
On-the-Fly Constraint Mapping across Web Query
Interfaces ∗

Zhen Zhang, Bin He, Kevin Chen-Chuan Chang
Computer Science Department

University of Illinois at Urbana-Champaign
{zhang2, binhe}@uiuc.edu, kcchang@cs.uiuc.edu

Abstract

Recently, the Web has been rapidly “deepened” with the
prevalence of databases online and becomes an impor-
tant frontier for data integration. On this deep Web, a
significant amount of information can only be accessed
as response to dynamically issued queries to thequery
interfaceof a back-end database, instead of by traversing
static URL links. Such a query interface expresses a set
of constraint templates, where each constraint template
states how an attribute can be queried. To enable auto-
matic query mediation among heterogenous deep Web
sources, it is critical to automatically translate those con-
straints, which we name asconstraint mapping. In par-
ticular, this paper aims at enablingon-the-flyconstraint
mapping, which is a critical task for integrating the large
scale and dynamic deep Web. Such on-the-fly query trans-
lation poses a significant new challenge on the general-
ity and extensibility of the translation framework. Ex-
isting works pursue a per-source rule-driven framework
and thus cannot satisfy such requirements. In contrast,
we propose a generic type-based search-driven transla-
tion framework by considering the constraint mapping
for each data type as a search problem. In particular, in
this paper, we develop search algorithms for text and nu-
meric types. Our experiments over real deep Web sources
show that our approach is promising to mediate queries
for large scale integration.

1. INTRODUCTION
The Web has been rapidly “deepened” with the prevalence of

databases online: A significant amount of information is now hid-
den on this “deep” Web, behind thequery interfacesof searchable
databases (e.g., Figure 1 shows two such interfaces). Instead of
direct linking through static URLs, such information is only ac-
cessible as responses to dynamicqueriesthrough these interfaces.
With massive sources, the deep Web is clearly an important fron-
tier for data integration. In particular, to enable query mediation
for effective access of Web databases, it is critical to automatically
translate queries across their query interfaces.

Such translation is, in essence, to match and express query con-
ditions in terms of what an interface can “say”: Each query inter-
face consists of a set ofconstraint templates. A template speci-
fies the “format” of an acceptable query condition, as a three-tuple
[attribute; operator; value]. For example, for searching a “Books”
database, query interfaceQI1 (Figure 1) supports four constraint
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Figure 1: Two example query interfaces and their matching.

templatesS1: [title; contain; $v], S2: [category; contain; $v], S3:
[price; between; $low,$high], andS4: [reader age; in; {[4:8], . . .}].
Note these templates use variables as “placeholders” (which we
prefix by$, e.g., $v) for users to fill in actual values. In contrast,
QI2 supports a different set of templates–T1 on title, T2 on sub-
ject, · · · , andT4 on price. Thus, querying on the deep Web is
to instantiatethese templates into actualconstraints- by specifying
concrete operators and values. For instance, we may searchQI1

by constraints2 = [category; contain; "computer science" ], as
an “instantiation” of templateS2.

In particular, this paper addresses the problem ofconstraint map-
ping, not schema matching. Specifically, as Figure 1 indicates,
between a pair of “source” and “target” interfaces (e.g., QI1 and
QI2), our focus is to translate between known “matching” con-
straint templates (e.g., S2 in QI1 matchesT2 in QI2). Formally,
given a source template (e.g., S2), its matching target template
(e.g., T2), and a specific source constraint (e.g., constraints2, as
an instantiation ofS2), the objective of constraint mapping is to
find the target constraint with the closest semantic meaning to the
source constraint. For instance, as Figure 2 shows, constraint map-
ping is to instantiateT2 into t2=[subject; all words; "computer
science" ], which is the best translation of the source constraint
s2, i.e., s2 → t2. As we will discuss below, we consider the dis-
covery of semantic correspondence betweenS2 andT2, which is
essentially a schema matching problem, as an independent task and
beyond the scope of this paper.

While we focus on constraint mapping in this paper, for com-
plete query translation, we note that there are other necessary tasks,
which several recent works have paved the way: First, we need to
extract constraint templates (e.g., T1, · · · , T4) from a query inter-
face. We study suchquery-form extractorin [10]. Second, given
source and target constraint templates (e.g., QI1 andQI2 respec-
tively), we need to find matching templates (as Figure 1 shows).
This problem is essentially aschema matchingproblem, which has
been extensively studied in the literature [6]. In particular, refer-
ences [5, 8] specifically focus on matching Web query interfaces.

The large scale and dynamic features of the deep Web ask for the
need ofon-the-flyquery translation. Specifically, the deep Web is of
large scale (at the order of105 sources [1]) and of a dynamic nature
(as sources are changing and new ones are emerging). Also, it is
very diverse, with various sources (e.g., for finding books, airfares,
patents,etc.)– Users will thus interact with “ad-hoc” sources to sat-
isfy their various information need. This large-scale, dynamic, and
ad-hoc nature mandates effective integration to enable “on the fly”



Figure 2: Constraint mapping acrossQI1 and QI2.

query translation. That is, the mapping technique should be able
to translate queries for unseen sources, where no pre-configured
translation knowledge can be assumed.

While critical for integrating Web databases, such on-the-fly query
translation brings a new challenge. Existing work [2] on constraint
mapping assumes pre-selected sources (e.g., amazon.com and bn.com
for book comparison shopping), and relies on aper-source, rule-
driven framework. Such statically configured framework is not
suitable for our dynamic scenario: First, It is notgeneralbecause it
manually records the translation knowledge for each source. Sec-
ond, it is notextensible, since the translation rules encode pair-
wise mappings between two schemas and thus translation amongn
schemas requiresO(n2) sets of rules, which makes extension labor
extensive and hard to maintain (Section 3.1).

In this paper, we propose atype-based, search-driventranslation
framework to achieve both the generality and the extensibility. The
idea of type-based translation is motivated by our observation that
constraint templates of different concepts (e.g., the concept about
title and the one about author) often share similar patterns. For in-
stance, the constraint templates oftitle andauthor usually share
the same operator (e.g., “contain”) and value format (e.g., an in-
put box). Such regularity indicates an implicit notion oftype that
decides the applicable operators and expected value formats for an
attribute. Therefore, instead of per-source knowledge, we propose
type-based translation, which “encodes” more generic translation
knowledge for each type.

Further, we realize the type-based translation as a search prob-
lem, where the search space is defined by the template patterns of
each type. Specifically, given a source query, we search for the best
instantiation for the target query template that retrieves the closest
set of results as the source. Such search is guided by a closeness
function, which essentially evaluates the similarity of the query re-
sults between two constraints.

In summary, this paper makes the following contributions:

• Our current work plus our preceding works complete the
framework to tackle the problem of on-the-fly query trans-
lation. To our knowledge, while important for large-scale
integration in general (and the deep Web in particular), this
problem has not been extensively studied.

• We develop atype-based(instead of source-specific) mecha-
nism to generically handle on-the-fly translation– by leverag-
ing the “regularities” across the implicit types of constraints.

• We develop asearch-driven(instead of rule-driven) machin-
ery to dynamically find closest mappings– by abstracting trans-
lation as a search problem.

2. RELATED WORK
Constraint mapping (which this paper focuses on) is one crit-

ical step for information integration. While on-the-fly constraint
mapping in a dynamic integration setting has not be studied before,
there are some works such as query mediation and schema map-
ping, which are closely related to our work.

First, in contrast to query mediation: Query mediation works
have been mainly focusing on mediating queries across multiple
sources and thus abstract the problem as a paradigm of answer-
ing query using views [4]. In particular, they assume each source
has a wrapper, which encapsulates the tasks of extracting query ca-
pability, schema matching and constraint mapping for that source.
The main focus of query mediation is thus on how to decompose

r1 [category; contain; $s] → emit: [subject; all; $s]
r2 [title; contain; $t] → emit: [title; contain; $t]
r3 [price range; between; $s,$t] → $p=ChooseClosestNum($s),

emit: [price; less than; $p]
r4 [reader age; between; $s] → $r=ChooseClosestRange($s)

emit: [age; between; $r]

Figure 3: Translation rules T12 betweenQI1 and QI2.

a user query into sub-queries across multiple sources. In contrast,
we are focusing on query translation between two sources other
than mediating queries across multiple sources. In particular, we
are dealing with the mapping of constraint heterogeneity (i.e., se-
mantically related constraints may support different operators and
value formats). Further, while reference [2] specifically tackles the
constraint heterogeneity, it assumes a static system setting, where
per-source translation knowledge can be acquired. However, for
our scenario of large scale integration, we have to on-the-fly trans-
late queries and thus need to develop new mapping techniques. We
will discuss the comparison in details in Section 3.1.

Second, in contrast to schema mapping: Schema mapping [9]
aims at translating a set of data values from one source to another
one, according to given matchings. Therefore, schema mapping
only concerns about the equality relation between different schema,
based upon which data is converted. In particular, no constraint het-
erogeneity is considered in schema mapping. In contrast, constraint
mapping focuses on translating specific queries other than the data
values. It in general supports broader semantic translation. Specif-
ically, since constraints templates may support different operators
or value formats, equality relationship cannot always be achieved.
Hence, in many situations, we have to choose the semantically clos-
est translation other than the equal one.

3. MOTIVATION & FRAMEWORK
As discussed in Section 1 and 2, although query mediation has

been extensively investigated in the literature, the existing work
often assumes a static small scale system setting. In the section, we
review this framework, its infeasibility for on-the-fly translation,
and further propose our solution.

3.1 Preliminary
The existing work that specifically addresses the problem of con-

straint mapping is introduced under the scenario of a static small
scale system setting, where only a small number of pre-configured
sources are integrated. Based on such a setting, a per-source pairwise-
rule driven translation framework is developed [2].

Example 1: To translate queries fromQI1 to QI2 in Figure 1, the
per-source rule-driven framework needs a set of manually-written
rulesT12 = {r1, r2, r3, r4} as shown in Figure 3. In particular,
rule r1 specifies that when mapping constraints fromcategory to
subject, we choose operatorall and fill in the same value as in the
source constraint.

The rules are designed only for these two sources - it specifically
tells what the matched constraints are (e.g., category vs.subject),
which operator to choose (e.g., $op="all" ) and what value to fill
in (e.g., $c = s). Hence, the rules are pairwise - it handles the
translation between two specific constraints, each of them is in a
specific source.

Such a framework is designed and works well for small scale
integration systems. Consequently, it lacks of generality and ex-
tensibility required for on-the-fly query translation in large scale
integration scenarios, in particular the deep Web sources. First,
generality: Per-source translation framework cannot generally han-
dle the translation between arbitrary “unseen” sources because it
needs translation knowledge for each and every source.

Second, extensibility: Pairwise translation cannot be easily ex-
tended. As we will see in next section, adapting the pairwise-rule-
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Figure 4: Growth of patterns over constraint groups.

based framework for on-the-fly translation needs rules between ev-
ery pair of constraint templates, and thus adding a new constraint
template needs to add multiple rules mapping back and forth to ev-
ery existing one, which makes the system difficult to extend.

3.2 Motivation: Type-based, Search-Driven
To achieve the generality, we need “source-independent” transla-

tion framework that can generally handle translations without rules
(e.g., T12 in Example 1) that is tailored for specific sources (e.g.,
QI1 andQI2). Our goal is to develop such a generic framework.

Our solution is motivated by our observation on the deep Web
sources. In particular, to survey the constraints, we explore several
domains in the TEL-8 dataset of the UIUC Web Integration Repos-
itory [3]. TEL-8 dataset contains about 500 deep Web sources in 8
domains e.g., Books, Automobiles.

We observe that when looking at a large collection of sources, the
group of matched constraint templates, which we callconstraint
group (e.g., the group oftitle constraints), usually have a limited
number oftemplate patternsthat differs in operators and value for-
mats. For instance, exploring 65 book sources in the TEL-8 dataset,
we only find six patterns for thetitle constraint group:[title; {all};
$val], [title; {all, any}; $val], [title; {all, any, exact}; $val], [title; {all,
start}; $val], [title; {all, exact}; $val], and [title; {all, exact, start};
$val], where “$val” represents the variable accepting any string
presented as an input box in query interfaces. Similarly, there are
four patterns for the constraint group aboutsubject: [subject; {all};
$val], [subject; {equal}; $val:{D}], [subject; {subsume}; $val:{D}],
and[subject; {all, start}; $val], where $val:{D} represents the vari-
able accepting values from the given domainD. For example, the
second pattern allows choosing one value from a selection listD
and the third choosing multiple values from a select list.

Further, we observe that constraint groups of the same data type
(e.g., text type or numeric type) often naturally share similar com-
mon patterns. This observation seems to imply that mapping of
constraints depends on their syntactic data types instead of seman-
tic attributes (e.g.,subject and title). To further understand to
what extent such commonality exists, we survey two sets of similar
constraint groups: “text like” groups and “numeric like” groups.
For each set, we collect up to four most popular constraint groups
(if there are so many) from three domains in the TEL-8 dataset:
Books, Automobiles and Airfares. For example, the four “text like”
constraint groups from Books domain aretitle, author, keywords
andsubject. Also, the four “numeric like” constraint groups from
Automobiles domain areprice, mileage, distance andcylinder.
Figure 4 shows how the patterns increase when new constraint groups
are observed, where the x-axis denotes the number of observed con-
straint groups and y-axis the number of observed patterns accumu-
latively. As we can see, the emergence of the patterns generally
converge. In particular, in “text like” groups, no new patterns ap-
pear after the9th group.

Motivated by this observation, we achieve the generality by lever-
aging the regularity among constraint groups and thus proposetype-
basedtranslation. The type of the constraint group generally deter-
mines the applicable operators and accepted value formats for con-
straints of this type. For instance,text type constraints usually
support operators such asany, all, exact, startand accept string

values, andnumeric type constraints usually support operators
such asequal, greater than, less than, betweenand accept numeric
values. Therefore, different constraints of the same type share the
translation knowledge, which can be exploited to direct the query
translation.

However, for this type-based translation, how can we achieve the
extensibility? As we can see from the Example 1, traditional rules
realize a pairwise translation paradigm: each rule specifies how to
map between two specific template patterns. Therefore, a type with
m patterns will needm ∗ (m − 1) rules to handle the translation
within the type. For instance, with 10 patterns in text type (as Fig-
ure 4 shows), we need to have 90 rules to enable the translation
between any two patterns. Consequently, such a framework does
not give good scalability and extensibility - adding a new pattern
needs2 ∗ m rules to map back and forth to all existing patterns,
which is labor intensive and hard to maintain.

To achieve the extensibility, we explore asearch-drivenapproach.
Given a source constraint and a target constraint template, our con-
straint mapping framework searches possible target instantiations
for the closest one to the source constraint. The search is guided
by a closeness function, which evaluates the proximity of a map-
ping based on acloseness metric. Such dynamic search mechanism
eliminates the need for static, pairwise rules.

In summary, we develop a type-based search-driven framework
for large scale constraint mapping. This framework essentially em-
ploy a search mechanism (instead of static rules) for each type (in-
stead of each source or pattern).

3.3 System Framework
In this section, we give an overview of the constraint mapping

framework (as Figure 5 shows), which starts from a source con-
straints and a target constraint templateT , and outputs the closest
target constrainttopt, thatT can generate, tos. In particular, the
type recognizerfirst identifies the type of the constraints, and then
dispatches them accordingly to thetype handler. Thetype handler
then performs the search to find a good instantiation among possi-
ble ones described byT , which is then returned as the mapping.

Thetype recognizertakes the source constraints and target con-
straint templateT as input, and infers the data type by analyz-
ing the constraints syntactically. The type of a constraint are of-
ten hinted by its syntactical features. Consider the constraints in
Figure 1, to recognize the data types, we can exploit the distinc-
tive patterns (e.g., the from-to pattern fornumeric type, as used
in price range), the operators presented (e.g., all, any, exactfor
text type), the values filled in the source constraint (e.g., 35 in
price range) and the value domain (e.g., a selection list inprice).
Currently, we use simple rules to recognize the types based on the
above features. In the future, we may explore machine learning
approach to train a classifier for automatic type recognition.

As the major component of the framework, thetype handler
takes the constraints dispatched by thetype recognizeras input and
performs search among possible instantiations of the target con-
straint template for the best one. In next section, we will discuss
how to perform the search and how to evaluate the closeness of
mappings in details.

4. CONSTRAINT MAPPING
In this section, we discuss how constraint mapping is realized by

a search process to find out the good translations. In particular, we
study two most common types -text andnumeric to illustrate
the principle of our search-driven approach for constraint mapping.

4.1 The Translation Problem
As abstracted in Section 3, given a source constraint and a target

constraint template, constraint mapping is essentially to find the
best target constraintw.r.t. a closeness metric. More formally, we
define the problem as follows:
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Figure 5: Framework of constraint mapping.

t1 [subject; any; "computer science" ]
t2 [subject; all; "computer science" ]
t3 [subject; any; "computer" ]
t4 [subject; any; "science" ]
. . . . . .

Figure 6: Search space of constraint mapping.
Problem Statement: Let S and T denote the source and target
constraint template respectively, andI(S) andI(T ) denote a set
of constraints thatS and T can instantiate respectively.C(s, t)
denotes the closeness metric that assesses the closeness of the con-
straints andt. Constraint mapping is that, givens ∈ I(S) andT ,
find topt ∈ I(T ) such thatC(s, topt) is maximized,i.e.,

topt = arg max
ti∈I(T )

C(s, ti) (1)

Let us use an example to illustrate the components of our search
problem for constraint mapping.

Example 2: Consider the example shown in Figure 5 to map the
constraints betweencategory in QI1 and subject in QI2. The
source constraints = [category; contain; "computer science" ]
is instantiated from templateS = [category; contain; $val] 1 by
populating $val="computer science." The target constraint
templateT = [subject; $op; $val] accepts operators $op from {
"any words" , "all words" } (simply written as"any, all"
in the following paper), and value $val from any string. Therefore,
the search spaceI(T ) contains possible instantiations ofT as Fig-
ure 6 enumerates some of them. Among the candidate target con-
straintst1, t2, . . . , from I(T ), the constraint mapping thus searches
for theti ∈ I(T ) that is closest tos, i.e., C(s, ti) is maximized. In
the example the best mappingtopt = t2.

To quantify the closeness of the mapping, the closeness metricC
is defined. Ideally, the mapped constraintst should retrieve exactly
the same results as the original ones. However, since such an exact
mapping may not exist (as Figure 2 shows an example on mapping
price), theapproximate mappingmay introducefalse positivesor
false negativesas opposed to the original constraint. Figure 7 il-
lustrates those errors using a Venn diagram for original constraint
s and its translationt. To quantify those errors, two metrics are
introduced asprecisionto capture the false positives andrecall to
capture false negatives.

P(s, t) =
|s ∧ t|
|t| ,R(s, t) =

|s ∧ t|
|s| (2)

With the two metrics to capture the mapping errors, the close-
ness metric is thus a formula defined on the two,i.e., C(s, t) =
F(P(s, t),R(s, t)). For example, if we measure the closeness as
|s ∧ t|/|s ∨ t|, thenC is defined as:

1We assume operators of a constraint are known. For constraints
without explicit operators (e.g., S), we assign a default one (e.g.,
contains) based on the most commonly used operator observed in
constraints of same type.
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Figure 7: Venn Diagram of Precision and Recall.

C(s, t) =
1

1
P(s,t)

+ 1
R(s,t)

− 1
(3)

As abstracted in Equation 1, to realize a search paradigm, the
type handler needs to do the following with the inherent challenges:

1. define a search spaceI(T ) to traverse: How to define a rea-
sonable space that on one hand does not lose good translations, on
the other hand is of manageable size to be traversed.

2. enumerate the candidate mappings(s, ti) to be evaluated;
3. assess the closeness metricC(s, ti) to measure the closeness

of the mapping(s, ti): How to implement a closeness function to
evaluateC(s, ti)? Do we need semantic reasoning to infer their
closeness?

In the following section, we study the two most common used
typestext andnumeric to illustrate the principles in our search-
driven approach.

4.2 Text Handler
Text is the most commonly used type for querying string based

fields in the database (e.g., subject in Example 2). The operators
of text type are typically string match operations includingall,
any, exactandstart, and the values are strings. In the section, we
will use the mapping betweencategory andsubject in Example 2
to illustrate how the search proceeds towards finding the best map-
ping.

Defining Search Space
Defining a reasonable search spaceI(T ) is an essential problem

in any search process (e.g., the left-deep trees in query optimization
for optimizing join orders), because a huge space or even infinite
space is impossible to exhaust. Whileoperatorsare clearly limited
by T (e.g., two operatorsany,all in Example 2), how about values?
Theoretically any texts may fill in the values of the target constraint
template, which constitute an infinite space. What is the right scope
for the search to focus? To define a reasonable search spaceI(T ) to
traverse, in the current implementation, we make a “closed-world”
assumption: the values of any target constraintti use only constants
Ws mentioned in the source constraints. 2 In Example 2,Ws is
thus restricted to{"computer" , "science" }, and accordingly
the values for $val is all possible combinations (with different or-
dering) of the words fromWs. By doing so, we define the search
spaceI(T ) as Figure 6 shows part of it. Such a close world assump-
tion is reasonable, because without domain specific knowledge, it
is very hard to create new words out of blue. Further, the search
space can be enriched (e.g., by expanding the query words with
their synonyms) if more domain knowledge is available (e.g., by
providing synonym lookup).

Estimating the Closeness
Given the source and target constraints, ti, closeness estimation

C(s, ti) essentially needs to evaluate how close the result retrieved
by t against the target database is to that retrieved bys. However,
the lack of target database content makes such estimation difficult.
Ideally, if it is possible to reason about their closeness without look-
ing at the database, we can always find the best mappingtopt. How-
ever, in general, such reasoning is very hard because it needs not

2Or, in general, any constant that can be functionally determined by
Ws, e.g., synonyms or hyponyms from the dictionary. This general-
ization is usefule.g., in mapping constraints with different vocabu-
lary such as[subject; contain; "computer science" ] vs.[subject;
contain; "Internet" ].



Original Database Isomorphic Database
Computer Science w1, w2

Science Computer w2, w1

Computer Science And Internetw1, w2, w3, w4

Computer Game w1, w5

Biology Science w6, w2

Art And Architecture w7, w3, w8

Computer Software w1, w9

Computer Hardware w1, w10

Figure 8: Dummy database and isomorphic database.

only the knowledge for reasoning (e.g., logic rules) but also algo-
rithms to apply the knowledge to realize the reasoning. For exam-
ple, when expressing the constraints in regular expression, reason-
ing on their containment relations becomes the regular language
containment problem, which has proven to bePSPACE-complete
[7].

To address the difficulty of closeness estimation, we employ an
“estimation-by-testing” approach. We query the two constraints
s and ti against adummy database, and then by comparing their
results, we calculate the precision and recall, hence the closeness
metric. Such a dummy database in principle simulates the target
database so that the relative goodness of the mappings can be eval-
uated. It can be achieved, for example, by random sampling the
objects in the target database. Currently, our database is generated
“uniformly”, as we explain later.

Example 3: In Example 2, to estimate the closeness of mappings
betweentext constraints(s, ti), we build a dummy databaseD
that contains a set of tuples with a single textual attribute. The left
column of Figure 8 shows an example of such a dummy database.
To estimate the closeness ofs =[category; contain; "computer
science" ] and t1 =[subject; any; "computer science" ]), we
querys andt1 againstD, and retrieves 3 and 7 tuples respectively.
Among those tuples, three is in the intersection ofs andti. Accord-
ing to Equation 2, the precision and recall is3

7
and 1 respectively.

Using the closeness metric in Equation 1, their closeness is thus3
7
.

Similarly, estimating(s, t2) againstD gets closeness1. Therefore,
t2 is a better mapping thant1.

To fully reflect the relations betweens andti, the dummy database
should capture the “interesting” values with various compositions
of the queried termsWs, e.g., tuples with both"computer" and
"science" by different orderings, with only one of them, with-
out any of themetc.. To make this happen, we customize the alpha-
bet of the constructed database to subsumeWs. Therefore, in Ex-
ample 3, the alphabet of database contains{computer, science}
plus some other random words. In the implementation, such cus-
tomization is realized by using anisomorphicalphabet of words,
e.g., {w1, w2, . . . , wn}, and mapping the constants inWs into
words from the alphabet,e.g., "computer" → w1, "science"
→ w2. Figure 8 shows the database on the isomorphic alphabet. By
doing so, we do not need to construct a dummy database for every
time to translate a query. To make sure that the database captures
interesting values, we keep the alphabet small and the database size
relatively large so that every value pattern including the interesting
ones has a better chance to appear in the database. The values in the
database areuniformed-generated: the length of the value follows
a uniform distribution, and the words in the database are randomly
picked from the isomorphic alphabet.

While the quality of mapping closely depends on the dummy
database, we find that in most cases dummy database can give
reasonably good answers. The reason is that the containing rela-
tionship between operators (e.g.,anycontainsall) can be reflected
from any dummy database, independent of the real data distribu-
tion. That is, no matter how we construct the dummy database,
the result of applying operatorany always contains that of apply-
ing all. Our observations show that, across the deep Web, most

sources only use a small set of four operators:any, all, exactand
start. Since these four dominating operators have a chaining con-
taining relationship, i.e.,any containsall containsexactcontains
start, we can achieve reasonably good translation with a uniformly
distributed dummy database. For other relatively rare operators that
may not guarantee the containing relationship, the dummy database
can be exploited to help find the statistically optimal translation.
Certainly, how to make our database more “intelligent,” to capture
the characteristics of the target database and also adequately test the
constraints at hand, is an important part of our future work, and we
are currently working on the related techniques (e.g., understanding
query results) to make this happen.

4.3 Numeric Handler
As another most frequently used type,numeric constraints query

the database fields of numeric values. The typical operators are nu-
meric comparisons includingless than, greater than, betweenand
equal. Due to space limitation, we only discuss the numeric handler
very briefly.

Defining Search Space
Similar astext handler, the challenge fornumeric handler

is how to define the right search space so that search can be per-
formed in a reasonable small but still good scope. To address the
problem, two approaches are possible. First, we may again employ
the closed-world assumption to refine the spaceI(T ) based on the
source constraints. This is currently the approach used in our im-
plementation. Second, we take the infinite numeric space, and per-
form a systematic search using existing search algorithms such as
hill-climbing. Starting from a initial solution, the hill-climbing al-
ways goes for a better solution (known asuphill move). Suppose
we have only one variable $val in the target constraint templateT
to be instantiated and we adapt a walk of fixed-lengthk. At any
state (assignment of values toval), we have 2 possible movements
asval = val+k or val = val−k. The search performs a series of
uphill moves until it reaches alocal optimal. We can further refine
the hill climbing strategy by choosing the starting point based on
the source constraintss instead of starting from a random solution.
Due to space limitation, we will not discuss in details.

Estimating the Closeness
While similar idea of constructing the dummy database for text

type is applicable for numeric type to estimate the closeness met-
ric C, we find that systematic reasoning on the numeric constraints
is possible due to the continuous nature of the numeric data. To
estimate the query result of a numeric constraint, we map the con-
straint into ranges on the numeric line (e.g., 5 ∼ 35 in Figure 2),
and therefore the false positives and false negatives can be evalu-
ated based on the coverage and overlapping of the two constraints,
as Figure 7(b) illustrates.

5. CASE STUDIES
In this section, we report our preliminary study on the perfor-

mance of our framework. The study simulates aquery assistant
system as the application scenario where the system automatically
fills out the query forms (which may be dynamically collected by a
search engine) based on the user’s original query. The goal of the
experiment is to evaluate how well the automatic constraint map-
ping can help users in interacting with those sources.

In the experiment, the constraint template patterns captured are
the common ones (with appearance more than 5) we collected dur-
ing the survey. There are 8 such patterns fortext type and 6 for
numeric type. For each pattern, we build an interpreter, which
knows how to estimate the query results. In particular, the text pat-
tern interpreter needs to know how to query the constraint against
the dummy database, and the numeric pattern interpreter will map
the constraints into ranges on the numeric line.

Based on our application scenario, we adapt a simple perfor-



Source Constraint Target Constraint Template Target Constraint
[title; contain; "database system" ] [title; $op:{any, all}; $val] [title; all; "database system" ]
[title; start; "computer theory" ] [title; $op:{any, all, exact}; $val] [title; all; "computer theory" ]
[subject; contain; "Programming Language" ] [subject; equal; $val:{art,. . . , computer,. . . }] [subject; equal; "all subject" ]
[price; less than; 5000] [price range; between; $low,$high] [price range; between; 0,5000]
[price; between; 1000,5000] [price; less than; $val] [price; less than; 5000]

Figure 9: Examples of generated mappings.

Constraint #Total #Correct %Correct
title 19 17 0.89

subject 10 7 0.7
keywords 10 9 0.9

Text 39 33 0.85
mileage 8 7 0.88

price 16 15 0.94
Numeric 24 22 0.92
Overall 63 55 0.87

Figure 10: Experiment data set and results.

mance metric: number ofcorrectmappings, because it reflects the
amount of efforts the system saves for the user. The correct (or
closest) mappings are manually generated by checking the seman-
tics of the source and target constraints ourselves (without really
querying the actual database). Counting only the “absolutely” cor-
rect constraints is actually very stringent because it does not cap-
ture “how wrong” an incorrect mapping is. An incorrect mapping
may retrieve similar results as the correct one (i.e., still have good
precision and recall although not the best). However, in our mea-
surement no credit is given to such mappings. In the future work,
we will quantify the quality of the mappings in a finer granularity
instead of simple binarycorrect vs. incorrect.

As the experiment data, we collected 40 query interfaces from
the TEL-8 UIUC Web Integration Repository [3]. The query in-
terfaces are from two domainsBooks andAutomobiles, with 20
query interfaces from each. For each domain, we collected the pop-
ularly queried constraint groups as our experiment data set. Fig-
ure 10 reports the constraint groups in the data set and the number
of constraints in each group. Among the constraints groups,ti-
tle, subject, keywords are fromBooks domain to testtext type
mappings, andprice, mileage from Automobiles domain to test
thenumeric type mappings.

The experiment essentially evaluates the mapping accuracy be-
tween two randomly picked constraints from the same constraint
group. In particular, suppose the constraint group (e.g., title) hasn
constraint. We first number all the constraints in the group,i.e.,
[C1, C2, . . . , Cn]. We then random shuffle those constraints to
get a random permutation[Ci1 , Ci2 , . . . , Cin ]. Last we map the
constraints between(C1, Ci2), (C2, Ci2), . . . , (Cn, Cin). We use
Equation 3 as the closeness metric for closeness estimation.

Figure 9 shows several examples of constraint mappings in the
experiment. As we can see, the system can generally work well
for most interesting cases, but further improvement is possible and
important. For example, we did not get good result for the sec-
ond mapping due to the lack of domain knowledge of hyponyms.
Figure 10 generally reports the experiment results as the percent-
age of the correct mappings for each constraint group, the average
for text type mappings,numeric mappings, and the overall for
both types. As we can see, our framework generally achieves good
accuracy: among the 63 mappings tested, 55 are correct, which
amounts to87% accuracy.

6. CONCLUDING DISCUSSION
In this preliminary work of the type-based search-driven transla-

tion framework for on-the-fly constraint mapping, while the initial
result is promising, we also observed several further opportunities
and open issues that warrant more investigation.

First,handling complex mappings: Currently, we study only the

simple1 : 1 constraint mapping, which is the basic and also most
common mapping in query translation. In general, the mapping can
bem : n, e.g., last name + first name is a synonym ofauthor
in Books domain. We are interested in modelling the compound
mappings in a general way, similar to what we did for simple con-
straints using types. Also, we plan to investigate how to extend the
search-driven approach to support such a model.

Second,incorporating domain knowledge: Our current frame-
work does not assume any domain specific knowledge. However,
as mentioned in the paper quite a few times, whenever available,
such knowledge may help improve the mapping quality from vari-
ous aspects,e.g., to construct representative dummy database (Sec-
tion 4.2), to define more comprehensive search space (Section 4.2);
More importantly, some mappings are domain specific, which have
to refer to domain knowledge (e.g., the mapping fromcity name
to airport code). Therefore, we need to extend our framework to
incorporate the domain knowledge whenever they are available.

Third, constructing representative dummy database: We cur-
rently generate a “uniformly-distributed” dummy database by treat-
ing all the keywords equally. However, the importance of words
can be various. For instance, when translating constraints such as
[title; contain; database system]to [title; any; $v], the mapping gener-
ated is $v="system" . However, if we know that"database"
is a more distinguishing word than"system" , we may construct
our database to reflect the distribution of word frequency and thus
generate better mappings.

In summary, this paper aims at developing a framework to help
automatically mapping constraints among deep Web sources. In
particular, we propose a generic type-based search-driven transla-
tion framework, which is well suited for the requirements of the
on-the-fly constraint mapping among large scale data sources. Our
preliminary case studies validate the effectiveness of our approach
and open several future research issues.
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