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ABSTRACT
Establishing the compatibility of services is an essential pre-
requisite to service composition. By formally defining the
similarity of semantic services, useful information can be
obtained about their compatibility. In this paper we pro-
pose a metric for measuring the similarity of semantic ser-
vices annotated with OWL ontology. Similarity is calculated
by defining the intrinsic information value of a service de-
scription based on the “inferencibility” of each of OWL Lite
constructs. We apply this technique to OWL-S, an emerging
standard for defining semantic service metadata and demon-
strate how to measure the similarity of OWL-S annotated
services.
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1. INTRODUCTION
With the advance of the semantic web[7], both the Web

and Grid community have embraced the concepts of enrich-
ing distributed systems with machine-understandable seman-
tic metadata. Semantic services (in this paper we will use
the general term semantic services to describe both Grid[4]
and Web[1] services) are distributed services with associ-
ated semantic metadata describing various aspects of their
functionality. Tools are being developed to utilise theses se-
mantic information for automatic reasoning of complex tasks
that were not previously possible.

Semantic service matching[11] is one of the emerging re-
search area that exploits the service semantic metadata to
reason about the compatibility and functionality of the ser-
vices that are to be composed. The current standard for
creating semantic service description is the OWL (Web On-
tology Language)[10] Service ontology (OWL-S)[9]. Service
compatibility can be derived by reasoning about the service
types. For example, Let Service B be a subclass of Service A.
In a composition scenario that requires a service of type A,
Service B can be substituted to complete the composition.
Functionality is represented by ontology concepts, composi-
tion by capability requirement can match services by their
ontological annotations. The present logical reasoning ap-
proach provides a formal model for automatic composition.
However, under situations where fully automated composi-
tion is not required (or is even undesired), this type of logi-
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cal approach is often too restrictive. For example, consider
an user-oriented service composition environment for com-
posing complex workflows. In this type of semiautomatic
composition system, the users would prefer to have a selec-
tion of “similar” services that could be potentially composed
rather than one or two exact logical matches.

In this paper we propose a method for calculating the sim-
ilarity between OWL objects (classes and instances) with
the view to apply it to match OWL-S annotated services.
The similarity between two services is measured by compar-
ing their semantic descriptions. Every service description is
made up of a set of RDF statements, by finding the ratio
of the description statements that are common to both ser-
vices, we can form a notion of “similarity” for services. We
are finding the ratio of the number of common statements
in both service descriptions against all descriptions. Intu-
itively, the more common information between the services,
the more similar they are.

Service similarity measure provides a useful light weight
approach to exploit the available semantic metadata. In a
large scale heterogeneous distributed environment (i.e the
Grid), the computationally intensive process of logical rea-
soning can rarely be used to achieve a satisfactory result
under time restraints. We propose the use of the similarity
measure as an optimisation step before any necessary logi-
cal deduction process. This type of optimisation technique
is essential in semantic service matching in order to reduce
the search time by pre-compiling a list of similar services.
The necessary logical reasoning can then be performed on
demand. Optimised semantic service search is essential in
a real time service composition environment for finding the
group of composable services

1.1 Related Work
Semantic similarity is an important concept that has been

widely used in many areas of research. Here we present a
brief survey of some approaches to semantic similarity mea-
surement.

1.1.1 Distance Metric for Semantic Nets
Rada et al. [12] proposed a metric to measure conceptual

distance between A and B in hierarchical “is-a’ ’semantic
nets. The distance between A and B is the minimum number
of edges separating A and B. This approach assumes that
the domain of measurement is represented by a network and
that concepts within have a purely hierarchical relationship.

1.1.2 Information Based Measure
Resnik [13] associates probability p with concepts in a



“is-a” hierarchy to denote the likelihood of encountering an
instance of a concept c. If c1 is-a c2 then p(c1) < p(c2).
The information content of a concept c is then defined as
−logp(c) (Ross, 1976). Intuitively as p increases, the infor-
mativeness of the concept c decreases. The similarity for
concept c1 and c2 is defined as,

sim(c1, c2) = maxc∈S(c1,c2)[−logp(c)]

where S(c1, c2) is the set of concepts that subsume both
c1 and c2

1.1.3 Similarity for Ontology Framework
A framework for measuring similarity for ontology is intro-

duced in [3]. The framework consists of three layers, Data,
Ontology and Context, together with a field representing the
specific domain knowledge that spans all the layers. The
data layer measures the similarity of entities by consider-
ing the data values of simple or complex data types such
as integers and strings. The ontology layer considers and
measures the semantic relations between the entities. The
context layer considers how entities of the ontology are used
in some external context, most importantly, the application
context. The overall similarity is computed as an amalga-
mation function that combines the similarity measure of the
individual layers.

2. SEMANTIC SIMILARITY
In this paper we focus on developing a measure for the

semantic similarity of OWL objects. Our definition is built
on the information theoretic based measure developed in [8].
Similarity is defined as the amount of common information
that is shared between the objects. The similarity of OWL
objects a and b is formally defined as,

sim(a, b) =
fcommon(a, b)

fdesc(a, b)
(1)

fcommon is the common function measuring the informa-
tion value of the description that is shared between a and b.
fdesc is the description function giving the value of the total
information content of a and b. The similarity is defined
as the ratio of the shared information between the objects
to the total information about both objects. From the def-
inition of the similarity function, sim, we can immediately
obtain some properties that confirm some of the common
intuition regarding similarity.

1. 0 ≤ sim ≤ 1

2. ∀a : sim(a, a) = 1

3. ∀a, b : sim(a, b) = sim(b, a)

Property 1 gives the range of sim. For identical objects a
and b, fcommon(a, b) = fdesc(a, b), giving a similarity value
of one. When two objects have nothing in common, i.e.
when fcommon is zero, their similarity value is zero.

Property 2 states that the similarity function is reflexive.
This follows the intuition that any object should be identical
to itself.

Property 3 shows the symmetric property of sim. For any
object a and b, the similarity of a to b is the same as the

similarity of b to a, it will be shown in the later section that
fcommon(a, b) equals to fcommon(b, a).

The values of fcommon and fdesc for any given OWL object
are derived from its description. In the following section
we will define the concept of an OWL object description
set. This will provide the basis for the construction of the
common and the description functions.

2.1 Description Set
In an OWL ontology every object is described by some

RDF statements. A description set for an OWL object a is a
set containing all the statements describing a. A description
set for a is defined as,

desc(a) = {(a, p, o) ∈ O} (2)

where a is an object in an OWL ontology O, (a, p, o) is
a RDF[6] triple, with any predicate p and object o in O.
desc(a) contains all the RDF statements in O with a as the
subject.

The above definition only includes the triple1 that directly
describes the subject of the description set. This is repre-
sented in an RDF graph as nodes that are exactly one edge
(the edge represents the predicate in the triple) away from
the subject. However, not all direct descriptions in OWL can
be expressed in the form of 1-edge-separation from the sub-
ject. For example, when describing a restriction class, the
subject is two edges away from the restriction statements
(see figure 1). To form a more flexible and comprehensive
definition of the description set, we introduce the concept of
the degree of a description set. A description set with degree
n is defined as

descn(a) = {(a, p, o) ∈ O} ∪[
x∈Obj(a)

{descn−1(x)} (3)

where Obj(a) is defined as

Obj(a) = {o | (s, p, o) ∈ desc(a)} (4)

where Obj(a) contains all the objects in the triples of
desc(a). A description set with a higher degree contains
more information about the subject than one with a lower
degree, because more descriptions are included in the set.
The degree is essentially the number of edges away from the
subject. It is important to note that it is not always ben-
eficial to have a higher degree description set. Depending
on the context, very often the further away we move from
the subject, the collected descriptions become less relevant,
thus their information value decreases.

For class A in figure 1, desc1(A) contains only the triple
(A, rdfs:subClassOf, :ex1). The information regarding the
restriction on property P is lost. Simply increasing the de-
gree of the description set to two allows us to capture these
descriptions. desc2(A) contains (A, rdfs:subclassOf, :ex1),
(:ex1, rdf:type, Class2), (:ex1, onProperty, P), (:ex1, has-
Value, X). In this case, the description set with degree two

1in this paper we will use the term triple and RDF statement
interchangeably
2we use OWL namespace as the default namespace. It is
omitted from RDF statements
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Figure 1: RDF graph representation of a restriction
class

clearly gives a better representation of the description of the
concept A.

2.2 CoDescription Set and Common Set
The co-description set contains the descriptions about two

OWL objects. It is formed by the union of the description
sets of each of the objects, and represents the total informa-
tion available about the two objects. The co-description set
for OWL objects a and b is defined as

codescm,n(a, b) = descm(a) ∪ descn(b) (5)

The common set contains tuples in the form of
((a, p, o), (b, p, o)) where a and b are subjects of each of the
description sets. We define the common set as follow,

comm,n(a,b) = (descm(a) ∩ descn(b)) ∪n
((a, p, o), (b, p, o)) | (a, p, o) ∈ descm(a), (b, p, o) ∈ descn(b)

o
(6)

The elements in the tuples are those that are in desc(a)
and are in desc(b). All tuples in the set contain two RDF
triples that have same predicate, p, and object, o. For exam-
ple, ((A, rdf:type, Class), (B, rdf:type, Class)) are common
tuples for OWL classes, A and B.

Using class A and B in figure 2 as an example. The com-
mon set contains only one element, ((A, rdf:type, Class), (B,
rdf:type, Class)). The only common description of A and B
is that they are both of type Class. The co-description set
is desc(a) plus one extra tuple (B, rdfs:subClassOf, A).

3. SEMANTIC INFORMATION METRIC
Description sets provide the basic elements required for

calculating the similarity of OWL objects. In this section
we will propose a semantic information metric for evaluat-
ing triples in description sets. By using this metric, descrip-
tion sets’ information content is represented numerically and
thus fcommon and fdesc can be computed.

The semantic information metric is based on the assump-
tion that each triple has an intrinsic information value. For
example, in figure 2, By assuming each rdfs:subClassOf triple
has the same information value, we can conclude that class
A is more similar to B than C by using the definition of

subClassOf

A

Bclass

class

type

type

C

class

type

subClassOf

Figure 2: An OWL subclass of hierarchy

similarity - The common sets for (A, C) and (A, B) are
the same since the only common information is about their
types (all are OWL classes). While codesc1,1(A, C) con-
tains more information than codesc1,1(A, B) because of the
one extra subClassOf edge between B and C. We can con-
clude that fdesc(A, C) > fdesc(A, B) and fcommon(A, C) =
fcommon(A, B) thus A and B are more similar than A and
C.

3.1 Inference based Information Value
Every RDF triple in an OWL ontology contains some de-

scriptive information about its subject. The “amount” of
information that a triple has is non-uniform and largely de-
pendent on the triple’s predicate. For example, (A, rdf:type,
Class) and (A, rdfs:subClassOf, B), the second triple with
the rdfs:subClassOf predicate has more intrinsic information
value because apart from the subclass relationship, there is
extra information about A’s type - an instance of A is also
an instance of B.

To measure the information content of a triple, we propose
a metric that is based on its “inferencibility”. The Inferen-
cibility of a triple, t, is the number of new RDF statements
that can by generated by applying a set of inference rules
to t. The inference rules used in this paper are horn like
rules making implicit information in the ontology explicit.
Referring to the example in the previous paragraph, the first
triple has lower inferencibility than the second becasue we
can generate a new triple based on the subclass inference
rules. Here we define the rule operator, R, that takes in
a triple t in ontology O and generates a set of new triples
according to rule r,

Rr(t,O) =


{b1, b2, . . . , bj} : ∃{a1, a2, . . . , ai ∈ O}

∅ : otherwise
(7)

where r is in the form of a1, a2, . . . , an ⇒ b1, b2, . . . , bj ,
a1, a2, . . . , an are the premises of the rule and b1, b2, . . . , bj

are the conclusions. Now we can define the inference set for
an OWL Lite construct p with an inference rule set rs,

infrs((s, p, o),O) =
[

r∈rs

Rr((s, p, o),O) (8)



The above definition only applies the inference rule once
to the construct (1 step inference3, the base inference set). It
is often necessary to apply the inference rules multiple times
in order to generate all the possible tuples (see section 3.3
for an example). We extend the definition by introducing
an inference set of n steps (n > 1),

infn
rs(t,O) =

[
e∈infn−1

rs (t,O)

infrs(e,O) (9)

Now we can define the Inference-based Information Value
(IBIV) of a triple,

IBIV (t,O) = | infn
rs(t,O) | × UIVp (10)

where t is a triple in ontology O, infn
rs(t) is the set of

triples that can be inferred n steps from (s, p, o). Here we
give a simple example for the two step inference set. From
figure 2, infrs(B, rdfs:subClassOf, A) contains the triples
that are of type A (because we can infer that they are of
type B too). inf2

rs(B, rdfs:subClassOf, A) contains all the
elements in the previous set plus the triples that are also
of type C. By combining (B, rdfs:subClassOf, A) and (C,
rdfs:subClassOf, B), we can conclude that instances of C
are also of type B.

UIVp is the Unit Inference Value for OWL construct p. It
is a parameter that represents the value of each of the ele-
ments in an inference set. The UIVp value is OWL construct
dependent and can be adjusted according to the application
context. IBIV of an RDF triple is the number of elements
in the inference set multiplied by the UIV. In this paper we
will use one as the UIV for all OWL Lite constructs in the
following discussion.

3.2 IBIV for OWL Lite Constructs
In this section we will show how the IBIV can be calcu-

lated for each of the OWL Lite language constructs. We
base our discussion on the inference rule set introduced in
[5] for OWL Lite− reasoning. OWL Lite− is a subset of
OWL Lite that can be translated to Datalog. Other infer-
ence rule sets could be applied to calculate IBIV of other
OWL sublanguages. Due to the scope of this paper, our dis-
cussion will be focused on applying the OWL Lite− rules.
An example that demonstrates the the construction of an
inference set and the calculation of the IBIV concludes the
section.

3.2.1 RDFS subClassOf and subPropertyOf
The inference rule set rs for the rdfs:subClassOf construct

consists of two rules,

r1 : (X1, subClassOf, X2), (X2, subClassOf, X3) →
(X1, subClassOf, X3)

r2 : (X1, subClassOf, X2), (x1, type, X1) →
(x1, type, X2)

The base inference set (one step) for rs is

3in this paper, we use infrs(s, p, o) as a shorthand for
inf1

rs(s, p, o)

infrs((s, subClassOf, o),O) = Rr1(s, subClassOf, o) ∪
Rr2(s, subClassOf, o)

where O is an OWL ontology. Rr1
4 contains triples de-

rived from the transitivity of the subClassOf construct. Rr2

includes the triple describing the types of instances in the
subClassOf hierarchy.

The inference set with n steps includes triples that can be
obtained by applying Rrs to the base inference set n times.
See the end of the section for an example demonstrating the
construction of a two step subClassOf inference set.

Finally, the IBIV is equal to the number of elements in
the inference set.

IBIV (s, rdfs:subClassOf, o) = | infn
rs(s, rdfs:subClassOf, o) |

The definition for the inference set of rdfs:subPropertyOf
is similar to that of rdfs:subClassOf, the IBIV follows in the
form similar to the definition above.

IBIV (s, rdfs:subPropertyOf, o) =

| infn
rs(s, rdfs:subPropertyOf, o) |

3.2.2 OWL Equivalence
For an OWL equivalence relation, the IBIV value is the

number of new triples about the subject that can be in-
ferred by equating the two classes/properties. See figure 3,
the shaded area is the new information gained by defining
the equivalence of class A and B. The rule set rs for equiv-
alentClass is

r1 : (X1, equivalentClass, X2), (S, X1, O) →
(S, X2, O)

r2 : (X1, equivalentClass, X2), (S, P, X1) →
(S, P, X2)

r3 : (X1, equivalentClass, X2), (X1, P, O) →
(X2, P, O)

The inference set for equivalentClass is

infrs((s, equivalentClass, o),O) =

Rr1(s, equivalentClass, o) ∪ Rr2(s, equivalentClass, o) ∪
Rr3(s, equivalentClass, o)

Rules in rs of equivalentClass replace either subject, pred-
icate, or object with an equivalent class. These three rules
take care of the replacements of equivalentClass in all posi-
tions of an RDF statement.

The inference set for OWL construct subPropertyOf is
similar to the above. From here on we will omit the defintion
of the n-step inference set and IBIV for brevity. These terms
can be easily derived from the definitions introduced in the
earlier section.
4For brevity, We use the notation Rr1(t) rather than
Rr1(t,O) when the context of discussion is clear



desc(A) desc(B)
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Figure 3: The inference set for (A, equivalentClass,
B)

3.2.3 OWL Property Characteristic
The rdfs:domain construct has one inference rule,

r1 : (P, rdfs:domain, X), (S, P, O) →
(S, rdf:type, X)

The rule states for any property P with domain X, if S is
related to O via P then S has type X. The base inference set
for rdfs:domain is defined as,

infr1(s, rdfs:domain, o) = {(a, s, x) ∈ O}

the inference set contains all RDF statements in O of the
form (a, s, x), where a and x are instances in O. This sim-
plified definition is an alternative to the definition based on
R. For each of the elements in the set, a statement of the
form (a, rdf:type, o) can be derived. IBIV is the number of
elements in the inference set, therefore this alternative defi-
nition will give the equivalent IBIV as the original with rule
operator Rr1. From here on, we will adapt this simplified
definition whenever possible.

Similarly for rdfs:range, we can derive from each element
in the set an RDF statement of the form (x, rdf:type, o).

inf(s, rdfs:range, o) = {(a, s, x) ∈ O}

The datatypeProperty gives one inferred triple - the range
of the property has type XSD Datatypes.

inf(s, rdf:type, datatypeProperty) = {(a, s, x) ∈ O}

where a and x are instances in O. The inference set con-
tains all the instances with property s. For each of these
instances, we can infer that s has range of xsd:Datatype
thus x has type xsd:Datatype.

inverseOf infers that if property P1 is an inverse of P2 and
A is related to B via P1 then B is related to A via P2.

inf(p1, inverseOf, p2) = {(a,p1, b) ∈ O}

where a and b are instances in O. A triple of of the form
(b, p2, a) can be inferred from each (a, p1, b).

For a transitiveProperty s, there are two preconditions
that have to be met before an inference can be made. If an
instance a is related to b via s and b is related to c via s
then we can infer a is related to c via s. The inference set is

inf(s, rdf:type, transitiveProperty) =

{((a, s, b), (b, s, c)) ∈ O}

For a symmetric property s, if there is an instance x that
relates to y via s then we can infer that y is also related to
x via s.

inf(s, rdf:type, SymmetricProperty) = {(x, s, y) ∈ O}

For a FunctionalProperty s, we can infer two separate new
triples, a minimum and a maximum restriction. s has a
minimum cardinality of zero and a maximum cardinality of
one.

inf(s, rdf:type, FunctionalProperty) = {(a, s, b) ∈ O}

The IBIV has to be adjusted accordingly,

IBIV (s, rdf:type, FunctionalProperty) =

| inf(s, rdf:type, FunctionalProperty) | × 2

For an inverseFunctionalProperty s, if an instance a is
related to p via s and another instance b is related to p via
s, then we can infer that a and b are the same instance.

inf(s, rdf:type, InverseFunctionalProperty) =

{((a, s, p), (b, s, p)) ∈ O}

3.2.4 OWL Property Restrictions
The allValuesFrom restriction infers that all values of the

restricted property are of a particular type. For a class A
with an allValuesFrom restriction on p to B, the inference
set is

inf(allValuesFrom) = {(a, p, b) ∈ O}

where p is the property that has the allValuesFrom re-
striction. If a is related to b via p then we can infer that b
is of type B.

The someValueFrom restriction infers that an instance of
the restricted class will at least have one restricted property
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Figure 4: An Example OWL ontology, T

of the respective type. For a class A with a someValuesFrom
restriction on p to B, the inference set is

inf(someValuesFrom) = {(a, rdf:type, A) ∈ O}

For any instance a of type A, we can infer that there
is at least one pair of tuples in the form of (a, p, b) and
(brdf:typeB).

IBIV (someValuesFrom) = | inf(someValuesFrom) | × 2

3.2.5 OWL Restricted Cardinality
For a class A with minimum cardinality restriction on

property p of one, the inference set is

inf(minCardinality) = {(a, rdf:type, A) ∈ O}

for any instance a of type A, we can infer at least one
tuple of the form (a, p, x). For a minimum restriction of zero,
there is nothing that can be inferred, thus the inference set
is empty.

For a class A with maximum restriction on property p to
one,

inf(maxCardinality) = {((a, rdf:type, A) ∈ O}

for an instance a, we can infer that p is a functional prop-
erty. Nothing can be inferred from a maximum restriction
to zero.

3.2.6 OWL Class Intersection
Let A be an intersection class of B and C then the infer-

ence set for the intersection is

inf(intersectionOf) = {(a, rdf:type, A) ∈ O}

from an instance a of type A, we can infer that it is of
type B and of type C, therefore we need to adjust the IBIV
value.

IBIV (intersectionOf) = | inf(intersectionOf) | × 2

3.3 An Example for Constructing Inference
Set

Here we will demonstrate the construction of an inference
set and the calculation of IBIV by using a simple ontology,

T , presented in figure 4. T has a simple three class hierarchy
that consists of class, A, B and C. It also contains two
instances b and c of type B and C respectively.

By using the subclass inference rule set rs introduced in
section 3.2.1, we can construct the base inference set for the
RDF triple (B, rdfs:subClassOf, A) in ontology T .

infrs((B, subClassOf, A), T )

= Rr1(B, subClassOf, o) ∪Rr2(B, subClassOf, A)

= {(C, rdfs:subClassOf, A)} ∪ {(b, rdf:type, A)}

By using r1, the triple (C, rdfs:subClassOf, A) can be in-
ferred. (b, rdf:type, A) is derived from r2.

Let t = (A, rdfs:subClassOf, B), the inference set of step
two is,

inf2
rs(t) = infrs(t) ∪

[
e∈inf1

rs(t)

infrs(e)

= infrs(t) ∪ infrs((C, rdfs:subClassOf, A)) ∪
infrs((b, rdf:type, A))

= infrs(t) ∪ {(c, rdf:type, A)} ∪ ∅
= {(C, rdfs:subClassOf, A), (b, rdf:type, A), (c, rdf:type, A)}

The inference set of step two is constructed by applying
the r1 and r2 to the base inference set. The only new triple
derived by the second application of the rules is (c, rdf:type,
A).

The IBIV value for (B, rdfs:subclass, A) in ontology O
with UIV of one is

IBIV (A, rdfs:subClassOf, B)

= | inf2
rs(A, rdfs:subClassOf, B) | × UIV

= 3× 1 = 3

3.4 fcommon and fdesc

fdesc can now be defined by using CoDescription set and
IBIV, for any OWL object a and b,

fdesc(a, b) =
X

s∈codescm,n(a,b)

IBIV (s) (11)

similarly for fcommon,

fcommon(a, b) =
X

(x,y)∈com(a,b)

(IBIV (x) + IBIV (y)) (12)

finally we have the similarity metric based on inference-
based information value, for any OWL object a and b

sim(a, b) =

P
(x,y)∈com(a,b)(IBIV (x) + IBIV (y))P

s∈codescm,n(a,b) IBIV (s)
(13)

4. MEASURING SIMILARITY OF SEMAN-
TIC SERVICES

OWL-S is an ontology for services. The service class in
OWL-S provides a reference point for a declared semantic
service. Each service instance is composed of three parts -



ServiceProfile, ServiceModel and ServiceGrounding. Servi-
ceProfile describes the capabilities of a service. It provides
the information for service matching agents to determine
whether it meets a requirement. ServiceProfile includes de-
scription of what is accomplished by the service, limitations
on service applicability and quality of service and service
requirements for use. The service model describes how the
service can be used. It details the semantic content of the re-
quest, conditions under which particular outcomes will occur
and the steps leading to the outcomes. A service grounding
specifies the details on how to access a service. These typi-
cally include communication protocol, message formats and
other service specific details.

In this section we will apply the technique developed ear-
lier to measure the similarity of semantic services with OWL-
S descriptions.

4.1 ServiceProfile
The service profile consists of four main parts. The first

describes the links between the service profile and the ser-
vice and its process model. The second part describes the
contact information and description of the profile, intended
mainly for human consumption. The third part describes
the functionality in terms of Input, Output, Precondition
and Effect (IOPE), the last part describes the attributes of
a profile. Here we concentrate on the last two parts for the
measuring of service similarity.

4.1.1 Functionality Description and Profile Attributes
The Profile class defines the following properties for IOPE

- hasInput ranges over the Inputs, hasOutput ranges over
the Output, hasPrecondition specifies a precondition of
the service, hasResult specifies under what condition out-
puts are generated.

Here we concentrate on the two attributes for the classi-
fication of the service. serviceClassification and servi-
ceProduct defines a mapping from a Profile to an OWL
ontology of services and products respectively.

4.1.2 Service Profile Similarity
We define the similarity for functionality description to be

a weighted aggregate of the properties. For service profiles
a and b,

sim(a, b) =w1sim(ai, bi) + w2sim(ao, bo) + w3sim(ap, bp)+

w4sim(ae, be) + w5sim(asc, bsc)+

w6sim(asp, bsp) (14)

where

6X
i=1

wi = 1

The weighting for each attribute could be adjusted de-
pending on the application context.

4.2 ServiceModel
OWL-S service model gives a detailed perspective on how

to interact with a service. This aspect of the service descrip-
tion is not essential in similarity measurement. However it
can be used to supplement initial similarity measurement by
giving an agent a more detailed perspective on the service
internal workings. For example, when a user is searching for
a job submission service on the Grid, the similarity measure
on service profile may return a list of services with close

<profile:Profile rdf:ID="BNPriceProfile">

<profile:serviceName xml:lang="en">
    BN Price Check
</profile:serviceName>
 
<profile:textDescription xml:lang="en">
   This service returns the price of a book as 
   advertised in Barnes and Nobles web 
   site given the ISBN Number.
 </profile:textDescription>

<profile:hasInput rdf:resource="#BookInfo"/>
  
<profile:hasOutput rdf:resource="#BookPrice"/>

</profile:Profile>

Figure 5: A User requirement for book pricing ser-
vice in OWL-S

similarity values. The user can then specify a price that
he/she is willing to pay. This will be included in some ser-
vice models’ preconditions. The user can then adjust the
initial similarity according to the similarity of service model
in order to select an appropriate service.

4.3 ServiceGrounding
The service grounding specifies the details of how to ac-

cess a service. A grounding is a mapping from the abstract
- service profile and model, to the concrete specification -
WSDL[2]. ServiceGrounding is not required in measuring
service similarity, but it provides a useful way of allowing
users to specify certain preferences. For example, a user
may prefer invocation through HTTP/SOAP rather then
SMTP/SOAP due to organisational network policy. A Ser-
viceGrounding more similar to user preference may present
a better fit even if the original service similarity value has
concluded otherwise.

4.4 OWL-S Service Similarity

simservice(a, b) = u1simprofile(a, b)+

u2simmodel(a, b) + u3simground(a, b)

where

3X
i=1

ui = 1

4.5 An Example of Measuring Service Simi-
larity

We will go through a semantic service matching scenario
with three published OWL-S services available from http://

www.mindswap.org/2004/owl-s/services.shtml. This ex-
ample will have a user requirement specified as an OWL-S
service profile and calculate the similarity against the service
profiles of two other available OWL-S services.

A user specifies his requirement for a book pricing service
through the the OWL-S profile in figure 5. The input Book-
Info has instance type Book from the ATK portal ontology
(http://www.aktors.org/ontology/portal). The output
BookPrice has type Price from the mindswap concept on-
tology (http://www.mindswap.org/2004/owl-s/concepts.



<profile:Profile rdf:ID="BookPriceProfile">
...
 <profile:serviceName xml:lang="en">
   Book Price Finder
 </profile:serviceName>

 <profile:textDescription xml:lang="en">
   Returns the price of a book in the desired 
   currency.   
 </profile:textDescription>

 <profile:hasInput 
                 rdf:resource="#BookName"/>
 <profile:hasInput 
                 rdf:resource="#Currency"/>
 <profile:hasOutput 
                rdf:resource="#BookPrice"/>
</profile:Profile>

Figure 6: OWL-S Profile for the BookPrice Service

<profile:Profile rdf:ID="BookFinderProfile">
...
 <profile:serviceName xml:lang="en">
   Book Finder
 </profile:serviceName>

 <profile:textDescription xml:lang="en">
   This service returns the information of 
   a book whose title best matches the give 
   string.
 </profile:textDescription>

 <profile:hasInput 
             rdf:resource="#BookName"/>
 <profile:hasOutput 
             rdf:resource="#BookInfo"/>

</profile:Profile>

Figure 7: OWL-S Profile for the BookFind Service

owl).
Figures 6, 7 show the service profiles of the BookPrice

and BookFind services. The BookPrice service has two in-
puts, BookName of type xsd:String, and Currency of type
Currency from the Southampton currency ontology (http:
//www.daml.ecs.soton.ac.uk/ont/currency.owl). The out-
put of the service is of type Price from the mindswap con-
cept ontology. The BookFind service has one input Book-
Name of type xsd : String and one output BookInfo of type
Book from the AKT portal ontology.

The similarity for the user requirement (BNP) and the
BookPrice (BP) service is,

sim(BNP, BP ) = w1simi(BNP, BP ) + w2simo(Price, Price)

= w1simi(BNP, BP ) + w2

where simi(BNP, BP ) =

min(sim(Book, xsd:String), sim(Book, Currency))

BP service has two inputs while BP has just one. We

calculate the similarity between BNP and BP’s inputs by
taking the minimum sim value. Intuitively, we get the safer
similarity measure by taking the lower sim value.
sim(Price, Price) = 1 since Price is of the same type.

sim(BNP, BF ) =

w1simi(Book, xsd:String) + w2simo(Price, Book)

From the two equations above, without the construction
of inference sets, we can conclude that the BookPrice service
is more similar to the user requirement than the BookFind
process. It is clear that simo(BNP, BP )≥ simo(BNP, BF )
since simo(BNP, BP ) = 1. simi(BNP, BP ) =
simi(BNP, BF ) because the Book class is more similar to
the class Currency (they both have the type owl:Class) than
a xsd string. Therefore sim(BNP, BP ) > sim(BNP, BF ).

5. CONCLUSION AND FUTURE WORK
In this paper we have presented a numeric metric for

calculating the semantic similarity of objects described by
OWL Lite ontology. The similarity measure is based on
the intuition that similar objects share more common de-
scriptive information. In order to define shared “common
information”, we introduced the concept of an OWL object
description set. Common information between any two ob-
jects can then be obtained by computing the intersection of
the description sets. The elements in the description sets are
assigned value based on their inferencibility. By using a set
OWL Lite− inference rules, we demonstrated how the IBIV
value for most of the OWL Lite construct can be derived.

With the semantic similarity measure defined, services
with semantic metadata can be compared by calculating
their similarity values. We focus on OWL-S annotated ser-
vices and propose a method of calculating the similarity
of different OWL-S services based on weighted aggregate
of ServiceProfile, ServiceModel and ServiceGrounding. We
conclude by showing a simple example of how semantic ser-
vices could be matched by using the proposed similarity
measure.

The implementation of the information based similarity
algorithm is currently in progress. We are looking to apply
this technique to various application scenarios with a focus
on the semantic matching of grid services. With real life
use cases, we aim to investigate the the effectiveness of the
similarity algorithm compared with strictly inference based
matching methods. We are also looking to explore the effect
of applying different rule sets to the calculation of IBIV.
By augmenting the current OWL Lite− rules, we aim to
increase the coverage of our similarity measure to cover some
of the OWL DL constructs. Other possibilities include using
the rule set from different inference engines and analyse the
effects they have on the quality of the similarity metric.
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