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ARTICLE INFO ABSTRACT

Matching query interfaces is a crucial step in data integration across multiple Web
databases. The problem is closely related to schema matching that typically exploits
different features of schemas. Relying on a particular feature of schemas is not sufficient.
We propose an evidential approach to combining multiple matchers using Dempster—
Shafer theory of evidence. First, our approach views the match results of an individual
matcher as a source of evidence that provides a level of confidence on the validity of each
candidate attribute correspondence. Second, it combines multiple sources of evidence to
get a combined mass function that represents the overall level of confidence, taking into
account the match results of different matchers. Our combination mechanism does not
require the use of weighing parameters, hence no setting and tuning of them is needed.
Third, it selects the top k attribute correspondences of each source attribute from the
target schema based on the combined mass function. Finally it uses some heuristics to
resolve any conflicts between the attribute correspondences of different source attributes.

Keywords:

Query interface matching

Schema matching

Deep Web data integration
Evidential reasoning
Dempster-Shafer theory of evidence

Our experimental results show that our approach is highly accurate and effective.
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1. Introduction

Web databases are now pervasive, which can be
accessed via their query interfaces (usually HTML query
forms) only. Query forms provide a natural way for the
user to make queries to the underlying databases without
using a particular query language. On receiving form-
based queries, these databases return query results
encoded in HTML, which are then displayed to the user.

Many E-commerce sites are supported by Web data-
bases. In a specific domain (e.g. flight booking, book sales),
there are many database-driven Web sites that sell similar
products or services. It is a daunting task for the user to
visit numerous Web sites individually to search for and
compare services or products. Web data integration aims
to provide integrated access to a multitude of Web
databases, where users need to fill in only a uniform
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query form, and on receiving a user query the system will
automatically make connections to different sites, fill in
the local query forms on these sites, submit these forms,
combine the query results, and return the combined
results to the user.

Matching query interfaces is a crucial step in Web data
integration, which finds attribute correspondences be-
tween two query interfaces. For example, Fig. 1 shows two
query interfaces on the Web, where we can find attribute
correspondences such as those indicated by different
shapes or underlined.

The problem is closely related to schema matching that
takes two schemas as input and produces a set of attribute
correspondences between them [1]. Schema matching has
been extensively studied (e.g. [1-8]). These approaches
exploit different features of schemas, including structural
and linguistic features and data types, etc. to match
attributes between schemas. Schema matching is inher-
ently uncertain due to lack of complete knowledge about
schemas. Relying on a single feature of schemas is not
sufficient and the match results of individual matchers are
often inaccurate and uncertain. Approaches have been
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Fig. 1. Two Web query interfaces in the book domain.

proposed to combine multiple matchers taking into
account different features of schemas. A common ap-
proach is to apply different weight coefficients to the
match results of individual matchers reflecting their
different levels of importance, and their weighted values
are then added together as the combined match results.
However, these weight coefficients are often manually set
for a particular domain in a trial and error manner.

There are several differences between query interfaces
and traditional database schemas. First, database schemas
are designed internally for database developers. As a
consequence, the attributes of the schemas may be named
in a highly inconsistent manner, imposing many difficul-
ties in schema matching. In contrast, query interfaces are
designed for normal users and are likely more meaningful
and consistent. For example, labels on query forms are
usually words or phrases, whereas attribute names of
database schemas are often abbreviations. Second, data-
base schema matching has mainly focused on schema-
level matching while instance-level matching has not
been done extensively. This is often due to the unavail-
ability of data instances and the assumption that the same
domains of values have been used across different
schemas. Whereas in query interfaces, the user is likely
to be given ranges of values to choose from and as these
values are designed for human use they are also likely to
be more meaningful and consistent. As data instances are
pervasive, semantic heterogeneity of data instances
between query interfaces has to be addressed.

The availability of rich linguistic and semantic features
in both attributes and data instances of query interfaces
motivates us to explore multiple sources of evidence from
these linguistic and semantic features. We propose an
evidential approach to combining the match results of
multiple matchers using Dempster-Shafer theory of
evidence. First, this approach views the match results
of an individual matcher as a source of evidence that
provides some degree of belief on the validity of each
candidate attribute correspondence. Second, it combines
multiple sources of evidence to get a combined mass

function that represents the overall level of confidence,
taking into account the match results of different
matchers. Our combination mechanism does not require
the use of weighing parameters, hence no setting and
tuning of them is needed. Third, it selects the top k
attribute correspondences of each source attribute from
the target schema based on the combined mass function.
Finally it uses some heuristics to resolve any conflicts
between the attribute correspondences of different source
attributes. Our experimental results show that our
approach is highly accurate and effective.

2. Dempster-Shafer (DS) theory of evidence

Dempster-Shafer theory of evidence, sometimes called
evidential reasoning [9] or belief function theory, is a
mechanism formalized by Shafer [10] for representing and
reasoning with uncertain, imprecise and incomplete
information. The theory represents a set of propositional
hypotheses by a frame of discernment.

Definition 1 (Frames of discernment). A frame of discern-
ment (or simply a frame), usually denoted as @, contains
mutually exclusive and exhaustive propositional hypoth-
eses, one and only one of which is true.

Example 1. A patient has been observed having two
symptoms: ‘coughing’ and ‘sniveling’ and only three types
of illness could have caused these symptoms: ‘flu’ (F), ‘cold’
(C) and ‘pneumonia’ (P). We can use frame @ = {F,C,P} to
represent these types of illness.

There are three important functions in DS theory: the
basic probability assignment (bpa or m), the belief
function (bel), and the plausibility function (pl).

Definition 2 (Basic probability assignment (mass function)).
A function, m: 29 —[0,1], is called a basic probability
assignment on a frame O if it satisfies the following two
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conditions:

m(¢p) =0 M
> m@A) =1 )
AcO

where ¢ is an empty set and A is any subset of 6.

The basic probability assignment (mass function there-
after) is a primitive function. Given a frame, @, for each
source of evidence, a mass function assigns a mass to
every subset of @, which represents the degree of belief
that one of the hypotheses in the subset is true, given the
source of evidence. In Example 1, when the patient has
been observed having the symptom ‘coughing’, the degree
of belief that the patient has ‘flu’ or ‘cold’ is 0.6 and the
degree of belief that the patient has ‘pneumonia’ is 0.4.
We then have a mass function: m({C,F}) =0.6 and
my({P}) = 0.4. Similarly, with the symptom of ‘sniveling’,
we have another mass function: my({F}) = 0.7, my({C}) =
0.2 and my({P}) = 0.1.

From the mass function for a source of evidence, the
belief function (bel) and the plausibility function (pl) can
be defined, which represent the upper and lower bounds
of an interval for every subset A of ®, which contains the
precise probability p(A) that one of the hypotheses in A is
true, given the source of evidence, i.e. bel(A) <p(A) <pl(A).

Definition 3 (Belief function (bel)). For every subset A of
O, bel(A) is defined as the sum of the masses assigned to
every subset B of A:

bel(A) = > "m(B) 3

Bc=A

Definition 4 (Plausibility function (pl)). For every subset A
of @, pl(A) is defined as the sum of the masses assigned to
every subset B of @ that intersects A:

plA)= > m(B) “4)

BnA#0Q

The belief function and the plausibility function are
related to each other as follows:

pl(A) = 1 — bel(A) (5)
It follows from Egs. (3)-(5) that from one of the three
functions m, bel and pl the other two functions can be
derived.
Given two mass functions m; and m,, DS theory also

provides Dempster’'s combination rule for combining
them, which is defined as follows:

> anB—c M1(A)my(B)
1 =3 anp=p M1(A)M2(B)

In Example 1, we combine two mass functions, m; and my,
to get a combined mass function: m(C) = 0.207, m(F) =
0.724 and m(P) = 0.069. From this mass function, the
corresponding belief and plausibility functions can also be
derived. When all masses have been assigned to subsets
with a single element only, bel, pl and m are all the same.
Since bel(A) <p(A) <pl(A) for every subset A of @, we have a
probability distribution, p(C) = 0.207, p(F) = 0.724 and

m(C) = (6)

p(P) = 0.069. Therefore given the two symptoms the
patient has, it is more likely that he is having ‘flu’.

3. Combining multiple matchers using DS theory

Based on DS theory, we propose an evidential approach
to combining multiple matchers that exploit different
features of schemas. Given a source schema and a target
schema, for every source attribute, each target attribute is
one of its candidate correspondences. An individual
matcher provides a different measure on the validity of
each candidate correspondence of the source attribute.
Applying this measure to all the candidate correspon-
dences provides a source of evidence on the validity of
each candidate correspondence. Based on this source of
evidence, we can generate a mass function that assigns a
mass to every subset of the given frame, reflecting the
degree of belief that the valid correspondence of the
source attribute belongs to the subset.

A set of different matchers provide multiple measures
and applying these measures to all the candidate
correspondences provides multiple sources of evidence
on the validity of each candidate correspondence, based
on which we can generate multiple mass functions. These
mass functions can then be combined using Dempster’s
combination rule to calculate the overall degree of belief
on the validity of each candidate attribute correspon-
dence, reflecting the match results of different matchers.
The combined mass function can then be further used for
deciding on the top k attribute correspondences of each
source attribute.

3.1. Individual matchers

We use four individual matchers. The first three
matchers are based on different linguistic features of
attribute names and the last matcher uses the data types
of attributes.

3.1.1. Semantic based similarity

We measure semantic similarity between two words
based on their relationships on a general linguistic
ontology, WordNet.! WordNet [11] is a lexical database
developed by Princeton University, which provides taxo-
nomic hierarchies of natural language concepts. WordNet
contains nouns, verbs, adjectives and adverbs only, which
are grouped into synonym sets (synsets) representing
concepts. If a word is polysemous (i.e. having multiple
senses), the word may be contained in multiple synsets
each of which represents one sense of the word. Synsets
(concepts) are related to each other by different types of
semantic relationship. The two types of semantic relation-
ship used in WordNet are Hyponym/Hypernym (i.e. Is-A)
and Meronym/Holonym (i.e. Part-Of). We use only the
Hyponym/Hypernym relationship in WordNet, which
together with synsets form the Is-A hierarchy of WordNet.
A fragment of the Is-A hierarchy in WordNet is shown in
Fig. 2.

! http://wordnet.princeton.edu/
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entity

natural object ... artifact, artefact ...

handicraft, hardiwork ... publication ...
reference, source ... book ...
hardback, hardcover album notebook

Fig. 2. A fragment of the Is-a hierarchy in WordNet.

We use the traditional edge counting approach [12] to
measure word similarity. Given two words w; and w;, the
edge counting method finds a path between two synsets
that contain the two words, respectively, in WordNet. A
path between two synsets is one that consists of a series
of synsets and Hyponym/Hypernym links, in which there
is only one synset that subsumes the two given synsets. If
a word is polysemous (i.e. having multiple senses) and
appears in multiple synsets, only the shortest path, among
all the possible paths between every pair of synsets (i.e.
senses) containing w; and w,, respectively, is used in
calculating semantic similarity between wy and w;.

We define semantic similarity between two different
words, wy and w,, as Simg(wy,w,) = 1/(1 + L), where L is
the length of the shortest path in WordNet between w;
and ws, if both w; and w, can be found in WordNet.
Otherwise, Simg (w1, w,) = 0. For two same words, w; and
w,, we define semantic similarity between them as
Simge(wq,w;) = 1. For example, as shown in Fig. 2, the
length of the shortest path in WordNet between words
‘reference’ and ‘book’ is 2 and the semantic similarity
between them is 0.33.

3.1.2. Edit distance based similarity

Edit distance (Levenshtein distance) between two
strings is measured by the number of edit operations,
including insertions, deletions and substitutions, neces-
sary to transform one string into another [13]. We define
the edit distance based similarity between two words, w;
and w;, as follows:

1

Simgg(wy, Wp) = m

(7)
where s; and s, are two strings in wy and w;, respectively,
and ed(s1,s») is the edit distance between s; and s,. For
example, as shown in Fig. 1, the edit distance between
‘Author’ on abebooks.com and ‘Category’ on Compman.-
co.uk is 5 and the edit distance based similarity between
them is 0.167.

3.1.3. Jaro distance based similarity

The Jaro distance based string similarity between two
strings is defined based on the number and order of the
common characters between them. Given two strings s =

ai,...,a; and t = bq,...,b;, a character g; in s is common
with ¢, if there is a bj = a; in t such that i - H<j<i+H,
where H = min(|s|, |t|)/2. Let s’ = aj,...,a}, be the char-

acters in s which are common with t (in the same order

they appear in s) and t' = b1 ,...,b{ similarly. We define a
transposition for s’ and t’ to be a position i such that
al #b/ . Let Ty » be half the number of transpositions for s’
and t'. The Jaro distance based string similarity between s
and t is defined as follows [14]:

1 /1s 10 1S =Ter
Jaro(s, t) = 3 (IS\ + i + 5 ) (8)

The Jaro distance based similarity Simjq(wq,w,) be-
tween two words, w; and w,, is defined as the Jaro
distance based string similarity Jaro(s;,s») between two
strings s; and s; in wy and w,. For example, as shown in
Fig. 1, the Jaro distance based similarity between ‘Author’
on abebooks.com and ‘Category’ on Compman.co.uk is
0.72.

3.1.4. Similarity between attribute names

Assume that two attribute names, A; and A,, contain
two sets of words, A; = {wy,Ws,...,Wp} and Ay = {w],
wj ..., w; ). For each word, w; fori=1,2,...m, in A, we
calculate its similarity with every word in A, and find the
maximum similarity value v;. We then get a similarity
value set for A: Simy = {v1,Va,..., V). Similarly, we get a
similarity value set for Ay: Sim, = {(v{,v5,...,v}. We
calculate similarity between two attribute names A; and
A, as follows:

. Y i+ vl
Sim(Ay,A) = B E— 9
where m is the number of words in Aq, n is the number of
words in A,.

3.1.5. Data types of attribute names

We define that two data types are compatible if one
subsumes another (i.e. is-a relationship). Fig. 3 shows all
the data types we use and their is-a relationships. The
data type of an attribute with an input box is ‘any’ since
the input box can accept data of different types such as
‘string’ or ‘integer’. The other data type of an attribute is
recognized on the basis of the set of labels and form
elements that form the attribute.

3.2. Representing possible matches of source attributes in DS

Assume that we have a source schema, S = {a;,a, ...,
an}, where a;, fori = 1,2,...,m,is a source attribute, and a
target schema, T = {by,b,,...,b,}, where b;, for j=1,
2,...,n, is a target attribute. For each source attribute, a;,
we have a set of candidate correspondences in the target
schema {<a;, b1 >, <{a;,b2>,...,<a;,by>}. Itis also possible
that a; may have no correspondence in the target schema

datetime float
date string integer
year month day time any

Fig. 3. A hierarchy of data types.
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at all. We represent all possible matches of g; in T using a
frame of discernment, @ = {<a;,b1)>, <a;,by),...,
{aj,by>, (aj,nully}, where <a;b;>, for j=1,2,....n,
represent all possible candidate correspondences and
{a;,nully represents that there is no correspondence of
a; in the target schema.

Example 2. As shown in Fig. 1, for ‘Author’ on abebooks.-
com, a frame of discernment for it is defined as follows:

© = {{Author, Category >, { Author, Keywords », { Author, Title
{Author, Subject », { Author, Publisher », { Author, Author,
{ Author, OurReference », { Author, ISBN >, { Author, Availability >,

{Author, ReleasedDate » , { Author, UpperPriceLimit »,
{Author, Binding », { Author, null >}

3.2.1. Generating subsets of indistinguishable attribute
correspondences

Given frame O =({<a;,by)>,<a;,by>,...,<a;,by),
{a;,nully} for a source attribute a;, an individual matcher
may not be able to distinguish two attribute correspon-
dences in ® from each other in terms of level of
confidence on the validity of the attribute correspon-
dences. For example, if the data type of the source
attribute is compatible with the data types of two target
attributes, the data type matcher cannot distinguish the
two attribute correspondences from each other. The data
type matcher cannot distinguish an attribute correspon-
dence, in which the data type of the source attribute is
compatible with the one of the target attributes, from
{a;,nully either. A string similarity based matcher cannot
distinguish two strings ‘abc’ and ‘bcd’ from each other
when string ‘bc’ is matched to each of them. We therefore
cluster attribute correspondences in @ into subsets of
indistinguishable attribute correspondences. We do not
have any further knowledge on the subset of indistin-
guishable attribute correspondences to be able to tell
which attribute correspondence is more valid than the
others. What we have is some degree of belief that one of
the attribute correspondences in the subset is valid,
according to a particular matcher.

In Example 2, based on edit distance based similarity,
the frame of discernment for ‘Author’ on abebooks.com is
divided into the following indistinguishable subsets:

{<(Author, Category », { Author, Title », { Author, OurReference >}
{(Author, Keywords, { Author, Subject», { Author, Publisher ),

{Author,ISBN >}

{<Author, Author}
{(Author, Availability > }
{<Author, ReleasedDate ) }
{(Author, UpperPriceLimit »}
{(Author, Binding »}
{<Author,null >}

3.2.2. Generating mass distributions on subsets of
indistinguishable attribute correspondences

Given a similarity based matcher, for each indistin-
guishable subset of attribute correspondences, we have a
similarity value for each correspondence in the set,

which represents how well the two attributes in the
correspondence match according to the measure
used by the matcher. Suppose we have subset A=
{<aj, by >, <ai,bip>,...,<ai,by >}, a mass assigned to A is
calculated based on the similarity values for all the
attribute correspondences in A as follows:

1
m'(A) =1— [ - Sim(a;, by)) (10

j=1

where Sim(a;, b;) is similarity value for the correspon-
dence <a;,b;> inA.

Since we do not have a similarity value for < a;, null) by
the matcher, we form a special singleton subset, {<a;,
null>}. The mass assigned to the subset is calculated as
follows:

n

m'({<ag, nully}) = T [ = Sim(a;, by)) 1n

j=1

The mass assigned to {<a;, null»}, therefore, represents
the degree of belief that none of the target attributes is the
attribute correspondence of source attribute, a;.

We scale the mass distribution, m’, so that the sum of
all masses assigned to every indistinguishable subset
equals to 1:

m'(A)
2.pco M'(B)

where A and B are indistinguishable subsets of ©.
Therefore these indistinguishable subsets of @ are the
focal elements of @. The mass assigned to any other
subset of © is 0.
In Example 2, based on edit distance based similarity,
for ‘Author’ on abebooks.com, we have a mass function
defined as follows:

m(A) = (12)

meq({ {Author, Category >, <{Author,Title),

{Author, OurReference >}) = 0.175
meq({ {Author, Keywords», <Author,Subject,

{ Author, Publisher >,

{Author,ISBN»}) = 0.191
meq({ { Author, Author»}) = 0.414
meq({ {Author, Availability »}) = 0.035
meq({ { Author, ReleasedDate > }) = 0.063
meq({ (Author, UpperPriceLimit »}) = 0.071
meq({ {Author, Binding > }) = 0.052
Meq({ (Author, null »}) = 0.000

For the data type based matcher, we create two subsets

of indistinguishable attribute correspondences, A and A’. A
contains both attribute correspondences in which the data
type of the source attribute is compatible with the one of
the target attribute and {a;, null> where q; is the source
attribute. A’ contains attribute correspondences in which
the data type of the source attribute is not compatible

with the one of the target attribute. We have a mass
function defined as: mg,(A) = 1 and mgy,(A’) = 0.
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3.3. Combining mass functions from multiple matchers

We now have a mass function by each of the individual
matchers, which assigns a mass to every indistinguishable
subset of @. Using Dempster’s combination rule, we can
take into account different sources of evidence witnessed
by different matchers by combining the appropriate mass
functions by these matchers.

In Example 2, for ‘Author’ on abebooks.com, we have a
combined mass function defined as follows:

m({ {Author, OurReference > }) = 0.020
m({ {Author, UpperPriceLimit »}) = 0.003
m({ { Author, Publisher > }) = 0.048

m({ {Author, Author »}) = 0.929

3.4. Selecting top k attribute correspondences

This section shows how to select the top k attribute
correspondences of each source attribute. The mass
function produced in the previous section is used to
derive both the bel and p! functions, which are further
used to select the top k attribute correspondences of each
source attribute. When all masses have been assigned to
subsets with a single element only, bel, pl and m are all the
same. In this case, we choose those attribute correspon-
dences with top k masses as the top k attribute
correspondences.

In Example 2, for ‘Author’ on abebooks.com, we have
the top three attribute correspondences as follows:

m({ {Author, Author »}) = 0.929
m({ {Author, Publisher > }) = 0.048
m({ { Author, OurReference > }) = 0.020

4. Resolving conflicts between attribute
correspondences

We have now the top k attribute correspondences of
each source attribute, which have been selected for an
individual source attribute only. There might be conflicts
between attribute correspondences of two source attri-
butes (i.e. the best correspondences of two different
source attributes are the same target attribute). To resolve
any conflicts, the attribute correspondences of source
attributes are collectively selected to maximize the sum of

State: Please Select | other states

County:

City/Cities: city.city.city
Ij‘:‘: perty Py =

I'vpe:

Bedrooms: [NoMin. ~[ o [NoMax ~|

Bathrooms: [No Min. =] to [NoMax =]

=] to [NoMax =]

Size: [No Min.

Price : |No Minimum :I to INo Maximum _-J

www.esearchhome.com

all the masses on the attribute correspondence of every
source attribute. The algorithm is given in Algorithm 1.

Algorithm 1. Resolving conflicts

Input: A set of all the possible combinations of attribute
correspondences for each source attribute
Q= {CIC={<a1,bi >,<az,bs ,...,<{am,by »>}}, where {a;,b{ ) €
{<ai,bi y,<ai,bp>,...,<a;,by >} (the top k correspondences of a;)

Output: A collection of attribute correspondences with the
maximum sum of the mass values of the correspondences for
every source attribute

1: Set Max to 0, Best to §.

2: for each Ce Q do

3: Set Sum to X", m(<a;,b{ »),where m({a;,b{ ») is the mass
function value of <a;,b{ >

4: if Sum > Max then

5: Set Max to Sum, Best to C;

6: return Best

Example 3. For every attribute on www.esearchhome.
com, as shown in Fig. 4, we have their top three attribute
correspondences on www.esearchhome.com as follows:

m({ { State, SelectaState > }) = 0.921

m({{State, SelectaCity »}) = 0.071
m({<State, Null >}) = 0.008

m({ < County, SelectaCity »}) = 0.286
m({{County, Null »}) = 0.190
m({< County, MinimumNumberofBedrooms »}) = 0.167

m({< City/Cities, SelectaCity » }) = 0.920
m({< City/Cities, SelectaState » }) = 0.069
m({< City/Cities, Null »}) = 0.011

m({{ PropertyType, SelectaCity > }) = 0.467
m({{ PropertyType, SelectaState > }) = 0.466
m({< PropertyType, Null »}) = 0.067

m({{Bedrooms, MinimumNumberofBedrooms »}) = 0.824
m({{Bedrooms, MinimumNumberofBathrooms »}) = 0.100
m({{Bedrooms, Null>}) = 0.041

m({ {Bathrooms, MinimumNumberofBathrooms > }) = 0.830
m({ {Bathrooms, MinimumNumberofBedrooms »}) = 0.101
m({ < Bathrooms, PriceRange » }) = 0.049

m({< Price, PriceRange > }) = 0.945
m({< Price, MinimumNumberofBedrooms »}) = 0.027

Search our Moblile and Modular Home Listings!

Please select one: & Al Homes

" With Land

" Without Land
= lclND Maximum [
Year (4-digits): From to

Price Range ISU

Minimum Number of Bedrooms: |any =

Minimum Number of Bathrooms: |any =

Select a State: |any =

Select a City: hd

www.nationalmultilist.com

Fig. 4. Two Web query interfaces in the real estate domain.
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m({ < Price, MinimumNumberofBathrooms »}) = 0.026

m({{Size, PriceRange > }) = 0.387
m({ < Size, MinimumNumberofBedrooms »}) = 0.333
m({ < Size, MinimumNumberofBathrooms »}) = 0.248

There are conflicts among ‘County’, ‘City’ and ‘Property
Type’ and also between ‘Price’ and ‘Size’. Using Algorithm
1, we get the following attribute correspondences that
have the maximum sum of mass values:

{ State, SelectaState »

{ City/Cities, SelectaCity »

{ Bedrooms, MinimumNumberofBedrooms )

{ Bathrooms, MinimumNumberofBathrooms
{ Price, PriceRange >

{ County, Null»

{ PropertyType, Null >

{Size, Null»

In Example 2, for every attribute on abebooks.com, as
shown in Fig. 1, we have their top three attribute
correspondences as follows:

m({ {Author, Author »}) = 0.929

m({ {Author, Publisher »}) = 0.048
m({{Author, OurReference > }) = 0.020

m({Title, Title > }) = 0.948
m({{ Title, Binding »}) = 0.027
m({{Title, Category, >}) = 0.014

m({{ Publisher, Publisher»}) = 0.937
m({{Publisher, Category >}) = 0.041
m({ < Publisher, Subject »}) = 0.012

m({< Keywords, Keywords > }) = 1.000
m({<ISBN,ISBN >}) = 1.000
m({ < PublishedDate, ReleaseDate »}) = 1.000

m({{BooksellerCountry, OurReference »}) = 0.224
m({ < BooksellerCountry, Category >}) = 0.196
m({{BooksellerCountry, Subject >}) = 0.153

m({{ Price, UpperPriceLimit ) }) = 0.532
m({< Price, Subject >}) = 0.352
m({{ Price, Title »}) = 0.087

No source attributes have the same target attribute and
hence are in conflict. Using Algorithm 1, we get the
following attribute correspondences that have the max-
imum sum of mass values:

{Author, Author )

{ Title, Title »

{ Publisher, Publisher

{ Keywords, Keywords »
(ISBN,ISBN >

{ PublishedDate, ReleaseDate >

{ BooksellerCountry, OurReference >
{ Price, UpperPriceLimit >

5. Experimental results

We use a set of 88 query interfaces selected from the
ICQ Query Interfaces data set at UIUC, which contains
manually extracted schemas of interfaces in five different
domains: airfares, automobiles, books, jobs, and real
estates, which involve 1:1 matching only (as we have
focused on 1:1 matching in this paper). In each domain we
create a uniform query interface as the source interface,
and take each of the query interfaces in the domain as a
target interface.

We use three performance metrics: precision (P), recall
(R), and F-measure (F). Precision is the percentage of
correct matches over all the matches by a matcher. Recall
is the percentage of correct matches by a matcher over all
the matches by domain experts. F-measure is the
incorporation of precision and recall as follows:
F =2PR/(P+R).

First, in each domain we use three individual match-
ers: edit distance, Jaro distance and semantic similarity
(the data type matcher cannot be used alone), and
compare them with our new approach that combines
four individual matchers: edit distance, Jaro distance,
semantic similarity and data type. Given a source attribute
a;, for each individual matcher, we treat <{a;, nully, i.e. ‘no
match’, as a possible answer. We also have every
candidate attribute correspondence, <a;,b; >, as a possible
answer. We therefore have a set of possible answers,
0 ={<a;,b;>,<a;,by>,...,<a;,by>,<a;,nully}. One and
only one of these possible answers is true. Therefore, in
our experiments, the number of matches by a matcher
equals to the number of matches identified by experts,
and precision, recall and F-measure turn out to be the
same. We use precision only.

For every <a;, b;>,forj=1,2,...,n, we have a similarity
value by the matcher. Since we do not have a similarity
value for < a;,null), a value is calculated as follows:

s(<aj,nully) = ﬁ(l — Sim(a;, bj))

j=1

In our experiments, we do not need a threshold to decide
whether there is a match. If similarity values for every
candidate attribute correspondence are all very low, a value
calculated for (a;, nully, i.e. ‘no match’, will be high enough
so that (a;,null’y will be selected as the top answer.

As shown in Table 1, our matcher gets much higher
precision than the individual matchers.

The following is one of the cases in the Jobs domain
used in the experiments, in which we have selected
‘www.alljobsearch.com’ and ‘www.AfterCollege.com’ as
the source and target interfaces. ‘alljobsearch’ contains
the following attributes: ‘Category’, ‘Keyword’, ‘Country’,
‘State/Province’, ‘City’, Job Type’ and ‘Post Date’. ‘After-
College’ contains the following attributes: ‘Job type’,
‘Industry’, ‘Type of work’, ‘Location’ and ‘Keyword'. In this
case, the results by each of the individual matchers and
our combined matcher show how our matcher has
recognized all correct attribute correspondences while
individual matchers have failed to do so.


www.alljobsearch.com
www.alljobsearch.com
www.alljobsearch.com
www.alljobsearch.com
www.AfterCollege.com
www.AfterCollege.com
www.AfterCollege.com
www.AfterCollege.com
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Table 1
Precisions of individual matchers and our combined matcher.

Edit distance (%) Jaro distance (%) Semantic similarity (%) Ours (%)
Airfares 83.3 56.8 86.4 92.0
Autos 84.4 48.1 931 96.3
Books 87.0 48.8 92.0 94.4
Jobs 68.5 50.0 71.0 91.9
Estates 86.8 52.9 81.6 93.8
Average 821 51.3 84.8 93.7
100
O Precision
H Recall
95 { OF-measure
90 —
85 —
80 =
75 T T T

automatic
matching

with learned
thresholds

with all user our matcher

interactions

Fig. 5. Precisions, recalls and F-measures of different matchers.

Jaro distance-based matcher:

{Keyword, Keyword »

{ Country, Industry»

{ City, Location
{JobType,Jobtype )

{ Category, Null»

{ State/Province, Null »
{ PostDate, Typeofwork »

in which attribute correspondence < Country,Industry is
wrong.
Edit distance-based matcher:

{Keyword, Keyword >
<JobType, Jobtype >

{ Category, Null)

{ Country, Null’»

{ State/Province, Null »
( City, Null’y

{ PostDate, Null»

in which attribute correspondences < Category, Null> and
{ City, Null’y are both wrong.
Semantic-based matcher:

{ Keyword, Keyword »
<JobType, Jobtype

{ Category, Null’»

{ Country, Null »

{ State/Province, Null »
( City, Null’y
{ PostDate, Null )

in which attribute correspondences < Category, Null> and
{City, Null’y are both wrong.
Our combined matcher:

{ Category, Industry >

{ Keyword, Keyword »
{ City, Location )
{JobType, Jobtype )

{ Country, Null'»

{ State/Province, Null »
{ PostDate, Null »

in which all seven attribute correspondences are correct.

Second, we compare our results with the work in [8],
which uses a similar data set for their experiments,
covering the same five domains as ours. However, they
also handle 1 : m matching. In their experiments, a 1: m
match is counted as m 1:1 matches. They did three
experiments. The first is on automatic field matching
which uses weight coefficients to combine multiple
matchers and the clustering thresholds for two fields to
be matched are set to zero for all domains. The second
uses thresholds learned by user interactions. The last also
uses user interactions for resolving uncertainties in match
results. As shown in Fig. 5, without using learned



148 J. Hong et al. / Information Systems 35 (2010) 140-148

thresholds, the results of our approach are better. When
the learned thresholds are used, their precision is better
than ours, but we have higher recall and F-measure.
Finally, when user interactions are also used to resolve
uncertainties in match results, their results are better than
ours. Our approach is effective and accurate for automatic
schema matching across query interfaces without
automated learning and user interaction.

6. Related work

Cupid [6] exploits linguistic and structural similarity
between elements and uses a weighted formula to combine
these two similarities together. However, weights have to
be manually generated and are domain dependent.

COMA [2] allows users to tailor match strategies by
selecting a combination of match algorithms for a given
problem, including Max, Min, Average and Weighted
strategies. It also allows users to provide feedback for
improving match results. These strategies are effective in
some situations while sometimes they cannot combine
results effectively, and choosing strategies by users
involves human efforts.

In [8], weight coefficients are also used to combine
multiple matchers, which are set to some domain-
independent empirical values. However, clustering is used
to find attribute correspondences across multiple inter-
faces, in which thresholds are required for merging
clusters. These thresholds need to be either manually set
or learned from wuser interactions and are domain
dependent. So this approach also involves human effort.

Some approaches [4,5] use attribute distribution rather
than linguistic or domain information. Superior to other
schema matching approaches, these approaches can dis-
cover synonyms by analyzing attribute distributions in the
given schemas. However, they work well only when a large
training data set is available, but this is not always the case.

7. Conclusions

We proposed a new approach to combining multiple
matchers using DS theory and presented an algorithm for
resolving conflicts among the correspondences of differ-
ent source attributes. Applying different matchers to a set
of candidate correspondences provides different sources
of evidence, and mass distributions are defined on the
basis of the match results from these matchers. We use
Dempster’s combination rule to combine these mass
distributions, and choose the top k correspondences of

each source attribute. Conflicts between the correspon-
dences of different source attributes are finally resolved.
We implemented a prototype and tested it using a large
data set that contains real-world query interfaces in five
different domains. The experimental results demonstrate
the feasibility and accuracy of our approach.
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