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ABSTRACT
There has been a substantial increase in the number of Web data
sources whose contents are hidden and can only be accessed through
form interfaces. To leverage this data, several applications have
emerged that aim to automate and simplify the access to these data
sources, from hidden-Web crawlers and meta-searchers to Web in-
formation integration systems. A requirement shared by these ap-
plications is the ability to understand these forms, so that they
can automatically fill them out. In this paper, we address a key
problem in form understanding: how to match elements across dis-
tinct forms. Although this problem has been studied in the litera-
ture, existing approaches have important limitations. Notably, they
only handle small form collections and assume that form elements
are clean and normalized, often through manual pre-processing.
When a large number of forms is automatically gathered, matching
form schemata presents new challenges: data heterogeneity is com-
pounded with the Web-scale and noise introduced by automated
processes. We propose PruSM, a prudent schema matching strat-
egy the determines matches for form elements in a prudent fash-
ion, with the goal of minimizing error propagation. A experimental
evaluation of PruSM using widely available data sets shows that the
approach effective and able to accurately match a large number of
form schemata and without requiring any manual pre-processing.

Categories and Subject Descriptors
H.2.5 [Database Management]: Heterogeneous Databases

General Terms
Algorithms, Experimentation
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1. INTRODUCTION
It is estimated there are millions of databases on the Web whose

contents are hidden and are only exposed on demand, as users fill
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out and submit Web forms [12]. Several applications have emerged
which attempt to uncover hidden-Web information and make it
more easily accessible, including: metasearchers [8, 9], hidden-
Web crawlers [2, 13], and Web information integration systems [5,
11, 20]. A common requirement for these systems is the ability
to understand these forms, and in particular, to identify correspon-
dences among elements in different forms. Web information inte-
gration systems and meta-searchers aim to provide a unified inter-
face (a global schema) to a large number of data sources. By iden-
tifying correspondences among elements, it is possible to group
elements with the same meaning, which leads to a more usable
schema that can cover a potentially larger number of data sources.
Hidden-Web crawlers automatically generate value assignments to
the various form elements, and submit these to retrieve the hid-
den content. Having element correspondences available enables a
crawler to gather sets of values, present in different forms, which
can be used to fill out the forms. As an example, consider the forms
in Figure 1, which are used to search for used cars. These forms
use different representations as well as different labels to represent
a given concept. In the first and second forms use labels by Brand

and Car Make to represent the concept ’car make’. They also use
different element types: a text field and a selection list, respectively.
Thus, by identifying the correspondence between the two, a crawler
could obtain a list of values in the second form to fill out the first
one.

In this paper, we propose a new approach to the problem of form
schema matching. Given a large set of Web forms, our goal is to
automatically identify the correspondences (or matches) among el-
ements in these forms. There are several challenges involved in
deriving element correspondences for form schemas. As Figure 1
illustrates, there is a wide variability in how forms are designed,
even within a well-defined domain. Different labels, including la-
bels with no syntactic similarity (e.g., make and manufacturers)
are used to represent the same concept, while syntactically simi-
lar labels (e.g., manufacturer and year of manufacture) are
used to represent different concepts. Besides labels, element val-
ues are another source of similarity information that can be used
to derive correspondences. But similar to labels, they can lead to
mistakes. For example, price and mileage have similar values
and yet represent different concepts. Co-occurrence statistics can
also be useful to identify mappings [10, 18]. For example, by ob-
serving that manufacturer and brand co-occur with a similar set
of labels (or attributes) but rarely co-occur together, it is possible
to infer that they are synonyms. However, when used in isolation,
attribute correlation can lead to incorrect matches. In particular,
correlation matching scores (section 2.1.1) can be artificially high
for rare attributes, since rare attributes seldom co-occur with (all)
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Figure 1: Matching form schemata in the Auto domain. Different labels are used to represent the same concept.

Figure 2: Label histogram in the FFC dataset

other attributes. Consequently, if only one source of similarity is
used, be it labels or values, incorrect matches will be derived.

While solutions to problem of form-schema matching have been
proposed in the literature [11, 20, 10, 18, 12, 19], they share an
important limitation: they assume as input, a clean, manually-pre-
processed set of forms. Consequently, they are not able to ef-
fectively handle large collections. Approaches [11, 7, 4, 20, 12,
19] which employ one matcher of a fixed combination of match-
ers may fail, since the effectiveness of a given matcher varies not
only within domain but also for different forms within a domain.
Holistic approaches [18, 10] benefit from having a large number of
forms, but their performance depends on the availability of manu-
ally pre-processed data. Reliance on label simplification is prob-
lematic since manual simplification is not feasible for large collec-
tions, and automated techniques invariably lead to errors. Consider,
for example, the concept Model in the used car domain. Some
labels used for this concept include: Choose vehicle model

example mustang, What is your model, Please select

a vehicle. While Model is usually an important term, it is not
important in Model Year. On the other hand, while the term vehicle

is not important in Choose vehicle model, it is important in
Please select a vehicle, where it denotes make/model.

Holistic approaches can also be negatively affected in the pres-
ence of rare labels, which occur often in different domains. Con-
sider Figure 2 which shows the frequency of labels in three different
form domains: Auto, Airfare and Books. In this histogram, we can
observe a long tail, i.e., few attributes have high frequency while
many attributes have low frequency. Holistic approaches assume a
Zipf-like distribution [10, 18], which can only be obtained by man-
ually pre-processing the data and normalizing the labels.
Contributions. We propose PruSM, a new system for form-schema
matching that combines multiple sources of information for simi-
larity, and does so in a prudent fashion: by first deriving corre-
spondences with high confidence, it minimizes error propagation.
PruSM does not require forms to be pre-processed and it is robust
to rare attributes. We also discuss experiments on two form collec-
tions which show that PruSM obtains higher accuracy than existing
holistic approaches.

2. THE PRUSM SYSTEM
The high-level architecture of PruSM — Prudent Schema Match-

ing is shown in Figure 3. Given a set of forms, the Aggregation
module groups together form elements into attribute sets. The fre-
quent attributes are used in Matching Discovery module. An at-
tribute is considered frequent if its frequency is above the threshold
Tc. Matching Discovery finds matches (both 1:1 and 1:n) among
frequent attributes.
Aggregation. An important challenge in form-schema matching
problem is the sparseness of values. Many form elements do not
have any associated domain values, and even for the ones that do,
the values of similar elements might be different in different forms.
To attenuate this problem, PruSM aggregates similar elements (from
different forms) and their values. It creates a set of attributes by
grouping elements whose labels are the same after stemming and
removing stop-words 1. For instance, Select a make and Select
makes are aggregated as an attribute with label select make. Our
goal is to capture the underlying distribution for the values for the
different concepts (or attributes). As we discuss below, aggregation
is also fundamental for computing attribute correlations, which are
based on set of elements.

2.1 Matching Discovery
As part of the prudent strategy, Matching Discovery (MD) aims

to discover only matches that have high confidence, and to do so,
it only considers frequent attributes. In addition, it combines the
multiple sources of similarity in such a way that they re-inforce
each other.

2.1.1 Computing similarities
Given two attributes (Ai, Aj), we quantify the similarity be-

tween them using three measures: label similarity, domain-value
similarity and correlation.
Label Similarity. Because forms are designed for human con-
sumption, labels are descriptive and are often an effective means
for identifying similar elements. We define the label similarity be-
tween two attributes (Ai, Aj) as the cosine distance [1] between
the term vectors for their labels:

lsim(Ai, Aj) = cos(li, lj) (1)

Each term is associated to a weight that captures its importance.
To capture the importance of terms, we use both term frequency
(TF) [1] and the single-token frequency (STF) [14]. The latter dis-
tinguishes between labels that frequently appear alone and are thus
likely to be important (e.g., Make, Model), and labels that only ap-
pear together with other labels, and are thus unlikely to represent
an important concept (e.g., Please, Choose).
Domain-Value Similarity. Recall that elements with the same la-
bel are clustered together. Before computing the domain similarity
between two attributes, we aggregate all the domain values for each
element in the attribute cluster. Given an attribute cluster Ak, we
1http://members.unine.ch/jacques.savoy/clef/englishST.txt
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Figure 3: The high-level architecture of PruSM

build a vector that contains the occurrences of all values associated
with the label l for Ak and their frequencies:

Dk =
⋃

i=1..n

(vi : frequency)

Given two attribute clusters Ai and Aj , the cosine distance is
then used to measure the similarity between their corresponding
value vectors:

dsim(Ai, Aj) = cos(Di, Dj) (2)

Correlation. By holistically analyzing a set of forms, we can lever-
age an implicit source of similarity information: attribute correla-
tion. To compute correlation, In PruSM, we use X/Y measures [18]
which are defined as follows:

X(Ap, Aq) =

{
0 if Ap, Aq ⊂ f
(Cp−Cpq)(Cq−Cpq)

(Cp+Cq)
otherwise (3)

Y (Ap, Aq) =
Cpq

min(Cp, Cq)
(4)

Cp, Cq , Cpq correspond to the number of forms which contain Ap,
Aq and both Ap, Aq . The matching score X captures negative cor-
relation while the grouping score Y captures positive correlation.
The intuition comes from the fact that synonym attributes are se-
mantic alternatives and rarely co-occur in the same form interface
—they are negatively correlated (e.g., Make and Brand). On the
other hand, grouping attributes are semantic complements and of-
ten co-occur in the same form interfaces —they are positively cor-
related (e.g., First name and Last name).

2.1.2 Prudent Matcher
The goal of Prudent Matcher is to identify matches with high

confidence. We create (independent) matchers [17, 16, 7, 6] for
each feature: label similarity, domain-value similarity and corre-
lation. Although these features are obtained at the level of set of
elements, using them in isolation is still insufficient and leads to er-
ror propagation. We then define a prudent matcher, which consists
of a set of constraints over these independent matchers. A prudent
match is valid if
X(Ap, Aq) > TMatching_score AND

[dsim(Ap, Aq) > Tdsim OR lsim(Ap, Aq) > Tlsim].
The prudent matcher is a composite matcher. It is simple yet

comprehensive because it incorporates both visible similarity in-
formation (e.g., label similarity and value similarity) and latent in-
formation (attribute correlation) at a high level of set of elements.
The intuition behind the prudent matcher is that the different fea-
tures re-inforce each other. For example, even when two attributes
Ap and Aq have a high correlation score, they do not provide a
good match unless additional evidence is available.

2.1.3 Constructing Matches
We construct a set of confident matches M by iteratively choos-

ing highest negatively correlated attribute pairs which pass the pru-
dent matcher, and deciding whether a match should be added to
an existing set or whether a new matching component should be
created.

Figure 4: Precision and recall for different strategies to com-
bine similarity in the matching discovery module of PruSM

3. EXPERIMENTAL EVALUATION

3.1 Experimental Setup
We evaluate the PruSM performance over two public form col-

lections: TEL8 and FFC. TEL82 consists of a set of manually col-
lected and pre-processed forms. FFC contains forms that were au-
tomatically gathered by a focused crawler [3], therefore—it is large
and more heterogeneous than TEL8. For both data sets, we manu-
ally extracted the form-element labels. As shown in Figure 2, there
is a wide variability in the frequency distribution of these labels,
especially the large number of rare attributes in the long tail for the
FFC collection.

We compare PruSM against HSM [18] using these two data sets.
We use our own implementation of HSM with a frequency thresh-
old Tc=5%. In addition, we use the element labels as is—no syn-
tactic merging was applied.
Effectiveness measures. To evaluate the effectiveness of PruSM,
we use precision, recall and F-measure [1]. Since there are many
matches, we measure the average precision, recall and F-measure
according to the sizes of each match.

3.2 Preliminary results
Prudent Matcher. We compare the prudent matcher against other
matchers including: singular matchers (correlation, lsim, dsim);
combination of these matchers e.g., linear combination of lsim and
dsim (Avg2) or lsim, dsim and correlation (Avg3) or the maximum
value among lsim and dsim (Max2) or lsim, dsim and correlation
(Max3). Figure 4 shows that the prudent matcher can avoid a large
number of incorrect matches and obtains substantially higher pre-
cision than the others, which is a key requirement for Matching
Discovery—to avoid error propagation.
Effectiveness of Matching Discovery. Figure 3.2 shows the ac-
curacy values of HSM and PruSM_MD. HSM has lower accuracy
because we use a low frequency threshold Tc and use the labels as
they are. In particular, HSM has low accuracy in heterogeneous do-
mains like FFC-Book and higher accuracy in ’clean’ domains like
TEL8-Book. For both data sets, and in all domains, the precision,
recall and F-measure values of PruSM are higher than those for
HSM because it can obtain both syntactic and semantic matches.
For example, PruSM can identity many variations of auto make in-
cluding car make, select vehicle, manufacture, choose a

make, etc. The gains in F-measure of PruSM_MD compared to
HSM vary between 9% and 30% in TEL8, and between 33% and
39% in FFC. Smaller improvements are observed in clean domains
(e.g., TEL8 Book—9.1%, and TEL8 Airfare—9.3%), where data
is cleaner and HSM is expected to perform well. Bigger improve-
ments are observed in more heterogeneous domains of FFC (e.g.,
FFC Book—37.9% and FFC Auto—39.4%).

2http://metaquerier.cs.uiuc.edu/repository
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Figure 5: Effectiveness of PruSM versus HSM on TEL8 and FFC dataset

4. RELATED WORK
Several approaches have been proposed for matching forms [19,

20, 11, 10, 10, 18]. Clustering-based approaches [20, 11, 4] com-
bine visible features of individual form elements to define a sim-
ilarity function between two elements in different forms. Besides
requiring clean data as input, most of these approaches are only
effective for a small number of forms. To identify synonyms, they
use Wordnet [11] which is impossible to identify domain-specific
synonyms (like Vehicle and Make); or leverage the domain values
[15, 17], which is insufficient for attributes that range over a sparse
domain, or attributes that are not associated with values.

Holistic approaches [10, 18] benefit from considering a large
number of schemas. DCM [10] exploits the “apriori” property
to discover all possible positively and negatively correlated groups.
HSM [18] uses a correlation-based greedy algorithm to discover el-
ement synonyms. However, similar to clustering-based approaches,
they also require clean and normalized data which limits their scal-
ability. They also ignore rare attributes—when rare attributes are
present, their performance decreases significantly [10, 18].

Although two-phase matching has been used for matching ontol-
ogy and database schemata [11, 7, 4], they assume certain matchers
are strong and combine them in a fixed manner. Given the Web data
heterogeneity, using a fixed combination of matchers at the level of
individual elements is not sufficient. PruSM comprehensively com-
bines meta-features in a prudent matcher and also utilizes strong
matches as additional constraints to reconcile weaker and uncertain
matches.

5. CONCLUSIONS
In this paper, we proposed PruSM, an automated schema match-

ing approach that is effective for large and heterogenous forms col-
lections. PruSM applies schema matching in a prudent fashion,
focusing on high-frequency attributes which provide statistically
significant evidence, and combines multiple sources of similarity
in a such a way that they re-inforce each other.
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