
Querying Wikipedia Documents and Relationships

Huong Nguyen Thanh Nguyen Hoa Nguyen Juliana Freire
School of Computing and SCI Institute, University of Utah
{huongnd,thanhh,thanhhoa,juliana}@cs.utah.edu

ABSTRACT
Wikipedia has become an important source of information which
is growing very rapidly. However, the existing infrastructure for
querying this information is limited and often ignores the inherent
structure in the information and links across documents. In this
paper, we present a new approach for querying Wikipedia con-
tent that supports a simple, yet expressive query interfaces that
allow both keyword and structured queries. A unique feature of
our approach is that, besides returning documents that match the
queries, it also exploits relationships among documents to return
richer, multi-document answers. We model Wikipedia as a graph
and cast the problem of finding answers for queries as graph search.
To guide the answer-search process, we propose a novel weight-
ing scheme to identify important nodes and edges in the graph.
By leveraging the structured information available in infoboxes,
our approach supports queries that specify constraints over this
structure, and we propose a new search algorithm to support these
queries. We evaluate our approach using a representative subset
of Wikipedia documents and present results which show that our
approach is effective and derives high-quality answers.

1. INTRODUCTION
As the volume of information on Wikipedia increases, there is a

growing need for techniques that allow users to query this informa-
tion. Although users can pose keyword-based queries to search
for information, these queries fail to capture both the structured in-
formation present in these documents and the connectivity among
them. To illustrate this limitation, consider the following query,
where a user wants to find "all actors that starred in a movie with
Brad Pitt". Answers to this query are available in Wikipedia data,
but because they span multiple documents, they cannot be retrieved
directly. A possible way for a user to find these answers is to first
visit Brad Pitt’s Wiki page, read the document, follow its internal
links to the movies he played in, and then find all actors in those
movies. This process, however, is complex and time-consuming.
We posit that by leveraging the structure of the objects represented
in Wikipedia documents and the relationships implied by links be-
tween documents, it is possible to answer the query above in an

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WebDB ’10 Indianapolis, IN USA
Copyright 2010 ACM 978-1-4503-0186-2/10/06 ...$10.00.

automated fashion. For example, by taking into account that there
are document classes (or entity types) ACTOR, MOVIE, which are
connected by a star in relationship, to answer above query, we can
search for all movies that have Brad Pitt as a star and then find all
actors that are stars in those movies.

One possible approach to represent Wikipedia documents and
relationships is to capture them in a relational database. This ap-
proach allows sophisticated queries in the form of structured query
languages such as SPARQL and SQL [2]. However, substantial ef-
fort is required to extract information from Wikipedia and store it
in a database. Even if we consider only information in infoboxes,
a global schema needs to be created for each document class, and
each infobox needs to be mapped into the global schema. Due to
the wide variability in infobox schemas and the large number of
classes, this can be challenging. Another disadvantage of this ap-
proach is usability: it requires users to have a-priori knowledge of
the schema and to be familiar with the query language.

In this paper, we propose WIKIQUERY, a new approach to query
Wikipedia documents that addresses these limitations. WIKIQUERY
supports simple, yet expressive queries, and returns answers that
span multiple documents without requiring the information to be
integrated in a database. Inspired by approaches for querying rela-
tional databases using keyword-based queries [6, 13, 1, 11], WIKI-
QUERY models Wikipedia as a graph and derives answers by travers-
ing the graph—in essence, it discovers how the different documents
are joined. An important challenge we address is that, unlike in
relational databases where a few tables are connected exclusively
through key-foreign key relationships, in Wikipedia, not only there
is a large number of document types (i.e., many distinct schemas)
but also the documents are highly connected, by a potentially large
number of links (i.e., many distinct relationships). As a result,
blindly following all the possible paths in this dense graph is likely
to lead to several irrelevant answers. Based on the intuition that
popular relationships are the most sought after, our approach aims
to find the best answers ranked by popularity and compactness. As
we discuss below, this assumption is practical and derives high-
quality answers.

Besides supporting simple, keyword-based queries, WIKIQUERY
also supports constraint-based queries (c-queries). These allow
users to more precisely specify their information need. For exam-
ple, while the query Paris returns all documents that contain this
keyword, for users looking for touristic information, a better query
would be city(name=Paris), or for users interested in movies,
actor(name=Paris) would be preferable. We leverage this addi-
tional information to develop a search algorithm that selects impor-
tant entities and relationships to improve the quality of query re-
sults. In particular, we propose a novel weighting scheme that pro-
motes important entities and relationships while de-emphasizing

common ones. In addition to weights assigned to nodes and edges,
we utilize the entity types specified in user query constraints to pro-
vide the search algorithm more context to help in answer selection.

Our main contributions can be summarized as follows: We de-
fine a layered data model that captures both schema and data-level
features of Wikipedia documents; we propose a query model that
supports both keyword-based and c-queries over Wikipedia docu-
ments that returns multi-document answers; we design a weight-
ing scheme for documents and relationships between documents to
guide the search for answers and propose a new algorithm to sup-
port c-queries that takes the input query into account; we perform
an experimental evaluation and present results which show that our
approach derives high-quality answers.

2. SOLUTION OVERVIEW
In what follows, we give a brief overview of WIKIQUERY and

discuss how it relates to and extends previous approaches to sup-
porting keyword-based queries over relational databases.

2.1 Linked Answers for Wikipedia Queries
An important goal of our work is to derive multi-document an-

swer to queries over Wikipedia. To do so, we model Wikipedia
as a graph. Each node in this graph corresponds to a document
which contains an infobox. An infobox is a table that summa-
rizes, in a structured way, the important attributes of the entity
represented in a document.1 Each item in an infobox consists of
an attribute name, which describes its meaning, and a set of val-
ues for the attribute. For example, Figure 1 shows the infobox
for Steven Spielberg’s page. It contains four attributes: Born,
Occupation, Years Active, and Spouse. Attribute values of
infoboxes may be atomic or contain links to other Wikipedia doc-
uments, which represent references (or relationships) among enti-
ties. These references correspond to the edges in our graph. For
example, in Figure 1, the attribute Years active contains only
one atomic value 1984 - present, while the attribute Spouse

contains 2 reference values: Amy Irving and Kate Capshaw.
Definition 1. An infobox I contains a set of attribute-value pairs 〈
A,V 〉 = {〈 ai,Vi 〉} where ai is an attribute name and Vi is a set
of values {v1, v2, ..., vk}. Each value vj ∈ Vi is either an atomic
value or a reference to another infobox (i.e., a value that contains a
hyperlink to another entity).

Each entity belongs to one or more entity types which identify
document classes with similar semantics. Consider the example in
Figure 1. The entity “Steven Spielberg” belongs to three different
entity types: Director, Producer, and Screenwriter. We note that
the problem of recognizing entity types for Wikipedia document
is out of the scope of this paper. This information can be retrieved
from Wikipedia categories, infobox templates, or provided by some
systems such as DBpedia [2] and Yago [3]. In this paper, we focus
on exploiting infoboxes (entities) and their relationships to derive
high-quality results for user queries.

Given an input query, be it a keyword-based query or a struc-
tured query, our goal is to identify a set of connected infoboxes that
together provide the answer to the query.
Definition 2. Let G = {I, R} be the graph induced by a set
of infoboxes I = {i1, i2, ..., ini} and a set of references R =
{r1, r2, ..., inr} that connect these infoboxes. Given an input query
Q, the answers to this query consist of a set S of minimal trees
G′ ⊂ G of related infoboxes I ′ ⊂ I and references R′ ⊂ R that
satisfy the query:

1In the remainder of the paper, we refer to infobox and entity inter-
changeably.

Figure 1: A query answer consisting of infoboxes from multiple
Wikipedia documents.

G′ = {I ′, R′} | G′ � Q and @G′′ ⊂ G′ such that G′′ � Q

Figure 1 shows a multi-document answer returned by WIKI-
QUERY. To derive these multi-document answers, we have devised
an approach that was inspired by BANKS [6]. Below, we briefly
review the important components of BANKS and discuss its limi-
tations in the context of Wikipedia.

2.2 BANKS: Overview
With BANKS, Bhalotia et al. [6] introduced the idea of sup-

porting keyword queries over relational databases. They model
a database as a directed graph whose nodes are tuples and edges
between these nodes correspond to key-foreign key relationships
between the tuples. Both edges and nodes are associated with a
pre-defined weight. Each edge is also associated with a backward
edge which reverses it to enable the graph to be traversed in two
directions. Using this graph, BANKS casts the problem of key-
word searching over relational database as a problem of finding
connected nodes that contain the keywords provided in the query,
more specifically, query answers are rooted Steiner trees where the
leaf nodes contain the keywords. The algorithm performs a bidi-
rectional search by using two iterators: an incoming iterator, which
starts from the leaf nodes and travels to root nodes using backward
edges, and an outgoing iterator, which starts from the root node
and travels to the leaf nodes until they find a common node.

BANKS relies on the node and edge weights to guide the search.
The node weight is defined as a logarithm scale function of the in-
degree of the node—this is based on the assumption that the more
references a node has, the more important it is. Edge weights are set
to 1 to reflect the fact that, initially, all nodes are equally close. Al-
though node weights remain unchanged during the search, BANKS
adopts an activation model that uses edge weights to reorder nodes
while expanding the search process to help find the shortest path.
The activation model works by spreading a proportion of the acti-
vation of a node being visited to its parents, i.e., the closer to its
children a node is, the more activation it gets.

BANKS also uses node and edge weights to compute the edge
score and the node score of the answer tree during ranking. The
edge score of an answer tree is the total weight of all edges in that
tree. The node score is the summarization of the root node’s weight
and all the leaf nodes’ weight. To promote concise answers, their
ranking function assigns a smaller score to large trees, and they
prefer trees with higher weight on the root and the leaves.
Limitations of BANKS for Querying Wikipedia. Although the

BANKS framework was shown to be effective in the context of
relational databases, it has important limitations when it comes
to querying Wikipedia documents. The framework relies on key-
foreign key relationships to build the data graph, and this infor-
mation is not readily available on Wikipedia. While any tuple
in a database belongs to a single relation, a Wikipedia document
may belong to many classes, consequently, two entities may be
connected by multiple relationships. Furthermore, information in
Wikipedia can be heterogeneous—even entities belonging to the
same class may have different schemas. Last, but not least, BANKS
ranking algorithm depends only on the structure of the data graph
and is independent of the context and semantics of input queries.
As we discuss later, higher-quality results are derived when the
context where the keywords sought appear is specified in queries.
As we discuss below, to address these limitations, WIKIQUERY
makes use of a two-layer data model and weighting scheme that
takes into account specific features of Wikipedia and introduces a
query-dependent search algorithm.

3. THE LAYERED GRAPH MODEL
Because the Wikipedia document graph is highly-connected, and

even within a fixed document class, the structure of infoboxes is
heterogeneous, to derive high-quality answers, WIKIQUERY needs
to automatically assess the importance of the references between
the infoboxes. It does so by using a two-pronged approach. First,
it models the Wikipedia contents using two graphs: the schema
graph, which captures the references between entity types; and the
data graph which captures the references between entities. And
second, it applies a weighting scheme that assigns values to nodes
and edges in these graphs that reflect their importance.
Data Graph. We model entities and references using a labeled
graph. A data graph D is a labeled weighted directed graph with
entities as nodes and references as edges. We model each reference
as two edges: a forward edge and a backward edge. For each ref-
erence λ from entity v to v′, we create a forward edge from node
v to node v′ and a backward edge from v′ to v, both with label λ.
We denote forward edge e from v to v′ with label λ as e = v

λ−→ v′

and its corresponding backward edge as eb = v
λ←− v′. Figure

2(a) illustrates a data graph, where we omit the backward edges for
simplicity of presentation.
Schema Graph. The schema graph S is a labeled weighted di-
rected graph that summarizes the information contained in a data
graph D. Recall that an entity may belong to multiple entity types.
Let Tv be the set of entity types that an entity v belongs to, we
construct S from D as follows:

• For each node v ∈ D, add node t to the set of nodes in S for
each entity type in t ∈ Tv .

• For each edge e ∈ D, e = v
λ(e)−−−→ v′, add to S an edge with

same label λ(e) from each entity type t ∈ Tv to each entity type
t′ ∈ Tv′ .

Figure 2(b) shows the schema graph for the data graph of in Fig-
ure 2(a). Note that since the entity Steven Spielberg belongs
to the types producer and director, and it is connected to film
Schindler’s List via edges Produced By and Directed By,
corresponding edges are created in the schema graph to connect the
entity type Film to Director and Producer.

3.1 Weighted Schema Graph
Based on the observation that entities with high frequency in

Wikipedia, on average, have a large number of incoming edges,

(a) Data Graph

(b) Schema Graph

Figure 2: The layered graph model.

we assign lower weights to such nodes. Similar to information re-
trieval systems which assign low importance to common terms [4],
we penalize nodes that are less likely to contribute important infor-
mation to answers. For every node t ∈ S, let {Et} be the set of
entities v with type t. The weight of t is defined as follows:

ηS(t) =
|Et|∑

v∈Et
Indegree(v)

(1)

We use two measures to assign weights to the edges in a schema
graph: node dependence and edge strength. The dependence be-
tween nodes (or entity types) in a schema graph measures the prob-
ability of observing a node t′ given a node t. For example, given
an Actor, the probability of observing Film is higher than that of
observing Politician. More formally, the dependence δ between

schema nodes t and t′ is defined as δ(t′, t) =
∑

v∈Et
C(v,t′)

|Et| where
Et and Et′ are the sets of entities with types t and t′, respectively,
and

C(v, t′) =

{
1, if ∃ e = v → u, u ∈ Et′ , e ∈D
0, otherwise.

Note that δ(t′, t) different from δ(t, t′).
Besides taking nodes into account, WIKIQUERY also considers

the relationships between nodes to rank answers. Since there can be
many relationships between two entities (documents) in Wikipedia,
we use edge strength to capture how ’close’ entity types are so that
we can distinguish relationships regarding their importance. For
example, the edge strength of Starring given Film and Actor

should be higher than the strength of Directed by given the same

types. The edge strength of an edge e = t
λ(e)−−−→ t′ is defined as the

normalized likelihood of the reference t → t′ given the edge label
λ(e):

P (t, t′|λ(e)) =

∑
v∈Et, v′∈Et′

(v
λ(e)−−−→ v′)∑

∀v,v′(v
λ(e)−−−→ v′)

The strength of edge e is denoted as χ(t, t′, λ(e)):

χ(t, t′, λ(e)) =
P (t, t′|λ(e))

maxλ(ei) P (t, t′|λ(ei))
Similar to δ, χ is not symmetric.

Recall that edge weight is computed by combining dependence
and edge strength. However, when the sink node belongs to a preva-
lent type, it may represent a relationship that is also common, and
as a result, its strength should be attenuated. Edge strength is thus
computed as follows:

Importance(t, t′, λ(e)) = δ(t′, t) ∗ χ(t, t′, λ(e)) ∗ η(t′)
Because our search algorithm (Section 4) finds the shortest paths
among the candidate nodes, we annotate ewith weight µS(t, t′, λ(e))
as the inverse of Importance with intuition that the shorter path is
the path with the higher relevance:

µS(t, t′, λ(e)) =
1

Importance(t, t′, λ(e))
(2)

3.2 Weighted Data Graph
A node in data graph D is assigned a weight to determine its

importance in the dataset. While in the schema graph node weights
determine the importance of the entity types, in the data graph they
capture the relative importance among entities of the same type.
Intuitively, entities that have more references are more important,
i.e., popular entities are favored among entities with the same type.
Driven by this intuition, we compute the weight of a node v in D
as a function of its indegree and its entity type weight. Formally,
the weight of a node v with entity types Tv is

ηD(v) = log(1 +
indegree(v)

max
t∈Tv

ηS(t)
) (3)

Forward Edge Weight. We determine the edge weights inD using
µS of the edges in the corresponding schema graph S. Since an
entity may belong to multiple entity types, an edge in D may be
associated to multiple edges in the S. Therefore, we assign edge
weight in the data graph using the weight of the most important

edge among associated entity types in S. Let e = v
λ(e)−−−→ v′ be

an edge in the D and Tv and Tv′ be the set of entity types of v
and v′, we assign edge weight to e as follows. For each entity type
t ∈ Tv and t′ ∈ Tv′ , we find corresponding edge weightw′ of edge

e′ = t
λ(e)−−−→ t′ in S and assign this weight to e if current weight of

e is smaller than w′. The forward edge weight is thus defined as:

µD(e) = min
t∈Tv,t′∈Tv′

µS(t, t′, λ(e)) (4)

Backward Edge Weight. For each forward edge, the weight of the
corresponding backward edge depends on the number of edges in-
cident on v′ [6], so that the backward edges to nodes with prevalent
types are penalized (e.g., Film←− Country). We assign the weight
to the backward edge of a forward edge e as:

µD(eb) = µD(e) ∗ log(1 + indegree(v′)) (5)

Note that if the backward edge already exists in the graph as a for-
ward edge, we assign its weight as the minimum value between its
forward and the backward edges weight calculated as above.

4. QUERYING AND SEARCHING
Keyword Queries. A keyword query K consists of a set of key-
words k1, k2, ..., kn. Without loss of generality, we assume these
keywords form a conjunction.2 For example, to “find actors who
worked with director Steven Spielberg” we could construct the
following query: {“Actor”,“Director Steven Spielberg”}.

To support keyword queries, we index all values of entities in the
data graph. A traditional way to construct this index is to build an
inverted list that connects terms to entities. But since users may
2Disjunctive queries can be obtained as an union of the results of
multiple conjunctive queries.

enter metadata as terms in the query, e.g., “director Steven Spiel-
berg”, we index entity types and attribute names. To answer queries
using this indexing structure, for each keyword ki, we find a set of
entities Ei in the data graph that match ki. Let E = E1 ∪ ... ∪ En
be the set of candidate leaf nodes of the answer tree. We apply the
Bidirectional Expanding Search algorithm [13], using the set E , to
find a common node connecting at least one node in each Ei and
construct the answer trees.
Constraint-Based Queries. A keyword query does not require
users to have knowledge of the data schema, but it limits their abil-
ity to precisely specify an information need. To address this prob-
lem, WIKIQUERY supports conjunctive constraint-based queries
(c-queries).
Definition 3. A c-query consists of a conjunction of constraints
q = c1, c2, ..., cn. Each constraint ci is of the form Entity Type(
AttributeName op Value), where an op ∈ {=, ! =, >,<>=, <=}.

Note that although more expressive than keyword queries, c-
queries are still simple to specify and they do not require users to
have knowledge of how different entities are connected (joined).
For example, a c-query to answer the question “find actors born
after 1980 who worked with director Steven Spielberg” could
be constructed using the following two constraints: Director(name
= Steven Spielberg) and Actor(born>1980). One possible answer
to this query includes joins between Director, Film, and Actor.
We leverage the additional information provided in a c-query to
derive a search algorithm which is able to select entities and rela-
tionships that best match the query and lead to better result ranking.
Query-Dependent Search Algorithm. As discussed in Section 3,
our approach to result ranking is based on the intuition that a user is
most likely interested in popular documents and relationships. Al-
though this assumption is practical and reflects the requirements of
many applications that use keyword queries (see Section 5), it has
an important limitation: it does not take into account the context in
which the keywords appear. To address this problem, we compute
node and edge weights in data graph based on metadata information
provided by the users in c-query: instead of building a data graph
with fixed weights, we leverage semantics provided in c-queries
to compute query-dependent weights. We propose search algo-
rithm which combines navigation using query-dependent weights
with the expanding iterators of the Bidirectional Search algorithm
(Section 2.2), whereby the iterators are made to focus on the most
relevant nodes and edges with respect to the query.

To each node v with entity type t in the data graph that satisfies
a constraint in c-query q, we assign a query-dependent weight:

ηqD(v) = log(1 +
indegree(v)

ηS(t)
) (6)

Let e be a forward edge from v to some node v′, e = v
λ(e)−−−→ v′,

then e is assigned a query-based edge weight µqD(e):
µqD(e) = min

t′∈Tv′
µqS(t, t′, λ(e)) (7)

where Tv′ is the set of possible entity types of v′, t is the type of v
which is given by the query, and µqS(t, t′, λ(e)) is the edge weight
of e (Equation (2)).

The query-dependent weights are integrated into the bidirectional
search as follows. We start with the sets of nodes that match the
query constraints. When an expanding iterator visits the succes-
sor node v′ of a keyword node v, we determine the best type for
v′ together with the best relationship between the two nodes based
on the type of v. This navigation process iterates to explore the
next level of entities simultaneously with the expansion process.
When the navigator encounters a node that has already been vis-
ited for which it derives a conflicting decision upon the node type,

Algorithm 1 Query-Dependent Search Algorithm
1: Input: Keyword node sets {S1, ..., Sn}, Entity Types {E1, ..., En}
2: Output: Set of answers
3: v = Expanding_Iterator.pop()
4: if v creates an answer then
5: Construct an answer with root v
6: Add the answer to output heap
7: else
8: for all v′ in surrounding[v] do
9: Navigate(v,v′)
10: Update_Path(v,v′)
11: end for
12: end if

Algorithm 2 Navigate(v,v′)
1: if v′.type == null then
2: for all t′ ∈ type[v′], l ∈ label[v, v′] do
3: e = v

l−→ v′, where v′ has type of t′

4: Find l, t′ that minimize µq
D(e) using Equation (7)

5: end for
6: v′.type = t′, e(v, v′).label = l
7: else
8: for all t′ ∈ type[v′], l ∈ label[v, v′] do
9: s = µq

D(e), e = v
l−→ v′ where v′ has type of t′

10: for each keyword i do
11: p = previous node of v′ in the path from v′ to Si

12: e′ = p
l′−→ v′, where v′ has type of t′

13: s+ = µq
D(e′)

14: end for
15: v′.type = t′, e(v, v′).label = l in which (t′, l) minimize s
16: end for
17: end if

we choose the type with higher total relevance score to its prede-
cessors. This procedure is described in Algorithm 1. The bidirec-
tional search algorithm is executed simultaneously with our algo-
rithm, which is represented by Procedure Expanding_Iterator.pop()
and Update_Path(v,v′). Expanding_Iterator.pop() in line 3 returns
node v with the highest priority for exploring. If this node has
paths to all the keyword sets, we build an answer with this node
as the root of the tree and then insert it into a heap for reorder-
ing by the relevance score of the whole tree (line 4-6). Procedure
Update_Path(v, v′) updates the path for v′ if v′ has a better path
to any keyword ki via v, and insert v′ into the fringe waiting for
the iterator to pop out. More details of Expanding_Iterator.pop()
and Update_Path(v,v′) can be found in BANKS paper[13]. Before
the search algorithm expands the new surrounding nodes {v′} of
v, Algorithm 2 determines the most relevant type for v′ and most
relevant relationship of (v, v′), given the type of v using the query-
based weights presented above.

5. PRELIMINARY EXPERIMENTS
We evaluate WIKIQUERY using keyword and c-queries derived

from the same set of user questions. To assess the effectiveness
of our approach, we compare the quality of the results it derives
against results derived by BANKS. We note that although there are
other approaches to querying Wikipedia [2, 15], their work is or-
thogonal to ours. In particular, it is not possible to perform a fair
comparison against these since they require user to specify the join
paths between entities.
Dataset. Our data set consists of a graph with 22, 000 nodes, corre-
sponding to infoboxes, and 230, 000 edges connecting these nodes.
We obtained these infoboxes by crawling Wikipedia documents un-
der the top category Film.
Metrics. Since the expected number of results returned varies from
query to query, using a top-K precision evaluation can be mislead-
ing. Instead, we use the normalized discounted cumulative gain

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20

N
D

C
G

Number of results

BANKS

WikiQuerier

Figure 3: Keyword query NDCG using top-K results.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20

N
D

C
G

Number of results

BANKS

WikiQuerier

Figure 4: Constraint-based query NDCG using top-K results.

(NDCG) as a measure [12], which has been widely used in IR
benchmarking [12] as well as in other search and ranking prob-
lems [15]. NDCG is independent of the number of results returned
by the system for a given query and it allows us to incorporate dif-
ferent levels of relevance. For each query, we select the top 20
results and presented them to 5 evaluators. Evaluators were re-
quired to indicate whether each result is “highly relevant”, “rele-
vant”, “somewhat relevant”, “unclear” or “not relevant”. We define
the discounted cumulative gain (DCG) as follows:

DCG(i) =

{
G(i) if i = 1

DCG(i− 1) + G(i)
log(i)

otherwise

where i is the ith result in the result, and G(i) is the relevance of
that result, i.e., the average relevance of that result over all evalua-
tors. The NDCG is obtained by dividing DCG by the DCG of the
ideal ranking.
Results. Figure 3 presents evaluation results for keyword queries.
WIKIQUERY always outperforms BANKS, from 16% in NDCG at
K = 1 to 10% at K = 20. However, in this configuration, both
BANKS and WIKIQUERY have lower NDCG at smaller K. A pos-
sible explanation for this behavior is that keyword queries fail to
accurately express the users’ intentions. For example, consider a
keyword query “List movies whose actors are politicians”, a possi-
ble encoding for this query as a set of keywords is “movie, politi-
cian actor”; and the results for this may contain a list of movies
that are produced by some producer who is a politician. Without
the ability to provide contextual information, many interpretations
of a query are possible which may not reflect the information need
of a user.

c-queries try to overcome this limitation by allowing users to
specify entity types as well as constraints involving entity attributes
and values. Figure 4 shows the NDCG values obtained by WIKI-
QUERY and BANKS for c-queries. The results show that WIKI-
QUERY is not only more effective than BANKS, but it also obtains
high NDCG at higher rank results. Given a c-query
“Movie(name=harry potter) AND Actor(born=England)”,
WIKIQUERY will assign a higher rank to actors who acted in Harry
Potter movies than producers or directors. This is in contrast to
BANKS, which adopts a fixed structure of the data graph and does
not consider the input query to rank results.

6. RELATED WORK
Although approaches for supporting keyword queries in RDBMS

model a database as a graph, in some, nodes correspond to rela-
tions [1, 11, 10] while in others, nodes represent tuples [5, 7, 9,
6, 13]. Relation-based approaches have important limitations in
the context of querying Wikipedia documents: not only do they
need the database schema to process keyword queries using SQL,
but they also require users to specify structured queries (and join
paths), which can be challenging in the presence of a large num-
ber of related entities with heterogeneous schemas. Tuple-based
approaches evaluate a keyword query by utilizing the weights asso-
ciated with nodes and edges in the data graph. BANKS is the work
most closely related to ours and it has been discussed in Section 2.2.
The goal of DBPF [7] is to find the optimal solution and thus, query
evaluation is very computationally expensive making it unsuitable
for large data. BLINKS [9] utilizes the backward search strategy of
BANKS, but it focuses on finding the root node of the answer tree,
not relationships between the nodes of the tree. In contrast to our
work, the focus of BLINKS is on the search efficiency, not answer
quality. ObjectRank [5] uses an authority-based ranking strategy
and similarly to BLINKS, returns individual nodes instead of trees
as answers. Similar to our approach, SphereSearch [8] and [16]
also return multiple-document answers, however, they do not take
into account specific labeled relationships between entities.

Also related to our work are approaches to querying Wikipedia.
Freebase, Powerset and Faceted Wikipedia Search (FWS)3 allow
keyword queries over structured information extracted from Wikipedia
documents, and similar to our approach they also return different
entities that are related to the terms in the query. DBpedia [3]
and NAGA [15, 14] model structured information extracted from
Wikipedia documents as RDF triples and use the SPARQL query
language for querying the data. They allow sophisticated queries
but the users need not only to know the exact data schema and spec-
ify join paths, but they must also be familiar with SPARQL. This
negatively impacts the usability of the query interface, since even
simple queries can become too complicated for naïve users [2].
Similar to our approach, NAGA [15] and STAR [14] employ a
ranking model based on informativeness, confidence, and compact-
ness. However, they require users to explicitly specify the join
paths.

Yu and Jagasish [17] studied the problem of schema summariza-
tion and proposed a metric to assess importance of schema ele-
ments. Although there are commonalities in our approach assign-
ing weight to the graph elements, their goal is different: they aim
to help users explore a schema. In addition, they not consider the
importance of relationships between elements which play a role in
our search and ranking algorithms.

7. CONCLUSION
In this paper we introduced WIKIQUERY, a new approach to

querying Wikipedia documents that returns results in the form of
linked documents. Inspired by approaches that support keyword-
based queries over structured data, WIKIQUERY models documents
as a graph. But in contrast to those, it utilizes a weighting scheme
that takes into account specific features of Wikipedia documents
to identify important entities and relationships. In addition to key-
word queries, WIKIQUERY supports the more expressive c-queries,
and we proposed algorithms which use the weighting scheme to
search for and rank query results for both kinds of queries. We
present the results of a preliminary experimental evaluation which
shows that WIKIQUERY is effective and obtains answers that are

3www.freebase.com,www.powerset.com, and dbpedia.neofonie.de

of higher quality than those derived by a state-of-the-art system for
keyword search over relational databases.
Acknowledgments. Our research has been funded by National Sci-
ence Foundation grants IIS-0905385, IIS-0844546, IIS-0746500,
CNS-0751152, IIS-0713637, and the Department of Energy.

8. REFERENCES
[1] S. Agrawal, S. Chaudhuri, and G. Das. Dbxplorer: A system

for keyword-based search over relational databases. In ICDE,
page 5, 2002.

[2] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak,
and Z. G. Ives. Dbpedia: A nucleus for a web of open data.
In ISWC/ASWC, pages 722–735, 2007.

[3] S. Auer and J. Lehmann. What have Innsbruck and Leipzig
in common? Extracting semantics from wiki content. In
ESWC, pages 503–517, 2007.

[4] R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern
Information Retrieval. ACM Press/Addison-Wesley, 1999.

[5] A. Balmin, V. Hristidis, and Y. Papakonstantinou.
Objectrank: Authority-based keyword search in databases. In
VLDB, pages 564–575, 2004.

[6] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti,
S. Sudarshan, and I. Bombay. Keyword searching and
browsing in databases using banks. In ICDE, page 431, 2002.

[7] B. Ding, J. X. Yu, S. Wang, L. Qin, X. Zhang, and X. Lin.
Finding top-k min-cost connected trees in databases. In
ICDE, pages 836–845, 2007.

[8] J. Graupmann, R. Schenkel, and G. Weikum. The
spheresearch engine for unified ranked retrieval of
heterogeneous XML and Web documents. In VLDB, pages
529–540, 2005.

[9] H. He, H. Wang, J. Yang, and P. S. Yu. Blinks: ranked
keyword searches on graphs. In SIGMOD, pages 305–316,
2007.

[10] V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient
IR-style keyword search over relational databases. In VLDB,
pages 850–861, 2003.

[11] V. Hristidis and Y. Papakonstantinou. Discover: keyword
search in relational databases. In VLDB, pages 670–681,
2002.

[12] K. Järvelin and J. Kekäläinen. IR evaluation methods for
retrieving highly relevant documents. In SIGIR, pages 41–48,
2000.

[13] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan,
R. Desai, and H. Karambelkar. Bidirectional expansion for
keyword search on graph databases. In VLDB, pages
505–516, 2005.

[14] G. Kasneci, M. Ramanath, M. Sozio, F. M. Suchanek, and
G. Weikum. Star: Steiner-tree approximation in relationship
graphs. In ICDE, pages 868–879, 2009.

[15] G. Kasneci, F. Suchanek, G. Ifrim, M. Ramanath, and
G. Weikum. NAGA: Searching and ranking knowledge. In
ICDE, pages 953–962, 2008.

[16] F. Liu, C. Yu, W. Meng, and A. Chowdhury. Effective
keyword search in relational databases. In SIGMOD, pages
563–574, 2006.

[17] C. Yu and H. V. Jagadish. Schema summarization. In VLDB,
pages 319–330, 2006.

