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Abstract

A query to a web search engine usually consists of a list
of keywords, to which the search engine responds with the
best or “top” k pages for the query. This top-k query model
is prevalent over multimedia collections in general, but also
over plain relational data for certain applications. For exam-
ple, consider a relation with information on available restau-
rants, including their location, price range for one diner, and
overall food rating. A user who queries such a relation might
simply specify the user’s location and target price range, and
expect in return the best 10 restaurants in terms of some com-
bination of proximity to the user, closeness of match to the
target price range, and overall food rating. Processing such
top-k queries efficiently is challenging for a number of rea-
sons. One critical such reason is that, in many web appli-
cations, the relation attributes might not be available other
than through external web-accessible form interfaces, which
we will have to query repeatedly for a potentially large set of
candidate objects. In this paper, we study how to process top-
k queries efficiently in this setting, where the attributes for
which users specify target values might be handled by exter-
nal, autonomous sources with a variety of access interfaces.
We present several algorithms for processing such queries,
and evaluate them thoroughly using both synthetic and real
web-accessible data.

1. Introduction

A query to a web search engine usually consists of a list
of keywords, to which the search engine responds with the
best or “top” k pages for the query. This top-k query model
is prevalent over multimedia collections in general, but also
over plain relational data for certain applications where users
do not expect exact answers to their queries, but instead a
rank of the objects that best match a specification of tar-
get attribute values. Additionally, some applications require
accessing data that resides at or is provided by remote, au-
tonomous sources that exhibit a variety of access interfaces,

which further complicates query processing.
Top-k queries arise naturally in applications where users

have relatively flexible preferences or specifications for cer-
tain attributes, and can tolerate (or even expect) fuzzy
matches for their queries. A top-k query in this context is
then simply an assignment of target values to the attributes
of a relation. To answer a top-k query, a database system
identifies the objects that best match the user specification,
using a given scoring function.

Example 1 : Consider a relation with information about
restaurants in the New York City area. Each tuple (or ob-
ject) in this relation has a number of attributes, including
Address, Rating, and Price, which indicate, respectively, the
restaurant’s location, the overall food rating for the restau-
rant represented by a grade between 1 and 30, and the aver-
age price for a diner. A user who lives at 2590 Broadway and
is interested in spending around $25 for a top-quality restau-
rant might then ask a top-10 query fAddress=“2590 Broad-
way”, Price=$25, Rating=30g. The result to this query is a
list of the 10 restaurants that match the user’s specification
the closest, for some definition of proximity.

Processing top-k queries efficiently is challenging for a
number of reasons. One critical such reason is that, in many
web applications, the relation attributes might not be avail-
able other than through external web-accessible form inter-
faces. For instance, in our example above the Rating at-
tribute might be available through the Zagat-Review web
site 1, which, given an individual restaurant name, returns its
food rating as a number between 1 and 30 (random access).
This site might also return a list of all restaurants ordered
by their food rating (sorted access). Similarly, the Price
attribute might be available through the New York Times’s
NYT-Review web site 2. Finally, the scoring associated with
the Address attribute might be handled by the MapQuest
web site 3, which returns the distance (in miles) between the
restaurant and the user addresses.

1http://www.zagat.com
2http://www.nytoday.com
3http://www.mapquest.com
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To process a top-k query over web-accessible databases,
we then have to interact with sources that export different in-
terfaces and access capabilities. In our restaurant example, a
possible query processing strategy is to start with the Zagat-
Review source, which supports sorted access, to identify a
set of candidate restaurants to explore further. This source re-
turns a rank of restaurants in decreasing order of food rating.
To compute the final score for each restaurant and identify
the top-10 matches for our query, we then obtain the prox-
imity between each restaurant and the user-specified address
by querying MapQuest, and check the average dinner price
for each restaurant individually at the NYT-Review source.
Hence, we interact with three autonomous sources and re-
peatedly query them for a potentially large set of candidate
restaurants.

Recently, Fagin et al. [7] have presented query process-
ing algorithms for top-k queries for the case where all in-
tervening sources support sorted access (plus perhaps ran-
dom access as well). Unfortunately, these algorithms are
not designed for sources that only support random access
(e.g., the MapQuest site), which abound on the web. In fact,
as we will see, simple adaptations of these algorithms do
not perform well over random-access sources. In this pa-
per, we present novel processing strategies for top-k queries
over sources that support just random access, just sorted ac-
cess, or both. We also develop non-trivial adaptations of Fa-
gin et al.’s algorithms for random-access sources, and com-
pare these techniques experimentally using synthetic and real
web-accessible data sets.

The rest of the paper is structured as follows. Section 2
defines our query and data model, notation and terminology
that we use in Section 3 to present our new techniques and
our adaptations of Fagin et al.’s algorithms. We evaluate the
different strategies experimentally in Section 5 using the data
sets and metrics in Section 4. Section 6 reviews relevant
work.

2. Query Model

In traditional relational systems, query results consist of a
set of tuples. In contrast, the answer to a top-k query is an or-
dered set of tuples, where the ordering is based on how close
each tuple matches the given query. Furthermore, the answer
to a top-k query does not include all tuples that “match” the
query, but rather only the best k such tuples. In this section
we define our data and query models in detail.

Consider a relation R with attributes A0; A1; : : : ; An,
plus perhaps some other attributes not mentioned in our
queries. A top-k query over relation R simply specifies tar-
get values for the attributes Ai. Therefore, a top-k query is
an assignment of values fA0 = q0; A1 = q1; : : : ; An = qng
to the attributes of interest. Note that some attributes might
always have the same “default” target value in every query.
For example, it is reasonable to assume that the Rating at-

tribute in Example 1 above might always have an associated
query value of 30. (It is unclear why a user would insist on a
lesser-quality restaurant, given the target price specification.)
In such cases, we simply omit these attributes from the query,
and assume default values for them.

Consider q = fA0 = q0; A1 = q1; : : : ; An = qng, a
top-k query over a relation R. The score that each tuple (or
object) t in R receives for q is a function of t’s score for each
individual attributeAi with target value qi. Specifically, each
attribute Ai has an associated scoring function ScoreAi

that
assigns a proximity score to qi and ti, where ti denotes the
value of object t for attribute Ai. To combine these individ-
ual attribute scores into a final score for each object, each
attribute Ai has an associated weight wi indicating its rela-
tive importance in the query. Then, the final score for object
t is defined as a weighted sum of the individual scores: 4

Score(q; t) = ScoreComb(s0; s1; : : : ; sn) =
nX

i=0

wi � si

where si = ScoreAi
(qi; ti). The result of a top-k query is the

ranked list of the k objects with highest Score value, where
we break ties arbitrarily.

Example 1: (cont.) We can define the scoring function for
the Address attribute of a query and an object as the inverse
of the distance (say, in miles) between the two addresses.
Similarly, the scoring function for the Price attribute might
be a function of the difference between the target price and
the object’s price, perhaps “penalizing” restaurants that ex-
ceed the target price more than restaurants that are below
it. The scoring function for the Rating attribute might simply
be the object’s value for this attribute. If price and quality
are more important to a given user than the location of the
restaurant, then the query might assign, say, a 0:2 weight to
attribute Address, and a 0:4 weight to attributes Price and
Rating.

Recent techniques to evaluate top-k queries over tradi-
tional relational DBMSs [4, 5] assume that all attributes of
every object are readily available to the query processor.
However, in many applications some attributes might not be
available “locally,” but rather will have to be obtained from
an external web-accessible source instead. For instance,
the Price attribute in our example is provided by the NYT-
Review web site and can only be accessed by querying this
site’s web interface 5.

4Our model and associated algorithms can be adapted to handle other
scoring functions (e.g., min), which we believe are less meaningful than
weighted sums for the applications that we consider.

5Of course, in some cases we might be able to download all this remote
information and cache it locally with the query processor. However, this
will not be possible for legal or technical reasons for some other sources, or
might lead to highly inaccurate or outdated information.
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This paper focuses on the efficient evaluation of top-k
queries over a (distributed) “relation” whose attributes are
handled and provided by autonomous sources accessible
over the web with a variety of interfaces. Specifically, we
distinguish between three types of sources based on their ac-
cess interface:

Definition 1: [Source Types] Consider an attribute Ai with
target value qi in a top-k query q. Assume further that Ai

is handled by a source S. We say that S is an S-Source if,
given qi, we can obtain from S a list of objects sorted in
descending order of ScoreAi

by (repeated) invocation of a
getNextS(qi) interface. Alternatively, assume that Ai is
handled by a source R that only returns scoring information
when prompted about individual objects. In this case, we
say that R is an R-Source. R provides random access on
Ai through a getScoreR(qi; t) interface, where t is a set
of attribute values that identify an object in question. (As a
small variation, sometimes an R-Source will return the actual
attribute Ai value for an object, rather than its associated
score.) Finally, we say that a source that provides both sorted
and random access is an SR-Source.

Example 1: (cont.) In our running example, attribute Rating
is associated with the Zagat-Review web site. This site pro-
vides both a list of restaurants sorted by their rating (sorted
access), and the rating of a specific restaurant given its name
(random access). Hence, Zagat-Review is an SR-Source.
In contrast, Address is handled by the MapQuest web site,
which returns the distance between the restaurant address
and the user-specified address. Hence, MapQuest is an
R-Source.

To define query processing strategies for top-k queries in-
volving the three source types above, we need to consider the
cost that accessing such sources entails:

Definition 2 : [Access Cost] Consider an R-Source or
SR-SourceR and a top-k query. We refer to the average time
that it takesR to return the score for a given object as tR(R).
(tR stands for “random-access time.”) Similarly, consider
an S-Source or SR-Source S. We refer to the average time
that it takes S to return the top object for the query as tS(S).
(tS stands for “sorted-access time.”) We make the simplify-
ing assumption that successive invocations of the getNext
interface also take time tS(S) on average.

Fagin et al. [7] presented “instance optimal” query pro-
cessing algorithms over sources that are either of type
SR-Source (TA algorithm) or of type S-Source (NRA al-
gorithm). As we will see, simple adaptations of these al-
gorithms do not perform as well for the common scenario
where R-Source sources are also available. In the remain-
der of this paper, we address this limitation of existing top-k
query processing techniques.

3. Evaluating Top-k Queries

In this section we present strategies for evaluating top-k
queries, as defined in Section 2. Specifically, in Section 3.1
we present a naive but expensive approach to evaluate top-k
queries. Then, in Section 3.2 we introduce our novel strate-
gies. Finally, in Section 3.3 we adapt existing techniques for
similar problems to our framework.

We make a number of simplifying assumptions in the re-
mainder of this section. Specifically, we assume that the
scoring function for all attributes return values between 0
and 1, with 1 denoting a perfect match. Also, we assume
that exactly one S-Source (denoted S and associated with at-
tributeA0) and multipleR-Sources (denotedR1; : : : ; Rn and
associated with attributes A1; : : : ; An) are available. (The
S-Source S could in fact be of type SR-Source. In such a
case, we will ignore its random-access capabilities in our dis-
cussion.) In addition, we assume that only one source is ac-
cessed at a time, so all probes are sequential during query
processing. (See Section 7.)

Following Fagin et al. [6, 7], we do not allow our al-
gorithms to rely on “wild guesses”: thus a random access
cannot zoom in on a previously unseen object, i.e., on an
object that has not been previously retrieved under sorted
access from a source. Therefore, an object will have to
be retrieved from the S-Source before being probed on any
R-Source. Since we have exactly one S-Source S available,
objects in S are then the only candidates to appear in the
answer to a top-k query. We refer to this set of candidate
objects as Objects(S). Besides, we assume that all R-Source
R1; : : : ; Rn “know about” all objects in Objects(S). In other
words, given a query q and an object t 2 Objects(S), we can
probe Ri and obtain the score ScoreAi

(qi; t) corresponding
to q and t for attribute Ai, for all i = 1; : : : ; n. Of course,
this is a simplifying assumption that is likely not to hold in
practice, where each R-Source might be autonomous and not
coordinated in any way with the other sources. For instance,
in our running example the NYT-Review site might not have
reviewed a specific restaurant, and hence it will not be able
to return a score for the Price attribute for such a restaurant.
In this case, we use a default value for ScoreAi

(qi; t).

3.1. A Naive Strategy

A simple technique to evaluate a top-k query q consists
of retrieving all partial scores for each object in Objects(S),
calculating the corresponding combined scores, and finally
returning k objects with the highest scores. This simple pro-
cedure returns a correct answer to the given top-k query.
However, we need to retrieve all scores for each object in
Objects(S). This can be unnecessarily expensive, especially
since many scores are not needed to produce the final answer
for the query, as we will see. Using Definition 2, this strategy
takes time jObjects(S)j � (tS(S) +

Pn
i=1 tR(Ri)).
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3.2. Our Proposed Strategies

In this section we present novel strategies to evaluate top-
k queries over one S-Source and multiple R-Sources. Our
techniques lead to efficient executions by explicitly modeling
the cost of random probes to R-Sources. Unlike the naive
strategy of Section 3.1, our algorithms choose both the best
object and the best attribute on which to probe next at each
step. In fact, we will in general not probe all attributes for
each object under consideration, but only those needed to
identify a top-k answer for a query.

Consider an object t that has been retrieved from S-Source
S and for which we have already probed some subset of
R-Sources R0 � fR1; : : : ; Rng. Let si = ScoreAi

(qi; ti)
if Ri 2 R0. (Otherwise, si is undefined.) Then, an upper
bound for the score of object t, denoted U(t), is the maxi-
mum possible score that object t can get, consistent with the
information from the probes that we have already performed.
U(t) is then the score that t would get if t had the maximum
score of 1 for every attribute in the query that has not yet
been processed for t: U(t) = ScoreComb(s0; ŝ1; : : : ; ŝn),
where ŝi = si if Ri 2 R0, and ŝi = 1 otherwise. If
object t has not been retrieved from S yet, then we define
U(t) = ScoreComb(s`; 1; : : : ; 1), where s` is the ScoreA0

score for the last object retrieved from S, or 1 if no object
has been retrieved yet. (t’s score for A0 cannot be larger
than s`, since S-Source S returns objects in descending order
of ScoreA0

.)
Similarly, a lower bound for the score of an object

t already retrieved from S, denoted L(t), is the min-
imum possible score that object t can get: L(t) =
ScoreComb(s0; ŝ1; : : : ; ŝn), where ŝi = si if Ri 2 R0, and
ŝi = 0 otherwise. If object t has not been retrieved from S

yet, then we define L(t) = 0.
Finally, the expected score for an object t already re-

trieved from S, denoted E(t), is obtained by assuming
that the score for each attribute that has not yet been
probed is some expected partial score e(si): E(t) =
ScoreComb(s0; ŝ1; : : : ; ŝn), where ŝi = si if Ri 2
R0, and ŝi = e(si) otherwise. If object t has not
been retrieved from S yet, then we define E(t) =
ScoreComb(e(s0); e(s1); : : : ; e(sn)). In the absence of more
sophisticated statistics we set the expected partial score e(si)
to 0:5 for i = 1; :::; n, and e(s0) to s`

2 , where s` is the
ScoreA0

score for the last object retrieved from S, or 1 if no
object has been retrieved yet 6. (ScoreA0

(q0; t0) can range
between 0 and s`.)

In Section 3.2.1 we define what constitutes an optimal
strategy in our framework. In Section 3.2.2 we describe one
new strategy, Upper, which can be seen as mimicking the
optimal solution when no complete information is available.
Finally, in Section 3.2.3 we derive another technique, Pick,

6Alternative techniques for estimating expected partial scores include
sampling and exploiting attribute-score correlation if known.

which, at each step, aims at greedily minimizing some “dis-
tance” between the current execution state and the final state.

3.2.1 The Optimal Strategy

Given a top-k query q, the Optimal strategy for evaluating q
is the most efficient sequence of getNext and getScore
calls that produce top-k objects for the query along with their
scores. Furthermore, such an optimal strategy must also pro-
vide enough evidence (in the form of at least partial scores
for additional objects) to demonstrate that the returned ob-
jects are indeed a correct answer for the top-k query. In this
section we show one such optimal strategy, built assuming
complete knowledge of the object scores. Of course, this is
not a realistic query processing technique, but it provides a
useful lower bound on the cost of any processing strategy
without “wild guesses.” Additionally, the optimal strategy
provides useful insight that we exploit to define an efficient
algorithm in the next section.

As a first step towards our optimal strategy, consider the
following property of any top-k processing algorithm:

Property 1: Consider a top-k query q and suppose that, at
some point in time, we have retrieved a set of objects T from
S-Source S and probed some of the R-Sources for these ob-
jects. Assume further that the upper boundU(t) for an object
t 2 Objects(S) is strictly lower than the lower bound L(ti)
for k different objects t1; : : : ; tk 2 T . Then t is guaranteed
not to be one of the top-k objects for q.

Using this property, we can view an optimal processing strat-
egy as (a) computing the final scores for k top objects for a
given query, which are needed in the answer, while (b) prob-
ing the fewest and least expensive attributes on the remaining
objects so that their upper bound is no higher than the scores
of the top-k objects. (We can safely discard objects with up-
per bound matching the lowest top-k object’s score since we
break ties arbitrarily.) This way, an optimal strategy identi-
fies and scores the top objects, while providing enough evi-
dence that the rest of the objects have been safely discarded.

Algorithm Optimal (Input: top-k query q)

1. Choose a set of k objects, Answerk , such that
Answerk is a solution to the top-k query q 7. (Opti-
mal assumes complete knowledge of all object scores.)

2. Let scorek be the lowest score in Answerk .

3. Get the best object t for attributeA0, with score s0, from
S-Source S: (t; s0) getNextS(q0).

4. If U(t) � scorek and we have seen all objects in
Answerk , return the top-k objects after completely
probing them and stop. (No unretrieved object in
Objects(S) can have a higher upper bound than t.)

7In the presence of score ties, to ensure optimality, this step picks the
objects that would be the most expensive to discard in Step 5(b).
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5. (a) If object t is one of the Answerk objects, probe
all R-Sources to compute Score(q; t).

(b) Otherwise, probe a subsetR0 � fR1; : : : ; Rng for
t such that:
� After probing every Ri 2 R0, it holds that
U(t) � scorek.
� The cost

P
Ri2R0 tR(Ri) is minimal among

the subsets of fR1; : : : ; Rng with the prop-
erty above.

6. Get the next best object t from S-Source S: (t; s0)  
getNextS(q0) and return to step 4.

The Optimal algorithm is only of theoretical interest and
cannot be implemented, since it requires complete knowl-
edge about the scores of the objects, which is precisely what
we are trying to obtain to evaluate top-k queries.

3.2.2 The Upper Strategy

We now present a novel top-k query processing strategy that
we call Upper. This strategy mimics the Optimal algorithm
by choosing probes that would have the best chance to be
in the Optimal solution. However, unlike Optimal, Upper
does not assume any “magic” a-priori information on object
scores. Instead, at each step Upper selects an object-source
pair to probe next based on expected object scores. This cho-
sen pair is the one that would most likely have been in the
optimal set of probes.

We can observe an interesting property:

Property 2: Consider a top-k query q and suppose that
at some point in time we have retrieved some objects from
S-Source S and probed some of the R-Sources for these ob-
jects. Suppose that an object t 2 Objects(S) has a score
upper bound U(t) strictly higher than that of every other ob-
ject (i.e., U(t) > U(t0) 8t0 6= t 2 Objects(S)). Then, at
least one probe will have to be done on t before the answer
to q is reached:

� If t is one of the actual top-k objects, then we need to
probe all of its attributes to return its final score for q.

� If t is not one of the actual top-k objects, its upper
bound U(t) is higher than the score of any of the top-k
objects. Hence t requires further probes so that U(t)
decreases before a final answer can be established.

This property is illustrated in Figure 1 for a top-3 query.
In this figure, each object’s possible range of scores is repre-
sented by a segment, and objects are sorted by their expected
score. From Property 1, objects whose upper bound is lower
than the lower bound of k other objects cannot be in the final
answer. (Those objects are marked with a dashed segment in
Figure 1.) Also, from Property 2, the object with the highest
upper bound, notedU in the figure, will have to be probed be-
fore a solution is reached: either U is one of the top-3 objects

for the query and its final value needs to be returned, or its
upper bound will have to be lowered through further probes
so that we can safely discard it. In practice, when several ob-
jects agree on the highest upper bound, one of them will be
arbitrarily chosen for the next probe.

We exploit Properties 1 and 2 and the general structure of
the Optimal algorithm to define our Upper algorithm:

Algorithm Upper (Input: top-k query q)

1. Get the best object t for attribute A0 from S-Source S:
(t; s0) getNextS(q0).

2. Initialize Uunseen = U(t), Candidates = ftg, and
returned = 0.

3. If Candidates 6= ;:

� Pick tH from Candidates such that U(tH) =
maxt02Candidates U(t

0).

Else: tH is undefined.

4. If tH is undefined or U(tH) < Uunseen:

� Get the next best object t for attribute A0 from S:
(t; s0) getNextS(q0).

� Update Uunseen = U(t) and insert t into
Candidates.

Else: If tH is completely probed:

� Return tH with its score; remove tH from
Candidates.

� returned = returned + 1. If returned = k,
halt.

Else:

� Ri  SelectBestSource(tH ; Candidates; k �
returned).

� Probe source Ri on object tH : si  
getScoreRi

(qi; tH).

5. Go to step 3.

score
current top-k

x

x
x

x

x
x

x
x

x

x
x

x : expected value

U

threshold

: objects that cannot be
in final answer

Figure 1. Snapshot of the execution of the Upper strategy.
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At any point in time, if the final score of the object with
the highest upper bound is known, then this is the best object
in the current set. No other object can have a higher score and
we can safely return this object as one of the top-k objects for
the query. As a corollary,Upper can return results as they are
produced, rather than having to wait for all top-k results to
be known before producing the final answer.

We now discuss how we select the best source to probe for
an object t in step 4 of the algorithm. As in Optimal, we con-
centrate on (a) computing the final value of the top-k objects,
and (b) for all other objects, decreasing their upper bound so
that it does not exceed the scores of the top-k objects. How-
ever, unlike Optimal, Upper does not know the actual scores
a-priori and must rely on expected values to make its choices.

For an object t, we select the best source to probe as fol-
lows. If t is expected to be in the final answer, i.e., its ex-
pected value is one of the k highest ones, we compute its fi-
nal score, and all sources not yet probed for t are considered.
Otherwise, we only consider the fastest subset of sources not
probed for t that is expected to decrease U(t) to not exceed
the value of the kth largest expected score (threshold T ). The
best source for t is the one that has the highest weight

cost
ratio,

i.e., the one that is expected to have a high impact on t’s pos-
sible score range while being fast:

Function SelectBestSource (Input: object t, set of objects
Candidates, integer r)

1. Let t0 be the object in Candidates with the rth largest
expected score. Let T = E(t0).

(a) If E(t) � T :

� Define R0 � fR1; : : : ; Rng as the set of all
sources not yet probed for t.
(t is expected to be one of the top-k objects,
so it needs to be probed on all attributes.)

(b) Else, define R0 � fR1; : : : ; Rng so that:

� U(t) � T if each source Ri 2 R0 were to
return the expected value for t, and

� The cost
P

Ri2R0 tR(Ri) is minimal among
the subsets of fR1; : : : ; Rng with the above
property.

(Since E(t) < T , we are guaranteed to find at
least one such set of attributes.)

2. Return a source Ri 2 R0 such that wi

tR(Ri)
is maximum.

3.2.3 The Pick Strategy

We now present the Pick algorithm, which uses an alternative
approach to evaluate top-k queries. While Upper chooses
the probe that is most likely to be in the “optimal” set of
probes, at each step Pick chooses the probe that minimizes a
certain function B, which represents the “distance” between
the current execution state and the final state, in which the
top-k tuples are easily extracted. At a given point in time in

the execution, function B focuses on t0, the object with the
kth highest expected score among the objects retrieved from
S-Source S. Furthermore, B considers the range of possi-
ble scores that each such object can take above E(t0). The
smaller such ranges are, the closer we are to finding the fi-
nal solution for the query. In effect, when we reach the final
state, t0 is the object with the actual kth highest score, and all
objects not in the answer should be known not to have scores
above that of t0. The definition of function B is:8

B =
X

t2Objects(S)

maxf0; U(t)�maxfL(t); E(t0)gg

Figure 2 shows a snapshot of a query execution step, high-
lighting the score ranges that “prevent” the current state from
being the final state. Note that the value of B is never nega-
tive. When B becomes zero, all top-k scores are known, and
all objects not in the final answer have an upper bound for
their score that is no higher than E(t0).

score

x

x
x

x
x

x
x

x
x

x
x

x : expected value

current top-k

threshold

: range of values in B

: objects that cannot be
in final answer

Figure 2. Snapshot of the execution of the Pick strategy.

At each step, Pick greedily chooses the probe that would
decrease B the most in the shortest time. Pick selects for
each object the best source to probe, i.e., the attribute value
that will result in the highest decrease in B. If the object
is expected to be in the final top-k answer, all unprobed at-
tributes are considered. Otherwise, only attributes from the
best (fastest) set of attributes that will be needed to eliminate
the object are considered. This is completely analogous to
how the SelectBestSource function works. Then, among all
selected object-R-Source pairs, Pick chooses the one with the
highest expected decrease of B

tR(R) ratio.

Observe that, unlike Upper, Pick retrieves all candidate
objects to consider during an initialization step, and does not
access the S-Source afterwards.

8We studied several alternative definitions forB that did not work as well
in our experiments as the one that we present here. For space limitations we
do not discuss these alternatives further.
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Algorithm Pick (Input: top-k query q)

1. Retrieve all objects that can be in the top-k solution
from S-Source S:

(a) Get the k best objects t1; :::; tk for attribute A0

from S-Source S: (ti; s0) getNextS(q0).

(b) Initialize Candidates = ft1; :::; tkg; initialize
t = tk.

(c) While L(tk) < U(t), get the next best object t for
attribute A0 from S: (t; s0)  getNextS(q0);
insert t into Candidates.

2. While B > 0:

(a) For each object t 2 Candidates select
the best source: Ri  SelectBestSource(t;
Candidates; k).

(b) Choose among the selected pairs (t; Ri) the one
that has the highest expected gain per unit of time
( expected decrease in B

tR(R) ) and probe it.

3. Return the top-k objects.

Selecting a probe using Pick is more expensive than with
Upper since we have to consider probes on all objects. More-
over, Pick needs to retrieve all objects that might belong to
the top-k answer from the S-Source at initialization, which
might result in all objects being retrieved.

3.3. Existing Approaches

Existing algorithms in the literature assume that all
sources are SR-Sources or S-Sources, and do not directly
handle sources with only a random-access interface. In Sec-
tion 3.3.1 we adapt Fagin et al.’s TA algorithm [7] so that it
also works over R-Sources, and in Section 3.3.2 we extend
the resulting algorithm so that it also incorporates ideas from
the expensive-predicates literature. As an important differ-
ence with our strategies of the previous section, the tech-
niques below choose an object and probe all needed sources
before moving to the next object. This “coarser” strategy can
degrade the overall efficiency of the techniques, as shown in
Section 5.

3.3.1 Fagin et al.’s Algorithms

Fagin et al. [7] presents the TA algorithm for processing top-
k queries over SR-Sources:

Algorithm TA (Input: top-k query q)

1. Do sorted access in parallel to each source. As each
object t is seen under sorted access in one source, do
random accesses to the remaining sources and apply
the Score function to find the final score of object t. If
Score(q; t) is one of the top-k seen so far, keep object t
along with its score.

2. Define a threshold value as ScoreComb(s0; s1; : : : ; sn),
where si is the last score seen in the i-th source. The
threshold represents the highest possible value of any
object that has not been seen so far in any source.

3. If the current top-k objects seen so far have scores
greater than or equal to the threshold, return those val-
ues. Otherwise, return to step 1.

Although this algorithm is not designed for R-Sources,
we can adapt it in the following way. In step 1, we access the
only S-Source S using sorted access, and retrieve an object
t. In step 2, we define the threshold value as U(t), since the
maximum possible score for any R-Source is always 1. Then,
for each object t retrieved from S we probe all R-Sources to
get the final score for t. For a model with a single S-Source
S, the modified algorithm retrieves in order all objects in
Objects(S) one by one and determines whether each object
is in the final answer by probing the remaining R-Sources.
The complete procedure is described next.

Algorithm TA-Adapt (Input: top-k query q)

1. Get the best object t for attribute A0 from S-Source S:
(t; s0) getNextS(q0).

2. Update threshold T = U(t).

3. Retrieve score si for attribute Ai and object t via a ran-
dom probe to R-Source Ri: si  getScoreRi

(qi; t)
for i = 1; : : : ; n.

4. Calculate t’s final score for q: score =
ScoreComb(s0; s1; : : : ; sn).

5. If score is one of the top-k scores seen so far, keep ob-
ject t along with its score.

6. (a) If threshold T is lower than or equal to the scores
of the current k top objects, return these k objects
along with their scores and stop.

(b) Otherwise, get the next best object t from
S-Source S: (t; s0)  getNextS(q0) and return
to step 2.

We can improve the algorithm above by interleaving the
execution of steps 3 and 4 and adding a shortcut test con-
dition. Given an object t, we calculate the value U(t) after
each random probe to an R-Source Ri, and we skip directly
to step 5 if the current object t is guaranteed not to be a top-k
object. That is, if U(t) is no higher than the score of k ob-
jects, we can safely ignore t (Property 1) and continue with
the next object. We call this algorithm TA-Opt.

3.3.2 Exploiting Techniques for Processing Selections
with Expensive Predicates

Work on expensive-predicate query optimization [10, 12]
has studied how to process selection queries of the form
p1 ^ : : : ^ pn, where each predicate pi can be expensive to
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calculate. The key idea is to order the evaluation of predi-
cates to minimize the expected execution time. The evalua-
tion order is determined by the predicates’ rank, defined as:
rankpi =

1�selectivity(pi)
cost�per�object(pi)

, where cost-per-object(pi) is
the average time to evaluate predicate pi over an object.

We can adapt this idea to our framework as follows. Let
R1; : : : ; Rn be the R-Sources, with weights w1; : : : ; wn in
the Score function. We sort the R-Sources Ri in decreas-
ing order of rank, defined as: rankRi

=
wi�(1�E(ScoreRi))

tR(Ri)
,

where E(ScoreRi
) is the expected score of an object from

source Ri (typically 0.5 unless we have additional informa-
tion). Thus, we favor fast sources that might have a large
impact on the final score of an object, i.e., those sources that
are likely to significantly change the value of U(t).

We combine this idea with our adaptation of the TA algo-
rithm to define the TA-EP algorithm:

Algorithm TA-EP (Input: top-k query q)

1. Get the best object t for attribute A0 from S-Source S:
(t; s0) getNextS(q0).

2. Update threshold T = U(t).

3. For each R-Source Ri in decreasing order of rankRi
:

(a) Retrieve score si for attribute Ai and object t
via a random probe to R-Source Ri: si  
getScoreRi

(qi; t).

(b) If U(t) is lower than or equal to the score of k
objects, skip to step 4.

4. If t’s score is one of the top-k scores seen so far, keep
object t along with its score.

5. (a) If threshold T is lower than or equal to the scores
of the current k top objects, return these k objects
along with their scores and stop.

(b) Otherwise, get the next best object t from
S-Source S: (t; s0)  getNextS(q0) and return
to step 2.

4. Evaluation Setting

In this section we describe the data sets (Section 4.1), met-
rics and other settings (Section 4.2) that we use to evaluate
the strategies of Section 3.

4.1. Data Sets

Synthetic Sources: We generate different synthetic data
sets. Objects in these data sets have attributes from a sin-
gle S-Source S and five R-Sources. The data sets vary in
their number of objects in Objects(S) and in the correlation
between attributes and their distribution. Specifically, given
a query, we generate individual attribute scores for each con-
ceptual object in our synthetic database in three ways:

� “Uniform” data set: We assume that attributes are in-
dependent of each other and that scores are uniformly
distributed (default setting).

� “Correlation” data set: We assume that attributes ex-
hibit different degrees of correlation, modeled by a cor-
relation factor cf that ranges between -1 and 1 and
that defines the correlation between the S-Source and
the R-Source scores. Specifically, when cf is zero, at-
tributes are independent of each other. Higher values
of cf result in positive correlation between the S-Source
and the R-Source scores, with all scores being equal in
the extreme case when cf=1. In contrast, when cf<0,
the S-Source scores are negatively correlated with the
R-Source scores.

� “Gaussian” data set: We generate the multiattribute
score distribution by producing five overlapping mul-
tidimensional Gaussian bells [16].

The random-access cost for each R-Source Ri (i.e., tR(Ri))
is a randomly generated integer ranging between 1 and 10,
while the sorted-access cost for S-Source S (i.e., tS(S)) is
randomly picked from f0:1; 0:2; : : : ; 1:0g.

Real Web-Accessible Sources: The real sources that we
use are relevant to (an expanded version of) our restaurant ex-
ample of Section 2. Users input a starting address, the type of
cuisine in which they are interested (if any), and importance
weights for the following R-Source attributes: SubwayTime
(handled by the SubwayNavigator site 9), DrivingTime (han-
dled by the MapQuest site), Popularity (handled by the Al-
taVista search engine 10; see below), ZFood, ZPrice, ZDecor,
and ZService (handled by the Zagat Review web site), and
TRating and TPrice (provided by the New York Times at the
New York Today web site). The Verizon Yellow Pages list-
ing 11, which returns restaurants of the user-specified type
sorted by shortest distance from a given address, is the only
S-Source. We approximate the “popularity” of a restaurant
with the number of web pages that mention the restaurant, as
reported by the AltaVista search engine. (The idea of using
web search engines as a “popularity oracle” has been used
before in the WSQ/DSQ system [8].) Table 1 summarizes
these sources and their interfaces.

Of course, the real sources above do not fit our model of
Section 2 perfectly. For example, some of these sources re-
turn values for multiple attributes simultaneously (e.g., the
Zagat Review site). Also, as we mentioned before, informa-
tion on a restaurant might be missing in some sources (e.g., a
restaurant might not have an entry at the Zagat Review site).
In such a case, our system will give a default (expected) value
to the score of the corresponding attribute.

9http://www.subwaynavigator.com
10http://www.altavista.com
11http://www.superpages.com
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Source Attribute(s) Input

Verizon Yellow
Pages (S)

Distance type of cuisine,
user address

Subway Naviga-
tor (R)

SubwayTime restaurant address,
user address

MapQuest (R) DrivingTime restaurant address,
user address

AltaVista (R) Popularity free-text with
restaurant name
and address

Zagat Review (R) ZFood, ZService restaurant name
ZDecor, ZPrice

NYT Review (R) TRating, TPrice restaurant name

Table 1. Real web-accessible sources used in the experimen-
tal evaluation.

4.2. Other Experimental Settings

Our query processing strategies attempt to minimize the
total processing time for top-k queries, both for random and
sorted access to the various sources. To measure the rela-
tive performance of the techniques over an S-Source S and
R-Sources R1; : : : ; Rn, we use the following metric:

ttotal = nS � tS(S) +
nX

i=1

ni � tR(Ri)

where nS is the number of objects extracted from S-Source
S, ni is the number of random-access probes for R-Source
Ri, and tS and tR are as specified in Definition 2. ttotal then
approximates the execution time for a query.

For the synthetic data sets and for each setting of the ex-
periment parameters, we generate 100 queries randomly with
their associated weights, and compute the average ttotal val-
ues. We report results for top-k queries for different values of
k, jSj, cf and for various assignments of weights and costs
to sources. In the default setting, k is 50 (i.e., queries ask for
the best 50 objects), jSj = 10; 000, and we use the Uniform
data set.

For the real data sets, we use seven queries, some specify-
ing an address on E. 73rd Street, and some others specifying
an address on W. 112th Street. Attributes Distance, Subway-
Time, DrivingTime, ZFood, ZDecor, ZService, and TRating
have “default” target values in the queries (e.g., a Driving-
Time of 0 and a ZFood rating of 30). The target value for
Popularity is 1,000 hits, while ZPrice and TPrice are set to
the least expensive value in the scale. In all seven queries,
the weight of the S-Source attribute (i.e., Distance) is roughly
twice the weight of any R-Source attribute.

Next, we experimentally compare the algorithms that we
discussed in Section 3, namely TA-Adapt (Section 3.3.1), TA-
Opt (Section 3.3.1), TA-EP (Section 3.3.2), and our Upper
(Section 3.2.2) strategy. We also report results for the Opti-
mal technique of Section 3.2.1. As discussed, this technique
is only of theoretical interest, and serves as a lower bound for

the time that any strategy without “wild guesses” would take
to process top-k queries. We do not present results for Pick
(Section 3.2.3) for lack of space. In our experiments, Pick
performed on average slightly worse than Upper in terms of
source access costs, but with significantly higher “local” pro-
cessing time. (Recall from Section 3.2.3 that Pick selects the
best source to probe for every object at each iteration of the
algorithm.)

5. Evaluation Results

In this section we present the experimental results for the
techniques of Section 3 using the data sets and general set-
tings described in Section 4.

5.1. Results for Synthetic Data Sets

We first study the performance of the techniques when we
vary the synthetic data set parameters.

Effect of the Number of Objects Requested k: In Fig-
ure 3 we report results for the default setting, as a function of
k and for both the Uniform and Gaussian synthetic data sets.
As k increases, the time needed by each algorithm to return
the top-k objects increases as well, since all techniques need
to retrieve and process more objects. The Upper strategy
consistently outperforms all other techniques, and has total
execution time close to that of the lower bound, Optimal.
We can see that our optimizations over TA-Adapt, namely
TA-Opt and TA-EP, result in dramatic improvements in per-
formance over TA-Adapt. We then remove TA-Adapt from
further consideration in the remaining discussion.

Effect of the Number of Objects in S-Source S: Figure 4
studies the impact of the size of S-Source S. As the num-
ber of objects increases, the performance of each algorithm
drops since more objects have to be evaluated before a so-
lution is returned. The time needed by each algorithm is ap-
proximately linear in the number of objects in S. Upper gives
better results and scales better than other techniques.

Effect of Attribute Weights: We now report on the im-
pact of attribute weights on the execution times. We vary the
weight of the S-Source S (Figure 5(a)) and the R-Source R5

(Figure 5(b)) relative to the weight of the remaining sources.
In particular, we set the varying weight as n times the average
of the remaining weights. Figure 5(a) shows that for larger
weights in S-Source S all techniques improve their execution
times, since fewer random probes are needed to identify the
top-k objects. Also, for larger weights in R-Source R5 (Fig-
ure 5(b)), TA-Opt performs poorly since it does not use any
information about the relative weights of the sources to order
the random probes, in contrast to the other techniques. We
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Figure 3. Performance of the different strategies for the default setting of the experiment parameters, as a function of the number of
objects requested k, and for two synthetic data-set distributions.

note that we obtained the same results when we varied the
access costs of the different sources instead of their weights.
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Figure 4. Performance of the different strategies for the Uni-
form data set, as a function of the number of objects in
S-Source S.

Effect of Attribute Correlation: We now turn to the Cor-
relation data set (Section 4) and evaluate the effect that at-
tribute correlation has on the performance of the query pro-
cessing techniques. As seen in Figure 6, when the corre-
lation factor cf is high and positive the performance of all
techniques improves dramatically. Interestingly, a negative
correlation between the R-Sources and the S-Source attribute
scores significantly affects the performance of the TA algo-
rithms. For correlation factors close to -1, the order of the
objects in the S-Source is close to the inverse of the order
by final scores. Therefore, both TA-Opt and TA-EP need to
probe each object almost completely before proceeding to
the next one, and have to consider almost all the tuples in

S-Source S before returning the top-k objects, which results
in significantly larger execution times compared to Upper.
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Figure 6. Performance of the different strategies for the Cor-
relation synthetic data set, as a function of the correlation
factor cf.

5.2. Results for Real Web-Accessible Data Sets

Our final set of results are for the real data sets that we
described in Section 4 and summarized in Table 1. There are
six web-accessible sources, handling 10 attributes. To model
the access cost for each source, we measured the response
time for a number of queries and computed their average.
We then issued seven different queries to these sources and
timed their execution. Figure 7 shows the execution time for
each of the queries, and for the Upper, TA-EP, and TA-Opt
strategies. We ignored TA-Adapt, whose results in the syn-
thetic data experiments were significantly worse than those
for other techniques. In contrast with the synthetic-data re-
sults, TA-EP does not outperform TA-Opt. We conjecture
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Figure 5. Performance of the different strategies for various attribute-weight combinations.

that this discrepancy is due to our rough estimates for the
source access costs, to which the TA-EP strategy would be
particularly sensitive. In general, just as for the synthetic data
sets, ourUpper strategy performs significantly better than the
two versions of the TA algorithm.
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Figure 7. Experimental results for the real web-accessible
data sets relevant to our New York City restaurant scenario.

In summary, our experimental results consistently show
that Upper outperforms all other methods, with performance
close to that of the Optimal technique. Furthermore, our
modifications to the TA algorithm, TA-EP in particular,
resulted in significant improvements in performance.

As a final observation, note that all the algorithms dis-
cussed in this paper correctly identify the top-k objects for
a query according to a given scoring function. Hence there
is no need to evaluate the “correctness” or “relevance” of the
computed answers. The design of appropriate scoring func-
tions is an important problem that we do not address in this
paper.

6. Related Work

Relevant work on top-k query processing can roughly be
divided in two groups: evaluation strategies for multiattribute

top-k queries over multimedia repositories, and for top-k
queries over relational databases.

To process queries involving multiple multimedia at-
tributes, Fagin et al. proposed a family of algorithms [6, 7],
developed as part of IBM Almaden’s Garlic project. These
algorithms can evaluate top-k queries that involve several in-
dependent multimedia “subsystems,” each producing scores
that are combined using arbitrary monotonic aggregation
functions. These techniques do not directly handle sources
that provide only a random-access interface, which are the
focus of our paper. In Section 3.3, however, we adapted
Fagin et al.’s algorithms to our scenario and experimentally
compared the resulting techniques with our new approach in
Section 5.

Nepal and Ramakrishna [14] and Güntzer et al. [9] pre-
sented variations of Fagin’s original FA algorithm [6] for
processing queries over multimedia databases. In particu-
lar, Güntzer et al. [9] reduce the number of random accesses
through the introduction of more stop-condition tests and by
exploiting the data distribution. The MARS system [15] also
uses variations of the FA algorithm and views queries as bi-
nary trees where the leaves are single-attribute queries and
the internal nodes correspond to “fuzzy” query operators.

Chaudhuri and Gravano also built on Fagin’s original FA
algorithm and proposed a cost-based approach for optimiz-
ing the execution of top-k queries over multimedia reposi-
tories [3]. Their strategy translates a given top-k query into
a selection query that returns a (hopefully tight) superset of
the actual top-k tuples. Ultimately, the evaluation strategy
consists of retrieving the top-k0 tuples from as few sources
as possible, for some k0 � k, and then probing the remaining
sources by invoking existing strategies for processing selec-
tions with expensive predicates [10, 12]. This technique is
then closely related to algorithm TA-EP from Section 3.3.2.

Over relational databases, Carey and Kossmann [1, 2] pre-
sented techniques to optimize top-k queries when the scor-
ing is done through a traditional SQL order-by clause. Don-
jerkovic and Ramakrishnan [5] proposed a probabilistic ap-
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proach to top-k query optimization. Finally, Chaudhuri and
Gravano [4] exploited multidimensional histograms to pro-
cess top-k queries over an unmodified relational DBMS by
mapping top-k queries into traditional selection queries.

Additional related work includes the PREFER sys-
tem [11], which uses pre-materialized views to efficiently
answer ranked preference queries over commercial DBMSs.
Recently, Natsev et al. proposed incremental algorithms [13]
to compute top-k queries with user-defined join predi-
cates over sorted-access sources. Finally, the WSQ/DSQ
project [8] presented an architecture for integrating web-
accessible search engines with relational DBMSs. The re-
sulting query plans can manage asynchronous external calls
to reduce the impact of potentially long latencies. The
WSQ/DSQ ideas could be incorporated to speed up the ex-
ecution of our top-k queries further and depart from the se-
quential query plans on which we focused in this paper.

7. Conclusion and Future Work

We studied techniques to efficiently evaluate top-k queries
over web-accessible autonomous databases with a variety of
access interfaces. In particular, we focused on web sources
that can only be accessed via random accesses. We proposed
extensions to existing algorithms for top-k queries so that
they can handle random-access sources, and also introduced
two novel strategies, Upper and Pick, which are designed
specifically for our query model. A distinctive characteristic
of our algorithms is that they interleave probes on several ob-
jects whereas other techniques completely probe one object
at a time. This interleaving has a strong effect on query pro-
cessing efficiency. We conducted a thorough experimental
evaluation of these techniques using both synthetic and real
web-accessible data sets. Our evaluation showed that Up-
per produces the best processing plans in terms of execution
time for a variety of data and query parameters, and for both
synthetic and real data sets.

We plan to investigate several interesting directions in
the future. Our model assumes that only one S-Source and
multiple R-Sources are available; we are evaluating algo-
rithms that would work in the general case with arbitrary
numbers of S-Sources, R-Sources, and SR-Sources. (At least
one S-Source or SR-Source is always needed, though, not to
rely on “wild guesses.”) Another assumption is that only one
source can be accessed at a time, which is too restrictive in
the context of web sources. As explained in Section 6, we
can incorporate the ideas in [8] to include parallelism and
speed up query processing.
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