

3.4.2 ceiling

number ceiling(number)

Description
ceiling returns the smallest integer that is not less than the argument.

Examples

Type Description

node-set Returns true if the node-set is nonempty; false otherwise.

string Returns true if the string length is nonzero; false otherwise.

number Returns true if the number is nonzero (not negative zero, positive
zero, or NaN [not a number]).

other Is converted to a boolean in a way that is dependent on that type.

boolean(*/item) Returns true if there is at least one grandchild
item element; false otherwise.

boolean(string(customer)) Returns true if the string-value of the first child
customer element is nonempty.

boolean(sum(price)) Returns true if the sum of the child price ele-
ments is nonzero.

ceiling(43.6) 44

ceiling('43.6') 44

ceiling(-2.5) -2

ceiling(sum(price)
div count(price))

Returns the rounded-up average price of the child
price elements.

ceiling(item/price) Returns the rounded-up price of the first child item
element.

Skonnard.book Page 54 Monday, October 1, 2001 8:57 AM

XPath 1.0 55

XP
at

h

3.4.3 concat

string concat(string, string, string*)

Description
concat returns the concatenation of its arguments.

Examples

3.4.4 contains

boolean contains(string, string)

Description
contains returns true if the first string contains the second string.

Examples

concat('hello',' world') 'hello world'

concat('number(not(', false(), '()))
= ', 1)

'number(not(false())) = 1'

concat(fname, ' ', mi, '. ', lname) Returns 'Fred' 'B' and 'Smith',
assuming the child fname, mi, and
lname elements contain 'Fred',
'B', and 'Smith', respectively.

contains('network', 'two') true.

contains(title, 'XML') true if the first child title element
contains 'XML'; false otherwise.

contains(price, 5) true if the first child price element
contains the number 5; false other-
wise.

contains('so true!!!', true()) true (true() is coerced to true).

Skonnard.book Page 55 Monday, October 1, 2001 8:57 AM

56 Essential XML Quick Reference

3.4.5 count

number count(node-set)

Description
count returns the number of nodes in the argument node-set.

Examples

3.4.6 false

boolean false()

Description
Returns false.

Examples

3.4.7 floor

number floor(number)

Description
floor returns the largest integer that is not greater than the argument.

count(item) Returns the number of child item ele-
ments.

count(descendant::* | text()) Returns the total number of descendant
elements and child text nodes.

invoice[count(item) > 3] Returns the child invoice elements that
have more than three child item ele-
ments.

false() false

string(false()) 'false'

number(false()) 0

Skonnard.book Page 56 Monday, October 1, 2001 8:57 AM

XPath 1.0 57

XP
at

h

Examples

3.4.8 id

node-set id(object)

Description
id returns a node-set that is identified through unique IDs (requires DTD or
schema that leverages unique ID types). The exact behavior of id depends on the
type of argument object.

Examples

floor(43.6) 43

floor('43.6') 43

floor(-2.5) -3

floor(item/price) Returns the rounded-down price of the first child
item element.

Type Description

node-set The id function is applied to the string-value of each
node in the argument node-set. The union of the result-
ing node-sets is returned.

other The argument is first converted to a string, which is
then split into a whitespace-separated list of tokens.
The resulting node-set contains the element nodes that
have a unique ID equal to one of the tokens in the list.

id('isbn-0201709147') Returns the element with a unique ID of
isbn-0201709147.

id('isbn-0201709147 isbn-
0201604426 isbn-0201379368')

Returns the three elements with the speci-
fied unique IDs.

id(book/@similarBooks) Returns the elements that are referred to by
the child book’s similarBook attribute
(for example, <book similarBooks='b1
b2'/>).

Skonnard.book Page 57 Monday, October 1, 2001 8:57 AM

58 Essential XML Quick Reference

3.4.9 lang

boolean lang(string)

Description
lang returns a boolean indicating whether the language specified by the argu-
ment string is the same as (or a sublanguage of) the language of the context
node, which is specified via the xml:lang attribute. If the context node has no
xml:lang attribute, it inherits the language of the nearest ancestor element that
does have the xml:lang attribute. If no ancestor has an xml:lang attribute,
false is returned. The language string comparisons are case insensitive and they
ignore language suffixes identified by '-'.

Examples

3.4.10 last

number last()

Description
last returns a number equal to the size of the context node-set.

Examples

lang('en') Returns true if the language of the context node is 'en'
or a sublanguage of 'en' (for example, 'en-us').

desc[lang('en')] Returns all child desc elements that have a language of
'en' or is a sublanguage of 'en' (for example, 'en-us').

invoice/item[last() > 3] Returns the child item elements of the
child invoice elements that have
more than three child item elements.

invoice/item[last()=position()] Returns the last item element of each
child invoice element.

Skonnard.book Page 58 Monday, October 1, 2001 8:57 AM

XPath 1.0 59

XP
at

h

3.4.11 local-name

string local-name(node-set?)

Description
local-name returns the local name of the node in the argument node-set
that is first in document order. If the argument node-set is empty or has no
local name, an empty string is returned. If the argument is omitted, it defaults
to a node-set with the context node as its only member.

Examples

3.4.12 name

string name(node-set?)

Description
name returns the QName of the node in the argument node-set that is first in
document order. If the argument node-set is empty or has no local name, an
empty string is returned. If the argument is omitted, it defaults to a node-set
with the context node as its only member.

Examples

local-name(..) Returns the local name of the context node’s parent.

descendant::*[local-
name()='price']

Returns all descendant elements that have a local
name of 'price'.

name(*) Returns the QName of the first child element.

descendant::*[name()
= 'dm:author'

Returns all descendant elements that have a QName
of 'dm:author'.

Skonnard.book Page 59 Monday, October 1, 2001 8:57 AM

60 Essential XML Quick Reference

3.4.13 namespace-uri

string namespace-uri(node-set?)

Description
namespace-uri returns the namespace URI of the node in the argument
node-set that is first in document order. If the argument node-set is empty
or has no namespace URI, an empty string is returned. If the argument is omit-
ted, it defaults to a node-set with the context node as its only member.

Examples

3.4.14 normalize-space

string normalize-space(string?)

Description
normalize-space returns the argument string with whitespace normalized.
Normalization consists of stripping all leading/trailing whitespace as well as
replacing embedded whitespace sequences with a single space character.
Whitespace characters are defined as spaces, tabs, CR, and LF. If the argument
is omitted, it defaults to the string-value of the context node.

Examples

namespace-uri(../..) Returns the namespace URI
of the context node’s grand-
parent.

descendant::*[local-name() = 'price' and
namespace- uri() = 'urn:invoices']

Returns all descendant
elements that have a local
name of 'price' and a
namespace URI of
'urn:invoices.'

normalize-space(' hello world ') 'hello world'

normalize-space(desc) Returns the normalized string-value
of the first child desc element.

normalize-space() Returns the normalized string-value
of the context node.

Skonnard.book Page 60 Monday, October 1, 2001 8:57 AM

XPath 1.0 61

XP
at

h

3.4.15 not

boolean not(boolean)

Description
not returns true if the argument is false; false otherwise.

Examples

3.4.16 number

number number(object?)

Description
number converts its argument into a number. The conversion details depend on
the type of argument object.

Examples

not(true()) false

not(price) Returns false if the context node has
child price elements; true otherwise.

item/price[not(position() =
last())]

Returns the price elements that are not
the last child of their parent item element.

Type Description

node-set The node-set is first converted to a string (per the string
function); then the resulting string is converted to a
number according to the rules for string (see next entry).

string Converted to an IEEE 754 floating point number (see the IEEE
754 standard for more details). If the argument string does
not represent a number, NaN is returned.

boolean true is converted to 1, false to zero.

other Converted to a number in a way that is dependent on that
type.

number('33.3') 33.3

number(true()) 1

Skonnard.book Page 61 Monday, October 1, 2001 8:57 AM

62 Essential XML Quick Reference

3.4.17 position

number position()

Description
position returns the index of the context node in the context node-set (1
based).

Examples

3.4.18 round

number round(number)

Description
round returns the integer that is closest to the argument number. If two num-
bers match this criterion, the bigger number (closest to positive infinity) is
returned. If the argument is less than zero but greater than or equal to -0.5, neg-
ative zero is returned. If the argument is not a number (NaN), positive infinity, neg-
ative infinity, positive zero, or negative zero, it simply returns the same value
passed in.

Examples

number('xml') NaN

number(price) Returns the numerical value of the string-value of the first
child price element.

item[position()=1] Returns the first child item element.

price[position()=last()] Returns the last child price element.

round(1.5) 2

round(10 div 3) 3

round(price) Returns the rounded-off value of the first child price element.

Skonnard.book Page 62 Monday, October 1, 2001 8:57 AM

XPath 1.0 63

XP
at

h

3.4.19 starts-with

boolean starts-with(string, string)

Description
starts-with returns true if the first string starts with the second string.

Examples

3.4.20 string

string string(object?)

Description
string converts its argument into a string. The conversion details depend on
the type of argument object. If the argument is omitted, it defaults to a node-
set with the context node as its only member.

starts-with('$12.05', '$') Returns true.

starts-with(title, 'Essential') Returns true if the first child title
element starts with 'Essential';
false otherwise.

starts-with(price, 5) Returns true if the first child price
element starts with the number 5;
false otherwise.

starts-with('true/false', true()) Returns true.

Type Description

node-set The string-value of the node in the node-set that is first in document
order. If the node-set is empty, an empty string is returned.

boolean true is converted to the string 'true' and false is converted to
'false'.

number The number is represented in decimal form preceded with a minus
symbol (-) if the number is negative. A decimal point is not included
for integer values. If the number is NaN, the string 'NaN' is
returned. If the number is positive or negative zero, the string '0'
is returned. If the number is positive infinity, the string 'Infinity'
is returned. If the number is negative infinity, the string
'-Infinity' is returned.

other Is converted to a string in a way that is dependent on that type.

Skonnard.book Page 63 Monday, October 1, 2001 8:57 AM

64 Essential XML Quick Reference

Examples

3.4.21 string-length

number string-length(string?)

Description
string-length returns the number of characters in the string. If the argument
is omitted, it defaults to the string-value of the context node.

Examples

3.4.22 substring

string substring(string, number, number?)

Description
substring returns the substring of the first argument starting at the 1-based
position specified by the second argument with the length specified by the third
argument. If the third argument is omitted, it returns the substring starting at the
position specified by the second argument to the end of the string.

Examples

string(true()) 'true'

string(-100.23) '-100.23'

string(/foo/bar) Returns the string-value of the root foo element’s first child
bar element.

string-length('XML') 3

string-length(customer) Returns the length of the string-value of the first
child customer element.

substring('goodbye',4,2) 'db'

substring('goodbye',5) 'bye'

Skonnard.book Page 64 Monday, October 1, 2001 8:57 AM

XPath 1.0 65

XP
at

h

3.4.23 substring-after

string substring-after(string, string)

Description
substring-after returns the substring of the first string that follows the
first occurrence of the second string. If the first string doesn’t contain the
second string, an empty string is returned.

Examples

3.4.24 substring-before

string substring-before(string, string)

Description
substring-before returns the substring of the first string that precedes
the first occurrence of the string string. If the first string doesn’t contain the
second string, an empty string is returned.

Examples

concat(substring(lastname,
1,6),'.gif')

Returns a file name, which is the concatenation
of the first six letters of the lastname child ele-
ment with '.gif' (for example, 'skonna.gif').

substring-after('dm:invoice', ':') 'invoice'

substring-after('1972-10-30', '-') '10-30'

substring-after(filename, '.') Returns the filename element’s
file extension (for example, .gif).

substring-before('dm:invoice', ':') 'dm'

substring-before('1972-10-30', '-') '1972'

substring-before(filename, '.') Returns the filename element’s
value excluding the extension.

Skonnard.book Page 65 Monday, October 1, 2001 8:57 AM

66 Essential XML Quick Reference

3.4.25 sum

number sum(node-set)

Description
sum converts the string-value of each node in the argument node-set to a num-
ber and then calculates the total.

Examples

3.4.26 translate

string translate(string, string, string)

Description
translate returns the first argument string with occurrences of the charac-
ters in the second argument string replaced by the character at the corre-
sponding position in the third argument string. If there is a character in the sec-
ond argument string that doesn’t have a replacement character in the
corresponding position of the third argument string (because the second argu-
ment string is longer), all occurrences of that character are removed.

Examples

sum example Description

sum(/items/i) Returns 9.0, assuming the following XML document:
<items> <i>1.0</i><i>3.0</i><i>5.0</i>
</items>.

sum(/items/i) div
count(items/i)

Returns 3.0, (assuming the previous document).

translate('10-30-1972', '-', '/') '10/30/1972'

translate('skonnard', 'kosadrn', 'oxb') 'box'

Skonnard.book Page 66 Monday, October 1, 2001 8:57 AM

XPath 1.0 67

XP
at

h

3.4.27 true

boolean true()

Description
Returns true.

Examples

3.5 References
XML Path Language (XPath) Version 1.0 Recommendation.
Available at http://www.w3.org/TR/xpath.

IEEE 754.
http://standards.ieee.org/reading/ieee/stdpublic/description/busarch/754-
1985_deschtml

true() true

string(true()) 'true'

number(true()) 1

Skonnard.book Page 67 Monday, October 1, 2001 8:57 AM

Skonnard.book Page 68 Monday, October 1, 2001 8:57 AM

69

XP
oi

nt
er

Chapter 4

XPointer, XInclude,
and XML Base

The XML Pointer Language (XPointer) version 1.0 defines syntax for using frag-
ment identifiers with XML resources. This makes it possible to extend XPath to
support interdocument (as opposed to just intradocument) addressing. XPointer
also provides a more flexible syntax for addressing portions of an XML document
that are not addressable in XPath (for example, points and ranges).

XML Inclusions (XInclude) version 1.0 defines the syntax for general-purpose XML-
based inclusions. XInclude functionality is similar to that provided by external enti-
ties or

#include

 in C++. The difference is that XInclude works at the Infoset
level rather than during preprocessing. XInclude leverages URI references as well
as XPointer fragments to identify resources for inclusion.

When multiple XML resources are used to build a logical XML document, ques-
tions arise when resolving relative URIs. XML Base defines this process along with
a syntax for explicitly controlling the base URI of elements in a document.

The rest of this chapter presents the syntax for these three specifications:
XPointer, XInclude, and XML Base. At the time of writing, these three specifica-
tions were still under development at the W3C. See Section 4.4 for the version of
each specification used in this chapter.

4.1 XPointer version 1.0

An XPointer expression is attached to a URI reference as a fragment identifier.
The context of an XPointer expression is always initialized to the root node of the
identified XML resource. XPointer provides three types of expressions: full XPoint-
ers, bare names, and child sequences.

Skonnard.book Page 69 Monday, October 1, 2001 8:57 AM

70

Essential XML Quick Reference

4.1.1 Full XPointers

uri-reference#scheme(expression)scheme(expression)...

Description

Full XPointers consist of one or more XPointer parts, optionally separated by
whitespace (see Figure 4–1).

Each XPointer part starts with a scheme name and is followed by a scheme-
specific expression. When the scheme is

xpointer

, the contained expression is
based on XPath with XPointer-specific extensions. When the scheme is

xmlns

,
the contained expression contains a namespace declaration. There are no other
schemes defined at this time, but this is an extensibility point for the future.

XPointer expressions are evaluated from left to right in order. Evaluation stops
once a fragment part successfully identifies a portion of the resource. If a frag-
ment part fails or does not identify anything, the next fragment part is evaluated,
and so on. If the processor doesn’t recognize the scheme or if there is something
about the expression that causes it to fail, the processor moves on to the next
fragment part.

Scheme name Description

xpointer(xptr-expr)

XPointer expression provides access to nodes in an
XML document as well as arbitrary non-node locations
(based on XPath).

xmlns(prefix=nsURI)

Expression defines a namespace declaration in scope
for the fragment parts to the right. In the event that
more than one

xmlns

 part to the left of an

xpointer

part specifies the same prefix, the rightmost one of
these is used for that

xpointer

 part.

Figure 4–1 Full XPointer example.

chapter.xml#xmlns(d=urn:dm:books)xpointer(//d:concept)

uri fragment part fragment part

scheme expression

Skonnard.book Page 70 Monday, October 1, 2001 8:57 AM

XPointer, XInclude, and XML Base

71

Examples

Simple full XPointer expression

Identifies the

concept

 elements in

xslt.xml

 that belong to no namespace
and that have an

id

 attribute equal to

'

template

'

.

Full XPointer expression with namespaces

Identifies the

concept

 elements in

xslt.xml

 that belong to the

urn:exam-
ple:dm2

 namespace and that have an

id

 attribute from the

urn:ids-r-us

namespace equal to

'

template

'

.

Full XPointer expression with multiple XPointer parts

Identifies the

concept

 elements in

xslt.xml

 that have an attribute of type

ID

equal to

'

template

'

. If the DTD/schema isn’t available, the first fragment part
fails and the second is evaluated, which simply identifies all elements with an

id

attribute equal to

'

template

'

.

4.1.2 Bare names

uri-reference#bare-name

Description

An XPointer bare name is simply an abbreviation for the following full XPointer
expression that leverages the XPath

id

 function:

xpointer(id(bare-name))

.

Example

Equivalent expressions

xslt.xml#xpointer(/descendant::concept[@id='template'])

xslt.xml#xmlns(d=urn:example:dm1)xmlns(d=urn:example:dm2)
 xmlns(x=urn:ids-r-us)xpointer(//

d:concept[@x:id='template'])

xslt.xml#xpointer(id('template'))xpointer(//
*[@id='template'])

xslt.xml#xpointer(id('prod1'))
xslt.xml#prod1

XP
oi

nt
er

Skonnard.book Page 71 Monday, October 1, 2001 8:57 AM

72

Essential XML Quick Reference

These expressions are equivalent. The first is a full XPointer expression whereas
the second is an XPointer bare name.

4.1.3 Child sequences

uri-reference#(bare-name | /1)/n/n/n/n...

Description

A child sequence is a simplified addressing syntax that locates an element by
stepwise navigation using a sequence of integers separated by forward slashes
(

/

). Each integer

n

 locates the

n

th child element of the previously located ele-
ment. This is equivalent to an XPath location step of the form

*[n]

. The first item
in the child sequence can be either a bare name (see previous section) or the
string

'/1'

, which identifies the document element.

Example

Equivalent expressions

All of these expressions are equivalent. The first is a full XPointer expression that
uses XPath. The second is the equivalent XPointer child sequence. The third
expression uses a bare name to identify the seventh child of the second child of
the document element by ID followed by a relative child sequence.

4.1.4 XPointer extensions to XPath

Description

In XPath, location path expressions produce

node-sets

. XPointer, on the other
hand, is capable of identifying portions of a document that cannot be modeled
with XPath

node-sets

. As a result, XPointer generalizes XPath’s notion of node
and

node-set

 with location and

location-set

. XPointer locations consist of
points, ranges, and XPath nodes. XPointer

location-sets

 are a collection of
locations.

xslt.xml#xpointer(/*[1]/*[2]/*[7]/*[3]/*[2])
xslt.xml#/1/2/7/3/2
xslt.xml#section7/3/2

Skonnard.book Page 72 Monday, October 1, 2001 8:57 AM

XPointer, XInclude, and XML Base

73

Definitions

point

A point location identifies a container node along with an index to its child data. If
the node can have children (for example, element nodes), the index refers to a
position within the child node’s collection (called a

node-point

). If the node cannot
have children (for example, text nodes), the index refers to an offset within the
node’s character data (called a

character-point

). The following describes how var-
ious XPath-isms are evaluated for a point location:

range

A range location consists of two points: a start point and an end point. Everything
within these two points (in document order) is part of the range location. The fol-
lowing describes how various XPath-isms are evaluated for a range location:

Concept Description

expanded name

None

string-value

Empty

axes

The

child

,

descendant

,

attribute

, and

namespace

 axes
are empty. The self axis contains the point itself whereas the

parent

 axis contains the node-point’s container node. The

ancestor

 axis contains the node-point’s container node and its
ancestors. A node-point’s siblings are the children of the con-
tainer node that are before or after the node-point while a char-
acter point doesn’t have any siblings.

Concept Description

expanded name

None

string-value

If the points are both character-points and the container nodes
of the points are the same, then the string-value consists of the
characters between the two points. Otherwise, the string-value
consists of the characters that are in text nodes between the
two points.

axes

The axes of a range location are the axes of its start point.

XP
oi

nt
er

Skonnard.book Page 73 Monday, October 1, 2001 8:57 AM

74

Essential XML Quick Reference

4.1.5 XPointer node tests

Description

XPointer extends the XPath node type identifiers (to account for point and range
locations) for performing node tests by type.

Example

Identifying the points in a range

4.1.6 XPointer function library

Description
XPointer adds several functions to the XPath core function library that must be
supported by XPointer implementations. These additional functions support work-
ing with point and range locations in XPointer expressions. Like the XPath func-
tions, the XPointer functions don’t belong to a namespace, so their names don’t
need to be qualified with a namespace prefix. XPointer processors may extend
this library by using namespace-qualified function names.

4.1.6.1 end-point
location-set end-point(location-set)

Description
For each location in the argument location-set, end-point adds a location of
type point to the resulting location-set. The end point of a location is evaluated
according to location type as follows:

Node test (by type) Description

point() Identifies locations of type point.

range() Identifies locations of type range.

xpointer(range(//intro)/point)())

Type Description

point Same as the point

range The end point of the range

Skonnard.book Page 74 Monday, October 1, 2001 8:57 AM

XPointer, XInclude, and XML Base 75

Example
Identifying the end point of a range

4.1.6.2 here
location-set here()

Description
The here function returns a location-set with a single location, which represents
the node that contains the XPointer expression being evaluated.

Examples
Identifying the element containing the expression

Identifying an ancestor of the containing element

4.1.6.3 origin
location-set origin()

Description
The origin function enables addressing relative to out-of-line links such as defined
in XLink. This allows XPointers to be used in applications to express relative loca-
tions when links do not reside directly at one of their end points. The function

attribute, namespace Error

root, element The container node is the same as the node in ques-
tion. The index is the number of child nodes.

text, comment,
processing instruction

The container node is the same as the node in
question. The index is the length of the node’s
string-value.

Type Description

xpointer(end-point(id('section1')/range-to(//summary)))

xpointer(here())

xpointer(here()/ancestor::chapter[1])

XP
oi

nt
er

Skonnard.book Page 75 Monday, October 1, 2001 8:57 AM

76 Essential XML Quick Reference

returns a location-set with a single member, which locates the element from which
a user or program initiated traversal of the link.

Examples
Identifying the origin element that linked to this document

Identifying the descendants of the origin element

4.1.6.4 range
location-set range(location-set)

Description
The range function returns ranges representing the covering range of the loca-
tions in the argument location-set. The covering range of a location is deter-
mined based on location type as follows:

xpointer(origin())

xpointer(origin()/descendant::node())

Type Description

range Identical to the range

attribute/namespace The container node of the start point and the end point
of the covering range is the attribute or namespace
location, the index of the start point of the covering
range is zero, and the index of the end point of the cov-
ering range is the length of the string-value of the
attribute or namespace location.

root node The container node of the start point and the end point
of the covering range is the root node, the index of the
start point of the covering range is zero, and the index
of the end point of the covering range is the number of
children of the root location.

point The start and end points of the covering range are the
point itself.

other The container node of the start point and the end point
of the covering range is the parent of the location, the
index of the start point of the covering range is the num-
ber of preceding sibling nodes of the location, and the
index of the end point is one greater than the index of
the starting point.

Skonnard.book Page 76 Monday, October 1, 2001 8:57 AM

XPointer, XInclude, and XML Base 77

Examples
Identifying the covering range of each intro element

Identifying the covering range of each id attribute

4.1.6.5 range-inside
location-set range-inside(location-set)

Description
The range-inside function returns ranges covering the contents of the loca-
tions in the argument location-set.

Examples
Identifying ranges that span the children of each intro element

Identifying ranges that span the text within the intro elements

4.1.6.6 range-to
location-set range-to(expression)

Description
range-to returns a location-set consisting of zero or more ranges. The start
point of each range is that of the context location whereas the end point is that of
the location found by evaluating the expression with respect to the context
location.

Examples
Identifying a range between two points

xpointer(range(//intro))

xpointer(range(//intro/@id))

xpointer(range-inside(//intro))

xpointer(range-inside(//intro/text()))

xpointer(id('section1')/range-to(id('section2'))

XP
oi

nt
er

Skonnard.book Page 77 Monday, October 1, 2001 8:57 AM

78 Essential XML Quick Reference

Identifying a set of ranges

Identifies a set of ranges, where each range starts from an intro element to its
first child section element.

4.1.6.7 start-point
location-set start-point(location-set)

Description
For each location in the argument location-set, start-point adds a location of
type point to the resulting location-set. The start point of a location is evaluated
according to location type as follows:

Example
Identifying the start point of a range

4.1.6.8 string-range
location-set string-range(location-set, string, number?,

number?)

Description
For each location in the location-set argument, string-range returns a
set of string ranges within the location’s string-value. The string-value of the loca-
tion is searched for substrings that match the string argument, and the result-
ing location-set will contain a range location for each nonoverlapping match,
beginning with the offset (relative to the start of the match) specified by the third
argument (default = 1) and spanning the number of characters specified by the
fourth argument (default is the length of the matched string).

xpointer(//intro/range-to(section[1])

Type Description

point Same as the point

range The start point of the range

attribute, namespace Error

root, element, text,
comment, processing
instruction

The container node is the same as the node in ques-
tion. The index is zero.

xpointer(start-point(//intro/range-to(section[1])))

Skonnard.book Page 78 Monday, October 1, 2001 8:57 AM

XPointer, XInclude, and XML Base 79

Examples
Identifying the third occurrence of 'Infoset' in intro elements

Identifying a set of string ranges

Identifies a set of string ranges spanning the substring 'fos' within all occur-
rences of 'Infoset' in intro elements.

4.2 XInclude
XInclude provides an alternative to external general entities that uses normal XML
syntax and that works at the Infoset level, not the serialized entity level. XInclude
is the moral equivalent of the EntityReference node type from the DOM, because
it exists solely as a placeholder for the content that it references. An XInclude-
aware processor will silently replace the XInclude reference with the content that
it references. This is similar to the way entity references are expanded, the differ-
ence being that XInclude processing occurs after parsing, not during parsing.

As an example, if elements in the included document belong to no namespace,
they will still belong to no namespace even if the including document has a default
namespace declaration on the root element. Again, XInclude defines how to
merge the Infosets of both documents after parsing has taken place.

The XInclude namespace only consists of a single element, include, which can
be used in conjunction with any other namespace.

Namespace
http://www.w3.org/1999/XML/xinclude

4.2.1 include

<xinc:include href='url reference' parse='xml|text'
 xmlns:xinc='http://www.w3.org/1999/XML/xinclude'/>

xpointer(string-range(//intro,'Infoset')[3])

xpointer(string-range(//intro, 'Infoset', 3, 2))

XI
nc

lu
de

Skonnard.book Page 79 Monday, October 1, 2001 8:57 AM

80 Essential XML Quick Reference

Description
A placeholder element for the resource referenced by the href attribute. The
parse attribute specifies the type of resource.

Attributes

Example
Using XInclude to merge documents

Syntax Description

href='URI reference' The href attribute contains a URI reference to the
included content.

parse='(xml|text)' The attribute is an enumerated value of either xml
(default) or text, indicating how the referenced data
is to be included. xml causes the referenced data to
be interpreted as XML (à la parsed entities), and the
referenced Infoset is merged at this location. text
indicates that the referenced data should be included
as a single text node.

<!-- intro.txt -->
The XML Pointer Language (XPointer) 1.0 defines
syntax for using fragment identifiers with XML
resources.

<!-- xptr-refs.xml -->
<references>
 <reference>
 <desc>XML Pointer Language Version 1.0</desc>
 <uri>http://www.w3.org/TR/xptr</uri>
 </reference>
</references>

<!-- chapter.xml -->
<chapter xmlns='http://www.develop.com/exmlref'
 xmlns:xinc='http://www.w3.org/1999/XML/xinclude'>
 <title><xinc:include href='
 xptr-refs.xml#xpointer(//desc/text())'/></title>
 <intro>
 <xinc:include href='intro.txt' parse='text'/>
 </intro>
 <xinc:include href='xptr-refs.xml'/>
</chapter>

Skonnard.book Page 80 Monday, October 1, 2001 8:57 AM

XPointer, XInclude, and XML Base 81

The logical resulting document could be serialized as follows:

4.3 XML Base
When multiple XML resources are used to build a logical XML document (for exam-
ple, via external entities, XInclude, and so on), questions arise about how to
resolve relative URIs. XML Base defines this process along with a syntax for
explicitly controlling the base URI of elements in a document.

By default, relative URIs found in a document are resolved relative to the original
entity’s base URI. For example, an entity located at http://www.develop.com/
exmlref/xptr.xml will have a base URI of http://www.develop.com/
exmlref/. All relative URIs found in that entity will be resolved relative to its
base URI. Because this may not always be desirable, XML Base provides the
xml:base attribute for explicitly overriding the base URI of any element in a
document.

4.3.1 xml:base

xml:base='URI reference'

Description
The xml:base attribute allows an element to override the base URI of an element
explicitly and all descendant elements. The value of this attribute is interpreted as

<chapter xmlns='http://www.develop.com/exmlref'>
 <title>XML Pointer Language Version 1.0</title>
 <intro>
The XML Pointer Language (XPointer) 1.0 defines
syntax for using fragment identifiers with XML
resources.
 </intro>
 <references xmlns=''>
 <reference>
 <desc>XML Pointer Language Version 1.0</desc>
 <uri>http://www.w3.org/TR/xptr</uri>
 </reference>
 </references>
</chapter>

XM
L

B
as

e

Skonnard.book Page 81 Monday, October 1, 2001 8:57 AM

82 Essential XML Quick Reference

a URI reference as defined in IETF RFC 2396 (http://www.ietf.org/rfc/
rfc2396.txt). In namespace-aware XML processors, the xml prefix is auto-
matically bound to http://www.w3.org/XML/1998/namespace. If the
xml:base value is itself a relative URI, it’s also resolved with respect to the cur-
rent in-scope base URI (either explicitly set through an ancestor xml:base
attribute or inherited from the owner entity).

Example
Using XML Base to modify an element’s base URI

The three relative URIs used in this document are resolved to

4.4 References
XML Pointer Language (XPointer) Version 1.0. Last-Call Working Draft 8 Jan-
uary 2001.
Available at http://www.ietf.org/rfc/rfc2396.txt
http://www.w3.org/TR/2001/WD-xptr-20010108 and
http://www.w3.org/TR/xptr (current version).

XML Inclusions (XInclude) Version 1.0. Working draft 26 October 2000.
Available at http://www.w3.org/TR/2000/WD-xinclude-20001026 and
http://www.w3.org/TR/xinclude (current version).

<chapter xml:base='http://www.develop.com/xml/'>
 <title>XSLT</title>
 <sections xml:base='/exmlref/refs/'>
 <xinc:include href='xslt.xml'/>
 <xinc:include

href='xpath.xml#xpointer(id("section123"))'
 xml:base='http://www.w3.org/TR/'/>
 </sections>
 <xinc:include href='exml.xml#xpointer(//xslt-summary)'/>
</chapter>

http://www.develop.com/exmlref/refs/xslt.xml
http://www.w3.org/TR/xpath.xml#xpointer(id(section123))
http://www.develop.com/xml/exml.xml#xpointer(//xslt-

summary)

Skonnard.book Page 82 Monday, October 1, 2001 8:57 AM

XPointer, XInclude, and XML Base 83

XML Base. Proposed Recommendation 20 December 2000.
Available at http://www.w3.org/TR/2000/PR-xmlbase-20001220 and
http://www.w3.org/TR/xmlbase (current version).

For more information of IETF RFC 2396, please visit http://www.ietf.org/rfc/
rfc2396.txt

XM
L

B
as

e

Skonnard.book Page 83 Monday, October 1, 2001 8:57 AM

Skonnard.book Page 84 Monday, October 1, 2001 8:57 AM

85

XS
LT

Chapter 5

XSL Transformations 1.0

XSL Transformations (XSLT) version 1.0 defines an XML-based programming lan-
guage for transforming XML documents into other text formats. The most com-
mon use of XSLT today is for transforming one type of XML document into
another type of XML document, which helps alleviate schema incompatibilities
(see Figure 5–1).

It’s also common to use XSLT for transforming XML documents into HTML or
some other presentation-oriented format (for example, see Formatting Objects in
XSL). In addition to these scenarios, XSLT can be used to transform XML docu-
ments into any other type of text format (for example, comma-separated formats,
C++/Java source files, COBOL records, and so on).

Figure 5–1 Transforming between different versions of employee documents.

<v1:emp xmlns:v1='urn:employee:v1'>
 <fname>Bob</fname>

 <lname>Smith</lname>
 <age>45</age>

 <position>Instructor</position>

</v1:emp>

<v2:employee xmlns:v2='urn:employee:v2'>

 <name>Bob Smith</name>
 <title>Instructor</title>

</v2:employee>

Skonnard.book Page 85 Monday, October 1, 2001 8:57 AM

86

Essential XML Quick Reference

5.1 Introduction to XSLT programming

XSLT offers three distinct programming models: exemplar-based, procedural, and
declarative. The first and simplest programming model is exemplar-based. This
model allows you to take an XML document template and fill it in with XSLT pro-
gramming constructs that produce dynamic content at the appropriate locations.
For more information on this programming model, see Section 5.6.

Sample exemplar-based transformation

XSLT also makes it possible to separate and generalize transformation logic into
reusable templates. Templates in XSLT can be called like functions in procedural
programming languages. The action of a template is to output a portion of the
result docunent. See the sections on

template

 and

call-template

 for
more details.

Sample procedural transformation

<!-- exemplar document -->
<v2:employee
 xmlns:v1='urn:employee:v1'
 xmlns:v2='urn:employee:v2'
 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'
 xsl:version='1.0'>
 <name><xsl:value-of select="concat(/v1:emp/fname,
 ' ', /v1:emp/lname)"/></name>
 <title><xsl:value-of select='/v1:emp/position'/></title>
</v2:employee>

<xsl:transform
 xmlns:v1='urn:employee:v1'
 xmlns:v2='urn:employee:v2'
 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'
 version='1.0'>

 <!-- outputs name element -->
 <xsl:template name="outputName">
 <name><xsl:value-of
 select="concat(v1:emp/fname, ' ', v1:emp/lname)"/></

name>
 </xsl:template>

Skonnard.book Page 86 Monday, October 1, 2001 8:57 AM

XSL Transformations 1.0

87

XS
LT

And finally, XSLT offers a powerful and flexible declarative programming model
(similar to that of Prolog, Lisp, and Scheme). The declarative model is based on
associating templates with patterns (or rules) relative to the input document.

When the processor begins executing the transformation, it looks for the template
with a pattern that matches the root of the input tree (for example, this is how the
first template was called in the previous example). Then, inside that template, you
indicate which nodes you would like the processor to continue processing through
the

apply-templates/apply-imports

 elements. After a call to

apply-
templates/apply-imports

, the processor identifies and executes the template
that best matches each specified node. This continues until the processor reaches
a template that doesn’t explicitly call

apply-templates/apply-imports

.

XSLT defines several built-in templates that exist as part of every program unless
they’re explicitly overridden. The built-in templates have a profound effect on the
programming model. For the root node and element nodes, the built-in template
calls

apply-templates

 to continue processing all child nodes. For attribute
and text nodes, the built-in template simply outputs the node’s value. For all other
node types, the built-in template does nothing. See Section 5.5 for more details.

The declarative model allows developers to partition transformation logic into
modules that are automatically associated with a portion of the input tree. The
developer doesn’t have to worry about when or how the template is called.
Instead the developer simply declares that a given template should be called for
a particular node, and the processor figures out when and how to do it. With this

 <!-- outputs title element -->
 <xsl:template name="outputTitle">
 <title><xsl:value-of select='v1:emp/position'/></

title>
 </xsl:template>

 <!-- root template: main entry point -->
 <xsl:template match="/">
 <v2:employee>
 <xsl:call-template name="outputName"/>
 <xsl:call-template name="outputTitle"/>
 </v2:employee>
 </xsl:template>

</xsl:transform>

Skonnard.book Page 87 Monday, October 1, 2001 8:57 AM

88

Essential XML Quick Reference

approach, it’s possible to build programs that transform extremely complex input
documents in a straightforward fashion. For more details on this approach, see
the

template

,

apply-templates

, and

apply-imports

 sections.

Sample declarative transformation

Although exemplar-based transformations only allow XML output (or well-formed
HTML), the last two approaches make it possible to output XML, HTML, or
straight text. See the

output

 element for more details on how this works. The
last two approaches also make it possible to partition transformations into multi-
ple source files. The

include/import

 elements can be used to combine XSLT
files into one logical program.

<xsl:transform
 xmlns:v1='urn:employee:v1'
 xmlns:v2='urn:employee:v2'
 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'
 version='1.0'>

 <!-- override built-in template for
 text/attributes -->
 <xsl:template match="text()|@*"/>

 <!-- template for position elements -->
 <xsl:template match="position">
 <title><xsl:value-of select='.'/></title>
 </xsl:template>

 <!-- template for fname elements -->
 <xsl:template match="fname">
 <name><xsl:value-of select="
 concat(., ' ',
 following-sibling::lname)"/></name>
 </xsl:template>

 <!-- template for v1:emp elements -->
 <xsl:template match="v1:emp">
 <v2:employee>
 <xsl:apply-templates select="*"/>
 </v2:employee>
 </xsl:template>
</xsl:transform>

Skonnard.book Page 88 Monday, October 1, 2001 8:57 AM

XSL Transformations 1.0

89

XS
LT

Regardless of which approach you choose, XSLT offers several programming
constructs that can be used to write sophisticated transformations. Some of
these programming constructs are quite familiar and intuitive (for example, condi-
tionals, loop statements, and so on), whereas others are specific to XSLT (for
example,

value-of

,

element

,

attribute

, and so on).

5.2 XSLT types and expressions

XSLT leverages XPath for identifying nodes from the input document (

select

attribute), specifying conditions (

if/when

 statements), and generating text in
the result docunent (

value-of

). XSLT also defines several new data types and
expressions that are used to define the various XSLT constructs throughout the
rest of this chapter.

XSLT data types

XSLT expressions

Type Description

char

A single UCS character

QName

A qualified name (

prefix:local_name

). The prefix is
expanded into a URI using the in-scope namespace
declarations.

QNames

A whitespace-separated list of QName values

token

A string that doesn’t contain whitespace

tokens

A whitespace-separated list of token values

uri-reference

A valid URI reference

template

A template defines a portion of the result docunent. It
can contain literal output (elements/text) as well as
XSLT elements that are instructions for creating
dynamic output.

Type Description

expression

A generic XPath expression

node-set-expression

An XPath expression that yields a

node-set

boolean-expression

An XPath expression with a result that is converted to a
boolean (as if by calling the

boolean

 function)

number-expression

An XPath expression with a result that is converted to a
number (as if by calling the

number

 function)

Skonnard.book Page 89 Monday, October 1, 2001 8:57 AM

90

Essential XML Quick Reference

These type/expression names are used when presenting the syntax for each of
the XSLT constructs presented in this chapter. For example, the following repre-
sents the syntax of the

attribute

 element:

<xsl:attribute
 name = { qname }
 namespace = { uri-reference }>
 <!-- Content: template -->
</xsl:attribute>

The previous tables describe what

QName,

URI

 reference, and template mean in
this context. See Chapter 3 for more details on XPath data types and expressions.

5.3 Patterns

A pattern is a restricted XPath location path (see previous section) that identifies
a set of nodes. A pattern identifies an

is-a relationship

 rather than a

has-a relation-
ship

. For example, the pattern

child::foo

 identifies nodes that

are

 child foo
elements rather than nodes that

have

 child foo elements. Patterns are primarily
used to associate templates with nodes in the source document (see

tem-
plate

). Patterns are also used to define keys (see

key

) and numbering details
(see

number

).

A node matches a pattern when the pattern expression evaluated against the
node (or any of the node’s ancestor nodes) identifies the node itself.

string-expression

An XPath expression with a result that is converted to a
string (as if by calling the

string

 function)

pattern

A sequence of XPath location paths separated by

|

.
Location paths used in patterns may only use the

child

 and

attribute (@)

 axis identifiers, but they
may use the

//

 abbreviation for

/descendant-
or-self::node()/

. There are no restrictions on
what’s used in the node test or predicate portion of a
location path. The

id

 and

key

 functions may also be
used as a complete pattern. For more details on pattern
matching see Section 5.3.

Type Description

Skonnard.book Page 90 Monday, October 1, 2001 8:57 AM

XSL Transformations 1.0

91

XS
LT

Examples

As you can see from these examples, it’s possible for a node to match more than
one pattern. XSLT provides a set of conflict resolution rules to define what hap-
pens when this occurs (described next).

5.4 Conflict resolution

When a node matches more than one pattern, the following conflict resolution
rules are used to determine which template to use:

• All templates with a lower import precedence are eliminated from consider-
ation (see

import

 element).

• Of the remaining templates, the one with the highest priority matches. A prior-
ity may be explicitly assigned to a template via the

priority

 attribute; oth-
erwise, its default priority is automatically calculated (listed next).

Pattern example Description

*

Matches any element node.

v1:*

Matches any element from the namespace
associated with the

v1

 prefix.

@*

Matches any attribute node.

text()

Matches any text node.

node()

Matches any node except for the root node (the
root node is not a child of another node).

fname

Matches any

fname

 element that belongs to no
namespace.

child::fname

Matches any

fname

 element that belongs to no
namespace.

fname | lname | @id Matches any fname/lname element or id
attribute that belong to no namespace.

fname/text() Matches any text node that is a child of an
fname element (belonging to no namespace).

emp//text() Matches any text node that is a descendant of
an emp element.

v1:emp[@id='e101']/fname Matches any fname element (from no
namespace) that is a child of the emp element
with an id attribute equal to e101, from the
namespace associated with the v1 prefix.

Skonnard.book Page 91 Monday, October 1, 2001 8:57 AM

92 Essential XML Quick Reference

• If there are multiple templates remaining of equal priority, the XSLT processor
may either signal an error or choose the last one in the document.

Default priorities

5.5 Built-in templates
XSLT defines several templates that are built into every transformation. These
built-in templates provide default functionality for each node type (as described
next). Built-in templates have the lowest possible priority and can be overridden.

Pattern type Default priority Examples

Node test by type -0.50 *
node()
comment()
text()
processing-instruction()
child::*
child::text()
@*
@node()
attribute::node()

Namespace wildcard -0.25 v1:*
child::v1:*
attribute::v1:*

QName 0.00 fname
child::fname
v1:emp
child::v1:emp
@id
attribute::id
@v1:id

Processing instruc-
tion tests by literal

0.00 processing-instruction(
'xsl-stylesheet')

Everything else 0.50 v1:emp/fname
v1:emp[@id]
fname[contains(., 'Aaron')]
//fname
//node()

Multiple patterns
(pattern1 | pattern2)

Treated as distinct
templates, with pri-
orities that are calcu-
lated independently.

v1:emp | fname
node() | @* | *

Skonnard.book Page 92 Monday, October 1, 2001 8:57 AM

XSL Transformations 1.0 93

XS
LT

Built-in template descriptions for each node type

Built-in template syntax
<xsl:template match="*|/">
 <xsl:apply-templates/>
</xsl:template>
<xsl:template match="text()|@*">
 <xsl:value-of select="."/>
</xsl:template>
<xsl:template match="processing-instruction()|comment()"/>

In addition to these built-in templates, there is also a set of built-in templates for
each mode used in the document (see template for more details):

<xsl:template match="*|/" mode="m">
 <xsl:apply-templates mode="m"/>
</xsl:template>

These built-in templates can be explicitly overridden to change this default behavior.

Example
Overriding built-in templates

This example overrides the built-in templates for the root, element, attribute, and
text nodes to do nothing by default.

Node type Description

Root Calls apply-templates on child nodes.

Element Calls apply-templates on child nodes.

Attribute Outputs the attribute value using value-of.

Text Outputs the text node using value-of.

Processing Instruction Does nothing.

Comment Does nothing.

Namespace Does nothing.

<!-- overrides built-in templates -->
<xsl:template match="*|/"/>
<xsl:template match="text()|@*"/>

Skonnard.book Page 93 Monday, October 1, 2001 8:57 AM

94 Essential XML Quick Reference

5.6 Exemplar-based transformation syntax
An exemplar-based transformation must

• be a well-formed XML document

• specify the XSLT version number on the root element
(xsl:version='1.0')

An exemplar-based transformation is equivalent to having a single (root) template
that contains the entire exemplar document as a literal result element. Because of
this, top-level elements may not be used within exemplars. This approach is very
similar to the ASP/JSP model, as illustrated by the following example.

Sample exemplar-based transformation

5.7 Attribute value templates
In many situations, it’s convenient to assign the value of an attribute dynamically
(see attribute). For example, consider the following typical example that uses
attribute to generate an id attribute on the new employee element:

<!-- exemplar document -->
<html xmlns:xsl='http://www.w3.org/1999/XSL/Transform'
 xsl:version='1.0' xmlns:v1='urn:employee:v1'>
 <body>
 <h1><xsl:value-of select="concat(/v1:emp/fname,
 ' ', /v1:emp/lname)"/></h1>
 <h2><xsl:value-of select='/v1:emp/position'/></h2>
 </body>
</html>

<xsl:template match="v1:emp">
 <employee>
 <xsl:attribute name="id">
 <xsl:value-of select="lname"/>-<xsl:value-of

select="@empid"/>
 </xsl:attribute>
 </employee>
</xsl:template>

Skonnard.book Page 94 Monday, October 1, 2001 8:57 AM

XSL Transformations 1.0 95

XS
LT

To simplify this process, XSLT provides attribute value templates that make it pos-
sible to embed value-of expressions within attribute values. To use attribute
value templates, enclose the XPath expression that you would have used with
value-of inside curly braces { } inside the attribute value. Notice how much
this simplifies the previous example:

Besides using attribute value templates with literal result elements, they also may
be used with some of the attributes on certain XSLT elements. The following
example illustrates how one could generate an attribute with a name that was
determined dynamically by a value in the source document:

Curly braces are not recognized recursively inside expressions. Also, curly
braces are not recognized inside attributes of XSLT elements (as shown previ-
ously) unless an attribute has been defined to accept attribute value templates.
When the syntax is presented for the various XSLT elements throughout this chap-
ter, only those attributes that have curly braces surrounding the type identifier
accept attribute value templates.

5.8 Whitespace
In XML, whitespace characters consist of space (#x20), tab (#x9), carriage return (#xD),
and new line (#xA). Before an XSLT processor executes a transformation against a
given source document, whitespace-only text nodes are stripped from both documents.

A whitespace-only text node only contains whitespace characters. If a text node
contains a single non-whitespace character, it’s always preserved. It’s possible to

<xsl:template match="v1:emp">
 <employee id="{lname}-{@empid}"/>
</xsl:template>

<xsl:template match="v1:emp">
 <employee>
 <xsl:attribute name="{//id-label}">
 <xsl:value-of select="lname"/>-<xsl:value-of

select="@empid"/>
 </xsl:attribute>
 </employee>
</xsl:template>

Skonnard.book Page 95 Monday, October 1, 2001 8:57 AM

96 Essential XML Quick Reference

force the preservation of whitespace-only text nodes. The following rules describe
when whitespace-only text nodes are preserved for both the transformation and
the source documents:

Preserved in transformation document
• Whitespace within text elements (all others are always stripped)

Preserved in source document
• Whitespace-only text nodes with a parent element’s name that is in the set of

whitespace-preserving element names (see preserve-space and strip-
space)

• Whitespace-only text nodes that have an xml:space value of preserve
(current in-scope value, either declared on the parent element or some ancestor)

5.9 Element library

Namespace
http://www.w3.org/1999/XSL/Transform

The following groups the XSLT elements by functional category. The last category
lists the elements that may be used as direct children of transform/
stylesheet, otherwise known as top-level elements. All other elements (that
are not top level) must be used within one of the top-level elements. For more
information on any individual element, see the corresponding section.

Structural element Description

import Includes the specified transformation with lower prece-
dence.

include Includes the specified transformation.

param Declares a parameter and binds it to a default value
(used with template or transform).

template Defines a new template rule with the specified pattern
and/or name, optional mode, and optional priority.

transform
(stylesheet)

Is the topmost element in an XSLT document.

variable Binds a name to a value (like param without a default
value).

Skonnard.book Page 96 Monday, October 1, 2001 8:57 AM

XSL Transformations 1.0 97

XS
LT

Flow-control element Description

apply-imports Facilitates overriding templates by processing the cur-
rent node using only imported template rules.

apply-templates Instructs the processor to process each node in the
identified node-set.

call-template Invokes a template by name.

for-each Loops through the identified node-set, instantiating
the template with each node acting as the current node.

sort Sorts the current node list before processing (used with
for-each and apply-templates).

with-param Passes the specified parameter to the target template
(used with call-template and apply-templates).

Generative element Description

attribute Generates an attribute in the result docunent.

comment Generates a comment in the result docunent.

copy Copies the current node (without attributes or child
nodes) to the result document.

copy-of Copies the specified object (and each node’s subtree)
to the result document.

element Generates an element in the result document.

processing-instruc-
tion

Generates a processing instruction in the result
document.

text Generates the literal text in the result document.

value-of Generates a text node from an expression in the result
document.

Conditional element Description

choose Selects one template from a number of alternatives
(defined by when and otherwise).

if Defines a conditional template.

otherwise Defines the default template for a choose instruction.

when Defines a conditional template for a choose instruction.

Skonnard.book Page 97 Monday, October 1, 2001 8:57 AM

98 Essential XML Quick Reference

Declaration element Description

attribute-set Defines a named set of attributes that can be reused
across multiple elements.

decimal-format Declares a decimal format (used by format-number).

namespace-alias Declares that one namespace URI is an alias for another
while processing the transformation.

output Declares how the author of the stylesheet would like the
result docunent serialized.

preserve-space Defines the elements in the source document for which
whitespace-only text nodes should be preserved.

strip-space Defines the elements that should be removed from the
list of whitespace-preserving elements (defined by
preserve-space).

Miscellaneous element Description

fallback Defines a fallback template that will be called when the
containing XSLT instruction isn’t recognized.

key Declares a new key (used with key function).

message Outputs a message in a processor-dependent fashion
and potentially terminates the program.

number Inserts a formatted number into the result docunent.

Top-level element Description

attribute-set Defines a named set of attributes that can be reused
across multiple elements.

decimal-format Declares a decimal format (used by format-number).

import Includes the specified transformation with lower
precedence.

include Includes the specified transformation.

key Declares a new key (used with key function).

namespace-alias Declares that one namespace URI is an alias for another
while processing the transformation.

output Declares how the author of the stylesheet would like the
result docunent serialized.

param Declares a parameter and binds it to a default value
(used with template or transform).

preserve-space Defines the elements in the source document for which
whitespace-only text nodes should be preserved.

Skonnard.book Page 98 Monday, October 1, 2001 8:57 AM

XSL Transformations 1.0 99

XS
LT

The XSLT programming language is defined in terms of XML elements and
attributes. Each of the elements belongs to the XSLT namespace. Attributes are
always optional unless stated otherwise.

The syntax for each element/attribute references XSLT-specific type/expression
names. For example, the following is the syntax for attribute:

<xsl:attribute
 name = { qname }
 namespace = { uri-reference }>
 <!-- Content: template -->
</xsl:attribute>

See Section 5.2 for more details on what qname, uri-reference, and
template mean in this context. The { } notation identifies that these attributes
also accept attribute value templates (see Section 5.7).

5.9.1 apply-imports

<xsl:apply-imports />

Description
apply-imports facilitates overriding templates. It instructs the processor to
process the current node using only imported template rules (see import for
details on importing template rules). The node is processed in the same mode as
the current template rule (the current template rule is the template that was most
recently matched, except for inside of a for-each element where the current
template is always null). It is an error if xsl:apply-imports is instantiated
when the current template rule is null.

strip-space Defines the elements that should be removed from the
list of whitespace-preserving elements (defined by
preserve-space).

template Defines a new template rule with the specified pattern
and/or name, optional mode, and optional priority.

variable Binds a name to a value (like param without a default
value).

Top-level element Description

Skonnard.book Page 99 Monday, October 1, 2001 8:57 AM

100 Essential XML Quick Reference

Example
Using apply-imports

This example consists of two files: employee.xsl and employeeDetails.xsl.
employeeDetails.xsl imports employee.xsl and overrides the employee
template. Inside the derived employee template, we first call apply-imports
to execute the behavior of the base template in employee.xsl (this is similar
to calling a method in a base class from a derived class). In this case, we’re
extending the behavior of the base template also to output the employee’s title.

5.9.2 apply-templates

<xsl:apply-templates
 select = node-set-expression
 mode = qname>
 <!-- Content: (xsl:sort | xsl:with-param)* -->
</xsl:apply-templates>

Description
Instructs the processor to process each node in the node-set identified by the
select attribute. For each node in the identified node-set, the processor
identifies the template rule that best matches the node and instantiates the tem-
plate with that node as the current node (see Sections 5.3 and 5.4). The identified

<!-- employee.xsl -->
...
<xsl:template match="employee">
 Name: <xsl:value-of select="name"/>
</xsl:template>
...

<!-- employeeDetails.xsl -->
...
<xsl:import href="employee.xsl"/>

<xsl:template match="employee">
 <xsl:apply-imports/>
 Title: <xsl:value-of select="title"/>
</xsl:template>
...

Skonnard.book Page 100 Monday, October 1, 2001 8:57 AM

XSL Transformations 1.0 101

XS
LT

nodes are traversed in document order unless apply-templates contains
child sort elements to reorder the node-set before processing (see sort).

If a mode attribute is also supplied, only templates that have the same mode
attribute are candidates to match (see template for more details). Modes make
it possible to have two templates with the same pattern that produce different
results. Remember that there are also built-in templates for each mode specified
in the transformation (see Section 5.5 for more details).

Parameters may be passed to templates through child with-param elements
(see param and with-param for more details).

Attributes

Example
Using apply-templates

Name Default Description

select node() A node-set expression that identifies the node-set
to be processed.

mode "" A qualified name that identifies the particular mode
against which to match.

<xsl:transform
 xmlns:v1='urn:employee:v1'
 xmlns:v2='urn:employee:v2'
 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'
 version='1.0'>

 <!-- override built-in template for text/atts -->
 <xsl:template match="text()|@*"/>

 <!-- template for dependent elements -->
 <xsl:template match="dependent">
 <dep><xsl:value-of select='.'/></dep>
 </xsl:template>

 <!-- template for v1:emp elements -->
 <xsl:template match="v1:emp">
 <name><xsl:value-of
 select="concat(fname, ' ', lname)"/></name>

Skonnard.book Page 101 Monday, October 1, 2001 8:57 AM

102 Essential XML Quick Reference

In this example, the first call to apply-templates occurs in the root template
(match='/'). Because the select attribute was omitted, it defaults to process-
ing all the child nodes of the current context node—in this case, the root node.
Assuming that v1:emp is the root element, the v1:emp template will be the next
one to match. Inside the v1:emp template, the call to apply-templates
selects the child dependents elements. Because there isn't a template that
matches dependents, the built-in template for elements kicks in, which simply
calls apply-templates again selecting all of dependents child nodes (see
Section 5.5 for more details).

Assuming that the dependents element has child dependent elements, each
of those will then be processed by the dependent template. If there were any
additional elements under dependents, they would be recursively processed by
the built-in template for elements until reaching the child text nodes. This example
overrides the built-in template for text nodes to do nothing (this ensures that the
text won’t be output for any unhandled elements).

5.9.3 attribute

<xsl:attribute
 name = { qname }
 namespace = { uri-reference }>
 <!-- Content: template -->
</xsl:attribute>

Description
attribute generates an attribute in the result docunent with the specified
name and namespace identifier. The new attribute is associated with the element

 <xsl:apply-templates select="dependents"/>
 </xsl:template>

 <!-- root template, main entry point -->
 <xsl:template match="/">
 <v2:employee>
 <xsl:apply-templates/>
 </v2:employee>
 </xsl:template>

</xsl:transform>

Skonnard.book Page 102 Monday, October 1, 2001 8:57 AM

XSL Transformations 1.0 103

XS
LT

containing the attribute instruction, whether that was generated through a lit-
eral resulting element or the element instruction. The content of the
attribute becomes the value of the new attribute.

Instead of using attribute, one could also use attribute value templates to
accomplish the same goal, unless of course you needed to specify the name of
the attribute dynamically. To provide for that, notice that both the name and
namespace attributes accept attribute value templates (see Section 5.7).

Attributes

Examples
Generating attributes

This template generates the following element:

Name Default Description

name (required) The qualified name of the new attribute

namespace "" The namespace identifier of the new attribute

...
<xsl:template match="/">
 <employee>
 <xsl:attribute name="i:id"
 namespace="urn:ids-r-us:format-x">
 <xsl:value-of select="concat(*/lname, '-', */fname)"/>
 </xsl:attribute>
 <name>
 <xsl:attribute name="first">
 <xsl:value-of select="*/fname"/>
 </xsl:attribute>
 <xsl:attribute name="last">
 <xsl:value-of select="*/lname"/>
 </xsl:attribute>
 </name>
 </employee>
</xsl:template>
...

<employee i:id='Bob-Billy'
 xmlns:i='urn:ids-r-us:format-x'>

Skonnard.book Page 103 Monday, October 1, 2001 8:57 AM

104 Essential XML Quick Reference

Generating attributes with attribute value templates

This example generates the same document as the previous example.

Dynamically specifying attribute names

This example generates an attribute with a dynamic name, the value of the
fnameLabel element in the source document.

5.9.4 attribute-set

<xsl:attribute-set
 name = qname
 use-attribute-sets = qnames>
 <!-- Content: xsl:attribute* -->
</xsl:attribute-set>

 <name first='Billy' last='Bob'/>
</employee>

...
<xsl:template match="/">
 <employee i:id="{concat(*/lname,'-',*/fname)}"
 xmlns:i="urn:ids-r-us:format-x">
 <name first="{*/fname}" last="{*/lname}"/>
 </employee>
</xsl:template>
...

...
<xsl:template match="/">
 <employee>
 <name>
 <xsl:attribute name="{labels/fnameLabel}"
 <xsl:value-of select="*/fname"/>
 </xsl:attribute>
 ...
 </name>
 </employee>
</xsl:template>

Skonnard.book Page 104 Monday, October 1, 2001 8:57 AM

XSL Transformations 1.0 105

XS
LT

Description
attribute-set defines a named set of attributes that can be reused across
multiple elements. The content of attribute-set consists of zero or more
attribute elements that specify the attributes in the set. The contained
attribute templates are instantiated each time the attribute-set is used on
an element, using the same current node that was used to instantiate the element
itself. attribute-sets are used by element through the use-
attribute-sets attribute (see element for more details). They may also be
used on literal resulting elements through the xsl:use-attribute-sets
global attribute.

Attributes

Example
Using attribute-set

Name Default Description

name (required) The name of the attribute-set

use-attribute-sets "" A whitespace-separated list of other
attribute-set names that are to be
added to the beginning of this new set

...
<xsl:attribute-set name="nameAtts">
 <xsl:attribute name="first">
 <xsl:value-of select="fname"/>
 </xsl:attribute>
 <xsl:attribute name="last">
 <xsl:value-of select="lname"/>
 </xsl:attribute>
</xsl:attribute-set>

<xsl:template match="/">
 <employees>
 <xsl:for-each select="//emp">
 <xsl:element name="employee"
 use-attribute-sets="nameAtts">
 <xsl:attribute="mi">
 <xsl:value-of select="middle"/>
 </xsl:attribute>
 </xsl:element>

Skonnard.book Page 105 Monday, October 1, 2001 8:57 AM

106 Essential XML Quick Reference

This example defines an attribute-set named nameAtts, which is then
used on the employee elements generated below. The employee element also
defines the mi attribute inline. (Note: Inline attribute definitions can override
attributes in attribute-sets.)

5.9.5 call-template

<xsl:call-template
 name = qname>
 <!-- Content: xsl:with-param* -->
</xsl:call-template>

Description
call-template invokes a template by name. The name attribute specifies the
QName of the template to call. The template with the same expanded name is
invoked by the processor (see template for more details on naming templates).
call-template may contain with-param elements for passing the
expected parameters into the template. Invoking templates by name doesn’t
affect the context in any way (for example, the current node and node list are the
same within the called template).

Attribute

Example
Using call-template

 </xsl:for-each>
 </employees>
</xsl:template>
...

Name Default Description

name (required) The qualified name of the template to invoke

...
<!-- outputs employee info -->
<xsl:template name="outputEmpInfo">
 <xsl:param name="empNode"/>
 <xsl:param name="getTitle" select="false()"/>

Skonnard.book Page 106 Monday, October 1, 2001 8:57 AM

XSL Transformations 1.0 107

XS
LT

This example invokes the outputEmpInfo element by name and passes in two
parameters, empNode (the employee node to output) and getTitle (a boolean
value indicating whether to output the employee’s title).

5.9.6 choose

<xsl:choose>
 <!-- Content: (xsl:when+, xsl:otherwise?) -->
</xsl:choose>

Description
choose selects exactly one template from a number of alternatives (similar to a
switch statement in C++/Java or a Select statement in Visual Basic). The content
of choose consists of a sequence of when elements followed by an optional
otherwise element (default case). Each when element has a single test
attribute, which specifies an XPath expression. Each of the when elements is
tested in turn, by evaluating the expression and converting the resulting object to
a boolean. The content of the first when element with a test that is true is
instantiated. If no when is true, the content of the otherwise element is
instantiated.

 <name><xsl:value-of select="concat($empNode/fname, ' ',
 $empNode/lname)"/></name>
 <xsl:if test="$getTitle">
 <title><xsl:value-of select='$empNode/title'/></title>
 </xsl:if>
</xsl:template>

<!-- root template: main entry point -->
<xsl:template match="/">
 <employee>
 <xsl:call-template name="outputEmpInfo">
 <xsl:with-param name="empNode"
 select="//emp[@id='e102']"/>
 <xsl:with-param name="getTitle" select="true()"/>
 </xsl:call-template>
 </employee>
</xsl:template>
...

Skonnard.book Page 107 Monday, October 1, 2001 8:57 AM

108 Essential XML Quick Reference

Example
Using choose

This example illustrates how to use a choose element to select from a number
of different conditions.

5.9.7 comment

<xsl:comment>
 <!-- Content: template -->
</xsl:comment>

Description
Generates a comment in the result docunent. The content of the comment
instruction becomes the content of the new comment in the result docunent.

...
<xsl:template match="/">
 <employees>
 <xsl:for-each select="//emp">
 <xsl:choose>
 <xsl:when test="@dept = 'sales'">
 <salesRep><xsl:apply-templates/></salesRep>
 </xsl:when>
 <xsl:when test="@dept = 'dev'">
 <programmer><xsl:apply-templates/></programmer>
 </xsl:when>
 <xsl:otherwise>
 <employee><xsl:apply-templates/></employee>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:for-each>
 </employees>
</xsl:template>
...

Skonnard.book Page 108 Monday, October 1, 2001 8:57 AM

XSL Transformations 1.0 109

XS
LT

Example
Using comment

This example produces a comment that would look something like this in the
result document:

<!--new employee file: Bob-->

5.9.8 copy

<xsl:copy
 use-attribute-sets = qnames>
 <!-- Content: template -->
</xsl:copy>

Description
copy copies the current node to the result docunent along with all associated
namespace nodes, but without attributes or other child nodes. The content of the
copy instruction is a template for the attributes and children of the newly created
node (in the result docunent). The use-attribute-sets attribute may also
be used to add a set of attributes automatically to newly created element nodes
(see attribute-set).

Attributes

...
<xsl:template match="/">
 <xsl:comment>
 new employee file: <xsl:value-of select="*/fname"/>
 </xsl:comment>
 ...
</xsl:template>
...

Name Default Description

use-attribute-sets "" A whitespace-separated list of
attribute-set names

Skonnard.book Page 109 Monday, October 1, 2001 8:57 AM

110 Essential XML Quick Reference

Example
Using copy to write an identity transformation

This example illustrates how to use copy to write the identity transformation. The
identity template copies each node it encounters from the source document into
the result docunent without changes. This would be useful if you wanted to leave
the entire document unchanged, except for a few specific elements that needed
alterations. Using this template in conjunction with more specific templates
makes this possible. This example has a template for lname elements, which
simply changes the element name to lastName. Besides this change, every-
thing else is copied as is to the result docunent.

5.9.9 copy-of

<xsl:copy-of
 select = expression />

Description
Copies the result of the specified expression to the result document. If the expres-
sion yields a result tree fragment (see variable), the entire result tree fragment
is copied directly to the result document. If the expression yields a node-set,
each node is copied to the result document in document order (along with all
namespace, attribute, and child nodes). If the expression yields an object of any
other type, the object is converted to a string, which is then copied to the result
document.

...
<xsl:template match="lname">
 <lastName><xsl:apply-templates/></lastName>
</xsl:template>

<!-- the identity transformation -->
<xsl:template match="node()|@*">
 <xsl:copy>
 <xsl:apply-templates select="node()|@*"/>
 </xsl:copy>
</xsl:template>
...

Skonnard.book Page 110 Monday, October 1, 2001 8:57 AM

XSL Transformations 1.0 111

XS
LT

Attribute

Example
Using copy-of to copy a set of nodes

This example copies all the employee elements from the source document that
have an eom attribute into the result document.

5.9.10 decimal-format

<xsl:decimal-format
 name = qname
 decimal-separator = char
 grouping-separator = char
 infinity = string
 minus-sign = char
 NaN = string
 percent = char
 per-mille = char
 zero-digit = char
 digit = char
 pattern-separator = char />

Description
decimal-format declares a decimal format that controls the interpretation of
a format string used by the format-number function. If there is a name
attribute, then the element declares a named decimal format; otherwise, it
declares the default decimal format for the transformation.

Name Default Description

select (required) A generic XPath expression

...
<xsl:template match="/">
 <employeesOfTheMonth>
 <xsl:copy-of select="//employee[@eom]"/>
 </employeesOfTheMonth>
</xsl:template>
...

Skonnard.book Page 111 Monday, October 1, 2001 8:57 AM

112 Essential XML Quick Reference

A decimal format controls how the XSLT processor converts a decimal number to
a string. It specifies what characters in the format string and the resulting output
string represent the decimal sign (.), grouping separator (,), percent sign (%),
and per-mille sign (‰). It also specifies what strings represent NaN and infinity in
the output string. In addition, the format string controls where a number must
appear (zero digit) and where a number may appear (digit). The following summa-
rizes the meaning of each format string construct.

Attributes

Example
Using decimal-format

Name Default Description

name "" The qualified name of the decimal format;
if no name, it becomes the default decimal
format

decimal-separator . The character used for the decimal sign

grouping-separator , The character used as the grouping
separator

infinity Infinity The string used to represent infinity

minus-sign - The character used as the minus sign

NaN NaN The string used to represent the NaN value

percent % The character used as the percent sign

per-mille ‰ The character used as a per-mille sign

zero-digit 0 The character used as the digit zero

digit # The character used for a digit in the for-
mat string

pattern-separator ; The character used to separate positive
and negative subpatterns in a pattern

...
<xsl:decimal-format
 decimal-separator = ","
 grouping-separator = "."
 NaN = "Invalid number"
 infinity = "Out of Bounds"/>

<xsl:template match="/">
 <!-- root template -->

Skonnard.book Page 112 Monday, October 1, 2001 8:57 AM

XSL Transformations 1.0 113

XS
LT

This example illustrates how to declare a default decimal format that modifies the
decimal and grouping separators as well as the string representations for NaN
and infinity. The following shows the result of this transformation:

5.9.11 element

<xsl:element
 name = { qname }
 namespace = { uri-reference }
 use-attribute-sets = qnames>
 <!-- Content: template -->
</xsl:element>

Description
Generates an element in the result document with the specified name,
namespace identifier, and set of attribute-sets. Both the name and
namespace attributes accept attribute value templates, making it possible to
assign element names dynamic values. The content of the element instruction
becomes the content of the new element.

 <numbers>
 <number><xsl:value-of
 select="format-number('29895.9','#.##0,00')"/></number>
 <number><xsl:value-of
 select="format-number('10000000','#.##0,##')"/></

number>
 <number><xsl:value-of
 select="format-number('foo','#.##0,00')"/></number>
 <number><xsl:value-of
 select="format-number(1 div 0,'#.##0,00')"/></number>
 </numbers>
</xsl:template>
...

<numbers>
 <number>29.895,90</number>
 <number>10.000.000</number>
 <number>Invalid number</number>
 <number>Out of Bounds</number>
</numbers>

Skonnard.book Page 113 Monday, October 1, 2001 8:57 AM

114 Essential XML Quick Reference

Attributes

Example
Using element to generate elements dynamically

This example dynamically generates the v2:employees element. Then it iter-
ates through all the source document’s emp elements, generating a new element
called employee for each one that contains the concatenation of emp's child
fname and lname elements.

5.9.12 fallback

<xsl:fallback>
 <!-- Content: template -->
</xsl:fallback>

Description
Defines a fallback template that will be called when the containing XSLT
instruction isn’t recognized by the XSLT processor.

Name Default Description

name (required) The qualified name of the new element

namespace "" The namespace identifier of the new
element

use-attribute-sets "" A whitespace-separated list of
attribute-set names that are to
be added to this element (see
attribute-set for more details)

...
<xsl:template match="/">
 <xsl:element name="v2:employees"

namespace="urn:employee:v2">
 <xsl:for-each select="//emp">
 <xsl:element name="employee">
 <xsl:value-of select="concat(fname, ' ', lname)"/>
 </xsl:element>
 </xsl:for-each>
 </xsl:element>
</xsl:template>
...

Skonnard.book Page 114 Monday, October 1, 2001 8:57 AM

XSL Transformations 1.0 115

XS
LT

Example
Using fallback

This example attempts to use an XSLT 1.1 working draft (WD) instruction, docu-
ment, which creates multiple output files. If this stylesheet is used with an XSLT
1.0 processor, the document element would fail and the contained fallback
would be instantiated, which in this case calls an alternate template.

5.9.13 for-each

<xsl:for-each
 select = node-set-expression>
 <!-- Content: (xsl:sort*, template) -->
</xsl:for-each>

Description
for-each loops through the specified node-set, instantiating the contained
template with each node as the current node. The nodes are traversed in docu-
ment order by default, unless for-each contains child sort elements that reor-
der the node-set (see sort).

Attribute

...
<xsl:template match="/">
 <xsl:document href="managers.xml">
 <managers>
 <xsl:apply-templates select="//emp[@manage]"/>
 </managers>
 <xsl:fallback>
 <xsl:call-template name="copyManagersInternally"/>
 </xsl:fallback>
 </xsl:document>
 <xsl:apply-templates/>
</xsl:template>
...

Name Default Description

select (required) An XPath expression that must yield a node-set

Skonnard.book Page 115 Monday, October 1, 2001 8:57 AM

116 Essential XML Quick Reference

Example
Looping through a node-set

This example loops through all emp elements in the document, sorted by the
lname child element in alphabetical order. For each one, it outputs an
employee element, which contains the concatenation of the fname and lname
string values (separated by a space character).

5.9.14 if

<xsl:if
 test = boolean-expression>
 <!-- Content: template -->
</xsl:if>

Description
Defines a conditional template that’s instantiated when the test expression eval-
uates to true. Use choose for if/else semantics.

Attribute

...
<xsl:template match="/">
 <xsl:for-each select="//emp">
 <xsl:sort select="lname"/>
 <employee>
 <xsl:value-of select="concat(fname,' ',lname)"/>
 </employee>
 </xsl:for-each>
</xsl:template>
...

Name Default Description

test (required) An XPath expression with a result that is coerced to a
boolean (as if by calling the boolean function)

Skonnard.book Page 116 Monday, October 1, 2001 8:57 AM

XSL Transformations 1.0 117

XS
LT

Example
Using if to test conditions

This fragment uses the if element to test whether the context node’s dept
attribute has a value of sales. If it does, it outputs the salesRep element.

5.9.15 import

<xsl:import
 href = uri-reference />

Description
import includes the transformation identified by the href attribute in the cur-
rent transformation and gives the imported templates lower precedence in terms
of conflict resolution (see Section 5.4). import elements must precede all other
children of the stylesheet/transform element including include ele-
ments. It’s also possible to override imported templates through the apply-
imports element (see apply-imports). Use include to include templates
without affecting their precedence (see include).

Attribute

Example
Using import to override templates

...
<xsl:if test="@dept = 'sales'">
 <salesRep><xsl:apply-templates/></salesRep>
<xsl:if>
...

Name Default Description

href (required) The URI reference of the transformation to import

<!-- employee.xsl -->
...
<xsl:template match="employee">
 Name: <xsl:value-of select="name"/>
</xsl:template>
...

Skonnard.book Page 117 Monday, October 1, 2001 8:57 AM

118 Essential XML Quick Reference

This example consists of two files: employee.xsl and employeeDetails.xsl.
employeeDetails.xsl imports employee.xsl and overrides the employee
template. Inside of the derived employee template, we first call apply-
imports to execute the behavior of the base template in employee.xsl (this
is similar to calling a method in a base class from a derived class). In this case, we’re
extending the behavior of the base template to output the employee’s title as well.

5.9.16 include

<xsl:include
 href = uri-reference />

Description
include includes the transformation identified by the href attribute in the cur-
rent transformation. include is different than import in that it has no effect on
the precedence of the included templates (see import). include must be a
top-level element.

Attribute

Example
Using include

<!-- employeeDetails.xsl -->
..
<xsl:import href="employee.xsl"/>

<xsl:template match="employee">
 <xsl:apply-imports/>
 Title: <xsl:value-of select="title"/>
</xsl:template>
...

Name Default Description

href (required) The URI reference of the transformation to import

<!-- employee.xsl -->
...
<xsl:template match="employee">

Skonnard.book Page 118 Monday, October 1, 2001 8:57 AM

XSL Transformations 1.0 119

XS
LT

This example consists of two distinct files. employeeDetails.xsl includes
employee.xsl. All of the templates within the former are now also available in
the latter. include has no effect on the conflict resolution rules.

5.9.17 key

<xsl:key
 name = qname
 match = pattern
 use = expression />

Description
key declares a new key with the specified name for the nodes that match the
specified pattern. An XSLT key is analogous to an attribute of type ID except it
doesn’t require a DTD. A key is given a name so it can be referred to later by the
key function. The match attribute identifies the nodes to which the key applies.
The use attribute contains an XPath expression that is evaluated relative to the
nodes identified by the match pattern to produce the key value. See the key
function for more details.

Attributes

 Name: <xsl:value-of select="name"/>
</xsl:template>
...

<!-- employeeDetails.xsl -->
...
<xsl:include href="employee.xsl"/>

<!-- employee template available here -->
<xsl:template match="/">
 <xsl:apply-templates select="//employee"/>
</xsl:template>
...

Name Default Description

name (required) The qualified name of the key

match (required) A pattern that identifies the nodes to which the key
applies

Skonnard.book Page 119 Monday, October 1, 2001 8:57 AM

120 Essential XML Quick Reference

Example
Using key to process cross-references

The following example illustrates how to use keys to take advantage of cross-ref-
erences in the source document that aren’t of type ID/IDREF. If this transforma-
tion were used against the following example document:

use (required) An XPath expression that is evaluated relative to the
nodes identified by the match attribute to produce
the key value

Name Default Description

...
<xsl:key name="employeeId" match="employees/employee"

use="@id"/>

<xsl:template match="courses/course">
 <h2><xsl:value-of select="name"/></h2>
 <h3>Instructors</h3>

<xsl:for-each select="key('employeeId', ./instructors/*)">
 <xsl:value-of select="."/>
</xsl:for-each>

</xsl:template>

<xsl:template match="text()|@*"/>
...

<courses>
 <course>
 <name>Essential XML</name>
 <instructors>
 <instructor>e103</instructor>
 </instructors>
 </course>
 <course>
 <name>Guerrilla XML</name>
 <instructors>
 <instructor>e101</instructor>

Skonnard.book Page 120 Monday, October 1, 2001 8:57 AM

XSL Transformations 1.0 121

XS
LT

it would produce the following output:

5.9.18 message

<xsl:message
 terminate = "yes" | "no">
 <!-- Content: template -->
</xsl:message>

 <instructor>e102</instructor>
 <instructor>e103</instructor>
 </instructors>
 </course>
 <employees>
 <employee id='e101'>
 <name>Martin Gudgin</name>
 </employee>
 <employee id='e102'>
 <name>Don Box</name>
 </employee>
 <employee id='e103'>
 <name>Aaron Skonnard</name>
 </employee>
 </employees>
</courses>

<h2>Essential XML</h2>
<h3>Instructors</h3>

 Aaron Skonnard

<h2>Guerrilla XML</h2>
<h3>Instructors</h3>

 Martin Gudgin
 Don Box
 Aaron Skonnard

Skonnard.book Page 121 Monday, October 1, 2001 8:57 AM

122 Essential XML Quick Reference

Description
Outputs a message in a processor-dependent fashion and potentially terminates
the program.

Attribute

Example
Using message

This example attempts to use an XSLT 1.1 (WD) element, which fails with all XSLT
1.0 processors. When this stylesheet is used with an XSLT 1.0 processor, the
fallback template is instantiated, which outputs a message and instructs the
processor to terminate processing.

5.9.19 namespace-alias

<xsl:namespace-alias
 stylesheet-prefix = prefix | "#default"
 result-prefix = prefix | "#default" />

Name Default Description

terminate "no" Specifies whether the processor should terminate
processing after sending the message.

...
<xsl:template match="/">
 <xsl:document href="managers.xml">
 <managers>
 <xsl:apply-templates select="//emp[@manage]"/>
 </managers>
 <xsl:fallback>
 <xsl:message terminate="yes">XSLT 1.1 document

element not supported </xsl:message>
 </xsl:fallback>
 </xsl:document>
 <xsl:apply-templates/>
</xsl:template>
...

Skonnard.book Page 122 Monday, October 1, 2001 8:57 AM

XSL Transformations 1.0 123

XS
LT

Description
namespace-alias declares that one namespace URI is an alias for another
while processing the transformation. In the result docunent, the namespace URI
associated with the alias prefix is replaced with the namespace URI associated
with the result prefix. Use #default to refer to the default namespace as
opposed to an explicit prefix. namespace-alias greatly facilitates writing
transformations that output elements from the XSLT namespace.

Attributes

Example
Using namespace-alias

This example outputs XSLT 1.0 elements. To avoid confusing the XSLT processor,
the namespace-alias element is used to define a namespace alias while pro-
cessing the document. The namespace alias is swapped with the real namespace
in the result docunent as shown here:

Name Default Description

stylesheet-prefix "" The prefix of the alias namespace

result-prefix "" The prefix of the original namespace (the one
being aliased)

<xsl:transform
 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'
 xmlns:a='urn:this-is-an-alias'
 version='1.0'>

 <xsl:namespace-alias stylesheet-prefix="a"
 result-prefix="xsl"/>
 <xsl:template match="/">
 <!-- output XSLT elements using namespace alias -->
 <a:transform version='1.0'>
 <a:template match="/">
 ...
 <a:template>
 </a:transform>
 </xsl:template>
</xsl:transform>

Skonnard.book Page 123 Monday, October 1, 2001 8:57 AM

124 Essential XML Quick Reference

5.9.20 number

<xsl:number
 level = "single" | "multiple" | "any"
 count = pattern
 from = pattern
 value = number-expression
 format = { string }
 lang = { nmtoken }
 letter-value = { "alphabetic" | "traditional" }
 grouping-separator = { char }
 grouping-size = { number } />

Description
number inserts a formatted number into the result docunent. The value
attribute contains an XPath expression with a result that is coerced to a number
(as if by calling the number function) and is inserted into the result docunent.

If the value attribute isn’t specified, the current position is inserted into the
result docunent. The level, count, and from attributes determine how the
current node’s position is evaluated. The count attribute determines what nodes
are to be counted. The from attribute determines from where to start counting
(how far to go back in the tree) whereas the level attribute determines how
many levels in the tree should be considered.

The remaining attributes (format, lang, letter-value, grouping-
separator, and grouping-size) determine how the resulting number is con-
verted into a string. See the following for more details.

<a:transform
 xmlns:a='http://www.w3.org/1999/XSL/Transform'
 version='1.0'>
 <a:template match="/">
 ...

 <a:template>
</a:transform>

Skonnard.book Page 124 Monday, October 1, 2001 8:57 AM

XSL Transformations 1.0 125

XS
LT

Attributes

Name Default Description

level "single" Specifies what levels of the source tree should
be considered during the counting process (see
below for more details).

count the pattern
that matches
the current
node’s type and
name (if any)

A pattern that specifies what nodes should be
counted at the specified levels (see level
attribute below).

from / A pattern that specifies where counting starts.

value position (based
on other
attributes)

An XPath expression with a result that is coerced
to a number. If not specified, the value is evalu-
ated as the current node’s position with respect
to the level, count, and from attributes.

format 1 Specifies the format to use for numbering (see
below for more details).

lang determined
from system
environment

Specifies which language’s alphabet to use when
numbering with an alphabetical sequence (same
value space as xml:lang).

letter-
value

(none) Disambiguates between different numbering
schemes for a given language. In English, the a
format token identifies an alphabetical sequence
(for example, a, b, c, ..., aa, ab, ac,
...) whereas the i format token identifies a
numerical-alphabetical sequence (for example,
i, ii, iii, iv, ...). In some languages
both numbering schemes start with the same
letter. In these cases, a letter-value of
alphabetic identifies the alphabetical
sequence whereas a letter-value of
traditional identifies the other form.

grouping-
separator

(none) Specifies the separator used as a grouping sep-
arator in decimal numbering sequences (for
example, 1,000,000).

grouping-
size

(none) Specifies the size of the grouping (for example,
3 in the grouping-separator example).

Skonnard.book Page 125 Monday, October 1, 2001 8:57 AM

126 Essential XML Quick Reference

level

Specifies what levels of the source tree should be considered during the counting
process

format

The format attribute is split into a sequence of tokens in which each token is
either a format token (alphanumerical) or a separator token (nonalphanumerical).
Format tokens specify the format to be used for each number in the list. Separator
tokens are used to join numbers in the list (for example, 1.1.1). The nth format token
will be used to format the nth number in the list. If there are more numbers than
format tokens, then the last format token will be used to format the remaining
numbers. 1 is the default format token whereas . is the default separator token.

If the first and last characters in the format string are nonalphanumerical, they are
included in the final output string as is, surrounding the generated number (for
example, [1.1.1]). The following illustrates the types of sequences generated
by the different format tokens.

Value Description

single Counts the siblings that precede the target node (same as XPath
preceding-sibling axis). If the current node matches the count
pattern or count is not specified, it is the target node. Otherwise, the
target node is the first ancestor to match the count pattern. The first
ancestor node (of the current node) that matches the from pattern iden-
tifies the start node, where counting begins. Only those nodes that
come after the start node up to the current node are considered in the
count.

any Counts the nodes, identified by the count pattern, that come before the
current node in document order (same as the union of XPath’s
preceding and ancestor-or-self axes). The first node (which
comes before the current node) that matches the from pattern identi-
fies the start node, where counting begins. Only those nodes that come
after the start node up to the current node are considered in the count.

multiple Produces a sequence of numbers, each of which is produced in the
same way as a single level count (for example, 1.1.1, 1.1.2,
1.2.1, and so on). The count of the outermost ancestor that matches
the count pattern becomes the first number in the sequence. The
count of the next outermost ancestor that matches the count pattern
becomes the second number in the sequence, and so on. The count of
the innermost ancestor that matches the count pattern becomes the
last number in the sequence. The count of each ancestor is determined
like a single level count.

Skonnard.book Page 126 Monday, October 1, 2001 8:57 AM

XSL Transformations 1.0 127

XS
LT

Example
Using number

Assuming a source document that contains a list of course elements, each of
which contains a list of instructor elements (see key for an example), this exam-
ple would produce the following output:

Token Sequence

1 1, 2, 3, 4, ..., 10, 11, 12, ..., 20, 21, ...

01 01, 02, 03, 04, ..., 10, 11, 12, ..., 100, 101, ...

A A, B, C, D, ..., Z, AA, AB, AC, ...

a a, b, c, d, ..., z, aa, ab, ac, ...

I I, II, III, IV, V, VI, ..., X, XI, ...

i i, ii, iii, iv, v, vi, ..., x, xi, ...

...
<xsl:template match="instructor">
 <xsl:number level="multiple"
 count="course|instructor" format="1-a)"/>
 <xsl:text> </xsl:text><xsl:value-of select="."/>
</xsl:template>

<xsl:template match="course">
 <xsl:number level="single" format="1)"/>
 <xsl:text> </xsl:text><xsl:value-of select="name"/>
 <xsl:apply-templates select="instructors"/>
</xsl:template>
...

1) Essential XML
 1-a) Aaron Skonnard
 1-b) Martin Gudgin

2) Guerrilla XML
 2-a) Aaron Skonnard
 2-b) Martin Gudgin
 2-c) Don Box

 ...

Skonnard.book Page 127 Monday, October 1, 2001 8:57 AM

128 Essential XML Quick Reference

5.9.21 otherwise

<xsl:otherwise>
 <!-- Content: template -->
</xsl:otherwise>

Description
Defines the default template within a choose instruction. See choose for more
details and an example.

5.9.22 output

<xsl:output
 method = "xml" | "html" | "text" | qname
 version = nmtoken
 encoding = string
 omit-xml-declaration = "yes" | "no"
 standalone = "yes" | "no"
 doctype-public = string
 doctype-system = string
 cdata-section-elements = qnames
 indent = "yes" | "no"
 media-type = string />

Description
Declares how the author of the stylesheet would like the result docunent serial-
ized, although processors are not required to follow these instructions.

Skonnard.book Page 128 Monday, October 1, 2001 8:57 AM

XSL Transformations 1.0 129

XS
LT

Attributes

Name Default Description

method html if root element
of result document is
'html' (case insensi-
tive), otherwise xml

Indicates the output method for the
result docunent. XML, HTML, and text
are the only widely supported output
methods, although others may be
specified through a qualified name. The
XML output method always outputs
well-formed XML. The HTML output
method makes several adjustments to
produce friendlier HTML documents
(for example, empty elements don’t
have end tags, script/style tags are
not escaped, and so on). And the text
output method simply outputs all of the
result docunent’s text nodes without
modification.

version XML:1.0, HTML:4.0 Specifies the version of the output
method.

encoding XML:UTF-8/UTF-16,
text: system dep.

Specifies the preferred character
encoding that the XSLT processor
should use to encode sequences of
characters as sequences of bytes.

omit-xml-
declaration

XML:no Specifies whether the XSLT processor
should output an XML declaration.

standalone (none) Specifies whether the XSLT processor
should output a stand-alone DTD.

doctype-public (none) Specifies the public identifier to be
used in the DTD.

doctype-system (none) Specifies the system identifier to be
used in the DTD.

cdata-section-
elements

(none) Specifies a list of the names of ele-
ments with text node children that
should be output using CDATA sections.

indent XML:no, HTML:yes Specifies whether the XSLT processor
may add additional whitespace when
outputting the result tree.

media-type XML:text/xml,
HTML:text/html,
text:text/plain

Specifies the media type (MIME
content-type) of the result tree.

Skonnard.book Page 129 Monday, October 1, 2001 8:57 AM

130 Essential XML Quick Reference

Example
Using output to control serialization details

This example specifies that the output document should be serialized using XML
1.0 syntax without an XML declaration using the ISO-8859-1 character encoding.
In addition, it specifies that pretty printing/indenting should be used and that all
codefrag/syntax elements should be enclosed in CDATA sections.

5.9.23 param

<xsl:param
 name = qname
 select = expression>
 <!-- Content: template -->
</xsl:param>

Description
param declares a parameter with the specified qualified name and default value.
The syntax for referring to parameters is $name. Parameters behave just like
variables (see variable for more details) except for the fact that parameters
may also have default values. Parameters may be declared globally for the entire
transformation or locally within a template. Parameters are passed to templates
via the with-param element. Parameters are passed to transformations in a
processor-specific fashion.

As with variables, a parameter’s default value can be set either through the
select attribute or through the param element’s content; otherwise, the

<xsl:transform
 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'
 version='1.0'>

 <xsl:output method="xml"
 version="1.0"
 omit-xml-declaration="yes"
 indents="yes"
 encoding="iso-8859-1"
 cdata-section-elements="codefrag syntax"/>
 ...
</xsl:transform>

Skonnard.book Page 130 Monday, October 1, 2001 8:57 AM

XSL Transformations 1.0 131

XS
LT

parameter’s default value is the empty string. When a parameter’s default value is
specified through the select attribute, the value is the result of the XPath
expression (either a node-set, boolean, number, or string) and the
content of the element must be empty. When the parameter’s default value is
specified through the element’s content, the value is a result tree fragment (see
variable for more details).

Attributes

Example
Parameterizing templates and transformation documents

Name Default Description

name (required) The name of the parameter

select "" An XPath expression

...
<!-- global parameter -->
<xsl:param name="dept" select="string('manager')"/>

<!-- outputs employee info -->
<xsl:template name="outputEmpInfo">
 <!-- local parameters -->
 <xsl:param name="empNode"/>
 <xsl:param name="getTitle" select="false()"/>
 <name><xsl:value-of
 select="concat($empNode/fname, ' ', $empNode/lname)"/>

</name>
 <xsl:if test="$getTitle">
 <title><xsl:value-of select='$empNode/title'/></title>
 </xsl:if>
</xsl:template>

<!-- root template: main entry point -->
<xsl:template match="/">
 <employee>
 <xsl:call-template name="outputEmpInfo">
 <xsl:with-param name="empNode"
 select="//emp[@dept = $dept]"/>
 <xsl:with-param name="getTitle" select="true()"/>
</xsl:call-template>

Skonnard.book Page 131 Monday, October 1, 2001 8:57 AM

132 Essential XML Quick Reference

This example declares a global parameter, dept, and two parameters local to
the outputEmpInfo template.

5.9.24 preserve-space

<xsl:preserve-space
 elements = tokens />

Description
Defines the elements in the source document, for which whitespace-only text
nodes should be preserved (see Section 5.8 for more details). The elements
attribute contains a whitespace-separated list of name tests (for example,
QNames, *, and so on) that identify the set of whitespace-preserving elements for
the source document. The strip-space element can be used in conjunction
with this element to preserve all whitespace for all elements except for a few
specified by name (see strip-space).

Attribute

Example
Using preserve-space

This example preserves space within all code elements in the source document.

 </employee>
</xsl:template>
...

Name Default Description

elements "" A whitespace-separated list of name tests (QNames, *,
and so on)

<xsl:transform version='1.0'
 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

 <xsl:preserve-space elements="code"/>
 ...
</xsl:transform>

Skonnard.book Page 132 Monday, October 1, 2001 8:57 AM

XSL Transformations 1.0 133

XS
LT

5.9.25 processing-instruction

<xsl:processing-instruction
 name = { ncname }>
 <!-- Content: template -->
</xsl:processing-instruction>

Description
Generates a processing instruction with the specified name (target) in the result
docunent. The content of the processing-instruction instruction
becomes the content of the new processing instruction (everything after the tar-
get) in the result docunent.

Attribute

Example
Generating processing instructions in the result docunent

This example generates a processing instruction that would look something like
this in the result document: <?xsl-stylesheet type='text/xsl' href=
'employee.xsl'?>, depending on the value of the stylesheet parameter.

5.9.26 sort

<xsl:sort
 select = string-expression
 lang = { nmtoken }

Name Default Description

name (required) The target of the processing instruction

...
<xsl:param name="stylesheet" select="'employee.xsl'"/>
<xsl:template match="/">
 <xsl:processing-instruction name="xsl-stylesheet">
 type='text/xsl'
 href='<xsl:value-of select="$stylesheet"/>'
 </xsl:processing-instruction>
 ...
</xsl:template>
...

Skonnard.book Page 133 Monday, October 1, 2001 8:57 AM

134 Essential XML Quick Reference

 data-type = { "text" | "number" | qname }
 order = { "ascending" | "descending" }
 case-order = { "upper-first" | "lower-first" } />

Description
sort is used as a child of for-each and apply-templates to sort the cur-
rent node list before processing. The first sort child specifies the primary sort
key; the second sort child specifies the secondary sort key, and so on. The
select attribute takes an XPath expression that is evaluated against each node
in the current node list. The results are coerced to strings, as if by calling the
string function, and the resulting strings become the sort keys.

Attributes

Example
Using sort to sort node-sets

Name Default Description

select "." An XPath expression that identifies the sort key

lang (system
default)

Specifies the language of the sort key (same
value space as xml:lang attribute).

data-type "text" Specifies the data type of the sort key. "text"
indicates that the sort key should be sorted in a
manner that makes sense for the specified lan-
guage. "number" indicates that the sort key val-
ues should be coerced to numbers and then
sorted according to numerical value. If the value
is a qualified name, the qualified name identifies
an application-specific data type for the sort key.

order "ascending" Specifies whether the sort key should be sorted in
ascending or descending order.

case-order (language
dependent)

Specifies that uppercase letters should be sorted
before lowercase, or vice versa.

...
<xsl:template match="/">
 <xsl:for-each select="//emp">
 <xsl:sort select="age" lang="en" data-type="number"
 order="descending"/>
 <xsl:sort select="lname" lang="en" data-type="text"
 order="ascending" case-order="upper-first"/>

Skonnard.book Page 134 Monday, October 1, 2001 8:57 AM

XSL Transformations 1.0 135

XS
LT

This example sorts the for-each node list (all emp elements) first by age
(descending) and then by lname (ascending).

5.9.27 strip-space

<xsl:strip-space
 elements = tokens />

Description
Defines the elements in the source document that should be removed from the
list of whitespace-preserving elements (defined by preserve-space). The
elements attribute contains a whitespace-separated list of name tests (for
example, QNames, *, and so on).

Attribute

Example
Using strip-space

This example preserves space within all elements except for name and title
elements.

 <employee>
 <xsl:value-of select="concat(fname,' ',lname)"/>
 </employee>
 </xsl:for-each>
</xsl:template>
...

Name Default Description

elements "" A whitespace-separated list of name tests (QNames, *,
and so on)

<xsl:transform version='1.0'
 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

 <xsl:preserve-space elements="*"/>
 <xsl:strip-space elements="name title"/>
 ...
</xsl:transform>

Skonnard.book Page 135 Monday, October 1, 2001 8:57 AM

136 Essential XML Quick Reference

5.9.28 stylesheet

Description
stylesheet is a (less appropriate) alias for the transform element. The
transform and stylesheet elements may be used interchangeably in XSLT
documents. See transform for details.

5.9.29 template

<xsl:template
 match = pattern
 name = qname
 priority = number
 mode = qname>
 <!-- Content: (xsl:param*, template) -->
</xsl:template>

Description
template defines a new template rule with the specified pattern and/or name.
Patterns facilitate a declarative programming model whereas named templates
facilitate a procedural programming model (see Section 5.1). The match
attribute specifies the template’s pattern (see Section 5.3) and the name attribute
specifies the template’s name.

When the name attribute is used, you can explicitly call the template from another
template, in a procedural fashion (see call-template for more details). When
the match attribute is used, the supplied pattern identifies the source nodes to
which the template rule applies. When the processor begins executing the trans-
formation, it looks for the template with a pattern that matches the root of the
input tree. Then, inside that template, you indicate which nodes you would like the
processor to continue processing through the apply-templates/apply-
imports elements. After a call to apply-templates/apply-imports, the
processor identifies and executes the template that best matches each specified
node, according to their associated patterns. This continues until the processor
reaches a template that doesn’t explicitly call apply-templates/apply-
imports. For more details on this approach, see Sections 5.1, 5.3, and 5.5.

If a particular mode matches more than one template rule, the processor follows
the well-defined conflict resolution rules to choose the best match (see Section

Skonnard.book Page 136 Monday, October 1, 2001 8:57 AM

XSL Transformations 1.0 137

XS
LT

5.4). In general, the template with the highest priority is considered the best
match. The priority attribute may be used to set the template’s priority value
explicitly. Otherwise, it’s automatically calculated by the XSLT processor (see Sec-
tion 5.4 for more details).

The content of template defines a portion of the result docunent. It can contain
literal output (elements, text, and so on) as well as other XSLT elements that are
instructions for dynamically generating portions of the result docunent.

Templates may accept parameters as defined by the child param elements. This
makes it possible to generalize the functionality of a given template to facilitate
reusability. The with-param element can be used with either call-template
or apply-templates to pass parameters into a template. Templates may also
be assigned a mode. Modes make it possible to have multiple template rule defi-
nitions for a single pattern. To execute a template of a particular mode, you spec-
ify the mode you wish to use in the call to apply-templates.

Attributes

Examples
Sample procedural transformation

Name Default Description

match (none) Specifies a pattern that identifies the nodes to which
this template applies.

name (none) Specifies the qualified name of the template.

priority See rules in
Section 5.4

Specifies a numerical value specifying the template’s
priority (for conflict resolution).

mode (none) Specifies the template’s mode.

<xsl:transform
 xmlns:v1='urn:employee:v1'
 xmlns:v2='urn:employee:v2'
 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'
 version='1.0'>

 <!-- outputs name element -->
 <xsl:template name="outputName">
 <name><xsl:value-of
 select="concat(v1:emp/fname, ' ', v1:emp/lname)"/>

</name>

Skonnard.book Page 137 Monday, October 1, 2001 8:57 AM

138 Essential XML Quick Reference

This example illustrates how to define three templates. As you can see, this exam-
ple uses the procedural approach by naming the templates and explicitly calling
them through call-template.

Sample declarative transformation

 </xsl:template>

 <!-- outputs title element -->
 <xsl:template name="outputTitle">
 <title><xsl:value-of select='v1:emp/position'/></

title>
 </xsl:template>

 <!-- root template: main entry point -->
 <xsl:template match="/">
 <v2:employee>
 <xsl:call-template name="outputName"/>
 <xsl:call-template name="outputTitle"/>
 </v2:employee>
 </xsl:template>

</xsl:transform>

<xsl:transform
 xmlns:v1='urn:employee:v1'
 xmlns:v2='urn:employee:v2'
 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'
 version='1.0'>

 <!-- override built-in template for
 text/attributes -->
 <xsl:template match="text()|@*"/>

 <!-- template for position elements -->
 <xsl:template match="position">
 <title><xsl:value-of select='.'/></title>
 </xsl:template>

 <!-- template for fname elements -->
 <xsl:template match="fname">

Skonnard.book Page 138 Monday, October 1, 2001 8:57 AM

XSL Transformations 1.0 139

XS
LT

This example illustrates how to define three template rules for different types of
nodes in the source document. As you can see, this template leverages the
declarative approach by assigning each template a match attribute and using
apply-templates.

Sample using modes/priority

 <name><xsl:value-of select="
 concat(., ' ',
 following-sibling::lname)"/></name>
 </xsl:template>

 <!-- template for v1:emp elements -->
 <xsl:template match="v1:emp">
 <v2:employee>
 <xsl:apply-templates select="*"/>
 </v2:employee>
 </xsl:template>
</xsl:transform>

...
<xsl:param name="outputFormat" select="'xml'"/>

<!-- other templates omitted -->

<!-- toHTML mode templates -->
<xsl:template match="v1:emp" mode="toHTML">
 <html>
 <body>
 <h1><xsl:value-of
 select="concat(fname, ' ', lname)"/></h1>
 <xsl:apply-templates select="position" mode="toHTML"/>
 </body>
 </html>
</xsl:template>

<xsl:template match="position" mode="toHTML">
 <h2><xsl:value-of select='.'/></h2>
</xsl:template>

Skonnard.book Page 139 Monday, October 1, 2001 8:57 AM

140 Essential XML Quick Reference

This transformation is capable of processing v1:emp elements in different
modes. The default mode (no mode) outputs the employee information in a differ-
ent XML format (as illustrated in the previous example). The toHTML mode out-
puts employee information as an HTML document. Note that to use the toHTML
mode, it has to be specified when calling apply-templates.

5.9.30 text

<xsl:text
 disable-output-escaping = "yes" | "no">
 <!-- Content: #PCDATA -->
</xsl:text>

Description
text generates the contained literal text in the result docunent including
whitespace. The disable-output-escaping attribute controls whether
unsafe XML characters are escaped in the result docunent.

Attribute

<xsl:template match="text()|@*" mode="toHTML"/>

<!-- root template, main entry point -->
<xsl:template match="/">
 <xsl:choose>
 <xsl:when test="$outputFormat = 'html'">
 <xsl:apply-templates select="v1:emp" mode="toHTML">
 </xsl:when>
 <xsl:otherwise>
 <xsl:apply-templates select="v1:emp">
 </xsl:otherwise>
 </xsl:choose>
</xsl:template>
...

Name Default Description

disable-output-
escaping

"no" Enables/disables the escaping of unsafe XML
characters in the result document.

Skonnard.book Page 140 Monday, October 1, 2001 8:57 AM

XSL Transformations 1.0 141

XS
LT

Example
Using text to output whitespace

This transformation uses text to preserve whitespace and to output unsafe XML
characters. It produces the following result docunent:

5.9.31 transform (stylesheet)

<xsl:transform
 id = id
 extension-element-prefixes = tokens
 exclude-result-prefixes = tokens
 version = number>
 <!-- Content: (xsl:import*, top-level-elements) -->
</xsl:transform>

<xsl:stylesheet
 id = id
 extension-element-prefixes = tokens
 exclude-result-prefixes = tokens
 version = number>
 <!-- Content: (xsl:import*, top-level-elements) -->
</xsl:stylesheet>

Description
transform is the root of every XSLT document unless the transformation uses
the exemplar-based syntax (see Exemplar-based transformations). stylesheet

...
<xsl:template match="/">
 <xsl:text disable-output-escaping="yes">
 if (age < maxAge)
 processEmployee();
</xsl:text>
</xsl:template>
...

 if (age < maxAge)
 processEmployee();

Skonnard.book Page 141 Monday, October 1, 2001 8:57 AM

142 Essential XML Quick Reference

is a synonym for transform. transform must have a version attribute that
specifies the version of XSLT required by the transformation. For this version of
XSLT, the value should be 1.0. The id attribute makes it possible to give the trans-
formation a unique ID to facilitate embedding XSLT transformations within other
types of XML documents. All other XSLT elements are nested within transform.

Attributes

Example
Writing a transformation

This example illustrates how to begin writing an XSLT transformation.

Name Default Description

id "" Specifies a unique identifier for the transformation
element.

extension-
element-
prefixes

"" Specifies a whitespace-separated list of name-
space prefixes used for extension (non-XSLT) ele-
ments. The namespace bound to each of the pre-
fixes is designated as an extension namespace
and therefore will not be treated as literal output.
It is an error if there is no namespace bound to
the prefix on the element bearing the element. The
default namespace may be designated as an
extension namespace by including #default in
the list of namespace prefixes.

exclude-
result-
prefixes

"" Specifies a whitespace-separated list of namespace
prefixes that indicate which namespaces should
be excluded from the result docunent. It is an
error if there is no namespace bound to the prefix
on the element bearing the exclude-result-
prefixes or xsl:exclude-result-prefixes
attribute. The default namespace may be desig-
nated as an excluded namespace by including
#default in the list of namespace prefixes.

version (required) Specifies the version of XSLT required by this
transformation.

<xsl:transform version='1.0'
 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

 <!-- XSLT instructions go here -->

<xsl:transform>

Skonnard.book Page 142 Monday, October 1, 2001 8:57 AM

XSL Transformations 1.0 143

XS
LT

5.9.32 value-of

<xsl:value-of
 select = string-expression
 disable-output-escaping = "yes" | "no" />

Description
value-of generates a text node in the result docunent from the select
expression. The result of the XPath expression is coerced to a string, as if by call-
ing the string function. The disable-output-escaping attribute can be
used to control how unsafe XML characters are handled in the result docunent
(see text for more details).

Attributes

Example
Using value-of

This example uses value-of to generate three text nodes in the output, one in
the first, last, and fullname elements respectively.

Name Default Description

select (required) Specifies an XPath expression with a result that is
coerced to a string.

disable-
output-
escaping

"no" Enables/disables the escaping of unsafe XML charac-
ters in the result docunent.

...
<xsl:template match="/">
 <employee>
 <first><xsl:value-of select="*/fname"/></first>
 <last><xsl:value-of select="*/lname"/></last>
 <fullname><xsl:value-of
 select="concat(*/fname, ' ', */lname)"/></fullname>
 </employee>
</xsl:template>
...

Skonnard.book Page 143 Monday, October 1, 2001 8:57 AM

144 Essential XML Quick Reference

5.9.33 variable

<xsl:variable
 name = qname
 select = expression>
 <!-- Content: template -->
</xsl:variable>

Description
variable binds a qualified name to a value. The syntax for referring to variables
is $name. The value to which a variable is bound can be an object of any of the
types that can be returned by XPath expressions (node-set, boolean, number,
string). This is accomplished through the select attribute:

<!-- emps variable bound to a node-set -->
<xsl:variable name="emps" select="//employee"/>

Instead of using the select attribute, variables can also be initialized from the
element’s content. This approach introduces an additional data type known as a
result tree fragment, to which variables may also be bound:

<!-- emps variable bound to a result tree fragment -->
<xsl:variable name="emps">
 <employee>Aaron</employee>
 <employee>Martin</employee>
 <employee>Don</employee>
</xsl:variable>

A result tree fragment represents a portion of the result tree and is treated equiv-
alently to a node-set that contains just a single root node, which contains each
of the elements that make up the document fragment. The operations permitted
on a result tree fragment are a subset of those permitted on a node-set. Only
operations that are permitted on XPath strings are also allowed on result tree
fragments. The /, //, and [] operators are not allowed on result tree fragments.
When result tree fragments are operated on, they are treated just like the equiva-
lent node-set. Expressions can only return result tree fragments when referenc-
ing variables (or parameters) of type result tree fragment.

Result tree fragments are often the source of confusion. The following conditional
appears to return false, when it really returns true:

Skonnard.book Page 144 Monday, October 1, 2001 8:57 AM

XSL Transformations 1.0 145

XS
LT

<xsl:variable name="index">0</xsl:variable>
<xsl:if test="$index">...</xsl:if>

The reason for this is that when $index is evaluated, it’s coerced to a bool-
ean, which in this case returns true because the result tree fragment isn’t
empty (the coercion works the same as for node-sets). To avoid this, you
would use one of the following alternatives:

<xsl:variable name="index">0</xsl:variable>
<xsl:if test="number($index)">...</xsl:if>

or

<xsl:variable name="index" select="0"/>
<xsl:if test="$index">...</xsl:if>

If a variable’s value is not specified through either the select attribute or the ele-
ment’s content, the value is automatically assigned to the empty string. XSLT
parameters are just like variables, as described here; plus they provide the notion
of default values (see param).

Variables are primarily used to cache the results of expressions for later use. Vari-
ables are also the only way to return values from templates (see the following
examples).

Attributes

Examples
Using variables to cache expression results

Name Default Description

name (required) Specifies the variable’s qualified name.

select "" Specifies an XPath expression with a result that
becomes the value of the variable.

...
<xsl:template match="/">
 <xsl:variable name="emps" select="//emp"/>
 <xsl:variable name="aaron" select="$emps[@id='e102']"/>
 <xsl:variable name="fullname"
 select="concat($aaron/fname,' ',$aaron/lname)"/>

Skonnard.book Page 145 Monday, October 1, 2001 8:57 AM

146 Essential XML Quick Reference

This example stores the results of several expressions in variables for later use.

Returning values from templates

This example illustrates how to use a variable to return a value from a template.
Notice that the call-template instruction is contained within a variable
element. Because of this, anything that is output within the add template is added
to the result tree fragment for the sum variable.

Using variables with recursive templates

 <employee>
 <fullname><xsl:value-of select="$fullname"/></

fullname>
 <title><xsl:value-of select="$aaron/title"/></title>
 </employee>

</xsl:template>
...

...
<xsl:template name="add">
 <xsl:param name="x"/>
 <xsl:param name="y"/>
 <xsl:value-of select="$x+$y"/>
</xsl:template>

<xsl:template match="/">
 <xsl:variable name="sum">
 <xsl:call-template name="add">
 <xsl:with-param name="x" select="30"/>
 <xsl:with-param name="y" select="70"/>
 </xsl:call-template>
 </xsl:variable>
 <sum><xsl:value-of select="$sum"/></sum>
</xsl:template>
...

...
<xsl:template name="totalSalaries">
 <xsl:param name="empList"/>
 <xsl:choose>

Skonnard.book Page 146 Monday, October 1, 2001 8:57 AM

XSL Transformations 1.0 147

XS
LT

This example illustrates how to call a template recursively to total a list of
employee salaries.

5.9.34 when

<xsl:when
 test = boolean-expression>
 <!-- Content: template -->
</xsl:when>

Description
Defines a conditional template that is used within the choose element. See
choose for more details and an example.

 <xsl:when test="$empList">
 <xsl:variable name="first" select="$empList[1]"/>
 <xsl:variable name="total">
 <xsl:call-template name="totalSalaries">
 <xsl:with-param name="empList"
 select="$empList[postion()!=1]"/>
 </xsl:call-template>
 </xsl:variable>
 <xsl:value-of select="$first/salary + $total"/>
 </xsl:when>
 <xsl:otherwise>0</xsl:otherwise>
 </xsl:choose>
</xsl:template>

<xsl:template match="/">
 <xsl:variable name="salaries">
 <xsl:call-template name="totalSalaries">
 <xsl:with-param name="empList" select="//emp"/>
 </xsl:call-template>
 </xsl:variable>
 Total Salaries: <xsl:value-of select="$salaries"/>
</xsl:template>
...

Skonnard.book Page 147 Monday, October 1, 2001 8:57 AM

148 Essential XML Quick Reference

Attribute

5.9.35 with-param

<xsl:with-param
 name = qname
 select = expression>
 <!-- Content: template -->
</xsl:with-param>

Description
Passes the specified parameter to the target template (used with call-template
and apply-templates). The value of the parameter is set in the same way as
parameters and variables (see variable/param). The value can be set
through the select attribute (any XPath object) or the content of the with-
param element (result tree fragment). Otherwise, the default value is the empty
string. See call-template for an example.

Attributes

5.10 XSLT function library
XSLT supports the entire XPath function library as well as several XSLT-specific
functions that all implementations are required to support. If a function expects an
argument of a specific type and an object of a different type is used, it’s implicitly
coerced as if by calling the appropriate coercion function (string(), num-
ber(), or boolean()).

All of the XSLT function names belong to no namespace, which means their
names don’t require a namespace prefix. XSLT implementations may augment

Name Default Description

test (required) Specifies an XPath expression that is evaluated as a
boolean.

Name Default Description

name (required) Specifies the qualified name of the parameter.

select "" Specifies a generic XPath expression that yields an
object of any type.

Skonnard.book Page 148 Monday, October 1, 2001 8:57 AM

XSL Transformations 1.0 149

XS
LT

this core library with implementation-specific extension functions. When this is the
case, the extension function names must be qualified with a namespace prefix.
Each function is described next.

XSLT functions

5.10.1 current

node-set current()

Description
current returns a node-set that has the current node as its only member.
XSLT defines the notion of a current node to facilitate working with for-each
and apply-templates. When using either of these, the current node is
defined as the node currently being processed. For expressions that don’t occur
within other expressions, this is always the same as the context node (see Chap-
ter 3 for more details on context node). For example, the following two value-
of expressions return the same value:

Name Description

current Returns the current node.

document Facilitates processing multiple input documents.

element-available Returns true if the processor supports the specified
element.

format-number Converts the argument number to a string according to
the specified decimal format.

function-available Returns true if the processor supports the specified
function.

generate-id Returns a string that uniquely identifies the first node
in the argument node-set.

key Returns the nodes that have the specified key value.

system-property Returns the value of the specified system property.

unparsed-entity-uri Returns the URI of the unparsed entity with the specified
name.

<xsl:for-each select="fname">
 <xsl:value-of select="current()"/>
</xsl:for-each>

Skonnard.book Page 149 Monday, October 1, 2001 8:57 AM

150 Essential XML Quick Reference

When expressions appear within other expressions (for example, predicates), the
current node is typically different than the context node. In the following example,
the employeeOfTheMonth element is the current node whereas the
employee element is the context node within the predicate expression:

Had it used . instead of current() in the predicate, eid would have been
treated as an attribute of employee instead of employeeOfTheMonth. With-
out the current function, one would have to bind the current node to a variable
before evaluating the XPath expression as follows:

5.10.2 document

node-set document(object, node-set?)

Description
document makes it possible to process multiple input documents. The object
argument is treated as a URI reference (or a set of URI references) relative to the
base URI of the first node in the optional node-set argument. When the
object argument identifies a single document, the resulting node-set con-
tains that document’s root node. When the object argument identifies multiple
documents, the resulting node-set contains the union of the root nodes, one
from each document.

Fragment identifiers may also be used in the supplied URI references to identify
subsets of the specified documents (other than the root node). See Chapter 4 for

<xsl:for-each select="fname">
 <xsl:value-of select="."/>
</xsl:for-each>

<xsl:for-each select="employeeOfTheMonth">
 <xsl:value-of select="//employee[@id = current()/@eid]"/>
</xsl:for-each>

<xsl:for-each select="employeeOfTheMonth">
 <xsl:variable name="eom" select="."/>
 <xsl:value-of select="//employee[@id = $eom/@eid]"/>

</xsl:for-each>

Skonnard.book Page 150 Monday, October 1, 2001 8:57 AM

XSL Transformations 1.0 151

XS
LT

more details on this approach. The following describes exactly how this function
behaves for each type of object argument.

Examples

Using with apply-templates

This example instructs the processor to apply-templates to the root node of
the aaron.xml document.

Using with for-each

Type Description

node-set Returns the union of the node-sets that result from calling the docu-
ment function again with each node in the argument node-set.

other The argument is coerced to a string and the string is treated as a URI
reference. The document identified by the URI reference is retrieved
and the root node of the document is returned in the resulting
node-set.

document example Description

document('aaron.xml') Returns the root node of aaron.xml.

document(concat(employee/
fname, '.xml'))

Returns the root node of the file identified
by the result of the concat function.

document(./fileName, /*) Returns the union of the node-sets
returned by calling the document function
with the value of each fileName child ele-
ment. If any of the URI references are rela-
tive, they’re resolved against the base URI
of the input document’s root element node.

document('aaron.xml#xpointer(
//dependent)')

Returns a node-set that contains all of the
dependent elements within aaron.xml.

...
<xsl:template match="employeeRecords">
 <xsl:apply-templates
 select="document('aaron.xml')"/>
</xsl:template>
...

...
<xsl:template match="employeeRecords">

Skonnard.book Page 151 Monday, October 1, 2001 8:57 AM

152 Essential XML Quick Reference

This example iterates through the root node of each document identified by the
child fileName elements.

Using with variable

This example selects the root node from aaron.xml into the aaronsDoc vari-
able. Then it iterates through each of the descendant dependent elements from
that same document.

5.10.3 element-available

boolean element-available(string)

Description
element-available returns true if and only if the specified name is the
name of an element that the processor supports. The argument string is evalu-
ated as a QName. If the QName’s expanded name has a namespace URI equal to
the XSLT namespace URI, then it refers to an element defined by XSLT. Otherwise,
it refers to a processor-specific extension element. If the expanded name has a
null namespace URI, the element-available function returns false.

 <xsl:for-each

 select="document(./fileName)">
 <!-- process each root node here -->
 </xsl:for-each>
</xsl:template>
...

...
<xsl:template match="employeeRecords">
 <xsl:variable name='aaronsDoc'
 select="document('aaron.xml')"/>
 <xsl:for-each select="$aaronsDoc//dependents">
 <!-- process dependent elements here -->
 </xsl:for-each>
</xsl:template>
...

Skonnard.book Page 152 Monday, October 1, 2001 8:57 AM

XSL Transformations 1.0 153

XS
LT

Examples
Testing for an XSLT element

This example tests to see if the XSLT processor supports the xsl:message ele-
ment before using it.

Testing for a processor-specific element

This example tests to see if the processor supports the Saxon-specific output
element before attempting to use it.

5.10.4 format-number

string format-number(number, string, string?)

Description
Converts the number argument to a string according to the format string speci-
fied by the second argument and the decimal format named by the third argument

...
<xsl:if test="element-available('xsl:message')">
<xsl:message>Error transforming employee/name</xsl:message>
</xsl:if>
...

<xsl:transform version='1.0'
 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'
 xmlns:saxon='http://icl.com/saxon'
 extension-element-prefixes="saxon">

 <xsl:template match="/">
 <xsl:if test="element-available('saxon:output')">
 <xsl:for-each select="//employee">
 <saxon:output file="{./fname}.xml">
 <xsl:copy-of select="."/>
 </saxon:output>
 </xsl:for-each>
 </xsl:if>
 </xsl:template>
<xsl:transform>

Skonnard.book Page 153 Monday, October 1, 2001 8:57 AM

154 Essential XML Quick Reference

(or the default decimal format if there is no third argument). Decimal formats are
defined by the decimal-format element (see decimal-format for details).
The syntax of the format string is defined by the JDK 1.1 DecimalFormat class
(see the JDK 1.1 documentation for more details). See the decimal-format
element for an example.

5.10.5 function-available

boolean function-available(string)

Description
function-available returns true if and only if the specified name is the
name of a function that the processor supports. The argument string is evaluated
as a QName. If the QName’s expanded name has a null namespace URI, it refers
to a function defined by XPath or XSLT. Otherwise, it refers to a processor-specific
extension function.

Examples
Testing for an XSLT function

This example tests to see if the XSLT processor supports the document function
before using it.

Testing for a processor-specific function

...
<xsl:if test="function-available('document')">
 <xsl:apply-templates select="document('aaron.xml')"/>
</xsl:if>
...

<xsl:transform version='1.0'
 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'
 xmlns:saxon='http://icl.com/saxon'>
 <xsl:param name="expr"/>

 <xsl:template match="/">
 <xsl:if test="function-available('saxon:evaluate')">
 <xsl:apply-templates select="saxon:evaluate($expr)"/>
 </xsl:if>

Skonnard.book Page 154 Monday, October 1, 2001 8:57 AM

XSL Transformations 1.0 155

XS
LT

This example tests to see if the processor supports the Saxon-specific evalu-
ate function before attempting to use it.

5.10.6 generate-id

string generate-id(node-set?)

Description
generate-id returns a string that uniquely identifies the first node in the argu-
ment node-set. Implementations are always required to generate the same
identifier for the same node. If the argument node-set is empty, the empty
string is returned. If the argument is omitted, it defaults to the context node.

Examples

5.10.7 key

node-set key(string, object)

Description
Returns a node-set containing the nodes that have the specified key value. The
first argument is the qualified name of the key (see key element) whereas the
second argument is the key value. If the second argument is a node-set, the
result is the union of node-sets that results from applying the key function to
each node in the argument node-set using the node’s string-value as the second

 </xsl:template>
<xsl:transform>

generate-id example Description

generate-id() Generates a unique ID for the
context node.

generate-id(employee) Generates a unique ID for the
first child employee element.

generate-id(document('aaron.xml')) Generates a unique ID for the
root node of aaron.xml.

generate-id(document('aaron.xml')) =
generate-id(document('aaron.xml'))

Returns true.

Skonnard.book Page 155 Monday, October 1, 2001 8:57 AM

156 Essential XML Quick Reference

parameter. If the second argument is not a node-set, the argument is coerced
to a string (as if by calling the string function), which is treated as the key
value. The following describes how the second argument is treated based on
object type. See the key element for an example.

5.10.8 system-property

object system-property(string)

Description
system-property returns the value of the argument system property. The
argument string is evaluated as a QName, which is used to identify the system
property by namespace-qualified name. If the system property doesn’t exist, an
empty string is returned. Implementations must provide the following system
properties, which are all in the XSLT namespace:

Examples

Type Description

node-set The result is the union of the node-sets that results from applying the
key function to each node in the argument node-set using the
node’s string-value as the second parameter.

other Coerced to a string (as if by calling the string function).

System property Description

version Specifies a number that identifies the version of XSLT imple-
mented by the processor (1.0).

vendor Specifies a string identifying the vendor of the XSLT
processor.

vendor-url Specifies a string containing the vendor’s URL.

system-property example Description

system-property('xsl:version') 1.0

system-property('xsl:vendor') Microsoft, Apache Software
Foundation, and so on

system-property('xsl:vendor-url') http://www.microsoft.com,
http://xml.apache.org/xalan,
and so on

Skonnard.book Page 156 Monday, October 1, 2001 8:57 AM

XSL Transformations 1.0 157

XS
LT

5.10.9 unparsed-entity-uri

string unparsed-entity-uri(string)

Description
unparsed-entity-uri returns the URI of the unparsed entity with the speci-
fied name in the same document as the context node, or an empty string if it
doesn’t exist.

Example

5.11 References
XSL Transformations 1.0 Recommendation.
Available at http://www.w3.org/TR/1999/REC-xslt-19991116. James Clark, editor,
1999.

XML Path Language.
Available at http://www.w3.org/TR/1999/REC-xpath-19991116. James Clark, Steve
DeRoy, editors, 1999.

JDK 1.1 Documentation.
Available at http://www.java.sun.com/products/jdk/1.1/docs

unparsed-entity-uri example Description

unparsed-entity-uri('aaronsImage') Returns the URI of the unparsed
enity named aaronsImage.

Skonnard.book Page 157 Monday, October 1, 2001 8:57 AM

Skonnard.book Page 158 Monday, October 1, 2001 8:57 AM

159

SA
X

Chapter 6

SAX 2.0

The Simple API for XML (SAX) 2.0 is a set of abstract programmatic interfaces
that project an XML document onto a stream of well-known method calls. SAX pro-
vides a streaming model that can be used to both process XML documents as
well as produce (or write) XML documents. Because SAX offers a streaming
model, it’s often preferred over the DOM when performance is an issue.

One implements the SAX interfaces to process XML documents. And one calls
into the SAX interfaces to produce XML documents. Because most developers
need to both process and produce XML documents in a given application, they
often find themselves on both sides of the SAX interfaces (for example, imple-
menting versus calling).

SAX was designed for the Java programming language by a group of developers
on the XML-DEV mailing list and has since become widely supported throughout
the industry. Today there are numerous SAX 2.0 implementations available for a
wide range of programming languages and platforms. As an example, Microsoft
introduced support for SAX 2.0 in MSXML 3.0, which can be used from both C++
and VB.

This SAX reference presents the SAX 2.0 core interface definitions for both Java
and Visual Basic (VB). The interfaces are presented in alphabetical order. When
describing interface members, both the Java and VB names will be given, in that
order, when not identical. For all sample code, assume that the appropriate Java

import

 statement or VB type library reference has been provided.

6.1 SAX UML quick reference

The UML diagram in Figure 6–1 provides a quick reference for the core and auxil-
iary interfaces/classes as well as their relationships to one another.

Skonnard.book Page 159 Monday, October 1, 2001 8:57 AM

+s
ta

rt
D

oc
um

en
t(

)
+e

nd
D

oc
um

en
t(

)
+s

ta
rt

P
re

fix
M

ap
pi

ng
()

+e
nd

P
re

fix
M

ap
pi

ng
()

+s
ta

rt
E

le
m

en
t(

)
+e

nd
E

le
m

en
t(

)
+c

ha
ra

ct
er

s(
)

+i
gn

or
ab

le
W

hi
te

sp
ac

e(
)

+p
ro

ce
ss

in
gI

ns
tr

uc
tio

n(
)

+s
ki

pp
ed

E
nt

ity
()

+s
et

D
oc

um
en

tL
oc

at
or

()

«i
nt

er
fa

ce
»

C
o

n
te

n
tH

an
d

le
r

+n
ot

at
io

nD
ec

l()
+u

np
ar

se
dE

nt
ity

D
ec

l()

«i
nt

er
fa

ce
»

D
T

D
H

an
d

le
r

+s
ta

rt
D

T
D

()
+e

nd
D

T
D

()
+s

ta
rt

E
nt

ity
()

+e
nd

E
nt

ity
()

+s
ta

rt
C

D
AT

A
()

+e
nd

C
D

AT
A

()
+c

om
m

en
t(

)

«i
nt

er
fa

ce
»

L
ex

ic
al

H
an

d
le

r

+e
le

m
en

tD
ec

l()
+a

ttr
ib

ut
eD

ec
l()

+i
nt

er
na

lE
nt

ity
D

ec
l()

+e
xt

er
na

lE
nt

ity
D

ec
l()

«i
nt

er
fa

ce
»

D
ec

lH
an

d
le

r

+w
ar

ni
ng

()
+e

rr
or

()
+f

at
al

E
rr

or
()

«i
nt

er
fa

ce
»

E
rr

o
rH

an
d

le
r

+r
es

ol
ve

E
nt

ity
()

«i
nt

er
fa

ce
»

E
n

ti
ty

R
es

o
lv

er

+g
et

V
al

ue
()

+g
et

U
R

I(
)

+g
et

Lo
ca

lN
am

e(
)

+g
et

R
aw

N
am

e(
)

+g
et

Ty
pe

()
+g

et
Le

ng
th

()

«i
nt

er
fa

ce
»

A
tt

ri
bu

te
s

+g
et

P
ro

pe
rt

y(
)

+g
et

Fe
at

ur
e(

)
+g

et
C

on
te

nt
H

an
dl

er
()

+g
et

E
nt

ity
R

es
ol

ve
r(

)
+g

et
E

rr
or

H
an

dl
er

()
+g

et
D

T
D

H
an

dl
er

()
+s

et
P

ro
pe

rt
y(

)
+s

et
Fe

at
ur

e(
)

+s
et

C
on

te
nt

H
an

dl
er

()
+s

et
E

nt
ity

R
es

ol
ve

r(
)

+s
et

E
rr

or
H

an
dl

er
()

+s
et

D
T

D
H

an
dl

er
()

+p
ar

se
()«i
nt

er
fa

ce
»

X
M

L
R

ea
d

er

+g
et

P
ar

en
t(

)
+s

et
P

ar
en

t(
)

«i
nt

er
fa

ce
»

X
M

L
F

ilt
er

+
ge

tS
ys

te
m

Id
()

+
ge

tP
ub

lic
Id

()
+

ge
tIn

pu
tS

tr
ea

m
()

+
ge

tC
ha

ra
ct

er
S

tr
ea

m
()

+
se

tS
ys

te
m

Id
()

+
se

tP
ub

lic
Id

()
+

se
tIn

pu
tS

tr
ea

m
()

+
se

tC
ha

ra
ct

er
S

tr
ea

m
()

In
p

u
tS

o
u

rc
e

+g
et

S
ys

te
m

Id
()

+g
et

P
ub

lic
Id

()
+g

et
Li

ne
N

um
be

r(
)

+g
et

C
ol

um
nN

um
be

r(
)

«i
nt

er
fa

ce
»

L
o

ca
to

r

160

Fi
gu

re
 6

–1
SA

X
2.

0
U

M
L.

Skonnard.book Page 160 Monday, October 1, 2001 8:57 AM

SAX 2.0

161

SA
X

6.2 SAX interfaces and classes

The SAX API is divided into the following four areas: core interfaces, core
classes, extended interfaces, and helper classes. The core interfaces and
classes facilitate working with the core information contained in an XML docu-
ment. The extended interfaces model aspects of a document with which most
developers aren’t concerned (for example, lexical details, DTD declarations, com-
ments, and so on). And finally, the helper classes consist of several convenience
classes as well as default implementations of certain core interfaces.

Most SAX developers find themselves working with the core interfaces 95 per-
cent of the time. Because the extended interfaces are rarely used and the core/
helper classes differ between SAX implementations, this chapter focuses strictly
on the SAX 2.0 core interfaces. The following provides a quick description of
each interface/class defined by SAX 2.0. For more details on the core interfaces,
see the following sections. Otherwise refer to the SAX documentation (see Sec-
tion 6.4).

Core interface Description

Attributes

Models the attributes of an element.

ContentHandler

Models the core information in an XML docu-
ment as an ordered sequence of method calls
(primary SAX interface).

DTDHandler

Models notations and unparsed entities.

EntityResolver

Allows implementations to provide custom reso-
lution of external entities.

ErrorHandler

Models well-formed errors, validation errors,
and warnings.

Locator

Models the current location in the underlying
document (for example, line number, column
number, and so on).

XMLFilter

Provides pipeline-style processing by allowing
multiple

ContentHandler

 implementations to
be chained together.

XMLReader

Models the XML parser (or other type of XML
producer) by providing methods for registering
handlers (for example, a

ContentHandler

implementation), parser configuration methods
(properties/features), and parse methods.

Skonnard.book Page 161 Monday, October 1, 2001 8:57 AM

162

Essential XML Quick Reference

6.2.1

Attributes

The

Attributes

 interface models the attributes of an element (passed as a
parameter to

ContentHandler::startElement

). Attributes are exposed
as an unordered property bag that can be traversed by name or position.

Core class Description

InputSource Models a native input/output stream.

SAXException Models a generic SAX exception.

SAXNotRecognizedException Models an exception that occurs when a given
feature/property isn’t recognized.

SAXNotSupportedException Models an exception that occurs when a given
feature/property is recognized but isn’t
supported.

SAXParseException Models a parser exception.

Extended interface Description

DeclHandler Models DTD declarations.

LexicalHandler Models lexical information such as comments
and CDATA section boundaries.

Helper class Description

AttributesImpl Convenience implementation of the Attributes
interface.

DefaultHandler Default implementation of the core interfaces
(just stubbed):

ContentHandler

,

ErrorHandler

,

EntityResolver

, and

DTDHandler

.

LocatorImpl Is the convenience implementation of the

Locator

 interface.

NamespaceSupport Helper class for managing in-scope
namespaces, for dealing with QNames in
attribute/element content.

XMLFilterImpl Is the convenience implementation of the

XMLFilter

 interface.

XMLReaderFactory Is the class factory for implementations of

XMLReader

.

Skonnard.book Page 162 Monday, October 1, 2001 8:57 AM

SAX 2.0

163

SA
X

Java definition

package org.xml.sax;

public interface Attributes {
 int getLength();
 String getURI(int index);
 String getLocalName(int index);
 String getQName(int index);
 int getIndex(String qName);
 int getIndex(String uri, String localPart);
 String getValue (String uri, String localName);
 String getValue (int index);
 String getValue (String qName);
 String getType(String uri, String localName);
 String getType(int index);
 String getType(String qName);
}

VB definition

' IVBSAXAttributes Members
Property length As Long
Function getURI(nIndex As Long) As String
Function getLocalName(nIndex As Long) As String
Function getQName(nIndex As Long) As String
Function getIndexFromQName(strQName As String) As Long
Function getIndexFromName(strURI As String, strLocalName _
 As String) As Long
Function getValueFromName(strURI As String, strLocalName _
 As String) As String
Function getValue(nIndex As Long) As String
Function getValueFromQName(strQName As String) As String
Function getTypeFromName(strURI As String, strLocalName _
 As String) As String
Function getType(nIndex As Long) As String
Function getTypeFromQName(strQName As String) As String

Member Description

getLength
length

Returns the number of attributes in the list.

getURI

Retrieves an attribute’s namespace URI by index.

getLocalName

Retrieves an attribute’s local name by index.

Skonnard.book Page 163 Monday, October 1, 2001 8:57 AM

164

Essential XML Quick Reference

Examples

Accessing attributes by name and index

These examples access the value of the

id

 attribute by namespace name and
QName; then they access the index of the

id

 attribute by QName. Then they walk
through the collection of attributes by index, accessing the local name, QName,
value, and type of each one individually. Note: The order in which the attributes
appear is insignificant and processor specific.

Java

getQName

Retrieves an attribute’s QName by index.

getIndex
getIndexFromQName

Retrieves an attribute’s index by QName.

getIndex
getIndexFromName

Retrieves an attribute’s index by namespace name.

getValue
getValueFromName

Retrieves an attribute’s value by namespace name.

getValue

Retrieves an attribute’s value by index.

getValue
getValueFromQName

Retrieves an attribute’s value by QName.

getType
getTypeFromName

Retrieves an attribute’s type by namespace name.

getType

Retrieves an attribute’s type by index.

getType
getTypeFromQName

Retrieves an attribute’s type by QName.

Member Description

public void startElement(String namespaceURI, String
 localName, String QName, Attributes atts)
{
 // accessing an attribute by namespace name
 String value;
 value = atts.getValue("urn:dm:employees", "id");
 if (!value.equals(""))
 {
 ... // process employee id attribute
 }

 // accessing an attribute by QName
 value = atts.getValue("d:id");

Skonnard.book Page 164 Monday, October 1, 2001 8:57 AM

SAX 2.0

165

SA
X

VB

 // get attribute index by QName
 int index;
 index = atts.getIndex("d:id");

 // traverse attributes by index
 int i;
 String local, QName, type;
 for (i = 0; i<atts.getLength(); i++)
 {
 local = atts.getLocalName(i);
 qName = atts.getQName(i);
 value = atts.getValue(i);
 type = atts.getType(i);
 ... // process attribute here
 }
}

Private Sub IVBSAXContentHandler_startElement(_
 strNamespaceURI As String, strLocalName As String, _
 strQName As String, ByVal oAttributes As _
 IVBSAXAttributes)

 ' accessing an attribute by namespace name
 Dim strAttValue As String
 strAttValue = oAttributes.getValueFromName(_
 "urn:dm:employees", "id")
 If (strAttValue <> "") Then
 ... ' process employee id attribute
 End If

 ' accessing an attribute by QName
 strAttValue = oAttributes.getValueFromQName("d:id")

 ' get attribute index by QName
 Dim index As Integer
 index = oAttributes.getIndexFromName("d:id")

 ' traverse attributes by index
 Dim i As Integer

Skonnard.book Page 165 Monday, October 1, 2001 8:57 AM

166

Essential XML Quick Reference

6.2.2

ContentHandler

ContentHandler

 is the primary SAX interface.

ContentHandler

 models
the core information of an XML document as an ordered sequence of method
calls. The remaining document information is modeled by the

DTDHandler

,

DeclHandler

, and

LexicalHandler

 interfaces.

You implement

ContentHandler

 to process XML documents. And you call into

ContentHandler

 to produce XML documents. Because most developers need
to both process and produce XML documents in a given application, they often
find themselves on both sides of

ContentHandler

 (for example, implementing
versus calling).

Java definition

package org.xml.sax;

public interface ContentHandler {
 void startDocument() throws SAXException;
 void endDocument() throws SAXException;
 void startElement(String namespaceURI, String localName,
 String qName, Attributes atts) throws SAXException;
 void endElement(String namespaceURI, String localName,
 String qName) throws SAXException;
 void startPrefixMapping(String prefix, String uri)
 throws SAXException;
 void endPrefixMapping(String prefix) throws SAXException;
 void characters(char ch[], int start, int length)
 throws SAXException;
 void ignorableWhitespace(char ch[], int start, int length)

 Dim strLocal As String, strQName As String
 Dim strType As String
 For i = 0 To oAttributes.length - 1
 strLocal = oAttributes.getLocalName(i)
 strQName = oAttributes.getQName(i)
 strAttValue = oAttributes.getValue(i)
 strType = oAttributes.getType(i)
 ... ' process attribute here
 Next
End Sub

Skonnard.book Page 166 Monday, October 1, 2001 8:57 AM

SAX 2.0

167

SA
X

 throws SAXException;
 void processingInstruction(String target, String data)
 throws SAXException;
 void skippedEntity(String name) throws SAXException;
 void setDocumentLocator(Locator locator)
 throws SAXException;
}

VB definition

' IVBSAXContentHandler Members

Sub startDocument()
Sub endDocument()
Sub startElement(strNamespaceURI As String, strLocalName As _
 String, strQName As String, oAttributes As _
 IVBSAXAttributes)
Sub endElement(strNamespaceURI As String, _
 strLocalName As String, strQName As String)
Sub startPrefixMapping(strPrefix As String, strURI As String)
Sub endPrefixMapping(strPrefix As String)
Sub characters(strChars As String)
Sub ignorableWhitespace(strChars As String)
Sub processingInstruction(strTarget As String, strData As _
 String)
Sub skippedEntity(strName As String)
Property documentLocator As IVBSAXLocator

Member Description

startDocument

Models the beginning of a document. Every method
call that comes after

startDocument

 and before

endDocument

 models a part of the document’s con-
tent (for example, a child or descendant).

endDocument

Models the end of a document. Signals that there is
no more document content left to process (for exam-
ple, no more children or descendants).

startElement

Models the beginning of an element. Every method
call that comes after

startElement

 and before

endElement

 models a part of the element’s content.
Each element has a namespace identifier, a local
name, a qualified name (QName: the raw name from
the source document including the prefix if any), and
a collection of attributes.

Skonnard.book Page 167 Monday, October 1, 2001 8:57 AM

168

Essential XML Quick Reference

Examples

Using ContentHandler to generate a document

The following examples generate a simple XML document using

ContentHandler

.
The generated document could be serialized as follows:

endElement

Models the end of the element’s content. Signals that
there is no more element content left to process.

startPrefixMapping

Models a namespace declaration entering scope. A
namespace declaration consists of a prefix and the
associated namespace identifier. The prefix of

''

represents a default namespace declaration. This
prefix is considered in scope within any subsequent
method call until

endPrefixMapping

.

endPrefixMapping

Models a namespace declaration leaving scope. The
specified prefix is no longer considered in scope
within subsequent method calls.

characters

Models character data in element content. In Java/
C++, a character array is used (for buffering pur-
poses) along with a start position and the number to
read. In VB, the characters are sent in a normal VB
String.

ignorableWhitespace Models ignorable whitespace in element content. In
Java/C++, a character array is used (for buffering
purposes) along with a start position and the number
to read. In VB, the whitespace is sent in a normal VB
String. Only called for whitespace in element-only
content models when DTD/Schema is present.

processingInstruction Models a processing instruction. A processing
instruction consists of a target and the target-specific
data. The target is the string that comes after <? until
the first whitespace character. The data is everything
after that first whitespace character.

skippedEntity Models an entity that was skipped by the XML parser.
This can occur with nonvalidating processors that
don’t expand external entities.

setDocumentLocator
documentLocator

Supplies context information about the caller. A
ContentHandler implementation can cache the
locator object reference for future use (for example,
determine the line and column number of the caller).

Member Description

Skonnard.book Page 168 Monday, October 1, 2001 8:57 AM

SAX 2.0 169

SA
X

Java

<?xsl-stylesheet type='text/xsl' href='inv.xsl'?>
<d:employee xmlns:d='urn:schemas-develop-com:staff'
 id='ss-102-22-3323'>
 <name>Keith Brown</name>
 <title>Dark Prince</title>
</d:employee>

void genEmployeeDocument(ContentHandler handler)
 throws SAXException {
 handler.startDocument();
 handler.processingInstruction("xsl-stylesheet",
 "type='text/xsl' href='inv.xsl'");
 handler.startPrefixMapping("d",
 "urn:schemas-develop-com:staff");
 Attributes a =
 new AttributesImpl();
 a.addAttribute("", "id", "id", "ID", "ss-102-22-3323");
 handler.startElement("urn:schemas-develop-com:staff",
 "employee", "d:employee", a);
 a.clear();
 handler.startElement("", "name", "name", a);
 String ch = "Keith Brown";
 handler.characters(ch.toCharArray(), 0, ch.length()-1);
 handler.endElement("", "name", "name");
 handler.startElement("", "title", "title", a);
 ch = "Dark Prince";
 handler.characters(ch.toCharArray(), 0, ch.length()-1);
 handler.endElement("", "title", "title");
 handler.endElement("urn:schemas-develop-com:staff",
 "employee", "d:employee");
 handler.endPrefixMapping("d",
 "urn:schemas-develop-com:staff");
 handler.endDocument();
}

Skonnard.book Page 169 Monday, October 1, 2001 8:57 AM

170 Essential XML Quick Reference

VB

Implementing ContentHandler to process a document

The following examples process an XML document, similar to the one shown in
the previous example, by loading its information into an application-specific class
(Employee). This requires implementing a finite state machine that keeps track
of the document position.

Java

Public Sub genEmployeeDocument(handler as
IVBSAXContentHandler)

 Dim a As New SAXAttributes
 handler.startDocument
 handler.processingInstruction "xsl-stylesheet", _
 "type='text/xsl' href='inv.xsl'"
 handler.startPrefixMapping "d", _
 "urn:schemas-develop-com:staff"
 a.addAttribute "", "id", "id", "ID", "ss-102-22-3323"
 handler.startElement "urn:schemas-develop-com:staff",_
 "employee", "d:employee", a
 a.clear
 handler.startElement "", "name", "name", a
 Dim ch as String
 ch = "Keith Brown"
 handler.characters ch
 handler.endElement "", "name", "name"
 handler.startElement "", "title", "title"
 ch = "Dark Prince"
 handler.characters ch
 handler.endElement "", "title", "title"
 handler.endElement "urn:schemas-develop-com:staff", _
 "employee", "d:employee"
 handler.endPrefixMapping "d", _
 "urn:schemas-develop-com:staff"
 handler.endDocument
End Sub

public class EmployeeHandler implements ContentHandler
{
 Stack m_elementContext;

Skonnard.book Page 170 Monday, October 1, 2001 8:57 AM

SAX 2.0 171

SA
X

 Employee m_emp;
 String m_data;

 // state machine constants
 private final int STATE_EMPLOYEE = 1;
 private final int STATE_NAME = 2;
 private final int STATE_TITLE = 3;

 public void startDocument()
 {
 m_elementContext = new Stack();
 m_emp = null;
 m_data = "";
 }

 public void startElement(String uri, String localName,
 String qName, Attributes atts)
 {
 if (uri.equals("urn:schemas-develop-com:staff") &&
 localName.equals("employee"))
 {
 m_emp = new Employee();
 m_elementContext.push(new Integer(STATE_EMPLOYEE));
 }
 else if (localName.equals("name"))
 {
 m_elementContext.push(new Integer(STATE_NAME));
 }
 else if (localName.equals("title"))
 {
 m_elementContext.push(new Integer(STATE_TITLE));
 }
 }

 public void endElement(String uri, String localName,
 String qName)
 {
 if (uri.equals("urn:schemas-develop-com:staff") &&
 localName.equals("employee")) ;
 else if (localName.equals("name"))
 if (m_emp) m_emp.name = m_data;

Skonnard.book Page 171 Monday, October 1, 2001 8:57 AM

172 Essential XML Quick Reference

 else if (localName.equals("title"))
 if (m_emp) m_emp.title = m_data;
 else return;
 m_elementContext.pop();
 m_data = "";
 }

 public void characters(char[] ch, int start, int len)
 {
 if (m_emp != null &&
 !m_elementContext.isEmpty())
 {
 Integer context = (Integer)m_elementContext.peek();

 switch (context.intValue())
 {
 case STATE_NAME:
 case STATE_TITLE:
 m_data += new String(ch, start, len);
 break;
 case STATE_EMPLOYEE:
 default:
 break;
 }
 }
 }

 public void endDocument()
 {
 if (m_emp != null)
 ... // process Employee instance here
 }

 ... // other methods omitted for clarity
}

Skonnard.book Page 172 Monday, October 1, 2001 8:57 AM

SAX 2.0 173

SA
X

VB

Implements IVBSAXContentHandler

Dim m_elementContext as Stack
Dim m_emp as Employee
Dim m_data as String

Private Enum EmployeeStates
 STATE_EMPLOYEE = 1
 STATE_NAME
 STATE_TITLE
End Enum

Private Sub IVBSAXContentHandler_startDocument()
 Set m_elementContext = New Stack
 Set m_emp = Nothing
 m_data = ""
End Sub

Private Sub IVBSAXContentHandler_startElement(_
 strNamespaceURI As String, strLocalName As String, _
 strQName As String, ByVal oAttributes As _
 IVBSAXAttributes)

 Select Case strLocalName
 Case "employee"
 If strNamespaceURI = _
 "urn:schemas-develop-com:staff" Then
 set m_emp = New Employee
 m_elementContent.push STATE_EMPLOYEE
 End If
 Case "name"
 m_elementContent.push STATE_NAME
 Case "title"
 m_elementContent.push STATE_TITLE
 End Select
End Sub

Private Sub IVBSAXContentHandler_endElement(_
 strNamespaceURI As String, strLocalName As String, _
 strQName As String)

Skonnard.book Page 173 Monday, October 1, 2001 8:57 AM

174 Essential XML Quick Reference

 Select Case strLocalName
 Case "employee"
 If strNamespaceURI <> _
 "urn:schemas-develop-com:staff" Then
 Exit Sub
 End If
 Case "name"
 m_emp.name = m_data
 Case "title"
 m_emp.title = m_data
 Case Else
 Exit Sub
 End Select
 m_elementContext.pop
 m_data = ""
End Sub

Private Sub IVBSAXContentHandler_characters(_
 strChars As String)
 If Not m_emp Is Nothing And Not _
 m_elementContext.IsEmpty Then
 Dim state as EmployeeStates
 state = m_elementContext.peek
 Select Case state
 Case STATE_NAME, STATE_TITLE
 m_data = m_data & strChars
 End Select
 End If
End Sub

Private Sub IVBSAXContentHandler_endDocument()
 If Not m_emp Is Nothing Then
 ... ' process Employee instance here
 End If
End Sub

... ' other methods omitted for clarity

Skonnard.book Page 174 Monday, October 1, 2001 8:57 AM

SAX 2.0 175

SA
X

6.2.3 DTDHandler

DTDHandler models the notations and unparsed entities in an XML document.

Java definition
package org.xml.sax;

public interface DTDHandler {
notationDecl(String name, String publicId, String systemId);
void unparsedEntityDecl(String name, String publicId,

 String systemId, String notationName) throws SAXException;
}

VB definition
' IVBSAXDTDHandler Members
Sub notationDecl(strName As String, strPublicId As String, _
 strSystemId As String)
Sub unparsedEntityDecl(strName As String, strPublicId As _
 String, strSystemId As String, strNotationName As String)

Examples
Processing an unparsed entity

This example processes unparsed entities based on the media type, which is
identified through the associated notation.

Java

Member Description

notationDecl Models a notation declaration. The notation name is
used in unparsed entity declarations to declare the
resource type. The type identifier is the corresponding
public/system identifier.

unparsedEntityDecl Models an unparsed entity declaration. The name is
used to refer to the unparsed entity within the XML doc-
ument. The public/system identifiers specify the loca-
tion of the resource whereas the notation name identi-
fies the resource type.

public Class EmployeeHandler implements DTDHandler,
 ContentHandler
{

Skonnard.book Page 175 Monday, October 1, 2001 8:57 AM

176 Essential XML Quick Reference

VB

 // ContentHandler methods omitted for clarity

 public void notationDecl(String name, String publicId,
 String systemId)
 {
 CacheNotationInfoForLater(name, publicId, systemId);
 }

 public void unparsedEntityDecl(String name, String
publicId,

 String systemId, String notationName)
 {
 String nId = GetNotationId(notationName);
 if (nId.equals("urn:mime:img/gif"))
 LaunchImageAppAndProcess(publicId, systemId);
 else if (nId.equals("urn:dm:video-presentation"))
 LaunchMediaPlayer(publicId, systemId);
 else
 ThrowUnknownMediaTypeError();
 }
}

Implements DTDHandler
Implements ContentHandler

' ContentHandler methods omitted for clarity

Private Sub IVBSAXDTDHandler_notationDecl(strName As _
 String, strPublicId As String, strSystemId As String)
 CacheNotationInfoForLater strName, strPublicId, _

strSystemId
End Sub

Private Sub IVBSAXDTDHandler_unparsedEntityDecl(strName _
 As String, strPublicId As String, strSystemId As _
 String, strNotationName As String)
 String nId = GetNotationId(notationName)
 Select Case nId
 Case "urn:mime:img/gif"

Skonnard.book Page 176 Monday, October 1, 2001 8:57 AM

SAX 2.0 177

SA
X

6.2.4 EntityResolver

EntityResolver is an interface that allows implementations to provide custom
resolution of external entities. When an implementation supports EntityResolver,
the SAX parser will call its resolveEntity method before resolving the public/
system identifier. This gives the implementation a chance to provide its own
InputSource that represents the given resource.

Java definition
package org.xml.sax;

public interface EntityResolver {
InputSource resolveEntity(String publicId, String systemId)

 throws SAXException, java.io.IOException;
}

VB definition
' IVBSAXEntityResolver Members
Function resolveEntity(strPublicId As String, strSystemId _
 As String)

Examples
Custom resolution of external entities

This example attempts to retrieve the specified external entity from an in-memory
cache of frequently accessed entities. If it’s found in the cache, the cached

 LaunchImageAppAndProcess publicId, systemId
 Case "urn:dm:video-presentation"
 LaunchMediaPlayer publicId, systemId
 Case Else
 ThrowUnknownMediaTypeError
 End Select
End Sub

Member Description

resolveEntity Returns an InputSource object representing the entity or
null to indicate systemId should be used as the URI.

Skonnard.book Page 177 Monday, October 1, 2001 8:57 AM

178 Essential XML Quick Reference

resource is simply wrapped in an InputSource instance and returned to the
processor. Otherwise, the method returns null, signaling the processor to use
the systemId for resolution.

Java

VB

public class EmployeeHandler implements EntityResolver,
 ContentHandler
{
 // ContentHandler methods omitted for clarity

 public InputSource resolveEntity(String pId, String
sysId)

 {
 InputSource res =
 RetrieveResourceFromInMemoryCache(res, pId, sysId))
 return res;
 }
}

Implements EntityResolver
Implements ContentHandler

' ContentHandler methods omitted for clarity

' NOTE: at the time of publication, resolveEntity was not
 called by the MSXML 3.0 parser

Private Function IVBSAXEntityResolver_resolveEntity(_
 strPublicId As String, strSystemId As String) As Variant

 Set IVBSAXEntityResolver_resolveEntity = _
 RetrieveResourceFromInMemoryCache(pId, sysId))

End Function

Skonnard.book Page 178 Monday, October 1, 2001 8:57 AM

SAX 2.0 179

SA
X

6.2.5 ErrorHandler

ErrorHandler models well-formed errors, validation errors, and warnings. The
consumer of a ContentHandler implementation uses this interface to abort
the stream of method invocations resulting from a caller-side error. Typically the
SAX parser uses this to notify the ContentHandler implementation that some-
thing is wrong with the document's byte stream.

Java definition
package org.xml.sax;

public interface ErrorHandler {
void warning(SAXParseException exception)
 throws SAXException;
void error(SAXParseException exception)
 throws SAXException;
void fatalError(SAXParseException exception)
 throws SAXException;

}

VB definition
' IVBSAXErrorHandler Members
Sub ignorableWarning(oLocator As IVBSAXLocator, _
 strErrorMessage As String, nErrorCode As Long)
Sub error(oLocator As IVBSAXLocator, strErrorMessage _
 As String, nErrorCode As Long)
Sub fatalError(oLocator As IVBSAXLocator, strErrorMessage _
 As String, nErrorCode As Long)

Member Description

warning
ignorableWarning

Models exceptional conditions that are less serious than
errors or fatal errors.

error Models an XML 1.0 nonfatal error. According to the XML
1.0 Recommendation, nonfatal errors are typically viola-
tions of validity constraints imposed by element and
attribute list declarations (3.2.1) and XML version mis-
matches (2.8).

fatalError Models an XML 1.0 fatal error. According to the XML 1.0
Recommendation, fatal errors are either violations of
XML’s well-formed rules (1.2), encountering an unrecog-
nized character encoding (4.3.3), or certain illegal uses of
entity or character references (4.4.4).

Skonnard.book Page 179 Monday, October 1, 2001 8:57 AM

180 Essential XML Quick Reference

Examples
Handling errors

This example illustrates how to handle errors in the document byte stream sent to
the ContentHandler implementation.

Java

VB

public class EmployeeHandler implements ErrorHandler,
 ContentHandler
{
 // ContentHandler methods omitted for clarity

 public void error(SAXParseException e)
 throws SAXException
 {
 logErrorAndBail(e);
 }

 public void fatalError(SAXParseException p1)
 throws SAXException
 {
 logErrorAndBail(e);
 }

 public void warning(SAXParseException p1)
 throws SAXException
 {
 logWarningAndContinue(e);
 }
}

Implements IVBSAXErrorHandler
Implements IVBSAXContentHandler

' ContentHandler methods omitted for clarity

Private Sub IVBSAXErrorHandler_error(ByVal oLocator As _
 IVBSAXLocator, strErrorMessage As String, _
 ByVal nErrorCode As Long)

Skonnard.book Page 180 Monday, October 1, 2001 8:57 AM

SAX 2.0 181

SA
X

6.2.6 Locator

Because SAX is commonly used to interface with XML parsers, it is occasionally
useful for a ContentHandler implementation to discover to which part of the
underlying document the current method corresponds. To support this function-
ally, SAX defines the Locator interface, which is typically implemented by SAX-
aware parsers to allow implementations of ContentHandler to discover
exactly where the current method corresponds in the underlying document.

A reference to a Locator object is sent to the ContentHandler implementa-
tion through the setDocumentLocator method before processing begins.

Java definition
package org.xml.sax;

public interface Locator {
String getPublicId();
String getSystemId();
int getLineNumber();
int getColumnNumber();

}

 LogErrorAndBail oLocator, strErrorMessage, nErrorCode
End Sub

Private Sub IVBSAXErrorHandler_fatalError(ByVal oLocator _
 As IVBSAXLocator, strErrorMessage As String, _
 ByVal nErrorCode As Long)
 LogErrorAndBail oLocator, strErrorMessage, nErrorCode
End Sub

Private Sub IVBSAXErrorHandler_ignorableWarning(ByVal _
 oLocator As IVBSAXLocator, strErrorMessage As _
 String, ByVal nErrorCode As Long)
 LogWarningAndContinue oLocator, strErrorMessage, _
 nErrorCode
End Sub

Skonnard.book Page 181 Monday, October 1, 2001 8:57 AM

182 Essential XML Quick Reference

VB definition
' IVBSAXLocator Members
Property publicId As String
Property systemId As String
Property lineNumber As Long
Property columnNumber As Long

Examples
Using the Locator interface

Java

Member Description

getPublicId
publicId

Returns the public identifier of the entity (document or exter-
nal parsed) that is currently being processed.

getSystemId
systemId

Returns the system identifier of the entity (document or
external parsed) that is currently being processed.

getLineNumber
lineNumber

Returns the 1-based line number where the serialization of
the information item being processed ends.

getColumnNumber
columnNumber

Returns the 1-based column number where the serialization
of the information item being processed ends.

public class EmployeeHandler implements ContentHandler
{
 Locator m_loc;

 public void setDocumentLocator(Locator loc)
 {
 m_loc = loc;
 }

 public void startElement(String uri, String localName,
 String qName, Attributes atts)
 {
 Console.out.println(m_loc.getLineNumber())
 Console.out.println(m_loc.getColumnNumber());
 Console.out.println(m_loc.getSystemId());
 Console.out.println(m_loc.getPublicId());
 }
 ... // other methods omitted for clarity
}

Skonnard.book Page 182 Monday, October 1, 2001 8:57 AM

SAX 2.0 183

SA
X

VB

6.2.7 XMLFilter

Most SAX interfaces are amenable to pipeline-style processing, where an implemen-
tation of, say, ContentHandler can intercept certain information items it recog-
nizes but pass along unrecognized information items to a downstream processor
that also implements ContentHandler. SAX makes this model concrete via its
XMLFilter interface. XMLFilter extends the XMLReader interface by add-
ing two methods—one to discover the upstream XMLReader implementation
and one to set it.

Java definition
package org.xml.sax;

public interface XMLFilter extends XMLReader {
XMLReader getParent();
void setParent(XMLReader parent);

}

Implements ContentHandler

Dim m_loc as IVBSAXLocator

Private Property Set
IVBSAXContentHandler_documentLocator(_

 ByVal loc As IVBSAXLocator)
 set m_loc = loc
End Property

Private Sub IVBSAXContentHandler_startElement(_
 strNamespaceURI As String, strLocalName As String, _
 strQName As String, ByVal oAttributes As _

 IVBSAXAttributes)
 Debug.Print m_loc.lineNumber
 Debug.Print m_loc.columnNumber
 Debug.Print m_systemId
 Debug.Print m_publicId
End Sub

... ' other methods omitted for clarity

Skonnard.book Page 183 Monday, October 1, 2001 8:57 AM

184 Essential XML Quick Reference

VB definition
' IVBSAXXMLFilter Members
Property parent As SAXXMLReader

Examples
Using an SAX filter for XInclude processing

This example uses an XMLReader to parse an XML document from disk as well as a
ContentHandler implementation that serializes the stream of method calls back
out to an XML 1.0 byte stream. It also uses a filter, which sits between the reader and
the serializer, for processing XInclude-based inclusions within the document. The filter
adds XInclude functionality without affecting either of the existing components.

Java

Member Description

getParent
parent

Returns the upstream XMLReader implementation.

setParent
parent

Sets the upstream XMLReader implementation.

public void ProcessFileForXInclude(String file)
{
 // implements XMLFilter, ContentHandler, etc.
 ' and provides XInclude functionality
 MyXIncludeFilter f = new MyXIncludeFilter();
 XMLFilter xf = f;
 XMLReader rf = f;

 ' XMLReader implementation - parses XML 1.0 document
 XMLReader r = new

org.apache.xerces.parsers.SAXParser();

 ' implementation of ContentHandler that serializes a
 ' file back out to XML 1.0
 Serializer ser = new Serializer();
 ser.setOutputStream("c:\temp\out.xml");

 xf.setParent(r);
 rf.setContentHandler(ser);
 rf.parse(file);
}

Skonnard.book Page 184 Monday, October 1, 2001 8:57 AM

SAX 2.0 185

SA
X

VB

6.2.8 XMLReader

SAX defines the XMLReader interface to tie together many of the other SAX inter-
faces. This interface is implemented by SAX parsers but could also be implemented
by other applications that produce XML document streams. The XMLReader
interface has three groups of methods: handler registration methods, configura-
tion methods (properties/features), and parse methods.

Java definition
package org.xml.sax;

public interface XMLReader {
 void setContentHandler(ContentHandler handler);
 ContentHandler getContentHandler();
 void setDTDHandler(DTDHandler handler);

Public Sub ProcessFileForXInclude(file as String)

 ' implements IVBSAXXMLFilter, IVBSAXContentHandler, etc.
 ' and provides XInclude functionality
 Dim f As New MyXIncludeFilter
 Dim xf As IVBSAXXMLFilter
 Dim rf as IVBSAXXMLReader

 ' XMLReader implementation - parses XML 1.0 document
 Dim r As New SAXXMLReader30

 ' implementation of ContentHandler that serializes a
 ' file back out to XML 1.0
 Dim ser As New Serializer
 ser.setOutputStream "c:\temp\out.xml"

 Set xf = f
 Set xf.parent = r
 Set rf = f
 Set rf.contentHandler = ser
 rf.parseURL file
End Sub

Skonnard.book Page 185 Monday, October 1, 2001 8:57 AM

186 Essential XML Quick Reference

 DTDHandler getDTDHandler();
 void setEntityResolver(EntityResolver handler);
 EntityResolver getEntityResolver();
 void setErrorHandler(ErrorHandler handler);
 ErrorHandler getErrorHandler();
 void setProperty(String name, Object value)
 throws SAXNotRecognizedException,
 SAXNotSupportedException;
 Object getProperty(String name) throws
 SAXNotRecognizedException, SAXNotSupportedException;
 void setFeature(String name, boolean value) throws
 SAXNotRecognizedException, SAXNotSupportedException;
 boolean getFeature(String name) throws
 SAXNotRecognizedException, SAXNotSupportedException;
 void parse(String systemId) throws SAXException,
 java.io.IOException;
 void parse(InputSource source) throws SAXException,
 java.io.IOException;
}

VB definition
' IVBSAXXMLReader Members
Property contentHandler As IVBSAXContentHandler
Property dtdHandler As IVBSAXDTDHandler
Property entityResolver As IVBSAXEntityResolver
Property errorHandler As IVBSAXErrorHandler
Sub putProperty(strName As String, varValue)
Function getProperty(strName As String)
Sub putFeature(strName As String, fValue As Boolean)
Function getFeature(strName As String) As Boolean
Sub parseURL(strURL As String)
Sub parse(varInput)
Property baseURL As String
Property secureBaseURL As String

Member Description

setContentHandler
contentHandler

Registers a ContentHandler implementation with the
reader.

getContentHandler
contentHandler

Returns the current ContentHandler implementation or
null if one hasn’t yet been registered.

Skonnard.book Page 186 Monday, October 1, 2001 8:57 AM

SAX 2.0 187

SA
X

Examples
Using XMLReader to parse a document

This example instantiates a SAX parser that implements XMLReader as well as a
receiver object that implements ContentHandler, ErrorHandler, DTDHandler,
EntityResolver, and LexicalHandler. The individual handlers are registered
with the reader through the appropriate “set” (for example, setContentHandler)
method calls. Notice, however, that the LexicalHandler implementation must
be registered through a call to setProperty because it’s not considered part
of core SAX but rather an extension interface. This example also enables the
namespace-prefixes property, which allows namespace declarations to
appear as attributes in the document stream. Finally, once the XMLReader has
been completely configured, parse is used to begin parsing the specified file.

setDTDHandler
dtdHandler

Registers a DTDHandler implementation with the reader.

getDTDHandler
dtdHandler

Returns the current DTDHandler implementation or
null if one hasn’t yet been registered.

setEntityResolver
entityResolver

Registers an EntityResolver implementation with the
reader.

getEntityResolver
entityResolver

Returns the current EntityResolver implementation or
null if one hasn’t yet been registered.

setErrorHandler
errorHandler

Registers an ErrorHandler implementation with the
reader.

getErrorHandler
errorHandler

Returns the current ErrorHandler implementation or null if
one hasn’t yet been registered.

setProperty
putProperty

Sets the value of a property (object).

getProperty Returns the specified property’s value (object).

setFeature
putFeature

Sets the state of a feature (true/false).

getFeature Returns the specified feature’s state (true/false).

parse
parseURL

Instructs an XMLReader implementation to parse the
XML document specified by the system identifier.

parse Instructs an XMLReader implementation to parse the
XML document specified by the InputSource.

Member Description

Skonnard.book Page 187 Monday, October 1, 2001 8:57 AM

188 Essential XML Quick Reference

Java

public void processEmployeeDocument()
{
 // instantiate Xerces-J SAX parser
 XMLReader reader =
 new org.apache.xerces.parsers.SAXParser();

 // EmployeeHandler implements ContentHandler,
 // ErrorHandler, DTDHandler, and EntityResolver
 ContentHandler handler = new EmployeeHandler();

 // register handlers with XMLReader
 reader.setContentHandler(handler);
 reader.setErrorHandler(handler);
 reader.setDTDHandler(handler);
 reader.setEntityResolver(handler);

 try
 {
 // register LexicalHandler implementation
 reader.setProperty(
 "http://xml.org/sax/properties/lexical-handler",
 handler);

 reader.setFeature(
 "http://xml.org/sax/features/namespaces",
 true);
 reader.setFeature(
 "http://xml.org/sax/features/namespace-

 prefixes", true);

 // start parsing
 reader.parse("file://c:\temp\employee.xml");
 }
 catch(Exception e)
 {
 ... // handle errors here
 }
}

Skonnard.book Page 188 Monday, October 1, 2001 8:57 AM

SAX 2.0 189

SA
X

VB

Public Sub processEmployeeDocument()

 On Error Goto HandleError

 ' instantiate MSXML 3.0 SAX parser
 Dim reader as New SAXXMLReader

 ' EmployeeHandler implements ContentHandler,
 ' ErrorHandler, DTDHandler, & EntityResolver
 Dim handler as New EmployeeHandler

 ' register handlers with XMLReader
 set reader.contentHandler = handler
 set reader.errorHandler = handler
 set reader.dtdHandler = handler
 set reader.entityResolver = handler

 ' register LexicalHandler implementation
 reader.putProperty _
 "http://xml.org/sax/properties/lexical-handler",_
 handler

 reader.putFeature _
 "http://xml.org/sax/features/namespaces",_
 true
 reader.putFeature _
 "http://xml.org/sax/features/namespace-prefixes",_
 true

 reader.parseURL "file://c:\temp\employee.xml"

 Exit Sub
HandleError:
 ... ' handle errors here
End Sub

Skonnard.book Page 189 Monday, October 1, 2001 8:57 AM

190 Essential XML Quick Reference

6.3 Features and properties
XMLReader has four configuration methods: two that deal with properties and two
that deal with features. Properties are uniquely named values that can be associated
with an XMLReader instance. Features can be viewed as configuration-specific
boolean properties that are used to turn specific processing features on or off.

SAX predefines a set of well-known properties and features. These properties and
features are as follows. SAX implementations may add custom features and prop-
erties that have implementation-specific URI-based names.

Features
The full feature name should be prefixed with http://xml.org/sax/fea-
tures/ (for example, http://xml.org/sax/features/namespaces).

Properties
The full property name should be prefixed with http://xml.org/sax/prop-
erties/ (for example, http://xml.org/sax/properties/dom-node).

Name Description

namespaces Performs namespace processing.

namespace-prefixes Reports the original prefixed names and attributes used
for namespace declarations.

string-interning Internalizes all element names, prefixes, attribute names,
namespace identifiers, and local names using
java.lang.String.intern.

external-general-
entities

Includes external general (text) entities.

external-parameter-
entities

Includes external parameter entities and the external DTD
subset.

validation Reports all validation errors (implies external-general-
entities and external-parameter-entities).

Name Description

dom-node Returns the DOM node currently being visited, if SAX is
being used as a DOM iterator. If the parser recognizes
and supports this property but is not currently visiting a
DOM node, returns null. [Read Only]

Skonnard.book Page 190 Monday, October 1, 2001 8:57 AM

SAX 2.0 191

SA
X

6.4 References
For more information about Simple API for XML,
please go to http://www.megginson.com/SAX/index.html.

xml-string Returns the string of characters associated with the
current event. If the parser recognizes and supports
this property but is not currently parsing text, it should
return null. [Read Only]

lexical-handler An optional extension handler for lexical events (for
example, comments).

decl-handler An optional extension handler for DTD-related events
other than notations and unparsed entities.

Name Description

Skonnard.book Page 191 Monday, October 1, 2001 8:57 AM

Skonnard.book Page 192 Monday, October 1, 2001 8:57 AM

193

D
O

M

Chapter 7

DOM Level 2

The Document Object Model is a set of abstract programmatic interfaces that
project the Infoset of an XML document onto a tree of nodes. The DOM is defined
as a set of Object Management Group (OMG) Interface Definition Language (IDL)
interface definitions along with a set of Java language bindings and a set of
ECMAScript (JavaScript, JScript) language bindings. Various other language bind-
ings have been inferred from the IDL; however, this reference covers the Java and
VB language bindings.

Level 1 of the DOM was standardized prior to namespaces or the Infoset and
requires proprietary extensions to be useful for modern XML applications. For
that reason, this chapter ignores DOM Level 1 and uses the term DOM as a syn-
onym for DOM Level 2.

7.1 DOM UML

Figure 7–1 is a quick-reference UML diagram representing the core DOM level 2
interfaces.

7.2 DOM interfaces

The DOM interfaces are listed in alphabetical order with a brief description, Java
and VB interface definitions, and a table of members. The members table gives
the name of the method or property and a short description. In cases when two
names appear in the name column, the first is the Java name and the second is
the VB name. In many cases, examples are also provided.

Skonnard.book Page 193 Monday, October 1, 2001 8:57 AM

194

Essential XML Quick Reference

+g
et

N
od

eN
am

e(
)

+g
et

N
od

eV
al

ue
()

+s
et

N
od

eV
al

ue
()

+g
et

N
od

eT
yp

e(
)

+g
et

P
ar

en
tN

od
e(

)
+g

et
C

hi
ld

N
od

es
()

+g
et

F
irs

tC
hi

ld
()

+g
et

La
st

C
hi

ld
()

+g
et

P
re

vi
ou

sS
ib

lin
g(

)
+g

et
N

ex
tS

ib
lin

g(
)

+g
et

A
ttr

ib
ut

es
()

+g
et

O
w

ne
rD

oc
um

en
t(

)
+i

ns
er

tB
ef

or
e(

)
+r

ep
la

ce
C

hi
ld

()
+r

em
ov

eC
hi

ld
()

+a
pp

en
dC

hi
ld

()
+h

as
C

hi
ld

N
od

es
()

+c
lo

ne
N

od
e(

)
+n

or
m

al
iz

e(
)

+i
sS

up
po

rt
ed

()
+g

et
N

am
es

pa
ce

U
R

I(
)

+g
et

P
re

fix
()

+s
et

P
re

fix
()

+g
et

Lo
ca

lN
am

e(
)

+h
as

A
ttr

ib
ut

es
()

«i
nt

er
fa

ce
»

N
o

d
e

+h
as

Fe
at

ur
e(

)
+c

re
at

eD
oc

um
en

tT
yp

e(
)

+c
re

at
eD

oc
um

en
t(

)

«i
nt

er
fa

ce
»

D
O

M
Im

p
le

m
en

ta
ti

o
n

«i
nt

er
fa

ce
»

D
o

cu
m

en
tF

ra
g

m
en

t

+g
et

D
oc

Ty
pe

()
+g

et
Im

pl
em

en
ta

tio
n(

)
+g

et
D

oc
um

en
tE

le
m

en
t(

)
+c

re
at

eE
le

m
en

t(
)

+c
re

at
eD

oc
um

en
tF

ra
gm

en
t(

)
+c

re
at

eT
ex

tN
od

e(
)

+c
re

at
eC

om
m

en
t(

)
+c

re
at

eC
D

AT
A

S
ec

tio
n(

)
+c

re
at

eP
ro

ce
ss

in
gI

ns
tr

uc
tio

n(
)

+c
re

at
eA

ttr
ib

ut
e(

)
+c

re
at

eE
nt

ity
R

ef
er

en
ce

()
+g

et
E

le
m

en
ts

B
yT

ag
N

am
e(

)
+i

m
po

rt
N

od
e(

)
+c

re
at

eE
le

m
en

tN
S

()
+c

re
at

eA
ttr

ib
ut

eN
S

()
+g

et
E

le
m

en
ts

B
yT

ag
N

am
eN

S
()

+g
et

E
le

m
en

tB
yI

d(
)

«i
nt

er
fa

ce
»

D
o

cu
m

en
t

+i
te

m
()

+g
et

Le
ng

th
()

«i
nt

er
fa

ce
»

N
o

d
eL

is
t

+g
et

N
am

ed
Ite

m
()

+s
et

N
am

ed
Ite

m
()

+r
em

ov
eN

am
ed

Ite
m

()
+i

te
m

()
+g

et
Le

ng
th

()
+g

et
N

am
ed

Ite
m

N
S

()
+s

et
N

am
ed

Ite
m

N
S

()
+r

em
ov

eN
am

ed
Ite

m
N

S
()

«i
nt

er
fa

ce
»

N
am

ed
N

o
d

eM
ap

+g
et

D
at

a(
)

+s
et

D
at

a(
)

+g
et

Le
ng

th
()

+s
ub

st
rin

gD
at

a(
)

+a
pp

en
dD

at
a(

)
+i

ns
er

tD
at

a(
)

+d
el

et
eD

at
a(

)
+r

ep
la

ce
D

at
a(

)

«i
nt

er
fa

ce
»

C
h

ar
ac

te
rD

at
a

+g
et

N
am

e(
)

+g
et

S
pe

ci
fie

d(
)

+g
et

V
al

ue
()

+s
et

V
al

ue
()

+g
et

O
w

ne
rE

le
m

en
t(

)

«i
nt

er
fa

ce
»

A
tt

r

+g
et

Ta
gN

am
e(

)
+g

et
A

ttr
ib

ut
e(

)
+s

et
A

ttr
ib

ut
e(

)
+r

em
ov

eA
ttr

ib
ut

e(
)

+g
et

A
ttr

ib
ut

eN
od

e(
)

+s
et

A
ttr

ib
ut

eN
od

e(
)

+r
em

ov
eA

ttr
ib

ut
eN

od
e(

)
+g

et
E

le
m

en
ts

B
yT

ag
N

am
e(

)
+g

et
A

ttr
ib

ut
eN

S
()

+s
et

A
ttr

ib
ut

eN
S

()
+r

em
ov

eA
ttr

ib
ut

eN
S

()
+g

et
A

ttr
ib

ut
eN

od
eN

S
()

+s
et

A
ttr

ib
ut

eN
od

eN
S

()
+g

et
E

le
m

en
ts

B
yT

ag
N

am
eN

S
()

+h
as

A
ttr

ib
ut

e(
)

+h
as

A
ttr

ib
ut

eN
S

()

«i
nt

er
fa

ce
»

E
le

m
en

t

+s
pl

itT
ex

t(
)

«i
nt

er
fa

ce
»

Te
xt

«i
nt

er
fa

ce
»

C
o

m
m

en
t

«i
nt

er
fa

ce
»

C
D

A
TA

S
ec

ti
o

n

+g
et

N
am

e(
)

+g
et

E
nt

iti
es

()
+g

et
N

ot
at

io
ns

()
+g

et
P

ub
lic

Id
()

+g
et

S
ys

te
m

Id
()

+g
et

In
te

rn
al

S
ub

se
t(

)

«i
nt

er
fa

ce
»

D
o

cu
m

en
tT

yp
e

+g
et

P
ub

lic
Id

()
+g

et
S

ys
te

m
Id

()

«i
nt

er
fa

ce
»

N
o

ta
ti

o
n

+g
et

P
ub

lic
Id

()
+g

et
S

ys
te

m
Id

()
+g

et
N

ot
at

io
nN

am
e(

)

«i
nt

er
fa

ce
»

E
n

ti
ty

«i
nt

er
fa

ce
»

E
n

ti
ty

R
ef

er
en

ce

+g
et

Ta
rg

et
()

+g
et

D
at

a(
)

+s
et

D
at

a(
)

«i
nt

er
fa

ce
»

P
ro

ce
ss

in
g

In
st

ru
ct

io
n

«e
xc

ep
tio

n»
D

O
M

E
xc

ep
tio

n

Fi
gu

re
 7

–1
D

O
M

 le
ve

l 2
 in

te
rf

ac
e

hi
er

ar
ch

y.

Skonnard.book Page 194 Monday, October 1, 2001 8:57 AM

DOM Level 2

195

D
O

M

7.2.1

Attr

The

Attr

 interface models an attribute in an XML document providing access to
the various properties of the attribute. Despite extending the

Node

 interface,
attribute nodes are not considered part of the DOM tree.

Java definition

package org.w3c.dom;

public interface Attr extends Node {
 public String getName();
 public boolean getSpecified();
 public String getValue();
 public void setValue(String value) throws DOMException;
 public Element getOwnerElement();
}

VB definition

'IXMLDOMAttribute
Property name As String 'readonly
Property value As Variant

Member Description

getName
name

Returns the QName of the attribute.

getSpecified

Returns

true

 if the attribute was specified in the original
document. Returns

false

 if the attribute is present
because of a default value in a DTD.

getValue
value

Retrieves an attribute’s value.

setValue
value

Sets the value of an attribute.

getOwnerElement

Returns a reference to the Element node that owns the
attribute or null if the attribute is currently unowned. An
example of an unowned attribute node would be one that
had just been created but not yet attached to a particular
element.

Skonnard.book Page 195 Monday, October 1, 2001 8:57 AM

196

Essential XML Quick Reference

Examples

Accessing the name and value of an attribute

These examples check the name of an attribute, retrieve the value, and finally
return the owner element. In addition, the Java example checks whether the
attribute was specified or defaulted in by the DTD.

Java

VB

Element ProcessAttributeAndReturnOwnerElement (Attr att)
{
 if (att.getName().equals ("id"))
 {
 // Retrieve attribute value
 String value = att.getValue();
 // Process employee id
 // ...
 }

 if (att.getSpecified() == true)
 {
 // attribute was specified in instance document
 // rather than being defaulted in from a DTD
 }

 return att.getOwnerElement();
}

Sub ProcessAttribute (att As IXMLDOMAttribute)
 If att.name = "id" Then
 ' Retrieve attribute value
 Dim value As String
 value = att.value
 ' Process employee id
 ' ...
 End If
End Sub

Skonnard.book Page 196 Monday, October 1, 2001 8:57 AM

DOM Level 2

197

D
O

M

7.2.2

CDATASection

The

CDATASection

 interface is a signature interface (it adds no further methods
to

org.w3c.dom.Text

). It is used to denote a text node in the tree that was
either read from a CDATA section or should be written as a CDATA section, or both.

7.2.3

CharacterData

There are no

CharacterData

 nodes in a DOM tree. Rather, the

CharacterData

interface provides a base interface for the

org.w3c.dom.Text

 and

org.w3c.dom.Comment

 node types. It provides methods for retrieving and
manipulating the character data in these nodes.

Java definition

package org.w3c.dom;

public interface CharacterData extends Node {
 public String getData() throws DOMException;
 public void setData(String data) throws DOMException;
 public int getLength();
 public String substringData(int offset, int count)

 throws DOMException;
 public void appendData(String arg) throws DOMException;
 public void insertData(int offset, String arg)

 throws DOMException;
 public void deleteData(int offset, int count)

 throws DOMException;
 public void replaceData(int offset, int count,

 String arg) throws DOMException;
}

VB definition

' IXMLDOMCharacterData
Property data As String
Property length As Long ' read-only
Function substringData (offset As Long, count As Long) _

As String
Sub appendData (data As String)
Sub insertData (offset As Long, data As String)
Sub deleteData (offset As Long, count As Long)

Skonnard.book Page 197 Monday, October 1, 2001 8:57 AM

198

Essential XML Quick Reference

Sub replaceData (offset As Long, count As Long, data _
As String)

Examples

Using the CharacterData interface

These examples show setting, appending, inserting, deleting, and replacing text
in a

CharacterData

 node. The text that the

CharacterData

 node contains
after each operation is shown in the following comment. In addition a call to the

substringData

 method is shown along with the returned text.

Java

Member Description

getData
data

Returns the character data associated with the node.

setData
data

Replaces any existing character data with the string provided.

getLength
length

Returns the number of characters in the character data.

substringData

Returns a range of data from the available character data.

appendData

Appends the provided string to the end of the current character
data.

insertData

Inserts the provided string at the specified offset.

deleteData

Deletes a range of character data.

replaceData

Replaces a range of characters with the provided string.

replaceData

 can be thought of as a call to

deleteData

 fol-
lowed by a call to

insertData

.

String PopulateCharacterDataNode (CharacterData cd) {
 cd.setData ("A man"); // 'A man'
 cd.appendData (" a plan"); // 'A man a plan'
 cd.appendData (" panama"); // 'A man a plan panama'
 cd.insertData (12, " a canal");

 // 'A man a plan a canal panama'
 cd.deleteData (12, 4); // 'A man a plananal panama'
 cd.replaceData (12, 4, " a canal");

 // 'A man a plan a canal panama'

 String sub = cd.substringData (6, 6); // 'a plan'

Skonnard.book Page 198 Monday, October 1, 2001 8:57 AM

DOM Level 2

199

D
O

M

VB

7.2.4

Comment

The

Comment

 interface is a signature interface (it adds no further methods to

org.w3c.dom.CharacterData

). It is used to denote a comment node in the
tree.

7.2.5

Document

The

Document

 interface represents the root of a DOM tree. It also acts as a fac-
tory for other node types. When working with XML that includes namespace infor-
mation, the methods with names that end with NS should be used instead of the
methods without that suffix.

 return cd.getData();
}

Function PopulateCharacterDataNode (ByRef cd As
IXMLDOMCharacterData) As String

 cd.data = "A man" ' "A man" '
 cd.appendData " a plan" ' "A man a plan" '
 cd.appendData " panama" ' "A man a plan panama" '
 cd.insertData 12, " a canal" _

' "A man a plan a canal panama" '
 cd.deleteData 12, 4 _

' "A man a plananal panama" '
 cd.replaceData 12, 4, " a canal" _

' "A man a plan a canal panama" '

 Dim sub As String
 sub = cd.substringData (6, 6,) ' "a plan" '

 PopulateCharacterDataNode = cd.data
End Function

Skonnard.book Page 199 Monday, October 1, 2001 8:57 AM

200

Essential XML Quick Reference

Java definition

package org.w3c.dom;

public interface Document extends Node {
 public DocumentType getDoctype();
 public DOMImplementation getImplementation();
 public Element getDocumentElement();
 public Element createElement(String tagName)

 throws DOMException;
 public DocumentFragment createDocumentFragment();
 public Text createTextNode(String data);
 public Comment createComment(String data);
 public CDATASection createCDATASection(String data)

 throws DOMException;
 public ProcessingInstruction

 createProcessingInstruction(String target, String data)
 throws DOMException;

 public Attr createAttribute(String name)
 throws DOMException;

 public EntityReference createEntityReference
 (String name) throws DOMException;

 public NodeList getElementsByTagName(String tagname);
 public Node importNode(Node importedNode, boolean deep)

 throws DOMException;
 public Element createElementNS(String namespaceURI,

 String qualifiedName) throws DOMException;
 public Attr createAttributeNS(String namespaceURI,

 String qualifiedName) throws DOMException;
 public NodeList getElementsByTagNameNS(String

 namespaceURI, String localName);
 public Element getElementById(String elementId);
}

VB definition

' IXMLDOMDocument
Property docType As IXMLDOMDocumentType ' read-only
Property implementation As IXMLDOMImplementation ' read-only
Property documentElement As IXMLDOMElement
Function createElement (tagName As String) _

As IXMLDOMElement
Function createDocumentFragment() As IXMLDOMDocumentFragment
Function createTextNode (data As String) As IXMLDOMText

Skonnard.book Page 200 Monday, October 1, 2001 8:57 AM

DOM Level 2

201

D
O

M

Function createComment (data As String) As IXMLDOMComment
Function createCDATASection (data As String) _

As IXMLDOMCDATASection
Function createProcessingInstruction (target As String, _

data As String) As IXMLDOMProcessingInstruction
Function createAttribute (name As String) _

As IXMLDOMAttribute
Function createEntityReference (name As String) _

As IXMLDOMEntityReference
Function getElementsByTagName (tagName As String) _

As IXMLDOMNodeList
Function createNode (Type As Variant, name As String, _

namespaceURI As String) As IXMLDOMNode
Function nodeFromID (idString As String) As IXMLDOMNode
Function load (xmlSource As Variant) As Boolean
Property readyState As Long ' read-only
Property parseError As IXMLDOMParseError ' read-only
Property url As String ' read-only
Property async As Boolean
Sub abort()
Function loadXML (bstrXML As String) As Boolean
Sub save (destination As Variant)
Property validateOnParse As Boolean
Property resolveExternals As Boolean
Property preserveWhiteSpace As Boolean
Property onreadystatechange As Variant ' write-only
Property ondataavailable As Variant ' write-only
Property ontransformnode As Variant ' write-only

Member Description

getDocType
docType

Returns the DTD for this document or null if no
Document Type Declaration is available.

getImplementation
implementation

Returns the

DOMImplementation

 that deals
with this document.

getDocumentElement
documentElement

Returns the element child of the

Document

node.

createElement

Creates and returns an element node with the
provided name. The localName, prefix, and
namespaceURI properties of the element node
will be null.

createDocumentFragment

Creates an empty

DocumentFragment

 node.

Skonnard.book Page 201 Monday, October 1, 2001 8:57 AM

202

Essential XML Quick Reference

createTextNode

Creates a

Text

 node containing the provided
string.

createComment

Creates a

Comment

 node containing the pro-
vided string.

createCDATASection

Creates a

CDATASection

 node containing
the provided string.

createProcessingInstruction

Creates a ProcessingInstruction node
with the provided target and data.

createAttribute Creates an Attribute node with the pro-
vided name. The localName, prefix, and
namespaceURI properties of the Attribute
node will be null.

createEntityReference Creates an EntityReference node with the
provided name. If the name corresponds to a
known Entity in the DTD, then the descen-
dants of the createEntityReference node
correspond to those specified by the entity
declaration, otherwise the created node has
no descendants.

getElementsByTagName Returns a list of all Elements in the document
with a nodeName property that matches the
provided name. The string value “*” matches
all Elements. The Elements are returned in
document order. Use of this method should be
avoided when working with XML containing
namespace information because the results
are implementation dependent.

importNode Creates a copy of a node created in another
document such that the copy can be used in
the importing document. For Attribute nodes,
any Text node children are also copied. For
DocumentFragment nodes, if deep was set to
true, then all descendant nodes are also cop-
ied. Otherwise, an empty DocumentFragment
node is created. For Element nodes, any spec-
ified Attribute nodes are copied. Defaulted
Attribute nodes are not copied. If deep is
set to true then all descendant nodes are
also copied. For EntityReference nodes
only the entity reference is copied. If the
importing document provides a definition for
an entity with the same name as the imported
entity, then the value of that entity

Member Description

Skonnard.book Page 202 Monday, October 1, 2001 8:57 AM

DOM Level 2 203

D
O

M

Examples
Creating elements, attributes, and text nodes

These examples show creating a namespace qualified element, a namespace
qualified attribute, and associated text node and retrieving a list of nodes. The
element is appended to the document element. The Visual Basic example uses
createNode rather than createElementNS/createAttributeNS and
getElementsByTagName rather than getElementsByTagNameNS as
MSXML does not support the “NS” methods of the Document interface.

definition is assigned to the new node. For
ProcessingInstruction nodes a straight
copy is created. For Text, CDATASection,
and Comment nodes a straight copy is cre-
ated. importNode is undefined or not useful
for Notation, Entity, DocumentType, and
Document nodes.

createElementNS Creates a namespace-qualified Element node
with the specified QName. At serialization
time, the relevant namespace declaration will
be written out. This method supersedes
createElement.

createAttributeNS Creates a namespace-qualified Attribute
node with the specified QName. At serializa-
tion time, the relevant namespace declaration
will be written out. This method supersedes
createAttribute.

getElementsByTagNameNS Returns a list of all Elements in the document
with namespaceURI and localName proper-
ties that match the provided parameters. The
string value “*” matches all Elements. The
Elements are returned in document order.

getElementById
nodeFromID

Returns the Element whose ID attribute
matches the supplied string. Note that the ID
attribute is the one whose type is ID, not the
one (if any) whose name is ID. The DOM imple-
mentation needs a DTD or schema to deter-
mine the type of an attribute. If no Element
with the specified ID can be found, or the
implementation does not know which
attributes are of type ID, then the method
returns null.

Member Description

Skonnard.book Page 203 Monday, October 1, 2001 8:57 AM

204 Essential XML Quick Reference

Java

VB

NodeList addElementAndGetList (Document doc) {
 Element docelt = doc.getDocumentElement();
 Element e = doc.createElementNS

("urn:develop-com:employees", "employee");
 docelt.appendChild (e);
 Attr a = doc.createAttributeNS (null, "id");
 Text t = doc.createTextNode ("5");
 a.appendChild (t);
 e.setAttributeNodeNS (a);

 return doc.getElementsByTagNameNS
("urn:develop-com:employees", "employee");

}

Function addElementAndGetList (doc As IXMLDOMDocument) _
As IXMLDOMNodeList

 Dim docelt As IXMLDOMElement
 Set docelt = doc.documentElement
 Dim e As IXMLDOMElement
 Set e = doc.createNode(NODE_ELEMENT, "employee", _

"urn:develop-com:employees")
 docelt.appendChild e
 Dim a As IXMLDOMAttribute
 Set a = doc.createNode(NODE_ATTRIBUTE, "id", "")
 Dim t As IXMLDOMText
 Set t = doc.createTextNode("5")
 a.appendChild t
 e.setAttributeNode a

 set addELementAndGetList = _

doc.getElementsByTagName ("employee")
End Function

Skonnard.book Page 204 Monday, October 1, 2001 8:57 AM

DOM Level 2 205

D
O

M

7.2.6 DocumentFragment

The DocumentFragment interface is a signature interface (it adds no further
methods to org.w3c.dom.Node). It is used to denote a DocumentFragment
node. The descendants of a DocumentFragment node need not conform to the
structure rules laid down in the XML Infoset. For example, a DocumentFragment
may have multiple element children. When a DocumentFragment is inserted into
a DOM tree, the children are inserted rather than the DocumentFragment node.

7.2.7 DocumentType

The DocumentType interface provides access to the Entity and Notation
collections of the document along with certain aspects of the internal and external
subsets of the DTD. Both the Entity and Notation collections are read-only.

Java definition
package org.w3c.dom;

public interface DocumentType extends Node {
 public String getName();
 public NamedNodeMap getEntities();
 public NamedNodeMap getNotations();
 public String getPublicId();
 public String getSystemId();
 public String getInternalSubset();
}

VB definition
' IXMLDOMDocumentType
Property name As String ' read-only
Property entities As IXMLDOMNamedNodeMap ' read-only
Property notations As IXMLDOMNamedNodeMap ' read-only

Member Description

getName
name

Returns the name of the DTD. This is the name that
immediately follows the DOCTYPE keyword and corre-
sponds to the name of the document element.

Skonnard.book Page 205 Monday, October 1, 2001 8:57 AM

206 Essential XML Quick Reference

7.2.8 DOMImplementation

A bootstrapping interface typically used for creating the initial Document node of
a DOM tree. DOMImplementation also allows a given DOM implementation to be
interrogated with regard to supported features.

Java definition
package org.w3c.dom;

public interface DOMImplementation {
 public boolean hasFeature(String feature, String

version);
 public DocumentType createDocumentType(String

qualifiedName, String publicId, String systemId) throws
DOMException;

 public Document createDocument(String namespaceURI,
String qualifiedName, DocumentType doctype) throws
DOMException;

}

VB definition
' IXMLDOMImplementation
Function hasFeature (feature As String, version As String)

As Boolean

getEntities
entities

Returns a read-only collection containing general entities
declared in the internal or external subset of the DTD.
All nodes in the returned map implement the Entity
interface.

getNotations
notations

Returns read-only collection notations declared in the
internal or external subset of the DTD. All nodes in the
returned map implement the Notation interface.

getPublicId Returns the public identifier of the external subset of the
DTD.

getPublicId Returns the system identifier of the external subset of
the DTD.

getInternalSubset Returns the internal subset of the DTD as a string.

Member Description

Skonnard.book Page 206 Monday, October 1, 2001 8:57 AM

DOM Level 2 207

D
O

M

Examples
Creating the document element

This example shows creating a DocumentType node, the Document node, and
the document element. The resulting XML document could be serialized as follows:

<!DOCTYPE e:employees SYSTEM "employees.dtd" >
<e:employees xmlns:e='urn:develop-com:employees' />

Java

7.2.9 Element

The Element interface provides methods for access to and modification of the
attributes of an element along with methods for retrieving some of the properties
of the element. When working with XML that includes namespace information, the

Member Description

hasFeature Returns true if the DOM implementation supports the
specified version of the specified feature; false other-
wise. Defined features include Core, XML, HTML, Views,
StyleSheets, CSS, CSS2, Events, UIEvents, MouseEvents,
MutationEvents, HTMLEvents, Range, and Traversal.
Other specifications may define new features. Feature
names are case sensitive. For DOM level 2, the version
string for all features is “2.0.”

createDocumentType Creates an empty DocumentType node with the speci-
fied name and public and system IDs. Because the nota-
tion and entity collections are read-only, the resulting
DocumentType node is not very useful.

createDocument Creates a Document node of the specified
DocumentType along with the document Element.

Document CreateDocument (DOMImplementation dom) {
 DocumentType dt = dom.createDocumentType ("e:employees",

null, "employees.dtd");
 Document doc = dom.createDocument ("urn:develop-

com:employees", "e:employees", dt);
 return doc;
}

Skonnard.book Page 207 Monday, October 1, 2001 8:57 AM

208 Essential XML Quick Reference

methods with names that end with NS should be used instead of the methods
without that suffix.

Java definition
package org.w3c.dom;

public interface Element extends Node {
 public String getTagName();
 public String getAttribute(String name);
 public void setAttribute(String name, String value)

throws DOMException;
 public void removeAttribute(String name) throws

DOMException;
 public Attr getAttributeNode(String name);
 public Attr setAttributeNode(Attr newAttr) throws

DOMException;
 public Attr removeAttributeNode(Attr oldAttr) throws

DOMException;
 public NodeList getElementsByTagName(String name);
 public String getAttributeNS(String namespaceURI,

String localName);
 public void setAttributeNS(String namespaceURI, String

qualifiedName, String value) throws DOMException;
 public void removeAttributeNS(String namespaceURI,

String localName) throws DOMException;
 public Attr getAttributeNodeNS(String namespaceURI,

String localName);
 public Attr setAttributeNodeNS(Attr newAttr) throws

DOMException;
 public NodeList getElementsByTagNameNS(String

namespaceURI, String localName);
 public boolean hasAttribute(String name);
 public boolean hasAttributeNS(String namespaceURI,

String localName);
}

VB definition
' IXMLDOMElement
Property tagName As String ' read-only
Function getAttribute (ByRef name As String) As Variant
Sub setAttribute (ByRef name As String, ByRef value As _

Variant)

Skonnard.book Page 208 Monday, October 1, 2001 8:57 AM

DOM Level 2 209

D
O

M

Sub removeAttribute (ByRef name As String)
Function getAttributeNode (ByRef name As String) As _

IXMLDOMAttribute
Function setAttributeNode (ByRef DOMAttribute As _

IXMLDOMAttribute) As IXMLDOMAttribute
Function removeAttributeNode (ByRef DOMAttribute As _

IXMLDOMAttribute) As IXMLDOMAttribute
Function getElementsByTagName (ByRef tagName As String) _

As IXMLDOMNodeList
Sub normalize()

Member Description

getTagName Returns the nodeName property of the element.
The value of this property is the same as that of
the nodeName property of the org.w3c.dom.Node
interface. Use of this method should be avoided when
working with XML containing namespace information
because the results are implementation dependent.

getAttribute Returns the value of the attribute with a name that
matches the supplied parameter. When two attributes
share the same nodeName (but have different
namespace URIs), the value returned is undefined.
This method has been superseded by
getAttributeNS.

setAttribute Creates a new Attribute node with the specified
name and value or overwrites an existing attribute
with the specified name. This method has been super-
seded by setAttributeNS.

removeAttribute Removes the attribute with the specified name. This
method has been superseded by
removeAttributeNS.

getAttributeNode Returns the Attribute node with a name that
matches the supplied parameter. When two attributes
share the same nodeName (but have different
namespace URIs) the value returned is undefined. This
method has been superseded by
getAttributeNodeNS.

setAttributeNode Attaches the provided attribute to the element. If an
attribute already exists on the element that has the
same name as the attribute being added, then the old
attribute is returned. Otherwise, the return value is
null. This method has been superseded by
setAttributeNodeNS.

Skonnard.book Page 209 Monday, October 1, 2001 8:57 AM

210 Essential XML Quick Reference

Examples
Add an attribute to an element

These examples check for the existence of a named attribute and, if the attribute
does not exist, add such an attribute. The VB example uses a QName rather than
a namespace name/local name pair because of the lack of support for NS meth-
ods in MSXML. Similarly, createNode is used rather than setAttributeNS.

removeAttributeNode Removes the specified attribute node. The removed
attribute is returned to the caller.

getElementsByTagName Returns a list of all descendant Elements of this
Element node with a nodeName property that
matches the provided name. The string value “*”
matches all Elements. The Elements are returned
in document order.

getAttributeNS Returns the value of the attribute with the local name
and namespace URI that match the supplied
parameters.

setAttributeNS Creates a new Attribute node with the specified
namespace URI, QName, and value or overwrites an
existing attribute with the specified namespace URI
and QName.

removeAttributeNS Removes the attribute with the specified namespace
URI and local name.

getAttributeNodeNS Returns the Attribute node with the namespace
URI and local name that matche the supplied
parameters.

getElementsByTagNameNS Returns a list of all descendant Elements of this
Element node with a namespaceURI and
localName properties that match the provided
parameters. The string value “*” matches all
Elements. The Elements are returned in
document order.

hasAttribute Returns true if an attribute with the specified name
exists. When two attributes share the same node-
Name (but have different namespace URIs), the value
returned is undefined. This method has been super-
seded by hasAttributeNS.

hasAttributeNS Returns true if an attribute with the specified
namespace URI and local name exists; otherwise,
returns false.

Member Description

Skonnard.book Page 210 Monday, October 1, 2001 8:57 AM

DOM Level 2 211

D
O

M

Java

VB

7.2.10 Entity

The Entity interface represents an internal or external entity in an XML docu-
ment.

Java definition
package org.w3c.dom;

public interface Entity extends Node {
 public String getPublicId();
 public String getSystemId();
 public String getNotationName();
}

VB definition
' IXMLDOMEntity
Property publicId As Variant ' read-only
Property systemId As Variant ' read-only

void AttachAttributes (Element e) {
 if (!e.hasAttributeNS ("urn:example-

 org:weightsandmeasures", "units"))
 e.setAttributeNS ("urn:example-

 org:weightsandmeasures", "p:units", "inches");
}

Sub AttachAttributes (ByRef e As IXMLDOMElement)
 If e.getAttributeNode ("p:units") Is Nothing Then
 Dim doc As IXMLDOMDocument
 Set doc = e.ownerDocument
 Dim a As IXMLDOMAttribute
 Set a = doc.createNode (NODE_ATTRIBUTE, "p:units", _

 "urn:example-org:weightsandmeasures")
 a.value = "inches"
 e.setAttributeNode a
 End If
End Sub

Skonnard.book Page 211 Monday, October 1, 2001 8:57 AM

212 Essential XML Quick Reference

Property notationName As String ' read-only

7.2.11 EntityReference

The EntityReference interface is a signature interface (it adds no further
methods to org.w3c.dom.Node). It is used to denote a node in the tree that is a
reference to a general entity. The nodeName property contains the name of the
entity to which this node is a reference.

7.2.12 NamedNodeMap

The NamedNodeMap interface models a set of named but unordered nodes in
the DOM tree. Such nodes include Attribute nodes and Entity nodes.

Java definition
package org.w3c.dom;

public interface NamedNodeMap {
 public Node getNamedItem(String name);
 public Node setNamedItem(Node arg) throws DOMException;
 public Node removeNamedItem(String name) throws

 DOMException;

Member Description

getPublicId
publicId

Returns the public identifier of the entity, if any; otherwise,
returns null.

getSystemId
systemId

Returns the system identifier of the entity, if any; otherwise,
returns null.

getNotationName
notationName

Returns the notation name associated with an unparsed
entity. If the entity is not an unparsed entity, then this
method returns null.

Skonnard.book Page 212 Monday, October 1, 2001 8:57 AM

DOM Level 2 213

D
O

M

 public Node item(int index);
 public int getLength();
 public Node getNamedItemNS(String namespaceURI,

 String localName);
 public Node setNamedItemNS(Node arg) throws

 DOMException;
 public Node removeNamedItemNS(String namespaceURI,

String localName) throws DOMException;
}

VB definition
' IXMLDOMNamedNodeMap
Function getNamedItem (ByVal name As String) As IXMLDOMNode
Function setNamedItem (ByRef newItem As IXMLDOMNode) As _

IXMLDOMNode
Function removeNamedItem (ByVal name As String) As _

IXMLDOMNode
Property item (ByVal index As Long) As IXMLDOMNode

' read-only
Property length As Long ' read-only
Function getQualifiedItem (ByVal baseName As String, _

ByVal namespaceURI As String) As IXMLDOMNode
Function removeQualifiedItem (ByVal baseName As String, _

ByVal namespaceURI As String) As IXMLDOMNode
Function nextNode() As IXMLDOMNode
Function reset()
Property _newEnum As IUnknown ' read-only

Member Description

getNamedItem Retrieves the node with the nodeName property that
matches the specified name.

setNamedItem Adds the specified node to the map. If a node with the
same nodeName property as the added node exists in
the map, the existing item is replaced. In this case the
replaced node is returned; otherwise, null is returned.

removeNamedItem Removes from the map the node with the nodeName
property that matches the specified name. The
removed node is returned.

Skonnard.book Page 213 Monday, October 1, 2001 8:57 AM

214 Essential XML Quick Reference

Examples
Adding an attribute to a NamedNodeMap

These examples show adding an Attribute node to the attributes collection of
an element. Note that the Java example also creates a namespace declaration as
an attribute in the http://www.w3.org/2000/xmlns/ namespace. MSXML
automatically puts in namespace declarations as needed.

Java

item Returns the node at the specified index. Returns null if
the index specified equals or exceeds the number of
nodes in the map.

getLength
length

Returns the number of nodes in the map.

getNamedItemNS
getQualifiedItem

Returns the node in the map with the specified
namespaceURI and localName properties.

setNamedItemNS Adds the specified node to the map. If a node with the
same namespaceURI and localName properties as
the added node exists in the map, the existing node is
replaced. In this case, the replaced node is returned;
otherwise, null is returned.

removeNamedItemNS
removeQualifiedItem

Removes from the map the node with namespaceURI
and localName properties that match the specified
namespaceURI and Localname.

Member Description

void AddAttribute (Element e) {
 NamedNodeMap map = e.getAttributes();

 // Create units attribute in urn:example-org namespace
and add to map

 Attr a = doc.createAttributeNS ("urn:example-org",
 "pre:units");

 a.setValue ("inches");
 map.setNamedItemNS (a);

 // Create namespace declaration for urn:example-
org:measurements and add to map

 a = doc.createAttributeNS (
 "http://www.w3.org/2000/xmlns/", "xmlns:pre");

 a.setValue ("urn:example-org");

Skonnard.book Page 214 Monday, October 1, 2001 8:57 AM

DOM Level 2 215

D
O

M

VB

7.2.13 Node

The Node interface is the base interface for all other interfaces in the DOM and
provides access to generic node properties, traversal methods, and tree modifi-
cation methods.

Java definition
package org.w3c.dom;

public interface Node {
 // NodeType
 public static final short ELEMENT_NODE = 1;
 public static final short ATTRIBUTE_NODE = 2;
 public static final short TEXT_NODE = 3;
 public static final short CDATA_SECTION_NODE = 4;
 public static final short ENTITY_REFERENCE_NODE = 5;
 public static final short ENTITY_NODE = 6;
 public static final short PROCESSING_INSTRUCTION_

 NODE = 7;
 public static final short COMMENT_NODE = 8;

 map.setNamedItemNS (a);
}

Sub AddAttribute (e As IXMLDOMElement)
 Dim map As IXMLDOMNamedNodeMap
 Set map = e.Attributes

 ' Create units attribute in urn:example-org:measurements

namespace and add to map
 Dim a As IXMLDOMAttribute
 Set a = doc.createNode(NODE_ATTRIBUTE, "pre:units", _

"urn:example-org")
 a.value = "inches"
 map.setNamedItem a

End Sub

Skonnard.book Page 215 Monday, October 1, 2001 8:57 AM

216 Essential XML Quick Reference

 public static final short DOCUMENT_NODE = 9;
 public static final short DOCUMENT_TYPE_NODE = 10;
 public static final short DOCUMENT_FRAGMENT_NODE = 11;
 public static final short NOTATION_NODE = 12;
 public String getNodeName();
 public String getNodeValue() throws DOMException;
 public void setNodeValue(String nodeValue)

 throws DOMException;
 public short getNodeType();
 public Node getParentNode();
 public NodeList getChildNodes();
 public Node getFirstChild();
 public Node getLastChild();
 public Node getPreviousSibling();
 public Node getNextSibling();
 public NamedNodeMap getAttributes();
 public Document getOwnerDocument();
 public Node insertBefore(Node newChild, Node refChild)

 throws DOMException;
 public Node replaceChild(Node newChild, Node oldChild)

 throws DOMException;
 public Node removeChild(Node oldChild)

 throws DOMException;
 public Node appendChild(Node newChild)

 throws DOMException;
 public boolean hasChildNodes();
 public Node cloneNode(boolean deep);
 public void normalize();
 public boolean isSupported(String feature, String

 version);
 public String getNamespaceURI();
 public String getPrefix();
 public void setPrefix(String prefix)

 throws DOMException;
 public String getLocalName();
 public boolean hasAttributes();
}

Skonnard.book Page 216 Monday, October 1, 2001 8:57 AM

DOM Level 2 217

D
O

M

VB definition
' IXMLDOMNode
Property nodeName As String ' read-only
Property nodeValue As String
Property nodeType As DOMNodeType ' read-only
Property parentNode As IXMLDOMNode ' read-only
Property childList As IXMLDOMNodeList ' read-only
Property firstChild As IXMLDOMNode ' read-only
Property lastChild As IXMLDOMNode ' read-only
Property previousSibling As IXMLDOMNode ' read-only
Property nextSibling As IXMLDOMNode ' read-only
Property attributes As IXMLDOMNamedNodeMap ' read-only
Function insertBefore (ByRef newChild As IXMLDOMNode, _

ByRef refChild As Variant) As IXMLDOMNode
Function replaceChild (ByRef newChild As IXMLDOMNode, _

ByRef oldChild As IXMLDOMNode) As IXMLDOMNode
Function removeChild (ByRef childNode As IXMLDOMNode) _

As IXMLDOMNode
Function appendChild (ByRef newChild As IXMLDOMNode) _

As IXMLDOMNode
Function hasChildNodes() As Boolean
Property ownerDocument As IXMLDOMDocument
Function cloneNode (ByVal deep As Boolean) As IXMLDOMNode
Property nodeTypeString As String ' read-only
Property text As String
Property specified As Boolean ' read-only
Property definition As IXMLDOMNode ' read-only
Property nodeTypeValue As Variant
Property dataType As String
Property xml As String ' read-only
Function transformNode (ByRef stylesheet As IXMLDOMNode) _

As String
Function selectNodes (ByVal queryString As String) As _

IXMLDOMNodeList
Function selectSingleNode (ByVal queryString As String) _

As IXMLDOMNode
Property parsed As Boolean ' read-only
Property namespaceURI As String ' read-only
Property prefix As String ' read-only
Property baseName As String ' read-only
Function transformNodeToObject (ByRef stylesheet As _

IXMLDOMNode) As Variant

Skonnard.book Page 217 Monday, October 1, 2001 8:57 AM

218 Essential XML Quick Reference

Member Description

getNodeName
nodeName

Retrieves the name of the node. For Element and
Attribute nodes, the name is the QName. For
ProcessingInstruction nodes, the name is the tar-
get portion of the processing instruction. For Entity
and EntityReference nodes, the name is the entity
name. For Notation nodes, the name is the notation
name. For Document nodes, the name is “#document”.
For Comment nodes, the name is “#comment”. For
Text nodes, the name is “#text”. For CDATASection
nodes, the name is “#cdata”. For DocumentFragment
nodes the name is #document-fragment. For
DocumentType nodes the name is the tagname of
the document element.

getNodeValue
nodeValue

Retrieves the value of the node. For Attribute,
CDATA, Comment, and Text nodes the value is the text
of the node. For ProcessingInstruction nodes,
the value is the data portion of the processing instruc-
tion. For all other node types the value is null.

setNodeValue
nodeValue

Sets the value of the node. Only Attribute, Comment,
CDATASection, ProcessingInstruction, and
Text nodes can have their node value set.

getNodeType
nodeType

Retrieves the type of the node.

getParentNode
parentNode

Retrieves the parent node. For Attribute, Document
and DocumentFragment nodes this property is null.

getChildNodes
childList

Retrieves an ordered collection containing the children
of the node. Only Attribute, Document,
DocumentFragment, Element, and Entity nodes
can have children.

getFirstChild
firstChild

Retrieves the first child of the node.

getLastChild
lastChild

Retrieves the last child of the node.

getPreviousSibling
previousSibling

Retrieves the previous node in the tree whose parent is
the same as that of the current node.

getNextSibling
nextSibling

Retrieves the next node in the tree whose parent is the
same as that of the current node.

getAttributes
attributes

Retrieves an unordered collection containing the
attributes of the node. Only element nodes can have
attributes.

getOwnerDocument
ownerDocument

Retrieves the owning document node.

Skonnard.book Page 218 Monday, October 1, 2001 8:57 AM

DOM Level 2 219

D
O

M

Examples
Traversing the tree

These examples show traversing a DOM tree depth first using the firstChild
and nextSibling properties of the Node interface.

insertBefore Inserts a node into the children collection of the current
node, immediately before the provided reference node.
Returns the new node.

replaceChild Replaces a node in the children collection of the current
node. Returns the replaced node.

removeChild Removes a node from the children collection of the cur-
rent node. Returns the removed node.

appendChild Appends a node to the children collection of the current
node. Returns the appended node.

hasChildNodes Returns true if the node has children; otherwise,
returns false.

cloneNode Creates and returns a copy of the current node. If the
deep parameter is set to true, descendants are also
copied.

normalize Converts adjacent text node children into single text
nodes.

isSupported Returns true if the specified feature and version are
supported; otherwise, returns false. Defined features
include Core, XML, HTML, Views, StyleSheets, CSS,
CSS2, Events, UIEvents, MouseEvents, MutationEvents,
HTMLEvents, Range, and Traversal. Other specifica-
tions may define new features. Feature names are case
sensitive. For DOM level 2, the version string for all fea-
tures is “2.0.”

getNamespaceURI Returns the namespace URI of the node. Only element
and attribute nodes have namespace URIs.

getPrefix Returns the namespace prefix of the node. Only element
and attribute nodes have namespace prefixes.

setPrefix Sets the namespace prefix of the node. Only element
and attribute nodes have namespace prefixes.

getLocalName Returns the localname of the node. Only element and
attribute nodes have local names.

hasAttributes Returns true if the node has attributes; otherwise,
returns false.

Member Description

Skonnard.book Page 219 Monday, October 1, 2001 8:57 AM

220 Essential XML Quick Reference

Java

VB

void TraverseTree (Node n) {
 // Process node ...

 // Recursively process first child...
 Node p = n.getFirstChild();

 if (p != null)
 TraverseTree (p);

 // ... and siblings
 p = n.getNextSibling();

 if (p != null)
 TraverseTree (p);
}

Sub TraverseTree (n As IXMLDOMNode)
 ' Process node ...

 ' Recursively process first child...
 Dim p As IXMLDOMNode
 Set p = n.firstChild

 If Not p Is Nothing Then
 TraverseTree p
 End If

 ' ... and siblings
 Set p = n.nextSibling

 If Not p Is Nothing Then
 TraverseTree p
 End If
End Sub

Skonnard.book Page 220 Monday, October 1, 2001 8:57 AM

DOM Level 2 221

D
O

M

Adding nodes to the tree

These examples show removing, creating, and adding several nodes to a DOM tree
using a combination of removeChild, appendChild, and insertBefore.
Note that the Java example has to add explicitly an attribute representing the
namespace declaration whereas MSXML automatically inserts it. The resulting
tree could be serialized as follows:

<e:employees xmlns:e='urn:develop-com:employees'>
 <e:employee>Aaron</e:employee>
 <e:employee>Don</e:employee>
</e:employees>

Java

void CreateNodes (Document doc) {
 Element emps, emp1, emp2;
 Text t;

 // Remove current document element
 doc.removeChild (doc.getDocumentElement());

 // Create document element
 emps = doc.createElementNS ("urn:develop-com:employees",

"e:employees");
 doc.appendChild (emps);

 // Create namespace declaration for urn:develop-
com:employees and add to document element

 emps.setAttributeNS ("http://www.w3.org/2000/xmlns/",
"xmlns:e", "urn:develop-com:employees");

 // Create first child element and append
 emp1 = doc.createElementNS ("urn:develop-com:employees",

"e:employee");
 t = doc.createTextNode ("Don");
 emp1.appendChild (t);
 emps.appendChild (emp1);

 // Create second child element and insert before first

Skonnard.book Page 221 Monday, October 1, 2001 8:57 AM

222 Essential XML Quick Reference

VB

 emp2 = doc.createElementNS ("urn:develop-com:employees",
"e:employee");

 t = doc.createTextNode ("Aaron");
 emp2.appendChild (t);
 emps.insertBefore (emp2, emp1);
}

Sub CreateNodes (doc As IXMLDOMDocument)
 Dim emps As IXMLDOMElement
 Dim emp1 As IXMLDOMElement
 Dim emp2 As IXMLDOMElement
 Dim t As IXMLDOMText

 ' Remove current document element
 doc.removeChild doc.documentElement

 ' Create document element
 Set emps = doc.createNode (NODE_ELEMENT, _

"e:employees", "urn:develop-com:employees")
 doc.appendChild emps

 ' Create first child element and append
 Set emp1 = doc.createNode (NODE_ELEMENT, _

"e:employee", "urn:develop-com:employees")
 Set t = doc.createTextNode ("Don")
 emp1.appendChild t
 emps.appendChild emp1

 ' Create second child element and insert before first
 Set emp2 = doc.createNode (NODE_ELEMENT, _

"e:employee", "urn:develop-com:employees")
 Set t = doc.createTextNode ("Aaron")
 emp2.appendChild t
 emps.insertBefore emp2, emp1
End Sub

Skonnard.book Page 222 Monday, October 1, 2001 8:57 AM

DOM Level 2 223

D
O

M

7.2.14 NodeList

The NodeList interface is used to model an ordered collection of nodes.

Java definition
package org.w3c.dom;

public interface NodeList {
 public Node item(int index);
 public int getLength();
}

VB definition
' IXMLDOMNodeList
Property item As IXMLDOMNode ' read-only
Property length As Long ' read-only
Function nextNode() As IXMLDOMNode
Sub reset()
Property _newEnum As IUnknown ' read-only

Examples
Traversing the tree

These examples show a method, TraverseTree, traversing a DOM tree depth
first using the NodeList interface retrieved from the childNodes collection.

Java

Member Description

item Returns the node at the specified index. Indices are zero based.

getLength Returns the number of nodes in the collection.

void TraverseTree (Node n) {
 // Process node ...

 // Recursively process children
 NodeList nl = n.getChildNodes();

 for(int i=0;i<nl.getLength();i++)
 TraverseTree (nl.item (i));
}

Skonnard.book Page 223 Monday, October 1, 2001 8:57 AM

224 Essential XML Quick Reference

VB

Sub TraverseTree (n As IXMLDOMNode)
 ' Process node ...

 ' Recursively process children
 Dim nl As IXMLDOMNodeList
 Set nl = n.childNodes
 Dim i As Integer
 For i = 0 To nl.length - 1
 TraverseTree nl.Item (i)
 Next i
End Sub

Sub TraverseTreeForEach (n As IXMLDOMNode)
 ' Process node ...

 ' Recursively process children
 Dim nl As IXMLDOMNodeList
 Set nl = n.childNodes
 Dim x As IXMLDOMNode

 If nl.length > 0 Then
 For Each x In nl
 TraverseTreeForEach x
 Next x
 End If
End Sub

Sub TraverseTreeNextNode (n As IXMLDOMNode)
 ' Process node ...

 ' Recursively process children
 Dim nl As IXMLDOMNodeList
 Set nl = n.childNodes
 Dim x As IXMLDOMNode
 Set x = nl.nextNode

 While Not x Is Nothing
 TraverseTreeNextNode x
 Set x = nl.nextNode
 Wend
End Sub

Skonnard.book Page 224 Monday, October 1, 2001 8:57 AM

DOM Level 2 225

D
O

M

7.2.15 Notation

The Notation interface models a notation declaration in a DTD.

Java definition
package org.w3c.dom;

public interface Notation extends Node {
 public String getPublicId();
 public String getSystemId();
}

VB definition
' IXMLDOMNotation
Property publicId As Varint ' read-only
Property systemId As Variant ' read-only

7.2.16 ProcessingInstruction

The ProcessingInstruction interface models processing instructions.

Java definition
package org.w3c.dom;

public interface ProcessingInstruction extends Node {
 public String getTarget();
 public String getData();
 public void setData(String data) throws DOMException;
}

VB definition
' IXMLDOMProcessingInstruction
Property target As String ' read-only
Property data As String

Member Description

getPublicId Returns the public identifier of the notation.

getSystemId Returns the system identifier of the notation.

Skonnard.book Page 225 Monday, October 1, 2001 8:57 AM

226 Essential XML Quick Reference

7.2.17 Text

The Text interface models text nodes.

Java definition
package org.w3c.dom;

public interface Text extends CharacterData {
 public Text splitText(int offset) throws DOMException;
}

VB definition
' IXMLDOMText
Function splitText (ByVal offset As Long) As IXMLDOMText

7.3 References
LeHors, Arnaud, et al., editors. Document Object Model (DOM) Level 2 Core
Specification.
Available at http://www.w3.org/TR/DOM-Level-2-Core/. 1999

Member Description

getTarget Returns the target of the processing instruction.

getData Returns the data of the processing instruction.

setData Sets the data of the processing instruction to the specified string.

Member Description

splitText Splits the text node into two adjacent text nodes.

Skonnard.book Page 226 Monday, October 1, 2001 8:57 AM

227

Sc
he

m
a

I

Chapter 8

XML Schema Datatypes

XML Schema provides a set of built-in datatypes. Some of these types are primi-
tives, described in the specification, whereas others are derived types described
in a schema. Both primitive and derived types are available to schema authors to
use as is or to derive new types from.

This chapter provides a reference for the parts of the schema language related to
defining simple types. For reasons of brevity, not all examples are full schemas. In
all examples, the

xs

 namespace prefix is mapped to the namespace name of the
XML Schema language,

http://www.w3.org/2001/XMLSchema,

 even if no
such namespace declaration appears in the example. Similarly, the

tns

 namespace
prefix is mapped to the same namespace name as the

targetNamespace

attribute of the

schema

 element even if that element is not shown.

8.1 Datatype grouping

The following group the built-in datatypes according to various criteria.

Numeric types

Type Description

decimal

An arbitrary-precision decimal number

integer

An arbitrary-length integer

negativeInteger

An arbitrary-length negative integer

nonNegativeInteger

An arbitrary-length integer with a value of zero or more

positiveInteger

An arbitrary-length positive integer

nonPositiveInteger

An arbitrary-length integer with a value of zero or less

long

A 64-bit signed integer

int

A 32-bit signed integer

short

A 16-bit signed integer

byte

An 8-bit signed integer

Skonnard.book Page 227 Monday, October 1, 2001 8:57 AM

228

Essential XML Quick Reference

Date and time types

XML 1.0 types

unsignedLong

A 64-bit unsigned integer

unsignedShort

A 16-bit unsigned integer

unsignedInt

A 32-bit unsigned integer

unsignedByte

An 8-bit unsigned number

float

A single-precision floating point number

double

A double-precision floating point number

Type Description

Type Description

date

A Gregorian calendar date

dateTime

An instant in time

duration

A duration in time

gDay

A Gregorian day-long monthly recurring period

gMonth

A Gregorian month

gMonthDay

A Gregorian day-long annually recurring period

gYear

A Gregorian calendar year

gYearMonth

A Gregorian month-long annually recurring period

time

An instant in time

Type Description

ID

An XML 1.0 ID

IDREF

An XML 1.0 IDREF

IDREFS

A list of XML 1.0 IDREF instances

ENTITY

An XML 1.0 ENTITY

ENTITIES

A list of XML 1.0 ENTITY instances

NMTOKEN

An XML 1.0 NMTOKEN

NMTOKENS

A list of XML 1.0 NMTOKEN instances

NOTATION

An XML 1.0 NOTATION

Skonnard.book Page 228 Monday, October 1, 2001 8:57 AM

XML Schema Datatypes

229

Sc
he

m
a

I

Name and string types

8.2 Datatypes

Datatypes in the XML Schema specification are defined in terms of a value space,
the set of values the type can hold, and a lexical space; in other words, how those
values are represented as characters in XML. Some datatypes have multiple lexical
representations whereas others only have one. Types that have multiple lexical repre-
sentations also have a canonical representation of the lexical space for use in sit-
uations in which canonicalization is important, such as digital signature scenarios.

In this section the built-in datatypes are listed in alphabetical order, each with a
description, a base type (if the type is a derived type), whether the type is atomic
or list based, notes about the value and lexical spaces of the type, canonical rep-
resentation, list of facets that are applicable to the type, built-in types that are
derived from the type, and examples.

Figure 8–1 shows the type hierarchy for the built-in types derived from

decimal

while Figure 8–2 shows the built-in types derived from

string

. Built-in types not
shown in either figure do not serve as the base type for any other built-in type and
are derived from

anySimpleType

—an abstract type that serves as the root of
the simple type hierarchy.

8.2.1

anyURI

The

anyURI

 datatype represents a URI reference according to RFC 2396 and
RFC 2732. (See References at the end of the chapter.)

Value space:

Any absolute or relative URI reference including those with a
fragment identifier.

Type Description

string

A general string type

normalizedString

A string with normalized whitespace

token

A string with normalized whitespace and with preceding
and trailing whitespace removed

QName

An XML Name

Name

An XML Name

NCName

An XML noncolonized name

Skonnard.book Page 229 Monday, October 1, 2001 8:57 AM

230

Essential XML Quick Reference

Figure 8–1 Type hierarchy for numerical types.

Figure 8–2 Type hierarchy for string types.

decimal

integer

byte

short

int

long nonNegativeInteger

unsignedInt

unsignedByte

unsignedShort

unsignedLong positiveInteger

nonPositiveInteger

negativeInteger

string

normalizedString

NMTOKENS

NMTOKEN

token

Name

IDREF

IDREFS

NCName

language

ENTITIES

ID ENTITY

Skonnard.book Page 230 Monday, October 1, 2001 8:57 AM

XML Schema Datatypes

231

Sc
he

m
a

I

Lexical space:

The set of strings matching the URI reference production of
RFC 2396, as amended by RFC 2732.

Applicable facets:

enumeration

,

length

,

maxLength

,

minLength

,

pattern

, and

whiteSpace

.

Examples

Absolute URI references

Various absolute URI references as element and attribute content

Relative URI references

Various relative URI references as element and attribute content

8.2.2

base64Binary

The

base64Binary

 datatype represents base64-encoded binary data.

Value space:

Any finite sequence of binary octets.

Lexical space:

Any finite sequence of binary octets encoded according to
the Base64 Content-Transfer-Encoding per RFC 2045.

Applicable facets:

enumeration

,

length

,

maxLength

,

minLength

,

pattern

 and

whiteSpace

.

Example

base64 encoded data

<uri>http://example.org/People/people.xml#xpointer(//

Person[@name='Martin'])</uri>
<uri>uuid:f6cbe76a-cf75-4ce2-af2b-214e64acca75</uri>

<uri>urn:com-develop-demos</uri>
<music src='/music/Bowie/fashion.mp3' />
<uri>People/people.xml#xpointer(//

Person[@name='Martin'])</uri>

<data>AQIDBQcJCw0REwAA</data>

Skonnard.book Page 231 Monday, October 1, 2001 8:57 AM

232

Essential XML Quick Reference

A prime number sequence for the numbers 1, 2, 3, 5, 7, 9, 11, 13, 17, and 19
encoded in base64.

8.2.3

boolean

The boolean datatype represents two-value logic.

Value space: true, false.

Lexical space: true, false, 1, 0 (where 1 and 0 correspond to true and false
respectively).

Canonical representation: true, false.

Applicable facets: pattern and whiteSpace.

Examples
An attribute

A boolean attribute set to true.

An element

A boolean element set to false.

8.2.4 byte

The byte datatype represents the range of integer values that can be stored in
an 8-bit signed field.

Base type: short.

Value space: +127 to –128.

Lexical space: A finite sequence of decimal digits with an optional leading
sign character (+ or –). The default sign is positive. Leading zeros may appear.

Canonical representation: Leading zeros are prohibited, as is the preced-
ing + sign.

<row inserted='true' />

<checked>0</checked>

Skonnard.book Page 232 Monday, October 1, 2001 8:57 AM

XML Schema Datatypes 233

Sc
he

m
a

I

Applicable facets: enumeration, fractionDigits, maxExclusive,
maxInclusive, minExclusive, minInclusive, pattern,
totalDigits, and whiteSpace.

Examples

byte values

Various byte values as element content.

Canonical byte values

Canonical representation of the byte values in the preceding example.

8.2.5 date

The date datatype represents a Gregorian calendar date.

Value space: Any date.

Lexical space: CCYY-MM-DD where CC, YY, MM, and DD correspond to the
century, year, month, and day respectively. Additional digits may appear to
the left of CC to indicate years greater than 9999. An optional following Z indi-
cates that the date is specified in Coordinated Universal Time. Alternatively, a
time zone may be indicated by providing a following + or – sign followed by
the offset from UTC as hh:mm where hh and mm correspond to hours and
minutes respectively. The mm and the preceding colon may be omitted if the
minutes are zero.

Applicable facets: enumeration, maxExclusive, maxInclusive,
minExclusive, minInclusive, pattern, and whiteSpace.

<num>+12</num>
<num>-127</num>
<num>0000056</num>
<num>0</num>

<num>12</num>
<num>-127</num>
<num>56</num>
<num>0</num>

Skonnard.book Page 233 Monday, October 1, 2001 8:57 AM

234 Essential XML Quick Reference

Examples
A date

February 13th 2001

A date with negative time zone modifier

February 13th 2001, Eastern Standard Time

A date with positive time zone modifier

February 13th 2001, Central European Time

8.2.6 dateTime

The dateTime datatype represents an instant in time as a combination of Grego-
rian date and time-of-day values.

Value space: Any instant in time as a combination of Gregorian date and
time-of-day values.

Lexical space: CCYY-MM-DDThh:mm:ss.sss where T is the date/time
separator and CC, YY, MM, DD, hh, mm, and ss.sss correspond to the cen-
tury, year, month, day, hour, minute, and second (with fractions) respectively.
Additional digits may appear to the left of CC to indicate years greater than
9999. A preceding – sign is allowed. An optional following Z indicates the
dateTime is specified in Coordinated Universal Time. Alternatively, a time
zone may be indicated by providing a following + or – sign followed by the off-
set from UTC as hh:mm where hh and mm correspond to hours and minutes
respectively. The mm and the preceding colon may be omitted if the minutes
are zero.

Canonical representation: The time zone must be omitted or must be UTC
(as indicated by the following Z).

<date>2001-02-13</date>

<date>2001-02-13-05:00</date>

<date>2001-02-13+01:00</date>

Skonnard.book Page 234 Monday, October 1, 2001 8:57 AM

XML Schema Datatypes 235

Sc
he

m
a

I

Applicable facets: enumeration, maxExclusive, maxInclusive,
minExclusive, minInclusive, pattern, and whiteSpace.

Examples
An instant in time

10:20pm on February 13th 2001

An instant in time with negative time zone modifier

5:20pm on February 13th 2001, Eastern Standard Time

An instant in time with positive time zone modifier

11:20pm on February 13th 2001, Central European Time

8.2.7 decimal

The decimal datatype represents arbitrary precision decimal numbers.

Value space: The infinite set of all decimal numbers.

Lexical space: A finite sequence of decimal digits with a period as the deci-
mal point indicator and an optional leading sign character (+ or –). The default
sign is positive. Leading and trailing zeros may appear. If the digits following
the decimal point are all zero, those digits and the decimal point may be omitted.

Canonical representation: The decimal point is required and there must be
at least one digit to the left and to the right of the decimal point. Otherwise,
preceding or trailing zeros are prohibited, as is the preceding + sign.

Applicable facets: enumeration, fractionDigits, maxExclusive,
maxInclusive, minExclusive, minInclusive, pattern,
totalDigits, and whiteSpace.

Derived type: integer.

<instant>2001-02-13T22:20:00</instant>

<instant>2001-02-13T17:20:00-05:00</instant>

<instant>2001-02-13T23:20:00+01:00</instant>

Skonnard.book Page 235 Monday, October 1, 2001 8:57 AM

236 Essential XML Quick Reference

Examples
decimal values

Various decimal values as element content

Canonical decimal values

Canonical representation of the decimal values in the previous example.

8.2.8 double

The double datatype represents IEEE double-precision 64-bit floating point num-
bers (IEEE 754-1985).

Value space: +253 x 2970 to –253 x 2970. Smallest representable value is ±1
x 2–1075. Other values in value space are, in value order, NaN, positive infinity,
positive zero, negative zero, negative infinity.

Lexical space: A decimal mantissa optionally followed by ‘E’ or ‘e’ followed
by an integer exponent. The lexical representation of the mantissa follows the
rules for the decimal datatype. The lexical representation of the exponent
follows the rules for the integer datatype. The other values in the value
space are represented as NaN, INF, 0, -0, -INF.

Canonical representation: In the mantissa the decimal point is required and
there must be exactly one digit to the left and at least one digit to the right of

<num>123456</num>
<num>1.23456</num>
<num>+12.3456</num>
<num>0000123456.0000</num>
<num>0012.345600</num>
<num>-123456</num>
<num>0</num>

<num>123456.0</num>
<num>1.23456</num>
<num>12.3456</num>
<num>123456.0</num>
<num>12.3456</num>
<num>-123456.0</num>
<num>0.0</num>

Skonnard.book Page 236 Monday, October 1, 2001 8:57 AM

XML Schema Datatypes 237

Sc
he

m
a

I

the decimal point. Otherwise, preceding and trailing zeros are prohibited in
the mantissa, as is the preceding + sign. The exponent, if any, must be indi-
cated by 'E'.

Applicable facets: enumeration, maxExclusive, maxInclusive,
minExclusive, minInclusive, pattern, and whiteSpace.

Examples
double values

Various double values as element content

Canonical double values

Canonical representation of the double values in the previous example

8.2.9 duration

The duration datatype represents a duration of time in Gregorian years,
months, days, hours, minutes, and seconds according to ISO 8601. (See Refer-
ence section at end of chapter.)

Value space: Any duration of time per ISO 8601.

Lexical space: PnYnMnDTnHnMnS according to ISO 8601. T is the date/
time separator and nY, nM, nD, nH, nM, and nS correspond to the number of

<num>123456</num>
<num>1.23456E5</num>
<num>+12.3456E72</num>
<num>0000123456.0000</num>
<num>0012.345600e-10</num>
<num>-123456E-5</num>
<num>0</num>

<num>1.23456E5</num>
<num>1.23456E5</num>
<num>1.23456E73</num>
<num>1.23456E5</num>
<num>1.23456E-9</num>
<num>-1.23456</num>
<num>0</num>

Skonnard.book Page 237 Monday, October 1, 2001 8:57 AM

238 Essential XML Quick Reference

years, months, days, hours, minutes, and seconds respectively. The lowest
order unit may use an arbitrary decimal for n whereas all higher order units
must use an arbitrary integer for n. Any unit that has zero as its value may be
omitted. If hour, minute, and seconds are omitted, the time separator, T,
must be omitted. The P and at least one unit must always be present.

Applicable facets: enumeration, maxExclusive, maxInclusive,
minExclusive, minInclusive, pattern, and whiteSpace.

Examples
A duration with days as the smallest unit

One year, two months, four days

A duration with hours as the largest unit

One hour, two minutes, four seconds

A duration with various units

One month, two days, five minutes

8.2.10 ENTITIES

The ENTITIES datatype represents the XML 1.0 ENTITIES type, a list of ENTITY
names separated by whitespace. This type should only be used for attribute val-
ues. A given ENTITY value in the list must match the name of an unparsed entity
declared elsewhere in the XML document.

Base type: ENTITY

Derived by: list

<duration>P1Y2M4D</duration>
<duration>P1Y2M4DT0H0M0S</duration>

<duration>P0Y0M0DT1H2M4S</duration>
<duration>PT1H2M4S</duration>

<duration>P1M2DT5M</duration>
<duration>P0Y1M2DT0H5M0S</duration>

Skonnard.book Page 238 Monday, October 1, 2001 8:57 AM

XML Schema Datatypes 239

Sc
he

m
a

I

Value space: The set of finite, nonzero-length sequences of ENTITY values
that have been used in an XML document.

Lexical space: The set of whitespace-separated lists of ENTITY values that
have been used in an XML document.

Applicable facets: enumeration, length, maxLength, minLength,
and whiteSpace.

Example
ENTITIES attributes

ENTITIES attributes on various elements

8.2.11 ENTITY

The ENTITY datatype represents an XML 1.0 ENTITY type. This type should only
be used for attribute values. A given ENTITY value must match the name of an
unparsed entity declared elsewhere in the XML document.

Base type: NCName.

Value space: All strings that match the NCName production of Namespaces
in XML and have been declared as an unparsed entity elsewhere in the XML
document.

Lexical space: All strings that match the NCName production of
namespaces in XML.

Applicable facets: enumeration, length, maxLength, minLength,
pattern, and whiteSpace.

Derived type: ENTITIES.

<reference sound='bgsound fgsound' />
<reference pic='mymugshot carpic flower' />
<reference data='mystuff yourstuff somestuff' />

Skonnard.book Page 239 Monday, October 1, 2001 8:57 AM

240 Essential XML Quick Reference

Example
ENTITY attributes

ENTITY attributes that refer to unparsed entities

8.2.12 float

The float datatype represents IEEE single-precision 32-bit floating point num-
bers (IEEE 754-1985).

Value space: +224 x 2104 to –224 x 2104. Smallest representable value is ±1
x 2–149. Other values in value space are in value order, NaN, positive infinity,
positive zero, negative zero, negative infinity.

Lexical space: A decimal mantissa optionally followed by 'E' or 'e' followed
by an integer exponent. The lexical representation of the mantissa follows the
rules for the decimal datatype. The lexical representation of the exponent
follows the rules for the integer datatype. The other values in the value
space are represented as NaN, INF, 0, -0, -INF.

Canonical representation: In the mantissa the decimal point is required and
there must be exactly one digit to the left and at least one digit to the right of
the decimal point. Otherwise, preceding and trailing zeros are prohibited in
the mantissa, as is the preceding + sign. The exponent, if any, must be indi-
cated by 'E'.

Applicable facets: enumeration, maxExclusive, maxInclusive,
minExclusive, minInclusive, pattern, and whiteSpace.

Examples
float values

<reference sound='bgsound' />
<reference pic='mymugshot' />
<reference data='mystuff' />

<num>123456</num>
<num>1.23456E5</num>
<num>+12.3456E4</num>
<num>0000123456.0000</num>
<num>0012.345600e-10</num>

Skonnard.book Page 240 Monday, October 1, 2001 8:57 AM

XML Schema Datatypes 241

Sc
he

m
a

I

Various float values as element content

Canonical float values

Canonical representation of the float values in the preceding example

8.2.13 gDay

The gDay datatype represents a Gregorian day that recurs, specifically a one-
day-long, monthly recurring period.

Value space: Any day-long, monthly recurring period.

Lexical space: –––DD where DD corresponds to the day. An optional follow-
ing Z indicates the gDay is specified in Coordinated Universal Time. Alterna-
tively a time zone may be indicated by providing a following + or – sign fol-
lowed by the offset from UTC as hh:mm where hh and mm correspond to
hours and minutes respectively. The mm and the preceding colon may be omit-
ted if the minutes are zero.

Applicable facets: enumeration, maxExclusive, maxInclusive,
minExclusive, minInclusive, pattern, and whiteSpace.

Example

A recurring Gregorian day

13th of every month

<num>-123456E-5</num>
<num>0</num>

<num>1.23456E5</num>
<num>1.23456E5</num>
<num>1.23456E5</num>
<num>1.23456E5</num>
<num>1.23456E-9</num>
<num>-1.23456</num>
<num>0</num>

<day>---13</day>

Skonnard.book Page 241 Monday, October 1, 2001 8:57 AM

242 Essential XML Quick Reference

8.2.14 gMonth

The gMonth datatype represents a Gregorian month that recurs every year.

Value space: Any month-long, annually recurring period.

Lexical space: ––MM–– where MM corresponds to the month. An optional
following Z indicates the gMonth is specified in Coordinated Universal Time.
Alternatively a time zone may be indicated by providing a following + or – sign
followed by the offset from UTC as hh:mm where hh and mm correspond to
hours and minutes respectively. The mm and the preceding colon may be omit-
ted if the minutes are zero.

Applicable facets: enumeration, maxExclusive, maxInclusive,
minExclusive, minInclusive, pattern, and whiteSpace.

Examples
A recurring Gregorian month

February

A recurring Gregorian month with a negative time zone modifier

February, Eastern Standard Time

A recurring Gregorian month with a positive time zone modifier

February, Central European Time

8.2.15 gMonthDay

The gMonthDay datatype represents a Gregorian date that recurs, specifically,
a day of the year.

Value space: Any day-long, annually recurring period.

<monthDay>--02--</monthDay>

<monthDay>--02---05:00</monthDay>

<monthDay>--02--+01:00</monthDay>

Skonnard.book Page 242 Monday, October 1, 2001 8:57 AM

XML Schema Datatypes 243

Sc
he

m
a

I

Lexical space: ––MM–DD where MM and DD correspond to the month and
day respectively. An optional following Z indicates that the gMonthDay is
specified in Coordinated Universal Time. Alternatively a time zone may be indi-
cated by providing a following + or – sign followed by the offset from UTC as
hh:mm where hh and mm correspond to hours and minutes respectively. The
mm and the preceding colon may be omitted if the minutes are zero.

Applicable facets: enumeration, maxExclusive, maxInclusive,
minExclusive, minInclusive, pattern, and whiteSpace.

Examples
A recurring Gregorian date

February 13th

A recurring Gregorian date with a negative time zone modifier

February 13th, Eastern Standard Time

A recurring Gregorian date with a positive time zone modifier

February 13th, Central European Time

8.2.16 gYear

The gYear datatype represents a Gregorian calendar year.

Value space: Any Gregorian calendar year.

Lexical space: CCYY where CC and YY correspond to the century and year
respectively. Additional digits may appear to the left of CC to indicate years
greater than 9999. A preceding – sign is allowed.

Applicable facets: enumeration, maxExclusive, maxInclusive,
minExclusive, minInclusive, pattern, and whiteSpace.

<monthDay>--02-13</monthDay>

<monthDay>--02-13-05:00</monthDay>

<monthDay>--02-13+01:00</monthDay>

Skonnard.book Page 243 Monday, October 1, 2001 8:57 AM

244 Essential XML Quick Reference

Example
A Gregorian year

The year 2001.

8.2.17 gYearMonth

The gYearMonth datatype represents a particular Gregorian month in a particu-
lar Gregorian year.

Value space: Gregorian calendar months; any month-long nonrecurring period.

Lexical space: CCYY–MM where CC, YY, and MM correspond to century,
year, and month respectively. An optional following Z indicates that the
gYearMonth is specified in Coordinated Universal Time. Alternatively, a time
zone may be indicated by providing a following + or – sign followed by the off-
set from UTC as hh:mm where hh and mm correspond to hours and minutes
respectively. The mm and the preceding colon may be omitted if the minutes
are zero.

Applicable facets: enumeration, maxExclusive, maxInclusive,
minExclusive, minInclusive, pattern, and whiteSpace.

Examples
A Gregorian calendar month

February 2001

A Gregorian calendar month with a negative time zone modifier

February 2001, Eastern Standard Time

A Gregorian calendar month with a positive time zone modifier

February 2001, Central European Time

<year>2001</year>

<month>2001-02</month>

<month>2001-02-05:00</month>

<month>2001-02+01:00</month>

Skonnard.book Page 244 Monday, October 1, 2001 8:57 AM

XML Schema Datatypes 245

Sc
he

m
a

I

8.2.18 hexBinary

The hexBinary datatype represents hex-encoded binary data.

Value space: Any finite sequence of binary octets.

Lexical space: Any finite sequence of binary octets where each octet is
encoded using two hexadecimal digits.

Applicable facets: enumeration, length, maxLength, minLength,
pattern, and whiteSpace.

Example
Hex-encoded data

A prime number sequence for the numbers 1, 2, 3, 5, 7, 9, 11, 13, 17, and 19.

8.2.19 ID

The ID datatype represents the XML 1.0 ID type. This type should only be used
for attribute values. A given ID value can only appear once in a given XML
document.

Base type: NCName.

Value space: All strings that match the NCName production of namespaces
in XML.

Lexical space: As value space.

Applicable facets: enumeration, length, maxLength, minLength,
pattern, and whiteSpace.

Example
ID attributes

ID attributes on various elements

<data>0102030507090B0D1113</data>

<name id='id1' />
<name id='apple' />
<name id='x1' />

Skonnard.book Page 245 Monday, October 1, 2001 8:57 AM

246 Essential XML Quick Reference

8.2.20 IDREF

The IDREF datatype represents an XML 1.0 IDREF type. This type should only be
used for attribute values. A given IDREF value must match an ID value elsewhere
in the XML document.

Base type: NCName

Value space: All strings that match the NCName production of namespaces
in XML.

Lexical space: As value space.

Applicable facets: enumeration, length, maxLength, minLength,
pattern, and whiteSpace.

Derived type: IDREFS.

Examples
IDREF attributes

IDREF attributes on various elements

8.2.21 IDREFS

The IDREFS datatype represents the XML 1.0 IDREFS type—a list of ID values
separated by whitespace. This type should only be used for attribute values. A
given token in an IDREFS value must match an ID value elsewhere in the XML
document.

Base type: IDREF.

Value space: Set of finite, nonzero-length sequences of ID values that have
been used in an XML document.

Lexical space: The set of whitespace-separated lists of ID values that have
been used in an XML document.

Applicable facets: enumeration, length, maxLength, minLength,
and whiteSpace.

<reference ref='id1' />
<reference ref='x1' />
<reference ref='apple' />

Skonnard.book Page 246 Monday, October 1, 2001 8:57 AM

XML Schema Datatypes 247

Sc
he

m
a

I

Example
IDREFS attributes

IDREFS attributes on various elements

8.2.22 int

The int datatype represents the range of integer values that can be stored in a
32-bit signed field.

Base type: long.

Value space: +2,147,483,647 to –2,147,483,648.

Lexical space: A finite sequence of decimal digits with an optional leading
sign character (+ or –). The default sign is positive. Leading zeros may
appear.

Canonical representation: Leading zeros are prohibited, as is the preced-
ing + sign.

Applicable facets: enumeration, fractionDigits, maxExclusive,
maxInclusive, minExclusive, minInclusive, pattern,
totalDigits, and whiteSpace.

Derived type: short.

Examples
int values

Various int values as element content

<references ref='id1 id3 id5 ' />
<references ref='x1 x2 x3' />
<references ref='apple orange pear' />

<num>1234567890</num>
<num>42</num>
<num>+12</num>
<num>-273</num>
<num>0000056</num>
<num>0</num>

Skonnard.book Page 247 Monday, October 1, 2001 8:57 AM

248 Essential XML Quick Reference

Canonical int values

Canonical representation of the int values in the preceding example

8.2.23 integer

The integer datatype represents arbitrary integer values.

Base type: decimal.

Value space: The infinite set of all integers.

Lexical space: A finite sequence of decimal digits with an optional leading
sign character (+ or –). The default sign is positive. Leading zeros may
appear.

Canonical representation: Leading zeros are prohibited, as is the preced-
ing + sign.

Applicable facets: enumeration, fractionDigits, maxExclusive,
maxInclusive, minExclusive, minInclusive, pattern,
totalDigits, and whiteSpace.

Derived types: long, nonNegativeInteger, and nonPositiveInteger.

Examples
integer values

Various integer values as element content

<num>1234567890</num>
<num>42</num>
<num>12</num>
<num>-273</num>
<num>56</num>
<num>0</num>

<num>123456</num>
<num>42</num>
<num>+12</num>
<num>-273</num>
<num>0000056</num>
<num>0</num>

Skonnard.book Page 248 Monday, October 1, 2001 8:57 AM

XML Schema Datatypes 249

Sc
he

m
a

I

Canonical integer values

Canonical representation of the integer values in the previous example

8.2.24 language

The language datatype represents natural language identifiers according to
RFC 1766.

Base type: token.

Value space: The set of all strings that are language identifiers according to
Section 2.12 of XML 1.0 Recommendation (second edition).

Lexical space: As value space.

Applicable facets: enumeration, length, maxLength, minLength,
pattern, and whiteSpace.

Example
language identifier attributes

Several language identifiers in attribute values

<num>123456</num>
<num>42</num>
<num>12</num>
<num>-273</num>
<num>56</num>
<num>0</num>

<text xml:lang='en'>a man a plan a canal panama</text>
<text xml:lang='en-GB'>Do me a favour!</text>
<text xml:lang='en-US'>Do me a favor</text>
<town xml:lang='de'>Unterschleißheim</town>
<language xml:lang='fr'>Français</language>
<language xml:lang='es'>Español</language>

Skonnard.book Page 249 Monday, October 1, 2001 8:57 AM

250 Essential XML Quick Reference

8.2.25 long

The long datatype represents the range of integer values that can be stored in a
64-bit signed field.

Base type: integer.

Value space: +9,223,372,036,854,775,807 to
–9,223,372,036,854,775,808.

Lexical space: A finite sequence of decimal digits with an optional leading
sign character (+ or –). The default sign is positive. Leading zeros may appear.

Canonical representation: Leading zeros are prohibited, as is the preced-
ing + sign.

Applicable facets: enumeration, fractionDigits, maxExclusive,
maxInclusive, minExclusive, minInclusive, pattern,
totalDigits, and whiteSpace.

Derived type: int.

Examples
long values

Various long values as element content

Canonical long values

Canonical representation of the long values in the previous example

<num>1000000000000</num>
<num>1234567890</num>
<num>42</num>
<num>+12</num>
<num>-273</num>
<num>0000056</num>
<num>0</num>

<num>1000000000000</num>
<num>1234567890</num>
<num>42</num>
<num>12</num>
<num>-273</num>
<num>56</num>
<num>0</num>

Skonnard.book Page 250 Monday, October 1, 2001 8:57 AM

XML Schema Datatypes 251

Sc
he

m
a

I

8.2.26 Name

The Name datatype represents XML Names, typically used for names of elements
and attributes.

Base type: token.

Value space: The set of all strings that match the Name production in XML
1.0 Recommendation (second edition).

Lexical space: As value space.

Applicable facets: enumeration, length, maxLength, minLength,
pattern, and whiteSpace.

Derived type: NCName.

Example
XML Names

Various XML Names as attribute values

8.2.27 NCName

The NCName datatype represents XML noncolonized names, typically used for
the local names of namespace-qualified elements and attributes; that is, the part
after the prefix and the colon.

Base type: Name.

Value space: The set of all strings that match NCName production in XML
1.0 Recommendation (second edition).

Lexical space: As value space.

Applicable facets: enumeration, length, maxLength, minLength,
pattern, and whiteSpace.

<name val='Person'/>
<name val='age'/>
<name val='height.units'/>
<name val='_uuidof'/>
<name val='www.develop.com'/>
<name val='Chumley-Warner'/>

Skonnard.book Page 251 Monday, October 1, 2001 8:57 AM

252 Essential XML Quick Reference

Derived types: ENTITY, ID, and IDREF.

Example
XML NCNames

Various XML NCNames as attribute values

8.2.28 negativeInteger

The negativeInteger datatype represents integer values of –1 or less.

Base type: nonPositiveInteger.

Value space: The infinite set of all integers with values of –1 or less.

Lexical space: A finite sequence of decimal digits with a preceding minus
sign character (-). Leading zeros may appear.

Canonical representation: Leading zeros are prohibited.

Applicable facets: enumeration, fractionDigits, maxExclusive,
maxInclusive, minExclusive, minInclusive, pattern,
totalDigits, and whiteSpace.

Derived type: negativeInteger.

Examples
negativeInteger values

Various negativeInteger values as element content

<name val='Person'/>
<name val='age'/>
<name val='height.units'/>
<name val='_uuidof'/>
<name val='www.develop.com'/>
<name val='Chumley-Warner'/>

<num>-42</num>
<num>-273</num>
<num>-0000056</num>

Skonnard.book Page 252 Monday, October 1, 2001 8:57 AM

XML Schema Datatypes 253

Sc
he

m
a

I

Canonical negativeInteger values

Canonical representation of the negativeInteger values in the preceding
example

8.2.29 NMTOKEN

The NMTOKEN datatype represents the XML 1.0 NMTOKEN type. This type should
only be used for attribute values.

Base type: token.

Value space: The set of strings that match NMTOKEN production in XML 1.0
Recommendation (second edition).

Lexical space: As value space.

Applicable facets: enumeration, length, maxLength, minLength,
pattern, and whiteSpace.

Derived type: NMTOKENS.

Example
NMTOKEN attributes

NMTOKEN as attribute values

8.2.30 NMTOKENS

The NMTOKENS datatype represents the XML 1.0 NMTOKENS type, a list of
NMTOKEN values separated by whitespace. This type should only be used for
attribute values.

<num>-42</num>
<num>-273</num>
<num>-56</num>

<stuff name='hayley' />
<stuff name='porsche' />
<stuff name='.com' />
<stuff name='Name_With_Underscores' />

Skonnard.book Page 253 Monday, October 1, 2001 8:57 AM

254 Essential XML Quick Reference

Base type: NMTOKEN.

Derived by: List.

Value space: The set of finite, nonzero-length sequences of NMTOKEN values

Lexical space: The set of whitespace-separated lists of NMTOKEN values.

Applicable facets: enumeration, length, maxLength, minLength,
and whiteSpace.

Example
NMTOKENS attributes

NMTOKENS as attribute values

8.2.31 nonNegativeInteger

The nonNegativeInteger datatype represents the integer values zero or
more.

Base type: integer.

Value space: The infinite set of all integers with values of zero or more.

Lexical space: A finite sequence of decimal digits with an optional preceding
plus sign character (+). Leading zeros may appear.

Canonical representation: Leading zeros are prohibited, as is the preced-
ing + sign.

Applicable facets: enumeration, fractionDigits, maxExclusive,
maxInclusive, minExclusive, minInclusive, pattern,
totalDigits, and whiteSpace.

Derived types: positiveInteger and unsignedLong.

<stuff name='hayley barbara sarah' />
<stuff name='porsche bmw audi volkswagen' />
<stuff name='.com .net .org .edu' />
<stuff name='Name_With_Underscores Another_Name' />

Skonnard.book Page 254 Monday, October 1, 2001 8:57 AM

XML Schema Datatypes 255

Sc
he

m
a

I

Examples
nonNegativeInteger values

Various nonNegativeInteger values as element content

Canonical nonNegativeInteger values

Canonical representation of the nonNegativeInteger values in the preceding
example

8.2.32 nonPositiveInteger

The nonPositiveInteger datatype represents the integer values zero or
lower.

Base type: integer.

Value space: The infinite set of all integers with values of zero or less.

Lexical space: A finite sequence of decimal digits with a preceding minus
sign character (-). If the digits are all zeros then the preceding sign character
may be omitted. Leading zeros may appear.

Canonical representation: Leading zeros are prohibited. The preceding
minus sign is mandatory in all cases.

Applicable facets: enumeration, fractionDigits, maxExclusive,
maxInclusive, minExclusive, minInclusive, pattern, total-
Digits, and whiteSpace.

Derived type: negativeInteger.

<num>42</num>
<num>+273</num>
<num>0000056</num>
<num>0</num>
<num>0000</num>

<num>42</num>
<num>273</num>
<num>56</num>
<num>0</num>
<num>0</num>

Skonnard.book Page 255 Monday, October 1, 2001 8:57 AM

256 Essential XML Quick Reference

Examples
nonPositiveInteger values

Various nonPositiveInteger values as element content

Canonical nonPositiveInteger values

Canonical representation of the nonPositiveInteger values in the preceding
example

8.2.33 normalizedString

The normalizedString datatype represents strings that have been normal-
ized with respect to whitespace; that is, all carriage return (#xD), line feed (#xA),
and tab (#x9) characters have been converted to space (#x20) characters.

Base type: string.

Value space: The set of strings that do not contain carriage return (#xD),
line feed (#xA), or tab (#x9) characters.

Lexical space: As value space.

Applicable facets: enumeration, length, maxLength, minLength,
pattern, and whiteSpace.

Derived type: token.

Examples
A normalized string with preceding and trailing whitespace

<num>-42</num>
<num>-273</num>
<num>-0000056</num>
<num>0</num>

<num>-42</num>
<num>-273</num>
<num>-56</num>
<num>-0</num>

<speech> Now is the winter of our discontent </speech>

Skonnard.book Page 256 Monday, October 1, 2001 8:57 AM

XML Schema Datatypes 257

Sc
he

m
a

I

A string where a carriage return and two tab characters between “winter” and “of”
have been converted into three spaces (see the corresponding example under
the string and token datatypes).

A normalized string

A string in which a tab character between each item in the list has been replaced
with a space. (See the corresponding example under the string datatype).

8.2.34 NOTATION

The NOTATION datatype represents the XML 1.0 NOTATION type. This type can-
not be used directly but must be derived from using the enumeration facet to list
all the names of NOTATIONs declared in the current scheme. Types derived from
NOTATION should only be used for attribute values.

Value space: The set of QNames.

Lexical space: The set of NOTATION names declared in the current schema.

Applicable facets: enumeration, length, maxExclusive, maxIn-
clusive, maxLength, minExclusive, minInclusive, minLength,
pattern, and whiteSpace.

Example
A type derived from NOTATION

<cities>London Paris Munich</cities>

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'
 targetNamespace='http://example.org/Pictures'
 xmlns:tns='http://example.org/Pictures' >

 <xs:notation name='jpg' public='image/jpeg'
system='display.exe' />

 <xs:notation name='png' public='image/png'
system='display.exe' />

 <xs:notation name='gif' public='image/gif'
system='display.exe' />

 <xs:simpleType name='myNotations'>
 <xs:restriction base='xs:NOTATION'>

Skonnard.book Page 257 Monday, October 1, 2001 8:57 AM

258 Essential XML Quick Reference

A schema containing NOTATION declarations and a simple type derived from the
NOTATION type

8.2.35 positiveInteger

The positiveInteger datatype represents integer values of 1 or more.

Base type: nonNegativeInteger.

Value space: The infinite set of all integers with values of 1 or more.

Lexical space: A finite sequence of decimal digits with an optional preceding
plus sign character (+). Leading zeros may appear.

Canonical representation: Leading zeros are prohibited, as is the preced-
ing + sign.

Applicable facets: enumeration, fractionDigits, maxExclusive,
maxInclusive, minExclusive, minInclusive, pattern,
totalDigits, and whiteSpace.

Examples
positiveInteger values

Various positiveInteger values as element content

 <xs:enumeration value='jpg' />
 <xs:enumeration value='png' />
 <xs:enumeration value='gif' />
 </xs:restriction>
 </xs:simpleType>

 <xs:complexType name='picture' >
 <xs:attribute name='width' type='xs:short' />
 <xs:attribute name='height' type='xs:short' />
 <xs:attribute name='format' type='xs:myNotations' />
 </xs:complexType>

</xs:schema>

<num>42</num>
<num>+273</num>
<num>0000056</num>

Skonnard.book Page 258 Monday, October 1, 2001 8:57 AM

XML Schema Datatypes 259

Sc
he

m
a

I

Canonical positiveInteger values

Canonical representation of the positiveInteger values in the preceding
example

8.2.36 QName

The QName datatype represents qualified names in XML according to Namespace
in XML.

Value space: The set of pairs of a namespace name and a local name where
a namespace name is a URI reference and a local name is an NCName.

Lexical space: The set of strings that match QName production in
Namespace in XML.

Applicable facets: enumeration, length, maxLength, minLength,
pattern, and whiteSpace.

Example
QName attributes

Example QNames as attribute values

8.2.37 short

The short datatype represents the range of integer values that can be stored in
a 16-bit signed field.

Base type: int.

Value space: +32,767 to –32,768.

Lexical space: A finite sequence of decimal digits with an optional leading
sign character (+ or –). The default sign is positive. Leading zeros may appear.

<num>42</num>
<num>273</num>
<num>56</num>

<elem attr='p:syntax' />
<elem attr='xsd:schema' />

Skonnard.book Page 259 Monday, October 1, 2001 8:57 AM

260 Essential XML Quick Reference

Canonical representation: Leading zeros are prohibited, as is the preced-
ing + sign.

Applicable facets: enumeration, fractionDigits, maxExclusive,
maxInclusive, minExclusive, minInclusive, pattern,
totalDigits, and whiteSpace.

Derived type: byte.

Examples
short values

Various short values as element content

Canonical short values

Canonical representation of the short values in the preceding example

8.2.38 string

The string datatype represents Unicode character strings (strictly finite
sequences of ISO-10646 character values that match the Char production speci-
fied in XML 1.0 Recommendation [second edition]).

Value space: All finite-length sequences of ISO-10646 characters as speci-
fied by the Char production in XML 1.0 Recommendation (second edition).

Lexical space: As value space.

Applicable facets: enumeration, length, maxLength, minLength and
whiteSpace.

Derived type: normalizedString.

<num>4242</num>
<num>+12</num>
<num>-273</num>
<num>0000056</num>
<num>0</num>

<num>4242</num>
<num>12</num>
<num>-273</num>
<num>56</num>
<num>0</num>

Skonnard.book Page 260 Monday, October 1, 2001 8:57 AM

XML Schema Datatypes 261

Sc
he

m
a

I

Examples
Elements containing strings

Element containing strings. The strings are made up of various Unicode characters.

Attributes containing strings

Attributes containing strings. The strings are made up of various Unicode characters.

A string with various whitespace characters

A string containing carriage return, line feed, and tab characters along with preceding
and trailing spaces (see the corresponding examples under the normalizedString
and token datatypes).

A string with tab characters

A string containing tab characters (see the corresponding example under the
normalizedString datatype).

8.2.39 time

The time datatype represents an instant in time that recurs each day.

Value space: Any zero-duration daily instant in time.

Lexical space: hh:mm:ss.sss where hh, mm, and ss.sss correspond
to the hour, minute, and second (with fractions) respectively. An optional following

<greeting>Hello World!</greeting>
<price>$9.95</price>
<price>£9.95</price>
<town>Unterschleißheim</town>
<language>Français</language>
<language>Español</language>

<root name='Martin' language='Français'
town='Unterschleißheim' />

<speech> Now is the winter
 of our discontent </speech>

<cities>London Paris Munich</cities>

Skonnard.book Page 261 Monday, October 1, 2001 8:57 AM

262 Essential XML Quick Reference

Z indicates the time is specified in Coordinated Universal Time. Alternatively a
time zone may be indicated by providing a following + or – sign followed by
the offset from UTC as hh:mm where hh and mm correspond to hours and
minutes respectively. The mm and the preceding colon may be omitted if the
minutes are zero.

Canonical representation: The time zone must be omitted or must be UTC
(as indicated by the following Z).

Applicable facets: enumeration, maxExclusive, maxInclusive,
minExclusive, minInclusive, pattern, and whiteSpace.

Examples
A time

10:20 PM

A time with a negative time zone modifier

5:20 PM, Eastern Standard Time

A time with a positive time zone modifier

11:20 PM, Central European Time

8.2.40 token

The token datatype represents “tokenized” strings. These are strings in which
all preceding or trailing space (#x20) characters have been removed, all carriage
return (#xD), line feed (#xA), and tab (#x9) characters have been converted to
space characters, and all sequences of two or more space characters have been
converted to a single space character.

Base type: normalizedString.

Value space: The set of strings that do not contain carriage return (#xD),
line feed (#xA) or tab (#x9) characters.

<time>22:20:00</time>

<time>17:20:00-05:00</time>

<time>23:20:00+01:00</time>

Skonnard.book Page 262 Monday, October 1, 2001 8:57 AM

XML Schema Datatypes 263

Sc
he

m
a

I

Lexical space: As value space.

Applicable facets: enumeration, length, maxLength, minLength,
pattern, and whiteSpace.

Derived types: language, Name, and NMTOKEN.

Example
A token value

A string in which preceding and trailing whitespaces have been removed, and mul-
tiple whitespace characters between “winter” and “of” have been converted to a
single space. (See the corresponding examples under the string and
normalizedString datatypes.)

8.2.41 unsignedByte

The unsignedByte datatype represents the range of integer values that can be
stored in an 8-bit unsigned field.

Base type: unsignedShort.

Value space: +255 to zero.

Lexical space: A finite sequence of decimal digits with an optional leading
plus sign character (+). Leading zeros may appear.

Canonical representation: Leading zeros are prohibited, as is the preced-
ing + sign.

Applicable facets: enumeration, fractionDigits, maxExclusive,
maxInclusive, minExclusive, minInclusive, pattern,
totalDigits, and whiteSpace.

Examples
unsignedByte values

Various unsignedByte values as element content

<speech>Now is the winter of our discontent</speech>

<num>255</num>
<num>+12</num>
<num>0000056</num>
<num>0</num>

Skonnard.book Page 263 Monday, October 1, 2001 8:57 AM

264 Essential XML Quick Reference

Canonical unsignedByte values

Canonical representation of the unsignedByte values in the preceding example

8.2.42 unsignedInt

The unsignedInt datatype represents the range of integer values that can be
stored in a 32-bit unsigned field.

Base type: unsignedLong.

Value space: +4,294,967,295 to zero.

Lexical space: A finite sequence of decimal digits with an optional leading
plus sign character (+). Leading zeros may appear.

Canonical representation: Leading zeros are prohibited, as is the preced-
ing + sign.

Applicable facets: enumeration, fractionDigits, maxExclusive,
maxInclusive, minExclusive, minInclusive, pattern,
totalDigits, and whiteSpace.

Derived type: unsignedShort.

Examples
unsignedInt values

Various unsignedInt values as element content

Canonical unsignedInt values

<num>255</num>
<num>12</num>
<num>56</num>
<num>0</num>

<num>1234567890</num>
<num>42</num>
<num>+12</num>
<num>0000056</num>
<num>0</num>

<num>1234567890</num>
<num>42</num>

Skonnard.book Page 264 Monday, October 1, 2001 8:57 AM

XML Schema Datatypes 265

Sc
he

m
a

I

Canonical representation of the unsignedInt values in the preceding example

8.2.43 unsignedLong

The unsignedLong datatype represents the range of integer values that can be
stored in a 64-bit unsigned field.

Base type: nonNegativeInteger.

Value space: 18,446,744,073,709,551,615 to zero.

Lexical space: A finite sequence of decimal digits with an optional leading
plus sign character (+). Leading zeros may appear.

Canonical representation: Leading zeros are prohibited, as is the preced-
ing + sign.

Applicable facets: enumeration, fractionDigits, maxExclusive,
maxInclusive, minExclusive, minInclusive, pattern,
totalDigits, and whiteSpace.

Derived type: unsignedInt.

Examples
long values

Various unsignedLong values as element content

Canonical long values

<num>12</num>
<num>56</num>
<num>0</num>

<num>1000000000000</num>
<num>1234567890</num>
<num>42</num>
<num>+12</num>
<num>0000056</num>
<num>0</num>

<num>1000000000000</num>
<num>1234567890</num>
<num>42</num>

Skonnard.book Page 265 Monday, October 1, 2001 8:57 AM

266 Essential XML Quick Reference

Canonical representation of the unsignedLong values in the preceding example

8.2.44 unsignedShort

The unsignedShort datatype represents the range of integer values that can
be stored in a 16-bit unsigned field.

Base type: unsignedInt.

Value space: +65,535 to zero.

Lexical space: A finite sequence of decimal digits with an optional leading
plus sign character (+). Leading zeros may appear.

Canonical representation: Leading zeros are prohibited, as is the preced-
ing + sign.

Applicable facets: enumeration, fractionDigits, maxExclusive,
maxInclusive, minExclusive, minInclusive, pattern,
totalDigits, and whiteSpace.

Derived type: unsignedByte.

Examples
unsignedShort values

Various unsignedShort values as element content

Canonical unsignedShort values

Canonical representation of the unsignedShort values in the preceding example

<num>12</num>
<num>56</num>
<num>0</num>

<num>4242</num>
<num>+12</num>
<num>0000056</num>
<num>0</num>

<num>4242</num>
<num>12</num>
<num>56</num>
<num>0</num>

Skonnard.book Page 266 Monday, October 1, 2001 8:57 AM

XML Schema Datatypes 267

Sc
he

m
a

I

8.3 Facets
Facets are used to restrict the set of values a datatype can contain, thus allowing
types with different value ranges to be derived from other types. The new value
range must be equal to or narrower than the value range of the base type. It is not
possible to expand the value space of a type using facets.

Multiple facets can be specified in a single type definition, in which case the value
space of the type is constrained by all the facets listed. Any values appearing in
the instance must conform to all the listed facets.

There are 12 facet elements, all of which share a common syntax. They each
have a mandatory value attribute that specifies the value for the facet. Although
this attribute is of type xs:string, the value must typically be a valid value of
the type to which the facet is applied. For example, if a minExclusive facet is
being used to constrain the decimal datatype then the value must be numerical.
Facets also have an optional fixed attribute of type boolean. If the value of
this attribute is true, then the facet cannot be respecified in a derived type.
Lastly, facets have an optional id attribute of type ID that is for application use.

In this section the facets are listed in alphabetical order, each with a description,
valid values for the value attribute, a list of datatypes to which the facet applies,
and examples.

8.3.1 enumeration

<xs:enumeration value='string' fixed='boolean' id='ID' />

Defines a fixed value that the type must match. Multiple enumeration facets
can be used to specify multiple legal values. Thus, multiple enumeration fac-
ets have a cumulative effect, allowing multiple possible values.

Values: Any value that matches the type of the base type

Applies to: anyURI, base64Binary, byte, date, dateTime, decimal,
double, duration, ENTITIES, ENTITY, float, gDay, gMonth,
gMonthDay, gYear, gYearMonth, hexBinary, ID, IDREF, IDREFS,
int, integer, language, long, Name, NCName, negativeInteger,
NMTOKEN, NMTOKENS, nonNegativeInteger, nonPositiveInteger,
normalizedString, NOTATION, positiveInteger, QName, short,

Skonnard.book Page 267 Monday, October 1, 2001 8:57 AM

268 Essential XML Quick Reference

string, time, token, unsignedByte, unsignedInt, unsignedLong,
and unsignedShort

Examples
An enumerated string type

An enumerated string type allowing three values: small, medium, and large

An enumerated integer type

An enumerated integer type allowing prime numbers less than 15

8.3.2 fractionDigits

<xs:fractionDigits value='positiveInteger' fixed='boolean'
 id='ID' />

Specifies the maximum number of decimal digits to the right of the decimal point
for types derived from number. If totalDigits and fractionDigits fac-
ets both appear, the value of the fractionDigits facet must be less than or
equal to the value of the totalDigits facet.

<xs:simpleType name='sizes'>
 <xs:restriction base='xs:string' >
 <xs:enumeration value='small' />
 <xs:enumeration value='medium' />
 <xs:enumeration value='large' />
 </xs:restriction>
</xs:simpleType>

<xs:simpleType name='smallprimes' >
 <xs:restriction base='xs:integer' >
 <xs:enumeration value='2' />
 <xs:enumeration value='3' />
 <xs:enumeration value='5' />
 <xs:enumeration value='7' />
 <xs:enumeration value='11' />
 <xs:enumeration value='13' />
 </xs:restriction>
</xs:simpleType>

Skonnard.book Page 268 Monday, October 1, 2001 8:57 AM

XML Schema Datatypes 269

Sc
he

m
a

I

Values: positiveInteger

Applies to: byte, decimal, int, integer, long, negativeInteger,
nonNegativeInteger, nonPositiveInteger, positiveInteger,
short, unsignedByte, unsignedInt, unsignedLong, and
unsignedShort

Example
A decimal type

A decimal type with at most five digits to the right of the decimal point

8.3.3 length

<xs:length value='nonNegativeInteger' fixed='boolean'
 id='ID' />

Defines the number of characters in a string-based type, the number of octets in
a binary-based type, or the number of items in a list-based type. The length
facet may not appear with either the minLength or maxLength facets.

Values: nonNegativeInteger

Applies to: anyURI, base64Binary, ENTITIES, ENTITY, hexBinary,
ID, IDREF, IDREFS, language, Name, NCName, NMTOKEN, NMTOKENS,
normalizedString, NOTATION, QName, string, and token

Examples
Fixed-length types

<xs:simpleType name='frac5' >
 <xs:restriction base='xs:decimal' >
 <xs:fractionDigits value='5' />
 </xs:restriction>
</xs:simpleType>

<xs:simpleType name='String10' >
 <xs:restriction base='xs:string' >
 <xs:length value='10' />
 </xs:restriction>
</xs:simpleType>

Skonnard.book Page 269 Monday, October 1, 2001 8:57 AM

270 Essential XML Quick Reference

Two types, both with a fixed number of characters

A fixed-length list type

A type based on a built-in list type with a fixed number of list items

A fixed-length list type

A list of ten doubles based on restriction of an anonymous list of doubles

8.3.4 maxExclusive

<xs:maxExclusive value='number' fixed='boolean' id='ID' />

Specifies an exclusive upper bound on the value space of the type. The value spec-
ified by the facet is not part of the value space of the new type. The maxExclusive
facet may not be combined with the maxInclusive facet. If the maxExclusive
facet appears with either the minInclusive or minExclusive facets, then
the value of the maxExclusive facet must be greater than or equal to the value
of the minInclusive or minExclusive facet.

<xs:simpleType name='uri50' >
 <xs:restriction base='xs:anyURI' >
 <xs:length value='50' />
 </xs:restriction>
</xs:simpleType>

<xs:simpleType name='idrefs10' >
 <xs:restriction base='xs:IDREFS' >
 <xs:length value='10' />
 </xs:restriction>
</xs:simpleType>

<xs:simpleType name='double10' >
 <xs:restriction>
 <xs:simpleType>
 <xs:list itemType='xs:double' />
 </xs:simpleType>
 <xs:length value='10' />
 </xs:restriction>
</xs:simpleType>

Skonnard.book Page 270 Monday, October 1, 2001 8:57 AM

XML Schema Datatypes 271

Sc
he

m
a

I

Values: A value in the value space of the base type

Applies to: byte, date, dateTime, decimal, double, duration,
float, gDay, gMonth, gMonthDay, gYear, gYearMonth, int,
integer, long, negativeInteger, nonNegativeInteger,
nonPositiveInteger, positiveInteger, short, time,
unsignedByte, unsignedInt, unsignedLong and unsignedShort

Examples
A numerical type with an exclusive upper bound

A numerical type with an exclusive upper bound of 1,000. Values up to but not
including 1,000 are in the value space

A gMonth type with an exclusive upper bound

A gMonth type with an upper bound of October, specified as an exclusive upper
bound for November; that is, November is not in the value space

8.3.5 maxInclusive

<xs:maxInclusive value='number' fixed='boolean' id='ID' />

Specifies an inclusive upper bound on the value space of the type. The value
specified by the facet is part of the value space of the new type. The
maxInclusive facet may not be combined with the maxExclusive facet. If
the maxInclusive facet appears with either the minInclusive or
minExclusive facets, then the value of the maxInclusive facet must be

<xs:simpleType name='notquiteagrand' >
 <xs:restriction base='xs:decimal' >
 <xs:maxExclusive value='1000' />
 </xs:restriction>
</xs:simpleType>

<xs:simpleType name='notNovemberOrDecember' >
 <xs:restriction base='xs:gMonth' >
 <xs:maxExclusive value='--11--' />
 </xs:restriction>
</xs:simpleType>

Skonnard.book Page 271 Monday, October 1, 2001 8:57 AM

272 Essential XML Quick Reference

greater than or equal to the value of the minInclusive or minExclusive
facet.

Values: A value in the value space of the base type

Applies to: byte, date, dateTime, decimal, double, duration,
float, gDay, gMonth, gMonthDay, gYear, gYearMonth, int,
integer, long, negativeInteger, nonNegativeInteger,
nonPositiveInteger, positiveInteger, short, time,
unsignedByte, unsignedInt, unsignedLong, and
unsignedShort

Examples
A numerical type with an inclusive upper bound

A numerical type with an inclusive upper bound of 999.99. Values of up to and
including 999.99 are in the value space.

A gMonth type with an inclusive upper bound

A gMonth type with an upper bound of ten (October)

8.3.6 maxLength

<xs:maxLength value='nonNegativeInteger' fixed='boolean'
 id='ID' />

Defines the maximum number of characters in a string-based type, the maximum
number of octets in a binary-based type, or the maximum number of items in a
list-based type. The maxLength facet may not be combined with the length

<xs:simpleType name='notquiteagrand' >
 <xs:restriction base='xs:decimal' >
 <xs:maxInclusive value='999.99' />
 </xs:restriction>
</xs:simpleType>

<xs:simpleType name='notNovemberOrDecember' >
 <xs:restriction base='xs:gMonth' >
 <xs:maxInclusive value='--10--' />
 </xs:restriction>
</xs:simpleType>

Skonnard.book Page 272 Monday, October 1, 2001 8:57 AM

XML Schema Datatypes 273

Sc
he

m
a

I

facet. If both maxLength and minLength facets appear, the value of
maxLength must be greater than or equal to the value of minLength.

Values: nonNegativeInteger

Applies to: anyURI, base64Binary, ENTITIES, ENTITY, hexBinary,
ID, IDREF, IDREFS, language, Name, NCName, NMTOKEN, NMTOKENS,
normalizedString, NOTATION, QName, string, and token

Examples
Length-restricted types

Two types, both with a maximum number of characters

A length-restricted list type

A type based on a built-in list type with a maximum number of list items

A length-restricted list type

<xs:simpleType name='String10orless' >
 <xs:restriction base='xs:string' >
 <xs:maxLength value='10' />
 </xs:restriction>
</xs:simpleType>
<xs:simpleType name='uri50orless' >
 <xs:restriction base='xs:anyURI' >
 <xs:maxLength value='50' />
 </xs:restriction>
</xs:simpleType>

<xs:simpleType name='idrefs10orless' >
 <xs:restriction base='xs:IDREFS' >
 <xs:maxLength value='10' />
 </xs:restriction>
</xs:simpleType>

<xs:simpleType name='double10orless' >
 <xs:restriction>
 <xs:simpleType>
 <xs:list itemType='xs:double' />
 </xs:simpleType>
 <xs:maxLength value='10' />

Skonnard.book Page 273 Monday, October 1, 2001 8:57 AM

274 Essential XML Quick Reference

A list of at most ten doubles based on restriction of an anonymous list of doubles

8.3.7 minExclusive

<xs:minExclusive value='number' fixed='boolean' id='ID' />

Specifies an exclusive lower bound on the value space of the type. The value
specified by the facet is not part of the value space of the new type. The
minExclusive facet may not be combined with the minInclusive facet. If
the minExclusive facet appears with either the maxInclusive or
maxExclusive facets, then the value of the minExclusive facet must be
less than or equal to the value of the maxInclusive or maxExclusive facet.

Values: A value in the value space of the base type

Applies to: byte, date, dateTime, decimal, double, duration, float,
gDay, gMonth, gMonthDay, gYear, gYearMonth, int, integer, long,
negativeInteger, nonNegativeInteger, nonPositiveInteger,
positiveInteger, short, time, unsignedByte, unsignedInt,
unsignedLong, and unsignedShort

Examples
A numerical type with an exclusive lower bound

A numerical type with an exclusive lower bound of 1,000. Values more than 1,000
are in the value space.

A gMonth type with an exclusive lower bound

 </xs:restriction>
</xs:simpleType>

<xs:simpleType name='morethanagrand' >
 <xs:restriction base='xs:decimal' >
 <xs:minExclusive value='1000.00' />
 </xs:restriction>
</xs:simpleType>

<xs:simpleType name='H2' >
 <xs:restriction base='xs:gMonth' >

Skonnard.book Page 274 Monday, October 1, 2001 8:57 AM

XML Schema Datatypes 275

Sc
he

m
a

I

A gMonth type representing months in the second half of the year

8.3.8 minInclusive

<xs:minInclusive value='number' fixed='boolean' id='ID' />

Specifies an inclusive lower bound on the value space of the type. The value spec-
ified by the facet is part of the value space of the new type. The minInclusive
facet may not be combined with the minExclusive facet. If the minInclusive
facet appears with either the maxInclusive or maxExclusive facets, then
the value of the minInclusive facet must be less than or equal to the value of
the maxInclusive or maxExclusive facet.

Values: A value in the value space of the base type

Applies to: byte, date, dateTime, decimal, double, duration, float,
gDay, gMonth, gMonthDay, gYear, gYearMonth, int, integer, long,
negativeInteger, nonNegativeInteger, nonPositiveInteger,
positiveInteger, short, time, unsignedByte, unsignedInt,
unsignedLong, and unsignedShort

Examples
A numerical type with an inclusive lower bound

A numerical type with an inclusive lower bound of 1,000. Values of 1,000 and
more are in the value space.

A gMonth type with an inclusive lower bound

 <xs:minExclusive value='--06--' />
 </xs:restriction>
</xs:simpleType>

<xs:simpleType name='atleastagrand' >
 <xs:restriction base='xs:decimal' >
 <xs:minInclusive value='1000.00' />
 </xs:restriction>
</xs:simpleType>

<xs:simpleType name='H2' >
 <xs:restriction base='xs:gMonth' >

Skonnard.book Page 275 Monday, October 1, 2001 8:57 AM

276 Essential XML Quick Reference

A gMonth type representing months in the second half of the year

8.3.9 minLength

<xs:minLength value='nonNegativeInteger' fixed='boolean'
 id='ID' />

Defines the minimum number of characters in a string-based type, the minimum
number of octets in a binary-based type, or the minimum number of items in a list-
based type. The minLength facet may not be combined with the maxLength
facet. If both minLength and maxLength facets appear, the value of min-
Length must be less than or equal to the value of maxLength.

Values: nonNegativeInteger

Applies to: anyURI, base64Binary, ENTITIES, ENTITY, hexBinary,
ID, IDREF, IDREFS, language, Name, NCName, NMTOKEN, NMTOKENS,
normalizedString, NOTATION, QName, string, and token

Examples
Length-restricted types

Two types, both with a minimum number of characters

 <xs:minInclusive value='--07--' />
 </xs:restriction>
</xs:simpleType>

<xs:simpleType name='String10ormore' >
 <xs:restriction base='xs:string' >
 <xs:minLength value='10' />
 </xs:restriction>
</xs:simpleType>

<xs:simpleType name='uri50ormore' >
 <xs:restriction base='xs:anyURI' >
 <xs:minLength value='50' />
 </xs:restriction>
</xs:simpleType>

Skonnard.book Page 276 Monday, October 1, 2001 8:57 AM

XML Schema Datatypes 277

Sc
he

m
a

I

A length-restricted list type

A type based on a built-in list type with a minimum number of list items

A length-restricted list type

A list of at least ten doubles based on restriction of an anonymous list of doubles

8.3.10 pattern

<xs:pattern value='string' fixed='boolean' id='ID' />

Defines a pattern that the type must match based on a regular expression.

Values: A regular expression

Applies to: anyURI, base64Binary, boolean, byte, date, dateTime,
decimal, double, duration, ENTITIES, ENTITY, float, gDay,
gMonth, gMonthDay, gYear, gYearMonth, hexBinary, ID, IDREF,
IDREFS, int, integer, language, long, Name, NCName,
negativeInteger, NMTOKEN, NMTOKENS, nonNegativeInteger,
nonPositiveInteger, normalizedString, NOTATION,
positiveInteger, QName, short, string, time, token,
unsignedByte, unsignedInt, unsignedLong, and
unsignedShort

<xs:simpleType name='idrefs10ormore' >
 <xs:restriction base='xs:IDREFS' >
 <xs:minLength value='10' />
 </xs:restriction>
</xs:simpleType>

<xs:simpleType name='double10ormore' >
 <xs:restriction>
 <xs:simpleType>
 <xs:list itemType='xs:double' />
 </xs:simpleType>
 <xs:minLength value='10' />
 </xs:restriction>
</xs:simpleType>

Skonnard.book Page 277 Monday, October 1, 2001 8:57 AM

278 Essential XML Quick Reference

Examples
A patterned string type

A string type that requires two uppercase characters between A and Z fol-
lowed by four decimal digits

A patterned numerical type

A numerical type that requires four decimal digits on both sides of the decimal
point

A patterned string type

A string type that requires any number of decimal digits followed by the degree
character

8.3.11 totalDigits

<xs:totalDigits value='positiveInteger' fixed='boolean'
 id='ID' />

Specifies the maximum number of decimal digits for types derived from number.
If totalDigits and fractionDigits facets both appear, the value of the

<xs:simpleType name='code' >
 <xs:restriction base='string' >
 <xs:pattern value='[A-Z]{2}\d{4}' />
 </xs:restriction>
</xs:simpleType>

<xs:simpleType name='fourbyfour' >
 <xs:restriction base='xs:decimal' >
 <xs:pattern value='\d{4}\.\d{4}' />
 </xs:restriction>
</xs:simpleType>

<xs:simpleType name='temperature' >
 <xs:restriction base='xs:string' >
 <xs:pattern value='\d+\u00B0' />
 </xs:restriction>
</xs:simpleType>

Skonnard.book Page 278 Monday, October 1, 2001 8:57 AM

XML Schema Datatypes 279

Sc
he

m
a

I

totalDigits facet must be greater than or equal to the value of the
fractionDigits> facet.

Values: positiveInteger

Applies to: byte, decimal, int, integer, long, negativeInteger,
nonNegativeInteger, nonPositiveInteger, positiveInteger,
short, unsignedByte, unsignedInt, unsignedLong, and
unsignedShort

Example
A numerical type

A numerical type with at most 10 digits

8.3.12 whiteSpace

<xs:whiteSpace value='preserve|replace|collapse'
 fixed='boolean' id='ID' />

Defines rules for whiteSpace normalization. A value of preserve specifies that
whitespace should be left unchanged. A value of replace specifies that all
occurrences of carriage return (#xD), line feed (#xA), and tab (#x9) characters
be converted to space (#x20) characters. A value of collapse specifies that all
preceding or trailing space (#x20) characters be removed; all carriage return
(#xD), line feed (#xA), and tab (#x9) characters be converted to space charac-
ters; and all sequences of two or more space characters be converted to a single
space character.

Although strictly speaking the whiteSpace facet can be applied to any datatype
for list types and restricted datatypes with a base that is other than string or
normalizedString the whiteSpace facet has a value of collapse and
may not be changed. For types derived from string any of the three possible
values may be used. For types derived from normalizedString, either
replace or collapse may be used. Because of these limitations on the use of

<xs:simpleType name='dig10' >
 <xs:restriction base='xs:decimal' >
 <xs:totalDigits value='10' />
 </xs:restriction>
</xs:simpleType>

Skonnard.book Page 279 Monday, October 1, 2001 8:57 AM

280 Essential XML Quick Reference

the facet it is not generally used in schema documents because any derived type
that required particular whitespace normalization would be derived from string,
normalizedString, or token as appropriate.

Values: preserve, replace, or collapse

Applies to: anyURI, base64Binary, byte, date, dateTime, decimal,
double, duration, ENTITIES, ENTITY, float, gDay, gMonth,
gMonthDay, gYear, gYearMonth, hexBinary, ID, IDREF, IDREFS,
int, integer, language, long, Name, NCName, negativeInteger,
NMTOKEN, NMTOKENS, nonNegativeInteger, nonPositiveInteger,
normalizedString, NOTATION, positiveInteger, QName, short,
string, time, token, unsignedByte, unsignedInt,
unsignedLong, and unsignedShort

8.4 Language constructs
The XML Schema language provides support for defining simple datatypes based
on existing simple datatypes. New types can be defined to be a restriction of a
type, a list of a type, or a union of two or more types.

In this section the language constructs for defining simple types—the simpleType,
restriction, list, and union elements—are listed each with syntax,
description, list of attributes, list of children, and, in the case of the latter three,
examples. The syntax shows the attributes the elements can have along with their
type. It also lists the names of the valid children of the element. More detail on
attributes and children can be found in the attribute and children tables respec-
tively. Each entry in the attributes table shows the name, type, default value, and
description of the attribute. The description includes details on possible values
and occurrence constraints with respect to other attributes or element children.
Qualified attributes from namespaces other than http://www.w3.org/
2001/XMLSchema may also appear on all four elements. Each entry in the chil-
dren table gives the name of valid children in the order they must appear. When
there is a choice between two or more elements, the set of such elements is
listed as a single entry. Whether an element or set of elements is optional or man-
datory and how many times the element or an element from a set can occur are
also detailed.

Skonnard.book Page 280 Monday, October 1, 2001 8:57 AM

XML Schema Datatypes 281

Sc
he

m
a

I

8.4.1 simpleType

<xs:simpleType id='ID' final='list of token' name='NCName' >
 <!-- annotation list restriction union -->
</xs:simpleType>

The simpleType element is used to define new types based on existing simple
types. Simple type definitions appearing as children of a schema element are
named types available for use elsewhere in the schema and in other schemas.
Simple types may also appear as the children of element or attribute declarations
or of other simple type definitions, in which case they are anonymous types local
to the context in which they appear.

Attributes

Name Type Default Description

id ID None An attribute for application use

final List of
token

None Specifies which derivation mechanisms
are prohibited for type definitions that ref-
erence this type as their base type. The
setting specified by this attribute over-
rides any schemawide default specified by
a finalDefault attribute on the
schema element.

Value Description

restriction Simple types derived by restriction may
not use this type as their base type.

list Simple types derived by list may not use
this type as their item type.

union Simple types derived by union may not
use this type as part of their member
types list.

#all All of the above

name NCName None The local part of the name of the type. No
two complex or simple types in the same
namespace may have the same local
name.

Skonnard.book Page 281 Monday, October 1, 2001 8:57 AM

282 Essential XML Quick Reference

Child elements

8.4.2 restriction

<xs:restriction id='ID' base='QName' >
 <!-- annotation enumeration fractionDigits length
 maxExclusive maxInclusive maxLength minExclusive
 minInclusive minLength pattern simpleType
 totalDigits whiteSpace -->
</xs:restriction>

The restriction element appears as a child of the simpleType element
and denotes that the simple type is a restriction of some other simple type; that
is, it has a narrower set of legal values than the base type. The simple type on
which the restricted type is based may be referred to using the base attribute or
provided as an inline anonymous type in a simpleType child element.

Attributes

Child elements

Name Occurrence

annotation Optional, once

list or restriction or union Mandatory, once

Name Type Default Description

id ID None An attribute for application use

base QName None Specifies the base type from which the new type
is derived. The base type must be a simple type
and may be in the same schema document as the
derived type, or it may be in a different schema
document, potentially in a different namespace.

Name Occurrence

annotation Optional, once

simpleType Optional, once

enumeration or fractionDigits or length or
maxExclusive or maxInclusive or maxLength or
minExclusive or minInclusive or minLength or pattern
or totalDigits or whiteSpace

Optional, unlimited

Skonnard.book Page 282 Monday, October 1, 2001 8:57 AM

XML Schema Datatypes 283

Sc
he

m
a

I

Example
Simple type restriction

A simple type, Celcius, derived by restriction from the built-in decimal type

8.4.3 list

<xs:list id='ID' itemType='QName'>
 <!-- annotation simpleType -->
</xs:list>

The list element appears as a child of the simpleType element and denotes
that the simple type is a whitespace-delimited list of some other, atomic simple
type. The simple type on which the list is based may be referred to using the
itemType attribute or may be provided as an inline anonymous type in a
simpleType child element.

Attributes

Child elements

<xs:simpleType name='Celcius' >
 <xs:restriction base='xs:decimal'>
 <xs:minExclusive value='-273' />
 </xs:restriction>
</xs:simpleType>

Name Type Default Description

id ID None An attribute for application use

itemType QName None The simple type on which the list is based.
The list element must either have this
attribute or a simpleType child element.

Name Occurrence

annotation Optional, once

simpleType Optional, once

Skonnard.book Page 283 Monday, October 1, 2001 8:57 AM

284 Essential XML Quick Reference

Examples
A list type

A list type based on a built-in simple type

A list type

A list type based on an anonymous inline type

8.4.4 union

<xs:union id='ID' memberTypes='List of QName' >
 <!-- annotation simpleType -->
</xs:union>

The union element appears as a child of the simpleType element and
denotes that the simple type is a union of two or more other simple types. The
simple types on which the union is based may be referred to using the
memberTypes attribute and/or may be provided as inline anonymous types in
simpleType child elements.

<xs:simpleType name='listOfNumbers' >
 <xs:list itemType='xs:decimal' />
</xs:simpleType>

<xs:simpleType name='listOfQuarks' >
 <xs:list>
 <xs:simpleType>
 <xs:restriction base='xs:string' >
 <xs:enumeration value='up' />
 <xs:enumeration value='down' />
 <xs:enumeration value='strange' />
 <xs:enumeration value='beauty' />
 <xs:enumeration value='truth' />
 </xs:restriction>
 </xs:simpleType>
 </xs:list>
</xs:simpleType>

Skonnard.book Page 284 Monday, October 1, 2001 8:57 AM

XML Schema Datatypes 285

Sc
he

m
a

I

Attributes

Child elements

Examples
A numerical union

A union based on the built-in types byte, short, int, and long

A numerical/string union

Name Type Default Description

id ID None An attribute for application use

memberTypes List of
QName

None A list of simple types on which the
union is based. The ordering of types
in the list is important because the val-
ues of elements or attributes of the
union type will be compared against
each of the types in the list in turn,
then against any simpleType children.
The first type that the value matches
against will be the type of the value.

Name Occurrence

annotation Optional, once

simpleType Optional, unlimited

<xs:simpleType name='numbers' >
 <xs:union memberTypes='xs:byte xs:short xs:int xs:long' />
</xs:simpleType>

<xs:simpleType name='sizes' >
 <xs:union>
 <xs:simpleType>
 <xs:restriction base='xs:integer' >
 <xs:minInclusive value='1' />
 <xs:maxInclusive value='10' />
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType>
 <xs:restriction base='xs:string' >
 <xs:enumeration value='small' />

Skonnard.book Page 285 Monday, October 1, 2001 8:57 AM

286 Essential XML Quick Reference

A union of the integers one through ten and the strings 'small', 'medium',
and 'large' created using two anonymous inline types

8.5 References
Biron, Paul V., Ashok, Malhotra, XML Schema Part 2: Datatypes.
http://www.w3.org./TR/xmlschema-2, 2001

Fallside, David C., XML Schema Part 0: Primer.
http://www.w3.org/TR/xmlschema-0, 2001

For more information on RFC 2396, please see
http://www.ietf.org/rfc/rfc2396.txt

For more information on RFC 2732, please see
http://www.ietf.org/rfc/rfc2732.txt

For more information on IEEE 754-1985, please see
http://standards.ieee.org/reading/ieee/stdpublic/description/busarch/754-
1985_desc.html

For more information on ISO 8601, please see
www.iso.ch/markete/8601.pdf

For more information on RFC 1766, please see
http://www.ietf.org/rfc/rfc1766.txt

 <xs:enumeration value='medium' />
 <xs:enumeration value='large' />
 </xs:restriction>
 </xs:simpleType>
 </xs:union>
</xs:simpleType>

Skonnard.book Page 286 Monday, October 1, 2001 8:57 AM

287

Sc
he

m
a

II

Chapter 9

XML Schema Structures

XML Schema provides a language for describing types in XML. The language is
itself expressed in XML and includes facilities for defining structured and textual
types, including types derived from other types. Structured types are used to
describe elements that have child elements or attributes associated with them.
Textual types are used for elements with text-only content and for attribute values.
The language provides facilities for binding types to elements and, in the case of
textual types, attributes.

This chapter provides a reference for all the parts of the Schema language
related to defining complex (structured) types, including extensions and restric-
tions, model groups, wildcards, element and attribute declarations, and annota-
tions. Parts of the language related to simple types can be found in Chapter 8.

9.1 Schema element groupings

Top-level elements

Elements appearing at the top level of a schema document; that is, as children of
a

schema

 element

Element name Description

annotation

Annotation containing human- or machine-readable information

attribute

A global attribute declaration

attributeGroup

A named attribute group definition

complexType

A complex type definition

element

A global element declaration

group

A named model group definition

import

Brings in components in a different namespace

include

Brings in components in the same namespace

notation

A notation declaration

Skonnard.book Page 287 Monday, October 1, 2001 8:57 AM

288

Essential XML Quick Reference

Particles

Elements that can have

minOccurs

 and

maxOccurs

 attributes. Such elements
always appear as part of a complex type definition or as part of a named model
group. Elements appearing at the top level of a schema never have

minOccurs

or

maxOccurs

 attributes.

Elements related to constructing a schema from multiple documents
and/or namespaces

Elements related to identity constraints

redefine

Redefines components in the same namespace

simpleType

A simple type definition

Element name Description

Element name Description

all

A model group that allows elements in any order

any

An element wildcard

choice

A model group that allows one of the particles contained
within it

element

An element declaration or reference

group

A reference to a named model group

sequence

A model group that allows particles in a fixed order

Element name Description

import

Brings in components in a different namespace.

include

Brings in components in the same namespace.

redefine

Redefines components in the same namespace.

Element name Description

field

A field in a uniqueness or key constraint

key

A key constraint

keyref

A reference to a key constraint

selector

A selector in a uniqueness or key constraint

unique

A uniqueness constraint

Skonnard.book Page 288 Monday, October 1, 2001 8:57 AM

XML Schema Structures

289

Sc
he

m
a

II

Elements related to attributes

Elements that have a name attribute

Named constructs can be referred to by QName from other schema constructs.

Elements that appear as part of complex type definitions

Element name Description

anyAttribute

An attribute wildcard

attribute

An attribute declaration or reference

attributeGroup

A named attribute group or reference to a named attribute
group

Element name Description

attribute

An attribute declaration

attributeGroup

A named attribute group definition

complexType

A complex type definition

element

An element declaration

group

A named model group definition

key

A key constraint

keyref

A reference to a key constraint

notation

A notation declaration

simpleType

A simple type defintion

unique

A uniqueness constraint

Element name Description

all

A model group that allows elements in any order

annotation

Annotation containing human- or machine-readable information

any

An element wildcard

anyAttribute

An attribute wildcard

appinfo

Machine-readable information

attribute

A local attribute declaration or reference

attributeGroup

A reference to a named attribute group

choice

A model group that allows one of the particles contained
within it

complexContent

A complex type derived from another complex type

documentation

Human-readable information

element

A local element declaration or reference

Skonnard.book Page 289 Monday, October 1, 2001 8:57 AM

290

Essential XML Quick Reference

9.2 Structures

In this section the XML Schema language constructs are listed in alphabetical
order with syntax, description, list of attributes, list of children, and examples.
The syntax shows the attributes the element can have along with their type. It also
lists the names of the valid children of the element. More detail on attributes and
children can be found in the attribute and children tables respectively. Each entry
in the attributes table shows the name, type, default value, and description of the
attribute. The description includes details on possible values and occurrence con-
straints with respect to other attributes or element children. The names of
required attributes appear in bold in both the syntax section and the attribute
table. Qualified attributes from namespaces other than

http://www.w3.org/
2001/XMLSchema

 may also appear on all schema elements. Each entry in the
children table gives the name of valid children in the order they must appear.
When there is a choice between two or more elements, the set of such elements
is listed as a single entry. Whether an element or set of elements is optional or
mandatory and how many times the element or an element from a set can occur
is also detailed. All elements in the Schema language for use in schema docu-
ments are in the

http://www.w3.org/2001/XMLSchema

 namespace.

For reasons of brevity, not all examples are full schemas. In all prose and exam-
ples, the

xs

 namespace prefix is mapped to the namespace name of the XML
Schema language

http://www.w3.org/2001/XMLSchema

, even if no such
namespace declaration appears in the example. Similarly, the

xsi

 namespace pre-
fix is mapped to the namespace name of the XML Schema Instance namespace

http://www.w3.org/2001/XMLSchema-instance

. The

tns

 namespace
prefix is mapped to the same namespace name as the

targetNamespace

attribute of the

schema

 element even if that element is not shown.

extension

A complex type that is an extension of another type

group

A reference to a named model group

restriction

A complex type that is a restriction of another type

sequence

A model group that allows particles in a fixed order

simpleContent

A complex type derived from a simple type

Element name Description

Skonnard.book Page 290 Monday, October 1, 2001 8:57 AM

XML Schema Structures

291

Sc
he

m
a

II

9.2.1

all

<xs:all id='ID' maxOccurs='nonNegativeInteger'
 minOccurs='nonNegativeInteger' >
 <!-- annotation element -->
</xs:all>

The

all

 element is used to denote a model group in which the elements defined
by the element declarations inside the

all

 element may appear in any order in an
instance document. Any child element declaration of the

all

 element can only
have the values zero or 1 for its

minOccurs

 attribute and a value of 1 for its
maxOccurs attribute. The all element can appear as part of a complex type
definition or as part of a named model group. However, it must always be the
outer model group of the content of a complex type. It cannot be nested inside a
sequence or choice element either directly or through use of group
references.

Attributes

Name Type Default Description

id ID None An attribute for application
use.

maxOccurs nonNegativeInteger 1 Specifies the maximum
number of times the all
group can appear. This
attribute may only have
the value 1. If the all ele-
ment is a child of a top-
level group element then
this attribute may not
occur.

minOccurs nonNegativeInteger 1 Specifies the minimum
number of times the all
group can appear. This
attribute may only have
zero or 1 as its value. If
the all element is a child
of a top-level group ele-
ment then this attribute
may not occur.

Skonnard.book Page 291 Monday, October 1, 2001 8:57 AM

292 Essential XML Quick Reference

Child elements

Examples
An all group in a complex type

Elements of type Bag must contain child makeup and purse elements and,
optionally, a hairbrush element. These children can appear in any order.

An all group in a named model group

Any complex type that references this model group would have the same content
model as described for the previous example.

Name Occurrence

annotation Optional, once

element Optional, unlimited

<xs:complexType name='Bag' >
 <xs:all>
 <xs:element name='hairbrush' minOccurs='0' />
 <xs:element name='makeup' />
 <xs:element name='purse' />
 </xs:all>
</xs:complexType>

<xs:group name='Bag' >
 <xs:all>
 <xs:element name='hairbrush' minOccurs='0'/>
 <xs:element name='makeup' />
 <xs:element name='purse' />
 </xs:all>
</xs:group>

Skonnard.book Page 292 Monday, October 1, 2001 8:57 AM

XML Schema Structures 293

Sc
he

m
a

II

9.2.2 annotation

<xs:annotation id='ID' >
 <!-- appinfo documentation -->
</xs:annotation>

The annotation element provides a place for schema documents to be anno-
tated with human-readable or machine-readable information through the docu-
mentation and appinfo elements respectively.

Attribute

Child element

Example
See the appinfo and documentation entries for examples.

9.2.3 any

<xs:any id='ID' maxOccurs='union'
 minOccurs='nonNegativeInteger'
 namespace='special' processContents='NMTOKEN' >
 <!-- annotation -->
</xs:any>

The any element is used to denote an element wildcard in a model group. In an
instance document the wildcard is replaced by any element that matches the
namespace constraint specified by the namespace attribute. This allows the con-
struction of open content models for complex types, allowing additional elements
to appear that were not specified as part of the type definition. In addition, this
element provides control of whether the additional elements should be validated
or not.

Name Type Default Description

id ID None An attribute for application use

Name Occurrence

appinfo or documentation Optional, unlimited

Skonnard.book Page 293 Monday, October 1, 2001 8:57 AM

294 Essential XML Quick Reference

Attributes

Name Type Default Description

id ID None An attribute for application use.

maxOccurs union 1 Specifies the maximum number
of times elements that satisfy
this wildcard may appear in the
instance document in this
context. The value of this
attribute may be any
nonNegativeInteger or the
string unbounded.

minOccurs nonNegative-
 Integer

1 Specifies the minimum number
of times elements that satisfy
this wildcard must appear in the
instance document in this con-
text.

namespace special ##any Specifies which namespace or
namespaces elements that sat-
isfy this wildcard in the instance
document must be drawn from.
It is also possible to specify that
replacement elements may be
unqualified (in no namespace).
The value of this attribute is
either the string ##any, the
string ##other, or a list of
namespace URIs, and/or the
string ##targetNamespace
and/or the string ##local.

Value Description

##any Elements from any namespace
including the target namespace
of the schema document and
unqualified elements (elements
in no namespace) may appear in
place of the wildcard.

##other Elements that are qualified but
are not in the target namespace
of the schema document may
appear in place of the wildcard.
Unqualified element may not
appear in place of the wildcard.

Skonnard.book Page 294 Monday, October 1, 2001 8:57 AM

XML Schema Structures 295

Sc
he

m
a

II

Child elements

Examples
A complex type containing a wildcard allowing any element

##target-
Namespace

Elements in the target
namespace of the schema docu-
ment may appear in place of the
wildcard.

##local Unqualified elements (elements
in no namespace) may appear in
place of the wildcard.

namespace URI Elements from the namespace
may appear in place of the wild-
card.

process-
 Contents

NMTOKEN strict Specifies whether a schema pro-
cessor should find schema infor-
mation and validate the ele-
ments appearing in place of the
wildcard.

Value Description

lax The schema processor should
validate the elements appearing
in place of the wildcard if
schema information for those
elements is available.

skip The schema processor should
not validate the elements
appearing in place of the wild-
card.

strict The schema processor must val-
idate the elements appearing in
place of the wildcard.

Name Type Default Description

Name Occurrence

annotation Optional, once

<xs:complexType name='OpenPerson' >
 <xs:sequence>
 <xs:element name='name' />
 <xs:any namespace='##any' />

Skonnard.book Page 295 Monday, October 1, 2001 8:57 AM

296 Essential XML Quick Reference

Elements of type OpenPerson must have a child name element followed by any
qualified or unqualified element. This element must be validated.

A complex type containing a wildcard allowing elements in the target namespace

Elements of type OpenPerson must have a child name element followed by an
element qualified by the target namespace. This element must be validated.

A complex type containing a wildcard allowing unqualified elements

Elements of type OpenPerson must have a child name element followed by an
unqualified element. This element must not be validated.

A complex type containing a wildcard allowing qualified elements from namespaces
other than the target namespace of the schema

 </xs:sequence>
</xs:complexType>

<xs:complexType name='OpenPerson' >
 <xs:sequence>
 <xs:element name='name' />
 <xs:any namespace='##targetNamespace' />
 </xs:sequence>
</xs:complexType>

<xs:complexType name='OpenPerson' >
 <xs:sequence>
 <xs:element name='name' />
 <xs:any namespace='##local'
 processContents='skip' />
 </xs:sequence>
</xs:complexType>

<xs:complexType name='OpenPerson' >
 <xs:sequence>
 <xs:element name='name' />
 <xs:any namespace='##other' />
 </xs:sequence>
</xs:complexType>

Skonnard.book Page 296 Monday, October 1, 2001 8:57 AM

XML Schema Structures 297

Sc
he

m
a

II

Elements of type OpenPerson must have a child name element followed by a
qualified element from a namespace other than the target namespace of the
schema. This element must be validated.

A complex type containing two wildcards

Elements of type AjarPerson must have a child element that is either in one of
the two namespaces listed or an unqualified element, followed by a name ele-
ment, followed by any number of qualified elements in namespaces other than the
target namespace. Elements appearing in place of either wildcard may be vali-
dated if schema information for them is available.

9.2.4 anyAttribute

<xs:anyAttribute id='ID' namespace='special'
 processContents='NMTOKEN' >
 <!-- annotation -->
</xs:anyAttribute>

The anyAttribute element is used to denote an attribute wildcard for a com-
plex type. In an instance document the wildcard is replaced by any number of
attributes that match the namespace constraint specified by the namespace
attribute. This allows additional attributes to appear that were not specified as
part of the type definition.

<xs:complexType name='AjarPerson' >
 <xs:sequence>
 <xs:any namespace='http://example.org/People/extras

 http://example.org/Notes ##local'
 processContents='lax' />
 <xs:element name='name' />
 <xs:any maxOccurs='unbounded' namespace='##other'

 processContents='lax' />
 </xs:sequence>
</xs:complexType>

Skonnard.book Page 297 Monday, October 1, 2001 8:57 AM

298 Essential XML Quick Reference

Attributes

Name Type Default Description

id ID None An attribute for application use.

namespace special ##any Specifies which namespace or
namespaces attributes that replace this
wildcard in the instance document must
be drawn from. It is also possible to
specify that replacement attributes may
be unqualified (in no namespace). This
value of this attribute is either the string
##any, the string ##other, or a list of
namespace URIs, and/or the string
##targetNamespace and/or the
string ##local.

Value Description

##any Attributes from any namespace including
the target namespace of the schema
document and unqualified elements (ele-
ments in no namespace) may appear.

##other Attributes that are qualified but are not in
the target namespace of the schema
document may appear.

##target-
Namespace

Attributes in the target namespace of the
schema document may appear.

##local Unqualified attributes may appear.

namespace URI Attributes from the namespace may
appear.

process-
 Contents

NMTOKEN strict Specifies whether a schema processor
should find schema information and vali-
date the attributes appearing in place of
the wildcard.

Value Description

lax The schema processor should validate
the attributes appearing in place of the
wildcard if schema information is available.

skip The schema processor should not vali-
date the attributes appearing in place of
the wildcard.

strict The schema processor must validate the
attributes appearing in place of the
wildcard.

Skonnard.book Page 298 Monday, October 1, 2001 8:57 AM

XML Schema Structures 299

Sc
he

m
a

II

Child element

Examples
An attribute wildcard allowing any attribute

Elements of type OpenPerson must have a name attribute. In addition,
attributes from any namespace or unqualified attributes may appear. Any addi-
tional attributes must be validated.

An attribute wildcard allowing attributes in the target namespace

Elements of type OpenPerson must have a name attribute. In addition, qualified
attributes from the target namespace of the schema may appear. Any additional
attributes must be validated.

An attribute wildcard allowing unqualified attributes

Elements of type OpenPerson must have a name attribute. In addition, unquali-
fied attributes may appear. Any additional attributes must be validated.

Name Occurrence

annotation Optional, once

<xs:complexType name='OpenPerson' >
 <xs:attribute name='name' use='required' />

 <xs:anyAttribute namespace='##any' />
</xs:complexType>

<xs:complexType name='OpenPerson' >
 <xs:attribute name='name' use='required' />
 <xs:anyAttribute namespace='##targetNamespace' />
</xs:complexType>

<xs:complexType name='OpenPerson' >
 <xs:attribute name='name' use='required' />
 <xs:anyAttribute namespace='##local' />
</xs:complexType>

Skonnard.book Page 299 Monday, October 1, 2001 8:57 AM

300 Essential XML Quick Reference

An attribute wildcard allowing attributes from namespaces other than the target
namespace

Elements of type OpenPerson must have a name attribute. In addition, qualified
attributes from namespaces other than the target namespace of the schema may
appear. Any additional attributes are not validated.

An attribute wildcard allowing attributes from multiple namespaces

Elements of type AjarPerson must have a name attribute. In addition, qualified
attributes from any of the namespaces listed may appear. Any additional
attributes may be validated if schema information for them is available.

9.2.5 appinfo

<xs:appinfo source='anyURI' >
 <!-- Any qualified or unqualified element -->
</xs:appinfo>

The appinfo element denotes a machine-readable annotation to a schema. The
machine-readable portion may be contained within the appinfo element as child
elements or may be referenced from the URI reference provided by the source
attribute, or both. The appinfo element provides a mechanism for application-
level processors to augment schema processing with other processing tasks or
information.

<xs:complexType name='OpenPerson' >
 <xs:attribute name='name' use='required' />
 <xs:anyAttribute namespace='##other'

processContents='skip' />
</xs:complexType>

<xs:complexType name='AjarPerson' >
 <xs:attribute name='name' use='required' />
 <xs:anyAttribute namespace='http://example.org/People/

extras http://example.org/Notes http://example.org/
Annotations'

 processContents='lax' />
</xs:complexType>

Skonnard.book Page 300 Monday, October 1, 2001 8:57 AM

XML Schema Structures 301

Sc
he

m
a

II

Attribute

Child element

Example
Use of appinfo

A complex type annotated with machine-readable information

9.2.6 attribute

<xs:attribute default='string' fixed='string'
 form='NMTOKEN' id='ID' name='NCName'
 ref='QName' type='QName' use='NMTOKEN' >
 <!-- annotation simpleType -->
</xs:attribute>

The attribute element either denotes an attribute declaration, defining a
named attribute and associating that attribute with a type, or it is a reference to
such an attribute declaration. Attribute declarations appearing as children of a
schema element are known as global attribute declarations and can be
referenced from elsewhere in the schema or from other schemas. Attribute

Name Type Default Description

source anyURI None An attribute for supplementing the information
provided in the appinfo element

Name Occurrence

Any qualified or unqualified element Optional, unlimited

<xs:complexType name='Person' >
 <xs:annotation>
 <xs:appinfo source='http://www.apps.com/myapp'

 xmlns:app='urn:apps-com:myapps' >
 <app:process name='personprocess.exe' />
 </xs:appinfo>
 </xs:annotation>
 <xs:sequence>
 <xs:element name='name' />
 </xs:sequence>
</xs:complexType>

Skonnard.book Page 301 Monday, October 1, 2001 8:57 AM

302 Essential XML Quick Reference

declarations appearing as part of a complex type definition, either directly or
through an attribute group reference, are known as local attribute declarations.
Such attribute declarations are local to the type in which they appear. Global
attribute declarations describe attributes that are always part of the target namespace
of the schema. Local attribute declarations describe attributes that may be part
of the target namespace of the schema, depending on the values of the form attribute
on the attribute declaration and the value of the attributeFormDefault
attribute on the schema element.

Attributes

Name Type Default Description

default string None Specifies a default value for an
attribute declaration with a use
attribute that has the value
optional. The default and
fixed attributes are mutually
exclusive.

fixed string None Specifies a fixed value for an attribute
declaration with a use attribute that
has the value required or
optional. The fixed and
default attributes are mutually
exclusive.

form NMTOKEN None Specifies whether a local attribute
declaration is qualified (in the target
namespace for the schema) or
unqualified (in no namespace). The
value of this attribute overrides any
schemawide default specified by an
attributeFormDefault attribute
on the schema element. This
attribute may not appear on a global
attribute declaration.

Value Description

qualified The local name of the attribute is
qualified by the target namespace of
the schema.

unqualified The attribute is unqualified.

id ID None An attribute for application use.

Skonnard.book Page 302 Monday, October 1, 2001 8:57 AM

XML Schema Structures 303

Sc
he

m
a

II

name NCName None Specifies the local name of the
attribute being declared. The name
and ref attributes are mutually
exclusive

ref QName None Specifies a reference to a global
attribute declaration. The referenced
attribute declaration may be in the
same schema document as the ref-
erencing attribute declaration or it
may be in a different schema docu-
ment, potentially in a different
namespace. This attribute may not
appear on a global attribute declara-
tion. The ref and name attributes
are mutually exclusive.

type QName None Specifies the type of the attribute
being declared. This attribute is a
reference to a simple type: either a
built-in simple type or one defined in
a schema. If the type and ref
attributes are absent and the
attribute declaration does not have a
simpleType element as one of its
children, then the attribute is of the
type anySimpleType in the
namespace http://www.w3.org/
2001/XMLSchema. If a simple-
Type child element is present, then
the attribute is of the type defined by
that anonymous simple type definition.

use NMTOKEN optional Specifies whether the attribute is
optional, required, or prohibited.

Value Description

optional The attribute may appear in the
instance document.

prohibited The attribute must not appear in the
instance document.

required The attribute must appear in the
instance document.

Name Type Default Description

Skonnard.book Page 303 Monday, October 1, 2001 8:57 AM

304 Essential XML Quick Reference

Child elements

Examples
A global attribute declaration and an attribute reference

A global attribute declaration describing an attribute with a local name of units,
a namespace name of urn:example-org:Utilities, and an attribute ref-
erence to that global attribute declaration. The attribute reference makes the
attribute required in the instance document. The type of the attribute is the built-in
string type. Elements of type HeightVector must have a height element.
They must also have a units attribute in the urn:examples-org:Utili-
ties namespace.

A local attribute declaration as part of a complex type

Name Occurrence

annotation Optional, once

simpleType Optional, once

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'
 targetNamespace='urn:example-org:Utilities'
 xmlns:tns='urn:example-org:Utilities' >

 <xs:attribute name='units' type='xs:string' />

 <xs:complexType name='HeightVector' >
 <xs:sequence>
 <xs:element name='height' type='xs:double' />
 </xs:sequence>
 <xs:attribute ref='tns:units' use='required' />
 </xs:complexType>

</xs:schema>

<xs:complexType name='Rowset'>
 <xs:sequence>
 <xs:element name='row' maxOccurs='unbounded' />
 </xs:sequence>
 <xs:attribute name='sortorder' type='xs:string'

use='optional' default='ascending' />
</xs:complexType>

Skonnard.book Page 304 Monday, October 1, 2001 8:57 AM

XML Schema Structures 305

Sc
he

m
a

II

An attribute declaration describing an attribute with a local name of sortorder,
which is based on the built-in string type, is optional in the instance and has a
default value. Elements of type Rowset must have one or more row elements.
They may also have a sortorder attribute. If such an attribute is not present,
then one will be added with a value of ascending.

An attribute reference with a fixed value

An attribute reference to the lang attribute in the namespace http://
www.w3.org/XML/1998/namespace from within a complex type in the
namespace urn:example-org:People. The attribute reference specifies a
fixed value for the lang attribute in this context. Elements of type PersonName
must have a givenName element followed by a familyName element. They
may also have a lang attribute in the http://www.w3.org/XML/1998/
namespace namespace. If such an attribute appears, it must have the value
EN-UK. If such an attribute does not appear, then one will be added with a value
of EN-UK.

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'
 targetNamespace='urn:example-org:People'
 xmlns:tns='urn:example-org:People' >

 <xs:import namespace='http://www.w3.org/XML/1998/
 namespace' />

 <xs:complexType name='PersonName'>
 <xs:sequence>
 <xs:element name='givenName' />
 <xs:element name='familyName' />
 </xs:sequence>
 <xs:attribute ref='xml:lang' use='optional'

 fixed='EN-UK' />
 </xs:complexType>

</xs:schema>

Skonnard.book Page 305 Monday, October 1, 2001 8:57 AM

306 Essential XML Quick Reference

9.2.7 attributeGroup

<xs:attributeGroup id='ID' name='NCName' ref='QName' >
 <!-- annotation anyAttribute attribute
 attributeGroup -->
</xs:attributeGroup>

The attributeGroup element either denotes an attribute group definition,
defining a named group of attribute declarations, other named attribute groups,
and attribute wildcards, or it is a reference to such a group. The former appear as
children of a schema element whereas the latter appear inside complex type def-
initions and other attribute group definitions. Attribute groups provide a convenient
mechanism for using the same set of attributes in multiple complex type definitions.

Attributes

Child elements

Name Type Default Description

id ID None An attribute for application use.

name NCName None Specifies the local name of the attribute group
being defined. This attribute can only appear if
the attributeGroup element is a child of a
schema element.

ref QName None Specifies a reference to a named attribute
group. The referenced attribute group may be in
the same schema document as the referencing
element declaration or it may be in a different
schema document, potentially in a different
namespace. This attribute can only appear if the
attributeGroup element is not a child of a
schema element.

Name Occurrence

annotation Optional, once

attribute or attributeGroup Optional, unlimited

anyAttribute Optional, once

Skonnard.book Page 306 Monday, October 1, 2001 8:57 AM

XML Schema Structures 307

Sc
he

m
a

II

Example
A named attribute group and reference to that group from within a complex type

Elements of type Picture must have a width attribute and a height
attribute.

9.2.8 choice

<xs:choice id='ID' maxOccurs='union'
 minOccurs='nonNegativeInteger' >
 <!-- annotation any choice element
 group sequence -->
</xs:choice>

The choice element denotes a model group in which one of the particles con-
tained within the choice may appear in the instance document. The choice ele-
ment can appear as part of a complex type definition or as part of a named model
group. In both cases it may appear as the first child of the construct or as a more
deeply nested descendant.

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'
 targetNamespace='urn:example-org:Pictures'
 xmlns:tns='urn:example-org:Pictures' >

 <xs:attributeGroup name='WidthAndHeight'>
 <xs:attribute name='width' use='required' />
 <xs:attribute name='height' use='required' />
 </xs:attributeGroup>

 <xs:complexType name='Picture' >
 <xs:attributeGroup ref='tns:WidthAndHeight' />
 </xs:complexType>

</xs:schema>

Skonnard.book Page 307 Monday, October 1, 2001 8:57 AM

308 Essential XML Quick Reference

Attributes

Child elements

Examples
A choice group as part of a complex type

Name Type Default Description

id ID An attribute for applica-
tion use.

maxOccurs Union 1 Specifies the maximum
number of times a parti-
cle from the choice may
appear in the context the
choice appears in. The
value of this attribute
may be any nonNega-
tiveInteger or the
string unbounded. If the
choice element is a
child of a top-level
group element then this
attribute may not occur.

minOccurs nonNegativeInteger 1 Specifies the minimum
number of times a parti-
cle from the choice must
appear in the context the
choice appears in. If the
choice element is a
child of a top-level
group element then this
attribute may not occur.

Name Occurrence

annotation Optional, once

element or group or choice or sequence or any Optional, unlimited

<xs:complexType name='MaleOrFemalePerson' >
 <xs:sequence>
 <xs:element name='name' type='xs:string' />
 <xs:choice>
 <xs:element name='boybits' />
 <xs:element name='girlbits' />

Skonnard.book Page 308 Monday, October 1, 2001 8:57 AM

XML Schema Structures 309

Sc
he

m
a

II

Elements of type MaleOrFemalePerson must have a name element followed
by either a boybits element or a girlbits element.

9.2.9 complexContent

<xs:complexContent id='ID' mixed='boolean' >
 <!-- annotation extension restriction -->
</xs:complexContent>

The complexContent element appears as a child of the complexType ele-
ment and indicates that the complex type is being explicitly derived from some
other complex type. The complexContent element must have either an
extension or a restriction element child according to whether the base
type is being extended or restricted.

Attributes

Child elements

Example
See the extension and restriction entries for examples.

 </xs:choice>
 </xs:sequence>
</xs:complexType>

Name Type Default Description

id ID An attribute for application use.

mixed boolean false If set to true, this attribute specifies that the
content model of the complex type may con-
tain text and element children. By default, the
content model of a complex type derived from
another complex type may not contain text
children; that is, it may only contain elements.
This is also the case for complex types with
no explicit base.

Name Occurrence

annotation Optional, once

extension or restriction Mandatory, once

Skonnard.book Page 309 Monday, October 1, 2001 8:57 AM

310 Essential XML Quick Reference

9.2.10 complexType

<xs:complexType abstract='boolean' block='token'
 final='token' id='ID' mixed='boolean'
 name='NCName' >
 <!-- all annotation anyAttribute attribute
 attributeGroup choice complexContent
 group sequence simpleContent -->
</xs:complexType>

The complexType element is used to define structured types. Complex types
may have element content with or without attributes, text and element (mixed)
content with or without attributes, or text content with attributes. Complex type
definitions appearing as children of a schema element are named types and can
be referenced from elsewhere in the schema and from other schemas. Complex
types appearing as the children of element declarations define anonymous types
local to the element declaration in which they appear. The complexType ele-
ment has two possible content models as shown by the following two child ele-
ment tables. The first set of children applies to complex types that have no
explicit base type whereas the second applies to complex types derived from an
explicit type. Complex types with no explicit base type are always restrictions of
the anyType in the http://www.w3.org/2001/XMLSchema namespace.

Attributes

Name Type Default Description

abstract boolean false Specifies whether the type is
abstract. An abstract type may not
appear in an instance document;
rather, a derived type must appear
in its place either through use of
xsi:type or substitution groups.

block token None Specifies what substitution mecha-
nisms are prohibited for this type.
The value of this attribute overrides
any schemawide default specified
by a blockDefault attribute on
the schema element.

Value Description

extension Types derived by extension may not
appear in place of this type.

Skonnard.book Page 310 Monday, October 1, 2001 8:57 AM

XML Schema Structures 311

Sc
he

m
a

II

restriction Types derived by restriction may
not appear in place of this type.

#all Both of the above

final token None Specifies which derivation mecha-
nisms are prohibited for type
definitions that reference this
type as their base type. The value
of this attribute overrides any
schemawide default specified by a
finalDefault attribute on the
schema element.

Value Description

extension This type cannot be extended.
Types derived by extension may not
use this type as their base type.

restriction This type cannot be restricted.
Types derived by restriction may
not use this type as their base type.

#all Both of the above

id ID None An attribute for application use.

mixed boolean false If set to true, this attribute speci-
fies that the content model of the
complex type may contain text and
element children. If set to false,
the content model of a complex
type derived from another complex
type may not contain text children;
that is, it may only contain ele-
ments. This is also the case for
complex types with no explicit base.

name NCName None Specifies the local part of the name
of the type. No two complex or
simple types in the same schema
may have the same local name.
This attribute is required if the
complexType element is a child
of a schema element. If the
complexType element is a child of
an element element, then this
attribute must not appear.

Name Type Default Description

Skonnard.book Page 311 Monday, October 1, 2001 8:57 AM

312 Essential XML Quick Reference

Child elements

Examples
A complex type definition with no explicit base type containing only element
declarations

Elements of type Person must have child name and height elements, in that
order.

An anonymous complex type definition appearing inside a global element declaration

The Person element must have child name and height elements, in that order.

Name Occurrence

annotation Optional, once

group or all or choice or sequence Optional, once

attribute or attributeGroup Optional, unlimited

anyAttribute Optional, once

Name Occurrence

annotation Optional, once

simpleContent or complexContent Mandatory, once

<xs:complexType name='Person' >
 <xs:sequence>
 <xs:element name='name' />
 <xs:element name='height' />
 </xs:sequence>
</xs:complexType>

<xs:element name='Person' >
 <xs:complexType>
 <xs:sequence>
 <xs:element name='name' />
 <xs:element name='height' />
 </xs:sequence>
 </xs:complexType>
</xs:element>

Skonnard.book Page 312 Monday, October 1, 2001 8:57 AM

XML Schema Structures 313

Sc
he

m
a

II

A complex type that cannot be derived either by restriction or extension

The Person type cannot be used as the base type for any other type.

For examples of complex types derived from simple types, see the simpleCon-
tent entry. For examples of types derived by extension or restriction, see the
extension and restriction entries.

9.2.11 documentation

<xs:documentation source='anyURI' xml:lang='language' >
 <!-- Any qualified or unqualified element -->
</xs:documentation>

The documentation element contains a human-readable annotation to a
schema. The human-readable portion may be contained within the documenta-
tion element as child elements or may be referenced from the URI reference
provided by the source attribute, or both.

Attributes

Child element

<xs:complexType name='Person' final='#all' >
 <xs:sequence>
 <xs:element name='name' type='xs:string' />
 <xs:element name='height' type='xs:double' />
 </xs:sequence>
</xs:complexType>

Name Type Default Description

source anyURI None Specifies an attribute for supplementing
the information provided in the
documentation element.

xml:lang language None The lang attribute from the http://
www.w3.org/XML/1998/namespace
namespace specifies the human-readable
language in which the information in the
documentation element is written.

Name Occurrence

Any qualified or unqualified element Optional, unlimited

Skonnard.book Page 313 Monday, October 1, 2001 8:57 AM

314 Essential XML Quick Reference

Example
Use of documentation

A schema annotated with human readable information

9.2.12 element

<xs:element abstract='boolean' block='token'
 default='string' final='token'
 fixed='string' form='NMTOKEN' id='ID'
 maxOccurs='union'
 minOccurs='nonNegativeInteger' name='NCName'
 nillable='boolean' ref='QName'
 substitutionGroup='QName' type='QName' >
 <!-- annotation complexType key keyref
 simpleType unique -->
</xs:element>

The element element either denotes an element declaration, defining a named
element and associating that element with a type, or it is a reference to such a
declaration. Element declarations appearing as children of a schema element
are known as global element declarations and can be referenced from else-
where in the schema or from other schemas. Element declarations appearing as
part of complex type definitions, either directly or through a group reference, are
known as local element declarations. Such element declarations are local to
the type in which they appear. Global element declarations describe elements that

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'
 targetNamespace='urn:example-org:People'
 xmlns:tns='urn:example-org:People' >

 <xs:annotation>
 <xs:documentation xml:lang='UK-ENG' >

 This schema is an example in a book. The colour of the
book cover is green.

 </xs:documentation>
 </xs:annotation>

</xs:schema>

Skonnard.book Page 314 Monday, October 1, 2001 8:57 AM

XML Schema Structures 315

Sc
he

m
a

II

are always part of the target namespace of the schema. Local element declara-
tions describe elements that may be part of the target namespace of the schema
depending on the values of the form attribute on the element declaration and the
value of the elementFormDefault attribute on the schema element.

Attributes

Name Type Default Description

abstract boolean false Specifies whether the element
being declared is abstract. An
abstract element may not appear in
an instance document; rather, an
element in this element’s substitu-
tion group must appear instead.

block token Specifies what substitution mecha-
nisms are prohibited for the element
being declared. The value of this
attribute can be a list of one or more
of extension, restriction,
and substitution or #all. The
value of this attribute overrides any
schemawide default specified by a
blockDefault attribute on the
schema element.

Value Description

extension Types derived by extension may
not appear in place of this element
either through use of xsi:type or
substitution groups.

restriction Types derived by restriction may
not appear in place of this element
either through use of xsi:type or
substitution groups.

substitution Elements in the substitution group
for this element may not appear in
place of this element.

#all All of the above

default string None Specifies a default value for an ele-
ment whose type is a simple type
or a complex type derived from a
simple type. The default and
fixed attributes are mutually
exclusive.

Skonnard.book Page 315 Monday, October 1, 2001 8:57 AM

316 Essential XML Quick Reference

final token None Specifies which derivation mecha-
nisms are prohibited for element
declarations that are part of a sub-
stitution group with this element
declaration as the head. The value
of this attribute overrides any sche-
mawide default specified by a
finalDefault attribute on the
schema element.

Value Description

extension Elements in the substitution group
of this element may not be of a
type derived by extension, either
directly or indirectly, from the type
of this element.

restriction Elements in the substitution group
of this element may not be of a
type derived by restriction, either
directly or indirectly, from the type
of this element.

#all Both of the above

fixed string None Specifies a fixed value for an element
with a type that is a simple type or
a complex type derived from a sim-
ple type. The fixed and default
attributes are mutually exclusive.

form NMTOKEN None Specifies whether a local element
declaration is qualified (in the target
Namespace for the schema) or
unqualified (in no namespace). The
value of this attribute overrides any
schemawide default specified by an
elementFormDefault attribute
on the schema element. This
attribute may not appear on a glo-
bal element declaration.

Value Description

qualified The local name of the element is
qualified by the target namespace
of the schema.

unqualified The element is unqualified.

Name Type Default Description

Skonnard.book Page 316 Monday, October 1, 2001 8:57 AM

XML Schema Structures 317

Sc
he

m
a

II

id ID None An attribute for application use.

maxOccurs Union 1 Specifies the maximum number of
times this element may appear in
the context in which the declaration
appears. The value of this attribute
may be any nonNegativeInteger
or the string unbounded. This
attribute may not appear on a glo-
bal element declaration.

minOccurs nonNegative-
Integer

1 Specifies the minimum number of
times this element must appear in
the context in which the declaration
appears. This attribute may not
appear on a global element
declaration.

name NCName None Specifies the local part of the name
of the element being declared. The
name and ref attributes are mutu-
ally exclusive.

nillable boolean false If this attribute is set to true, then
the element may have no content,
provided it is annotated in the
instance document with an xsi:nil
attribute with a value of true.

ref QName None Specifies a reference to a global
element declaration. The refer-
enced element declaration may be
in the same schema document as
the referencing element declaration
or it may be in a different schema
document, potentially in a different
namespace. This attribute may not
appear on a global element decla-
ration. The ref and name
attributes are mutually exclusive.

Name Type Default Description

Skonnard.book Page 317 Monday, October 1, 2001 8:57 AM

318 Essential XML Quick Reference

Child elements

Examples
A global element declaration

substitution-
 Group

QName None Specifies the element that serves
as the head of the substitution
group to which this element decla-
ration belongs. This attribute can
only appear on a global element
declaration. The referenced ele-
ment declaration may be in the
same schema document as the ref-
erencing element declaration or it
may be in a different schema docu-
ment, potentially in a different
namespace.

type QName None Specifies the type of the element
being declared. This attribute is a
reference to a simple type or a
complex type. If the type and ref
attributes are both absent, then the
element declaration may have a
simpleType element or a
complexType element as one of
its children, in which case the type
of the element is that anonymous
inline type. If no such children are
present, then the type of the element
is the anyType in the namespace
http://www.w3.org/2001/
XMLSchema.

Name Type Default Description

Name Occurrence

annotation Optional, once

simpleType or complexType Optional, once

key or keyref or unique Optional, unlimited

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'
 targetNamespace='urn:example-org:People' >

Skonnard.book Page 318 Monday, October 1, 2001 8:57 AM

XML Schema Structures 319

Sc
he

m
a

II

A global element declaration for an element with a local name of description
and a namespace name of urn:example-org:People. This element is
based on the built-in string type.

A global element declaration and several local element declarations

A global element declaration for an element with a local name of person and a
namespace name of urn:example-org:People. This element is based on
the Person complex type in the same namespace that has several local element
declarations. A document conforming to this schema would have a document ele-
ment with a local name of person in the urn:example-org:People
namespace. That element would have unqualified name and height children, in
that order. The name element would contain a string and the height element
would contain a double-precision floating point number.

A global element declaration and a reference to the declaration

 <xs:element name='description' type='xs:string' />

</xs:schema>

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'
 targetNamespace='urn:example-org:People'
 xmlns:tns='urn:example-org:People' >

 <xs:element name='Person' type='tns:Person' />

 <xs:complexType name='person' >
 <xs:sequence>
 <xs:element name='name' type='xs:string' />
 <xs:element name='height' type='xs:double' />
 </xs:sequence>
 </xs:complexType>

</xs:schema>

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'
 targetNamespace='urn:example-org:Utilities'
 xmlns:tns='urn:example-org:Utilities' >

 <xs:element name='height' type='xs:double' />

Skonnard.book Page 319 Monday, October 1, 2001 8:57 AM

320 Essential XML Quick Reference

A global element declaration for an element with a local name of height and a
namespace name of urn:example-org:Utilities and a reference to that
global element declaration. The element is based on the built-in double type.
Elements of type HeightVector must have a child element with a local name
of height in the namespace urn:example-org:Utilities.

9.2.13 extension

<xs:extension base='QName' id='ID' >
 <!-- all annotation anyAttribute attribute
 attributeGroup choice group sequence
 -->
</xs:extension>

The extension element appears as part of a complex type definition and indi-
cates that the complex type is being derived by extension from some base type.
The base type may be either a simple type or a complex type. If the base type is
a simple type, then the extended type may only add attributes. If the base type is
a complex type, the extended type may add extra elements and/or attributes.
When extra elements are added, these logically appear after the elements of the
base type, the resulting content model being the content model of the base type
followed by the content model of the derived type with both parts treated as if
they were wrapped in a sequence element. Complex types with all as their
top-level compositor cannot be extended by adding particles. Only attributes can
be added to such types. Similarly, an all group can only be used to extend a
type that has an empty content model.

 <xs:complexType name='HeightVector' >
 <xs:sequence>
 <xs:element ref='tns:height' />
 </xs:sequence>
 </xs:complexType>

</xs:schema>

Skonnard.book Page 320 Monday, October 1, 2001 8:57 AM

XML Schema Structures 321

Sc
he

m
a

II

Attributes

Child elements

Examples
Extending a base type with a sequence compositor with another sequence

Name Type Default Description

base QName None Specifies the base type from which the new type
is derived. If the parent of the extension
element is a simpleContent element, then
this attribute must refer to a simple type. If
the parent of the extension element is a
complexContent element, then this attribute
must refer to a complex type. The base type
may be in the same schema document as the
derived type or it may be in a different schema
document, potentially in a different namespace.

id ID None An attribute for application use.

Name Occurrence

annotation Optional, once

all or choice or group or sequence Optional, once

attribute or attributeGroup Optional, unlimited

anyAttribute Optional, once

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'
 targetNamespace='http://example.org/People'
 xmlns:tns='http://example.org/People' >

 <xs:complexType name='Person' >
 <xs:sequence>
 <xs:element name='name' />
 <xs:element name='height' />
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name='Employee' >
 <xs:complexContent>
 <xs:extension base='tns:Person' >
 <xs:sequence>
 <xs:element name='salary' />

Skonnard.book Page 321 Monday, October 1, 2001 8:57 AM

322 Essential XML Quick Reference

Both types have sequence as their top-level model group. Elements of type
Employee must have name, height, and salary children, in that order. They may
also have an employeeNumber attribute.

Extending a base type with a sequence compositor with a choice

The base type has sequence as its top-level model group whereas the derived
type has choice. Elements of type MaleFemalePerson must have name and
height children, in that order, followed by either a boybits element or a
girlbits element.

 </xs:sequence>
 <xs:attribute name='employeeNumber' />
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

</xs:schema>

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'
 targetNamespace='http://example.org/People'
 xmlns:tns='http://example.org/People' >

 <xs:complexType name='Person' >
 <xs:sequence>
 <xs:element name='name' />
 <xs:element name='height' />
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name='MaleFemalePerson' >
 <xs:complexContent>
 <xs:extension base='tns:Person' >
 <xs:choice>
 <xs:element name='boybits' />
 <xs:element name='girlbits' />
 </xs:choice>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

</xs:schema>

Skonnard.book Page 322 Monday, October 1, 2001 8:57 AM

XML Schema Structures 323

Sc
he

m
a

II

Extending a base type with an all compositor

The base type has an all compositor. The extended type adds an attribute to
the base type. Elements of type Employee must have name and height children,
in any order. They may also have an employeeNumber attribute.

Extending a simple type

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'
 targetNamespace='http://example.org/People'
 xmlns:tns='http://example.org/People' >

 <xs:complexType name='Person' >
 <xs:all>
 <xs:element name='name' />
 <xs:element name='height' />
 </xs:all>
 </xs:complexType>

 <xs:complexType name='Employee' >
 <xs:complexContent>
 <xs:extension base='tns:Person' >
 <xs:attribute name='employeeNumber' />
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

</xs:schema>

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'
 targetNamespace='http://example.org/People'
 xmlns:tns='http://example.org/People' >

 <xs:complexType name='Person' >
 <xs:simpleContent>
 <xs:extension base='xs:string'>
 <xs:attribute name='height' />
 </xs:extension>
 </xs:complexType>

</xs:schema>

Skonnard.book Page 323 Monday, October 1, 2001 8:57 AM

324 Essential XML Quick Reference

The extended type adds an attribute to the base type of string. Elements of
type Employee may have a string of any length as their content. They may also
have a height attribute.

9.2.14 field

<xs:field id='ID' xpath='string' >
 <!-- annotation -->
</xs:field>

The field element identifies, via an XPath expression, an element or attribute
relative to a context specified by a selector element. The element or attribute
specified is part of a uniqueness or key constraint.

Attributes

Name Type Default Description

id ID None An attribute for application use.

xpath string None Specifies the element or attribute for the
field. This is always relative to the selector.
This attribute uses a subset of XPath that
allows forms shown in the following table
where x, y, and z are element names that
may be qualified or unqualified, and a is an
attribute name that may be qualified or
unqualified. The axis identifier child:: may
appear in front of x, y, and z, and the axis
identifier attribute:: may appear in
place of the @ symbol.

XPath Description

. The selector itself

x Child element

x/y Grandchild element

x/y/z Great-grandchild element, and so on

.//y Descendant element

@a Attribute

x/@a Attribute of child element

Skonnard.book Page 324 Monday, October 1, 2001 8:57 AM

XML Schema Structures 325

Sc
he

m
a

II

Note that the // notation can only appear immediately after the initial .; it cannot
appear anywhere else in an expression.

Child element

Example
See the key and unique entries for examples.

9.2.15 group

<xs:group id='ID' maxOccurs='union'
 minOccurs='nonNegativeInteger' name='NCName'
 ref='QName' >
 <!-- all annotation choice sequence -->
</xs:group>

The group element either denotes a model group definition, defining a named
group of particles, or it is a reference to such a group. The former appear as chil-
dren of a schema element whereas the latter appear inside complex type defini-
tions and other model group definitions. Named model groups provide a conve-
nient mechanism for using the same set of particles in multiple complex type
definitions.

x/y/@a Attribute of grandchild element

x/y/z/@a Attribute of great-grandchild element, and
so on

.//y/@a Attribute of descendant element

e | e* Any combination of the above expressions

Name Type Default Description

Name Occurrence

annotation Optional, once

Skonnard.book Page 325 Monday, October 1, 2001 8:57 AM

326 Essential XML Quick Reference

Attributes

Child elements

Example
A named model group

Name Type Default Description

id ID None An attribute for application use.

maxOccurs Union 1 Specifies the maximum number of times
the particles in a referenced model group
can appear in the referencing context.
The value of this attribute may be any
nonNegativeInteger or the string
unbounded. This attribute may not appear
on a model group definition.

minOccurs nonNegative
 Integer

1 Specifies the minimum number of times the
particles in a referenced model group must
appear in the referencing context. This
attribute may not appear on a model group
definition.

name NCName None The local part of the name of the model
group being defined. This attribute may only
appear on a model group definition.

ref QName None A reference to a named model group. The
referenced model group may be in the same
schema document as the referencing group
element or it may be in a different schema
document, potentially in a different
namespace. This attribute may not appear
on a model group definition.

Name Occurrence

annotation Optional, once

all or choice or sequence Optional, once

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'
 targetNamespace='urn:example-org:People'
 xmlns:tns='urn:example-org:People' >

 <xs:group name='HeightAndWeightElems' >
 <xs:sequence>
 <xs:element name='height' />

Skonnard.book Page 326 Monday, October 1, 2001 8:57 AM

XML Schema Structures 327

Sc
he

m
a

II

Elements of type Person must have name, height, and weight children, in that order.

9.2.16 import

<xs:import id='ID' namespace='anyURI'
 schemaLocation='anyURI' >
 <!-- annotation -->
</xs:import>

The import element is used to bring schema constructs such as element decla-
rations, complex and simple type definitions, and so forth in an external schema
into the importing schema document. The target namespace of the imported
schema must be different from the target namespace of the importing schema
document. The imported schema may have no target namespace. In the latter
case, the constructs in the imported schema document are available to be refer-
enced through unqualified names. Such constructs do not become part of the tar-
get namespace of the importing schema document.

Attributes

 <xs:element name='weight' />
 </xs:sequence>
 </xs:group>

 <xs:complexType name='Person' >
 <xs:sequence>
 <xs:element name='name' />
 <xs:group ref='tns:HeightAndWeightElems' />
 </xs:sequence>
 </xs:complexType>

</xs:schema>

Name Type Default Description

id ID None An attribute for application use.

namespace anyURI None Specifies the namespace URI of the
schema being imported. If this
attribute is missing, then the
schema being imported describes
constructs that are unqualified.

Skonnard.book Page 327 Monday, October 1, 2001 8:57 AM

328 Essential XML Quick Reference

Child element

Example
Use of import

A schema document for the namespace urn:example-org:Base that imports
another schema for the namespace http://www.w3.org/XML/1998/
namespace. The import element does not specify a schemaLocation
attribute. The schema processor will locate a schema for the http://
www.w3.org/XML/1998/namespace by some out-of-band technique.

schemaLocation anyURI None Identifies the location of the schema
to be imported. This attribute is just
a hint. A schema processor may
ignore the value of this attribute and
retrieve a schema for the name-
space specified by the namespace
attribute by other means.

Name Type Default Description

Name Occurrence

annotation Optional, once

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'
 targetNamespace='urn:example-org:Base'
 xmlns:tns='urn:example-org:Base' >

 <xs:import namespace='http://www.w3.org/XML/1998/
namespace' />

 <xs:complexType name='PersonName'>
 <xs:sequence>
 <xs:element name='givenName' />
 <xs:element name='familyName' />
 </xs:sequence>
 <xs:attribute ref='xml:lang' use='fixed' value='EN-UK'

/>
 </xs:complexType>

</xs:schema>

Skonnard.book Page 328 Monday, October 1, 2001 8:57 AM

XML Schema Structures 329

Sc
he

m
a

II

Use of import

A schema document for the namespace urn:example-org:People that imports
another schema for the namespace urn:example-org:Base, as defined in
the previous example. The import element specifies a schemaLocation
attribute which the schema processor may or may not use to locate a schema for
the urn:example-org:Base namespace. The PersonName type in the
urn:example-org:Base namespace is used as the type of the name ele-
ment in the type definition for Person.

9.2.17 include

<xs:include id='ID' schemaLocation='anyURI' >
 <!-- annotation -->
</xs:include>

The include element is used to bring schema constructs such as element declara-
tions, complex and simple type definitions, etc. in an external schema document
into the including schema document. The target namespace of the included schema
document must match the target namespace of the including schema or it must be
empty (the included schema document describes constructs in no namespace). If
the included schema document describes constructs in no namespace then those
constructs become part of the target namespace of the including schema document.

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'
 targetNamespace='urn:example-org:People'
 xmlns:tns='urn:example-org:People'
 xmlns:b='urn:example-org:Base' >

 <xs:import namespace='urn:example-org:Base'
 schemaLocation='http://example.org/schemas/
 base.xsd' />

 <xs:complexType name='Person'>
 <xs:sequence>
 <xs:element name='name' type='b:PersonName' />
 <xs:element name='height' />
 </xs:sequence>
 </xs:complexType>

</xs:schema>

Skonnard.book Page 329 Monday, October 1, 2001 8:57 AM

330 Essential XML Quick Reference

Attributes

Child element

Example
Use of include

A schema document that includes another schema containing base types. Types,
global element and attribute declarations, and attribute and model group definitions
in PeopleBase.xsd are available for use in the including schema document.

9.2.18 key

<xs:key id='ID' name='NCName' >
 <!-- annotation field selector -->
</xs:key>

The key element defines a named key made up of one or more element and/or
attribute fields. A key requires that the combination of fields must be unique. Any
element declaration referenced through a field child of a key element must not

Name Type Default Description

id ID None An attribute for application use.

schemaLocation anyURI None Identifies the location of the schema
document to be included.

Name Occurrence

annotation Optional, once

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'
 targetNamespace='urn:example-org:People'
 xmlns:tns='urn:example-org:People' >

 <xs:include
schemaLocation='http://example.org/schemas/
PeopleBase.xsd' />

 <!-- element declarations, type definitions etc. go here
-->

</xs:schema>

Skonnard.book Page 330 Monday, October 1, 2001 8:57 AM

XML Schema Structures 331

Sc
he

m
a

II

have a nillable attribute with a value of true. A key can be referenced, via its
name, using the refer attribute of a keyref element, creating a referential
constraint on the content of an instance document.

Attributes

Child elements

Example
A key constraint

Name Type Default Description

id ID None An attribute for application use.

name NCName None Specifies the local part of the name of the key
constraint.

Name Occurrence

annotation Optional, once

selector Mandatory, once

field Mandatory, unlimited

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'
 targetNamespace='urn:example-org:Orders'
 xmlns:tns='urn:example-org:Orders' >

 <xs:complexType name='Customer' >
 <xs:sequence>
 <xs:element name='id' type='xs:short' />
 <xs:element name='name' type='xs:string' />
 <xs:element name='creditlimit' type='xs:short' />
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name='WidgetOrder' >
 <xs:sequence>
 <xs:element name='id' type='xs:short' />
 <xs:element name='numwidgets' type='xs:short' />
 <xs:element name='customerid' type='xs:short' />
 </xs:sequence>
 </xs:complexType>

 <xs:element name='customersandorders' >

Skonnard.book Page 331 Monday, October 1, 2001 8:57 AM

332 Essential XML Quick Reference

The key element selects customer children of the customersandorders ele-
ment through the xpath attribute of the selector element. The xpath attribute
of the field element then specifies that the id children of those customer ele-
ments must be unique; that is, no two customer elements can have the same
value for their id child. The key also has a name, CustomerID, so that it can be
refered to from a keyref element.

The keyref element selects order children of the customersandorders ele-
ment through the xpath attribute of the selector element. The refer
attribute references the CustomerID key described earlier, and the xpath
attribute of the field element then specifies that the customerid children of the
order elements identified by the selector must have a corresponding value in
the id elements identified by the key.

 <xs:complexType>
 <xs:sequence>
 <xs:element name='customer' type='tns:Customer'

 minOccurs='1' maxOccurs='unbounded' />
 <xs:element name='order' type='tns:WidgetOrder'

 minOccurs='1' maxOccurs='unbounded' />
 </xs:sequence>
 </xs:complexType>

 <xs:key name='CustomerID' >
 <xs:selector xpath='customer' />
 <xs:field xpath='id' />
 </xs:key>

 <xs:keyref name='OrderToCustomer'
 refer='tns:CustomerID' >

 <xs:selector xpath='order' />
 <xs:field xpath='customerid' />
 </xs:keyref>
 </xs:element>

</xs:schema>

Skonnard.book Page 332 Monday, October 1, 2001 8:57 AM

XML Schema Structures 333

Sc
he

m
a

II

9.2.19 keyref

<xs:keyref id='ID' name='NCName' refer='QName' >
 <!-- annotation field selector -->
</xs:keyref>

The keyref element defines a referential constraint made up of element and/or
attribute fields that refer to a key that is similarly made up of element and/or
attribute fields. The fields that make up the referential constraint are compared, in
order, with the fields of the key to which the referential constraint refers.

Attributes

Child elements

Example
See the key entry for an example.

9.2.20 notation

<xs:notation id='ID' name='NCName' public='token'
 system='anyURI' >
 <!-- annotation -->
</xs:notation>

The notation element denotes a notation declaration associating a name with
a public identifier and optionally a system identifier. Notation declarations are typ-
ically used to deal with out-of-band binary data.

Name Type Default Description

id ID None An attribute for application use.

name NCName None Specifies the local part of the name of the
keyref constraint.

refer QName None Specifies the QName of the key to which this
keyref refers.

Name Occurrence

annotation Optional, once

selector Mandatory, once

field Mandatory, unlimited

Skonnard.book Page 333 Monday, October 1, 2001 8:57 AM

334 Essential XML Quick Reference

Attributes

Child element

Example
Use of notation

Name Type Default Description

id ID None An attribute for application use.

name NCName None Specifies the local name of the notation being
declared.

public token None Specifies the public identifier for the notation.
The syntax for public identifiers is defined in
ISO-8879.

system anyURI None Specifies a system identifier for the notation,
often an executable capable of dealing with
resources of this notation type.

Name Occurrence

annotation Optional, once

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'
 targetNamespace='urn:example-org:Pictures'
 xmlns:tns='urn:example-org:Pictures' >

 <xs:notation name='jpg' public='image/jpeg'
system='display.exe' />

 <xs:notation name='png' public='image/png' />
 <xs:notation name='gif' public='image/gif'

system='display.exe' />

 <xs:simpleType name='myGraphicsFormats'>
 <xs:restriction base='xs:NOTATION'>
 <xs:enumeration value='jpg' />
 <xs:enumeration value='png' />
 <xs:enumeration value='gif' />
 </xs:restriction>
 </xs:simpleType>

 <xs:complexType name='picture' >
 <xs:attribute name='width' />
 <xs:attribute name='height' />

Skonnard.book Page 334 Monday, October 1, 2001 8:57 AM

XML Schema Structures 335

Sc
he

m
a

II

A schema with notations for several graphic formats and a complex type containing
a format attribute of type NOTATION. This attribute would have a QName value
of tns:jpg, tns:png, or tns:gif in the instance document where the tns
prefix was mapped to the urn:example-org:Pictures namespace URI.

9.2.21 redefine

<xs:redefine id='ID' schemaLocation='anyURI' >
 <!-- annotation attributeGroup complexType group
 simpleType -->
</xs:redefine>

The redefine element is used to bring schema constructs such as element
declarations, complex and simple type definitions, and so forth, in an external
schema into a schema document and to redefine certain complex types, simple
types, named model groups, and named attribute groups in the schema being
brought in. Such redefinitions appear inside the redefine element and must be
in terms of the type or group itself. That is to say, complex types and simple
types must name themselves as the base type, and named model and attribute
groups must contain exactly one reference to themselves. The redefined types
and named groups effectively overwrite the definitions in the original schema
such that any references to those types and model groups now reference the
redefined versions. The target namespace of the redefined schema must match
the target namespace of the including schema or it must be empty. If the target
namespace of the redefined schema is empty, then the constructs in that schema
become part of the target namespace of the redefining schema document.

Attributes

 <xs:attribute name='format'
 type='tns:myGraphicsFormats' />

 </xs:complexType>

</xs:schema>

Name Type Default Description

id ID None An attribute for application use.

schemaLocation anyURI None Identifies the location of the schema
document to be redefined.

Skonnard.book Page 335 Monday, October 1, 2001 8:57 AM

336 Essential XML Quick Reference

Child elements

Example
Use of redefine

Name Occurrence

annotation Optional, once

simpleType or complexType or group or
 attributeGroup

Optional, unlimited

<!-- person.v1.xsd -->
<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'
 targetNamespace='urn:example-org:People' >

 <xs:complexType name='Person' >
 <xs:sequence>
 <xs:element name='name' />
 <xs:element name='height' />
 </xs:sequence>
 </xs:complexType>
</xs:schema>

<!-- person.v2.xsd -->
<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'
 targetNamespace='urn:example-org:People'
 xmlns:tns='urn:example-org:People' >

 <xs:import namespace='http://www.w3.org/XML/1998/
namespace' />

 <xs:redefine schemaLocation='person.v1.xsd' >
 <xs:complexType name='Person' >
 <xs:complexContent>
 <xs:extension base='tns:Person' >
 <xs:attribute ref='xml:lang' use='required' />
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:redefine>

</xs:schema>

Skonnard.book Page 336 Monday, October 1, 2001 8:57 AM

XML Schema Structures 337

Sc
he

m
a

II

An example showing two schema documents, both with a targetNamespace
attribute of urn:example-org:People. The second document, person.v2.xsd,
uses redefine to add an xml:lang attribute to the Person type defined in
person.v1.xsd.

9.2.22 restriction

<xs:restriction base='QName' id='ID' >
 <!-- all annotation anyAttribute attribute
 attributeGroup choice enumeration fractionDigits
 group length maxExclusive maxInclusive
 maxLength minExclusive minInclusive minLength
 pattern sequence simpleType totalDigits
 whitespace -->
</xs:restriction>

The restriction element appears as part of a complex type definition and
indicates that the complex type is being derived by restriction from a base type.
The base type must be a complex type. If the base type has no particles, only text
and/or attributes, then the derived type can specify a tighter value space for the
text content using facets. The valid children for such use of the restriction
element are shown in the first table under Child elements.

If the base type contains any particles, then the derived type may specify tighter
occurrence constraints for those particles and/or narrower value spaces for the
simple types used by elements in those particles. The derived type must list all
the particles of the base type and the particles of the base type’s ancestors. The
derived type must be a valid instance of the base type; that is, it cannot remove
any particles that were mandatory in the base type. The valid children for such use
of the restriction element are shown in the second table under Child elements.

In both cases, if the base type contains attributes, then the derived type may
specify tighter occurrence constraints for those attributes and/or narrower value
spaces for the types of those attributes. The derived type cannot remove
attributes that were required in the base type.

Skonnard.book Page 337 Monday, October 1, 2001 8:57 AM

338 Essential XML Quick Reference

Attributes

Child elements

Child elements

Examples
Restriction of a complex type containing elements and attributes

Name Type Default Description

base QName None Specifies the base type from which the new type
is derived. The base type must be a complex
type. The type referred to may be in the same
namespace as the derived type, a different
namespace from the derived type, or may be
unqualified (that is, in no namespace).

id ID None An attribute for application use.

Name Occurrence

annotation Optional, once

simpleType Optional, once

minExclusive or minInclusive or maxExclusive or
maxInclusive or totalDigits or fractionDigits or
length or minLength or maxLength or enumeration or
pattern or whiteSpace

Optional, unlimited

attribute or attributeGroup Optional, unlimited

anyAttribute Optional, once

Name Occurrence

annotation Optional, once

all or choice or group or sequence Optional, once

attribute or attributeGroup Optional, unlimited

anyAttribute Optional, once

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'
 targetNamespace='urn:example-org:People'
 xmlns:tns='urn:example-org:People' >

 <xs:complexType name='MaleFemalePerson' >
 <xs:sequence>
 <xs:element name='name' />

Skonnard.book Page 338 Monday, October 1, 2001 8:57 AM

XML Schema Structures 339

Sc
he

m
a

II

The base type is restricted by removing an element and an attribute. Elements of
type MaleFemalePerson must have a name followed by an optional weight
child. They may also have a sex attribute. Elements of type WeightlessHer-
maphroditePerson must have a name child only. They must not have a weight
child or a sex attribute.

Restriction of a complex type containing text and attributes

 <xs:element name='weight' minOccurs='0' />
 </xs:sequence>
 <xs:attribute name='sex' />
 </xs:complexType>

 <xs:complexType name='WeightlessHermaphroditePerson' >
 <xs:complexContent>
 <xs:restriction base='tns:MaleFemalePerson' >
 <xs:sequence>
 <xs:element name='name' />
 </xs:sequence>
 <xs:attribute name='sex' use='prohibited' />
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>

</xs:schema>

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'
 targetNamespace='urn:example-org:People'
 xmlns:tns='urn:example-org:People' >

 <xs:complexType name='MaleFemalePerson' >
 <xs:simpleContent>
 <xs:extension base='string'>
 <xs:attribute name='sex' />
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>

 <xs:complexType name='WeightlessHermaphroditePerson' >
 <xs:simpleContent>
 <xs:restriction base='tns:MaleFemalePerson' >

Skonnard.book Page 339 Monday, October 1, 2001 8:57 AM

340 Essential XML Quick Reference

The base type is restricted by removing an attribute and applying facets to the
simple type base. Elements of type MaleFemalePerson contain a string of any
length and may also have a sex attribute. Elements of type WeightlessHer-
maphroditePerson must contain a string of at least ten characters and no
more than 100 characters and must not have a sex attribute.

9.2.23 schema

<xs:schema attributeFormDefault='NMTOKEN'
 blockDefault='list of token'
 elementFormDefault='NMTOKEN'
 finalDefault='token' id='ID'
 targetNamespace='anyURI' version='string'
 xml:lang='language' >
 <!-- annotation attribute attributeGroup complexType
 element group import include notation redefine
 simpleType -->
</xs:schema>

The schema element is always the top-level element of any XML Schema docu-
ment. All type definitions, elements, declarations, and other constructs appear as
descendants of the schema element. All the types, elements, attributes, and
other items defined within a schema are either part of one particular namespace,
as specified by the targetNamespace attribute, or are part of no namespace.

 <xs:minLength value='10' />
 <xs:maxLength value='100' />
 <xs:attribute name='sex' use='prohibited' />
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>

</xs:schema>

Skonnard.book Page 340 Monday, October 1, 2001 8:57 AM

XML Schema Structures 341

Sc
he

m
a

II

Attributes

Name Type Default Description

attributeForm
 Default

NMTOKEN Unqualified Specifies whether local attribute dec-
larations are qualified (in the target-
Namespace for the schema) or
unqualified by default. This setting
specified by this attribute can be over-
ridden on a per-attribute declaration
basis by the form attribute.

blockDefault list of
 token

Empty list Specifies what substitution mecha-
nisms are prohibited for elements.
The setting specified by this attribute
can be overridden on a per-type dec-
laration basis by using the block
attribute.

Value Description

extension Types derived by extension may not
appear in place of a particular ele-
ment either through the use of
xsi:type or substitution groups.

restriction Types derived by restriction may not
appear in place of a particular ele-
ment either through use of xsi:type
or substitution groups.

substitution Elements in the substitution group for
a particular element may not appear
in place of that element.

#all All of the above

elementForm
 Default

NMTOKEN unqualified Specifies whether local element dec-
larations are qualified (in the tar-
getNamespace for the schema) or
unqualified by default. This set-
ting specified by this attribute can be
overridden on a per-element declara-
tion basis by the form attribute.

finalDefault token Empty list Specifies what derivation mechanisms
are prohibited for type definitions
defined in the schema document. The
setting specified by this attribute can
be overridden on a per-type definition
basis by using the final attribute.

Skonnard.book Page 341 Monday, October 1, 2001 8:57 AM

342 Essential XML Quick Reference

Value Description

extension Types cannot be extended by default.

restriction Types cannot be restricted by default.

#all Both of the above

id ID Specifies an attribute for application
use.

target-
 Namespace

anyURI None Specifies the namespace that this
schema document describes. All glo-
bal element and attribute declarations
along with all complex and simple
type definitions, model group defini-
tions and attribute group definitions,
and uniqueness and key constraint
defintions are part of the target
namespace for a schema document.
If this attribute is not present, then all
schema constructs contained in the
schema document describe con-
structs in no namespace. A schema
document for a given namespace
forms part of an overall schema that
can be used to validate instance docu-
ments containing elements and/or
attributes in that namespace. A
schema document with no target
namespace can be used to validate
instance documents containing ele-
ments or attributes in no namespace.
It can also become part of a schema
with a target namespace through the
include and/or redefine
mechanisms.

version string None Specifies an attribute for application
use.

xml:lang language None The lang attribute from the http://
www.w3.org/XML/1998/
namespace namespace denotes the
human-readable language in which the
schema element is written.

Name Type Default Description

Skonnard.book Page 342 Monday, October 1, 2001 8:57 AM

XML Schema Structures 343

Sc
he

m
a

II

Child elements

Examples
A schema document

A schema document describing contructs in the namespace urn:example-
org:People. Note the namespace declaration for urn:example-org:Peo-
ple. This is needed because various attributes in the schema language are of
type QName, and it is common in a schema construct to want to refer to another
schema construct. Having a namespace declaration for the target namespace
makes this possible. The schema document uses default values for the ele-
mentFormDefault and attributeFormDefault attributes; therefore,
local element declarations and local attribute declarations are not in the target
namespace for the schema; that is, they are unqualified.

A schema document with no target namespace

Name Occurrence

annotation or include or import or redefine Optional, unlimited

annotation or attribute or attributeGroup or
complexType or element or group or notation or
simpleType

Optional, unlimited

annotation Optional, unlimited

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'
 targetNamespace='urn:example-org:People'
 xmlns:t='urn:example-org:People' >

 <!-- type definitions, element attribute declarations
etc. appear here -->

</xs:schema>

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema' >

 <!-- type definitions, element attribute declarations
etc. appear here -->

</xs:schema>

Skonnard.book Page 343 Monday, October 1, 2001 8:57 AM

344 Essential XML Quick Reference

A schema document describing constructs in no namespace. The schema docu-
ment uses default values for the elementFormDefault and attribute-
FormDefault attributes.

A schema document with qualified local element declarations

A schema document describing constructs in the namespace urn:example-
org:Vehicles. Local element declarations are, by default, in the target
namespace for the schema (urn:example-org:Vehicles); that is, they are
qualified.

A schema document with several nondefault attribute values

A schema document describing constructs in the namespace urn:example-
org:Utilities. Complex types defined in this schema cannot, by default, be
derived from either a extension or restriction as specified by the finalDefault
attribute. Also, element substitution using substitution groups is disallowed by
default as specified by the blockDefault attribute.

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'
 targetNamespace='urn:example-org:Vehicles'
 xmlns:tns='urn:example-org:Vehicles'
 elementFormDefault='qualified' >

 <!-- type definitions, element attribute declarations
etc. appear here -->

</xs:schema>

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'
 targetNamespace='urn:example-org:Utilities'
 xmlns:tns='urn:example-org:Utilities'
 finalDefault='#all'
 blockDefault='substitution' >

 <!-- type definitions, element attribute declarations
etc. appear here -->

</xs:schema>

Skonnard.book Page 344 Monday, October 1, 2001 8:57 AM

XML Schema Structures 345

Sc
he

m
a

II

9.2.24 selector

<xs:selector id='ID' xpath='string' >
 <!-- annotation -->
</xs:selector>

The selector element identifies, via an XPath expression, an element relative
to a context. The selected element provides the context for subsequent field
elements.

Attributes

Child element

Example
See the key and unique entries for examples.

Name Type Default Description

id ID None An attribute for application use.

xpath string None Specifies the element or attribute for the selec-
tor. This is always relative to the current con-
text, typically an element declaration. This
attribute uses a subset of XPath that allows the
following forms, where x and y are element
names that may be qualified or unqualified, and
a is an attribute name that may be qualified or
unqualified.

XPath Description

. The element itself

x Child element

x/y Grandchild element

x/y/z Great-grandchild element, and so on

.//y Descendant element

e | e* Any combination of the above expressions

Name Occurrence

annotation Optional, once

Skonnard.book Page 345 Monday, October 1, 2001 8:57 AM

346 Essential XML Quick Reference

9.2.25 sequence

<xs:sequence id='ID' maxOccurs='union'
 minOccurs='nonNegativeInteger' >
 <!-- annotation any choice element
 group sequence -->
</xs:sequence>

The sequence element is used to denote a model group in which all the parti-
cles contained within the sequence must appear in the instance document in the
order listed, or, if they are optional, be missing in the instance document. The
sequence element can appear as part of a complex type definition or as part of
a named model group. In both cases it may appear as the first child of the con-
struct or as a more deeply nested descendant.

Attributes

Name Type Default Description

id ID An attribute for application
use.

maxOccurs Union 1 Specifies the maximum
number of times particles
in the sequence group can
appear in the context in
which the sequence
appears. The value of this
attribute may be any
nonNegativeInteger
or the string unbounded.
If the sequence element
is a child of a top-level
group element, then this
attribute may not occur.

minOccurs nonNegativeInteger 1 Specifies the minimum
number of times the parti-
cles in the sequence
group must appear in the
context in which the
sequence appears. If the
sequence element is a
child of a top-level group
element, then this
attribute may not occur.

Skonnard.book Page 346 Monday, October 1, 2001 8:57 AM

XML Schema Structures 347

Sc
he

m
a

II

Child elements

Examples
A sequence group as part of a complex type

Elements of type Person must have name and height children, in that order.

A repeating sequence and sequence as part of a named model group definition

Name Occurrence

annotation Optional, once

element or choice or group or sequence or any Optional, unlimited

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'
 targetNamespace='urn:example-org:People'
 xmlns:tns='urn:example-org:People' >

 <xs:element name='Person' type='tns:Person' />

 <xs:complexType name='Person' >
 <xs:sequence>
 <xs:element name='name' />
 <xs:element name='height' />
 </xs:sequence>
 </xs:complexType>

</xs:schema>

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'
 targetNamespace='urn:example-org:People'
 xmlns:tns='urn:example-org:People' >

 <xs:group name='GroceryElems' >
 <xs:sequence>
 <xs:element name='productname' />
 <xs:element name='price' />
 </xs:sequence>
 </xs:group>

 <xs:complexType name='Groceries' >
 <xs:sequence>
 <xs:group ref='tns:GroceryElems' />

Skonnard.book Page 347 Monday, October 1, 2001 8:57 AM

348 Essential XML Quick Reference

Elements of type Groceries must have producename and price children, in that
order, followed by between one and fifty pairs of state and taxable elements,
in that order.

9.2.26 simpleContent

<xs:simpleContent id='ID' >
 <!-- annotation extension restriction -->
</xs:simpleContent>

The simpleContent element appears as a child of the complexType ele-
ment and indicates that the complex type is being explicitly derived from a simple
type. The simpleContent element must have either an extension or a
restriction element child according to whether the base type is being
extended or restricted.

Attribute

Child elements

Example
See the extension and restriction entries for examples.

 <xs:sequence minOccurs='1' maxOccurs='50' >
 <xs:element name='state' />
 <xs:element name='taxable' />
 </xs:sequence>
 </xs:sequence>
 </xs:complexType>

</xs:schema>

Name Type Default Description

id ID None An attribute for application use.

Name Occurrence

annotation Optional, once

extension or restriction Mandatory, once

Skonnard.book Page 348 Monday, October 1, 2001 8:57 AM

XML Schema Structures 349

Sc
he

m
a

II

9.2.27 unique

<xs:unique id='ID' name='NCName' >
 <!-- annotation field selector -->
</xs:unique>

The unique element is used to denote that an attribute or element value, or a
combination thereof, must be unique within a particular context. The unique ele-
ment appears inside an element declaration that provides the initial context. The
context is then specified further by a selector. The field element is used to
specify uniqueness constraints relative to the context specifed by the selector
element.

Attributes

Child elements

Example
An element-based uniqueness constraint

Name Type Default Description

id ID None An attribute for application use.

name NCName None Specifies the local part of the name of the
uniqueness constraint.

Name Occurrence

annotation Optional, once

selector Mandatory, once

field Mandatory, unlimited

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'
 targetNamespace='urn:example-org:Groceries'
 xmlns:tns='urn:example-org:Groceries' >

 <xs:complexType name='Grocery' >
 <xs:sequence>
 <xs:element name='produce' type='xs:string' />
 <xs:sequence minOccurs='1' maxOccurs='50' >
 <xs:element name='state' type='xs:string' />
 <xs:element name='taxable' type='xs:boolean' />
 </xs:sequence>

Skonnard.book Page 349 Monday, October 1, 2001 8:57 AM

350 Essential XML Quick Reference

A uniqueness constraint that specifies that the state element children of a
grocery element must have unique values.

9.3 XML Schema structures: instance attributes
The XML Schema language defines four attributes for use in XML instance docu-
ments (rather than schema documents). These attributes are all in the http://
www.w3.org/2001/XMLSchema-instance namespace. This section lists
the attributes in alphabetical order with syntax, a description, and examples. In all
cases the xsi namespace prefix is mapped to the http://www.w3.org/
2001/XMLSchema-instance namespace URI.

9.3.1 nil

xsi:nil='boolean'

The nil attribute is a boolean that when set to true marks an element as hav-
ing missing content. Such an element must be empty and the element declaration
in the schema must have been annotated with a nillable attribute with a value
of true.

Example
Use of nil

 </xs:sequence>
 </xs:complexType>

 <xs:element name='grocery' type='tns:Grocery' >
 <xs:unique name='stateConstraint' >
 <xs:selector xpath='state' />
 <xs:field xpath='.' />
 </xs:unique>
 </xs:element>

</xs:schema>

<!-- person.xsd -->

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'

Skonnard.book Page 350 Monday, October 1, 2001 8:57 AM

XML Schema Structures 351

Sc
he

m
a

II

A schema document, person.xsd, and an instance document, person.xml.
The schema contains a type Person that has name and height element decla-
rations; the latter being annotated with a nillable attribute with a value of
true. It also contains an element declaration mapping the element person to
the Person type. The instance contains a person element in the urn:example-
org:People namespace with child name and height elements. An xsi:nil
attribute is present on the height element and that element has no content.

9.3.2 noNamespaceSchemaLocation

xsi:noNamespaceSchemaLocation='anyURI'

The noNamespaceSchemaLocation attribute provides a way of associating a
schema document that has no target namespace with an instance document. The
value of the attribute is a location that contains a schema containing unqualified
schema constructs; that is, constructs in “no namespace.” This attribute is
needed because the schemaLocation attribute provides no way of specifying
locations for schemas with no target namespace. The information in a

 targetNamespace='urn:example-org:People'
 xmlns:tns='urn:example-org:People' >

 <xs:complexType name='Person' >
 <xs:sequence>
 <xs:element name='name' type='xs:string' />
 <xs:element name='height' type='xs:double'

nillable='true' />
 </xs:sequence>
 </xs:complexType>

 <xs:element name='person' type='tns:Person' />
</xs:schema>

<!-- person.xml -->
<p:person xmlns:p='urn:example-org:People' >
 <name>Martin</name>
 <height xmlns:xsi='http://www.w3.org/2001/XMLSchema-

instance' xsi:nil = 'true' />
</p:person>

Skonnard.book Page 351 Monday, October 1, 2001 8:57 AM

352 Essential XML Quick Reference

noNamespaceSchemaLocation attribute is only a hint to a processor. The
processor is not required to use the information. It may locate schemas in any
way it wishes.

Example
Use of noNamespaceSchemaLocation

A noNamespaceSchemaLocation attribute on an instance document contain-
ing unqualified elements

9.3.3 schemaLocation

xsi:schemaLocation='list of anyURI'

The schemaLocation attribute provides a way of associating schema docu-
ments that have a target namespace with an instance document. The attribute is
a list of pairs of URI references separated by whitespace. The first URI reference
in each pair is a namespace name whereas the second is the location of a
schema that describes that namespace. Multiple pairs of URI references can be
listed, each with a different namespace name part. It is also legal to list the same
namespace multiple times, thus providing multiple potential locations for a pro-
cessor to locate a schema. The information in a schemaLocation attribute is
only a hint to a processor. The processor is not required to use the information. It
may locate schemas in any way it wishes.

Example
Use of schemaLocation

<person xmlns:xsi='http://www.w3.org/2001/XMLSchema-
instance'

 xsi:noNamespaceSchemaLocation='http://example.org/
schemas/person.xsd'>

 <name>Martin</name>
 <height>64</height>
</person>

<p:Person xmlns:p='http://example.org/People'
 xmlns:v='http://example.org/Vehicles'
 xmlns:xsi='http://www.w3.org/2001/XMLSchema-

 instance'

Skonnard.book Page 352 Monday, October 1, 2001 8:57 AM

XML Schema Structures 353

Sc
he

m
a

II

A schemaLocation attribute providing location information for several schema
documents

9.3.4 type

xsi:type='QName'

The type attribute specifies the type of an element. The value of the attribute is
a QName that refers to a type defined in a schema. This attribute allows an ele-
ment to assert that it is of a particular type even though there may not be an ele-
ment declaration in the schema binding that element to that type. It is also used
when derived complex types are used in instance documents in place of the
expected base type. In the latter case, the schema processor will ensure that the
type specified in the type attribute is derived from the type specified in the ele-
ment declaration in the schema.

Example
Use of type

 xsi:schemaLocation='http://example.org/People
 http://example.org/schemas/people.xsd

 http://example.org/Vehicles http://
 example.org/schemas/vehicles.xsd

 http://example.org/People http:
 //example.org/schemas/people.xsd' >

 <name>Martin</name>
 <age>33</age>
 <height>64</height>
 <v:Vehicle>
 <colour>White></colour>
 <wheels>4</wheels>
 <seats>5</seats>
 </v:Vehicle>
</p:Person>

<!-- person.xsd -->
<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'
 targetNamespace='urn:example-org:People'
 xmlns:tns='urn:example-org:People' >
 <xs:element name='person' type='tns:Person' />

Skonnard.book Page 353 Monday, October 1, 2001 8:57 AM

354 Essential XML Quick Reference

A schema document, person.xsd, and an instance document, person.xml.
The schema document contains a base type Person, derived type Employee,
and an element declaration person. The instance shows the use of the
xsi:type attribute to assert that the person element in the urn:example-
org:People namespace is of type Employee in the same namespace.

 <xs:complexType name='Person' >
 <xs:sequence>
 <xs:element name='name' type='xs:string' />
 <xs:element name='height' type='xs:double' />
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name='Employee' >
 <xs:complexContent>
 <xs:extension base='tns:Person' >
 <xs:sequence>
 <xs:element name='salary' type='xs:double' />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

</xs:schema>

<!-- person.xml -->
<p:Person xmlns:p='urn:example-org:People'
 xmlns:xsi='http://www.w3.org/2001/XMLSchema-

 instance'
 xsi:type='p:Employee' >
 <name>Martin</name>
 <height>64</height>
 <salary>2.50</salary>
</p:Person>

Skonnard.book Page 354 Monday, October 1, 2001 8:57 AM

XML Schema Structures 355

Sc
he

m
a

II

9.4 References
Thompson, Henry S., et al. XML Schema Part 1: Structures.
 Available at http://www.w3.org/TR/xmlschema-1. 2001.

Fallside, David C. XML Schema Part Zero: Primer.
Available at http://www.w3.org/TR/xmlschema-0. 2001.

Skonnard.book Page 355 Monday, October 1, 2001 8:57 AM

Skonnard.book Page 356 Monday, October 1, 2001 8:57 AM

357

SO
AP

Chapter 10

SOAP 1.1

The Simple Object Access Protocol (SOAP) is an XML messaging specification
that describes a message format along with a set of serialization rules for
datatypes including structured types and arrays. In addition, it describes how to
use the Hypertext Transfer Protocol (HTTP) as a transport for such messages.
SOAP messages are effectively service requests sent to some end point on a net-
work. That end point may be implemented in any number of ways—Remote Pro-
tocol Call (RPC) server, Component Object Model (COM) object, Java servlet, Perl
script—and may be running on any platform. Thus, SOAP is about interoperability
between applications running on potentially disparate platforms using various
implementation technologies in various programming languages.

10.1 Introduction to SOAP messages

SOAP messages are transmitted between applications and may pass through a
number of intermediaries as they travel from the initial sender to the ultimate
recipient. SOAP messages are comprised of an

Envelope

 element, with an
optional

Header

 and a mandatory

Body

 child element. All three elements are in
the namespace

http://schemas.xmlsoap.org/soap/envelope/

. The

Envelope

 identifies the XML as being a SOAP message and must be the root
element of the message. The

Body

 element contains the message payload. The

Header

 element provides an extension hook that allows SOAP to be extended in
arbitrary ways. The following sections describe these elements, attributes that
SOAP defines, the data encoding rules SOAP specifies, and the HTTP binding.

Example

Skeleton SOAP message

<soap:Envelope
 xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'

Skonnard.book Page 357 Monday, October 1, 2001 9:13 AM

358

Essential XML Quick Reference

10.2 Elements in SOAP messages

SOAP defines four elements in the namespace

http://schemas.xmlsoap.org/
soap/envelope/

. These elements are listed in the following sections in alpha-
betical order, with a description and details of child elements. All four elements
can be annotated with any number of namespace-qualified attributes. Example
SOAP request and response messages are shown for reference.

10.2.1

Body

<soap:Body
 xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/' >
 <!-- message payload goes here -->
</soap:Body>

The

Body

 element contains the message payload. In the case of a request mes-
sage the payload of the message is processed by the receiver of the message
and is typically a request to perform some service and, optionally, to return some
results. In the case of a response message the payload is typically the results of
some previous request or a fault.

Child elements

One or more namespace-qualified elements that are not in the

http://
schemas.xmlsoap.org/soap/envelope/

 namespace or, if a fault occurred,
a

Fault

 element in the

http://schemas.xmlsoap.org/soap/envelope/

namespace

 soap:encodingStyle='http://schemas.xmlsoap.org/soap/
 encoding/'>

 <soap:Header>
 <!-- extensions go here -->
 </soap:Header>
 <soap:Body>
 <!-- message payload goes here -->
 </soap:Body>
</soap:Envelope>

Skonnard.book Page 358 Monday, October 1, 2001 9:13 AM

SOAP 1.1

359

SO
AP

Examples

A SOAP request

An example request message showing the

Envelope

 and

Body

 elements

A SOAP response

A message generated in response to the request message in the request example

<soap:Envelope
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 soap:encodingStyle='http://schemas.xmlsoap.org/soap/

 encoding/'>
 <soap:Body>
 <m:Subtract
 xmlns:m="http://example.org/Calculator/Points">
 <pt1>
 <x>10</x>
 <y>20</y>
 </pt1>
 <pt2>
 <x>100</x>
 <y>200</y>
 </pt2>
 </m:Subtract>
 </soap:Body>
</soap:Envelope>

<soap:Envelope
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 soap:encodingStyle='http://schemas.xmlsoap.org/soap/

 encoding/'>
 <soap:Body>
 <method:SubtractResponse
 xmlns:method="http://example.org/Calculator/Points">
 <ptret>
 <x>-90</x>
 <y>-180</y>
 </ptret>
 </method:SubtractResponse>
 </soap:Body>
</soap:Envelope>

Skonnard.book Page 359 Monday, October 1, 2001 9:13 AM

360

Essential XML Quick Reference

10.2.2

Envelope

<soap:Envelope
 xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'
>
 <!-- header and body go here -->
</soap:Envelope>

The

Envelope

 element is the root element for all SOAP messages, identifying
the XML as a SOAP message.

Child elements

An optional

Header

 element and a mandatory

Body

 element. Both elements are
in the

http://schemas.xmlsoap.org/soap/envelope/

 namespace.

10.2.3

Fault

<soap:Fault
 xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'
>
 <!-- detail goes here -->
</soap:Fault>

The

Fault

 element indicates that an error occurred while processing a SOAP
request. This element only appears in response messages.

Child elements

A

faultcode

 element followed by a

faultstring

 element followed by an
optional

faultactor

 element and an optional

detail

 element. Each of these
children is described in the following:

Skonnard.book Page 360 Monday, October 1, 2001 9:13 AM

SOAP 1.1

361

SO
AP

Name Syntax Description

faultcode <faultcode xmlns=''>
QName</faultcode>

The

faultcode

 element is of type

QName

and indicates what fault occurred. Several
existing categories of fault code are defined,
all in the

http://schemas.xmlsoap.org/
soap/envelope/

 namespace.

VersionMismatch

 indicates that the recipi-
ent of a message did not recognize the
namespace name of the

Envelope

 element.

MustUnderstand

 indicates that the recipient
of an element child of the

Header

 element
had a

soap:mustUnderstand

 attribute but
that element was not understood by the recip-
ient.

Client

 indicates the SOAP message
did not contain all the required information in
order for the recipient to process it. This
could mean that something was missing from
inside the

Body

 element. Equally, an expected
extension inside the

Header

 element could
have been missing. In either case, the sender
should not resend the message without cor-
recting the problem.

Server

 indicates that
the recipient of the message was unable to
process the message because of some
server-side problem. The message contents
were not at fault; rather, some resource was
unavailable or some processing logic failed
for a reason other than an error in the mes-
sage. The sender may legitimately resend the
message at a later time. All these fault codes
may be followed by a period and a further
string providing more detailed information
about the error; for example,

Client.InvalidParameter

.

faultstring <faultstring
xmlns=''>string
</faultstring>

The

faultstring

 element is of type

string

 and provides a human-readable
description of whatever fault occurred.

Skonnard.book Page 361 Monday, October 1, 2001 9:13 AM

362

Essential XML Quick Reference

Example

A SOAP

fault

faultactor <faultactor
xmlns=''>
uriReference
</faultactor>

The

faultactor

 element is of type

uriReference

 and indicates the source of
the fault. This may be the ultimate recipient of
the request message, in which case the ele-
ment is optional. Alternatively, the source of
the fault may be an intermediary somewhere
in the path the message took to get from the
sender to the ultimate recipient. In this case
the element must be present.

detail <detail xmlns=''>
any number of elements
in any namespace
</detail>

The

detail

 element is used to carry applica-
tion-specific error information and may be
annotated with any number of attributes from
any namespace, and may have any number of
namespace-qualified element children. The

detail

 element must be present if the fault
is the result of the recipient being unable to
process the

Body

 element. The

detail

 ele-
ment is not used to provide error information
in the case of the recipient being unable to
process an element child of the

Header

 ele-
ment. In such cases, error information is
placed inside the

Header

 element.

Name Syntax Description

<soap:Envelope
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 soap:encodingStyle='http://schemas.xmlsoap.org/soap/

 encoding/'>
 <soap:Body>
 <soap:Fault>
 <faultcode>soap:Client.InvalidRequest</faultcode>
 <faultstring>Invalid Request: Divide operation not

 supported</faultstring>
 <faultactor>http://marting.develop.com/soap/

 calcxslt.asp</faultactor>
 <detail>
 <m:MethodError
 xmlns:m='uuid:361C5CDE-FC66-4B17-A2C1-

 EB221DEFFD66'>
 <request>Divide</request>

Skonnard.book Page 362 Monday, October 1, 2001 9:13 AM

SOAP 1.1

363

SO
AP

An example of a fault in which the request message contained an invalid operation
request

10.2.4

Header

<soap:Header
 xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'
>
 <!-- extensions go here -->
</soap:Header>

The

Header

 element namespace serves as a container for extensions to SOAP.
No extensions are defined by the specification, but user-defined extension ser-
vices such as transaction support, locale information, authentication, digital sig-
natures, and so forth could all be implemented by placing some information inside
the

Header

 element. Children of the

Header

 element may be annotated with the

mustUnderstand and/or actor attributes.

Child elements
Any number of namespace-qualified elements that are not in the http://
schemas.xmlsoap.org/soap/envelope/ namespace

Example
A SOAP Header

 <reason>Operation not supported</reason>
 </m:MethodError>
 </detail>
 </soap:Fault>
 </soap:Body>
</soap:Envelope>

<soap:Envelope
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 soap:encodingStyle='http://schemas.xmlsoap.org/soap/

 encoding/'>
 <soap:Header>
 <x:Locale
 xmlns:x='http://example.org/Extensions/Locale'>
 <language>en</language>

Skonnard.book Page 363 Monday, October 1, 2001 9:13 AM

364 Essential XML Quick Reference

An example extension for locale information requesting that the recipient of the
message send any responses localized for the specified locale; in this case, UK
English.

10.3 Attributes in SOAP messages
SOAP defines three attributes in the namespace http://schemas.xml-
soap.org/soap/envelope/. These attributes are listed in the following sec-
tions in alphabetical order with a description and examples.

10.3.1 actor

soap:actor='anyURI'

The actor attribute is used to annotate an extension element. It specifies a URI
identifying the intermediary for which the annotated extension element is
intended. If the value of the attribute is the URI http://schemas.xml-
soap.org/soap/actor/next, then the extension is intended for the next
intermediary in the chain, which in the case of the initial sender will be the first
one. If the attribute is not present, then the extension element is intended for the
ultimate recipient of the message.

Examples
Use of the actor attribute

 <sublang>uk</sublang>
 </x:Locale>
 </soap:Header>
 <soap:Body>
 <!-- message payload goes here -->
 </soap:Body>
</soap:Envelope>

<soap:Envelope
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 soap:encodingStyle='http://schemas.xmlsoap.org/soap/

 encoding/'>
 <soap:Header>

Skonnard.book Page 364 Monday, October 1, 2001 9:13 AM

SOAP 1.1 365

SO
AP

An extension element intended for a specific intermediary in the chain

Use of the actor attribute to target the first intermediary

An example extension intended for the first intermediary in the chain

10.3.2 encodingStyle

soap:encodingStyle='list of anyURI'

The encodingStyle attribute indicates to the recipient of a SOAP message
which serialization format was used to encode a given element and its descendants.
This attribute may appear on any element. Descendant elements may override

 <x:x
 xmlns:x='http://example.org/Extensions/'
 soap:actor='http://example.org/Nodes/Fireball/XL5'>
 <!-- extension detail goes here -->
 </x:x>
 </soap:Header>
 <soap:Body>
 <!-- message payload goes here -->
 </soap:Body>
</soap:Envelope>

<soap:Envelope
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 soap:encodingStyle='http://schemas.xmlsoap.org/soap/

 encoding/'>
 <soap:Header>
 <x:x
xmlns:x='http://example.org/Extensions/'
soap:actor='http://schemas.xmlsoap.org/soap/actor/next'>
 <!-- extension detail goes here -->
 </x:x>
 </soap:Header>
 <soap:Body>
 <!-- message payload goes here -->
 </soap:Body>
</soap:Envelope>

Skonnard.book Page 365 Monday, October 1, 2001 9:13 AM

366 Essential XML Quick Reference

the value of an encodingStyle attribute specified on an ancestor. Elements
that use the encoding style described in Section 5 of the SOAP specification
should use the URI http://schemas.xmlsoap.org/soapencoding/ as
the value of this attribute. Several URIs may be provided, in which case the URIs
identifying the more specific encoding rules should appear before those identify-
ing less specific encoding rules.

Example
Use of encodingStyle attribute

A message that uses the encoding rules described in Section 5 of the SOAP
specification

10.3.3 mustUnderstand

soap:mustUnderstand='boolean'

The mustUnderstand attribute indicates to the recipient of a SOAP message
whether processing of an extension element is mandatory. If the attribute has the
value 1, then the recipient must recognize the extension element and process it
accordingly. If the recipient does not recognize the element, it must report a fault.
If the attribute has the value 0 (the default), then processing of the extension ele-
ment is optional.

Examples
Use of mustUnderstand attribute

<soap:Envelope
 xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'
 soap:encodingStyle='http://schemas.xmlsoap.org/soap/

 encoding/'>
 <!-- header and body go here -->
</soap:Envelope>

<soap:Envelope
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 soap:encodingStyle='http://schemas.xmlsoap.org/soap/

 encoding/'>
 <soap:Header>
 <x:x

Skonnard.book Page 366 Monday, October 1, 2001 9:13 AM

SOAP 1.1 367

SO
AP

A mandatory extension as specified by the mustUnderstand attribute with a
value of 1.

An optional extension

An optional extension as specified by the mustUnderstand attribute with a
value of 0.

10.4 Introduction to SOAP serialization rules
SOAP defines a set of serialization rules for encoding datatypes in XML. All data
is serialized as elements rather than attributes. Attributes are only used for struc-
tural metadata; for example, when references are needed. For simple types such
as strings, numbers, dates, and so forth, the datatypes defined in XML Schema

 xmlns:x='http://example.org/Extensions/'
 soap:mustUnderstand='1' >
 <!-- extension detail goes here -->
 </x:x>
 </soap:Header>
 <soap:Body>
 <!-- message payload goes here -->
 </soap:Body>
</soap:Envelope>

<soap:Envelope
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 soap:encodingStyle='http://schemas.xmlsoap.org/soap/

 encoding/'>
 <soap:Header>
 <x:x
 xmlns:x='http://example.org/Extensions/'
 soap:mustUnderstand='0' >
 <!-- extension detail goes here -->
 </x:x>
 </soap:Header>
 <soap:Body>
 <!-- message payload goes here -->
 </soap:Body>
</soap:Envelope>

Skonnard.book Page 367 Monday, October 1, 2001 9:13 AM

368 Essential XML Quick Reference

Part II—Datatypes are used. For types such as classes or structures, each field
in the type is serialized using an element with the same name as the field. For
array types, each array element is typically serialized using an element with the
same name as the type, although other element names may be used. In both
cases, if the field being serialized is itself a structure or an array, then nested ele-
ments are used. The top-level element in both the structure case and the array
case is namespace qualified. Descendant elements should be unqualified.

The serialization rules apply to children of the Header element as well as chil-
dren of the Body element. Such children are serialized types just like any other
type. A request and any associated response are also treated as types, and are
serialized according to the same rules.

Examples
Serialization of a structured Java or VB type

package example.org.People;
// Java class definition
class Person
{
 String name;
 float age;
 short height;
}

// VB Type definition
Public Type Person
 name As String
 age As Single
 height As Integer
End Type

<p:Person
 xmlns:p='urn:example-org:people'>
 <name>Martin</name>
 <age>33</age>
 <height>64</height>
</p:Person>

Skonnard.book Page 368 Monday, October 1, 2001 9:13 AM

SOAP 1.1 369

SO
AP

Serialization of a Java or VB array

10.4.1 Serialization of simple structured data

Serializing data structures, when each field is referred to exactly once, is straight-
forward. Each field is serialized as an embedded element, a descendant element
of the Body element, not as an immediate child. Such an element is called a single-
reference accessor, and it provides access to the data in the field at a single loca-
tion in the message. The element name used to contain the data is the same as
the field name used in the programmatic type.

package example.org.Num;
// Java class definition
class Numbers
{
 long[5] data;
}

// VB Type definition
Public Type Numbers
 data(5) As Long
End Type

<p:Numbers
 xmlns:p='urn:example-org:num'>
 <data enc:arrayType='xsd:long[5]'
xmlns:enc='http://schemas.xmlsoap.org/soap/encoding/'>
 <enc:long>2</enc:long>
 <enc:long>3</enc:long>
 <enc:long>5</enc:long>
 <enc:long>7</enc:long>
 <enc:long>9</enc:long>
 </data>
</p:Numbers>

Skonnard.book Page 369 Monday, October 1, 2001 9:13 AM

370 Essential XML Quick Reference

Example
Serializing structured data

package example.org.People;
// Java class definitions
class PersonName
{
 String givenName;
 String familyName;
}

class Person
{
 PersonName name;
 float age;
 short height;

 public static void AddPerson (Person person);
}

// VB Type definitions
Public Type PersonName
 givenName As String
 familyName As String
End Type

Public Type Person
 name As PersonName
 age As Single
 height As Integer
End Type

Public Sub AddPerson (ByRef person As Person)
End Sub

<soap:Envelope
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 soap:encodingStyle='http://schemas.xmlsoap.org/soap/

 encoding/'>
 <soap:Body>
 <p:AddPerson

Skonnard.book Page 370 Monday, October 1, 2001 9:13 AM

SOAP 1.1 371

SO
AP

Java and VB definitions for a method call taking a structured type representing a
Person as a single parameter, followed by the SOAP message representing a
request to execute such a method.

10.4.2 Serialization of structured data with multiple references

In cases when a field in a data structure is referred to in several places in that
data structure (for example, in a doubly linked list), then the field is serialized as
an independent element, an immediate child element of Body, and must have an
id attribute of type ID. Such elements are called multireference accessors. They
provide access to the data in the field from multiple locations in the message.
Each reference to the field in the data structure is serialized as an empty element
with an href attribute of type IDREF, where the value of the attribute contains
the identifier specified in the id attribute on the multireference accessor pre-
ceded by a fragment identifier, #.

Example
Multireference accessors

 xmlns:p='urn:example-org:people'>
 <person>
 <name>
 <givenName>Martin</givenName>
 <familyName>Gudgin</familyName>
 </name>
 <age>33</age>
 <height>64</height>
 </person>
 </p:AddPerson>
 </soap:Body>
</soap:Envelope>

package example.org.People;
// Java class definition
class PersonName
{
 String givenName;
 String familyName;
}

Skonnard.book Page 371 Monday, October 1, 2001 9:13 AM

372 Essential XML Quick Reference

Java definition for a method call taking two parameters both of type Person, fol-
lowed by the SOAP message representing a request to execute such a method
where both parameters refer to the same instance of Person.

10.4.3 Dealing with null references in complex data structures

In certain cases when reference types exist in a programmatic data structure
there is a need to represent a null reference. Such references are modeled in

class Person
{
 PersonName name;
 float age;
 short height;

 public static boolean Compare (Person p1, Person p2);
}

<soap:Envelope
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 soap:encodingStyle='http://schemas.xmlsoap.org/soap/

 encoding/'>
 <soap:Body xmlns:p='urn:example-org:people'>
 <p:Compare>
 <p1 href='#pid1' />
 <p2 href='#pid1' />
 </p:Compare>
 <p:Person id='pid1' >
 <name>
 <givenName>Martin</givenName>
 <familyName>Gudgin</familyName>
 </name>
 <age>33</age>
 <height>64</height>
 </p:Person>
 </soap:Body>
</soap:Envelope>

Skonnard.book Page 372 Monday, October 1, 2001 9:13 AM

SOAP 1.1 373

SO
AP

SOAP messages using the nil attribute in the http://www.w3.org/2001/
XMLSchema-instance namespace. Setting the value of the attribute to 1 indi-
cates that the accessor on which it appears represents a null reference.

Example
Null references

package example.org.Nodes;

// Java class definition
class Node
{
 String val;
 Node next;

 public static long ListLength (Node node);
}

<soap:Envelope
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 soap:encodingStyle='http://schemas.xmlsoap.org/soap/

 encoding/'>
 <next xmlns:xsi='http://www.w3.org/2001/XMLSchema'
 -instance xsi:nil='1' />
 <soap:Body >
 <n:ListLength xmlns:n='urn:example-org:nodes'>
 <node>
 <val>New York</val>
 <next>
 <val>Paris</val>
 <next>
 <val>London</val>
 </next>
 </next>
 </node>
 </n:ListLength>
 </soap:Body>
</soap:Envelope>

Skonnard.book Page 373 Monday, October 1, 2001 9:13 AM

374 Essential XML Quick Reference

Java class definition for a simple linked list. The end of the list is indicated by a
null reference in the next field. A list of three items is passed in the request
message.

10.4.4 Serializing dynamically typed data

SOAP provides for serialization of dynamically typed data; that is, data typed at
run-time, through a polymorphic accessor. Such accessors look like normal
accessors apart from the presence of a type in the http://www.w3.org/
2001/XMLSchema-instance' namespace. This attribute indicates the type
the accessor actually holds. The value of this attribute may well vary from mes-
sage to message.

Example
Dynamically typed date

package example.org.Poly;

// Java definitions
class Poly
{
 public static void Execute (Object param);
}

' Visual Basic Definition
Public Sub Execute (param As Variant)
End Sub

<soap:Envelope
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 soap:encodingStyle='http://schemas.xmlsoap.org/soap/

 encoding/'>
 <soap:Body>
 <p:Execute
 xmlns:p='urn:example-org:poly'
 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
 xmlns:xsd='http://www.w3.org/2001/XMLSchema' >
 <param xsi:type='xsd:long' >2000</param>

Skonnard.book Page 374 Monday, October 1, 2001 9:13 AM

SOAP 1.1 375

SO
AP

Java and VB definitions for a method call taking a dynamically typed parameter
followed by several SOAP messages representing a request to execute such a
method. The first SOAP message passes a parameter of type long whereas the
second passes a parameter of type Person.

10.4.5 Arrays

SOAP provides comprehensive array support. Single and multidimensional arrays
are supported, along with sparse and jagged arrays and partial transmission.
Arrays in SOAP are always of type Array in the http://schemas.xml-
soap.org/soap/encoding/ namespace, or a type derived by restriction
from that type. If they are of the Array type, they are encoded using an Array
element also in the http://schemas.xmlsoap.org/soap/encoding/
namespace. If they are of a derived type, then any element name may be used. In

 </p:Execute>
 </soap:Body>
</soap:Envelope>

<soap:Envelope
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 soap:encodingStyle='http://schemas.xmlsoap.org/soap/

 encoding/'>
 <soap:Body>
 <p:Execute
 xmlns:p='urn:example-org:poly'
 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
 xmlns:pre='urn:example-org:people'>
 <param xsi:type='pre:Person' >
 <name>
 <givenName>Martin</givenName>
 <familyName>Gudgin</familyName>
 </name>
 <age>33</age>
 <height>64</height>
 </param>
 </p:Execute>
 </soap:Body>
</soap:Envelope>

Skonnard.book Page 375 Monday, October 1, 2001 9:13 AM

376 Essential XML Quick Reference

either case, an arrayType attribute in the http://schemas.xmlsoap.org/
soap/encoding/ namespace is mandatory. The type of this attribute is string,
but it in fact indicates the type of the array along with dimension information.
Each dimension appears in square brackets after the QName for the type, sepa-
rated by commas. Each array item is serialized as an element. The name of this
element can be the type name or some arbitrary name.

Example
Simple array example

A response message containing an array of five long values. Note the value of
the arrayType attribute indicating the size of the array.

10.4.6 Multidimensional arrays

Multidimensional arrays can be encoded by specifying multiple dimensions sepa-
rated by commas inside the square brackets in the arrayType attribute. Any
number of dimensions may be specified.

<soap:Envelope
 xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'
 soap:encodingStyle='http://schemas.xmlsoap.org/soap/

 encoding/'>
 <soap:Body>
 <m:MethodResponse
 xmlns:m='urn:example-org:someuri' >
 <enc:Array
 xmlns:enc='http://schemas.xmlsoap.org/soap encoding/'
 xmlns:xsd='http://www.w3.org/2001/XMLSchema'
 enc:arrayType='xsd:long[5]' >
 <enc:long>2</enc:long>
 <enc:long>3</enc:long>
 <enc:long>5</enc:long>
 <enc:long>7</enc:long>
 <enc:long>9</enc:long>
 </enc:Array>
 </m:MethodResponse>
 </soap:Body>
</soap:Envelope>

Skonnard.book Page 376 Monday, October 1, 2001 9:13 AM

SOAP 1.1 377

SO
AP

Example
Multidimensional array example

A request message containing a two-dimensional array of strings. Note the value
of the arrayType attribute indicating the type and dimensions of the array.

10.4.7 Partial transmission of arrays

In certain scenarios an array of a certain size may need to be transmitted, but
only a subset of the items needs to be sent. For such arrays the array element
is annotated with an offset attribute in the http://schemas.xml-
soap.org/soap/encoding/ namespace. The value of the offset attribute
indicates the zero-based offset of the first element. The value appears in square
brackets. Listed items are assumed to appear at contiguous locations in the
array. Items may be omitted from the end of the array.

<soap:Envelope
 xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'
 soap:encodingStyle='http://schemas.xmlsoap.org/soap/

 encoding/'>
 <soap:Body>
 <m:Method
 xmlns:m='urn:example-org:some-uri' >
 <enc:Array
 xmlns:enc='http://schemas.xmlsoap.org/soap/encoding/'
 xmlns:xsd='http://www.w3.org/2001/XMLSchema'
 enc:arrayType='xsd:string[2,3]' >
 <item>row 1 column 1</item>
 <item>row 1 column 2</item>
 <item>row 1 column 3</item>
 <item>row 2 column 1</item>
 <item>row 2 column 2</item>
 <item>row 2 column 3</item>
 </enc:Array>
 </m:Method>
 </soap:Body>
</soap:Envelope>

Skonnard.book Page 377 Monday, October 1, 2001 9:13 AM

378 Essential XML Quick Reference

Example
Partial array tranmission

A request message that transmits the third, fourth, and fifth items in a nine-item array

10.4.8 Sparse arrays

Sparse arrays, those in which noncontiguous items need to be transmitted, are
also supported. Each serialized array item is annotated with a position
attribute in the http://schemas.xmlsoap.org/soap/encoding/ namespace.
The value of the position attribute is a zero-based offset of the position of the
item in the array, enclosed in square brackets.

Example
Sparse arrays

<soap:Envelope
 xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'
 soap:encodingStyle='http://schemas.xmlsoap.org/soap/

 encoding/'>
 <soap:Body>
 <m:Method xmlns:m='urn:example-org:someuri' >
 <enc:Array
 xmlns:enc='http://schemas.xmlsoap.org/soap/encoding/'
 xmlns:xsd='http://www.w3.org/2001/XMLSchema'
 enc:arrayType='xsd:string[9]'
 enc:offset='[2]'>
 <item>Earth</item>
 <item>Mars</item>
 <item>Jupiter</item>
 </enc:Array>
 </m:Method>
 </soap:Body>
</soap:Envelope>

<soap:Envelope
 xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'
 soap:encodingStyle='http://schemas.xmlsoap.org/soap/

 encoding/'>

 <soap:Body>

Skonnard.book Page 378 Monday, October 1, 2001 9:13 AM

SOAP 1.1 379

SO
AP

A request message that transmits the second, fourth, and eighth items in a nine-
item array

10.4.9 Jagged arrays

SOAP supports jagged arrays, also known as arrays of arrays. The arrayType
attribute contains a type that includes empty square brackets, as many as neces-
sary to indicate how many dimensions each array has, followed by the dimen-
sions of the array of arrays in square brackets as normal. The inner array ele-
ments are also annotated with the appropriate arrayType attribute.

Examples
Jagged arrays with single-reference accessors

 <m:Method xmlns:m='urn:example-org:someuri' >
 <enc:Array
 xmlns:enc='http://schemas.xmlsoap.org/soap/encoding/'
 xmlns:xsd='http://www.w3.org/2001/XMLSchema'
 enc:arrayType='xsd:string[9]' >
 <item enc:position='[1]'>Venus</item>
 <item enc:position='[3]'>Mars</item>
 <item enc:position='[7]'>Neptune</item>
 </enc:Array>
 </m:Method>
 </soap:Body>
</soap:Envelope>

<soap:Envelope
 xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'
 soap:encodingStyle='http://schemas.xmlsoap.org/soap/

 encoding/'>
 <soap:Body>
 <enc:Array
 xmlns:enc='http://schemas.xmlsoap.org/soap/encoding/'
 xmlns:xsd='http://www.w3.org/2001/XMLSchema'
 enc:arrayType='xsd:string[][2]' >
 <enc:Array enc:arrayType='xsd:string[2]'>
 <item>Mercury</item>
 <item>Venus</item>

Skonnard.book Page 379 Monday, October 1, 2001 9:13 AM

380 Essential XML Quick Reference

A request message that transmits an array of arrays of strings. Each array is
encoded using a single-reference accessor.

Jagged arrays with multireference accessors

 </enc:Array>
 <enc:Array enc:arrayType='xsd:string[6]'>
 <item>Mars</item>
 <item>Jupiter</item>
 <item>Saturn</item>
 <item>Uranus</item>
 <item>Neptune</item>
 <item>Pluto</item>
 </enc:Array>
 </enc:Array>
 </m:Method>
 </soap:Body>
</soap:Envelope>

<soap:Envelope
 xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'
 soap:encodingStyle='http://schemas.xmlsoap.org/soap/

 encoding/'>
 <soap:Body
 xmlns:enc='http://schemas.xmlsoap.org/soap/encoding/'
 xmlns:xsd='http://www.w3.org/2001/XMLSchema' >
 <m:Method xmlns:m='urn:some-uri' >
 <enc:Array enc:arrayType='xsd:string[][2]' >
 <item href='#id1' />
 <item href='#id2' />
 </enc:Array>
 </m:Method>
 <enc:Array id='id1' enc:arrayType='xsd:string[2]'>
 <item>Mercury</item>
 <item>Venus</item>
 </enc:Array>
 <enc:Array id='id2'
 enc:arrayType='xsd:string[6]'>
 <item>Mars</item>
 <item>Jupiter</item>

Skonnard.book Page 380 Monday, October 1, 2001 9:13 AM

SOAP 1.1 381

SO
AP

A request message that transmits an array of arrays of strings. Each array is
encoded using a multireference accessor.

10.5 Introduction to the SOAP HTTP binding
SOAP defines a binding to the HTTP protocol. This binding describes the relation-
ship between parts of the SOAP request message and various HTTP headers. All
SOAP requests use the HTTP POST method and specify at least three HTTP head-
ers: Content-Type, Content-Length, and a custom header SOAPAction.
The actual SOAP message is passed as the body of the request or response.

10.5.1 Content-Type

Content-Type: text/xml; charset=character encoding

The Content-Type header for SOAP requests and responses specifies the
MIME type for the message and is always text/xml. It may also specify the
character encoding used for the XML body of the HTTP request or response. This
follows the text/xml part of the header values.

Example
Use of Content-Type

An example Content-Type header in an HTTP request

 <item>Saturn</item>
 <item>Uranus</item>
 <item>Neptune</item>
 <item>Pluto</item>
 </enc:Array>
 </soap:Body>
</soap:Envelope>

POST /endpoint.pl HTTP/1.1
Content-Type: text/xml

Skonnard.book Page 381 Monday, October 1, 2001 9:13 AM

382 Essential XML Quick Reference

10.5.2 Content-Length

The Content-Length header for SOAP requests and responses is set to the
number of bytes in the body of the request or response.

Examples
Use of Content-Length

An example Content-Length header in an HTTP request. The request is
encoding using an 8-bit encoding format.

Use of Content-Length with charset

An example Content-Length header in an HTTP request. The request is
encoding using a 16-bit encoding format.

POST /endpoint.pl HTTP/1.1
Content-Type: text/xml
Content-Length: 167
SOAPAction: urn:example-org:demos#Method

<s:Envelope
 xmlns:s='http://schemas.xmlsoap.org/soap/envelope/' >
 <s:Body>
 <m:Method xmlns:m='urn:example-org:demos' />
 </s:Body>
</s:Envelope>

POST /endpoint.pl HTTP/1.1
Content-Type: text/xml; charset=UTF-16
Content-Length: 167
SOAPAction: urn:example-org:demos#Method

<s:Envelope
 xmlns:s='http://schemas.xmlsoap.org/soap/envelope/' >
 <s:Body>
 <m:Method xmlns:m='urn:example-org:demos' />
 </s:Body>
</s:Envelope>

Skonnard.book Page 382 Monday, October 1, 2001 9:13 AM

SOAP 1.1 383

SO
AP

10.5.3 SOAPAction

The SOAPAction header indicates to the HTTP server that the request is a SOAP
request. The value of the header is a URI. Beyond that, its value is undefined.

Example
Use of SOAPAction

An example SOAPAction header in an HTTP request. The string preceding the #
is the namespace name of the first child of the Body element whereas the string
following the # is the local name of that element.

10.6 References
For more on SOAP specification, please visit
http://www.w3.org/TR/SOAP/

POST /endpoint.pl HTTP/1.1
Content-Type: text/xml; charset=UTF-16
Content-Length: 167
SOAPAction: urn:example-org:demos#Method

<s:Envelope
 xmlns:s='http://schemas.xmlsoap.org/soap/envelope/' >
 <s:Body>
 <m:Method xmlns:m='urn:example-org:demos' />
 </s:Body>
</s:Envelope>

Skonnard.book Page 383 Monday, October 1, 2001 9:13 AM

Skonnard.book Page 384 Monday, October 1, 2001 9:13 AM

385

Index

!=, 39, 48–49
," 3, 10
&, 10
', 3, 10
*, 20, 39, 45, 51
+, 20, 51
-, 2, 39, 51
-->, 7, 8
., 2
/, 39
//, 39
/>, 1
:, 2
;, 10
< 1, 10, 11, 39, 51
<!--, 7
<![CDATA[, 11
</, 1
<=, 39, 51

<?xml

, 11
=, 5, 39, 48–49
>, 1, 10, 39, 51
>=, 39, 51
?, 20
?>, 7, 11
[...], 46
]]>, 11
_, 2
|, 39, 40

A

Absolute location paths, 39
Absolute URI references, 231

abstract

 attribute, 310, 315
Accessors

multireference, 371–372, 380–381
polymorphic, 374
single-reference, 369, 379–380

actor

 attribute, 364–365
Aliasing of URI, 123

all

 element, 288, 289, 291–292, 323

&

, 9–10

ancestor

 axis, 41, 42

ancestor-or-self

 axis, 41, 42

and

, 39, 48

annotation

 element, 287, 289, 293

any

 attribute, 19, 126

anyAttribute

 element, 289, 297–300

any

 element, 288, 289, 293–297

anyURI

 type, 229–231

'

, 9–10

appendChild

 (Node/IXMLDOMNode
member), 219

appendData

 (CharacterData/
IXMLDOMCharacterData member), 198

appinfo

 element, 289, 300–301

apply-imports

 element, 97, 99–100, 136

apply-templates

 element, 97, 100–102,
134, 136

document

 used with, 151
Arrays, 368, 375–381

jagged (arrays of arrays), 379–381
multidimensional, 376–377
partial transmission of, 377–378
sparse, 378–379

arrayType

 attribute, 376, 379

attribute

 type, 21–22

ATTLIST

, 18, 21–23
Attribute(s), 1, 5–6, 13

from

, 125

abstract

, 310, 315
accessing name and value of, 196

any

, 19, 126

arrayType

, 376, 379

attributeForm

, 341

base

, 282, 321, 338, 339

block

, 310–311, 315

blockDefault

, 341

case-order

, 134

cdata-section-elements

, 129

continued

Skonnard.book Page 385 Monday, October 1, 2001 9:00 AM

386

Essential XML Quick Reference

count

, 125
data, 5

data-type

, 134

decimal-separator

, 112

default

, 302, 315

digit

, 112

disable-output-escaping

, 140, 143

doctype-public

, 129

doctype-system

, 129

elementForm

, 341

elements

, 132, 135

encoding

, 11, 12, 129

exclude-result-prefixes

, 142

extension-element-prefixes

, 142

final

, 281, 311, 316

finalDefault

, 341–342

#FIXED

, 22

fixed

, 302, 316

form

, 302, 316

format

, 125, 126–127

grouping-separator

, 112, 125

grouping-size

, 125

href

, 80, 117, 118

id

, 142, 281, 282, 283, 285, 291, 293, 294,
298, 302, 306, 308, 309, 311, 317, 321,
324, 326, 327, 330, 331, 333, 334,
335, 338, 342, 345, 346, 348, 349

#IMPLIED

, 22

indent

, 129

infinity

, 112
instance, 350–354

nil

, 350–351

noNamespaceSchemaLocation

,
351–352

schemaLocation

, 352–353

type

, 353–354

itemType

, 283

lang

, 125, 134

letter-value

, 125

level

, 125

match

, 119, 136, 137

maxOccurs

, 291, 294, 308, 317, 326, 346

media-type

, 129

memberTypes

, 285
metadata, 5

method

, 129

minOccurs

, 291, 294, 308, 317, 326, 346

minus-sign

, 112

mixed

, 309, 311

mode

, 101, 137, 139–140

multiple

, 126

name

, 103, 105, 106, 112, 114, 119, 131,
133, 136, 137, 144, 145, 148, 281,
303, 306, 311, 317, 326, 331, 333,
334, 349

namespace

, 103, 114, 294–295, 298, 327
namespaces and, 6

NaN

, 112

nil

, 373

nillable

, 317

offset

, 377

omit-xml-declaration

, 129

order

, 134

parse

, 80

pattern-separator

, 112

percent

, 112

per-mille

, 112

position

, 378

priority

, 137, 139–140

process

, 295, 298

public

, 334
qualified, 6

ref

, 303, 306, 317, 326

refer, 333
#REQUIRED, 22
result-prefix, 123
schemaLocation, 328, 330, 335
select, 101, 131, 134, 143, 144, 145, 148
single, 126
in SOAP 1.1, 364–367

actor, 364–365
encodingStyle, 365–366
mustUnderstand, 366–367

source, 301, 313
standalone, 11, 129
string value, 38
stylesheet-prefix, 123
substitution, 318
system, 334
target, 342
terminate, 122
test, 148
type, 303, 318
unqualified, 6
use, 120, 303
use-attribute-sets, 105, 109, 114
value, 22, 125
version, 11, 129, 142, 342
xml:lang, 313, 342
xpath, 324–325, 345
zero-digit, 112

attribute axis, 42, 43

Skonnard.book Page 386 Monday, October 1, 2001 9:00 AM

Index 387

Attribute declaration(s)
global, 301–302, 304
local, 302, 304–305

attribute element (XSLT), 97, 102–104
attribute element (XML Schema), 287, 289,

301–305
Attribute enumerations, 22–23
attributeForm attribute, 341
attributeGroup element, 287, 289, 306–307
attribute-set element, 98, 104–106
AttributesImpl class, 162
attributes interface, 160, 161, 162–166
attributes (Node/IXMLDOMNode member), 218
Attribute string value, 38
attribute type, 21–22

built-in template descriptions for, 93
location-set range based on, 76

Attribute value templates, 94–95, 103, 104
Attr interface, 194, 195–196
Axis/axes, 41–44

ancestor, 41, 42
ancestor-or-self, 41, 42
attribute, 42, 43
child, 41, 42
descendant, 41, 42
descendant-or-self, 41, 42
following, 41, 42
following-sibling, 41, 42
namespace, 42, 43
parent, 41, 42
of point location, 73
preceding, 42
preceding-sibling, 42, 43
of range location, 73
self, 41, 42

Axis identifier, 40

B
Bare names, 69, 71–72
base64Binary type, 231–232
base attribute, 282, 321, 338, 339
block attribute, 310–311, 315
blockDefault attribute, 341
Block escape, 11
boolean-expression expression, 89
Boolean expressions, 37, 38, 39, 48, 49, 54, 58
boolean function, 53–54
boolean type, 50, 63, 232
byte type, 227, 232–234

C
call-template element, 97, 106–107
call-template instruction, 146
Carriage return character, 8, 95
case-order attribute, 134
Case sensitivity, 2
cdata-section-elements, 129
CDATASection interface, 197
CDATA type, 11, 21
ceiling function, 53, 55
CharacterData interface, 197–199
Character-point, 73
Character references, 13
characters (ContentHandler/

IVBSAXContentHandler member), 167
char type, 89
child axis, 41, 42
childList (IXMLDOMNode member), 218
Children

content model definition of, 19
of documents, 7
of elements, 1, 7

all, 312, 326, 338
annotation, 282, 283, 285, 292, 299,

304, 306, 309, 312, 318, 325, 326,
328, 330, 331, 333, 334, 336, 338,
343, 345, 347, 348, 349

any, 347
anyAttribute, 306, 312, 338
appinfo, 293
attribute, 306, 312, 338, 343
attributeGroup, 306, 312, 336, 338,

343
choice, 312, 326, 338, 347
complexContent, 312
complexType, 318, 336, 343
documentation, 293
element, 292, 343, 347
enumeration, 282, 338
extension, 309, 348
field, 331, 333, 349
fractionDigits, 282, 338
group, 312, 336, 338, 343, 347
import, 343
include, 343
key, 318
keyref, 318
length, 282, 338
list, 282

continued

Skonnard.book Page 387 Monday, October 1, 2001 9:00 AM

388 Essential XML Quick Reference

maxExclusive, 282, 338
maxInclusive, 282, 338
maxLength, 282, 338
minExclusive, 282, 338
minInclusive, 282, 338
minLength, 282, 338
notation, 343
pattern, 282, 338
qualified, 313
redefine, 343
restriction, 282, 309, 348
selector, 331, 333, 349
sequence, 312, 326, 338, 347
simpleContent, 312
simpleType, 282, 283, 285, 304, 318,

336, 338, 343
totalDigits, 282, 338
union, 282
unique, 318
unqualified, 313
whitespace, 282
whiteSpace, 338

serialization rules applied to, 368
Child sequences, 69, 72
choice element, 288, 289, 307–309
choose element, 97, 107–108, 116
Classes, 368

AttributesImpl, 162
DefaultHandler, 162
InputSource, 160, 162
LocatorImpl, 162
NamespaceSupport, 162
SAXException, 162
SAXNotRecognizedException, 162
SAXNotSupportedException, 162
SAXParseException, 162
XMLFilterImpl, 162
XMLReaderFactory, 162

cloneNode (Node/IXMLDOMNode member), 219
Close tag, 1, 13
Coercion function, 148
comment element, 97, 108–109

string value, 38
comment() identifier, 46
Comment interface, 199
Comments, 7–8
complexContent element, 289, 309
complexType element, 287, 289, 310–313
concat function, 53, 55
Conditional template, 116
Conflict resolution in XSLT, 91–92
contains function, 53, 55

contentHandler (IVBSAXXMLReader property),
186

ContentHandler interface, 160, 161, 166–174
Content-Length header, 382–383
Content model, 19
Content-Type header, 381–382
Context node, 39–40
Context node-set, 39–40
copy element, 97, 109–110
copy-of element, 97, 110–111
count attribute, 125
count function, 53, 56
createAttribute (Document/IXMLDOMDocument

member), 202
createAttributeNS (Document member), 203
createCDATASection (Document/

IXMLDOMDocument member), 202
createComment (Document/IXMLDOMDocument

member), 202
createDocumentFragment (Document/

IXMLDOMDocument member), 201
createDocument (DOMImplementation

member), 207
createDocumentType (DOMImplementation

member), 207
createElement (Document/IXMLDOMDocument

member), 201
createElementNS (Document member), 203
createEntityReference

(IXMLDOMDocument member), 202
createProcessingInstruction (Document/

IXMLDOMDocument member), 202
createTextNode (Document/

IXMLDOMDocument member), 202
Cross-references, key to process, 120–121
Curly braces, 95
current function, 149–150

D
data (IXMLDOMCharacterData property), 198
data (IXMLDOMProcessingInstruction member), 226
Data attributes, 5
data-type attribute, 134
Datatypes. See also Schema datatypes

XPath, 37–38
XSLT, 89–90

Date and time datatypes (XML Schema)
date, 233–234
dateTime, 228, 234–235
duration, 228, 237–238
gDay, 228, 241
gMonth, 228, 242

Skonnard.book Page 388 Monday, October 1, 2001 9:00 AM

Index 389

gMonthDay, 228, 242–243
gYear, 228, 243–244
gYearMonth, 228, 244
time, 228, 261–262

decimal-format element, 98, 111–113
decimal-separator attribute, 112
decimal type, 227, 235–236
DecimalUnicodeValue, 13
Declaration(s)

attribute
global, 301–302, 304
local, 302, 304–305

element, 19–21
global, 312, 314–315, 318–320
local, 314–315, 319, 344

namespace, 2–5, 13
scope of, 3

XML, 11–12
Declarative transformation, 87–88, 136, 138–139
DeclHandler interface, 160, 162
decl-handler (SAX property), 191
default attribute, 302, 315
DefaultHandler class, 162
deleteData (CharacterData/

IXMLDOMCharacterData member), 198
descendant axis, 41, 42
descendant-or-self axis, 41, 42
detail element, 362
digit attribute, 112
disable-output-escaping attribute, 140, 143
div operator, 39, 51
DOCTYPE, 15–19, 24

external, 16, 17–19
internal, 16–17, 18–19
syntax, 16

docType (IXMLDOMDocument property), 201
doctype-public attribute, 129
doctype-system attribute, 129
Document(s)

children of, 7
stand-alone, 12

documentation element, 289, 313–314
documentElement (IXMLDOMDocument

property), 201
Document element. See Element(s)
Document entity, 24
DocumentFragment interface, 205
document function, 149, 150–152
Document interface, 194, 199–204
documentLocator (IVBSAXContentHandler

property), 167
Document Object Model. See DOM Level 2

Document order, 37
Document type definitions (DTDs), 15–33

ATTLIST, 18, 21–23
DOCTYPE, 15–19, 24

external, 16, 17–19
internal, 16–17, 18–19
syntax, 16

ELEMENT, 19–21
ENTITY, 18, 24–31

general vs. parameter, 24, 25, 29, 30
internal vs. external, 24, 25–30
parsed vs. unparsed, 24, 25, 30–31
syntax, 24

INCLUDE and IGNORE, 32–33
NOTATION, 31–32

DocumentType interface, 205–206
DOMImplementation interface, 194, 206–207
DOM Level 2, 35, 193–226

interfaces, 193–226
Attr, 194, 195–196
CDATASection, 197
CharacterData, 197–199
Comment, 199
Document, 194, 199–204
DocumentFragment, 205
DocumentType, 205–206
DOMImplementation, 194, 206–207
Element, 194, 207–211
Entity, 211–212
EntityReference, 212
NamedNodeMap, 212–215
Node, 215–222
NodeList, 223–225
Notation, 225
ProcessingInstruction, 194, 225–226

UML quick reference, 193, 194
dom-node (SAX property), 190
double type, 228, 236–237
DTDHandler interface, 160, 161, 175–177
dtdHandler (IVBSAXXMLReader property), 187
DTDs. See Document type definitions (DTDs)
duration datatype, 228, 237–238

E
Element(s), 1–5

if, 97, 116–117
annotated with attributes, 5–6
apply-imports, 97, 99–100, 136
apply-templates, 97, 100–102, 136

document used with, 151
associating with namespace, 3
attribute, 97, 102–104

continued

Skonnard.book Page 389 Monday, October 1, 2001 9:00 AM

390 Essential XML Quick Reference

attribute-set, 98, 104–106
attributes of. See Attribute(s)
call-template, 97, 106–107
child

all, 312, 326, 338
annotation, 282, 283, 285, 292, 299,

304, 306, 309, 312, 318, 325, 326,
328, 330, 331, 333, 334, 336, 338,
343, 345, 347, 348, 349

any, 347
anyAttribute, 306, 312, 338
appinfo, 293
attribute, 306, 312, 338, 343
attributeGroup, 306, 312, 336, 338, 343
choice, 312, 326, 338, 347
complexContent, 312
complexType, 318, 336, 343
documentation, 293
element, 292, 343, 347
enumeration, 282, 338
extension, 309, 348
field, 331, 333, 349
fractionDigits, 282, 338
group, 312, 336, 338, 343, 347
import, 343
include, 343
key, 318
keyref, 318
length, 282, 338
list, 282
maxExclusive, 282, 338
maxInclusive, 282, 338
maxLength, 282, 338
minExclusive, 282, 338
minInclusive, 282, 338
minLength, 282, 338
notation, 343
pattern, 282, 338
qualified, 313
redefine, 343
restriction, 282, 309, 348
selector, 331, 333, 349
sequence, 312, 326, 338, 347
simpleContent, 312
simpleType, 282, 283, 285, 304, 318,

336, 338, 343
totalDigits, 282, 338
union, 282
unique, 318
unqualified, 313
whitespace, 282
whiteSpace, 338

children of, 7
choose, 97, 107–108, 116
comment, 97, 108–109
copy, 97, 109–110
copy-of, 97, 110–111
decimal-format, 98, 111–113
detail, 362
element, 97, 113–114
fallback, 98, 114–115
faultactor, 362
faultcode, 360–361
faultstring, 361
for-each, 97, 115–116
import, 96, 98, 117–118
include, 96, 98, 118–119
key, 98, 119–121
message, 98, 121–122
namespace-alias, 98, 122–124
namespace declarations of, 1
number, 98, 124–128
otherwise, 97, 128
output, 98, 128–130
param, 96, 130–132, 137
preserve-space, 98, 132, 135
processing-instruction, 97, 133

string value, 38
qualified, 4–5
in SOAP 1.1, 358–364

Body, 358–359
Envelope, 360
Fault, 360–363
Header, 363–364

sort, 97, 133–135
string value, 38
strip-space, 98, 99, 132, 135
template, 96, 99, 136–140
testing for, 153
text, 97, 140–141
transform, 136
transform (stylesheet), 96, 136,

141–142
unqualified, 3–4
value-of, 97, 143
variable, 96, 99, 144–147
when, 97, 147–148
with-param, 97, 148

element-available function, 149,
152–153

ELEMENT declaration, 19–21
global, 312, 314–315, 318–320
local, 314–315, 319, 344

element element (XSLT), 97, 113–114

Skonnard.book Page 390 Monday, October 1, 2001 9:00 AM

Index 391

element element (XML Schema), 287, 288, 289,
314–320

elementForm attribute, 341
Element interface, 194, 207–211
elements attribute, 132, 135
element type

built-in template descriptions for, 93
location-set start-point based on, 78

EMPTY, 19
Empty string, 4
encoding attribute, 11, 12, 129
encodingStyle attribute, 365–366
endDocument (ContentHandler/

IVBSAXContentHandler member), 167
end-point function, 74–75
endPrefixMapping (ContentHandler/

IVBSAXContentHandler member), 167
ENTITIES type, 22
entities (IXMLDOMDocumentType property), 206
Entity(ies), 18, 24–31

document, 24
general vs. parameter, 24, 25, 29, 30
internal vs. external, 24, 25–30
parsed vs. unparsed, 24, 25, 30–31
syntax, 24

Entity interface, 211–212
EntityReference interface, 212
EntityResolver interface, 160, 161,

177–178
entityResolver (IVBSAXXMLReader property),

187
ENTITY type, 22
enumeration facet, 267–268
Equality expressions, 39, 48–50
Equality types, precedence of, 50
ErrorHandler interface, 160, 161, 178–181
errorHandler (IVBSAXXMLReader property), 187
error (ErrorHandler/IVBSAXErrorHandler

member), 179
exclude-result-prefixes attribute, 142
Exemplar-based transformations, 86, 88
expression expression, 89
Expressions

XPath, 38–39
basic, 48–52
location path, 39–47

XSLT, 89–90
extension-element-prefixes attribute, 142
extension element, 290, 320
External DTD subset, 16, 17–19
external-general-entities (SAX feature),

190

external-parameter-entities (SAX
feature), 190

F
Facets, 267–280

enumeration, 267–268
fractionDigits, 268–269
length, 269–270
maxExclusive, 270–271
maxInclusive, 271–272
maxLength, 272–274
minExclusive, 274–275
minInclusive, 275–276
minLength, 276–277
pattern, 277–278
totalDigits, 278–279
whiteSpace, 279–280

fallback element, 98, 114–115
false function, 56
fatalError (ErrorHandler/IVBSAXErrorHandler

member), 179
faultactor element, 362
faultcode element, 360–361
faultstring element, 361
Features, SAX, 190–191
field element, 288, 324–325
final attribute, 281, 311, 316
finalDefault attribute, 341–342
firstChild (IXMLDOMNode property), 218
#FIXED attribute, 22
fixed attribute, 302, 316
float type, 228, 240–241
floor function, 53, 56–57
following axis, 41, 42
following-sibling axis, 41, 42
for-each element, 97, 115–116, 134

document used with, 151–152
format attribute, 125, 126–127
format-number function, 111, 149, 153–154
form attribute, 302, 316
fractionDigits facet, 268–269
Fragment identifier, 69
from attribute, 125
Full XPointers, 70–71
Function(s)

boolean, 53–54
ceiling, 53, 55
coercion, 148
concat, 53, 55
contains, 53, 55
count, 53, 56
current, 149–150

continued

Skonnard.book Page 391 Monday, October 1, 2001 9:00 AM

392 Essential XML Quick Reference

document, 149, 150–152
element-available, 149, 152–153
end-point, 74–75
false, 56
floor, 53, 56–57
format-number, 111, 149, 153–154
function-available, 149, 154–155
generate-id, 149, 155
here, 75
id, 52, 57
key, 149, 155–156
lang, 52, 58
last, 52, 58
local-name, 52, 59
name, 52, 59
namespace-uri, 52, 60
normalize-space, 53, 60
not, 53, 61
number, 37, 38, 49, 53, 54, 61–62
origin, 75–76
position, 52, 62
range, 76–77
range-inside, 77
range-to, 77–78
round, 53, 62
start-point, 78,
starts-with, 53, 63
string, 37, 38, 49, 53, 54, 63–64
string-length, 53, 64
substring, 53, 64–65
substring-after, 53, 65
substring-before, 53, 65
sum, 53, 66
system-property, 149, 156
translate, 53, 66
true, 67
unparsed-entity-uri, 149, 157

function-available function, 149, 154–155

G
gDay datatype, 228, 241
General entities, 24, 25, 29, 30
generate-id function, 149, 155
getAttribute (Element/IXMLDOMElement

member), 209
getAttributeNode (Element/

IXMLDOMElement member), 209
getAttributeNodeNS (Element/

IXMLDOMElement member), 210
getAttributeNS (Element/IXMLDOMElement

member), 210

getAttributes (Node/IXMLDOMNode
member), 218

getChildNodes (Node/IXMLDOMNode
member), 218

getContentHandler (XMLReader member), 186
getData (CharacterData member), 198
getData (IXMLDOMProcessingInstruction

member), 226
getDocType (Document member), 201
getDocumentElement (Document member), 201
getDocumentLocator (ContentHandler

member), 167
getDTDHandler (XMLReader member), 187
getElementById (Document member), 203
getElementsByTagName (Document/

IXMLDOMDocument member), 202
getElementsByTagName (Element/

IXMLDOMElement member), 210
getElementsByTagNameNS (Document

member), 203
getElementsByTagNameNS (Element

member), 210
getEntities (DocumentType member), 206
getEntityResolver (XMLReader member), 187
getErrorHandler (XMLReader member), 187
getFeature (XMLReader/IVBSAXXMLReader

member), 187
getFirstChild (Node member), 218
getImplementation (Document member), 201
getIndexFromName (IVBSAXAttributes

member), 164
getIndexFromQName (IVBSAXAttributes

member), 164
getInternalSubset (Document member), 206
getLastChild (Node member), 218
getLength (NodeList member), 223
getLength (Attributes member), 163
getLength (CharacterData member), 198
getLocalName (Attributes member), 163
getLocalName (Node member), 219
getNamedItem (NamedNodeMap/

IXMLDOMNamedNodeMap member), 213
getNamedItemNS (NamedNodeMap member), 214
getName (DocumentType member), 205
getName (Attribute member), 195
getNamespaceURI (Node member), 219
getNextSibling (Node member), 218
getNodeName (Node member), 218
getNodeType (Node member), 218
getNodeValue (Node member), 218
getNotationName (Entity member), 212

Skonnard.book Page 392 Monday, October 1, 2001 9:00 AM

Index 393

getNotations (DocumentType member), 206
getOwnerDocument (Node member), 218
getOwnerElement (Attribute member), 195
getParentNode (Node member), 218
getPrefix (Node member), 219
getPreviousSibling (Node member), 218
getProperty (XMLReader/IVBSAXXMLReader

member), 187
getPublicId (DocumentType member), 206
getPublicId (Notation member), 225
getPublicId (Entity member), 212
getQName (Attributes/IVBSAXAttributes member),

164
getQualifiedItem (IXMLDOMNamedNodeMap

member), 214
getSpecified (Attribute member), 195
getSystemId (DocumentType member), 206
getSystemId (Notation member), 225
getSystemId (Entity member), 212
getTagName (Element member), 209
getTarget (ProcessingInstruction member), 226
getTypeFromName (IVBSAXAttributes member),

164
getTypeFromQName (IVBSAXAttributes

member), 164
getType (Attributes/IVBSAXAttributes member),

164
getURI (Attributes/IVBSAXAttributes member), 163
getValueFromName (IVBSAXAttributes

member), 164
getValueFromQName (IVBSAXAttributes

member), 164
getValue (Attributes/IVBSAXAttributes member),

164
getValue (Attr member), 195
Global attribute declaration, 301–302, 304
Global element declaration, 312, 314–315,

318–320
gMonth datatype, 228, 242
gMonthDay datatype, 228, 242–243
grouping-separator attribute, 112, 125
grouping-size attribute, 125
group element, 287, 288, 289, 290, 325–327
>, 9–10
gYear datatype, 228, 243–244
gYearMonth datatype, 228, 244

H
hasAttribute (Element member), 210
hasAttributeNS (Element member), 210
hasAttributes (Node member), 219

hasChildNodes (Node/IXMLDOMNode
member), 219

hasFeature (DOMImplementation/
IXMLDOMImplementation member), 207

here function, 75
hexBinary type, 245
href attribute, 80, 117, 118
Hypertext Transfer Protocol (http), 357

I
id attribute, 142, 281, 282, 283, 285, 291, 293,

294, 298, 302, 306, 308, 309, 311, 317,
321, 324, 326, 327, 330, 331, 333, 334,
335, 338, 342, 345, 346, 348, 349

id function, 52, 57
IDREFS type, 22
IDREF type, 22
ID type, 21
if element, 97, 116–117
ignorableWarning (IVBSAXErrorHandler

member), 179
ignorableWhitespace (ContentHandler/

IVBSAXContentHandler member), 167
IGNORE, 32–33
implementation (IXMLDOMDocument

property), 201
#IMPLIED attribute, 22
import element (XSLT), 96, 98, 117–118
import element (XML Schema), 287, 288,

327–329
importNode (Document member), 202–203
INCLUDE, 32–33
include element (XSLT), 96, 98, 118–119
include element (XML Schema), 287, 288,

329–330
include namespace, 79
indent attribute, 129
infinity attribute, 112
InputSource class, 160, 162
insertBefore (Node/IXMLDOMNode member),

219
insertData (CharacterData/

IXMLDOMCharacterData member), 198
Instance attributes, 350–354

nil, 350–351
noNamespaceSchemaLocation, 351–352
schemaLocation, 352–353
type, 353–354

integer type, 227, 248–249
Interfaces, DOM

Attr, 195–196
continued

Skonnard.book Page 393 Monday, October 1, 2001 9:00 AM

394 Essential XML Quick Reference

CDATASection, 197
CharacterData, 197–199
Comment, 199
Document, 199–204
DocumentFragment, 205
DocumentType, 205–206
DOMImplementation, 206–207
Element, 207–211
Entity, 211–212
EntityReference, 212
NamedNodeMap, 212–215
Node, 215–222
NodeList, 223–224
Notation, 225
ProcessingInstruction, 225–226
Text, 226

Interfaces, SAX
Attributes, 160, 161, 162–166
ContentHandler, 160, 161, 166–174
DeclHandler, 160, 162
DTDHandler, 160, 161, 175–177
EntityResolver, 160, 161, 177–178
ErrorHandler, 160, 161, 178–181
LexicalHandler, 160, 162
Locator, 160, 161, 181–183
XMLFilter, 160, 161, 183–185
XMLReader, 160, 161, 185–189

Internal DTD subset, 16–17, 18–19
int type, 227, 247–248
ISO–10646 characters, 12, 13
isSupported (Node member), 219
item (NamedNodeMap/

IXMLDOMNamedNodeMap member), 214
item (NodeList/IXMLDOMNodeList member), 223
itemType attribute, 283

J
Jagged arrays (arrays of arrays), 379–381
Java

Attributes in, 163, 164–165
Attr in, 195, 196
CharacterData in, 197, 198
ContentHandler in, 166–167, 169,

170–172, 179, 180
Document in, 200, 204
DocumentType in, 205
DOMImplementation in, 206, 207
DTDHandler in, 175–176
Element in, 208, 211
Entity in, 211
EntityReference in, 212
EntityResolver in, 177, 178

Locator in, 181, 182
NameNodeMap in, 212–213, 214–215
Node in, 215–216, 220, 221–222
NodeList in, 223
Notation in, 225
ProcessingInstruction in, 225
serialization of array, 369
serialization of structured type, 368
Text in, 226
XMLFilter in, 183, 184
XMLReader in, 185–186, 188

K
key element, 98, 119–121
key function, 149, 155–156
keyref element, 288, 289, 332, 333
key element, 288, 289, 330–332

L
lang attribute, 125, 134
lang function, 52, 58
Language constructs, 280–286

list, 283–284
restriction, 282–283
simpleType, 281–282
union, 284–286

language type, 249
lastChild (IXMLDOMNode property), 218
last function, 52, 58
length facet, 269–270
length (IVBSAXAttributes property), 163
length (IXMLDOMCharacterData property), 198
letter-value attribute, 125
level attribute, 125
LexicalHandler interface, 160, 162
lexical-handler (SAX property), 191
Lexical space, 229
Line feed character, 8
list, 283–284
Literals, prohibited character, 9–10
Local attribute declaration, 302, 304–305
Local element declarations, 314–315, 319, 344
local-name function, 52, 59
Location path, 35, 39
Location path expressions, 39–47

axis, 41–44
example of, 40
location path abbreviations, 47
location steps, 40–41
node test, 44–46, 54, 57
predicates, 46–47

LocatorImpl class, 162

Skonnard.book Page 394 Monday, October 1, 2001 9:00 AM

Index 395

Locator interface, 160, 161, 181–183
long type, 227, 250
Loops, for-each, 97, 115–116
<, 9–10

M
match attribute, 119, 136, 137
maxExclusive facet, 270–271
maxInclusive facet, 271–272
maxLength facet, 272–274
maxOccurs attribute, 291, 294, 308, 317, 326,

346
media-type attribute, 129
memberTypes attribute, 285
message element, 98, 121–122
Metadata attributes, 5
method attribute, 129
MIME types, 31
minExclusive facet, 274–275
minInclusive facet, 275–276
minLength facet, 276–277
minOccurs attribute, 291, 294, 308, 317, 326,

346
minus-sign attribute, 112
mixed attribute, 309, 311
mod operator, 39, 51
mode attribute, 101, 137, 139–140
Multidimensional arrays, 376–377
multiple attribute, 126
Multireference accessors, 371–372, 380–381
mustUnderstand attribute, 366–367

N
Name, node test by, 44–45
Name and string datatypes

hierarchy of, 23
Name, 229, 251
NCName, 229, 251–252
normalizedString, 229, 256–257
QName, 229, 259
string, 229, 260–261
token, 229, 262–263

name attribute, 103, 105, 106, 112, 114, 119,
131, 133, 136, 137, 144, 145, 148, 281,
303, 306, 311, 317, 326, 331, 333, 334,
349

name (IXMLDOMAttribute member), 195
name (IXMLDOMDocumentType property), 205
NamedNodeMap interface, 212–215
name function, 52, 59
Namespace(s), 1–14

associating element with, 3

attributes and, 6
string value, 38
XInclude, 79

namespace-alias element, 98, 122–124
namespace attribute, 103, 114, 294–295, 298,

327
namespace axis, 42, 43
Namespace declarations, 1, 2–5, 13

scope of, 3
Namespace prefix, 3, 13
namespace-prefixes (SAX feature), 190
namespaces (SAX feature), 190
NamespaceSupport class, 162
namespace type

location-set range based on, 76
location-set start-point based on, 78

namespace-uri function, 52, 60
namespaceURI (IXMLDOMNode property), 217
Name wildcard, 45
NaN attribute, 112
NCNames, 3
negativeInteger type, 227, 252–253
New line character, 95
nextSibling (IXMLDOMNode property), 218
nil attribute, 350–351, 373
nillable attribute, 317
NMTOKENS type, 22
NMTOKEN type, 22
nodeFromID (IXMLDOMDocument member), 203
node() identifier, 46
Node interface, 215–222
NodeList interface, 223–225
nodeName (IXMLDOMNode property), 218
Node-point, 73
Node-set(s), 35, 36, 38, 72

equality/inequality, 49
looping through, 116
sorting, 134–135
union of, 155–156

node-set-expression expression, 89
node-set type, 63, 150, 151
Node string-value, 38
Node test, 40, 44–46, 54, 57

by name, 44–45
by type, 45–46
in XPointer, 74

nodeType (IXMLDOMNode property), 218
nodeValue (IXMLDOMNode property), 218
noNamespaceSchemaLocation attribute,

351–352
nonNegativeInteger type, 227, 254–255
nonPositiveInteger type, 227, 255–256

Skonnard.book Page 395 Monday, October 1, 2001 9:00 AM

396 Essential XML Quick Reference

normalize (Node member), 219
normalize-space function, 53, 60
NOTATION (DTD), 31–32
Notation interface, 225
notation element, 287, 289, 333–335
NOTATION type, 22not function, 53, 61
notationName (IXMLDOMEntity property),

212notations (IXMLDOMDocumentType
property), 206

number element, 98, 124–128
number-expression expression, 89
number function, 37, 38, 49, 53, 54, 61–62
number type, 50, 63
Numerical expressions, 39, 51–52
Numeric datatypes (XML Schema)

byte, 227, 232–234
decimal, 227, 235–236
double, 228, 236–237
float, 228, 240–241
hierarchy of, 230
int, 227, 247–248
integer, 227, 248–249
long, 227, 250
negativeInteger, 227, 252–253
nonNegativeInteger, 227, 254–255
nonPositiveInteger, 227, 255–256
positiveInteger, 227, 258–259
short, 227, 259–260
unsignedByte, 228, 263–264
unsignedInt, 228, 264–265
unsignedLong, 228, 265–266
unsignedShort, 228, 266

O
Occurrence modifiers, 19–20
offset attribute, 377
omit-xml-declaration attribute, 129
Open tag, 1, 13
or, 39, 48
order attribute, 134
origin function, 75–76
other type, 54, 57, 63, 151, 156

location-set range based on, 76
otherwise element, 97, 128
output element, 98, 128–130
ownerDocument (IXMLDOMNode property), 218

P
param element, 96, 130–132, 137
Parameter entities, 24, 25
parent axis, 41, 42

parentNode (IXMLDOMNode property), 218
parse attribute, 80
Parsed entities, 24, 25, 30
parse (XMLReader/IVBSAXXMLReader member),

187
parseURL (IVBSAXXMLReader member), 187
pattern expression, 90
pattern facet, 277–278
Patterns, 90–91
pattern-separator attribute, 112
#PCDATA, 19
percent attribute, 112
per-mille attribute, 112
Point location, 73, 74
point type

location-set range based on, 76
location-set start-point based on, 78

Polymorphic accessor, 374
position attribute, 378
position function, 52, 62
positiveInteger type, 227, 258–259
Precedence of equality types, 50
preceding axis, 42
preceding-sibling axis, 42, 43
Predicates, 40, 46–47
Prefix, namespace, 3, 13
prefix (IXMLDOMNode property), 219
preserve-space element, 98, 132, 135
previousSibling (IXMLDOMNode property), 218
priority attribute, 137, 139–140
Procedural programming model, 136
Procedural transformation, 86–87, 137–138
process attribute, 295, 298
Processing instruction element, 97, 133

string value, 38
processing-instruction() identifier, 46
ProcessingInstruction interface, 194,

225–226
processingInstruction (ContentHandler/

IVBSAXContentHandler member), 167
processing instruction type, location-set

start-point based on, 78
Processor-specific element, testing for, 153
Prohibited character literals, 9–10
Properties, SAX, 190–191
Property(ies)

vendor, 156
vendor-url, 156
version, 156

public attribute, 334
Public identifier, 17–18

Skonnard.book Page 396 Monday, October 1, 2001 9:00 AM

Index 397

publicId (IXMLDOMEntity property), 212
publicId (IXMLDOMNotation property),

225PUBLIC token, 17
putFeature (IVBSAXXMLReader member), 187
putProperty (IVBSAXXMLReader member), 187

Q
QNames type, 89
QName test, 45
QName type, 3, 89
Qualified attributes, 6
Qualified elements, 4–5
Qualified name, 3
", 9–10

R
range function, 76–77
range-inside function, 77
range location, 73, 74
range-to function, 77–78
range type, location-set start-point based on, 78
Recursive templates, 146–147
redefine element, 288, 335–337
ref attribute, 303, 306, 317, 326
refer attribute, 333
References, character, 13
Relational expressions, 39, 51
Relative URIs, 81, 231
removeAttribute (Element/IXMLDOMElement

member), 209
removeAttributeNode (Element/

IXMLDOMElement member), 210
removeAttributeNS (Element member), 210
removeChild (Node/IXMLDOMNode member),

219
removeNamedItem (NamedNodeMap/

IXMLDOMNamedNodeMap member), 213
removeNamedItemNS (NamedNodeMap

member), 214
removeQualifiedItem

(IXMLDOMNamedNodeMap member), 214
replaceChild (Node/IXMLDOMNode member),

219
replaceData (CharacterData/

IXMLDOMCharacterData member), 198
#REQUIRED attribute, 22
resolveEntity (EntityResolver/

IVBSAXEntityResolver member), 177
restriction, 282–283, 290, 337–340
Result tree fragment, 144–145
result-prefix attribute, 123

Reverse document order, 37
Root,

string value, 38
built-in template descriptions for, 93
location-set start-point based on, 78

round function, 53, 62

S
SAX 2.0, 159–191

SAX interfaces and classes, 161–190
Attributes, 160, 161, 162–166
AttributesImpl, 162
ContentHandler, 160, 161, 166–174
DeclHandler, 160, 162
DefaultHandler, 162
DTDHandler, 160, 161, 175–177
EntityResolver, 160, 161, 177–178
ErrorHandler, 160, 161, 178–181
InputSource, 160, 162
LexicalHandler, 160, 162
Locator, 160, 161, 181–183
LocatorImpl, 162
NamespaceSupport, 162
SAXException, 162
SAXNotRecognizedException, 162
SAXNotSupportedException, 162
SAXParseException, 162
XMLFilter, 160, 161, 183–185
XMLFilterImpl, 162
XMLReader, 160, 161, 185–189
XMLReaderFactory, 162

features and properties, 190–191
UML quick reference, 159–160

SAXException class, 162
SAXNotRecognizedException class, 162
SAXNotSupportedException class, 162
SAXParseException class, 162
Schema datatypes, 227–286

anyURI, 229–231
base64Binary, 231–232
boolean, 232
date and time

date, 233–234
dateTime, 228, 234–235
duration, 228, 237–238
gDay, 228, 241
gMonth, 228, 242
gMouthDay, 228, 242–243
gYear, 228, 243–244
gYearMonth, 228, 244
time, 228, 261–262

Skonnard.book Page 397 Monday, October 1, 2001 9:00 AM

398 Essential XML Quick Reference

facets, 267–280
enumeration, 267–268
fractionDigits, 268–269
length, 269–270
maxExclusive, 270–271
maxInclusive, 271–272
maxLength, 272–274
minExclusive, 274–275
minInclusive, 275–276
minLength, 276–277
pattern, 277–278
totalDigits, 278–279
whiteSpace, 279–280

grouping of, 227–229
hexBinary, 245
language, 249
language constructs, 280–286

list, 283–284
restriction, 282–283
simpleType, 281–282
union, 284–286

name and string
hierarchy of, 23
Name, 229, 251
NcName, 229, 251–252
normalizedString, 229, 256–257
QName, 229, 259
string, 229, 260–261
token, 229, 262–263

numeric
byte, 227, 232–234
decimal, 227, 235–236
double, 228, 236–237
float, 228, 240–241
hierarchy of, 230
int, 227, 247–248
integer, 227, 248–249
long, 227, 250
negativeInteger, 227, 252–253
nonNegativeInteger, 227, 254–255
nonPositiveInteger, 227, 255–256
positiveInteger, 227, 258–259
short, 227, 259–260
unsignedByte, 228, 263–264
unsignedInt, 228, 264–265
unsignedLong, 228, 265–266
unsignedShort, 228, 266

XML 1.0
ENTITIES, 228, 238–239
ENTITY, 228, 239–240
ID, 228, 245
IDREF, 228, 246

IDREFS, 228, 246–247
NMTOKEN, 228, 253
NMTOKENS, 228, 253–254
NOTATION, 228, 257–258

schemaLocation attribute, 328, 330, 335,
352–353

schema element, 340–344
Schema elements, 287–355

all, 288, 289, 291–292, 323
annotation, 287, 289, 293
any, 288, 289, 293–297
anyAttribute, 289, 297–300
appinfo, 289, 300–301
attribute, 287, 289, 301–305
attributeGroup, 287, 289, 306–307
choice, 288, 289, 307–309
complexContent, 289, 309
complexType, 287, 289, 310–313
documentation, 289, 313–314
element, 287, 288, 289, 314–320
element groupings, 287–290
extension, 290, 320
field, 288, 324–325
group, 287, 288, 289, 290, 325–327
import, 287, 288, 327–329
include, 287, 288, 329–330
instance attributes, 350–354

nil, 350–351
noNamespaceSchemaLocation,

351–352
schemaLocation, 352–353
type, 353–354

key, 288, 289, 330–332
keyref, 288, 289, 332, 333
notation, 287, 289, 333–335
redefine, 288, 335–337
restriction, 290, 337–340
schema, 340–344
selector, 288, 345
sequence, 288, 290, 346–348
simpleContent, 290, 348
simpleType, 288, 289
unique, 288, 289, 349–350

select attribute, 101, 131, 134, 143, 144, 145,
148

selector element, 288, 345
self axis, 41, 42
sequence compositor, 321–322
sequence element, 288, 290, 346–348
Serialization details, controlling, 130
Serialization rules, SOAP, 367–381

dynamically typed data, 374–375

Skonnard.book Page 398 Monday, October 1, 2001 9:00 AM

Index 399

null references in complex data structure,
372–374

simple structured data, 369–371
structured data with multiple references,

371–372
setAttribute (Element/IXMLDOMElement

member), 209
setAttributeNode (Element/

IXMLDOMElement member), 209
setAttributeNS (Element member), 210
setContentHandler (XMLReader member), 186
setData (CharacterData/

IXMLDOMCharacterData member), 198
setData (ProcessingInstruction member), 226
setDocumentLocator (ContentHandler

member), 167
setDTDHandler (XMLReader member), 187
setEntityResolver (XMLReader member),

187
setErrorHandler (XMLReader member), 187
setFeature (XMLReader member), 187
setNamedItem (NamedNodeMap/

IXMLDOMNamedNodeMap member), 213
setNamedItemNS (NamedNodeMap member),

214
setNodeValue (Node member), 218
setPrefix (Node member), 219
setProperty (XMLReader member), 187
setValue value (Attr member), 195
short type, 227, 259–260
Simple API for XML. See SAX 2.0
simpleContent element, 290, 348
Simple Object Access Protocol. See SOAP 1.1
simpleType, 281–282, 288, 289
single attribute, 126
Single-reference accessor, 369, 379–380
skippedEntity (ContentHandler/

IVBSAXContentHandler member), 167
SOAP 1.1, 357–383

arrays, 368, 375–381
jagged (arrays of arrays), 379–381
multidimensional, 376–377
partial transmission of, 377–378
sparse, 378–379

attributes in, 364–367
actor, 364–365
encodingStyle, 365–366
mustUnderstand, 366–367

elements in, 358–364
Body, 358–359
Envelope, 360
Fault, 360–363

Header, 363–364
HTTP binding, 381–383
introduction to, 357–358
serialization rules, 367–381

dynamically typed data, 374–375
null references in complex data structures,

372–374
simple structured data, 369–371
structured data with multiple references,

371–372
SOAPAction header, 383
source attribute, 301, 313
Space character, 8, 95
Sparse arrays, 378–379
splitText (Text/IXMLDOMText member), 226
standalone attribute, 11, 129
Stand-alone document, 12
startDocument (ContentHandler/

IVBSAXContentHandler member), 167
startElement (ContentHandler/

IVBSAXContentHandler member), 167
start-point function, 78
startPrefixMapping (ContentHandler/

IVBSAXContentHandler member), 167
starts-with function, 53, 63
String

decimal number converted to, 111–113
empty, 4

string-expression expression, 90
string function, 37, 38, 49, 53, 54, 63–64
string-interning (SAX feature), 190
string-length function, 53, 64
string-range function, 78–79
String type, 50
strip-space element, 98, 99, 132, 135
Structured types, 310
Structures, 368
stylesheet-prefix attribute, 123
stylesheet (transform) element, 96, 136,

141–142
substitution attribute, 318
substring-after function, 53, 65
substring-before function, 53, 65
substringData (CharacterData/

IXMLDOMCharacterData member), 198
substring function, 53, 64–65
sum function, 53, 66
system attribute, 334
System identifier, 17, 18
systemId (IXMLDOMDocumentType property),

206
systemId (IXMLDOMEntity property), 212

Skonnard.book Page 399 Monday, October 1, 2001 9:00 AM

400 Essential XML Quick Reference

systemId (IXMLDOMNotation property), 225
system-property function, 149, 156
SYSTEM token, 17

T
Tab character, 8, 95
Tagname, 1
tagName (IXMLDOMElement property), 209
Tags, 1, 13
target attribute, 342
target (IXMLDOMProcessingInstruction

property), 226
Template(s), 86–87. See also XSL Transformations

(XSLT) 1.0
attribute value, 94–95, 103, 104
built-in, 92–93
conditional, 116
overriding, 99
recursive, 146–147
returning values from, 146

template element, 96, 99, 136–140
template type, 89
terminate attribute, 122
Termination, program, 122
test attribute, 148
text element, 97, 140–141

string value, 38
Text() identifier, 46
text type

built-in template descriptions for, 93
location-set start-point based on, 78

Time datatypes. See Date and time datatypes
Tokens, attribute as an enumeration of, 22
tokens type, 89
token type, 89
totalDigits facet, 278–279
transform (stylesheet) element, 96, 136,

141–142
translate function, 53, 66
Tree model, 35, 36
true function, 53, 67
Type(s). See also Datatypes

attribute, 21–22, 78
built-in template descriptions for, 93
location-set range based on, 76

boolean, 50, 63, 232
CDATA, 11, 21
char, 89
ENTITIES, 22
ENTITY, 22
ID, 21
IDREF, 22

IDREFS, 22
NMTOKEN, 22
NMTOKENS, 22
node-set, 63, 150, 151
node test by, 45–46
NOTATION, 22
number, 50, 63
other, 54, 57, 63, 76, 151, 156
QName, 3, 89
QNames, 89
String, 50
template, 89
token, 89
tokens, 89
uri-reference, 89

type attribute, 303, 318, 353–354
Type identifier, 31

U
Unicode, 12
Uniform resource identifier (URI), 3
union element, 284–286
Union of node-sets, 155–156
unique element, 288, 289, 349–350
Unparsed entities, 24, 25, 30–31
unparsed-entity-uri function, 149, 157
Unqualified attributes, 6
Unqualified elements, 3–4
unsignedByte type, 228, 263–264
unsignedInt type, 228, 264–265
unsignedLong type, 228, 265–266
unsignedShort type, 228, 266
URI references

absolute, 231
relative, 231

uri-reference type, 89
URIs

aliasing of, 123
relative, 81

use attribute, 120, 303
use-attribute-sets attribute, 105, 109,

114
UTF–8, 12
UTF–16, 12

V
validation (SAX feature), 190
value attribute, 22, 125
value (IXMLDOMAttribute property), 195
value-of element, 97, 143
Value space, 229
variable element, 96, 99, 144–147

Skonnard.book Page 400 Monday, October 1, 2001 9:00 AM

Index 401

VB
IVBSAXAttributes in, 163, 165–166
IXMLDOMAttribute in, 195, 196
IXMLDOMCharacterData in, 197–198, 199
IVBSAXContentHandler in, 167, 170,

173–174, 179, 180–181
IXMLDOMDocument in, 200–203, 204
IXMLDOMDocumentType in, 205–206
IXMLDOMImplementation in, 206–207
IVBSAXDTHandler in, 175, 176–177
IXMLDOMElement in, 208–210, 211
IXMLDOMEntity in, 211–212
IXMLDOMEntityReference in, 212
IVBSAXEntityResolver in, 177, 178
IVBSAXLocator in, 182, 183
IXMLDOMNameNodeMap in, 213–214, 215
IXMLDOMNode in, 217–219, 220, 222
IXMLDOMNodeList in, 223–224
IXMLDOMNotation in, 225
IXMLDOMProcessingInstruction in,

225–226
serialization of array, 369
serialization of structured type, 368
IXMLDOMText in, 226
IVBSAXXMLFilter in, 184, 185
SAXXMLReader in, 186–187, 189

vendor property, 156
vendor-url property, 156
version attribute, 11, 129, 142, 342
version property, 156

W
warning (ErrorHandler member), 179
Well-formed XML, 13–14
when element, 97, 147–148
Whitespace, 8–9
whiteSpace, 279–280
Whitespace

text to output, 141
XSLT and, 95–96

whiteSpace facet, 279–280
White-space-only text nodes, 132
Whitespace-preserving elements, 135
Wildcards, 45, 296–297, 299–300
with-param element, 97, 148

X
xHexadecimalUnicodeValue, 13
XInclude, 69, 79–81
xml:lang attribute, 313, 342
XML 1.0, 1–14

attributes in, 5–6

CDATA sections, 11
character references, 13
comments in, 7–8
elements in, 1–5
processing instructions, 6–7
prohibited character literals, 9–10
datatypes

ENTITIES, 228, 238–239
ENTITY, 228, 239–240
ID, 228, 245
IDREF, 228, 246
IDREFS, 228, 246–247
NMTOKEN, 228, 253
NMTOKENS, 228, 253–254
NOTATION, 228, 257–258

well-formed, 13–14
whitespace characters in, 8–9
XML declaration, 11–12

XML Base, 81–82
XMLFilterImpl class, 162
XMLFilter interface, 160, 161, 183–185
xmlns, 70
XMLReaderFactory class, 162
XMLReader interface, 160, 161, 185–189
xml-string (SAX property), 191
XPath, 35–67

basic expressions, 48–52
boolean, 37, 38, 48, 49, 54, 58
equality, 48–50
numerical, 51–52
relational, 51

core function library, 52–67
boolean, 53–54
ceiling, 54
concat, 55
contains, 55
count, 56
false, 56
floor, 56–57
id, 57
lang, 58
last, 58
local-name, 59
name, 59
namespace-uri, 60
normalize-space, 60
not, 61
number, 37, 38, 49, 53, 54, 61–62
position, 62
round, 62
starts-with, 63
string, 37, 38, 49, 53, 54, 63–64

continued

Skonnard.book Page 401 Monday, October 1, 2001 9:00 AM

402 Essential XML Quick Reference

string-length, 64
substring, 64–65
substring-after, 65
substring-before, 65
sum, 66
translate, 66
true, 67

data types supported by, 37–38
expressions supported by, 38–39
location path expressions, 39–47

axis, 41–44
example of, 40
location path abbreviations, 47
location steps, 40–41
node test, 44–46, 54, 57
predicates, 46–47

operators, 39
xpath attribute, 324–325, 345
xpointer, 70
XPointer 1.0, 69–79

bare names, 71–72
child sequences, 72
extensions to XPath, 72–74
full, 70–71
function library, 74–79

end-point, 74–75
here, 75
origin, 75–76
range, 76–77
range-inside, 77
range-to, 77–78
start-point, 78
string-range, 78–79

node tests, 74
XPointers, 69
XSL Transformations (XSLT) 1.0, 35, 85–157

conflict resolution in, 91–92
data types and expressions, 89–90
element library, 96–148

if, 97, 116–117
apply-imports, 97, 99–100
apply-templates, 97, 100–102
attribute, 97, 102–104
attribute-set, 98, 104–106
call-template, 97, 106–107
choose, 97, 107–108, 116
comment, 97, 108–109

copy, 97, 109–110
copy-of, 97, 110–111
decimal-format, 98, 111–113
element, 97, 113–114
fallback, 98, 114–115
for-each, 97, 115–116
import, 96, 98, 117–118
include, 96, 98, 118–119
key, 98, 119–121
message, 98, 121–122
namespace-alias, 98, 122–124
number, 98, 124–128
otherwise, 97, 128
output, 98, 128–130
param, 96, 130–132
preserve-space, 98, 132
processing-instruction, 97, 133
sort, 97, 133–135
strip-space, 98, 99, 135
template, 96, 99, 136–140
text, 97, 140–141
transform (stylesheet), 96, 136,

141–142
value-of, 97, 143
variable, 96, 99, 144–147
when, 97, 147–148
with-param, 97, 148

exemplar-based syntax, 94
function library, 148–157

current, 149–150
document, 149, 150–152
element-available, 149, 152–153
format-number, 149, 153–154
function-available, 149, 154–155
generate-id, 149, 155
key, 149, 155–156
system-property, 149, 156
unparsed-entity-uri, 149, 157

patterns, 90–91
programming in, 86–89
templates

attribute value, 94–95, 103, 104
built-in, 92–93

whitespace characters and, 95–96

Z
zero-digit attribute, 112

Skonnard.book Page 402 Monday, October 1, 2001 9:00 AM

Skonnard.book Page 403 Monday, October 1, 2001 9:00 AM

los angeles • boston • london • portland, OR

HELPING DEVELOPERS WITH TRAINING,

SOFTWARE, PUBLICATIONS, AND

CONFERENCES.

COM+ • VB.NET • XML • Java
ASP.NET • OLE DB • J2EE • C++
.NET • C# • COM+ • XML
Web Services • EJB • CLR • C#

ABOUT DEVELOPMENTOR
DevelopMentor is a distinct educational resource
providing advanced technical information through
training, publications, conferences, and software.
DevelopMentor is comprised of passionate
developers who offer insight and leadership in
areas such as .NET, XML, JAVA, and COM. The
DevelopMentor Technical Staff have authored over
24 technical books and are regular contributors to
MSDN, Java Pro, Visual Basic Programmer’s
Journal, and other publications. DevelopMentor
training facilities are located in Los Angeles,
Boston, London, and Portland.

>
FOR MORE INFORMATION:

develop.com
IN THE US

800.699.1932

WITHIN THE UK

0800.056.22.65

WITHIN EUROPE

+44.1242.525.108

develop.com

Skonnard.book Page 404 Monday, October 1, 2001 9:00 AM

Solutions
from experts

you know
and trust.

www.informit.com

www.informit.com

OPERATING SYSTEMS

WEB DEVELOPMENT

PROGRAMMING

NETWORKING

CERTIFICATION

AND MORE…

Expert Access.
Free Content.

Free, indepth articles and
supplements

Master the skills you need,
when you need them

Choose from industry leading
books, ebooks, and training
products

Achieve industry certification
and advance your career

Get answers when you
need them from live
experts or InformIT’s
comprehensive library

Visit

and get great content

from

Books Expert Q&AFree Library Training News Downloads

Addison-Wesley and InformIT
are trademarks of Pearson plc /
Copyright©2000 pearson

Articles

Skonnard.book Page 405 Monday, October 1, 2001 9:00 AM

Skonnard.book Page 406 Monday, October 1, 2001 9:00 AM

	Praise for Essential XML
	Chapter Contents
	Detailed Contents
	List of Acronyms
	Preface
	Acknowledgments
	XML 1.0 and Namespaces
	1.1 Elements
	1.2 Elements, namespaces, and namespace declarations
	1.3 Attributes
	1.4 Attributes and namespaces
	1.5 Processing instructions
	1.6 Comments
	1.7 Whitespace
	1.8 Prohibited character literals
	1.9 CDATA sections
	1.10 The XML declaration
	1.11 Character references
	1.12 Well- formed XML
	1.13 References

	Document Type Definitions
	2.1 Introduction to DTDs
	2.2 DOCTYPE
	2.3 ELEMENT
	2.4 ATTLIST
	2.5 ENTITY
	2.6 NOTATION
	2.7 INCLUDE and IGNORE
	2.8 References

	XPath 1.0
	3.1 Introduction to XPath
	3.2 Location path expressions
	3.3 Basic expressions
	3.4 Core Function Library
	3.5 References

	XPointer, XInclude, and XML Base
	4.1 XPointer version 1.0
	4.2 XInclude
	4.3 XML Base
	4.4 References

	XSL Transformations 1.0
	5.1 Introduction to XSLT programming
	5.2 XSLT types and expressions
	5.3 Patterns
	5.4 Conflict resolution
	5.5 Built- in templates
	5.6 Exemplar- based transformation syntax
	5.7 Attribute value templates
	5.8 Whitespace
	5.9 Element library
	5.10 XSLT function library
	5.11 References

	SAX 2.0
	6.1 SAX UML quick reference
	6.2 SAX interfaces and classes
	6.3 Features and properties
	6.4 References

	DOM Level 2
	7.1 DOM UML
	7.2 DOM interfaces
	7.3 References

	XML Schema Datatypes
	8.1 Datatype grouping
	8.2 Datatypes
	8.3 Facets
	8.4 Language constructs
	8.5 References

	XML Schema Structures
	9.1 Schema element groupings
	9.2 Structures
	9.3 XML Schema structures: instance attributes
	9.4 References

	SOAP 1.1
	10.1 Introduction to SOAP messages
	10.2 Elements in SOAP messages
	10.3 Attributes in SOAP messages
	10.4 Introduction to SOAP serialization rules
	10.5 Introduction to the SOAP HTTP binding
	10.6 References

	Index

