
Entity Search Engine: Towards Agile Best-Effort
Information Integration over the Web

Tao Cheng, Kevin Chen-Chuan Chang
University of Illinois at Urbana-Champaign

{tcheng3, kcchang}@cs.uiuc.edu

1. INTRODUCTION
The immense scale and wide spread has rendered the Web

as an ultimate information repository– as not only the sources
where wefindbut also the destinations where wepublishinfor-
mation. The dual forces have enriched the Web with all kinds
of data,much beyond the conventionalpage viewof the Web
as a corpus of HTML pages, or “documents.” The Web has
thus become a rich collection ofdata-richpages, on the “sur-
face Web” of static URLs (e.g., personal or company home-
pages) as well as the “deep Web” of database-backed contents
(e.g., flights from aa.com), as Figure 1(a) shows. The richness
of data, while a promising opportunity, has challenged us to
effectively find data we need, from one or multiple sources.

In particular, we are motivated by, when building the Meta-
Querier at UIUC, the need of large scale on-the-fly integration
for online structured data. TheMetaQueriersystem, as we
reported in CIDR 2005 [4], aims at finding and querying data
sources on the deep Web. However, as the “last mile” for meta-
querying, when users can query multiple sources on the fly [8],
or when data is automatically “crawled” from sources [6], how
do we identify and integrate the structured data embedded in
unstructured result pages? (e.g., the query results ofama-
zon.comandbn.com).

Further, we realized, as observed earlier,beyondour Meta-
Querier experience, such data richness is pervasive– from the
depth as well as the surface of the Web. While data is prolif-
erating, however, we are currently not able to effectively ac-
cess such data. To motivate, consider a few scenarios, for user
Amy:

Scenario 1: To call Amazon.com for her online purchase, how
can Amy find their “phone number”? To begin with, what
should be the right keywords for finding pages with such num-
bers? A query like “amazon customer service phone” may
not work; often a phone is simply shown without keyword
“phone” (e.g., customer service: 800-717-6688). On the other
hand, “amazon customer service” could be too broad. Then,
for each querying, she must sift through the returned pages to
dig for the phone numbers. This overall process can be unnec-

This article is published under a Creative Commons License Agreement
(http://creativecommons.org/licenses/by/2.5/).
You may copy, distribute, display, and perform the work, make derivative
works and make commercial use of the work, but you must attribute the
work to the author and CIDR 2007.

Cars.com

Amazon.com

AA.com

BN.com

Figure 1: The data-rich Web.

essarily time consuming.�
Scenario 2: To apply for graduate schools, how can she find
the list of “professors” in the database area? She has to go
through all the CS department pages or, even worse, check
faculty’s homepages one by one– a very laborious process.�

Scenario 3: As a graduate student, Amy needs to prepare a
seminar presentation for her choice of recent papers. Can she
find papers that come readily with presentations,i.e., a “PDF
file” along witha “PPT file,” say from SIGMOD 2006?�
Scenario 4: Now Amy wants to buy a copy of Shakespeare’s
Hamlet to read; how can she find the “prices” and “cover im-
ages” of available choices from, say, Borders.com and BN.com.
She would have to look at and compare the results from mul-
tiple online bookstores one by one.�

In these scenarios, like every user in many similar situa-
tions, Amy is looking for particulartypesof data, which we
call entities, e.g., a phone number, a book cover image, a PDF,
a PPT, a name, a date, an email address, etc. She isnot, we
stress, looking for pages as “relevant documents” to read, but
entities as data for her subsequent tasks (to contact, to apply,
to present, to buy,etc.). We are facing a dilemma:

• On one hand, for accessing over the sheer size of the Web,
we are mostly relying onsearch engines, such as Google, Ya-
hoo, or MSN, which search for pages by keywords. On this
extreme, while being ”IR-style” with a scalable text process-
ing framework, they are notdata aware.
• On the other hand, integration services, such as Expedia.com
or PriceGrabber.com, exist online for specific domains. On
this extreme, while providing “DB-style” precise querying,
they can hardly scale the amount of data and the number of
sources on the Web.

As our solution, which this paper will propose, we believe
the two extremes must meet, with a synergistic “marriage” in

the middle. From the “search” perspective: Can we build a
search engine withdata awareness? From the “integration”
perspective: Can we develop an integration system withscale
awareness, even with limited “best-effort” semantics? As we
will discuss in Section 3, the two perspectives together lead to
our objective ofentity search– As a search system, we propose
our EntitySearchengine to searchdirectly for target informa-
tion “entities,” and holistically across their occurrences in all
pages. As an integration system, it will assume only a light-
weight off-the-shelf entity extraction layer, and thus scalable
to many sources; further, it will construct “derived relations”
as the search output, on the fly, and thus flexible for ad-hoc
user needs.

In summary, this paper proposes the concept of entity search
and its initial implementation as an agile best-effort frame-
work for realizing large scale information integration over the
Web. We will motivate and define entity search in Section 2
and Section 3 respectively. Section 4 will then discuss our ini-
tial “pilot” implementation for exploring research issues. Sec-
tion 5 will demonstrate the usefulness of entity search using
real world scenarios. We will conclude in Section 6.

2. THE DILEMMA
To access the Web, we must resort to search engines or inte-

gration services. The state of the art, however, presents a clear
dilemma between data and scale, and we are thus lacking large
scale data-based access to the Web.

2.1 Search Engines: Data Awareness?
On one hand, our information access is mostly relying on

current search systems, such as popular engines like Google,
Yahoo, and MSN Search– However, while reaching extensive
parts of the Web, with their inherent “page view” of the Web,
they are lacking even minimal data awareness and thus inca-
pable for such tasks as finding “data” entities.

That is, current search systems are notdata aware. In their
rather simplisticpage view, with a text retrieval system as
their backend engine, they naturally view the Web as simply
a repository of interlinked documents, orpages, each contain-
ing some keywords upon which searches can be performed.
Our information access amounts to finding relevant pages by
keywords– regardless of what data entities we are looking for.
In other words, from this “search” perspective,we are lacking
a search system that is aware of data. Specifically, this lacking
leads to two major limitations of current search systems:

• Indirect Input and Output. In terms of theinput and out-
put, current engines are searchingindirectly. To begin with,
to formulate queries as input, users cannot directly describe
what they want. Amy has to formulate her needs indirectly as
keyword queries, often in a non-trivial and non-intuitive way,
with a hope to hit “relevant pages” that may or may not contain
target entities. For Scenario 1, will “amazon customer service
phone” work? Then, as query output, users cannot directly get
what they want. The engine will only take Amy, indirectly,
to a list of pages, and she must manually sift through them to
find the phone number. Can we help users tosearch directlyin
both describing and getting what they want?�

• Singular Matching Mechanism. In terms of thematching
mechanism, current search engines are finding each pagesin-
gularly. Our target entities often come from multiple pages.
In Scenario 1, the same phone number of Amazon may appear
in the company’s Web site, online user forums, or even blogs.

In this case, we should collect, for each phone, all its occur-
rences from multiple pages as supporting evidences of match-
ing. In Scenario 2, the list of professors probably cannot be
found in any single page. In this case, again, we must look at
many pages to come up with the list of promising names (and
each name may appear in multiple pages, like the earlier case).
Can we help users tosearch holisticallyfor matching entities
across the Web corpus as a whole, instead of each individual
page?�

Thus, from the “search” perspective, we are facing the chal-
lenge of building data awareness into Web search systems.
As data proliferates on the Web, the classic view of the Web
as a page repository is increasingly inadequate. A step for-
ward, can we search fordata, or specific entities, as our tar-
get directly and across all pages holistically? That is, while
keyword-based search is scalable to the Web and easy to use,
can it be morphed to bedata aware?

2.2 Integration Systems: Scale Awareness?
On the other hand, there already emerged many integra-

tion systems, such as the various specialized engines in com-
parison shopping (e.g., PriceGrabber.com, NextTag.com and
BizRate.com) and vertical search services (e.g., Realtor.com
for real estates, Expedia.com for airfares, and Google Base for
various domains)– However, while offering precise data-based
access, with their inherent “database view,” they are not not de-
signed with “scale” in mind, for the large amount of data-rich
pages on the Web and the large diversity of user needs.

That is, current integration systems are notscale aware. In
their rather rigiddatabase view, they naturally assume and can
only query data prepared in a structured relational format– in
certain prescribed schemas– upon which SQL queries can be
performed. Our information access is thus significantly lim-
ited by the availability of data in such rigid schemas, as well
as the types of queries that the prescribed schema can sup-
port. In other words, from this “integration” perspective,we
are lacking an integration system that is aware of scale– the
proliferation of Web data and online users.

In particular, because their database view requires data in
well-structured format, an integration system must buildwrap-
per for each source, which works as arelation extractorfor
each site, to precisely extract its unstructured text into struc-
tured DBMS, upon which to perform SQL queries. We believe
that, while achieving structural rigor, this technique is not vi-
able, with two limitations:
• Limited Sources. In terms ofsources, it lacks scalability.
As repeatedly reported [7, 5], per-source wrappers are not only
laborious to build but also fragile to maintain, and thus a cost
barrier1. To incorporate myriad potential sources (and pages),
we shall not rely on per-source training or construction.�

• Limited Queries. In terms ofqueries, it lacks flexibility: A
wrapper must make a hard decision on the schemas of the rela-
tions to extract–e.g., for book, to extract a relation withformat,
publisher, price, cover image, or all? The more complex a
schema is, the more likely its extraction may fail, while a sim-
pler scheme may be useless for many users.�

Thus, from the “integration” perspective, we are facing the
challenge of building scale awareness into Web integration
1This is perhaps why today’s Web integration systems work
by assuming a small set of pre-configured sources, by user
submission (e.g., Google Base), or by relying on a centralized
database,e.g., Sabre [3] forairfaresand MLS [2] for real es-
tate

…………

hp.com0.2206-346-29924

xyz.com0.6 800-342-52833

Dell.com/supportors0.8800-988-08862

amazon.com/support.htm

myblog.org/shopping

0.9800-201-75751

urlsscorephone numberrank

……………

ms.com0.7surajit21.pptsurajit21.pdf2

db.com,sigmod.com0.8sigmod6.pptsigmod6.pdf1

urlsscorePPTPDFrank

Figure 2: Query Results of Q1 and Q3.

systems. While the prevalence of data on the Web presents
novel opportunities for integration, this “Web-scale” scenario
contrasts traditional settings and defeats current techniques–
We must rethink not only new techniques but also realistic
objectives. To bring myriads heterogeneous sources to meet
ad-hoc users, as the scalability and flexibility mandate, can
we develop agile integration without rigid schemas, even with
“best effort” semantics?

3. OUR PROPOSAL: ENTITY SEARCH
Approaching the current barriers from the dual perspectives,

we are inspired that they seem to converge to the same solu-
tion: The dual perspectives represent the two extremes of the
spectrum: simple keywordsearchto fully transparent infor-
mation integration. Meeting in the middle, they suggest the
“marriage” of scale-aware search and data-aware integration.
Towards searching directly and holistically, for finding specific
types of information, we thus propose to supportentity search.

• First, asinput, users formulate queries to directly describe
what types of data they are looking for: She can simply specify
what hertarget entitiesare, and what keywords may appear in
thecontextwith a right answer. To distinguish between entities
to look for and keywords in the context, we use a prefix #,e.g.,
#phone for the phone entity. Our scenarios will naturally lead
to the following queries:

Q1: (amazon customer service #phone)
Q2: (#professor #university #research=’database’)
Q3: ow(sigmod 2006 #pdf file #ppt file)
Q4: (#title=’hamlet’ #image #price)

In the queries, there are two components: (1)Contextpattern,
how will the target entities appear?Q1 says that#phone will
appear with these keywords in the default pattern of “near” (or
proximity). We may also explicitly specify the pattern,e.g.,
Q3 uses ow to mean order-window (the keywords must ap-
pear before#pdf file and then#ppt file. (2) Contentrestriction:
A target entity will match any instances of that entity type,
subject to optional restriction on their content values–e.g., Q1

will match every phone instance, whileQ2 will only match
research area “database.” (In addition to equality “=”, other
restriction operators are possible, such as “contain.”)
• Second, asoutput, users will get directly the entities that
they are looking for. That is, as a query specifies what en-
tity types are the targets, its results are those entityinstances
(or literal values) that match the query, in a ranked order by
their matching scores. (We will discuss this matching next.)
Figure 2 shows some example results forQ1 andQ3.
• Third, assearch mechanism, entity search will find match-
ing entities holistically, where an instance will be found and

matched in all the pages where it occurs;e.g., a #phone 800-
201-7575 may occur at multiple URLs as Figure 2 shows. For
each instance, all its matching occurrences will be aggregated
to form the final ranking;e.g., a phone number that morefre-
quentlyoccurs at where “amazon customer service” is men-
tioned may rank higher than others. Thus, entity search will
not only find entities as the primary result, but also return
pageswhere each entity is found as the secondary result and
supporting “evidences.”�

To support entity-based querying, the system must be fun-
damentallyentity aware: As a departure from current search
engines built around the notions of pages and keywords, we
must generalize them to support entity as a first-class concept.
With this awareness, as our data model, we will move from the
current page view,i.e., the Web as a document collection, to
the newentity view, i.e., the Web as an entity repository. Upon
this foundation, as our query mechanism, we can then develop
entity search, where users specify what they are looking for
with keywords and target entities, asQ1 – Q4 illustrated. We
now formalize these notions.

Data Model: Entity View. How should we view the Web as
our database to search over? In the standard page view, the
Web is a set of documents (or pages)D = {d1, d2, . . . , dn}.

Our data model takes anentity view: We consider the Web
as primarily a repository of entities:E = {E1, E2, . . . , En},
where eachEi is an entity type. For instance, to support Sce-
nario 1 (Section 1), the system might be constructed with en-
tities E = {E1 : #phone, E2 : #email}. Further, each entity
typeEi is a set ofentity instancesthat are extracted from the
corpus,i.e., literal values of entity typeEi that occurs some-
where in somed ∈ D. We useei to denote an entity instance
of entity typeEi. In our example,e.g., by recognizing phone-
number patterns (say, in a regular expression of digits) from
D, we may extract#phone = {“800-201-7575”, “244-2919”,
“(217) 344-9788”,. . .}

As the starting point for data-aware search, this “tagging”,
orentity extraction, is to recognize each entity from Web pages.
Entity extraction has been well studied in the context of gen-
eral information extraction, and techniques abound, from sim-
ple syntactic pattern matching to sophisticated statistical tag-
gers, with many off-the-shelf tools available. We stress that,
however, while implementations may differ, such extractors
are inherently imperfect, and entity search must essentially
deal with uncertainty. Used as a black box, in abstraction,
an entity extractor will return, for each occurrence, the ex-
traction confidence probability and the position of extraction.
We thus transform the page view into our entity view,E =
{E1, E2, . . . , En}.

The Entity Search Problem:

Given: An entity collectionE = {E1, E2, . . . , EN}
Input: Query:β-α(K1, K2, . . . , Kl, E1, E2, . . . , Em)
Output: t = 〈e1, e2, ..., em〉 : sorted byscore(t),

thetuple scoreof t with respect toβ andα.

• As input, as Section 3 discussed, an entity-search query is
similar to standard keyword queries, but now users can spec-
ify entity types,E1, E2, . . . , andEm, in addition to keywords
K1, . . . ,Kl. Optionally, in a complete form, a query can also
specify amatching patternα (e.g., ow inQ3), to restrict when
an occurrence of an instancet = 〈e1, e2, ..., em〉 is considered
a matching tuple, and ascoring measureβ, to specify how all

the matching instances are ranked. Depending on the imple-
mentation and application settings, the choices of theβ pattern
and theα can be system built-in or user specified, and they to-
gether determine the ranking scores.
• As output, for a query withm target entities, each matching
result is am-ary entity tuple, i.e., t = 〈e1, e2, ..., em〉, i.e., a
combined instance. Note that an entity tuple may contain one
or multiple instances, each of which is associated with one
entity type. For example,〈David, david@hotmail.com, 315-
673-9091〉 is an entity tuple of type〈#name, #email, #phone〉,
and〈Canada, Ottawa〉 of type〈#country, #capital city〉.
• Theobjectiveis to find, from the space ofE1×. . .×Em, the
matching tuples in ranked order by how well they match the
query,i.e., how well entity tuplet and the specified keywords
associate, as matched by patternα and ranked by measureβ,
which result in the tuple scorescore(t). �

To summarize, and to put our proposal in perspectives, we
examine it form both the search and integration point of views:

First, as asearchframework, entity search is data aware.
With the probabilistic tagging of entities, we view the Web
as a repository of entities. Users directly specify their target
entities, and the system holistically evaluates the matchings.

Second, as anintegrationframework, entity search is scale
aware, towards agile requirement and best-effort semantics for
large scale deployment: On one hand, as deployment require-
ment, it is agile, requiring only minimal tagging of the data do-
main of interest– It can be uniformly applied to many sources,
without requiring building wrappers. We stress that each entity
is independentlyextracted in a “soft” probabilistic sense, and
thus requires no rigid full relation extraction that often man-
dates per-source wrappers. It can adapt to diverse information
needs, without fixed pre-scribed schemas. The desired entities
are only associated by ad-hoc queries at query time– Thus,
users may ask#phone with “ibm thinkpad” or “bill gates”, or
they ask to pair#phone with, say,#email for “white house”.
Supporting such online matching and association is exactly the
challenge (and usefulness) of entity search.

On the other hand, as query semantics, it is only best effort,
returning the result in ranked, best-first manner. In essence, the
system assumes “integration in a probabilistic sense”: Given
independent entities with probabilities, entity search finds match-
ing instances that “most likely” form a desired tuple.

To understand the promise of the system and the practical
issues, we decided to start with a quick “Version 0.1” pilot
implementation, which is the focus of our demonstration.

4. THE PILOT SYSTEM
To realize our proposal in Section 3, we implemented a “pi-

lot” system for empirical study.
First, as we abstracted in the Entity Search problem, we

need to come up with specificmatching patterns α as well as
scoring measureβ. Figures 3 and 4 summarizes our currently
implementedα andβ. To specify a tuple function operator,
the user or the application will choose the exact measures to
use.

The α Measure: An α measurequalifiesif match of occur-
rences of entities match the desired tuple, in the matching pat-
ternα(x). In principle, any Web presentation features can be
incorporated for pattern expression,e.g., linguistic, proxim-
ity, or visual features. In this work, we treat webpages as lin-
ear documents. Consequently, we implemented several simple

x matches a phrase as sepcifiedphrase(x)

own(x), and the terms are nearest neighbors as abovennown(x)

uwn(x), and the terms are nearest neighbors: i.e., the
sum of the distances from the left most term to all
others is the smallest, among other choices.

nnuwn(x)

all terms in x occur in window of size n, in the orderown(x)

all terms in x occur in window of size n, any orderuwn(x)

qualification ruleα(x)

Figure 3: Pattern measures.

tscore

tf

cprod

mi

dtf

formula
�

∏ =

m

i i

m

ef

eef

1

1

)(

), ... ,(
log

), ... ,(

), ... ,(

1

1

m

m

eef

Eeef −

[]
∑

∈

=
)(~, ... ,~

1

1

1), ... ,(
xee

m

m

eef
α

[][]
[]

1

).~.~(
)~, ... ,~(where,

)~, ... ,~(

1
1

1

2
1

1
)(~, ... ,~ 11

−

−
= ∑

∑

−
+

∈ m

posepose
eeD

eeD

m

ii

m
xee mm α

∏∏ ==

⋅⋅= l

j

jm

i

i

D

kfwindowSize

D

efwindowSize
efE

121

)()(
)(

, where with D as corpus size:

∏
=

m

i

ieconf
1

)(

Figure 4: Scoring measures.

position-based, page-boundedα measures as Figure 3 summa-
rizes.

The β Measures: Once instances of entities are matched, they
form tuples. Aβ measurequantifieshow promising a tuple
〈e1,. . .,em〉 is. A tuple〈e1,. . .,em〉 may appear in the corpus
many times– let [̃e1, . . ., ẽm] be one such occurrence,i.e.,
[ẽ1, . . ., ẽm] ∈ α(x). We note that a scoring functionβ for
determining the tuple score,i.e., β(e1,. . .,em), can build upon
the following quantities:

1. Frequencyof the tuple: How many times has〈e1,. . .,em〉
occurred? That is, how many [ẽ1, . . ., ẽm] are matched?

2. Strengthof each occurrence: How well does each [ẽ1, . . .,
ẽm] match the pattern?

3. Frequencyof individual entity instance: How many times
hasei appeared in the corpus? A tuple may be frequent
simply because its entity instances are common.

4. Uncertaintyof entity instance: What is the probability of
instanceei being of the entity typeEi.

Our initial implementation thus tried, for experimentation,
to use all four in various ways, as Figure 4 summarizes a few
representative ones:tf : tuple frequency (using 1);dtf : dis-
tance weighted tuple frequency (using 1, 3);mi: mutual infor-
mation (using 1, 2);t-score(using 1, 3);conf (using 4).

While these measures are validated in our experiments to
be useful, we believe a more systematic study of the scoring
measure is still needed. Coming up with more effective scor-
ing measures is itself an interesting research problem. We plan
to work towards this direction in the future.

Next, we describe the key system components to accom-
plish the goal of entity search, towards agile best-effort infor-
mation integration. The overall system architecture is illus-
trated in Figure 5. We now zoom into each specific system
component.
Data Collector: Our data webpages could come from both
the surface Web and the deep Web. To get webpages from the
surface Web, our Data Collector works like a crawler, getting
webpages related with a specific topic/application. Our cur-
rent implementation obtains webpages from the Stanford Web-
Base Project2. To get webpages from the deep Web sources,
2http://www-diglib.stanford.edu/∼testbed/doc2/WebBase/

Entity Extractor

Data Collector

Entity

Models

Apple Crop

CEO

Extraction Storage

Webpages

Annotated
Webpages

Indices

17.35$

5.00$

6.99$

7.99$

Price

Amazon

Intel

Apple

Microsoft

Company

…

Query Engine

Users,

Applications
EntitySearch

query
Results,
scores

Constructor

Relational Operations

Figure 5: System Architecture

our Data Collector works by collecting result pages of specific
queries on deep Web sources ,e.g., houses available in a cer-
tain zipcode area, books written by some specific authors, etc.

Entity Extractor: In order to discover semantics of the do-
main, our Entity Extractor extracts domain entities, the key
components of the domain, independently. Each entities is ex-
tracted using an entity model, which describes how to identify
instances of an entity in the webpages.

Query Engine This component essentially supports online query-
ing by performingpattern matchingandtuple scoring, as we
abstracted in Section 3 and described in the beginning of this
Section. As we produce tuples in the results, naturally many
relational operations could be performed, which corresponds
to theRelational Operationssub component in Figure 5.

Our Query Engine is morphed using the Lemur Toolkit (ver-
sion 2.2), an information retrieval engine [1]. This IR engine
facilitates easy storage of the extracted entities in the form of
ordered lists based on document ID, much like storing inverted
indices for keywords. It also enables the construction in a nat-
ural way as sort-merge-join based on document ID is one of
the most common operations in answering IR queries.

5. DEMONSTRATION
In this demonstration, we specifically show the online com-

ponent of our system, which is our query engine. The current
sever is running on a Pentium-4 2.6GHz PC with 1GB mem-
ory. This section will first discuss the interface of our query
engine. Then two demonstration scenarios are presented to
show the effectiveness of our system. Finally, the demonstra-
tion plan is described.

5.1 System Interface
We show our query interface for the query engine ofEntity-

Searchin Figure 6.
The first three input boxes in Figure 6 directly refers to the

operators explained in Section 4.

Matching Pattern specifies a patternα(x), in whichx is a list
of terms to be joined, as either entitiesEi or literal keywords
Kj , andα is apattern measure, shown in Figure 3, specifying
how the terms are connected into a pattern.

Figure 6: System Interface.

Figure 7: Sample Output of Query C1.

Scoring Measure specifies whichβ scoring measure, among
the ones we support in Figure 4, will be used to score the
matched tuples.

Entity Filter enables specifying conditions on each entity. In
principle, any filter operation could be applied to an entity. Our
system currently supports two operators: equalto (string value
of the instance matches exactly with the specified keywords)
and contains (string value of the instance contains the specified
keywords).

In addition, We provide three auxiliary features to improve
the effectiveness of the engine. These features could be re-
garded as a light-weight Relational Operation layer, which
performs minimal but useful relational operations upon the
output relation. We discuss these three features one by one.

Corpus Restriction: The Corpus Restriction operator is de-
signed to facilitate application’s control over the corpus. We
support Corpus Restriction by URL domains as regular pat-
terns. For instance, we could set this field to *.amzon.com,
which matches the sub-corpus of pages at the domains with
that pattern (e.g., book.amzon.com).

Pages Per Answer: This feature requests the number of Web
pages to return as support pages or “evidences” for each tu-
ple returned by the query engine because results are integrated
from multiple Web pages across the corpus.

Order By specifies the order of listing results (e.g., by #re-
search alphabetically)– much like the same clause in SQL. By
default it will rank the results according to their ranking score
calculated by theβ Measure.

Application issues queries by filling in the interface (Match-
ing Pattern, Scoring Measure and Entity Filter), as well as the
other three auxiliary operators and then clicking the “Submit
Query” button. Figure 7 shows a sample system output. As
you can see from the figure, it is in the form of a relation. Each
tuple has a score associated with it. The URL below each tuple
shows the supporting pages where this tuple is found.

5.2 Demonstration Scenarios
In this subsection, we use two concrete scenarios on real

data to demonstrate the practical usage of our system. The
two scenarios we selected are very different in nature. The
first scenario, regarding education domain regarding midwest
CS departments, focuses on the surface Web whose pages are

mostly unstructured. In contrast, the second scenario, using
the book domain, focuses on the deep Web. Result pages col-
lected from the deep Web tend to be more structured. We show
that our system works well in both scenarios.

Scenario 1: Midwest Computer Science Domain
Currently, we have collected pages regarding CS department
in six midwest universities (IIT, Illinois, Indiana, Michigan,
Purdue and Wisconsin) from the WebBase project. The Do-
main Extractor extracts the following attributes: professor, re-
search, university, email and phone.

Three example queries:
⋄ C1: emails of professors across universities
⋄ C2: research areas of professors across universities
⋄ C3: professors conducting DB related research across uni-
versities

Above we have shown three example queries that could be
asked in this domain. Detailed query operators for each query
is excluded. In Query C1, the application is interested in in-
tegrating all the emails of professors across universities into
one table. Figure 7 shows a snippet of the result, which is
good. We manually checked the result returned by our system
for Query C1, over 90% of professor’s emails are included
in the output relation. And if for each unique professor, we
only remain the tuple with the highest score in the relation, we
can achieve precision over 85%. Please refer to the results in
our online demo for more details. Similar results are observed
from other example queries, such as Query C2 and C3.

Scenario 2: Shakespeare’s Book Domain
This scenario focuses on the deep Web. We issued a query by
filling author attribute with “Shakespeare” to the three major
online book stores: www.amazon.com, www.barnesandnoble.com,
www.buy.com. We then manually collect webpages contain-
ing the top 100 results from each site. The Domain Extractor
extracts the following attributes: title, author, image, price,
date.

Three example queries:
⋄ B1: title and price of books
⋄ B2: images of books with title containing “Hamlet”
⋄ B3: title of books that are in stock

Above we have shown three example queries that could be
asked in this domain, excluding detailed query operators. Query
B1 is a very common integration scenario where the applica-
tion wants to find all the books and their prices across multi-
ple websites. More interestingly, Query B2 asks for images
of titles with keyword “Hamlet” in it. As you can see from
the top results shown in Figure 8, the images indeed are all
cover images for books with keyword “Hamlet” in their titles.
Query B3 could be issued using the title attribute together with
keywords “in stock” as application finds vendors normally put
keywords “in stock” to indicate the books currently available
for purchase. Similarly, we can query for books that are “out
of stock”, “on order”, etc.

Due to the lack of space, we are only able to briefly show
very limited example queries and results in our two scenarios.
To experience more about the above two scenarios and have
a real feeling of the results, we invite users to the following
online demo site3.
3http://parrot.cs.uiuc.edu/entitysearch

Figure 8: Sample Output of Query B2.

5.3 Demo Plan
Users can follow the link from our demo site to experience

our two demo scenarios. For each scenario, we have listed a set
of example queries, including all the example queries shown
in Section 5.2. By clicking on an example query, the query
operators of the chosen query will be automatically filled into
the input boxes in our query interface. Alternatively, users are
welcome to modify the query operators of the example queries
or come up with their own queries. Query results are normally
returned within seconds.

6. CONCLUSION
In this paper, we proposed the concept of Entity Search for

supporting agile best-effort information integration over the
Web. While we observe entity search, as a mid-way marriage
of search and integration, is meaningful and useful to access
the data-rich Web, there are several open research issues to-
wards its full realization: First, as the core, how to rank each
tuple, so that the best matching surfaces to the top? Second, to
provide efficient online search, can we generalize the current
page-based search engine into an entity search engine? Fi-
nally, as entity search returns a ranked list of tuples (e.g., Fig-
ure 2), how can we integrate the “derived relations” with rela-
tional SQL-based querying–e.g., joining〈#company, #phone〉
with 〈#company, #email〉? Or, filtering only those companies
with “.com”? We are continuing to investigate these challeng-
ing and interesting problems as our future research agenda.

7. REFERENCES
[1] Lemur toolkit for language modeling and information

retrieval.http://www-2.cs.cmu.edu/∼lemur.
[2] Multiple listing service.

http://en.wikipedia.org/wiki/MultipleListing Service.
[3] Sabre holdings corporation. http://www.sabre.com.
[4] K. C.-C. Chang, B. He, and Z. Zhang. Toward large scale

integration: Building a metaquerier over databases on the
web. InProceedings CIDR 2005.

[5] W. W. Cohen. Some practical observations on integration
of web information. InWebDB (Informal Proceedings),
pages 55–60, 1999.

[6] S. Raghavan and H. Garcia-Molina. Crawling the hidden
web. InVLDB, pages 129–138, 2001.

[7] L. J. Seligman, A. Rosenthal, P. E. Lehner, and A. Smith.
Data integration: Where does the time go?IEEE Data
Eng. Bull., 25(3):3–10, 2002.

[8] Z. Zhang, B. He, and K. C.-C. Chang. Light-weight
domain-based form assistant: Querying web databases on
the fly. InProceedings of VLDB 2005.

