
An Algebraic Language for Semantic Data Integration on the Hidden Web*

Shazzad Hosain
Department of Computer Science

Wayne State University, USA
shazzad@wayne.edu

Hasan Jamil
Department of Computer Science

Wayne State University, USA
jamil@cs.wayne.edu

Abstract—Semantic integration in the hidden Web is an
emerging area of research where traditional assumptions do
not always hold. Frequent changes, conflicts and the sheer
size of the hidden Web demand vastly different integration
techniques that rely on autonomous detection and heterogene-
ity resolution, correspondence establishment, and information
extraction strategies. In this paper, we present an algebraic
language, called Integra, as a foundation for another SQL-
like query language called BioFlow, for the integration of
Life Sciences data on the hidden Web. The algebra presented
here adopts the view that the web forms can be treated
as user defined functions and the response they generate
from the back end databases can be considered as traditional
relations or tables. These assumptions allow us to extend the
traditional relational algebra to include integration primitives
such as schema matching, wrappers, form submission, and
object identification as a family of database functions. These
functions are then incorporated into the traditional relational
algebra operators to extend them in the direction of semantic
data integration. To support the well known concepts of
horizontal and vertical integration, we also propose two new
operators called link and combine. We show that these family
of functions can be designed from existing literature and their
implementation is completely orthogonal to our language in the
same way many database technologies are (such as relational
join operation). Finally, we show that for traditional relations
without integration, our algebra reduces to classical relational
algebra establishing it as a special case of Integra.

I. INTRODUCTION

World Wide Web (WWW) is now a major cyberin-
frastructure for information modeling, content delivery and
communication. While most of its contents are designed as
static HTML or XML pages and stored in user directories
called the shallow web, increasingly a vast amount of such
pages are dynamically generated using server side scripts
from databases contents in response to form based queries,
or stored queries presented to user as links in HTML pages.
The beauty of these dynamically generated pages is that the
information contents are changed every single time based on
user inputs, and thus are very convenient. In this approach,
more information can be delivered in a more concise way but
much faster through automated engines that can be adjusted
as needed without much effort. This new model is known
as the deep web or the hidden web.

* Research supported in part by National Science Foundation grants CNS
0521454 and IIS 0612203.

Regardless of how the information is presented to the
user, it is still difficult for any user to gather information
from multiple web sources and consolidate to form coherent
knowledge. This is because often such needs demand non-
trivial semantic reconciliation. For example, if one asks
for all the publications of professor John Smith, traditional
search engine such as Google will return pages where it
finds the keywords professor, John and publications, etc.
If professor Smith worked in two different universities,
for example Wayne State University (wsu) and Carnegie
Mellon University (cmu), and he has a list of publications on
both the universities’ sites, Google will return two different
pages without combining the result into a single set. Now,
if we would like to consolidate his publication records
with professional activities such as committee memberships,
shallow web search engine Google will not be able to help
us even though it is able to return the pages that have
those information. Ideally, we would like to combine the
publications of Professor Smith in a way similar to set union,
and link the personal information in committee pages to
expand the set of attributes we know about him already in
a way similar to relational join.

Traditional search engines for shallow web cannot index
and query hidden web databases since the pages are dynam-
ically created in response to query forms. The lack of formal
foundations and query support made it difficult to develop
search engines for hidden web. Except for a very few specific
applications such as www.expedia.com, www.cheapair.com in
comparison shopping, ad hoc semantic integration is still at
its early stage. In these applications, semantic reconciliation
and data integration is totally manual for a very specific
collaborating sites, and thus dynamically adding a new and
arbitrary site has been extremely difficult. It is our thesis
that we should be able to treat information from arbitrary
hidden web source as a set of relations, and query those
relations using a query language such as SQL or relational
algebra. Although the goal is simple, the task is not trivial.
But there is hope. The idea we pursue in this paper can be
summarized as follows.

Let us assume that there is an operation that can submit
values from a set of tuples to a web-form. Once the values
are submitted, another operation is able to extract the re-
quired information in the form of a table. Issues that remain

2009 IEEE International Conference on Semantic Computing

978-0-7695-3800-6 2009

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/ICSC.2009.94

237

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SANTA CATARINA. Downloaded on July 01,2010 at 16:45:53 UTC from IEEE Xplore. Restrictions apply.

(a)

Located 23 Miles from Zip Code 48202

(b) (c) (d)

Figure 1. www.autotrader.com and www.carsearch.com

(a)

AutoTrader

CarSearch GoogleMap

startAddress endAddress distance

48202 Estchester, NY 630

48202 Warren, MI 14.4

carType mileage price phone location

2001 Acura CL Type-S 45000 13000 917-692-4108 Eastchester , NY

2003 Audi Allroad 55000 17500 586-756-4240 Warren, MI

2004 BMW coupe 36000 20500 586-756-4240 Warren, MI

car mileage price dealer address distance

2004 Saturn Vue 2.2L 32758 11890 Autonet Plymouth, Michigan 18

2003 Audi Allroad 55000 17500 Paradise Autos Warren, Michigan 14.4

2004 BMW-coupe 36000 20500 Paradise Autos Warren, Michigan 14.4

(b)

Figure 2. Distance from Google and extracted relations

to be addressed now is that how does the operator map the
variables in the query to the web form fields and to the
extracted table column names. Recall that we are accessing
multiple web sites, and so the schemes are expected to be
different even though we have only one query at hand. The
name heterogeneity is just one dimension of the complexity
present. The representation is another heterogeneity that
needs to be addressed as well. That is to say, how do we
know that John Smith in Wayne State University site is the
same John Smith in Carnegie Mellon site? This recognition
require object identification and disambiguation. Once we
address these issues, we are in a much better shape to put
together a query language for the hidden web, and use the
following motivating example to begin our presentation of
the algebraic language we would like to propose.

A. Motivating Example

Let us consider a car sales database involving
www.autotrader.com (figure Ia), and www.carsearch.com
(figure Ic), and the query “list all used BMW coupe cars
priced less than $25,000 with mileage no more than 50,000
and dealer location within 50 miles of zip code 48202”.

The autotrader.com database expects the zip code and the
search area as inputs (figure Ia) to generate the response
shown in figure Ib. On the other hand carsearch.com data-
base lists all cars directly as hot links as shown in figure
Ic even though the information is presumably taken from
a structured database, and clicking on a link produces the
car information without the distance value (figure Id). If we
extract the information displayed in each of these sites on

these cars, we can actually come with as AutoTrader and
CarSearch tables shown in figure 2b. Since carsearch.com
does not show the distance of the car dealers, one can use
Google map (figure 2a) to find the distance and collect the
info into GoogleMap table shown in figure 2b. Now, these
relations can be queried to answer the question.

A careful review of these three synthesized tables will
show that although they contain similar or related informa-
tion, their scheme is different in size and name, and the val-
ues are semantically similar yet syntactically distinct. This
raises several questions that highlights the need for semantic
integration. First, how can one identify that AutoTrader and
CarSearch relations contain similar objects such as cars?
Second, how can one identify that ‘2004 BMW-coupe’ in
AutoTrader relation and ‘2004 BMW coupe’ in CarSearch
relation are the same object, and if identified as the same
object, what will be the combined information of that car?
Third, how can CarSearch and GoogleMap be linked to get
the distance of cars from zip code 48202?

B. Goals and Contributions

In our recent research, we have developed an SQL-like
declarative query language for data integration and workflow
design in Life Sciences, called BioFlow [1], [2], which is
being used as the primary query language in our data man-
agement system LifeDB [3]. While BioFlow is implemented
as an extension of SQL, its formal foundation is missing, and
we need to understand its functionalities and capabilities in
a way similar to relational algebra so that we understand
BioFlow better, and possibly lay the foundation for a direct

238

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SANTA CATARINA. Downloaded on July 01,2010 at 16:45:53 UTC from IEEE Xplore. Restrictions apply.

implementation of a semantic data integration language in
the near future. With this goal in mind, we propose an
extension of classical relational algebra, called Integra, for
the semantic integration of hidden Web databases. The
extended operators use existing reconciliation functions such
as automatic schema matching and key identification func-
tions as user defined functions (UDF)s to resolve semantic
heterogeneity. Such UDFs have played major roles in [4]
to merge conflicting information into one relation. We too
follow this tradition and introduce four different kinds of
UDFs such as form, wrapper, schema matching and key
identification functions to enrich our model and deliver the
capability Integra needs to support ad-hoc integration on the
hidden Web. Finally, we show that Integra is as expressive
as relational algebra and the classical relational algebra is a
special case of Integra.

II. SEMANTIC INTEGRATION ON THE HIDDEN WEB

The main vehicle for semantic integration is the ability to
establish semantic equivalence between terms and objects
(exact definition to follow). For example, ‘Warren, Michi-
gan’ and ‘Warren, MI’ are two semantically equivalent terms
given that MI is the abbreviation for Michigan. Similarly
‘2004 BMW coupe’ is equivalent to ‘2004 BMW-coupe’
if we ignore ‘-’. Also the attribute address in AutoTrader
relation is equivalent to location of CarSearch relation since
address and location are synonymous with each other and
both have similar values. So the question is, how does the
inclusion of semantic equivalence into relational algebra
changes its model and the functionality. It turns out that
substantial machineries need to be added to adapt, and
extend relational algebra to be able to support semantic
integration. In particular, it now needs to support two ad-
ditional operations that are the two essential pilers of data
integration – horizontal and vertical integration we have
alluded to before. Roughly speaking, horizontal integration
aims to increase the cardinality of a relation by including
more semantic objects into the collection, while vertical
integration aims to increase the degree of a relation by
adding more properties to existing objects. It turns out that
traditional union and join operations are not sufficient.

A. Semantic Objects and Equivalence

If we consider the relations AutoTrader and CarSearch in
figure 2b, we notice several properties that make it com-
plicated to directly use relational algebra for data integra-
tion purposes. For example, they are not union compatible
(CarSearch relation has phone and AutoTrader relation has
distance in figure 2b) as required by relational model, and so
we cannot just take a union of these two relations (horizontal
integration) without sanitizing them properly. In other words,
they have vastly different schemes and data representation.
Even if we somehow make the relations union compatible,
we will need to be able to identify that ‘2004 BMW coupe’

in CarSearch relation is the same object ‘2004 BMW-coupe’
in the AutoTrader relation. It is thus reasonable to expect that
in the combined information for all the cars, we will have
all the attributes as shown in figure 3f, and the semantic
objects as shown. Now the question is, could query these
relations without sanitizing them ahead and independent of
their schemes so that we do not have to worry about how
and what to sanitize the candidate schemes to so that our
query language will not break down just because we did not
conform to one or the other input relation schemes.

For example, we would like to see that user query “select
carType, mileage, value from AutoTrader” is computable
even though the AutoTrader relation lists the attributes as
car, mileage and price. In our view, this is a reasonable
expectation since car, mileage and price from AutoTrader
have semantically similar meaning to carType, mileage and
value from the query. We would also like to see that state-
ments such as “link CarSearch, GoogleMap” and “combine
CarSearch, AutoTrader” achieves the same functionality as
in vertical and horizontal integration in which the objects
are semantically identified after the possible heterogeneity
is resolved. These are the issues we plan to address in the
next few sections.

III. THE INTEGRA DATA MODEL

Like several earlier research [5], [6] we too take a rela-
tional view of the web. By doing so we attempt to transform
the web content into a structured representation in order to
develop a formal foundation so that a query language can be
designed. Also we are motivated by the fact that the dynamic
Web pages usually use tabular representation to expose their
contents which closely resembles traditional relations1. From
the existing research we know that these tables can be
identified and extracted quite efficiently by wrappers, such as
FastWrap [7], DEPTA [8] etc., using page scrapping. All we
need to account for, how the submission and transformation
operations mesh with the algebraic operators we propose.
We proceed by discussing a few needed concepts to lay the
foundation.

A. Semantic Equivalence of Terms

A term in Integra is any basic element such as an attribute
name (called an a-term), its type (t-term), or a value (v-term).
Formally, the language L of Integra is a triple 〈A,V, T 〉
such that A is the set of attribute names, V is a set of basic
values, T is a set of type names with associated domains.
For example, the a-term Name has a type String with domain
Name in which John is a value or v-term.

1By making these assumptions we are in a way assuming that in the rare
set of hidden web databases that support a different form of user interaction
or produce information in a form other than tables, our model will not be
appropriate.

239

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SANTA CATARINA. Downloaded on July 01,2010 at 16:45:53 UTC from IEEE Xplore. Restrictions apply.

Definition 1 (Term Similarity): Let ψ′ be a similarity
function2 such that for any two t1, t2 ∈ A ∪ V ∪ T ,
ψ′(t1, t2) ∈ [0, 1], where 0 indicates complete dissimilarity
and 1 means two terms are identical. Let ψ be a function
and ε be a threshold such that ψ(ε, ψ′(t1, t2)) ∈ {0, 1}, i.e.
ψ(ε, ψ′(t1, t2)) = 0 if ψ′(t1, t2) < ε; ψ(ε, ψ′(t1, t2)) = 1
otherwise, and we say t1 and t2 are similar, denoted t1 ∼ t2.

From here on, we write ψ(t1, t2) as a short hand for
ψ(ε, ψ′(t1, t2)) unless specified otherwise.

Definition 2 (Term Equivalence): Two a-terms a1, a2 ∈
A are called attribute, or a-equivalent, if ψ(a1, a2) = 1
and their associated types are identical (i.e., ψ′(t1, t2) = 1),
denoted a1 � a2. Two v-terms v1, v2 ∈ V are called value,
or v-equivalent, if ψ(v1, v2) = 1, and their corresponding
a-terms are equivalent (i.e., a1 � a2), denoted v1 � v2.

For example, car � carType, since car ∼ carType and
both have type string in relations AutoTrader and CarSearch
(figure 2b). Similarly ‘Warren, Michigan’ � ‘Warren, MI’
since ‘Warren, Michigan’ ∼ ‘Warren, MI’ and the corre-
sponding attributes are equivalent i.e. address � location.

B. Database Functions

We exploit several existing integration technologies and
incorporate them as user defined functions. Below, we
present a brief discussion on three such functions namely (i)
semantic reconciliation function μ, (ii) extraction function η,
and (iii) the key discovery function κ.

1) Semantic Reconciliation Function (μ): Given two
sets of terms R and S, where R and S may be rela-
tion schemas, the function μ returns a set of equivalent
pair of terms. For example, μ(AutoTrader, CarSearch)
returns {< car, carType >,< mileage,mileage >,<
price, price >,< address, location >}. Here, μ acts as
a schema matching technique such as OntoMatch [11].
However, μ also determines equivalency between two terms,
where it has the functionality of ψ. We can then readily cast
the term equivalence as �μ to denote the fact that term
equivalence is with respect to the semantics of μ. We now
formally define μ as schema correspondence function below:

Definition 3 (Schema Correspondence): Let R and S be
two schemas, ε be a threshold, and δ be a distance func-
tion3 such that δ(Ai, Aj) ∈ [0, 1] for any Ai ∈ R, and
Aj ∈ S. Then μ(R,S) = {< Ai, Aj > |Ai ∈ R ∧ Aj ∈
S ∧ δ(Ai, Aj) ≤ ε, such that ∀Ak ∈ S(δ(Ai, Ak) >
δ(Ai, Aj))}.

2) Key Discovery Function (κ): Given a relation, the key
discovery function κ identifies the keys of that relation.
Formally, if r(R) is a relation then κ(r) = {K1, . . .Kn},
where each Ki = {Ai} is a key of r. We can use any existing
algorithms such as GORDIAN [12] as κ.

2Such as string edit distance [9], thesaurus at WordNet [10], etc. or a
combination of such functions.

3A distance function δ can be defined in terms of a similarity function
ψ as δ(Ai, Aj) = 1− ψ(Ai, Aj), where Ai ∈ R,Aj ∈ S.

3) Extraction Function (η): Given a web page W , the
function η identifies and extracts a table or relation from W .
Such functions are known as wrapper induction [13] tools.
In the literature we find many automatic wrapper induction
tools such as FastWrap [7], DEPTA [8] etc. of which any
one can be used as η.

C. Integra Operators

In this section we define the basic set of operators4 needed
to devise an algebraic query language for the hidden Web
such as selection (σ̂), projection (π̂), intersection (∩̂), and
difference (−̂). We also define three new operators unique to
our model called the link (λ̂) operator for vertical integration
of relations, combine (χ̂) for horizontal integration, and
finally the transform (τ̂) operator to convert the hidden Web
into relations.

However, it turns out that our combine operation is
synonymous to the classical union operation when the pair
of relations satisfy union compatibility in Codd’s relational
model [14]. Consequently, we do not define a separate
union operator. Finally, the Cartesian product and rename
operations are identical to the classical case, and hence
omitted. Before we go ahead define the algebra operators,
let us give the following definition.

Definition 4 (Semantic Comparison): Let μ be a recon-
ciliation function; r1, r2 be two relation instances over
schemes R1, R2; v1, v2 be two v-terms in tuples t1 ∈ r1
and t2 ∈ r2 corresponding to attributes A1 and A2; and θ
be a Boolean comparator. Then, A1θA2 holds for A1, A2 ∈
R1 ∪R2, denoted A1θ

μ
R1,R2

A2, if < A1, A2 >∈ μ(R1, R2),
and v1θv2 hold. We say that v1θv2 holds when (i) θ is an
equality and < v1, v2 >∈ μ(v1, v2), or (ii) θ is not an
equality and there exists a v′ such that < v′, v2 >∈ μ(v′, v2)
and v′θv2 holds in classical sense5.

To define Integra operators we will use the following
relations and symbols for the rest of the section. Let r and s
be two relations over the schemes R = (A1, A2, . . . , Am),
and S = (B1, B2, . . . , Bn). Also let A = (A1, A2 . . . , Ap),
and B = (B1, B2 . . . , Bp), where p ≤ min(m,n), be the
terms in R and S such that < Ai, Bi >∈ μ(R,S) i.e.
Ai �μ Bi, i = 1, . . . , p holds.

Definition 5 (Output Schema for Binary Operators):
If r(R) and s(S) be two relations then except
for minus operation the output schema O will be
A1, . . . , Am, Bp+1, . . . , Bn, meaning that, the output
schema first takes attributes from the first relation and then
attributes from the second relation for which there are no
equivalent attributes in the first relation.

4From now on, we denote the classical operators with plain Greek
symbols (i,e., σ), whereas the corresponding extended operators are denoted
using a hat over the symbol (i,e., σ̂). Furthermore, from this point on when
we say operator, we mean extended operator, and the traditional operators
are referred to as classical operators, unless otherwise mentioned.

5This definition can be slightly and easily tailored to define the cases for
comparisons such as Aθv, or v1θv2 and left as an exercise.

240

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SANTA CATARINA. Downloaded on July 01,2010 at 16:45:53 UTC from IEEE Xplore. Restrictions apply.

(a) selection on AutoTrader

car mileage price dealer address distance

2003 Audi Allroad 55000 17500 Paradise Autos Warren, MI 14.4

2004 BMW-coupe 36000 20500 Paradise Autos Warren, MI 14.4

(c) link on CarSearch and GoogleMap

car mileage price phone location startAddress distance

2001 Acura CL Type-S 45000 13000 917-692-4108 Eastchester , NY 48202 630

2003 Audi Allroad 55000 17500 586-756-4240 Warren, MI 48202 14.4

2004 BMW-coupe 36000 20500 586-756-4240 Warren, MI 48202 14.4

(e) intersection on AutoTrader and CarSearch

car mileage price dealer address distance phone

2003 Audi Allroad 55000 17500 Paradise Autos Warren, Michigan 14.4 586-756-4240

2004 BMW-coupe 36000 20500 Paradise Autos Warren, Michigan 14.4 586-756-4240

(b) projection on CarSearch

car price address

2001 Acura CL Type-S 13000 Eastchester , NY

2003 Audi Allroad 17500 Warren, MI

2004 BMW coupe 20500 Warren, MI

(d) difference on AutoTrader and CarSearch

car mileage price dealer address distance

2004 Saturn Vue 2.2L 32758 11890 Autonet Plymouth, Michigan 14.4

(f) combine on AutoTrader and CarSearch

car mileage price dealer address distance phone

2004 Saturn Vue 2.2L 32758 11890 Autonet Plymouth, Michigan 18 null

2003 Audi Allroad 55000 17500 Paradise Autos Warren, Michigan 14.4 586-756-4240

2004 BMW-coupe 36000 20500 Paradise Autos Warren, Michigan 14.4 586-756-4240

2001 Acura CL Type-S 45000 13000 null Eastchester , NY null 917-692-4108

Figure 3. Operations on relations

1) Select Operator (σ̂): The selection operation is defined
in a way analogous to classical selection in the context of
reconciliation function μ. If r is a relation over the schema
R and Ti be either an a-term or a v-term, then

σ̂μ
A1θT1,...,AkθTk

(r) = {t|t ∈ r, and
k∧

i=1

Aiθ
μ
∪iAi,R

Ti hold}

Example 1: σ̂μ
address=′Warren,MI′(AutoTrader) will

return the relation shown in figure 3a. The operator selects
the rows from AutoTrader relation for which the address
value is similar to ‘Warren, MI’. Since ‘Warren, Michigan’
∼ ‘Warren, MI’, the operation selects two tuples and
replaces ‘Warren, Michigan’ with ‘Warren, MI’ in the
output relation.

2) Project Operator (π̂): Projection operation is also
defined along the lines of classical projection taking the
reconciliation function into account. If r is a relation over
the schema R, A′i be a set of attribute names, t be any tuple
in r where t[Ai] denote the projection of t on attribute Ai,
and ‖ is a concatenation function, then

π̂μ
A′

1,A′
2,...,A′

k
(r) = {‖k

i=1 ti|t ∈ r, ti = t[Ai], and

< Ai, A
′
i >∈ μ(∪iA

′
i, R) hold for i = 1, . . . , k}

Example 2: π̂μ
car,price,address(CarSearch) will return

the relation shown in figure 3b. The scheme of the returned
relation will replace all Ai with A′i for which < Ai, A

′
i >∈

μ(∪iA
′
i, R) holds. Let the μ function maps car to carType,

price to price and address to location. The operator then
projects carType, price and location from CarSearch relation
and changes the attribute names to car, price and address.

3) Combine Operator (χ̂): Combine operation seeks to
collect similar objects in one relation from multiple tables,
in a way similar to classical union operation. Differently
from classical union though, combine operation attempts to
recognize semantic objects through key identification and
semantic reconciliation in terms of schema mismatch, and
hence does not enforce classical union compatibility.

Two relations are combine compatible if both relations
have semantically equivalent keys.

Definition 6 (Combine Compatibility): Let r, s be two re-
lations over the schemes R,S; u, v be tuples in r, s; Kr =
(Ai, . . . , Ak) and Ks = (Bi, . . . , Bk) be two candidate keys
in R and S such that Kr ⊆ A, Ks ⊆ B, and Kr �μ Ks

i.e. ∀(Aj ∈ Kr, Bj ∈ Ks, u[Aj] �μ v[Bj], < Aj , Bj >∈
μ(R,S) hold for j = 1, . . . , k), then r and s are combine
compatible.

Finally, let r and s be two relations over the schemes
R and S, κ be a key identification function such that
κ(r) = Kr, κ(s) = Ks, μ be a schema matching function
that identifies Kr �μ Ks, then

rχ̂μ
κs = {t|(∃u : u ∈ r,¬∃v : (v ∈ s such that Kr �μ Ks),
t = u ‖ (‖n−p

i=1 ⊥)) ∨ (∃u : u ∈ s,¬∃v : (v ∈ r such
that Ks �μ Kr), t = (‖m−p

i=1 ⊥) ‖ u) ∨ (∃u : u ∈ r,
∃v : (v ∈ s such that Kr �μ Ks), t = u ‖n

i=p+1 v[Bi])}
Example 3: AutoTrader χ̂μ

κ CarSearch will
return the relation shown in figure 3f. Let
μ(AutoTrader, CarSearch) returns the mapping
< car, carType >,< mileage,mileage >,<
price, price >,< address, location >. The output
schema thus takes the attributes from AutoTrader relation
followed by phone from CarSearch, for which there is no
equivalent attribute in AutoTrader. Now, let the κ function
identifies car and carType as the key attributes of the
input relations. The key values identify distinct objects in
a relation. The two distinct cars ‘2004 Audi Allroad’ and
‘2004 BMW-coupe’ are present in both relations. Thus in
combined relation both cars have values for all attributes.
Like the schema definition, values are taken first from the
AutoTrader relation, then from CarSearch. If an object is
present in only one relation then in the combined relation
unbound attributes take null values. For example, ‘2004
Saturn Vue 2.2l’ has null for phone, and ‘2001 Acura CL
Type-S’ has null for dealer and distance.

241

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SANTA CATARINA. Downloaded on July 01,2010 at 16:45:53 UTC from IEEE Xplore. Restrictions apply.

4) Difference (−̂) and Intersection (∩̂) Operator: The
difference operation (shown in figure 3d) simply removes
the objects from the first relation that have semantically
identical objects in the second relation, in a way similar
to the classical case. The output relation takes the schema
of the first relation.

The intersection operation (figure 3e) gathers semantically
identical objects that appear in both relations. Since the
objects are present in both relations the output relation has
the combined information of the objects. Unlike the classical
intersection the extended intersection operation cannot be
expressed in terms of extended difference operation, i.e.
r∩̂μ

κs �= r−̂μ
κ(r−̂μ

κs), because the degrees of input relations
are not the same. However, if the degrees are same then
r∩̂μ

κs = r−̂μ
κ(r−̂μ

κs) holds.
5) Link Operator (λ̂): While combine operation requires

two relations having candidate keys, link operation requires
one relation having a candidate key and the other having a
foreign key. Thus link operation is at most one to many. Link
operation is somewhat analogous to the classical natural join
operation in terms of its function, but is fundamentally dif-
ferent semantically. In case of natural join, the two relations
are joined if they have common attributes and if they have
common values. But the link compatibility depends on key
constraints, where the keys are usually discovered in the
context of participating relations.

Now, let r and s be two relations over the schemes R
and S, κ be a key identification function such that κ(r) =
Kr, κ(s) = Ks, Kr ⊆ A, Ks ⊆ S; μ be a schema matching
function that identifies Kr ⊆ Ks, then

rλ̂μ
κs = {u ‖ t|(∃u : u ∈ r,∃v : (v ∈ s, such that ∀Ai ∈ Kr

∃Bi ∈ Ks(u[Ai] �μ v[Bi], < Ai, Bi >∈ μ(R,S))),
t =‖n

i=p+1 v[Bi])}

Example 4: CarSearch λ̂μ
κ GoogleMap will produce

the relation shown in figure 3c. The GoogleMap relation has
the key endAddress and CarSearch relation has the foreign
key location, thus the link operation is one to many. The
output schema of the linked relation follows the same rule
of combined schema. The linked relation has the tuples that
have semantically similar values for the linking attributes
e.g. ‘Warren, MI’ links to ‘Warren, MI’ and so on.

6) Transform Operator (τ̂): The operators discussed so
far perform necessary operations on traditional relations
much like relational algebra operators. But for automatic
integration it first needs to transform the hidden Web into
relations. The transform operator does so by taking three
different user defined functions such as matching function
(μ), form function (ϕ), extract function (η) and the output
schema (S) as parameters. The operator (τ̂) first submits
a web form to get the result web page, then extracts the
data table from the page and finally applies projection

(π̂) operation to get the desired relation. Algebraically the
transform operator is written as the following:

τ̂μ
ϕ,η,S(r)

Let, τ̂OntoMatch
autotrader.com,FastWrap,S(r) be a transform oper-

ator to convert autotrader.com site to AutoTrader relation.
Recall that a web form has a set of input controls such as
text box, list, combo box etc. with associated labels. For
example, figure Ia has a text box with label ’ZIP Code’
and combo box with label ’Search Area’. For automatic
form submission, we have to send http request with (control,
value) pairs such as (’Zip Code’, 48202) and (’Search Area’,
50). But, let’s say, the user wants to submit zip-code = 48202
and radius = 50, though zip-code and radius are not the
exact match for Zip Code and Search Area. Now it is the
reconciliation function, OntoMatch (μ) [11], that maps zip-
code and radius to Zip Code and Search Area and helps the
τ̂ operator to execute the form function autotrader.com to
submit the control value pairs. Notice that the input relation
r of τ̂ has the schema of [zip-code, radius] and a tuple
of (48202, 50). After the form submission, the extraction
function FastWrap extracts a relation r from the Web page.
Let’s say r has the schema R = [carName, mileage, value,
dealer, address, distance, fax], but the user specifies the
extracted schema S = [car, mileage, price, delear, address,
distance]. Thus, finally the transform operator projects S
from r, and as we have seen earlier the project operation uses
OntoMatch [11] function again to map [car, mileage, price,
dealer, address, distance] to [carName, mileage, value,
dealer, address, distance].

D. Interesting Properties of Integra

Although Integra is capable of computing queries that
relational algebra in general cannot, it turns out that Integra
is no more expressive than relational algebra in its strict
sense. This holds true only when we consider the set of
functions μ, and κ as part of relational algebra for pre-
processing. We can actually show that a mapping function ϑ
exists such that we can translate every Integra database into
a crisp relational database (i.e., ϑ(R) = R′ where R are
the Integra tables and R′ are the corresponding relational
tables), and responses generated on Q on R by Integra
are exactly identical to the response generated by relational
algebra on R′ corresponding to ϑ(Q), as shown in the
commutative diagram in figure 4. Based on this observation,
we can propose the following two results:

Theorem 3.1: The expressive power of Integra is equiva-
lent to relational algebra modulo the transformation function
ϑ, i.e., Q(R) = ϑ(Q)(ϑ(R)).

Proof Outline: We show that for every relation r ∈ R,
ϑ applies μ to reduce r into a canonical relational repre-
sentation r′ ∈ R′. We can then transform the query in a
similar manner by restricting the attributes and values to the
canonical representation. Since the databases and queries are

242

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SANTA CATARINA. Downloaded on July 01,2010 at 16:45:53 UTC from IEEE Xplore. Restrictions apply.

semantically equivalent under μ, the responses produced by
both languages must also be equivalent. The proof in the
other direction is symmetric. Only special case we will have
to keep in mind that the operators link (λ̂) and combine (χ̂)
are special to Integra, and their counterparts are join and
union in relational algebra, and we need to account for that
switch in ϑ. A weaker result, i.e.,Q(R) ≡ ϑ(Q)(ϑ(R)), will
result if we do not choose to map to a canonical database
and thereby reduce cost of mapping.

A corollary of the above result is that the relational
algebra is a special case of Integra. This is because if the
databases are already crisp (no schema heterogeneity exists),
the special functions μ and κ has no effect on the operators
and behave as identity functions. In those cases, Integra
behaves exactly like relational algebra. In particular, link
and combine reduces to join and union respectively.

Corollary 3.1: If ϑ(R) = R, then Q(R) = ϑ(Q)(R).
The outline of the translation function can be summarized

as follows:
Extended select (σ̂μ) and project (π̂μ) operation: Let,

σ̂μ
AiθT ′(r) and π̂μ

A′
i
(r) be two integra expression over r(R).

The translation algorithm ϑ takes the relation r and applies
the μ function to change all a-terms Ai to A′i where
Ai �μ A′i, and all v-terms v to v′ where v �μ v′. Let,
the changed relation is r′. Now the following relational
algebraic expressions σAiθT ′(r′) and πA′

i
(r′) produces the

same output as the original one.
Combine (χ̂μ

κ), link (λ̂μ
κ), minus (−̂μ

κ) and intersection
(∩̂μ

κ) operation: Let r and s be two combine compatible
relations. The translation algorithm applies the μ function
and changes all Bis with Ais where < Ai, Bi >∈ μ(R,S)
and all v′ : Bi ∈ s with v : Ai ∈ r such that v �μ v′. After
the transformation of r and s to r′ and s′ we can rewrite
the integra expressions as the following:

rχ̂μ
κs ≡ (r′ �� s′) ∪ ((r − πR(r′ �� s′))× 〈⊥ : (S −R)〉)

∪(〈⊥ : (R− S)× (s′ − πS(r′ �� s′))〉)
rλ̂μ

κs ≡ r′ �� s′

r−̂μ
κs ≡ r′ − (r′ �� (πA1...Ak

(s′)))
r∩̂μ

κs ≡ r′ �� s′

Though, both intersection and link are expressed with
join operation, the intersection is one-to-one and link is
one-to-many join operation. The expression 〈⊥ : (S − R)〉
represents constant relation, which has a single tuple with
null values for all attributes present in S −R.

It is evident from the discussion above that all Integra
operators take relations as inputs (along with appropri-
ate functions) and transform them again into relations as
required to satisfy the closure property. Once closure is
satisfied, compositionality is also guaranteed because we
can now nest operations to arbitrary depths as needed by
an application.

R �Q O

�
ϑ

R′�
��������

ϑ(Q)

Figure 4. Commutative Diagram

IV. BIOFLOW

It is perhaps instructive to see how the database operators
we have discussed in this paper are used in the higher level
declarative statements in BioFlow, for which the algebra is
being proposed. In this section we give brief overview on
BioFlow, however for detailed syntax interested readers are
referred to [1], [2].

Like SQL, BioFlow has two types of statements, resource
description statements and data manipulation statements.
Resource description statements define necessary datatables
and web functions. Data manipulation statements are derived
from Integra operators.

In BioFlow we treat every Web page as function, which
takes inputs into its input from and returns a relation. We call
it Web function and define it declaratively as the following:

define function AutoTrader
extract car varchar(80), mileage integer, price

integer, dealer varchar(50), address varchar(80),
distance float

using matcher OntoMatch, wrapper FastWrap
from URL www.autotrader.com
submit (distance varchar(20), zipcode integer);

In this definition of AutoTrader Web function, we treat the
remote site at URL www.autotrader.com as a form function,
where the system submits a distance and zipcode value, and
extracts a relation named AutoTrader with attributes car,
mileage, price, dealer, address and distance. The function
specifies the matcher OntoMatch and key identifier GOR-
DIAN by the using clause.

We execute the Web function using the following data
manipulation statement, the call statement. During the exe-
cution, the system translates the call statement and the Web
function to transform operator, where the input relation has
the scheme from submit clause and the tuple from the call
parameters. The system then executes the transform operator
in a sequence of steps as described in section III-C6.

call AutoTrader("50 miles", 48202);

Other data manipulation statements derived from the
Integra operators are listed below as σ̂, π̂, χ̂, λ̂, −̂ and ∩̂:

(1) select * from AutoTrader where address =
‘Warren, MI’ using matcher OntoMatch ;

(2) select car, price, address from CarSearch
using matcher OntoMatch ;

(3) combine AutoTrader, CarSearch as AutoSearch
using matcher OntoMatch, identifier GORDIAN;

243

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SANTA CATARINA. Downloaded on July 01,2010 at 16:45:53 UTC from IEEE Xplore. Restrictions apply.

(4) link CarSearch, GoogleMap as CarSearchGoogle
using matcher OntoMatch, identifier GORDIAN ;

(5) select AutoTrader minus CarSearch
using matcher OntoMatch, identifier GORDIAN ;

(6) select AutoTrader intersection CarSearch
using matcher OntoMatch, identifier GORDIAN ;

V. RELATED WORK

To the best of our knowledge, there have been little to no
attempts at developing a comprehensive algebra for semantic
data integration for the hidden web. However, there has
been previous work on syntactic integration in the direction
of schema evolution and schema integration [15], [16].
These research efforts are mostly concerned with syntactic
schema manipulation and transformation, and meta data
management for data integration. Some other research have
focused on specific components of semantic integration. For
example, the fusion operator (φ) [4] merges n input relations
into one. The operator is written as φF,CR,S(R), where
F = f1, f2, ..., fm is a list of m attributes that determines
the same real world entity, CR = cr1, cr2, ..., crk is a list of
k conflict resolution functions and S = s1, s2, ..., sl is a list
of l intra-group sort key. It first takes outer union of input
relations and then fuses data of same real world entities
identified by F according to the set of conflict resolution
functions CR. Though the fusion operator consolidates se-
mantic objects from different relations to a single relation,
it has to specify the key attributes explicitly, such as F , and
different conflict resolution functions for different domain
specific purposes. In contrast the integra binary operators
automatically identify key attributes and have general pur-
pose reconciliation functions that are domain independent.

VI. CONCLUSION

Our goal in this paper was to propose a comprehen-
sive algebraic language for semantic data integration on
the hidden web. The proposed model stands out among
contemporary research efforts in several significant ways.
First, it is comprehensive and can serve as a complete
query language. Second, the model is abstract and general
enough to allow high level abstraction. Such separation
allows choice of implementation strategies at the system
level. We also demonstrated that Integra is compositional
and closed, which not many languages can claim. As a proof
of strength of Integra, we have implemented most of its
features in our SQL like declarative query language BioFlow
[2] for the life sciences data integration project, LifeDB [3].

REFERENCES

[1] H. Jamil and A. Islam, “The power of declarative languages:
A comparative exposition of scientific workflow design using
bioflow and taverna,” in IEEE SCC International Workshop
on Scientific Workslfows, Los Angeles, California, July 2009.

[2] H. Jamil and B. El-Hajj-Diab, “Bioflow: A web-based declar-
ative workflow language for life sciences,” in 2nd Interna-
tional Workshop on Scientific Workflows, Hawaii, 2008.

[3] A. Bhattacharjee, A. Islam, M. S. Amin, S. Hossain, S. Ho-
sain, H. M. Jamil, and L. Lipovich, “On-the-fly integration
and ad hoc querying of life sciences databases using LifeDB,”
in 20th International Conference on Database and Expert
Systems Applications (DEXA’09), Linz, Austria, 2009.

[4] J. Bleiholder, “A relational operator approach to data fusion,”
in 31st International Conference on Very Large Data Bases
(VLDB’05), Trondheim, Norway, 2005.

[5] E. Chu, A. Baid, T. Chen, A. Doan, and J. F. Naughton, “A
relational approach to incrementally extracting and querying
structure in unstructured data,” in 33rd international confer-
ence on Very large data bases (VLDB’07), Vienna, Austria,
2007, pp. 1045–1056.

[6] S. N. Minton, C. Nanjo, C. A. Knoblock, M. Michalowski,
and M. Michelson, “A heterogeneous field matching method
for record linkage,” in 5th IEEE International Conference on
Data Mining (ICDM’05), 2005, pp. 314–321.

[7] M. S. Amin and H. Jamil, “FastWrap: An efficient wrapper for
tabular data extraction from the web,” in IEEE International
Conference on Information Reuse and Integration (IRI’09),
Las Vegas, Nevada, August 2009.

[8] Y. Zhai and B. Liu, “Web data extraction based on partial tree
alignment,” in 14th international conference on World Wide
Web (WWW ’05), Chiba, Japan, 2005, pp. 76–85.

[9] E. S. Ristad and P. N. Yianilos, “Learning string edit dis-
tance,” IEEE Transactions on Pattern Recognition and Ma-
chine Intelligence, vol. 20, no. 5, pp. 522–532, May 1998.

[10] WordNet, http://wordnet.princeton.edu/.

[11] A. Bhattacharjee and H. Jamil, “OntoMatch: A monotonically
improving schema matching system for autonomous data in-
tegration,” in IEEE International Conference on Information
Reuse and Integration (IRI’09), Las Vegas, August 2009.

[12] Y. Sismanis, P. Brown, P. J. Haas, and B. Reinwald, “GOR-
DIAN: efficient and scalable discovery of composite keys,”
in 32nd International Conference on Very Large Data Bases.
VLDB Endowment, 2006, pp. 691–702.

[13] A. H. F. Laender, B. Ribeiro-Neto, and A. S. da Silva, “Debye
- date extraction by example,” Data Knowl. Eng., vol. 40,
no. 2, pp. 121–154, 2002.

[14] E. F. Codd, The relational model for database management:
version 2. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1990.

[15] L. V. S. Lakshmanan, F. Sadri, and I. N. Subramanian, “Logic
and algebraic languages for interoperability in multidatabase
systems,” Journal of Logic Programming, vol. 33, no. 2, pp.
101–149, 1997.

[16] C. M. Wyss and F. I. Wyss, “Extending relational query
optimization to dynamic schemas for information integration
in multidatabases,” in SIGMOD ’07, Beijing, China, 2007,
pp. 473–484.

244

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SANTA CATARINA. Downloaded on July 01,2010 at 16:45:53 UTC from IEEE Xplore. Restrictions apply.

