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Abstract The escalation of deep web databases has been phenomenal over the last
decade, spawning a growing interest in automated discovery of interesting relation-
ships among available deep web databases. Unlike the Bsurface^ web of static pages,
these deep web databases provide data through a web-based query interface and
account for a huge portion of all web content. This paper presents a novel source-
biased approach to efficiently discover interesting relationships among web-enabled
databases on the deep web. Our approach supports a relationship-centric view over
a collection of deep web databases through source-biased database analysis and
exploration. Our source-biased approach has three unique features: First, we
develop source-biased probing techniques, which allow us to determine in very few
interactions whether a target database is relevant to the source database by probing
the target with very precise probes. Second, we introduce source-biased relevance
metrics to evaluate the relevance of deep web databases discovered, to identify
interesting types of source-biased relationships for a collection of deep web
databases, and to rank them accordingly. The source-biased relationships discovered
not only present value-added metadata for each deep web database but can also
provide direct support for personalized relationship-centric queries. Third, but not
least, we also develop a performance optimization using source-biased probing with
focal terms to further improve the effectiveness of the basic source-biased model. A
prototype system is designed for crawling, probing, and supporting relationship-
centric queries over deep web databases using the source-biased approach. Our
experiments evaluate the effectiveness of the proposed source-biased analysis and
discovery model, showing that the source-biased approach outperforms query-
biased probing and unbiased probing.
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1 Introduction

The past few years have witnessed great strides in the accessibility and manageability
of vast amounts of data—from the growth of web data resources to corporate and
personal information servers. In particular, the web has seen tremendous growth of
web-enabled databases that provide access to huge and growing data repositories.
These web-enabled databases often provide advanced tools for searching, manipu-
lating, and analyzing the information contained in these data repositories. Unlike the
Bsurface^ web of static pages, these Bdeep^ web databases provide data through a
web-based query interface. Recent estimates suggest that the size of this deep web
greatly exceeds that of the surface web—with nearly 92,000 terabytes of data on the
deep web versus only 167 terabytes on the surface web as of 2003 [23].

Deep web resources are typically under-represented on popular search engines
due to the technical challenges of locating, accessing, and indexing deep web data.
Since deep web data is stored in a database, traditional search engine indexers
cannot discover them through the traversal of hyperlinks, but must interact with a
(potentially) complex query interface. Coupled with the tremendous size of the deep
web versus the surface web, the typical search engine approach of crawling and
indexing pages locally faces great challenges.

Our research interest is to provide support for the management of deep web
databases beyond that captured by traditional search engines. Typically, a search
engine is optimized to identify a ranked list of documents (or web pages) relevant to
a user query. This document-centric view has proven immensely successful. On the
other hand, with the rise of high-quality deep web databases and the emergence of
digital libraries and corporate information servers, we believe that there is ample
opportunity for a new class of queries optimized not on the document level, but on
the more general relationship level between deep web databases.

Rather than requesting the top-ranked documents containing a certain keyword,
say Bautism^, we propose that a user may be more interested in relationship-centric
queries about the many available deep web databases. For example, a user familiar
with the popular online medical literature site PubMed [30] that provides access to
millions of scientific and medical literature citations may be interested in posing
some of the following queries:

& What other deep web databases are most similar to PubMed?
& What other deep web databases are more general than PubMed? Or more

specialized?
& Are there any other deep web databases that complement PubMed_s coverage?

We could also imagine extending these queries to more sophisticated ones that
cover relationships among multiple deep web databases. Additionally, the granu-
larity of the relationship discovered may be further refined to consider subsets of the
databases. For example, a user may be interested in relationship-centric queries
about specific journals within the PubMed database, and not PubMed as a whole.

We envision a number of scenarios in which a relationship-centric framework
over deep web databases would be of significance:

& First, a relationship-centric framework can be used for supporting direct
relationship queries about deep web databases like the ones listed above.
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& In addition to these types of direct relationship queries, a user may simply be
interested in discovering any non-obvious relationships that may exist among a
group of deep web databases. The relationship-centric framework supports this
type of data mining.

& The relationship-centric framework may also be used to augment traditional
document-centric queries over deep web databases. For example, a user
interested in medical literature may choose to query both PubMed and all
databases with a similarity-based relationship to PubMed. Alternatively, a user
interested in maximizing coverage of multiple topically-distinct deep web
databases, may choose to query both PubMed and any other deep web database
that has complementary coverage relative to PubMed.

& Finally, the relationship-centric framework may also support the refinement and
generalization of traditional document-centric queries over deep web databases.
A user issuing a query to PubMed may be overwhelmed by responses from a
number of different medical journals. She may prefer to refine the query to the
deep web databases that are more specialized on a particular topic like cancer
research. Alternatively, she may find too few responses to a particular query and
wish to generalize the scope of the query to include more deep web databases
that have broader coverage than PubMed.

Currently, there are no effective means to answer queries that rely on a
relationship-centric view of deep web databases without relying on significant
human intervention or hand-tuned categorization schemes. Search engines rely on a
document-centric view of the web and are not designed to handle relationship-level
queries. Similarly, directory services—like the ones offered by Yahoo! and the Open
Directory Project [dmoz.org]—offer general categories but do not provide coverage
and specialty ratings for direct comparisons between deep web databases. So a user
may find a category listing for medical literature resources that includes PubMed,
but she would lack support for understanding the relationship between PubMed and
the other medical literature resources, or for understanding the relationship be-
tween PubMed and resources listed under a different category.

With the rapid increase in the number and variety of available deep web
databases, there is a growing need for providing a relationship-centric framework
for discovering and understanding the interrelationships among deep web databases.
To answer these challenges, we present a novel approach to discover interesting
relationships among deep web databases based on source-biased database analysis.
This source-biased approach supports a relationship-centric view over a collection of
deep web databases through source-biased probing and source-biased relevance
metrics. Source-biased database analysis and discovery presents a number of unique
properties. First, our approach is capable of answering relationship-centric queries
of the form posed above by focusing on the nature and degree of the relationship of
one deep web database to another. Since deep web databases tend to be large and
may be updated frequently [21, 23], we rely on a sampling-based approach to extract
a portion of each deep web database through source-biased probing. Given a
database like PubMed—called the source—the source-biased probing technique
leverages the summary information of the source to generate a series of biased
probes to other databases—called the targets. This source-biased probing allows us
to determine whether a target database is relevant to the source by probing the
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target with very few focused probes. Second, we introduce the biased focus metric to
discover highly relevant deep web databases and to assess the nature of the
relationship between databases. For each source database, we use the biased focus
to rank target databases and to identify interesting relationship sets that support
relationship-centric queries. Such relationships can be further utilized as value-
added metadata for each database discovered. Third, to further reduce the number
of probes necessary to assess a target database, we introduce a performance
optimization called source-biased probing with focal terms. The main idea is to
identify terms in the unbiased summary of the source that share a similar topical
category and then to divide the source summary into k clusters, where each cluster
represents a group of similar summary terms.

Our experiments on both simulation and web datasets show how the source-
biased database analysis approach results in efficient discovery and ranking of deep
web databases. We also illustrate how our approach supports relationship-centric
queries through the identification of interesting relationship sets, including
similarity-based and hierarchical relationship sets. Additionally, we present the
design and architecture of our DynaBot system for crawling, probing, and
supporting relationship-centric queries over deep web databases using the source-
biased approach.

The rest of the paper is organized as follows. We present related work in Section 2
and briefly discuss the motivation and system model in Section 3. In Section 4, we
describe the algorithm for source-biased analysis of databases, including source-
biased probing, the biased-focus metric, and the assessment of inter-database
relationships. We refine the basic source-biased algorithm with focal terms in
Section 5. We present the design and architecture of the DynaBot crawler for
supporting relationship-centric queries over the deep web in Section 6. In Section 7,
we provide extensive experimental evidence to demonstrate the effectiveness of our
algorithms and end in Section 8 with our final thoughts and notes on future
enhancements.

2 Related work

The deep web (sometimes referred to as the hidden or invisible web) has garnered
increased research interest in recent years. Several studies have noted the immense
size of the deep web relative to the surface web of static documents [3, 9, 23]. One of
the first deep web crawlers for discovering and interacting with deep web databases
was proposed in [32], where the complexity of interacting with web search interfaces
was noted. More recently, there have been efforts to extract data from deep web
databases [7] and to match deep web query interfaces [39, 40, 43], among others.

In the database community, considerable attention has been dedicated to the
database selection problem [5, 11–17, 22, 24, 28, 42]. In database selection, the
problem is to take a query and match it to potentially relevant databases for
processing. Typically the database exports a description to help guide database
selection. Instead of matching a query to a set of databases, our work is concerned
with analyzing and understanding the relationships among deep web databases in a
source-biased framework. As we will show, these interesting relationships may be
used to help guide database selection in addition to supporting relationship-centric
queries.
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Other researchers have previously studied the problem of sampling a database in
an effort to generate a summary of the database internals [4, 6, 10, 17–20, 25, 37, 38].
The main purpose of these techniques is to generate a representative content summary
of the underlying database in cases where the database provides only limited access.
These sampling approaches typically rely on interacting with the database through a
query interface and extracting sample data through a series of query probes. Querying
methods suggested include the use of random queries, queries learned from a classifier,
and queries based on a feedback cycle between the query and the response. In addition,
Agichtein et al. [1] have developed a formal reachability graph model for assessing the
quality of query-based database summarization techniques. In this paper, we show how
traditional unbiased sampling approaches—especially in the context of the large size
and dynamic nature of deep web databases—may be inadequate for exposing relation-
ships among deep web databases. As a result, we promote a source-biased perspective
to overcome these issues.

More recently, Ipeirotis et al. [18, 20] have introduced a probing-based approach
for classifying deep web databases into a pre-determined Yahoo!-style hierarchy.
However, this approach relies on a pre-learned set of queries for database classi-
fication, which requires the potentially burdensome and inflexible task of labelling
training data for learning the classifier probes in the first place. Additionally, if new
categories are added or old categories removed from the hierarchy, new probes must
be learned and each source re-probed. Our approach is designed to work flexibly in a
Bbottom-up^ fashion by placing each deep web database at the center of its own
neighborhood of related databases.

3 System model and problem statement

In this section, we present the system model and discuss in detail current approaches
for sampling deep web databases. We identify problems with the current approaches
that motivate the source-biased framework for identifying interesting relationships
among deep web databases. The large and increasing number of deep web databases
accessible through the web not only makes a relationship-centric view over a collec-
tion of deep web databases important but also demands for an efficient and effective
framework for discovering and understanding the interesting interrelationships among
deep web databases.

3.1 Modeling deep web databases

We consider a web-enabled document database (or deep web database) to be a
database that is composed primarily of text documents and that provides query-
based access to these documents either through keyword search or more advanced
search operators. In particular, we are interested in deep web databases that are
beyond the control of the typical users. For example, web data sources that provide
a search mechanism like the resources on the deep web, digital libraries, and data-
bases deployed across loose corporate federations are all examples of deep web data-
bases for which a typical user can only access through query-based mechanisms. For
such types of deep web databases, relationship-centric queries of the form: BWhat
other deep web databases are most similar to X? Or complementary to X?^ would
require significant human intervention to yield a satisfactory result.
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We consider a universe of discourse U consisting of d deep web databases: U ¼
fD1;D2; . . . ;Ddg where each database produces a set of documents in response to a
particular query. Hence, we describe each deep web database Di as a set of Mi

documents: Di ¼ fdoc1; doc2; � � � ; docMi
g. There are N terms (t1, t2, ..., tN) in the

universe of discourse U , where common stopwords (like Ba^, Bthe^, and so on) have
been eliminated. Optionally, the set of N terms may be further refined by stemming
[27] to remove prefixes and suffixes.

Adopting a vector-space model [34, 35] of the database contents, we may
describe each deep web database Di as a vector consisting of the terms in the
database along with a corresponding weight:

SUMMARY ðDiÞ ¼ fðt1;wi1Þ; ðt2;wi2Þ; � � � ; ðtN ;wiNÞg

A term that does not occur in any documents in deep web database Di will have
weight 0. Typically, for any particular deep web database Di, only a fraction of the
N terms will have non-zero weight. We refer to the number of non-zero weighted
terms in Di as Ni.

This vector-based approach has received great attention and support in the
information retrieval community for representing documents where it has been
applied effectively across a wide variety of application settings [2]. In the database
community, the vector-based approach has been popularized by GlOSS [15] and
related projects.

We call the vector SUMMARY ðDiÞ a resource summary for the deep web database
Di. A resource summary is a single aggregate vector that summarizes the overall
distribution of terms in the set of documents produced by the database. To find
SUMMARY ðDiÞ, we must first represent each document docjð1 � j �MiÞ as a vector
of terms and the frequency of each term in the document:

docj ¼ fðt1; freqj1Þ; ðt2; freqj2Þ; � � � ; ðtN ; freqjNÞg

where freqjk is the frequency of occurrence of term tk in document j. The initial
weight for each term may be based on the raw frequency of the term in the
document and it can be refined using alternative occurrence-based metrics like the
normalized frequency of the term and the term-frequency inverse document-
frequency (TFIDF) weight. TFIDF weights the terms in each document vector
based on the characteristics of all documents in the set of documents.

Given a particular encoding for each document, we may generate the overall re-
source summary for each deep web database in a number of ways. Initially, the weight
for each term in the resource summary may be based on the overall frequency of
the term across all the documents in the database (called the database frequency,
or dbFreq): wik ¼ dbFreqik ¼

PM
j¼1 freqjk. Alternatively, we can also define the weight

for each term based on the number of documents in which each term occurs (called
the document count frequency, or docCount): wik ¼ docCountik ¼

PM
j¼1 I jðtkÞ where

I jðtkÞ is an indicator function with value 1 if term tk is in document j and 0
otherwise.

Once we have chosen our database model, to effectively compare two deep web
databases and determine the relevance of one database to another, we need two
technical components: (1) a technique for generating a resource summary; and (2) a
metric for measuring the relevance between the two databases.
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3.2 Estimating resource summaries

Ideally, we would have access to the complete set of documents belonging to a deep
web database. We call a resource summary for Di built on the complete set of
documents an actual resource summary or ASUMMARYðDiÞ. However, the enormous
size of many deep web databases coupled with the non-trivial costs of collecting
documents (through queries and individual document downloads) make it unrea-
sonable to generate an actual resource summary for every deep web database
available. Additionally, the well-noted dynamic nature of deep web data [21] makes
extracting the complete set of documents belonging to a deep web database
infeasible, since deep web databases may add new content and delete old content
faster than all documents may be extracted.

As a result, previous researchers have introduced several techniques for sampling
a database through a series of probe queries to generate a representative summary
based on a small sample of the entire database [4, 6]. We call such a representative
summary an estimated resource summary, denoted as

ESUMMARYðDiÞ ¼ fðt1;wi1Þ; ðt2;wi2Þ; � � � ; ðtN ;wiNÞ

The number of occurring terms (i.e., those terms that have non-zero weight) in
the estimated summary is denoted by N0i . Typically, N0i will be much less than the
number of non-zero weighted terms Ni in the actual resource summary since only a
fraction of the total documents in a database will be examined. Hence, the goal of a
prober is typically to find ESUMMARYðDiÞ such that the relative distribution of terms
closely matches the distribution of terms in ASUMMARYðDiÞ, even though only a
fraction of the total documents will be examined.

Current probing techniques for estimating resource summaries aim at estimating
the overall summary of the content for a deep web database. We classify these
sampling techniques into two categories: random sampling and query-based
sampling.

3.2.1 Random sampling—no bias

If we had unfettered access to a deep web database, we could randomly select terms
from the database to generate the estimated resource summary ESUMMARYðDiÞ.
Barring that, we could randomly select documents with which to base the estimated
resource summary. We will call such a random selection mechanism an unbiased
prober since all terms (or documents) are equally likely to be selected. In practice,
an unbiased prober is unrealistic since most deep web databases only provide a
query-based mechanism for extracting documents.

3.2.2 Query-based sampling—query bias

As a good approximation to unbiased probing, Callan et al. [4, 6] have introduced a
query-based sampling technique for generating accurate estimates of deep web
databases by examining only a fraction of the total documents. The Callan
technique relies on repeatedly requesting documents from a source using a limited
set of queries. Since the documents extracted are not chosen randomly, but are
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biased by the querying mechanism through the ranking of returned documents and
by providing incomplete access to the entire database, we say that the Callan
technique displays query bias. There are several ways to define the limited set of
queries, including random selection from a general dictionary and random selection
augmented by terms drawn from the extracted documents from a database. The
query bias technique has some advantages over the no bias approach, since two
databases that consist of the same set of documents, but have different ranking
approaches will be sampled (and hence represented by the estimated summary)
differently. Through experimental validation, the Callan technique has been shown
to extract high-quality resource summaries (through a number of metrics) over
databases consisting of over one million pages by collecting only a few hundred
documents. Since the distribution of terms across the documents of a text database
follows a Zipfian distribution [4]—meaning that a few words occur in many
documents, while the majority of terms occur in very few documents—extracting a
small sample of documents may be successful at extracting the most popular terms
in a database, resulting in a high-quality resource summary. In the rest of the paper,
when we refer to an estimated resource summary ESUMMARYðDiÞ, we mean one that
has been produced by a query-biased prober.

3.2.3 Potential problems

In order to determine the relevance of one deep web database Di to another
database Dj and to assess the nature of their relationship, we require an appropriate
relevance metric. There are a number of possible relevance metrics to compare two
resource summaries, including a simple count of the common terms in both resource
summaries to a weighted version that considers the term weights of the common
terms in both resource summaries. We consider two different relevance metrics here
that each emphasize a different notion of relevance.

The first is a popular symmetric relevance metric adopted from the information
retrieval community for comparing the resource summaries of two databases Di and
Dj—the cosine similarity (or normalized inner product):

cosðDi;DjÞ ¼

PN

k¼1

wikwjk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

k¼1

wikð Þ2
s

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

k¼1

wjk

� �2

s

where wik is the weight for term k in ESUMMARYðDiÞ and wjk is the weight for term k
in ESUMMARYDj

. The cosine ranges from 0 to 1, with higher scores indicating a
higher degree of similarity. In contrast, the cosine between orthogonal vectors is 0,
indicating that they are completely dissimilar. The cosine measures the angle
between two vectors, regardless of the length of each vector.

The second relevance metric is asymmetric in nature and measures the fraction of
terms in one resource summary that are also contained in the other resource
summary:

containðDi;DjÞ ¼
jESUMMARYðDiÞ \ ESUMMARYðDjÞj

jESUMMARYðDiÞj
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If all of the terms in Di also occur in Dj, then the containment is 1. If no terms in
Di occur in Dj then the containment is 0. The containment relevance metric may be
used to measure the containment of each resource summary with respect to the
other, and vice versa.

We now use an example to illustrate why the existing resource summary
estimation techniques are inadequate for effectively revealing interesting relation-
ships between two databases, especially in terms of the content coverage of one
(target) in the context of the other (source). We considered three real-world deep
web databases—the PubMed medical literature site, the job-posting site Monster.-
com, and the popular search engine Google. We consider Google to be a deep web
database since it provides an advanced ranking engine over a database of indexed
content. We further note that all three deep web databases provide access to vast
content that is constantly being updated (i.e., PubMed adds new citations, Monster
provides up-to-date job postings, and Google updates its index to reflect changes in
the web), meaning that a sampling-based approach is necessary to provide a current
snapshot of the state of each deep web database.

Example We collected 300 documents from Google, PubMed, and Monster,
respectively, using a query-based sampling technique for resource summary
estimation. For each site, we issued a random query term drawn from the standard
Unix dictionary and collected a maximum of four documents per query. We then
extracted the plain text from each sampled document by removing all HTML tags
and eliminated a list of common stopwords (e.g., Ba^, Bthe^, and so on). Using the
resource summaries constructed, we find that cosðPubMed;GoogleÞ ¼ 0:15 and
cosðPubMed;MonsterÞ ¼ 0:16. Similarly, we find that for the asymmetric relevance
metric, we have containðPubMed;GoogleÞ ¼ 0:19 and containðPubMed;MonsterÞ ¼
0:22, meaning that 22% of the terms in the PubMed estimated summary also occur
in the Google estimated summary, whereas 25% of the PubMed terms occur in
Monster. Hence, for both relevance metrics we see that both Google and Monster
appear to have relatively low relevance with respect to PubMed. Although Monster
does provide some health-related content (like medical job postings), we expect that
Google should be significantly more relevant to PubMed since it provides as much
or more health-related content. When we reverse the containment calculation, we
find that containðGoogle;PubMedÞ ¼ 0:32 and containðMonster;PubMedÞ ¼ 0:36. In-
terestingly, these statistics support exactly the opposite conclusion we would anticipate:
that more of Google_s content is contained in PubMed, than vice versa.

This example underlines a critical problem with current techniques for probing
and comparing resource summaries. Current resource summary estimation tech-
niques are concerned with generating overall summaries of the underlying data-
bases. The goal is to generate essentially an unbiased estimate of the actual resource
summary. Due to the Zipfian distribution of terms across the documents of a deep
web database, an unbiased summary will focus on terms that are relatively popular
across the space of all documents. For two deep web databases that have
overlapping content (like PubMed and Google), a comparison over these unbiased
summaries will not necessarily identify these specialized areas of commonality. In
this example, since Google has such broad coverage, few terms in an unbiased
estimated summary may be common to the PubMed estimated resource summary.
Hence, many topics that are relevant for context-based database comparisons may
be under-represented or overlooked completely, since the summaries contain just a
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small fraction of the total terms in each database. In the context of our example, it
would be interesting to discover both that Google is much more relevant to PubMed
than Monster and that Google has much broader coverage than Monster. When
comparing databases, the relevance metrics based on the unbiased summaries of
each database like the ones described above are clearly inadequate, since they fail to
adequately capture the asymmetric relationship between the two databases. This
example shows both the need for a new query probing technique to hone on the
common areas between two databases, allowing for more in-depth comparisons, and
the need for more effective relevance metrics to more appropriately capture the
nature and degree of the relationship between two databases.

4 Source-biased database analysis

Bearing these issues in mind, we propose a source-biased approach—called source-
biased database analysis—to efficiently discover interesting relationships among text
document databases. There are three fundamental steps in performing source-
biased database analysis: (1) source-biased probing for deep web database
discovery; (2) evaluation and ranking of discovered deep web databases with the
biased focus metric; and (3) leveraging the biased perspective of sources and targets
to discover interesting relationships. This framework provides the foundation for
enabling relationship-centric queries over deep web databases.

4.1 Source-biased probing

In order to find the target databases that have high relevance to a source, we need to
generate a source-biased summary of the target databases instead of using unbiased
summaries of the targets. We propose a source-biased probing algorithm that can
compute the relevance of the target databases with respect to the source in very few
probes. Given a deep web database—the source—the source-biased probing
technique leverages the summary information of the source to generate a series of
biased probes for analyzing another deep web database—the target. This source-
biased probing allows us to determine in very few interactions whether a target
database is relevant to the source by probing the target with focused probes. Note
that the goal of source-biased probing is not to generate an unbiased estimated
resource summary like the query-based sampling approach discussed above. Instead,
the goal is to intentionally skew the estimated summary of a target deep web
database towards the source database for enabling more effective comparisons. This
source-biasing is especially important for supporting relationship-centric queries
over a diverse and large set of deep web databases for which exhaustive sampling of
each database is infeasible.

To help differentiate the source-biased approach from others discussed in Section 3,
in this section we use s to denote the source database and t to denote the target data-
base instead of Di and Dj. Given two databases s and t, the output of the source-
biased probing is a subjective resource summary for t that is biased towards s. We
denote the source-biased summary of the target database as:

ESUMMARYsðtÞ ¼ fðt1;w
s
1 Þ; ðt2;w

s
2 Þ; :::; ðtN ;ws

NÞg
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N is the total number of terms used in analyzing the set of deep web databases. ws
i

(1 � i � N) is the weight of term ti, defined using one of the weight functions
introduced in Section 3.1. It is important to note that typically the inequality wj 6¼ ws

J

does hold.
Concretely, the source-biased probing algorithm generates a source-biased

summary for a target as follows: It begins with an unbiased resource summary of
the source s, denoted by ESUMMARYðsÞ, that is generated through a standard
application of query-based sampling. It uses the unbiased resource summary
ESUMMARYðsÞ as a dictionary of candidate probe terms and sends a series of probe
terms, selected from ESUMMARYðsÞ, to the target database t; for each probe term, it
retrieves the top m matched documents from t, generates summary terms and
updates ESUMMARYsðtÞ, the source-biased summary of the target database. Note
that the updating process requires the simple updating of the term-frequency
statistics in the source-biased summary based on the statistics extracted from the
new batch of sampled documents. This process repeats until a stopping condition is
met. Figure 1 illustrates the source-biased probing process. Initially we constrain the
source-biased probes to keyword-based probes, though we anticipate extending this
coverage in the future.

In general, we may extend the pairwise source-biased probing algorithm along
two dimensions: to consider k bias sources with one target database, or to consider k
target databases with one source.

Let S be a subset of databases from the universe of discourse U . S consists of k
(0 � k � d) databases from U , where S ¼ fs1; s2; . . . ; skg. Each s j 2 S corresponds to
a database Di 2 U. We may then define a set of biased summary estimates for s j based
on the sources of bias in S: fESUMMARYs1

ðtÞ;ESUMMARYs2
ðtÞ; ::: ESUMMARYsk

ðtÞg.
Hence, with source-biased probing, a target database may be viewed through the
lens of a set of biasing sources, rather than through a single unbiased summary. As a
result, we may use these biased summaries to characterize the target database, which
can be helpful for clustering and categorization applications, as well as for supporting
query routing to the appropriate deep web database. For example, we may discover
that the PubMed-biased summary of Monster contains many more medical-related
job postings than a PubMed-biased summary of the technical jobs site Dice. Hence, a
query engine could choose to route medical-jobs-related queries to Monster, rather
than Dice.

Figure 1 Source-biased probing algorithm.
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Similarly, a set of target databases can be evaluated and compared with respect to
one source using the source-biased lens. Extending the pairwise source-biased
probing algorithm along this dimension allows for the evaluation and ranking of the
target databases with respect to the source database. We discuss this type of analysis
in great detail in the following section.

The performance and effectiveness of the source-biased probing algorithm
depends upon a number of factors, including the network characteristics of the
target database (like uptime, latency, etc.), the ranking algorithm used at the target
database for ranking the returned documents, the selection criterion used for
choosing source-specific candidate probe terms, and the type of stop condition used
to terminate the probing process. In this paper, we focus our attention on the
selection criterion and the stop probing condition.

4.1.1 Mechanisms to select probe terms

There are several possible ways to select the probes based on the statistics stored
with each resource summary, including uniform random selection and selection
based on top-weighted terms. In general, the selection criterion will recommend a
query term drawn from the set of all non-zero weighted terms in the unbiased
source summary ESUMMARYðsÞ.

Uniform Random Selection In this simplest of selection techniques, each term that
occurs in ESUMMARYðsÞ has an equal probability of being selected, i.e.,
Probðselecting term jÞ ¼ 1

Ns
.

Weight-Based Selection Rather than randomly selecting query terms, we could
instead rely on a ranking of the terms by one of the statistics that are recorded with
each resource summary. For example, all terms in ESUMMARYðsÞ could be ranked
according to the weight of each term. Terms would then be selected in descending
order of weight. Depending on the type of weight cataloged (e.g., dbFreq, docCount,
etc.), several flavors of weight-based selection may be considered.

4.1.2 Different types of stop probing conditions

The stop probing condition is the second critical component in the source-biased
probing algorithm. It is interesting to note that the more documents the source-
biased probing algorithm extracts from a target database, the more likely the
source-biased estimated summary of the target database will tend to closely
correlate with the unbiased estimated summary of the target database, meaning
that the choice of stop probing condition is vitally important. So long as there are
still query terms available in the source summary for use in probing, the source-
biased probing algorithm will continue to extract documents, even if the queries
issued are less indicative of the source subject matter. For example, if we are using
PubMed as a source of bias for probing a non-relevant sports database, a poorly
selected stop probing condition could result in the algorithm exhausting all of the
heavily-weighted scientific and medical query probes, forcing the algorithm to send
lowly-weighted (and hence, less indicative of PubMed) probes, resulting in a target
summary that closely resembles an unbiased summary. Hence, the stop probing
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condition is critical to guide the quality of the source-biased probing algorithm. We
consider four different types of conditions that might be used in practice:

Number of Queries After some fixed number of query probes (MaxProbes), end the
probing. This condition is indifferent to the number of documents that are examined
for each database.

Documents Returned In contrast to the first technique, the second condition con-
siders not the number of queries, but the total number of documents (MaxDocs)
returned by the database.

Document Thresholding Rather than treating each document the same, this third
alternative applies a threshold value to each document to determine if it should be
counted toward MaxDocs. For each document, we may calculate the relevance of
the document to the source of bias ESUMMARYðsÞ. If the document relevance is
greater than some threshold value, then the document is counted. Otherwise, the
document is discarded.

Steady-State Rather than relying on a count of queries or documents, this final
stopping condition alternative instead relies on the estimated summary reaching a
steady-state. After each probe, we calculate the difference between the new value of
ESUMMARYsðtÞ and the old value. If the difference (which may be calculated in a
number of ways) is less than some small value �, then we consider the summary
stable and stop the probing.

4.2 Evaluating and ranking databases with biased focus

Given a source and a target database, once we generate the source-biased summary
for the target database, we need an efficient mechanism to measure the source-
biased relevance of a target database with respect to the source. Once a set of target
databases have been evaluated with the source-biased relevance metric, we can then
rank the targets with respect to the source of bias. We perform this task using the
second component of source-biased database analysis—a source-biased metric.

Let s denote a source database modeled by an unbiased summary and t denote a
target database with a s-biased summary, and let focussðtÞ denote the source-biased
focus measure. We define focussðtÞ to be a measure of the topical focus of the target
database t with respect to the source of bias s. The focus metric ranges from 0 to 1,
with lower values indicating less focus and higher values indicating more focus. In
general, focus is not a symmetric relation. We may describe any two deep web
databases s and t with the focus in terms of s by focussðtÞ or in terms of t by
focustðsÞ. The biased focus is intended as a measure of inclusion [26]; that is, it
measures the amount of the source included in the target.

There are several ways to calculate the biased focus for a source and a target.
Adopting the cosine similarity introduced in the previous section for the case of a
source-biased target summary, we may define the cosine-based focus as:

Cosine focussðtÞ ¼

PN

k¼1

wskws
tk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

k¼1

wskð Þ2
s

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

k¼1

ws
tk

� �2

s
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where wsk is the weight for term k in ESUMMARYðsÞ and ws
tk is the s-biased weight

for term k in ESUMMARYsðtÞ. Again, we note that the cosine ranges from 0 to 1,
with higher scores indicating a higher degree of similarity.

Alternatively, we could approximate the focus measure by computing the ratio of
common terms between source and target over the source summary estimate. We
call this method the common-term based focus measure, denoted by CT focussðtÞ.

CT focussðtÞ ¼
jESUMMARYðsÞ \ ESUMMARYsðtÞj

jESUMMARYðsÞj

This approximation counts the number of common terms between the source of
bias and the target and divides by the size of the source of bias. So if all terms in the
source of bias occur in the target, then the target is perfectly focused on the source
and CT focussðtÞ ¼ 1. Conversely, if no terms in the source of bias occur in the target,
then the target has no focus on the source and CT focussðtÞ ¼ 0. Unfortunately, a
common-term based focus measure will tend to understate the importance of highly-
weighted terms and overvalue the importance of lowly-weighted terms. An obvious
solution to address the above-mentioned problem is to use the term-weight based
focus measure, denoted by TW focussðtÞ:

TW focussðtÞ ¼
P

k2ESUMMARYs ðtÞ wsk
P

k2ESUMMARYðsÞ wsk

where wsk is the weight for term k in ESUMMARYs . The term weight based focus
measure can be seen as a generalization of the ct fratio introduced in [6].1

While the TW focussðtÞ approximation overcomes the problems of the
CT focussðtÞ, it introduces new issues. For example, the term weights used in the
TW focussðtÞ approximation are from the unbiased summary of the source. Thus
the actual weights of terms in the source-biased estimate may be distorted by relying
on the unbiased summary weights.

Intuitively, the cosine-based biased focus is the most appealing of the three
biased focus candidates since it seems to more reasonably capture the relevance
between two deep web databases. In the experiments section we show that,
compared with TW focussðtÞ and CT focussðtÞ, the Cosine focussðtÞ measure can
quickly approximate the actual focus measure using fewer documents.

4.2.1 Ranking relevant databases

Given an appropriate biased focus measure, we may probe a group of target
databases to identify the most relevant databases to the source of bias. For a single
source of bias D1 from our universe of discourse U , we may evaluate multiple target
databases D2, D3, ..., Dd. For each target database, we may evaluate the appropriate
focus measure for each source–target pair (i.e., focusD1

ðD2Þ, focusD1
ðD3Þ, etc.). We

may then rank the target databases in descending order in terms of their source-
biased focus with respect to D1.

0 The ct fratio is presented in the context of comparing an estimated resource summary DB0 to an
actual resource summary DB. ct fratio ¼

P
i2DB0 ct fi=

P
i2DB ct fi, where ct fi ¼ number of

times term i occurs in the source. Here, we have generalized this formulation for comparison of
summaries from different databases, and for use with term weightings other than the ct f .
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4.3 Identifying interesting inter-database relationships

The critical third component of source-biased database analysis are the techniques for
exploiting and understanding relationships between deep web databases using a source-
biased lens. By analyzing the nature of the relationships between deep web databases,
we will provide support for relationship-centric queries. For example, we may identify
relationship sets for a source that support queries of the form: BWhat other deep web
databases are most similar to X? Or complementary to X?^, among others.

As we have discussed before, current search and directory technologies for
comparing deep web databases (such as search engines or Yahoo!-like directories)
are not optimized for the type of relationship-centric queries that have a strong
source-biased flavor. Some examples were given in the introduction of this paper. In
contrast, our source-biased probing framework and biased focus measure provide
the flexible building blocks for automated identification of interesting relationships
between deep web databases, especially since the framework promotes an
asymmetric source-biased view for any two deep web databases. Our relationship
discovery module creates a flexible organization of deep web databases, where each
database is annotated with a list of relationship sets. The two typical relationship
types we have identified are similarity-based and hierarchical-based.

4.3.1 Similarity-based relationships

Given the universe of discourse U ¼ fD1;D2; . . . ;Ddg, we identify three similarity-
based relationship sets for a particular deep web database Di. These relationship
sets are defined in terms of threshold values lhigh and llow, where 0 � llow �
lhigh < 1.

l� equivalent The first relationship says that if both focusDi
ðDjÞ > lhigh and

focusDj
ðDiÞ > lhigh hold, then we may conclude that Di is sufficiently focused on

Dj and Dj is sufficiently focused on Di. Hence, the two databases are approximate-
ly the same in terms of their content coverage. We call this approximate equality
l-equivalence. It indicates that the equivalence is not absolute but is a function of
the parameter lhigh. Formally, l-equivalentðDiÞ ¼ f8Dj 2 UjfocusDi

ðDjÞ > lhigh ^
focusDj

ðDiÞ > lhighg.

l�mutex If both focusDi
ðDjÞ < llow and focusDj

ðDiÞ < llow hold, then we can
conclude that Di and Dj are sufficiently concerned with different topics since neither
one is very focused on the other. We annotate this approximately mutually exclusive
(mutex) nature with the l prefix. Formally, l-mutexðDiÞ ¼ f8Dj 2 Uj focusDi

ðDjÞ <
llow^ focusDj

ðDiÞ < llowg.

l� overlap When two deep web databases Di and Dj are neither l-equivalent nor
l-mutex, we say that the two deep web databases l-overlap. Formally, l-
overlapðDiÞ ¼ f8Dj 2 UjDj=2l-mutexðDiÞ ^Dj=2l-equivalentðDiÞg.

4.3.2 Hierarchical relationships

In addition to similarity-based relationship sets, we also define hierarchical
relationship sets by measuring the relative coverage of target databases in U with
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respect to a particular deep web database Di (source). These hierarchical
relationship sets are defined in terms of a parameter ldiff , where 0 � ldiff � 1.

l� superset If focusDi
ðDjÞ � focusDj

ðDiÞ > ldiff , then a relatively significant portion
of Di is contained in Dj, indicating that Dj has a l-superset relationship with Di. We
use the l prefix to indicate that Dj is not a strict superset of Di, but rather that the
relationship is parameterized by ldiff . Formally, l-supersetðDiÞ ¼ f8Dj 2 Uj
focusDi

ðDjÞ � focusDj
ðDiÞ > ldiffg.

l� subset Conversely, If focusDj
ðDiÞ � focusDi

ðDjÞ > ldiff , then a relatively signif-
icant portion of Dj is contained in Di, indicating that Dj has a l-subset relationship
with Di. Similarly, Dj is not a strict subset of Di, but rather the relationship is pa-
rameterized by ldiff . Formally, l-subsetðDiÞ ¼ f8Dj 2 UjfocusDj

ðDiÞ � focusDi
ðDjÞ >

ldiffg.

We note that the determination of the appropriate l-values is critical for the
correct assignation of databases to each relationship set. In our experiments section,
we illustrate how these relationship sets may be created; for now, we leave the
optimization of l-values as future work.

4.3.3 Using relationship sets

Both similarity-based and hierarchy-based inter-database relationships can be
generated automatically, and used as metadata annotation to each of the deep
web databases. These source-biased relevance data provide a flexible foundation
for relationship analysis among deep web databases. For any deep web database
Di, we need only consult the appropriate relationship set to evaluate a
relationship-centric query. The three similarity-based relationship sets provide
the basis for answering queries of the form: BWhat other databases are most
like X? Somewhat like X? Or complementary to X?^. The two hierarchical-
based sets provide the basis for answering queries of the form: BWhat other
databases are more general than X? Or more specialized than X?^. Of course,
the relationship-centric queries may be further refined by considering a number
of criteria besides topical relevance, including trust, quality-of-service, and size,
among others.

In addition, these relationship sets are useful for routing regular document-
centric queries to appropriate databases. For example, a user interested in medical
literature may choose to query both PubMed and all of the databases that have a l-
equivalence relationship with PubMed. Alternatively, a user interested in maximiz-
ing coverage of multiple topically-distinct deep web databases, may choose to query
both the source database she knows about and any members in the mutually
exclusive set of the source database. The hierarchical relationship sets are
particularly helpful in cases where a user may refine a query to more specialized
resources, or alternatively, may choose to generalize the scope of the query by
considering databases further up the hierarchy to get more matching answers. In this
paper, our goal is to illustrate the importance of relationship sets and show that they
may be discovered using source-biased probing. We anticipate the further
exploration of relationship sets in our future work.
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5 Focal term probing

One of the critical parameters to the success of source-biased probing is the choice
of probe terms from the source of bias s. We have discussed several selection
techniques as well as different ways to define stop-probing conditions. In this section
we propose a refinement over these simple selection techniques whereby the source
summary is segmented into k groups of co-occurring terms. The main idea is to
iteratively select one term from each of the k groups to probe the target. We call
these terms the focal terms of the corresponding group. When used in conjunction
with the general source-biased probing algorithm, we have an enhanced version
called source-biased probing with focal terms. Like the basic algorithm of source-
biased probing, the goal remains to produce source-biased target resource
summaries that are effective for detecting interesting relationships between a source
of bias and a target. A unique advantage of using focal terms is that these source-
biased summaries of target databases can be generated in far fewer queries and with
higher quality.

5.1 Focal terms and focal term groups

Let s denote a source database with its unbiased resource summary ESUMMARYs .
We denote the set of terms with non-zero weight in ESUMMARYs (i.e., the terms that
actually occur in the database s) as TermsðsÞ, where TermsðsÞ consists of n terms t1,
t2, ..., tn. A focal term group is a subset of terms in the set TermsðsÞ that co-occur in
the documents of s. We denote a focal term group i as FTermsi. The main idea
behind source-biased probing with focal terms is to partition the set TermsðsÞ into k
disjoint term groups such that the terms within each term group co-occur in
documents of s more frequently than they do with terms from other term groups.
We note this measure of co-occurrence is rather coarse; our notion of co-occurrence
merely indicates that two words occur in the same document together, regardless of
their semantic relationship. Recall that in the vector-space model adopted in this
paper, the order of words within a document and the nearness of one word to
another in a document are not considered, though we anticipate refining the
measure of co-occurrence in future work.

Formally, we need an algorithm that can find a partition of TermsðsÞ into k focal
term groups:

TermsðsÞ ¼ fFTerms1; � � � ;FTermsi; � � � ;FTermskj
[k

i¼1

FTermsi

¼ ft1; :::; tng and FTermsi \ FTermsj ¼ ;g

In Table 1, we show an example of five focal term groups for a collection of 100
PubMed documents. Note that k is intended to be very small since the focal term
groups are meant to be very coarse. We will describe the concrete algorithm to find
k partitions of the set TermsðsÞ in the next section.

Given k focal term groups, by selecting a focal term from each term group
FTermsi as a probing query, we hope to retrieve documents that also contain many
of the other words in that focal term group. For example, suppose we are using a
frequency-based measure for query probe selection from PubMed. The top four
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query terms may be Bbrain^, Bgene^, Bprotein^, and Bnucleotide^. Suppose these
four terms tend to co-occur with each other as indicated in Table 1. By sending the
first query Bbrain^ to a target database, we could reasonably expect to find the other
three terms since our analysis of the source indicates that these four terms tend to
co-occur. A naive source-biased prober would ignore this co-occurrence information
and, instead, send the other three queries Bgene^, Bprotein^, and Bnucleotide^, even
though we might reasonably expect for those queries to generate documents similar
to the first query Bbrain^. In essence, we will have used four queries when a single
query would have sufficed at adequately exploring the term space of the target. In
cases in which both the source and target database have similar term co-
occurrences, then we would anticipate focal term probing providing an advantage
over the other probe selection techniques.

The sophistication of source-biased probing with focal terms is to identify these
co-occurrence relationships in order to reduce the number of queries necessary to
efficiently detect relationships between a source and a target database. By using
focal terms, we may generate more accurate biased summaries of target databases in
far fewer probe queries and with higher quality.

In an ideal case, every focal term group would consist of terms that only co-occur
with each other and not with any other terms in the other focal terms groups. By
selecting a single term from each perfectly segmented term group, we ideally could
send no more than k probes, one for each focal term group. Each probe would
produce a document that contained every other term in that focal term group. In the
more realistic setting, we will need to handle varying degrees of co-occurrence, but
we still expect a good reduction in the number of probes necessary to generate a
high-quality biased summary estimate for each target database.

It is important to note that, unlike previous research in grouping terms—for
query-expansion [31, 41] or finding similar terms [36]—our goal is not to find close
semantic relationships between terms, but rather to find very coarse co-occurrence
associations among terms to support a more efficient and effective biased resource
summary estimation. For example, though we may discover that Bbrain^ and
Bprotein^ tend to co-occur, we do not claim that there is a close semantic
relationship between the two terms.

5.2 Finding focal terms

Now that we have discussed the motivation of finding focal terms, we are still faced
with the task of actually segmenting TermsðsÞ into k groups of focal terms. In this
section, we discuss how we may adapt a popular clustering technique to the problem
of focal term discovery. Recall that in Section 3.1, we view a deep web database Di

Group Terms

1 Care, education, family, management, ...

2 Brain, gene, protein, nucleotide, ...

3 Clinical, noteworthy, taxonomy, ...

4 Experimental, molecular, therapy, ...

5 Aids, evidence, research, winter, ...

Table 1 Example focal terms
for PubMed.
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as a set of documents, each of which is described by a vector of terms and weights.
We now invert our view of a database using the same set of information. We
consider a database Di as a collection of terms, each of which is described by a
vector of the documents in which the term occurs and a weight describing the
occurrence frequency of the term in the corresponding document. Hence, we have:
TermsðDiÞ ¼ fterm1; term2; � � � ; termNg.

For the N terms in the database, each termjð1 � j � NÞ is a vector of documents
and weights:

termj ¼ fðdoc1;wj1Þ; ðdoc2;wj2Þ; � � � ; ðdocM;wjMÞg

We can define a segmentation technique for finding focal term groups by
clustering the set TermsðDiÞ into k clusters. Given the term vectors and the
similarity function, a number of clustering algorithms can be applied to partition the
set TermsðDiÞ of N terms into k clusters. We choose Simple K-Means since it is
conceptually simple and computationally efficient. The algorithm starts by
generating k random cluster centers. Each term is assigned to the cluster with the
most similar (or least distant) center. The similarity is computed based on the close-
ness of the term and each of the cluster centers. Then the algorithm refines the k
cluster centers based on the centroid of each cluster. Terms are then re-assigned to
the cluster with the most similar center. The cycle of calculating centroids and
assigning terms in TermsðDiÞ to k clusters repeats until the cluster centroids
stabilize. Let C denote a cluster in the form of a set of terms in the cluster. The
centroid of cluster C is:

centroidC ¼

ðdoc1;
1
jCj
P

j2C

wj1Þ

ðdoc2;
1
jCj
P

j2C

wj2Þ

� � �
ðdocM;

1
jCj
P

j2C

wjMÞ

8
>>>>>>><

>>>>>>>:

9
>>>>>>>=

>>>>>>>;

where wjl is the weight of term j in document l, and the formula 1
jCj
P

l2C wjl denotes
the average weight of the document l in the cluster C. A sketch of the K-Means term
clustering based on term-vector of a deep web database is provided in Figure 2.

The similarity function used in Figure 2 can be defined using a number of
functions. In this paper, we use the cosine similarity function. Given a set of N terms
and a set of M documents, where wik denotes the weight for term k in document i
(1 � k � N, 1 � i �M), the cosine function prescribes:

simðtermi; termjÞ ¼

PN

k¼1

wikwjk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

k¼1

wikð Þ2
s

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

k¼1

wjk

� �2

s

In Section 7 we report the initial experiments on effectiveness of using focal
terms to optimize the source-biased probing algorithm, showing that the source-
biased algorithm with focal terms results in more efficient probing for varying
numbers of focal-term groups (Figure 8).
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5.3 Selecting focal-based probes

Once the k focal term groups have been constructed for a source, the remaining
problem is how to select the best terms for probing a target database. We propose a
simple round-robin selection technique whereby a single term is selected from each
focal term group in turn. In each round, a single term may be selected according to
one of the probe selection techniques discussed above, like uniform selection or
weighted selection. Once a single term has been selected from each group, the cycle
repeats by selecting a second term from each group, a third term, and so on. The
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Figure 2 Focal term clustering algorithm.
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cycle of selecting focal terms and querying the target database may be stopped
according to one of the stop probing conditions discussed above. Given this basic
strategy, we may use a number of techniques for determining the order by which to
select terms from the k groups and for selecting probe terms from each focal term
group. One way to determine the order of focal term groups is based upon the size
of each group. We begin with the group with the most terms and end each cycle with
the group that has the smallest number of terms.

6 Implementing source-biased database analysis in DynaBot

In this section, we present the preliminary design and architecture of the DynaBot
system for supporting relationship-centric queries over the deep web. The deep web
of online web-enabled databases is a large and growing component of the web—
with recent estimates suggesting that there are nearly 92,000 terabytes of data on the
deep web versus only 167 terabytes on the surface web [23]. Most existing web
crawlers tend to ignore the data offered by deep web databases due to the technical
difficulties of locating, accessing, and indexing deep web data. Traditional crawling
and indexing techniques that have shown tremendous success on the surface web of
hyperlinked pages are insufficient for the deep web—where data is stored in
databases or produced in real-time in response to a particular user query.

In response to these challenges, we have been developing the DynaBot system
for harnessing the vast amounts of data available in web-enabled databases [33].
DynaBot is designed with a modular architecture to support the entire lifecycle of
supporting deep web data access, ranking, and query support—including the
relationship-centric queries introduced in this paper. Figure 3 presents the overall
architecture of DynaBot, with an emphasis on the initial crawling, discovery, and
source-biased analysis modules.

DynaBot utilizes an advanced crawler architecture that includes standard crawler
components like a URL frontier manager, network interaction modules, global
storage and associated data managers, and document processors, as well as the
pluggable DynaBot-specific semantic analyzers, which analyze the candidate deep
web databases. We note that the name resolver in Figure 3 takes a URL and
converts it into the corresponding IP address. The current semantic analyzers that
have been incorporated into DynaBot include the service class matcher and the
source-biased analyzer.

Rather than rely on a generic crawling strategy, we use the focused crawling
framework to guide DynaBot on domain-specific crawls for identifying deep web
databases related to a specific topic. Focused crawling has previously been
introduced for guiding traditional web crawlers to web pages related to a specific
topic [8]. A DynaBot crawl begins from a seed list of URLs that may be supplied by
the user and geared toward a particular domain. So a DynaBot crawl for PubMed-
related resources could begin from a URL seed list including PubMed and URLs
that point to PubMed. The service class matcher uses focused crawling of the deep
web to discover candidate deep web databases that are relevant to a specific domain
of interest—e.g., bioinformatics sources, online retailers, etc. The main idea of the
service class matcher is to support guided matching of candidate deep web databases
by finding members of a common service class of functionally similar deep web
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databases. Each service class is encoded in a service class description that describes
the key attributes that define the service class. When the crawler comes across a
web-based query interface, it invokes the service class matcher to determine if it is
indeed a candidate of the service class. The service class matcher includes tools for
probing a candidate deep web site, generating a site-specific script for interacting
with a deep web database, and classifying a site as a member of a particular service
class based on the service class description. The classification component considers
the input schema of the deep web database_s query interface, the output schema of
sampled data, and a seed list of example probing templates for the particular service
class. The output of the service class matcher is a set of functionally similar deep web
databases for use by the source-biased analyzer. For the PubMed example, the deep
web databases identified would all be members of a service class for medical and
scientific literature databases. The DynaBot crawling module may be run for
multiple service class instances to discover a large and diverse set of deep web
databases for consideration by the subsequent modules.

The source-biased analyzer module uses the site-specific scripts generated in the
service class matching module for interacting with each deep web database
discovered. The source-biased probing, biased focus evaluation, and relationship-
set discovery introduced in this paper are all incorporated into the source-biased
analyzer module of DynaBot. Our current efforts are focused on continuing to
enhance the capability and efficiency of these two modules, as well as incorporating
additional semantic analyzers for enhanced deep web discovery.

7 Experiments

In this section, we describe five sets of experiments designed to evaluate the
benefits and costs of our source-biased approach compared to existing approaches.
The first set of experiments intends to show the effectiveness of our source-biased
probing algorithm and performance comparison with query probing and unbiased
probing. The second set evaluates the biased focus measure for ranking deep web
database. The third set is designed to show the efficiency of the biased focus
measure in identifying interesting inter-database relationships. The fourth set of
experiments evaluates the efficacy of source-biased probing with focal terms by
comparing the basic source-biased probing versus source-biased probing with
varying number of groups of focal terms. Our experiments show that source-biased
probing with focal terms can achieve about 10% performance improvement over
the basic algorithm for source-biased probing. And the final set of experiments
considers the impact of several key parameters on the overall performance of the
source-biased approach.

We choose two different sets of deep web databases for our experiments: (1) a
large collection of newsgroups designed to emulate the diversity and scope of real-
world deep web databases; and (2) a modest collection of real-world deep web deep
web databases. Since the contents of deep web databases in the deep web collection
change frequently and are beyond our control, and in an effort not to overload any
one site, we relied on the newsgroup dataset for rigorous experimental validation.
We additionally note that a similar newsgroup setup has been used before to
emulate deep web databases [18].
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Newsgroup Collection We collected articles from 1,000 randomly selected usenet
newsgroups over the period June to July 2003. We eliminated overly small
newsgroups containing fewer than 100 articles, heavily spammed newsgroups (which
have a disproportionate number of off-topic messages), and newsgroups with
primarily binary data. After filtering out these groups, we were left with 590 single
topic newsgroups, ranging in size from 100 to 16,000 articles. In an effort to match
the heterogeneity and scope inherent in many real-world deep web databases, we
constructed 135 additional groups of mixed topics by randomly selecting articles
from anywhere from 4 to 80 single topic newsgroups, and 55 aggregate topic news-
groups by combining articles from related newsgroups (e.g., by selecting random
documents from all the subgroups in comp.unix.* into a single aggregate group).
In total, the newsgroup collection consists of over 2.5 GB worth of articles in 780
groups.

Deep Web Collection For the second collection, we randomly selected 50 sites from
the ProFusion [29] directory of deep web sites, in addition to Google and PubMed.
We queried each site with a randomized set of single-word probes drawn from the
standard Unix dictionary, and collected a maximum of 50 documents per site.
Previous research has indicated that small samples of several hundred pages may
result in high quality resource summaries over databases consisting of over one
million pages, since the distribution of terms across the documents of a text database
follows a Zipfian distribution [4]. In this case, we choose a sample size of 50
documents to determine if even smaller samples can yield positive results in the
source-biased context.

Probing Framework We built a probing engine in Java 1.4 for use in all of our
experiments. For each group in both datasets, we constructed the actual resource
summary based on the overall term frequency of each term (dbFreq). We eliminated
a set of common stopwords (e.g., Ba^, Bthe^, and so on) as well as collection-specific
stopwords (e.g., Bwrote^, Bsaid^, and so on for the newsgroup collection). Terms
were not stemmed.

7.1 Effectiveness of source-biased probing

The goal of our first set of experiments is to compare source-biased probing with
existing probing techniques such as query probing and unbiased probing and to
evaluate the efficiency and quality of source-biased probing. The source-biased
probing shows significant gain in terms of the percentage of documents probed that
are similar to the source. For this experiment, we assume that the document
download costs outweigh the query issuing cost. Hence we evaluate the efficiency of
source-biased probing in terms of the number of documents required to be extracted
from each target and the percentage of the documents extracted that are similar to
the source. The higher percentage of documents similar (relevant) to the source, the
more effective a probing algorithm is.

We selected 100 random source–target pairs from the newsgroup collection. For
each pair, we evaluated four probing techniques—a source-biased prober (Source
Bias) that selects probe terms from the source summary in decreasing order of
dbFreq; a query-biased prober (Query Bias 1) that randomly selects probes from the
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standard Unix dictionary of English terms; a query-biased prober (Query Bias 2)
that selects its initial probe from the Unix dictionary, but once the first document
has been retrieved from the target, all subsequent probes are selected based on the
estimated dbFreq of the target_s resource summary; and an unbiased prober (No
Bias) that selects documents at random from each target. For each pair, we
evaluated each of the four probing techniques for up to 100 total documents
extracted from each target, collecting a maximum of five documents per probe
query from each target.

In Figure 4, we show the average percentage of documents similar (relevant) to
the source (Cosine focussðtÞ) over all 100 source–target pairs as a function of the
number of documents examined in each target. The percentage of the documents
extracted that are similar to the source (biased focus measure) indicates the quality
of document being extracted from each target. We see that the source-biased
probing outperforms the No Bias prober and the Query Bias 1 prober, resulting in
an average source similarity that is initially 35% higher down to 13% after 100
documents have been extracted. Similarly, the source-biased prober outperforms the
Query Bias 2 prober, resulting in an average source similarity that is initially 57%
higher down to 18% after 100 documents. Clearly, the higher focus value means the
higher success for a probing algorithm.

Figure 5 shows another experiment where we also identified, in our set of 100
source–target pairs, all of those pairs that were a priori similar (e.g., comp:sys:mac:
apps and comp:sys:mac:system) or dissimilar (e.g., rec:crafts:textiles:
sewing and comp:lang:perl:misc). We show the relative performance of the
Source Bias, Query Bias 1, and No Bias probers against these similar and dissimilar
pairs. The Query Bias 2 results track closely with the Query Bias 1 results, and we
drop them from this figure. The source-biased prober requires fewer documents to
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achieve the same relevance level as the other probers for all 100 source–target pairs
and for the similar and dissimilar pairs. For example, for the similar source–target
pairs in Figure 5, the source-biased prober identifies target documents with 0.8 focus
after extracting only 30 documents. In contrast, the other probers require between
two and three times as many documents to achieve the same quality.

The third experiment is shown in Figure 6. Here we want to show how quickly a
source-biased prober can hone on the most source-relevant documents in a target by
plotting the percentage of the documents extracted that are similar (relevant) to the
source for each of the four probers. As shown in Figure 6, the source-biased prober
performs nearly two-times better than other probers: over 70% of the first 10
documents extracted from a target are source-relevant, whereas the other probers
identify between 25 and 45% source-relevant documents. As more documents are
examined for each target, the source-biased prober continues to maintain an
advantage over the other probers. Since the source-biased prober extracts the
highest-quality source-related documents from the target database first, we see the
gradual decline in the Source Bias line, meaning that it performs the best in
extracting relevant documents. We see fluctuations in the other approaches due to
the randomness inherent in the query selection process. Unlike the source-biased
prober which sends its best queries first, the other query probers may send a high-
quality (source-relevant) query at any point of the querying process (or not at all),
leading to the fluctuations in the quality of the extracted documents.

7.2 Ranking effectiveness with biased focus

The second set of experiments intends to evaluate how well source-biased probing
compares with the alternative techniques when it comes to evaluating a collection of
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target databases. We performed two experiments using the deep web collection. In
the first, we use PubMed as the source and examine all 50 deep web databases as
targets. We computed the biased focus score using Cosine focussðtÞ and then
ranked all target databases relative to PubMed using the biased focus measure.
Since the deep web sites do not support random document selection, we are unable
to evaluate an unbiased prober. So this experiment only compares the source-biased
prober with query biased prober 1. Table 2 shows the top-10 ranked sites relative to
PubMed. In the Source Bias column we also list in parenthesis the rank of each site
assigned by the Query Bias prober.

The query-biased prober identifies several health-related sites in the deep web
collection, but it mistakenly lists Linux Journal ahead of HealthAtoZ, as well as
listing a web development site (DevGuru) and a genealogical magazine (Family-
Tree) ahead of the health-related Mayo Clinic. Overall, only four of the top-ten sites
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Query bias Source bias

1. AMA 1. Open Directory (13)

2. WebMD 2. Google (27)

3. Linux Journal 3. About (11)

4. HealthAtoZ 4. WebMD (2)

5. DevGuru 5. AMA (1)

6. FamilyTree Magazine 6. HealthAtoZ (4)

7. Mayo Clinic 7. Monster (22)

8. Novell Support 8. Mayo Clinic (7)

9. Random House 9. Random House (9)

10. January Magazine 10. BBC News (12)

Table 2 Identifying databases
relevant to PubMed.
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could be considered topically relevant to PubMed. In contrast, the source-biased
prober_s top-eight sites are somewhat relevant to PubMed. In addition to the health-
related sites, the source-biased prober also identifies three general sites that offer
access to medical literature (Open Directory, Google, and About) that are ranked
significantly lower by the query-biased prober. Interestingly, the source-biased
prober identifies a fair number of scientific and bioinformatics-related job
descriptions in the Monster jobs site, resulting in its high relevance (similarity)
score to PubMed (high biased focus value). While we are encouraged by the
rankings here, we note that there are some problems—for example, the three
general sites (Open Directory, Google, and About) are ranked ahead of the three
more medically-related sites (WebMD, AMA, and HealthAtoZ). In the next
section, we show how the bilateral assessment of focus for identifying relationship
sets may overcome these problems.

In the second experiment, we use Google as the source and examine all 50 deep
web databases as targets, using the setup as described above. Table 3 shows the top-
10 ranked sites relative to Google. In the Source Bias column we also list in
parenthesis the rank of each site assigned by the Query Bias prober.

The query-biased prober identifies only one meaningful related site (About) in
the top-10, whereas the Google source-biased prober finds both relevant sites in the
top-10—About and the Open Directory Project—and ranks them as the top-2 most
relevant sites. These results are further confirmation of the impact of the source-
biased approach.

As a further illustration, for the source Linux Journal, we found that the top 10
source-biased probes are: linux, web, system, software, kernel, time, source, journal,
user, file. These probes are representative of the coverage of Linux Journal and are
surely more effective for discovering target databases relevant to Linux Journal than
random probes. On inspection, we found that when probing the jobs site Monster,
the resulting Linux-biased Monster summary is skewed towards linux-related jobs
and other technical jobs. In contrast, the unbiased Monster summary is less relevant
to the Linux Journal since on average, Monster contains many other types of jobs
besides those that are linux related.

To validate the quality of source-biased database evaluation, we next randomly
selected 10 sources from the newsgroup collection to evaluate against the entire set
of 780 newsgroups. We compared the three probers Source Bias, Query Bias 1, and
No Bias. For each of the 10 sources, we measured relevance precision as the
percentage of the top-10 ranked target databases that are considered relevant to the

Query bias Source bias

1. Metropolis Magazine 1. About (3)

2. More Business 2. Open Directory Project (20)

3. About 3. Webmonkey (7)

4. Linux Journal 4. Monster (6)

5. Family Tree Magazine 5. Metropolis Magazine (1)

6. Monster 6. Random House (12)

7. Webmonkey 7. Linux Journal (4)

8. DevGuru 8. Family Tree Magazine (5)

9. US Customs 9. HealthAtoZ (15)

10. January Magazine 10. January Magazine (10)

Table 3 Identifying databases
relevant to Google.
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source using Cosine focussðtÞ. Relevance judgments were determined by the
consensus opinion of three volunteers. Note that we do not measure recall since it
is so expensive to calculate, requiring a relevance judgment for each source versus
every database in the newsgroup collection.

Table 4 shows the precision for the three probers after extracting 40 documents
per target database. Source Bias results in the highest precision in seven of ten cases,
tying with the next best prober in two cases, and losing outright in one case. For the
lone failure, Source Bias does succeed after extracting 80 documents, indicating that
the mistake may be attributable to the error inherent in probing very few
documents. In general, the average precision of the source-biased prober is nearly
double that of the next best prober.

In Figure 7 we show the average precision for the ten sources when increasingly
more documents are extracted per target. The source-biased approach displays
higher precision than both the query-biased and unbiased probers in all cases
considered, especially when based on very few documents. We again note that the
source-biased prober extracts higher quality (source-relevant) documents at the
beginning of the probing, which is vitally important for limiting the amount of
probing necessary to yield adequate comparisons, especially given the size and
growth rate of the deep web. As we mentioned before, the stop probing condition is
especially critical since eventually the source-biased target summary may converge
to the unbiased summary as more and more documents are extracted. In this case,
we can see that as the number of documents extracted increases, the two
alternatives to source-biased probing improve, but still lag significantly.

While we are encouraged by the results in this section, we see that there is still
some room for improvement. In the next section, we show how the bilateral
assessment of focus for identifying relationship sets may yield even stronger results.

7.3 Identifying inter-database relationships

The third set of experiments is designed to evaluate the effectiveness of using the
source-biased framework to support the identification of interesting inter-database
relationships that the alternative schemes do not. As discussed in Section 4.3, the
source-biased framework can identify both similarity-based relationship sets and
hierarchical relationship sets for a pair of deep web databases or for a source
database and a collection of target databases. Unlike the query-biased and unbiased

Source No bias Query bias Source bias

comp.unix.misc 0.1 0.0 0.7

gnu.emacs.help 0.1 0.3 0.4

rec.aviation.owning 0.1 0.2 0.4

rec.games.chess.misc 0.1 0.1 0.6

rec.org.sca 0.1 0.0 0.4

sci.physics.research 0.5 0.3 0.8

talk.religion.misc 0.1 0.1 0.6

soc.culture.hawaii 0.2 0.1 0.2

rec.pets.cats.misc 0.1 0.1 0.1

comp.sys.mac.system 0.4 0.0 0.1

Table 4 Relevance precision
for 10 source newsgroups.
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probers, the asymmetric nature of source-biased probing allows us to characterize
the nature of the relationship beyond the single relevance ranking using biased focus
measure. Identifying relationship sets requires that each database be probed once
for each source of bias considered, meaning that it can be more expensive than
simple query-based probing.

We first illustrate relationship sets for PubMed over the deep web collection. In
Table 5 we show four classes of relationship sets for lhigh ¼ 0:15, llow ¼ 0:05, and
ldiff ¼ 0:10 using the source-biased prober described above. In contrast to the
simple relevance ranking in Table 2, we see how the source-biased framework can
differentiate between the very similar resources (the l-equivalent sites WebMD,
AMA, and HealthAtoZ) and the more general resources (the l-superset sites Open
Directory, Google, and About) relative to PubMed. In addition, we can identify
sites with some common content (the l-overlap sites Monster and Mayo Clinic) and
sites concerned with significantly different topics (the l-mutex sites Silicon Investor,
Usenet Recipes, and Film Critic).

Similarly, we show in Table 6 several interesting relationships derived from the
newsgroup collection for lhigh ¼ 0:70, llow ¼ 0:40, and ldiff ¼ 0:30 using the Source
Bias prober discussed before. For each source considered, we probed all databases
in the newsgroup collection, evaluated the biased focus metric, and report in Table 6
the relationships discovered. Again, by relying on the source-biased database
analysis we may characterize relationships sets for each source that are helpful for
answering relationship-centric queries of the kind posed at the beginning of the
paper.

As an example, we identify sci:physics:particle as a member of the l-subset
relationship set of the mixed topic newsgroup mixed11, which consists of 25%
physics-related articles in addition to articles on backgammon, juggling, and
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telecommunications. Interestingly, we can see that there are several overlapping
relationships between newsgroups in related but slightly different fields (e.g., the
two sports newsgroups rec:sport:volleyball and rec:sport:cricket and the
game-related newsgroups rec:games:go and rec:games:chess:misc). Finally,
we also identify several unrelated newsgroups, including comp:sys:mac:system
relative to misc:immigration:usa and comp:lang:cþþ relative to talk:
religion:misc.

Table 5 Source-biased analysis: identifying relationships relative to PubMed.

Resource

(D)

URL Description focusPMðDÞ focusDðPMÞ Relationship

WebMD http://www.webmd.com Health/

Medical

0.23 0.18 l-equivalent

AMA http://www.ama-assn.org Health/

Medical

0.19 0.16 l-equivalent

HealthAtoZ http://

www.healthatoz.com

Health/

Medical

0.18 0.16 l-equivalent

Open

Directory

dmoz.org Web

Directory

0.44 0.08 l-superset

Google http://www.google.com Web

Search

Engine

0.37 0.10 l-superset

About http://www.about.com Web

Channels

0.25 0.08 l-superset

Monster http://www.monster.com Jobs 0.14 0.08 l-overlap

Mayo Clinic http://

www.mayoclinic.com

Health/

Medical

0.12 0.11 l-overlap

Silicon

Investor

http://

www.siliconinvestor.com

Finance 0.03 0.04 l-mutex

Usenet

Recipes

http://

www.recipes2.alastra.com

Recipes 0.02 0.03 l-mutex

Film Critic http://www.filmcritic.com Movies 0.01 0.03 l-mutex

Table 6 Source-biased analysis: identifying relationships in the newsgroup collection.

A B focusAðBÞ focusBðAÞ Relationship

comp.sys.mac.apps comp.sys.mac.system 0.86 0.76 l-equivalent

comp.sys.mac.system comp.sys.mac.advocacy 0.79 0.74 l-equivalent

sci.physics.particle sci.physics 0.86 0.80 l-equivalent

sci.physics.particle mixed45 0.86 0.62 l-subset/superset

comp.unix.misc mixed120 0.91 0.56 l-subset/superset

rec.boats.paddle mixed11 0.88 0.57 l-subset/superset

rec.sport.volleyball rec.sport.cricket 0.47 0.46 l-overlap

rec.games.go rec.games.chess.misc 0.50 0.53 l-overlap

comp.os.linux comp.unix 0.43 0.48 l-overlap

rec.crafts.textiles.sewing comp.lang.perl.misc 0.35 0.32 l-mutex

comp.sys.mac.system misc.immigration.usa 0.23 0.36 l-mutex

comp.lang.c++ talk.religion.misc 0.21 0.29 l-mutex
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7.4 Probing with focal terms

In our fourth set of experiments, we consider the impact of focal term probing on the
success rate of source-biased probing. We evaluate four flavors of focal term probing—
with the number of focal term groups k from which to draw source-biased probes set to 2,
3, 5, and 10. In our initial experiments with focal term probing, we discovered that there
was little impact on either the efficiency of probing or the quality of target database
evaluation when considering sources from the single-topic newsgroup collection.

In contrast, we discovered that focal term probing had a significant impact when
used on mixed topic newsgroups, in which there are documents from several
unrelated single topic newsgroups. In Figure 8, we show the probing efficiency for
the four focal term source-biased probers relative to the best basic source-biased
prober for 10 source–target pairs from the newsgroup collection. In each case, the
sources were drawn exclusively from the mixed topic newsgroups.

All of the focal term techniques resulted in more efficient probing versus basic
source-biased probing and only minor differences in ranking precision and
relationship set generation quality, indicating that focal term probing can be
advantageous in certain circumstances. Our intuition is that identifying focal terms
is considerably more important in cases in which there are clear distinctions in term
distributions as would be reflected in the mixed topic newsgroups in which several
groups of documents are concerned with different topics.

7.5 Varying key parameters

For our final set of experiments, we evaluate the impact of several key parameters
on the efficiency of source-biased probing. Again, we selected 10 sources and 10
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targets at random from the entire newsgroup collection, resulting in 100 source–
target pairs. The first parameter we consider is the choice of query selection for
source-biased probing. We consider three alternatives: random probe selection
(Source Bias (random)), probe selection based on the overall frequency of terms in
the source summary (Source Bias (dbFreq)), and probe selection based on the
document count of each term in the source summary (Source Bias (docCount)). We
show the results in Figure 9. The two frequency-based measures result in
approximately the same quality of extracted document, requiring the extraction of
fewer documents to achieve the same relevance level as the randomized source-
biased prober. Since the set of candidate probes in a source_s resource summary is
large (on the order of 1000 s), it seems reasonable to conclude that a random prober
has a high likelihood of selecting non-discriminating probe terms, and hence
extracting documents that are not relevant to the source of bias.

The second parameter we consider is the number of documents retrieved for each
query. We considered the Source Bias prober described above, but we now vary the
number of documents we retrieve per query, from 5 up to 20. As you can see in
Figure 10, there is little change, so varying retrieved documents appears not to have
a significant impact on the quality of source-biased probing.

The third parameter we compare is the choice of focus measure. In Figure 11, we
compare the three versions of focus first discussed in Section 4.2: Cosine focussðtÞ,
TW focussðtÞ, and CT focussðtÞ. The dashed lines indicate the actual value of the
overall focus measures calculated based on the actual resource summaries of the
sources and targets. The upper dashed line corresponds to the actual TW focussðtÞ.
The other two dashed lines correspond to Cosine focussðtÞ and CT focussðtÞ and are
overlapping. The first critical point to note is that both the TW focussðtÞ and
CT focussðtÞ are slow to approach the actual overall focus as indicated by the dashed
lines, indicating that substantially more documents must be extracted per target
before the estimated focus can be considered reliable. In contrast, the cosine-based
focus approaches the actual focus in only 45 documents on average, further bolstering
our claims for its use. Additionally, we note that Cosine focussðtÞ slightly over-
estimates the actual focus. This is reasonable, since for source-biased estimates
based on very few documents, we would expect to identify high-quality documents
first. Hence, the focus should be an overestimate. As the number of documents

Figure 9 Query selection
comparison.
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examined in a target nears the total available in the target, this upward bias should
disappear.

One of the critical parameters to the overall success of source-biased probing
with respect to comparing a source and a target is the quality of the original source
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summary. In this set of experiments, we investigate the degree to which the source
summary quality impacts the effectiveness of source-biased probing. We again
randomly selected five sources to compare to the entire set of 780 groups. For each
source Di (1 � i � 5), we constructed three resource summaries by extracting either
100, 10, or 1% of the documents using the No Bias prober.

A resource summary based on 100% of the documents is exactly the actual
summary ASummaryðDiÞ. The resource summaries based on 10 and 1% of the total
documents are estimated summaries of decreasing quality. For each of the five
sources, we identified the number of relevant groups in the entire dataset (call this
total r for each source). For non-obvious cases, we determined relevance by the
consensus opinion of three volunteers. We then evaluated the summary quality by
collecting 20 documents for each candidate target and ranking the targets by the
Cosine focussðtÞ metric. We calculated the effectiveness for each source as the per-
centage of relevant targets ranked in the top-r. In Figure 12, we show the relevance
ranking effectiveness for each source for each of the three resource summaries. The
overall relevance is not impacted very much by the degradation in the quality of the
resource summary. In three of the cases, the relevance either remains the same or
falls slightly as the source summary quality decreases in quality. In two of the cases
tested, the relevance precision increases slightly as the source summary quality de-
creases in quality. We attribute this phenomenon to the randomness inherent in the
target summary probing, and aim to study it further in future work.

In our final experiment, we further illustrate how source summaries based on
fairly small data samples may perform nearly as well as the actual source summaries
for evaluating a target database. In Figure 13, we show the impact of the source
summary quality for one source–target pair (including additional data for a 50%
summary and a 5% summary). Interestingly, the relative slope for each curve is
approximately the same, with only the 1% summary shifted down significantly from
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the performance of the actual (100%) summary. This suggests that relying on fairly
small source samples (e.g., 5%) may be reasonable for evaluating deep web
databases.

8 Conclusions and future work

We have presented a novel source-biased approach to efficiently discover
interesting relationships among deep web databases. Our source-biased approach
supports a relationship-centric view over a collection of deep web databases through
source-biased probing and source-biased relevance metrics. Concretely, we have
shown that the source-biased approach allows us to determine in very few
interactions whether a target database is relevant to the source database by probing
the target with very precise probes. The biased focus measure allows us to evaluate
the relevance of deep web databases discovered and identify interesting types of
source-biased relationships for a collection of deep web databases. Additionally, we
have introduced source-biased probing with focal terms as a performance
optimization to further improve the effectiveness of the basic source-biased model.
Our experiments show that the source-biased approach outperforms query-biased
probing and unbiased probing in most of the cases we have examined.

Our research on source-biased relevance reasoning continues along several
dimensions. Because the source-biased probing framework relies on estimation at
several key junctures, the introduction of errors in relevance evaluation and
relationship identification must be carefully monitored. Error is introduced first
through creation of the unbiased summary of the source which serves as the
dictionary of candidate source-biased probes, then through the probing estimation
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of the target, and finally through the reliance on term-based biased focus metrics for
the evaluation of the underlying relevance of one deep web database to another.
Measuring and minimizing this error may be important in many situations. On the
theoretical side, our efforts are directed at extending the source-biased approach to a
deep web database neighborhood graph for further analysis of relationships among
multiple deep web databases. We are interested in extending the notion of
relationship sets to account for inferences across deep web database pairs for which
there may be no direct probing. For example, from Table 6, we observe that l-
equivalentðcomp:sys:mac:appsÞ = fcomp:sys:mac:systemg and that l-equivalent
ðcomp:sys:mac:systemÞ = fcomp:sys:mac:apps; comp:sys:mac:advocacyg. Under what
circumstances may we infer that comp:sys:mac:advocacy should also be in l-
equivalentðcomp:sys:mac:appsÞ, since an inference procedure is likely to break down
as less direct evidence is available. Additionally, we are interested in comparing the
clustering-based approach of the focal term probing algorithm with alternative grouping
algorithms, like the popular database technique of frequent itemset mining. Finally, on
the practical side we are continuing the development of the DynaBot system for
crawling and analyzing deep web databases using the source-biased approach for
discovering interesting relationships.
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