
DEQUE: querying the deep web

Denis Shestakov, Sourav S. Bhowmick *, Ee-Peng Lim

School of Computer Engineering, Nanyang Technological University, Singapore 639798, Singapore

Received 5 April 2004; received in revised form 5 April 2004; accepted 14 June 2004

Available online 22 July 2004

Abstract

In this paper, we present a system called DEQUE (Deep WEb QUery SystEm) for modeling and querying

the deep Web. We propose a data model for representing and storing HTML forms, and a web form query

language called DEQUEL for retrieving data from the deep Web and storing them in the format convenient

for additional processing. Our system is able to query forms (single and consecutive) with input values from

relations as well as from result pages (results of querying web forms). We present a novel approach in

modeling of consecutive forms and introduce the concept of the super form. A prototype system has been

implemented on a SUN workstation working under Solaris 2.7 using Perl version 5.005_2 and employing

MySQL (version 3.23.49) DBMS as the data storage.

Ó 2004 Elsevier B.V. All rights reserved.

Keywords: Deep Web; Dynamic content; Consecutive forms; Super form; Form query language

1. Introduction

Current-day web crawlers retrieve content only from a portion of the Web, called the publicly

indexable Web (PIW) [16]. This refers to the set of web pages reachable exclusively by following

hypertext links, ignoring search forms and pages required authorization or registration. However,

recent studies [12,17] observed that a significant fraction of Web content lies outside the PIW. A

0169-023X/$ - see front matter Ó 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.datak.2004.06.009

* Corresponding author.

E-mail addresses: assourav@ntu.edu.sg (S.S. Bhowmick), aseplim@ntu.edu.sg (E.-P. Lim).

www.elsevier.com/locate/datak

Data & Knowledge Engineering 52 (2005) 273–311

great portion of the Web is hidden behind search forms (lots of databases are available only

through HTML forms). This portion of the Web was called the hidden Web in [9] and the deep

Web in [12]. Pages in the hidden Web are dynamically generated in response to queries submitted

via the search forms.

The task of harvesting information from the deep Web can be roughly divided into three parts:

(1) Formulate a query or search task description, (2) find sources that pertain to the task, and (3)

for each potentially useful source, fill in the sourceÕs search form and extract and analyze the re-

sults. We will assume further that the task is formulated clearly. Step 2, source discovery, usually

begins with a keyword search on one of the search engines or a query to one of the web directory

services. The work in [5,8,19] addresses the resource discovery problem and describes the design of

topic-specific PIW crawlers. In our study, we assume that a potential source has already been dis-

covered. So we limit our discussion to Step 3.

Retrieving and analyzing relevant information from the deep Web autonomously is a challeng-

ing problem. At present, the user is required to manually provide input values to web forms, and

extract data from the returned web pages. The manual filling out forms is not feasible and cum-

bersome in cases of complex queries but these queries are essential for many web-based applica-

tions. We illustrate this with an example given below.

Example 1. The AutoTrader.com is the largest car Web site with over 1.5 million used vehicles

listed for sale by private owners, dealers, and manufacturers. The search page (Available at

http://www.autotrader.com/findacar/index.jtmpl?ac_afflt=none) is shown in

Fig. 1(a). The web page contains a form for searching new or used cars. The form consists of a text

box, a ‘‘Next’’ button, a ‘‘Make’’ selection menu and two radio boxes with options ‘‘Used Cars’’

and ‘‘New Cars’’. The form returns a web page containing another form (called child form) shown

in Fig. 1(b) with fields for additional car search options. The submission of the form on the second

page generates a web page containing the results of the query (see Fig. 2).

Suppose the user wishes to find information about ‘‘used’’ Japanese cars made in 1997 within

US$ 10,000 and available in ‘‘Chicago’’. Especially, he/she is interested in ‘‘black’’ colored cars.

To formulate such a query manually, the user has to fill up the form shown in Fig. 1(a) by

Fig. 1. Form interfaces of Autotrader.com. (a) First search page; (b) second search page.

274 D. Shestakov et al. / Data & Knowledge Engineering 52 (2005) 273–311

specifying the make of the Japanese cars (e.g., Honda, Toyota etc.) and the zip codes of Chicago

in the fields labeled ‘‘The make I want’’ and ‘‘Near ZIP code’’ respectively. More importantly, the

user has to formulate this query repeatedly for all different makes of Japanese car and at least one

zip code of Chicago (that is, the user should fill in one of 88 zip codes corresponding to Chicago).

To make matters worse, the user has to browse the results returned by each of this query to select

all ‘‘black’’ colored Japanese cars. This is because the www.autotrader.com web site does not

allow the user to specify the color of a car in the input forms (Fig. 1). Indeed, even for one city and

a list containing a small number of car models, the process of filling out the AutoTrader forms,

their submissions and looking through the returned results is a very tedious and time-consuming

affair.

The above task can be efficiently accomplished by using an automatic form querying system

supported by a robust data extraction technique. However, there are several challenges in design-

ing such an automated query mechanism as discussed below.

Automatic filling of forms: The task of automatic filling of forms is a challenging

problem in the first place because of the variety of interfaces provided by the web forms. Addi-

tionally, the user may not be aware of the values of all fields necessary to fill up the form. For

example, the AutoTrader form requires zip code as input. However, it is natural to assume that

the zip code(s) of a city is unknown to the user. Then, the query performing the specified task

should retrieve the city zip codes from a zip database and substitute necessary input values for

the corresponding form field.

Extraction of results: Another complex problem is to automatically extract the query

results from the result pages since useful data is embedded into the HTML code. The search and

the extraction of the required data from these pages are highly complicated tasks as each web

form interface is designed for human consumption and, hence, has its own method of formatting

and layout of elements on the page. For instance, Fig. 2 depicts the original AutoTrader result

page with formatting and non-informative elements (such as banners, advertisements, etc.).

Accordingly, the extraction tools must be able to filter out the relevant contents from the pages.

Fig. 2. Result page of Autotrader.com.

D. Shestakov et al. / Data & Knowledge Engineering 52 (2005) 273–311 275

Navigational complexity: Dynamically generated web pages may contain links to other

web pages containing relevant information and consequently it is necessary to navigate these links

for evaluation of their relevances. Also, navigating such web sites requires repeated filling out of

forms many of which themselves are dynamically generated by the server-side programs as a result

of previous user inputs. For example, the AutoTrader web site produces a web page containing

the results after at least two successful form submissions (Fig. 1(a) and (b)). These forms are col-

lectively called consecutive forms.

Client-side programs: Lastly, the client-side programs may interact with forms in arbi-

trary ways to modify and constrain the form behavior. For instance, a text box control containing

the total sales price in an order form might be automatically derived from the values in other text

boxes by executing the client-side script whenever the form is changed or submitted to the server.

Programs written in JavaScript are often used to alter the behavior of forms. Unfortunately, it is

computationally hard to automatically analyze and understand such arbitrary programs.

In this paper, we discuss a query system for the deep Web called DEQUE
1 (Deep WEb QUery

SystEm) and address some of these above challenges. There are three steps to be performed for

querying a web form within the framework of DEQUE. Firstly, a web form to be queried or several

forms (if multiple form submission is required to obtain the result pages) should be parsed and

stored in a form database in accordance with the data model outlined in Sections 3 and 4. Storing

is advisable as it quickens the query process. Nevertheless, non-stored forms can also be queried.

In the second step, a form query specified by the user is passed to DEQUE for validation and sub-

mission. A query is formulated in a web form query language called DEQUEL that allows the user

to assign more values to the form fields than it is possible when the form is manually filled out.

Additionally, data from relational tables or data obtained from querying other web forms can be

used as input values. The final step is retrieval of all result pages with query results and extraction

of useful data from these pages according to the extraction conditions (if they are specified in the

form query).

The rest of the paper is organized as follows: Section 2 discusses related research in this area.

Sections 3 and 4 present a data model for representing web forms. In Section 5, we discuss how the

result pages are represented. Section 6 unveils the syntax of DEQUEL. We discuss the implemen-

tation of DEQUE in Section 7 and highlight some experimental results. Finally, Section 8 concludes

the paper.

2. Related work

The impetuous growth of the Web has stimulated considerable interest in the study of Web

crawlers [5,6]. These works have addressed various issues in the design and implementation of

PIW crawlers. Existing Web crawlers find it extremely difficult to maintain current indices using

exhaustive crawling due to the increasing size and dynamic content of the Web. To overcome this,

the focused crawlers [5,8] aim to search and retrieve only the subset of the PIW that pertains to a

specific topic of relevance. The focused crawling approach is worth to mention in the context of

1 Pronounced as ‘‘deck’’.

276 D. Shestakov et al. / Data & Knowledge Engineering 52 (2005) 273–311

harvesting information from the deep Web since it can be used to identify target sites for the hid-

den Web crawlers [23].

Retrieving and querying web information have received considerable attention by the database

research community [9]. W3QS (WWW Query System) [14,15] is a project to develop a flexible,

declarative, and SQL-like Web query language called W3QL. The W3QS offers mechanisms to

learn, store, and query forms. However, it supports only two approaches to complete a form:

either using the knowledge of past form-filling or some specific values. No other form-filling meth-

ods, such as filling out a form using multiple sets of input values or values obtained from the que-

ries to relational tables are provided. In addition, it does not support the modeling and querying

of the consecutive forms. Furthermore, W3QS is not flexible enough to get all the result pages

returned by a form.

ARANEUS introduced a set of tools and languages for managing and restructuring data

coming form the Web [3,20]. The data model of the project, called the ARANEUS Data Model

(ADM), models the internal structure of web pages as well as the structure of the web sites.

Based on ADM, two languages, ULIXES and PENELOPE, are designed to support the query-

ing and restructuring process. It is noted that ADMÕs form representation is rather simple as it

has omitted many important field types, such as checkbox, select, and others. As a result, the

ADMÕs form type may not be able to represent most of the existing forms and does not support

the notion of consecutive forms. In our proposed web form model, we support all these fea-

tures.

In [11], Davulcu et al. proposed a three-layered architecture for designing and implementing a

database system for querying forms. The lowest layer, virtual physical layer, aims to provide nav-

igation independence, making the steps of retrieving data from raw web sources transparent to the

users. Data collected from different web sites may have semantic or representational discrepancies.

These differences are resolved at the logical layer that supports site independence. The external

schema layer, extending the Universal Relation (UR) concept [18], provides a query interface that

can be used by naive web users. Unlike the other projects, the work by Davulcu et al. addresses

the problem of navigating consecutive forms. Our work differs from the work by Davulcu et al. in

two aspects. First, we propose more advanced web form representation and user-friendly lan-

guage for defining form queries. Second, we do not treat the form query results as relations.

For most web pages it is extremely difficult to transform automatically the web page content into

relation tables. Hence, we limit our extraction process to the extraction of useful data. We repre-

sent the result pages as containers of the result matches, each of which containing informative text

strings and hyperlinks.

Raghavan and Garcia-Molina [23] propose a way to extend the crawlers beyond the publicly

indexable Web by giving them the capability to fill out Web forms automatically. Starting with

a user-provided description of the search task, HiWE learns from successfully extracted informa-

tion and updates the task description database as it crawls. There are some limitations of the

HiWE design that if rectified, can significantly improve the performance. The first limitation is

the inability to recognize and respond to simple dependencies between the form elements (e.g.,

given two form elements corresponding to states and cities, the values assigned to the ‘‘city’’

element must be cities that are located in the state assigned to the ‘‘state’’ element). This problem

is closely connected with the querying of consecutive forms. Another limitation of the HiWE is the

lack of support for data extraction from the result pages.

D. Shestakov et al. / Data & Knowledge Engineering 52 (2005) 273–311 277

The Web wrapping problem, i.e., the problem of extracting structured information from

HTML documents, has spurred a great amount of work that can be classified into two categories,

depending on whether the HTML input is regarded as a sequential character string or a pre-

parsed document tree. The STALKERSTALKER approach for wrapper construction enables users to turn

web pages into relational information sources [13,21]. STALKERSTALKER is a machine learning based ap-

proach where Embedded Catalog (EC) formalism is used to describe the content of a web page.

The EC description of a page is a tree-like structure in which the leaves represent the relevant

data. The internal nodes (elements) of the EC tree represent lists of k-tuples, where each item

in the k-tuple can be either a leaf l or another list L (in which case L is called an embedded list).

However, the STALKERSTALKER was designed to extract data from a single web page and cannot handle a

set of hyperlinked pages (the results generated by querying forms).

In [4], Baumgartner et al. presented techniques for supervised wrapper generation and auto-

mated web information extraction, and a system called Lixto implementing these techniques. Lix-

to assists the user to semi-automatically create wrapper programs by providing a fully visual and

interactive user interface. Internally, this functionality is reflected by the logic-based declarative

language Elog. In our study, we consider the wrapping problem to provide the user with more

visual and clear presentation of the query results than an ordinary chain of web pages returned

by a form submission. DEQUE does not require any interaction with the user during the wrapper

generation process; that is, data from the result pages are extracted in a completely automatic

way.

3. Modeling of a single HTML form

In this section, we discuss the data model for representing a single HTML form. Since for dif-

ferent HTML forms the nature and type of the layout markup are different, the web application

should represent web forms in a uniform manner.

3.1. HTML forms

An HTML form is a section of a document containing normal content, markup, special ele-

ments called controls (checkboxes, radio buttons, menus, etc.), and labels on those controls. Users

generally ‘‘complete’’ a form by modifying its controls (entering text, selecting menu items, etc.),

before submitting the form to an agent for processing (e.g., to a Web server, to a mail server, etc.).

These form controls are also known as form fields. An HTML form is embedded in its web page

by a pair of ‘‘begin’’ and ‘‘end’’ <FORM> tags. Each HTML form contains a set of form fields and

the URL of a server-side program (e.g., a CGI program) that processes the form fieldsÕ input val-

ues and returns a set of result pages.

There are three essential attributes of the FORM element that specify how the values submitted

with the form are processed: the value of the action attribute corresponds to the URL of a form

processing agent (server-side program), the HTTP method used to submit the form is defined by

the method attribute, and the enctype attribute specifies the content type used for the form

submission. For a web form F, we define the submission information of F (denoted as subinfo(F))

as three string elements specifying the form action, the HTTP method and the content type. That

278 D. Shestakov et al. / Data & Knowledge Engineering 52 (2005) 273–311

is, subinfo(F) = {action, method, enctype}. For example, the submission information of the form

shown in Fig. 1(a) is given by: subinfo(FindCarForm) = {‘‘http://autotrder.com/findcar/findcar_

form2.jtmpl?ac_afflt=none’’, ‘‘get’’, ‘‘application/x-www-form-urlencoded’’}. Note that two forms

F1 and F2 have the same submission information if subinfo(F1) = subinfo(F2).

3.2. Form fields

The user fills out a form by associating a value or piece of text with each field of the form. A

form field can be any one of the standard input objects: selection lists, text boxes, text areas,

checkboxes, or radio buttons. These objects are defined by the BUTTON, INPUT, SELECT, and

TEXTAREA tags. The name attribute of the above tags defines the name of a form control (also

called fieldname). In our study, we do not consider the file select, object and reset button controls

as they have no use in queries to most of the searchable databases. The detailed description of

each type is documented in the HTML 4.01 specification [1].

A form field can be represented by the following attributes:

� Field domain: The field domain is a set of values where each value is a character string which

can be associated with the corresponding form field. Some form fields have predefined domains,

where the set of values are embedded in the web page with a form. Other fields have undefined

domains (e.g., set of all text strings with specified length) from which their values can be chosen.

� Field label: The form fields are usually associated with some descriptive text 2 to help the user

understand the semantics of a field. The field label is a string containing the descriptive infor-

mation about the corresponding form field.

� Initial field set: Each field has initial value(s) (defined or undefined) which can be submitted with

a form if the user does not modify a field through ‘‘completing’’ a form. The initial field set is a

set of the fieldÕs initial values. It is clear that for each form field an initial field set is a subset of

the field domain.

Formally, given a field f of a web form F, label(fF) denotes the field label of f. Similarly, the field

domain and the initial field set of f is denoted by domain(fF) and iset(fF) respectively. Note that

iset(fF) Ì domain(fF). We say that two form fields f and f 0 are the same if formname(f) = form-

name(f 0), type(f) = type(f 0), and domain(f) = domain(f 0).

The field domain, field label and the initial field set are defined for each field in a web form. For

example, the field label of the ‘‘address’’ field is equal to ‘‘Near ZIP code’’ (see Fig. 1(a)). Also,

domain(address) = {s, length(s) 6 5}, where s is a character string, and iset(address) = {;}. The
field label, domain and the initial set of the ‘‘make’’ field in Fig. 1(a) is given by the following:

label(make) = {‘‘The make I want is’’}, domain(make) = {‘‘Acura’’, ‘‘Alfa Romeo’’, ‘‘AMC’’,

‘‘Audi’’,. . .}, and iset(make) = {‘‘Acura’’}. Note that the values of the menu choices visible in

a browser are not generally equal to the values actually submitted with a form. Since the visible

values are more informative, we consider a field domain as a set of visible menu choices. In the

same manner, an initial field set is a set of pre-selected choices visible in a browser.

2 Besides description of a form field such texts often indicate if a field is optional or required.

D. Shestakov et al. / Data & Knowledge Engineering 52 (2005) 273–311 279

4. Modeling of consecutive forms

In the preceding section, we discussed how to model a single form. We now elaborate on the

modelling of consecutive forms. Consider an HTML page containing one or more HTML forms.

Each form is called the root form. A response page is a page received in response to the root form

submission. In some cases, after submitting a root form, the returned page (or response page) con-

tains another form (called the child form) which needs to be filled out. Similarly, after submitting

the child form, the returned page may contain another child form to be filled out and so on. All

the child forms are collectively called descendant forms for the given root form. The root and its

descendant forms are collectively called consecutive forms. The submitted form is also the parent

form for the following child form. Each descendant form is completely defined by its parent form,

the values filled-in and the time of the parent form submission. It also means that we always know

the root form for each descendant form. A typical example of consecutive forms is the Auto-

Trader car search interface. After submission of the form (root form) shown in Fig. 1(a), the

returned page contains another form (child form) depicted in Fig. 1(b). The form in Fig. 1(a) is

also the parent form for the form in Fig. 1(b). Similarly, the latter is the descendant form for

its parent form.

4.1. Form type and location

There are several differences between the root and its descendant forms. One of them is the

URL of a web page that contains a form. As a matter of fact, the main reason to have the

URL of a page containing a form is that an HTML code related to a form often specifies only

the relative URL of the server-side program. Thereby, the page URL must be known to compose

the absolute URL of the server-side program. The page URL of a child form can always be de-

fined based on the URL of the a parent form, the parent forms submission information, the values

submitted with the parent form and the submission time 3. Thus, we do not consider the URL of a

page containing descendant forms as it can be easily constructed using the URL of the page con-

taining the root form, and the processing information (submission information, submission data

set, and submission time) of all forms beginning with the parent form and ending with the root

form. In our study, we presume that the page URL of a root form is given by the user.

Formally, given a web form F, formtype(F) specifies whether a form is a root or descendant

form. Ff F is a root form, then the pageurl(F) is the absolute URL of a page that contains F. Oth-

erwise, it is equal to ‘‘null’’. For example, the AutoTrader form shown in Fig. 1(a) is the root

form and pageurl(AutoTrader) = ‘‘http://autotrader.com/findacar/index.jtmpl?ac_afflt=none’’. Fig.

1(b) depicts the AutoTrader child form for which: formtype(AutoTrader2) = ‘‘descendant’’ and

pageurl(AutoTrader2) = ‘‘null’’.

3 The URL of a response page equals to the URI of the server-side program if the POST HTTP method is used to

send the submission data set to the program and to the URI of the server-side program with appropriately appended

submitted values in case the GET method is used.

280 D. Shestakov et al. / Data & Knowledge Engineering 52 (2005) 273–311

4.2. Issues in modeling of consecutive forms

There are some non-trivial issues concerning the modeling of consecutive forms. First, most

consecutive forms have dependencies (called form dependencies) between the root and the descend-

ant forms. For example, the AutoTrader search interface (see Fig. 1) requires two consecutive

forms to be fill-out, if the user searches for ‘‘Used Cars’’, and three forms, if the ‘‘New Cars’’ op-

tion is chosen in the root form. Also, a dependency (called the form field dependency) may exist

between the form fields. For instance, if the user selects ‘‘Toyota’’ make in the ‘‘make’’ menu, then

only ‘‘Toyota’’ models are available for the ‘‘model’’ select field of the AutoTrader child form in

Fig. 1(b). The dependency between the ‘‘make’’ and the ‘‘model’’ fields is shown in Fig. 3. Choice

of different car brands in the root form generates the child forms with different option values (cor-

responding to model names of the chosen car brand) for the ‘‘model’’ select field.

Second, each root form can generate a large number of different web pages containing the child

forms. How these forms look like often depend not only on the values filled out in the root form

but also on the submission time. In particular, it is irrational to store all possible child forms. For

example, at least 48 different child forms (search for ‘‘Used Cars’’) 4 are generated by the server-

side program related to the AutoTrader root form (see Fig. 1). All these forms are highly similar

to one another. The key difference is in the ‘‘model’’ select field as the forms have different option

values for the ‘‘model’’ field (Fig. 4).

4.3. Submission data set of consecutive forms

When the user submits an HTML form, a user agent (web browser, etc.) processes it as follows.

First, a form data set (a sequence of control name/value pairs) based on the values filled-in by the

user is created. Then, the form data set is encoded to the content type specified by the enctype

Fig. 3. Form field dependency.

4 48 is the number of options in the ‘‘make’’ menu. Note that the submission of data sets containing different values

for the text ‘‘address’’ field does not return different child forms.

D. Shestakov et al. / Data & Knowledge Engineering 52 (2005) 273–311 281

attribute of the FORM element. Finally, the encoded data is sent to a processing agent (server-side

program) designated by the action attribute using the HTTP protocol (GET or POST) specified

by the method attribute. The server-side program processes the form data set and returns a web

page as the result of the form submission. Formally, let F be a web form with form fields f1, f2,. . .,

fn. Let domain(fi) be the domain of the field fi. Then, S = {s1, s2,. . ., sn} is the submission data set of

F ; if 8i ¼ 1; n : si 2 domainðfiÞ. We say that two submission data sets S = {s1,. . ., sn} and

S0 ¼ fs01; . . . ; s
0
ng of a web form F are equal to each other, if 8i ¼ 1; n : si ¼ s0i. The web page with

a form F(S,t) returned by the server-side program as the result of submission of the form Fp at time

t is expressed as F pðfp;1; . . . ; fp;nÞ!
S;t

F ðS;tÞ
c ðf ðS;tÞ

c;1 ; . . . ; f
ðS;tÞ
c;k Þ, where Fp, F

ðS;tÞ
c and S are the parent form

with form fields fp,1,. . ., fp,n, the child form with fields f
ðS;tÞ
c;1 ; . . . ; f

ðS;tÞ
c;k , and the submission data set

of Fp respectively. Also, the set of form fields of the child form is defined as

fieldsetðS; tÞ ¼ ffieldnameðf ðS;tÞ
c;1 Þ; . . . ; fieldnameðf ðS;tÞ

c;k Þg. We can describe several submissions of

consecutive forms in the following way: F p !
S1;t

F c1 !
S2;t

F c2 !
S3;t

� � � !
Smÿ1;t

F cmÿ1
!
Sm;t

R. This expression

shows that m forms (Fp,Fc1
,. . .,Fcmÿ1

) were submitted to obtain the result web page R where t is

the submission time of the last child form submission (Fcmÿ1
). We omit the superscript (S,t) as well

as consecutive formsÕ fields to make the expression more compact.

Example 2. Consider the submission of the AutoTrader root form (named as Autotrader)

shown in Fig. 1. Suppose we intend to search for ‘‘Used Cars’’. Then AutoTraderðmake; address;

search type; field 1; ac afflt; borschtidÞ!
S;t

AutoTrader2, where S = {‘‘Ford’’, ‘‘10520’’, ‘‘Used

Cars’’, ‘‘submit’’, ‘‘none’’, ‘‘21532053581465403997’’} and t = ‘‘17 June 2002/6:34pm’’. The result

of submission is the page containing the AutoTrader child form (named as AutoTrader2) as

shown in Fig. 1(b). This form contains eight visible and five hidden (invisible) form fields. The set

of fields of the AutoTrader2 form is fieldset(S,t) = {model, certified, start_year, end_year,

min_price, max_price, distance, field_1, advanced*, advcd_on*, make*, address*, search_type*} 5.

Note that the hidden fields are often used to transmit the information about submitted values

Fig. 4. AutoTrader child forms.

5 Hidden fields are marked by asterisk.

282 D. Shestakov et al. / Data & Knowledge Engineering 52 (2005) 273–311

from one consecutive form to another. Thus, the initial values of the hidden fields make, address,

search_type in the AutoTrader2 form are equal to the values assigned to the fields make, address,

search_type of the AutoTrader form respectively (‘‘Ford’’, ‘‘10520’’, ‘‘UsedCars’’).

4.4. Form union

We are now ready to discuss how to represent the child forms. According to the HTML spec-

ification, each form must have the action attribute in the FORM tag. This attribute specifies the

URL of the server-side program to which the form contents will be submitted (if this attribute is

absent, then the current document URL is used). Since web pages generated by the same server-

side program are expected to be very similar, we shall combine forms with the same submission

information. A form union allows us to represent multiple forms sharing the same server-side pro-

gram as one form. At the same time, each form included in a form union is easily accessible.

Definition 1 (Form Union). Consider a form F (root or descendant) and its two child forms F ðS1;t1Þ

and F(S2,t2) such that F !
S1;t1

F ðS1;t1Þðf
ðS1;t1Þ
1 ; . . . ; f

ðS1;t1Þ
k Þ and F !

S2;t2
F ðS2;t2Þðf

ðS2;t2Þ
1 ; . . . ; f ðS2;t2Þ

m Þ. Suppose

that the fields of F ðS1;t1Þðf
ðS1;t1Þ
1 ; . . . ; f ðS1;t1Þ

p Þ are the same as the fields of F ðS2;t2Þðf
ðS2;t2Þ
1 ; . . . ; f ðS2;t2Þ

p Þ.

Then, the union of F(S1,t1) and F(S2,t2), denoted by W = F(S1,t1) [F(S2,t2), is defined if and only if

subinfo(F(S1,t1)) = subinfo(F(S2,t2)). The forms F(S1,t1) and F(S2,t2) are called the component forms ofW.

The form union W is considered as the child form of F where (1) The form fields of W are

f
ðS1;t1Þ
1 ; . . . ; f ðS1;t1Þ

p ; f
ðS1;t1Þ
pþ1 ; . . . ; f

ðS1;t1Þ
k ; f

ðS2;t2Þ
pþ1 ; . . . ; f ðS2;t2Þ

m and (2) subinfo(W) = subinfo(F(S1,t1)). Also,

note that F(S,t) = F(S,t) [F(S,t).

Example 3. Let us consider the two child forms of the AutoTrader root form shown in

Fig. 4. They are results of submission of the root form depicted in Fig. 1(a) with the submissions

data sets S1 = {‘‘Ford’’,‘‘10520’’,‘‘Used Cars’’, ‘‘submit’’, ‘‘none’’, ‘‘21532053581465403997’’},

t1 = ‘‘17 June 2002/6:34pm’’ and S2 = {‘‘Toyota’’, ‘‘10520’’, ‘‘Used Cars’’, ‘‘submit’’, ‘‘none’’,

‘‘21532053581465403997’’}, t2 ¼ t1; AutoTrader !
S1;t1

AutoTrader
ðS1;t1Þ
2 and AutoTrader !

S2;t2
Auto-

Trader
ðS2;t2Þ
2 . These forms are the same except one select field with name ‘‘model’’ and one hidden

field with name ‘‘make’’ for which domain(model(S1,t1)) = {‘‘All models’’, ‘‘Aerostar’’,. . .,

‘‘Escort’’,. . .} (i.e., all ‘‘Ford’’ models), domain(make(S1,t1)) = {‘‘Ford’’},domain(model(S2,t2)) =

{‘‘All models’’, ‘‘4Runner’’,. . ., ‘‘Corolla’’,. . .} (‘‘Toyota’’ models), and domain(make(S2,t2)) = {‘‘Toy-

ota’’}. Hence, the union form AutoTraderunion2 ¼ AutoTrader
ðS1;t1Þ
2 [AutoTrader

ðS2;t2Þ
2 is simply a copy

of AutoTrader
ðS1;t1Þ
2 ðor AutoTraderðS2;t2Þ2 Þ form and two additional form fields model(S2,t2) and mak-

e(S2,t2) (or model(S1,t1) and make(S1,t1)). Fig. 5 depicts the representation of the AutoTraderunion2 form.

Note that the form union described in the above example contains nine visible and six invisible

form fields. Note that each child form contains eight visible and five invisible fields. Thus, form

unions allows us to store similar (sharing the same submission information) forms more effectively

D. Shestakov et al. / Data & Knowledge Engineering 52 (2005) 273–311 283

(15 fields instead 26 in this example). On the other side, if necessary, we can easily obtain any com-

ponent of a form union as we also store the submission data set that generates the child form and

a set of form fields of the child form.

4.5. Super form

In order to query the consecutive forms, our web form model must know the structure of all

forms to be filled-out. As we noted above, most descendant web forms have very similar structure.

This similarity motivates us to combine certain descendant forms into one form called the super

form. In the previous section, we described how to construct a union of two forms. Note that a

form union is also a form, and it shares the same submission information as its two component

forms. Thus, a set of forms with the same submission information can be combined into one form.

All the child forms sharing the same action attribute (component forms) are combined into one

form that contains all the component formsÕ fields. At the same time, identical fields of the child

forms are presented in the super form only once. Formally,

Definition 2 (Super Form). Consider a web form F with all possible submission data sets

S = {(Si,t)}, where t is an arbitrary date/time. Assume that a submission of S at different times

results in the same child form on the response page. Let F(Sk,t) be a child form of F with submission

data set (Sk,t), where (Sk,t) 2 S. A super form F super ðor F
ðSk ;tÞ
super Þ is given by:

F super ¼ F ðSk ;tÞ [
[

8Sj:ðSj;tÞ2S:subinfoðF
ðSj ;tÞÞ¼subinfoðF ðSk ;tÞÞ

F ðSj;tÞ

The form F(Sk,t) is called a base form of the super form F ðSk ;tÞ
super . Note that F ðSk ;tÞ

super ¼ F ðSm;tÞ
super , if sub-

info(F(Sk,t)) = subinfo(F(Sm,t)).

Fig. 5. Union of two AutoTrader child forms.

284 D. Shestakov et al. / Data & Knowledge Engineering 52 (2005) 273–311

Example 4. Consider the AutoTrader root form shown in Fig. 1(a). The submission of the

AutoTrader form with the following submission data sets: fðSðusedÞ
i ; tÞg, where S

ðusedÞ
i 2 fhv1;

v2; \Used Cars"; v4; v5; v6i j v1 2 domainðmakeÞ; v2 2 domainðaddressÞ; v4 2 domainðfield 1Þ; v5 2
domainðac afflÞ; v6 2 domainðborschtidÞg returns web pages containing child forms (see forms in

Fig. 4) with identical submission information. The generated child forms differ from each other

in the visible ‘‘model’’ field, domain values of which correspond to the chosen ‘‘make’’ in the root

form, and the invisible ‘‘make’’ field that simply contains the chosen ‘‘make’’. The super form

F ðused carsÞ
super is equal to its base form (see Fig. 4) plus 47 additional ‘‘model’’ select fields 6 and 47

‘‘make’’ hidden fields.

The submission of the AutoTrader form with the following submission data sets: fðS
ðnewÞ
i ; tÞg,

where S
ðnewÞ
i 2 fhv1; v2; ‘‘New Cars’’; v4; v5; v6ig returns the second series of child forms sharing the

same submission information 7. Thus, we can build the second super form F ðnew carsÞ
super .

Among other things, dependencies between consecutive forms may be studied on the ground of

a super form. Indeed, the analysis of submission data sets and generated child forms allows us to

find existing dependencies. For instance, the constructed super form F ðused carsÞ
super allows us to deter-

mine the dependence between the ‘‘make’’ field of the root form and the ‘‘model’’ field of any child

form. This helps us to validate values in form queries. For instance, the query ‘‘Find all Ford Cor-

olla cars’’ results in the web page with zero results as ‘‘Corolla’’ model does not belong to the

‘‘Ford’’ make. On the other side, the super form F ðused carsÞ
super contains the names of all possible used

car models. Similarly, the super form F ðnew carsÞ
super may be used to find the domain of all new car mod-

els. This domain does not necessarily be identical to the domain of used car models as some car

models are not manufactured in recent years (‘‘Ford Bronco’’ or ‘‘Toyota Matrix’’).

A super form significantly simplifies the querying and storage of consecutive forms. Indeed, to

perform complex query on two consecutive forms we need to specify only two forms (root and

super) instead of large number of combinations of a root and its child forms. For example, the

simple search for ‘‘Used Ford and Toyota cars within 10520 ZIP area’’ requires four form submis-

sions (two times of the root form in Fig. 1(a) and one time each of the child forms shown in

Fig. 4). Hence, three forms should be stored and then specified in the query. However, the super

form based on any of these child forms reduces the number of forms to be specified to only two.

Efficient storage is another advantage of our super form-based approach. The differences

among the descendant forms are often minor since the same server-side program generates them.

A super form allows us to store only one base form and the differences between the base form and

all other forms with the same submission information. For instance, the form union presented in

Example 3 requires storing only 15 fields instead of 26. Thus, combining even two forms signif-

icantly reduce the number of fields stored.

6 47 is the number of options in the ‘‘make’’ menu of the AutoTrader root form exclusive of one option that

corresponds to the base form.
7 Note that the submission information of child forms generated by fðS

ðnewÞ
i ; tÞg is different from the submission

information of child forms generated by fðS
ðusedÞ
i ; tÞg.

D. Shestakov et al. / Data & Knowledge Engineering 52 (2005) 273–311 285

4.6. Form extraction

DEQUE presumes that all forms to be queried are stored in the form database according to the

web form data model described earlier. This section describes the extraction of a web form from

an HTML page.

An HTML page containing a form may be specified by the user through the GUI depicted in

Fig. 6. Since DEQUE allows us to perform queries on consecutive forms, each response page must

be examined for the presence of web forms. Thus, for each web page (specified through the GUI

or retrieved from the Web) DEQUE constructs a logical tree representation of the structure of an

HTML page based on the document object model (DOM) [2]. Next, the tree is forwarded to the

following three extraction submodules that are responsible for the form extraction.

Form element extractor: The form element extractor analyzes a tree to find the nodes corre-

sponding to the FORM elements. If one or more elements exist, then the pruned tree is constructed

for each FORM element. For such tree construction we use only the subtree below the FORM ele-

ment and the nodes on the path from the FORM to the root.

The extractor also retrieves data related to a form and its fields from the pruned tree in accord-

ance with the web form model presented earlier. It should be noted that the visible values as well

as the invisible values are retrieved. For example, consider the element <option value=

"ALFA">Alfa Romeo</option>. ‘‘Alfa Romeo’’ and ‘‘ALFA’’ are stored as visible and invis-

ible option values respectively. The situation is worse with radio and checkbox fields. The visible

values related to these types of form fields are not embedded in the INPUT elements that define

such form fields. In most cases, we can find one of the visible values of a radio/checkbox field

Fig. 6. Form storage GUI.

286 D. Shestakov et al. / Data & Knowledge Engineering 52 (2005) 273–311

directly after the INPUT tag. For instance, ‘‘New Cars’’ as one of the visible values of the

‘‘search_type’’ field can be easily extracted from the following HTML code: <input type="ra-

dio" name= "search_type" value="new" onClick="changeList(1)" > New Cars.

Unfortunately, there are web forms with more complex HTML markup in which the distance

(in terms of the number of HTML tags) between a text element corresponding to a visible value

and the INPUT element may be more than one tag.

Label extractor: In DEQUE, the label extractor submodule is responsible for extraction of the

field labels. The label extractor (by default) begins with ignoring font sizes, typefaces and any styl-

ing information, so the corresponding pruned tree is simplified. We use the visual adjacency ap-

proach introduced in [22] to extract labels. The key feature of this approach is that when the

HTML code is rendered by the browser, the relationships between the fields and their labels or

fields and their visible values must be obvious to the user. In other words, irrespective of how

the page with the form is formatted, the phrase ‘‘The make I want is’’ (form label) or ‘‘Used Cars’’

(visual value) in Fig. 1(a) must be visually adjacent to the select menu or one of the radio field

choices respectively. Similarly, the text ‘‘Near ZIP code’’ must be visually adjacent to the corre-

sponding textbox widget. We use the following heuristic for identifying the label of a given form

field (an analogous heuristic is used for domain values of radio/checkbox fields).

� Identify the pieces of text, if any, that are visually adjacent to the form field. If a text piece con-

tains less than eight words 8 and the distance (in terms of HTML tags) between a text and a

widget is less than eight, then we consider each piece of text as possible candidate to be a label

of the form field. For example, consider Fig. 7. This piece of HTML code is a part of the Am-

adeus form at www.amadeus.net/home/en/home_en.htm. Observe that the tag dis-

tance between the text ‘‘Departing from:’’ and the text box is seven tags. For each candidate

we compute the actual pixel distances between the form widget and the candidate text pieces.

We use two JavaScript functions that returns the elementÕs real X and Y coordinates. The dis-

tance between the text element and the form field can easily be computed using these coordi-

nates.

� If there are candidates to the left and/or above the form field, then we drop the candidates to

the right and below. Note that the visible values of the radio/checkbox fields are usually to the

right of the form field. Thus, we prefer the candidates to the right when extract domain values

of the radio/checkboxes fields.

� If there are still two candidates remaining, the text piece rendered in bold or using a larger font

size is chosen. Apparently, this step is omitted if the label extractor ignores the styling informa-

tion.

� If two candidates are still not resolved, then one of them is picked at random.

JS function extractor: This module 9 is responsible for extracting the JavaScript functions from

the web pages. The main reason to extract such kind of functions is that the values before submis-

8 Most labels are either short words or short phrases.
9 In our implementation we consider only JavaScript as the client–server script language.

D. Shestakov et al. / Data & Knowledge Engineering 52 (2005) 273–311 287

sion to a server-side program would be checked in the same manner as in the case of the manual

form filling-out. Additionally, nowadays web pages often contain scripts that define the domain of

values for some form field based on the chosen value of another field. In our work, we consider

only extraction of the client-side scripts. The content of the nodes related to the SCRIPT tags is

considered for the function codes that are triggered if some form or field events occur. For exam-

ple, after extraction of the form event information by the form element extractor formevent(Auto-

Trader) = {‘‘onsubmit’’, ‘‘return validateData();’’}, the JS function extractor searches the content

of the SCRIPT tags or it searches the content of the file that may be linked to the web page as

a container of the client-side scripts for this page for the function named ‘‘validateData’’ and re-

trieves it.

5. Representation of result pages

In this section, we first discuss how the results returned by a deep Web query are represented in

DEQUE and then describe an approach used to extract data from the result web pages.

5.1. Result navigation

Perhaps the most common case is that a web server returns results a bit at a time, showing 10

or 20 result matches per page. Usually there is a hyperlink or a button to get to the next page

with results until the last page is reached. We treat all such pages as part of one single docu-

ment by concatenating all result pages into one single page. Specifically, we will consider all the

result web pages as one web page containing the search status string and N result matches,

where, N may be specified in the web form query by one of the following special keywords:

(1) ALL (default keyword)––all the result matches from each page; (2) FIRST(x)––the first x

matches starting from the first result page; (3) FIRSTP(y)––all matches from the first y result

pages. These keywords should be specified in the extraction part of the SELECT operator of

DEQUEL (discussed later).

5.2. Result matches

The next step to complete our result page representation is to examine the result matches. An

HTML code related to a match is often organized as tables using different web styles, fonts, co-

Fig. 7. Tag distance between form label and field.

288 D. Shestakov et al. / Data & Knowledge Engineering 52 (2005) 273–311

lors, images and so on. As a matter of fact, only text elements and hypertext links of a result

match are informative. Thereby, we ignore an HTML layout of the result match and focus on

the text strings and the hyperlinks embedded in its HTML code. Thus, each result match is rep-

resented as a set of text strings and links. Links have their own internal structure similar to the

structure of the HTML hyperlink, that is, the link label and the URL of the link. Note that if

an HTML hyperlink label is an image, the corresponding link label is the text string defined by

the alt attribute of the IMAGE tag or simply the word ‘‘Image’’. Fig. 8 shows the first result

match from the AutoTrader result page (see Fig. 2), and the text strings and links corresponding

to this match (such strings and links may be stored in HTML or XML format 10). In this way,

each result match is considered as a single row in a table with attributes of two types: text and

link. Any value corresponding to the link type attribute consist of a hyperlink label and the

URL of the hyperlink. The default attribute names are texti, where i corresponds to the number

of occurrence of the text element in the HTML code related to the result match, and linkj where j

is the number of occurrence of the hyperlink in the code.

Since result matches even from the same result page may have different structure (in particular,

different number of text strings or links), the representation of several matches in one table is

ambiguous. For example, the second result match from the AutoTrader result page (see Fig.

2) has five text elements and five hyperlinks, and hence, has ten attributes in the table represen-

tation. However, it is easy to see in Fig. 8 that there are 15 attributes (six text and nine link attri-

butes) for the first match. Actually, the search for the common attributes for all result matches

extracted from the result pages is a complicated problem. We give a brief description of our ap-

proach to this problem in Section 5.4.

For the time being, we assume that it is possible to build a Result Table (RT) for several result

matches. Fig. 9 depicts a partial view of the result table corresponding to the result matches from

all AutoTrader result pages.

Fig. 8. Result match representation.

10 Currently, we implement the result database capable to store an HTML code related to a result match. Thus, text

strings and links can be easily extracted from the code.

D. Shestakov et al. / Data & Knowledge Engineering 52 (2005) 273–311 289

Initially, a result table is built with default attribute names: texti and linkj, where i and j are

some indexes and 1 6 i 6 k, 1 6 j 6 m, where k and m are the numbers of text and link attri-

butes of a result table respectively. For the AutoTrader example shown in Fig. 9, k = 6, m = 9

and the number of rows is 236. The operator DEFINE described in the next section allows the user

to give the attributes of the result table more meaningful names.

5.3. DEFINE operator

The operator DEFINE with keyword ATTRIBUTE is used to define more suitable attribute

names for the result table. Two types of syntax are available. If the result table has already

been created (with default attribute names), then the syntax (also see Appendix A.1.1) is as fol-

lows.

DEFINE ATTRIBUTE <default attribute label> <new attribute name>

FOR <form label>

The above statement defines a new attribute name for the specified default attribute name of

the result table. Since the result table is created for the representation of the result pages gen-

erated by some server-side program, we specify the form name in the FOR clause. Thus, a re-

sult table corresponds to a form. Note that in the case of querying consecutive forms, the

result table is defined for the last submitted form. For example, the submission of the form

depicted in Fig. 1(b) produces the page shown in Fig. 2. If we denote this form as ‘‘AutoTrad-

er2’’ then it is possible to define the column names in the result table using the DEFINE oper-

ator as follows:

Fig. 9. Result table for AutoTrader result pages.

290 D. Shestakov et al. / Data & Knowledge Engineering 52 (2005) 273–311

DEFINE ATTRIBUTE link2 carpage FOR AutoTrader2;

DEFINE ATTRIBUTE link5 dealerpage FOR AutoTrader2;

DEFINE ATTRIBUTE text2 colorFOR AutoTrader2:

These statements rename the specified attributes of the result table for the AutoTrader result

pages. The modified result table is shown in Fig. 10.

The second type of syntax of the DEFINE operator is used to specify attribute name(s) if the

result table was not generated before. In this form the DEFINE operator may be used to define

the extraction conditions for result pages generated by a particular server-side program. The syn-

tax (see Appendix A.1.2) of the operator is as follows:

DEFINEATTRIBUTE <type> <set of attribute names>

CONDITION <condition on text> j <condition on label>

FOR <form label>

First the operator specifies the type of attribute(s) (TEXT and LINK correspond to the text and

link types respectively). Since more than one link or text may satisfy the extraction conditions,

several attribute names may be specified. However, the operator requires at least one attribute

name to be specified. Then, if necessary, the attribute names will be given by subindexing of

the specified attribute name. The CONDITION clause specifies conditions on the text strings

or hyperlinks respectively of each result match. The satisfied text string or hyperlink will be pre-

sented in the result table as the value of the column specified by the attribute name. Note that the

syntax assumes that each web form has its own set of the result tableÕs attributes. As the result

database stores an HTML code of each result match, we can define data for extraction from

the stored results anytime using the DEFINE operator.

The following example is also based on the results generated after submission of the Auto-

Trader form (see Fig. 1(b)). Suppose that the user is issuing query on the AutoTrader forms

for the first time. The user may specify the links and text elements that may be on the result pages.

In particular, it is clear that some links or text elements would contain the text string ‘‘Ford

Focus’’ if the user searches for ‘‘Ford Focus’’ cars using the AutoTrader web interface. Then,

the DEFINE operator may be specified as follows:

Fig. 10. Modified result table.

D. Shestakov et al. / Data & Knowledge Engineering 52 (2005) 273–311 291

DEFINE ATTRIBUTE LINK carpage

CONDITION (label contain ‘‘Ford Focus’’, url contain http://autotrader.com)

FOR Autotrader2

If the result table is not created for the AutoTrader2 form, then the execution of this state-

ment defines a table with one column called carpage. Then, the query (find used ‘‘Ford Focus’’ cars

made in 2000) returns the results (the first result page is shown in Fig. 2) that are represented as

shown in Fig. 11.

5.4. Result extraction

Currently, DEQUE extracts the pieces of HTML code that correspond to the result matches. The

main idea of such extraction is the regularity of HTML patterns related to the result matches. We

can find them by searching an HTML tree for the number of sibling sub-trees. Fig. 12 shows an

example of the HTML tree. In this example, the HTML code contains twelve siblings subtrees

representing tables (defined by TABLE tags) with identical structure. These tables correspond to

the 12 result matches laid out on the result page. We additionally require that the subtrees to

be extracted must contain several hyperlinks and text strings to distinguish them from the subtrees

related to different navigation menus available on the page.

The result table for a set of result pages is built by DEQUE using the DEFINE-statements or con-

ditions specified in a form query (see Section 6). If no information on the result table is provided,

then a modified version of the approach in [7] is used. Pattern discovery in RoadRunner [7] is

based on the study of similarities and dissimilarities between two HTML pages at a time; mis-

matches are used to identify relevant inner structures of the result matches. In our approach,

we compare the first two result pages to determine a common inner structure of the result matches

and then extract common matchesÕ attributes from all result pages using the discovered pattern.

However, this can be done effectively if there are at least two result pages both containing suffi-

cient number (more than ten according to our experiments) of result matches. Otherwise, when

only one result page is returned (or second result page contains only few result matches), DEQUE

analyzes the two HTML pages that are artificially constructed based on the available result

matches by separating them into two pages. The reader may refer to [7] for further details about

the identification of relevant inner structures within the pages generated by the web forms.

Fig. 11. Result table based on extraction conditions.

292 D. Shestakov et al. / Data & Knowledge Engineering 52 (2005) 273–311

6. Deep web query language (DEQUEL)

In this section, we discuss the query language for the deep Web called DEQUEL. The DEQUEL is

aimed at providing applications such as automated web agents searching for specific domain

information, hidden Web crawlers, etc. with an expressive query interface to query the data in

the deep Web. The proposed language, designed specifically to query web forms, is an expressive

web query language that permits queries on topology (filling single or consecutive forms) and doc-

ument structure (within result pages). However, in the context of data extraction, the DEQUEL is

less expressive than up-to-date wrapping languages [10]. The complete syntax of DEQUEL is given

in Appendix A.

6.1. Value assignment

The result pages are generated by a server-side program on the basis of the values submitted via

web forms. In DEQUEL, a value or a set of values are assigned to a form field in the following way:

form_name.field_name = value or form_name.field_name = {set_of_values}. For example, Auto-

Trader.make = {‘‘Ford’’, ‘‘Toyota’’} assigns the values ‘‘Ford’’ and ‘‘Toyota’’ to the ‘‘make’’ field

of the AutoTrader form. Corresponding initial field sets are assigned if values for some fields

of a form are not specified in the query 11. The value assignment for the button and hidden type

fields are not necessary. Thus, these types of fields are omitted in the SELECT statement.

11 Null string is assigned to an unspecified text field without predefined value.

Fig. 12. Example of HTML tree.

D. Shestakov et al. / Data & Knowledge Engineering 52 (2005) 273–311 293

The following type of value assignment is especially useful for the text type fields: form_name.

field_name = {LABEL,n}, where n is a number. The keyword LABEL specifies that the domain

values of some field with similar descriptive information (label) shall be assigned to the specified

form field. The variable n specifies the number of domain values that are assigned. For instance,

if our form database stores a form with the field ‘‘zip’’ for which label(zip) = ‘‘ZIP code’’ and

domain(zip) = {‘‘60601’’, ‘‘60602’’,. . ., ‘‘60612’’} then the assignment AutoTrader. address =

{LABEL,2} specifies that the values ‘‘60601’’ and ‘‘60602’’ shall be assigned to the ‘‘address’’ field.

This is based on the assumption that the label of the ‘‘zip’’ field is semantically closest to the label

of the ‘‘address’’ field (label(address) = ‘‘Near ZIP Code’’).

The DEQUEL also allows us to assign values from relational tables and results of previous form

queries (these results must be presented as result tables). The syntax is as follows: form_name. field_

name = {relational_table_name.attribute_name,k} or form_name.field_name = {query_name.

attribute_name,m}, where k andm specify the number of values that should be assigned to the form

field; relational_table_name.attribute_name defines the column of the specified relational table; and

query_name.attribute_name specifies the column of the result table that stores the results of the form

query. For example, suppose we need to send links to web pages containing information about used

‘‘Ford Focus’’ cars made in 2000 to a friend via SMS service. Suppose we use the text field named

‘‘mes’’ in the form called SendMessage for sending the SMS. Also, assume that our search using

the AutoTrader web interface was stored in the result table (we call the table ‘‘Focus2000’’) with

one column called ‘‘carpage’’ (as shown in Fig. 11). Then, we can assign two links from this stored

result table to the ‘‘mes’’ field (that contains the text of SMS message) as follows: SendMes-

sage.mes = {Focus2000.carpage,2}.

Note that web forms impose some restrictions on values. Only values pertaining to the form

fielddomains are processed. The rest of the values are ignored. Thus the assignment

AutoTrader.make = {‘‘Ford’’, ‘‘Microsoft’’, ‘‘DELL’’} will be transformed into AutoTrader.

make = {‘‘Ford’’} as ‘‘Microsoft’’ and ‘‘DELL’’ are not valid in the domain.

6.2. DEQUEL syntax

The DEQUEL is intended to provide more convenient and efficient way to fill out web forms. The

syntax of the DEQUEL is as follows:

The SELECT, retrieval operator of the DEQUEL, consists of four parts: extraction, source spec-

ification, assignment, and condition [24]. The first part of the SELECT statement is related to the

query results returned by the DEQUEL query processor. The number of results defines the

<query>::=SELECT [<number of results>]

<set of result table attributes>

[<set of assigned values>]

[AS <query label>]

[FROM <source set>]

[WHERE <assignment set>]

[CONDITION <condition set>]

294 D. Shestakov et al. / Data & Knowledge Engineering 52 (2005) 273–311

number of result matches that should be extracted from the result pages for each submission data

set defined in the assignment part. The set of the result table attributes can be spec-

ified if such table has been created before. Otherwise, the default attribute names linki, textj may

be used in case the result table has not been created. The AS clause specifies that the results of this

query shall be stored and defines the reference to these results. Form(s) to be queried, relational

table(s) used as a source of input data, the form URL(s) if form(s) is not pre-stored in the form

database, and names of the stored query results must be specified after the FROM clause in the

‘‘source set’’. TheWHERE clause defines the values to be assigned to the form fields (the fields

must pertain to the forms specified in the FROM clause). Lastly, conditions on the data extracted

from the result pages are specified in the CONDITION clause. In the current implementation,

parentheses are not allowed and the priority of AND/OR in the condition set is based on the

occurrence of the operators from left to right. We illustrate the syntax of the DEQUEL with some

examples.

6.3. Examples of DEQUEL queries

Example 5. Suppose that we wish to find the ZIP codes of Chicago, USA. The web form at

http://zipfind.net (called ZIPFind) is used to find the ZIP codes. Assume that this form

has been stored in our form database. Then the query is formulated as follows:

SELECT ALL AS Chicagozips

FROM zipfind

WHERE zipfind.104 = ‘‘Chicago’’

The result database stores the query results and creates the Chicagozips reference to them.

Since we do not specify the result table attributes the default attribute names are used. The results

of the query are shown in Fig. 13(a).

Example 6. Suppose we wish to find the ‘‘best’’ 12 flights from Singapore to London on the fol-

lowing dates: October 28, 2002; November 14, 2002; and January 24, 2003 with available seats in

business or economy classes. The Amadeus
13 web form is used for this query. To retrieve the

relevant results we formulate the following query:

SELECT FIRST(3) flight, depart, arrive, stops_aircraft, duration, business_seat, economy_seat,

amadeus.D_Month, amadeus.D_Day AS Seatsaval

FROM amadeus

WHERE amadeus.D_City = ‘‘Singapore’’ AND amadeus.A_City = ‘‘London’’ AND (amadeus.

D_Month, amadeus.D_Day) = (‘‘October’’, ‘‘28’’ ‘‘November’’, ‘‘14’’, ‘‘January 2003’’, ‘‘24’’)

CONDITION business_seat = (text contains ‘‘Yes’’) OR economy_seat = (text equal ‘‘Yes’’)

12 The flight duration is minimum.
13 Available at http://www.amadeus.net/home/index.htm.

D. Shestakov et al. / Data & Knowledge Engineering 52 (2005) 273–311 295

Note that the assignment (form.field1, form.field2) = (v1, v2, v3, v4) differs from the assignment

form.field1 = {v1, v3} AND form.field2 = {v2, v4}. The former indicates that the value v1 is assigned

to the field field1 only if v2 is assigned to field2. While the latter presumes that all possible

combination of {v1, v3} and {v2, v4} may be assigned to field1 and field2. Thus, in our example, the

amadeus form is not queried for dates such as October 14, 2002 or November 28, 2002 or

November 24, 2002.

In the above query we specify using the keyword FIRST(3) that the first three result

matches are extracted from the result page for each set submitted to the server-side program

related to the Amadeus form. Furthermore, we specify the attribute names of the result table

(suppose that the result table has been created and the table attributes have been given names

such as flight, depart and so on) and the assigned values. Note that the assigned values are not

part of the result table. We specify them to make the results easier to understand (in this

example, to distinguish the flights on different dates). The CONDITION part of the query

defines conditions on the values of the result table related to business_seat and economy_seat

attributes. We require that the result match must have a value ‘‘Yes’’ corresponding to its

economy_seat attribute or the same value corresponding to its business_seat attribute. Fig. 14

depicts the Seatsaval query results.

Example 7. Given a list of researchers from a graduate school related to natural sciences 14, sup-

pose that we wish to find all works published by these researchers in 2002. Assume that the names of

the researchers are stored in the relational table researcher(id, name) as shown in Fig. 15.

The PubMed
15 form is used to search for published works. The query is formulated as follows.

SELECT authors, work, published, pubmed.TEXT

FROM pubmed, researcher

WHERE pubmed.db = ‘‘PubMed’’ AND pubmed.TEXT = {reseacher.name,all}

CONDITION published = (text contains ‘‘2002’’)

14 We use data available at http://www.abo.fi/isb/research_groups.html.
15 Available at http://www.ncbi.nlm.nih.gov/entrez/query.fcgi.

Fig. 13. DEQUEL query results. (a) Chicagozips Query Results. (b) Japancars97 Query Results.

296 D. Shestakov et al. / Data & Knowledge Engineering 52 (2005) 273–311

According to the query, results are presented in a four-column table with attributes authors,

work, published, pubmed.TEXT. Similar to the previous query, the values assigned to the

pubmed.TEXT field specifies the values of the fourth column. These values are taken from the

table researcher. The all keyword specifies that all corresponding values of the relational

table are assigned to the ‘‘TEXT’’ field. We can also specify the number of values that are used

as input to the ‘‘TEXT’’ field of the pubmed form. For example, pubmed.TEXT = {reseacher.

name,2} specifies the following assignment: pubmed.TEXT = {‘‘Coffey ET’’, ‘‘Kulomaa MS’’}.

Fig. 16 shows the results of the query.

Example 8. Reconsider the query in Example 1. Let the forms in Fig. 1(a) and (b) be called Auto-

trader and Autotrader2 respectively. Assume that the Japanese makes are stored in the relational

table japancars (price,make) shown in Fig. 15. Suppose that the attributes carpage, dealerpage, and

color are defined for the result table (see Section 5.3). Then the query is formulated as follows:

SELECT FIRSTP(2) carpage, dealerpage, color

AS Japancars97

FROM autotrader, autotrader2, japancars, zipfind

Kilpelainen I5

Lahesmaa R4

Lahti R3

Kulomaa MS2

Coffey ET1

nameid

researcher:

……

Mazda120 00

……

Nissan150 00

……

Toyota100 00

makePrice

japancars:

Fig. 15. Tables researcher and japancars.

Fig. 14. Seatsaval query results.

D. Shestakov et al. / Data & Knowledge Engineering 52 (2005) 273–311 297

WHERE zipfind.104 = {‘‘Chicago’’} AND autotrader.make = {japancars.make, all} AND autotrader.

search_type = ‘‘Used Cars’’ AND autotrader.zip={zipfind.rt.text2,1} AND autotrader2.max_price =

‘‘10000’’ AND autotrader2.from_year = ‘‘1997’’ AND autotrader2.end_year = ‘‘1997’’ CONDITION

color = (text contains ‘‘Black’’)

The FIRSTP(2) keyword specifies that the result matches are extracted from the first two

result pages. The zipfind form is used to find the ZIP codes of Chicago. The submission of the

zipfind returns 88 ZIP codes corresponding to ‘‘Chicago’’ (see Fig. 13(a)). The expression

{zipfind.rt.text2, 1} defines that only one ‘‘text2’’ value from the zipfind result table (named

zipfind.rt) is used for providing ZIP code to the related AutoTrader form field. If the query

presented in Example 5 was executed, then we can formulate this query by removing zipfind in the

third and fourth lines of the query and changing {zipfind.rt.text2,1} in the sixth line to

{Chicagozips.text2, 1}. The query results are shown in Fig. 13(b).

Example 9. Suppose we wish to find used Toyota black cars manufactured in 1997 within US$

10,000 and available in Chicago. We can formulate a query similar to the previous one but it is

a good idea to reuse the results of the query described in Example 8 as shown below:

SELECT carpage,dealerpage

FROM Japancars97

WHERE Japancars97.carpage = (label contains ‘‘Toyota’’)

Here we used the Japancars97 result table specified in Example 8. The results of the query

are a two-column result table result(carpage,dealerpage).

6.4. DEQUEL query execution

This section describes the execution of the DEQUEL query formulated by the user through the

form query UI. In the preceding sections, we introduced two operators: DEFINE and SELECT.

Fig. 16. PubMed query results.

298 D. Shestakov et al. / Data & Knowledge Engineering 52 (2005) 273–311

The DEFINE operator specifies the extraction conditions on the data from the result pages. The

query processing is defined exclusively by the SELECT operator.

Firstly, the Query Processor of DEQUE checks whether the same query was processed before.

If yes, it returns the results of the processed query and indicates the date of process-

ing. This definitely may lead to outdated results. However, in this paper we do not focus

on the issues related to outdated information here. Secondly, the specified DEQUEL query is

parsed by the Query Parser. Currently, a query on two or more forms can be composed

only if the forms to be queried are consecutive. The SELECT statement envisages that a

query may contain the URL of the forms. Such forms are extracted before query

evaluation.

All relevant forms and relational tables (these tables must be also pre-stored in the relational

database) are retrieved from the form and the relational database by the Storage/Retrieval Man-

ager. For each form field specified in the query, the Query Evaluation Module of DEQUE considers

the form field domain, initial field set, label, and, the values indicated in the query. For example,

consider querying two consecutive forms: autotrader(make, address, search_type, field_1, ac_afflt,

borschtid) (see Fig. 1(a)) and autotrader2(model, certified, start_year, end_year, min_price, max_

price, distance, advanced, advcd_on, make, address, search_type) (see Fig. 1(b)). Suppose 24 values

as relational input are assigned to the field make, five values are assigned to the field max_price,

and the initial field sets of all fields of both forms consist of one value. Then, 120 possible submis-

sion data sets will be validated. The potential submission data sets with the form field information

such as field domains, labels, initial field sets for each form specified in the query are passed for the

validation of the values.

For each form involving in the query, DEQUE considers the domain constraints correspond-

ing to the form. Any potential submission data set must satisfy these domain constraints.

Since we perform queries on consecutive forms, two or more groups of the domain con-

straints may be considered. The steps given below validate the potential submission data

set.

Consider a form F with fields f1,. . ., fk, its child form Fc with fields fk+1,. . .,fn and a poten-

tial submission data set S = {s1,. . ., sk, sk+1,. . ., sn}, where 8i ¼ 1; n : si is assigned to the field

fi. A data set S can be submitted if the following is true: (1) The data set S 0 = {s1,. . ., sk} sat-

isfies the domain constraints of F. (2) The data set {sk+1,. . ., sn} satisfies the domain con-

straints of the form F ðS0Þ
c where F ðS0Þ

c is the result of submission of F with submission data

set S 0.

The HTTP Request Module of DEQUE transforms the validated submission data sets into the

HTTP GET or POST requests. If a query on consecutive forms is executed, only the last child

form is submitted to its server-side program. Values assigned to the fields of all other consecutive

forms are assigned to the hidden fields of the last child form. Indeed, the majority of descendant

forms contains the hidden fields whose initial values are equal to the values assigned to the fields

of the parent form. For example, the AutoTrader root form is submitted with values ‘‘Ford’’,

‘‘10520’’ and ‘‘Used Cars’’ assigned to the ‘‘make’’, ‘‘address’’ and ‘‘search_type’’ fields respectively

then the child form will contain the following three hidden fields: ‘‘make’’, ‘‘address’’ and

‘‘search_type’’ with values ‘‘FORD’’, ‘‘10520’’ and ‘‘used’’ respectively.

D. Shestakov et al. / Data & Knowledge Engineering 52 (2005) 273–311 299

7. Implementation

We have created a prototype system that allows the user to formulate DEQUEL-queries on the

web forms that can be extracted from the web, and extract and store useful data from the result

pages. The implementation was conducted on a SUN workstation working under Solaris 2.7 oper-

ational system using Perl version 5.005_2 and employing MySQL (version 3.23.49) DBMS as the

data storage. We also used ActiveState Perl 5.6.1 on a Pentium III workstation under Windows

2000 OS for our experiments related to HTML parsing. A web-based graphical user interface

(GUI) was implemented using CGI programs written on Perl under control of the Apache

Web Server (version 1.3.22). In this section, we present the architecture of the prototype system

and summarize the significant results from our experiments.

7.1. System architecture

As shown in Fig. 17, our prototype system consists of the following components: the User Inter-

face, the Web Document Loader, the HTML Parser, the Query Processor, the Extraction Module,

and the Storage/Retrieval Manager.

Query Processor

WWW

Web Document
Loader

Storage/Retrieval Manager

HTTP Request Module

Form

Database

Relational

Database

User Interface
(FOQueL/Form Storing

Interfaces)
Query Parser

Query Evaluation

Module

Values Validator/
Client-Side

Script Analyzer

HTML Parser

Result

Database

Query

processing

Database

Extraction Module

Response Navigator

Result Match

Extractor

JS Function

Extractor

Label Extractor

Form Element

Extractor

Fig. 17. Architecture of DEQUE.

300 D. Shestakov et al. / Data & Knowledge Engineering 52 (2005) 273–311

The user interface shown in Fig. 6 allows the user to specify the URLs or local filenames of web

pages containing one or more web forms. It calls the Web Document Loader to fetch the web page

from the specified URL. The returned web page is parsed by the HTML Parser that constructs a

logical tree representation of the downloaded web page, based on the document object model

(DOM) [2], and passes it to the extraction module. We use the Perl collection of modules

HTML-Parser (version 3.26) and HTML-Tree (version 3.11) to parse HTML documents, to cre-

ate HTML syntax trees and to extract information from them.

The extraction module consists of five submodules: the Form Element Extractor, the Label

Extractor, the JS Function Extractor, the Response Navigator, and the Result Match Extractor.

The first three submodules (discussed in Section 4.6) are responsible for extracting HTML forms

from a given web page. The form element extractor retrieves form data based on the HTML syn-

tax related to forms. The label extractor and the JS (JavaScript) function extractor extract addi-

tional form data (form labels and related client-side scripts). The extracted data is stored in the

Form Database. The Response Navigator and the Result Match Extractor are responsible for re-

sult extraction. The response navigator retrieves all web pages linked to the returned page. If a

result page contains an HTML form, then the form is extracted by the form extraction submod-

ules. According to the DEQUEL syntax, all forms to be submitted to obtain a result page should be

specified in a query. Thus, we assume that each data set submitted by the HTTP Request Mod-

ule 16 generates a web page with results. However, web forms that may be contained in the result

pages are extracted by the extraction module and stored in the form database.

The response navigator analyzes the HTML tree for hyperlinks whose label contains words

such as ‘‘1’’, ‘‘2’’, ‘‘next’’ and so on. The URLs of these hyperlinks are very similar. For most

cases, these URLs overlap the URL of the request. The resultant URLs are given to the Web Doc-

ument Loader. The latter returns the result pages linked to the first returned page. Finally, all re-

sult pages are passed to the Result Match Extractor that extracts the result matches from the

result pages and builds a result table using the technique described in Section 5.4.

The DEQUEL user interface (see Fig. 18) allows the user to specify queries on web forms using

the DEQUEL. The formulated query is passed to the Query Processor (described in Section 6.4)

consisting of the following components: the Query Parser, the Query Evaluation Module, the Val-

ues Validator, and the HTTP Request Module. The query parser parses the query and determines

the steps of query execution to be given to the Query Evaluation Module. The latter is responsible

for deriving different sets of input values from the Relational Database, Result Database, and the

Form Database. The Result Database stores the results of form queries. The query evaluation

method also calls the web document loader if some form specified in the query is not pre-stored.

The goal of the Query Evaluation Module is to prepare the submission data set and pass them to

the Values Validator for checking. The client-side script analyzer as a part of the validation com-

ponent of the query processor allows the Values Validator to more accurately restrict the submis-

sion data set on the basis of the client-side scripts. The information about successful submission

data set is stored in the Query Processing Database and given to the HTTP request module. This

module simply submits the different form requests to the remote server-side program. The

16 Except when the request is constructed for the valuesÕ validation.

D. Shestakov et al. / Data & Knowledge Engineering 52 (2005) 273–311 301

returned web pages are parsed by the HTML Parser and forwarded to the Extraction Module de-

scribed above.

7.2. Form and result storage

The prototype form and result databases are implemented using MySQL. The form database

consists of five tables: form, field, value, label, and event (shown in Table 1). The semantics of rel-

evant attributes is given in Table 2. Each record of the form table describes a form. A super form

is also described by one record in the form table. Each record of the field describes a form field

pertaining to a some form. If a form field belongs to a descendant form, then the information

about the parent form submission (i.e., parent form identifier, submission data set, date and time

of submission) is linked to the corresponding record. Each record of the value describes a value

(visible and invisible) of a form field. A record in the label table describes the label and domain

Table 1

Form database schema

Table name Table attributes

Form fid, faction, fenctype, fmethod, rfid, pfid, rfurl, fname, fevent_id, fdesc, fdt

Field ffid, form_id, ffname, fftype, session_id, ffevent_id, fflabel

Value field_id, visval, invisval, vselected, valtext, vlength

Label lid, lstr, lvalues

Event eid, estr, ecode

Fig. 18. DEQUEL GUI.

302 D. Shestakov et al. / Data & Knowledge Engineering 52 (2005) 273–311

of values related to the label. A record in the event stores the JavaScript function related to a form

or a form field event.

The Extraction Module stores the query results. If a result table has been built and the result

table attributes have been specified in a query, then the result of a form query is represented as the

Table 2

Attributes of form database

Attribute name Description

faction URL of a server-side program handling a form

rfid, pfid Identifiers of a root and a parent form correspondingly

rfurl URL of a page containing a form (null for descendant forms)

fevent_id Identifier of an event code for a form event

fdt Date and time of the form extraction

form_id Identifier of a form that contains this field

fftype A type of a form field

session_id Identifier of a session (for form fields pertaining to descendant forms)

ffevent_id Identifier of an event code for a form field event

fflabel A text string containing descriptive information about a field

field_id Identifier of a form field

visval, invisval A visible and an invisible value correspondingly

lstr A text string containing descriptive information (that is, label itself)

ecode A code of a JavaScript function

Fig. 19. Example of query results.

D. Shestakov et al. / Data & Knowledge Engineering 52 (2005) 273–311 303

table. Otherwise, the query result is a single page containing all the result matches. Fig. 19 shows

an example of the results returned by the system after performing the following query on the

AutoTrader forms: Find used Ford Escort cars not older than 4 years and price is within

10,520. Currently, the extracted result matches are stored in the result database that consists of

two tables: resmatch (describing a result match) and rtname (describing an attribute of some result

table). Thus, more powerful extraction tool can easily analyze the results of form queries stored as

pieces of HTML code (each related to one result match) to extract the data of interest.

7.3. Experimental results

We have performed queries on 29 single and 8 consecutive forms. Totally, the prototype system

stored 66 different forms (that is, the form table of the form database contains 66 records), includ-

ing 36 root forms and 16 super forms. All forms having the same submission information, loca-

tion and form type are represented by one ‘‘form’’ record in the form database. Several forms are

not interesting as they only sort the results returned by the other forms. Table 3 shows some of the

form URL, the form type, the number of visible and invisible fields, and the number of performed

queries for several forms that were used to test our technique.

Table 3

Queried forms

Form name URL No. of

visible fields

No. of

invisible fields

Type No.

of queries

AutoTrader http://autotrader.com

/findacar/index.jtmpl?ac_afflt=none

4 2 Consecutive 240

ZIPFind http://zipfind.net 3 – Single 40

Amadeus http://www.amadeus.net/home/

en/home_en.htm

9 15 Consecutive 100

PubMed http://www.ncbi.nlm.nih.gov/

PubMed/

4 4 Single 200

Google http://google.com 3 3 Single 170

ClassicCar http://classiccar.carfrenzy.com

/autos/index2.html

2 – Consecutive 110

Amazon http://amazon.com 3 – Single 30

CiteSeer http://citeseer.nj.nec.com/cs 3 1 Single 60

Lycos Companies

Online

http://business.lycos.com/

companyresearch/crtop.asp

3 – Single 40

PowellÕs Books http://www.powells.com/search

/DTSearch/search.cgi

17 – Single 20

AA Flight Search http://www.aa.com 13 20 Consecutive 70

Phuket Hotel Guide http://www.phuket-hotels.com

/indexprices.htm

53 1 Single 10

Froogle http://froogle.google.com/ 2 – Single 50

Yahoo!Autos http://autos.yahoo.com/ 3 5 Consecutive 100

Carsearch.com http://www.carsearch.com/ 3 1 Consecutive 100

Mobile.de http://www.mobile.de/ 40 1 Single 110

Yahoo! RealEstate http://realestate.yahoo.com/ 7 7 Single 80

SmartBargains http://www.smartbargains.com/ 3 2 Single 100

304 D. Shestakov et al. / Data & Knowledge Engineering 52 (2005) 273–311

We have been successful with submission of 58 forms. That is, the system was able to process

the issued query so that the pages containing the query results or pages containing the child forms

were generated. The automatic submission of the remaining forms mainly failed due to the num-

ber of built-in JavaScript functions or HTML frames.

The advantage of our query system depends on the type (single or consecutive) of the form to

be queried. The system is faster than manual filling-out if at least two data sets are submitted with

the consecutive forms and more than three data sets with a single form. This is based on the fol-

lowing evaluation. Our system provides the web-based interface (in other words, it is also a web

form) to formulate form query. To submit one data set with a single form the user needs to inter-

act with approximately x fields. The DEQUEL interface also has similar requirements. However,

submission of n data sets using a single form requires about n*x interactions. With our system

the user specifies n sets at about x + n*2 interactions, where two is an empirical number that

shows how many different values are in submitted data sets. Note that x P 2 as for any form

the user must specify at least one value and press a button. After the comparison of the number

of interactions we are able to obtain the above estimation for a single form. Similarly, we believe

that submission of more than two data sets with consecutive forms (say, a parent and a child

form) is faster using the DEQUEL interface.

Table 4 contains the results of the label extraction for different forms. We observed that the

implemented label extraction technique was able to achieve 80% and 77% accuracy in extracting

the labels of the text and select fields respectively, and about 75% in the label extraction for the

radio and checkboxes fields. The result pages connected by hyperlinks were correctly retrieved

with 89% accuracy. For the most part, links of the ‘‘unsuccessful’’ result pages are images ignored

by the extraction module.

The main disadvantage of the result extraction technique is that each result page is analyzed

apart from other connected pages. Thus, the system is sometimes unsuccessful in extracting results

from pages containing only few result matches. For example, if a query returns 53 results laid out

Table 4

Label extraction results

Form name No. of labels

for text fields

No. of

extracted

labels

No. of labels

for select fields

No. of

extracted labels

No. of labels

for radio and

checkbox fields

No. of

extracted

labels

AutoTrader 1 1 1 1 1 1

ZIPFind 1 1 – – – –

Amadeus 2 2 4 4 – –

PubMed 1 1 1 1 – –

ClassicCar – – 1 1 – –

Lycos Companies Online 1 0 – – 2 0

PowellÕs Books 6 6 6 6 3 0

AA Flight Search 2 0 6 4 2 1

Phuket Hotel Guide – – – – 53 44

Mobile.de 2 2 17 11 20 15

Yahoo! RealEstate 1 1 4 4 1 1

Total 30 24 48 37 82 62

D. Shestakov et al. / Data & Knowledge Engineering 52 (2005) 273–311 305

on three pages then the extraction from the third page (containing three result matches) is some-

times unsuccessful. However, the extraction module successfully extracts all matches from all con-

nected result pages that contain more than 10–20 result matches. Additionally, for many analyzed

result pages the result match extractor returns more matches than really presented on the page as

some irrelevant subtrees are considered as result matchesÕ sub-trees.

Table 5 shows the accuracy and precision of the result matchesÕ extraction for different forms.

We define accuracy as: Accuracy ¼ Number of relevant matches
Number of query results

� 100%, where the number of query re-

sults is the total number of actual results returned by the server-side program, and the number

of relevant matches is the number of extracted matches corresponding to the actual results.

The precision is given by the following ratio: Precision ¼ Number of relevant matches
Number of extracted matches

� 100%, where

the number of extracted matches is the total number of matches extracted by the extraction mod-

ule from the returned pages. For example, 80% accuracy means that system extracts only 80% of

all the matches that really presented on the returned pages. Additionally, 70% precision shows

that 30% of the result matches extracted by the system do not contain any useful data. In sum-

mary, our experiments show that automatic form querying is feasible, and that relatively few

forms are queried incorrectly.

8. Conclusions and future work

This paper describes our work done in modeling and querying the deep Web. In particular, we

have proposed a data model for representing and storing HTML forms, and a web form query

language for retrieving data from the deep Web and storing them in the format convenient for

additional processing. We presented a novel approach in modeling of consecutive forms and

introduced the concept of the super form. The proposed web form query language DEQUEL is able

Table 5

Result match extraction

Form name No. of queries No. of query results No. of extracted matches Accuracy (%) Precision (%)

AutoTrader 240 12,340 15,570 95 75

ZIPFind 40 1020 980 96 96

Amadeus 100 1200 1440 100 83

PubMed 200 1640 1390 97 82

Google 170 1700 2240 100 76

ClassicCar 110 790 610 76 98

Amazon 30 470 730 99 64

CiteSeer 60 870 710 80 98

Froogle 50 1000 1280 100 78

Yahoo!Autos 100 6920 6310 85 93

Carsearch.com 100 4350 5010 94 82

Mobile.de 110 4860 4030 79 95

Yahoo! RealEstate 80 960 880 80 87

SmartBargains 100 1540 1960 91 71

306 D. Shestakov et al. / Data & Knowledge Engineering 52 (2005) 273–311

to query forms (single and consecutive) with input values from relational tables as well as from the

result pages (results of querying web forms). Finally, we have implemented a prototype system

based on the discussed methodologies.

In the process of DEQUEÕs design and implementation we have addressed several challenges in

building a query system for the deep Web. First, we introduced the concept of super form to sim-

plify the process of querying and storing consecutive forms. Secondly, we introduced the DEQUEL

to provide more convenient and efficient way to fill out web forms. Furthermore, we described our

approach to extraction of query results from result web pages.

As part of future work we shall focus on the following issues: (1) Support of client-side

scripts: Currently, we only store form or field events and related functionsÕ codes in our form

database. The next step is to perform queries on web forms considering the client-side scripts.

Then, we can validate values to be submitted with a form using the client-side functions. The

support of built-in functions is also very desirable to identify the dependencies between the

form fields (in many current web forms, the chosen value of some field triggers off the func-

tion that specifies the domain values of another field). (2) Dependencies between consecutive

forms: The modeling of dependencies between the forms can significantly improve the perform-

ance of queries on consecutive forms as it helps to eliminate irrelevant submission data sets

before submitting them to the server-side program. (3) Intermingling of forms and results:

At present, DEQUE strictly separates forms and results. However, it is possible to have result

pages which themselves contain subforms. We used to develop techniques to address these

types of intermingled forms in the future. (4) Transformation to XML: We intend to investi-

gate more robust algorithms to extract data from the result pages and storing them. In par-

ticular, we intend to extract the hidden web query results and transform them to XML using

machine learning techniques. Our motivation to transform the deep Web query results to

XML is the following. Deep Web data is HTML-formatted and every site generates it in

its own fashion. Thus it becomes extremely difficult and cumbersome to develop generalized

techniques that can be used for deep Web data integration, query processing, etc.

Consequently, it is important to develop a technique for transforming deep Web data to

more structured format (e.g., XML) so that we can develop such generalized techniques for

the deep Web. By doing so, we can use powerful XML query languages to query the deep

Web.

Appendix A. DEQUEL grammar

A.1. DEFINE operator

A.1.1. First type of syntax

<define> ::= DEFINE ATTRIBUTE <default attribute label> <new attribute

name>

FOR <form label>

<default attribute label> ::= text<number> j link<number>
<new attribute name> ::= <value>

D. Shestakov et al. / Data & Knowledge Engineering 52 (2005) 273–311 307

A.1.2. Second type of syntax

<define> ::= DEFINE ATTRIBUTE <type> <set of attribute names>

CONDITION <condition on text> j <condition on label>

FOR <form label>

<type> ::= TEXT j LINK
<set of attribute names> ::= <new attribute name> j

<set of attribute names>, <new attribute

name>

<condition on text> ::= ("text" <cond op> <value>)

<condition on label> ::= ("label" <cond op> <value>, "url" <cond op>

<value>) j
("label" <cond op> <value>) j
("url" <cond op> <value>)

<cond op> ::= "equal" j "contain"

A.2. SELECT operator

<query> ::= SELECT [<number of results>] <set of RT attributes>

[<set of assigned values>] [AS <query label>]

[FROM <source set>]

[WHERE <assignment set>]

[CONDITION <condition set>]

<number of results> ::= ALL j FIRST(<number>) j FIRSTP(<number>)
<set of RT attributes> ::= "*" j <RT attribute> j

<set of RT attributes>, <RT attribute>

<source set> ::= <source> j <source set>, <source>

<source> ::= <form source> j <alternate source> <form source> ::=

<form label> j
<url> AS <new form name> j

(<url>,<number>) AS <new form name>

<url> ::= <value> <new form name>::=<value> <alternate source> ::=

<relational table label> j <query result label>

<RT attribute> ::= <attribute label> j
<alternate source>.<attribute label>

<assignment set> ::= <assignment clause> j
<assignment set> AND <assignment clause>

<assignment clause> ::= <form label>.<field label> <eq> <predicate> j
(<set of fields>) <eq> <predicate>

<set of assigned values> ::= <assigned value> j
<set of assigned values>, <assigned value>

<assigned value> ::= <form label>.<field label>

308 D. Shestakov et al. / Data & Knowledge Engineering 52 (2005) 273–311

<set of fields> ::= <form label>.<field label> j
<set of fields>, <form label>.<field label>

<predicate> ::= <value> j {<set of values>} j
{<alternate source>.<attribute label>,<card number>} j
{LABEL,<card number>}

<card number> ::= <number> j <all>
<condition set> ::= <condition on attribute> j

<condition set> AND <condition on attribute> j
<condition set> OR <condition on attribute>

<condition on attribute> ::= <RT attribute> <eq> <condition on text> j
<RT attribute> <eq> <condition on label>

<all> ::= "all"

<eq> ::= "="

The intuitive meaning of the remaining nonterminals is the following: "<relational table

label>" a name of relational table, "<query result label>" a reference to stored query

results, "<attribute label>" an attribute name, "<query label>" a new reference to

results of this query,"<formlabel>" a form name, "<number>" a number,"<value>" a text

string.

References

[1] HTML 4.01 Specification––W3C Recommendation, December 1999. http://www.w3.org/TR/1999/REC-html401-

19991224/.

[2] Document Object Model (DOM) Level 2 HTML Specification Version 1.0––W3C Candidate Recommendation,

June 2002. http://www.w3.org/TR/DOM-Level-2-HTML/.

[3] P. Atzeni, G. Mecca, P. Merialdo. To Weave the Web, in: Proc. of the Int. Conf. on Very Large Data Bases

(VLDB), 1997.

[4] R. Baumgartner, S. Flesca, G. Gottlob. Visual Web Information Extraction with Lixto, in: Proc. of the 27th VLDB

Conf., Roma, Italy, 2001.

[5] S. Chakrabarti, M. van den Berg, B. Dom. Focused Crawling: A New Approach to Topic-Specific Web Resource

Discovery, in: 8th World Wide Web Conf., May 1999.

[6] J. Cho, H. Garcia-Molina. The Evolution of the Web and Implications for an Incremental Crawler, in: Proc. 26th

Int. Conf. Very Large Data Bases, VLDB, 2000.

[7] V. Crescenzi, G. Mecca, P. Merialdo, RoadRunner: towards automatic data extraction from large web sites,

VLDB J. (2001) 109–118.

[8] M. Diligenti, F. Coetzee, S. Lawrence, C.L. Giles, M. Gori. Focused Crawling using Context Graphs, in: 26th Int.

Conf. on Very Large Databases, VLDB 2000, September 2000.

[9] D. Florescu, A.Y. Levy, A.O. Mendelzon, Database techniques for the World-Wide Web: a survey, SIGMOD

Record 27 (3) (1998) 59–74.

[10] G. Gottlob, C. Koch. Monadic Datalog and the Expressive Power of Languages for Web Information Extraction,

in: Symp. on Principles of Database Systems (PODS), 2002, pp. 17–28.

[11] H. Davulku, J. Freire, M. Kifer, I.V. Ramakrishnan. A Layered Architecture for Querying Dynamic Web Content,

in: ACM Conf. on Management of Data (SIGMOD), June 1999.

[12] M.K. Bergman. The Deep Web: Surfacing Hidden Value, September 2001.http://www.brightplanet.com/deepcon-

tent/tutorials/DeepWeb/deepwebwhitepaper.pdf.

D. Shestakov et al. / Data & Knowledge Engineering 52 (2005) 273–311 309

[13] C.A. Knoblock, K. Lerman, S. Minton, I. Muslea, Accurately and reliably extracting data from the web: a

machine learning approach, IEEE Data Eng. Bull. 23 (4) (2000) 33–41.

[14] D. Konopnicki, O. Shmueli. W3QS: A Query System for the World Wide Web, in: 21st Conference on Very Large

Databases, Zurich, Switzerland, 1995, pp. 54–65.

[15] D. Konopnicki, O. Shmueli, Information gathering in the World-Wide Web: The W3QL query language and the

W3QS System, ACM Trans. Database Systems 23 (4) (1998) 369–410.

[16] S. Lawrence, C.L. Giles, Searching the World Wide Web, Science 280 (5360) (1998) 98–100.

[17] S. Lawrence, C.L. Giles, Accessibility of information on the web, Nature 400 (1999) 107–109.

[18] D. Maier, J. Ullman, M. Vardi, On the foundations of the universal relation model, ACM Trans. Database

Systems 9 (2) (1984) 283–308.

[19] A. McCallum, K. Nigam, J. Rennie, K. Seymore, Building Domain-specific Search Engines with Machine Learning

Techniques, in: Proc. AAAI-99 Spring Symp. on Intell. Agents in Cyberspace, 1999.

[20] G. Mecca, P. Atzeni, A. Masci, P. Merialdo, G. Sindoni. The ARANEUS Web-base Management System, in:

Proc. of the Int. Conf. on Management of Data, 1998, pp. 544–546.

[21] I. Muslea, S. Minton, C.A. Knoblock, Hierarchical wrapper induction for semistructured information sources,

Autonomous Agents Multi-Agent Systems 4 (1/2) (2001) 93–114.

[22] S. Raghavan, H. Garcia-Molina. Crawling the Hidden Web. Technical Report 2000-36, Computer Science Dept.,

Stanford University, December 2000. Available at http://dbpubs.stanford.edu/pub/2000-36.

[23] S. Raghavan, H. Garcia-Molina. Crawling the Hidden Web, in: Proc. of the 27th Int. Conf. on Very Large Data

Bases (VLDB 2001), September 2001.

[24] D. Shestakov. On Modeling And Querying Web Forms. MasterÕs thesis, School of Computer Engineering,

Nanyang Technological University (Singapore), 2002.

Denis Shestakov received his MasterÕs degree in Computer Engineering from Nanyang Technological Uni-
versity, Singapore in 2002. He is currently pursuing his Ph.D. in Finland.

Sourav S. Bhowmick received his Ph.D. in computer engineering in 2001. He is currently an Assistant Pro-
fessor in the School of Computer Engineering, Nanyang Technological University. His current research
interests include XML data management, data integration, secured data management, web warehousing, web
mining, and biological data integration. He has published more than 60 papers in major international
database conferences and journals such as VLDB, IEEE ICDE, ACM CIKM, ICDCS, DEXA, IEEE
Transactions on Knowledge and Data Engineering, ACM Computing Survey, and Data and Knowledge
Engineering Journal. He is serving as a PC member of various database conferences and workshops and
reviewer for various database journals. He is the program chair of the International Workshop on Biological
Data Management (BIDM) since 2003. He is also program co-chair of 2nd International Workshop on XML
Schema and Data Management (in conjunction with IEEE ICDE 2005). He is the Guest Editor of a Special
Issue on Biological Data Management for the Data and Knowledge Journal. He also serve in the editorial
boards of International Journal of Digital Information Management (JDIM) and International Journal of
Data Warehousing and Mining (JDWM). He has co-authored a book entitled ‘‘Web Data Management: A
Warehouse Approach’’ (Springers Verlag, October 2003). He is member of ACM and IEEE.

310 D. Shestakov et al. / Data & Knowledge Engineering 52 (2005) 273–311

Ee-Peng Lim is an Associate Professor with the School of Computer Engineering, NTU, Singapore. He
received his Ph.D. from the University of Minnesota, Minneapolis in 1994. He is currently the Head of
Division of Information Systems at the School of Computer Engineering. He has published more than 130
referred journal and conference articles in the area of data mining, web databases, digital libraries, and
database integration. His papers appeared at ACM Transactions on Information Systems (TOIS), IEEE
Transactions on Knowledge and Data Engineering (TKDE), Decision Support Systems (DSS), and other
major journals. He is currently an Associate Editor of the ACM Transactions on Information Systems
(TOIS), and a member of the Editorial Review Board of the Journal of Database Management (JDM). He is
also a Guest Editor of a Special Issue on Web Information and Data Management for the Data and
Knowledge Journal. He actively participates in conference activities. He has also served as chair, co-chair and
as a program committee member of numerous international conferences. He has recently been invited to join
the IEEE Intelligent Transportation System Council (ITSC)Õs Technical Committee on Homeland Security:
Information, Communication and Transportation. Dr. Lim is a Senior Member of IEEE and a Member of
ACM.

D. Shestakov et al. / Data & Knowledge Engineering 52 (2005) 273–311 311

