
Using Latent-Structure to Detect Objects on the Web

Luciano Barbosa
AT&T Labs - Research

lbarbosa@research.att.com

Juliana Freire
University of Utah

juliana@cs.utah.edu

ABSTRACT
An important requirement for emerging applications which aim to
locate and integrate content distributed over the Web is to identify
pages that are relevant for a given domain or task. In this paper,
we address the problem of identifying pages that contain objects
with a latent structure, i.e., the structure is implicitly represented
in the page. We propose an algorithm which, given a set of in-
stances of an object type, derives rules by automatically extracting
statistically significant patterns present inside the objects. These
rules can then be used to detect the presence of these objects in
new, unseen pages. Our approach has several advantages when
compared against learning-based text classifiers. Because it relies
only on positive examples, constructing accurate object detectors
is simpler than constructing learning classifiers, which require both
positive and negative examples. Also, besides providing a classifi-
cation decision for the presence of an object, the derived detectors
are able to pinpoint the location of the object inside a Web page.
This enables our algorithm to extract additional object fragments
and apply online learning to automatically update the rules as new
documents become available. An experimental evaluation, using a
representative set of domains, indicates that our approach is effec-
tive. It is able to learn structural patterns and derive detectors that
outperform state-of-art text classifiers and the online learning com-
ponent leads to substantial improvements over the initial detectors.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Selection process.

General Terms
Algorithms, Design, Experimentation.

Keywords
Web objects, rule inference, online learning, information extraction

1. INTRODUCTION
There has been a substantial increase in the volume of (semi-)

structured data on the Web. Not surprisingly, several applications
have emerged that aim to organize structured Web data and make

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WebDB ’10 Indianapolis, IN USA
Copyright 2010 ACM 978-1-4503-0186-2/10/06 ...$10.00.

Figure 1: Variability in formatting of bibliographic references.

them more easily accessible and queryable. These include large-
scale information integration systems [3, 13], specialized search
engines, and structured data portals [8, 15, 5]. An important re-
quirement for these applications is the ability to find new informa-
tion sources, be it to increase the coverage for domains (or object
classes) they already support, or to find new kinds of objects. Con-
sider for example the DBLife system [5]. DBLife integrates online
information that is relevant to the database research community,
presenting a unified view of entities (e.g., conference announce-
ments, researchers, references to scientific articles) and relation-
ships in the domain (e.g., served on PC, published a paper, collabo-
rated with). To keep the data repository current, the system must be
able to locate new entity instances (e.g., new papers, researchers)
and if there is a need expand the repository, it must locate new en-
tities that are relevant in the domain (e.g., Web casts, videos).

In this paper, we examine the problem of identifying Web enti-
ties (or objects) consisting of a series of attributes. For instance, a
bibliographic reference is an object composed of attributes such as
author, venue, year, etc. These attributes may contain some internal
structure: while year is a string that contains 4 digits, venue often
contains terms such as “conference” or “journal”. Identifying these
objects is challenging because there is wide variability in how they
are represented across different sites. Consider the bibliographic
references shown in Figure 1. Different people use different con-
ventions to represent a reference. While some put the title, fol-
lowed by the authors and then the conference and year, others start
with authors. There are also many alternatives used for abbreviat-
ing certain attributes (e.g., SIGMOD Conference, SIGMOD Conf.)
and sometimes attribute names are omitted (e.g., SIGMOD).

A possible solution to detect Web objects is to use traditional
text classification techniques [17], but these have important limita-
tions. Structured objects are often located pages that contain other
information. Figure 2 shows a recipe page. Besides the recipe ob-
ject, there are also ads, navigation bars, and forms. Because in text
classification, documents are viewed as a bag of words, without



Figure 2: Page containing a recipe and additional content.

a reliable mechanism to locate the recipe within the page, it can
be hard to construct an accurate classifier. Furthermore, building
a learning classifier often requires a large number of both positive
and negative examples. Constructing an accurate classifier is thus
not only time consuming but also very challenging. Since there
are so many distinct objects on the Web, given a target object, it is
not clear what other objects would constitute a representative set of
negative examples that would help in the classification process.
Detecting Objects with Latent Structure. We propose a new and
scalable approach for detecting latent-structured objects (LSOs) in
Web pages. Given samples of objects in a class or domain, Latent
Structure Object Detection (LSOD) uses hypothesis testing to iden-
tify patterns (the latent structure) that are statistically significant,
and derives a small set of rules based on these patterns. Similar to
Class Sequential Rules (CSR) [12], we want to create rules based
on sequential patterns. In our context, a sequence is an ordered list
of items that represent a fragment of an object. For instance, in the
recipe domain, the fragment “1 cup of milk" can be represented by
the sequence <1, cup, of, milk >. LSOD infers rules (sequences)
from the input fragments (or sentences) that are able to detect sim-
ilar objects in other pages.

In contrast to approaches to grammar and DTD inference [1, 6],
LSOD does not aim to derive rules that capture a formal descrip-
tion of the whole object (generative model). Instead, our goal is to
derive rules that yield high precision but that also capture the wide
variability in content and structure of objects, and as a result, are
able identify objects across multiple Web sites (descriptive model).

Besides providing a scalable mechanism for detecting documents
that contain structured Web objects, LSOD can be used to harvest
these objects. Because the derived rules capture the structure of the
object, they can be used to locate the object in a page. This helps
both the page segmentation and object extraction processes. The
ability to locate the object within a document also enables LSOD to
incrementally and automatically update the detection rules through
online learning. In addition to reducing the costs involved in rule
maintenance, online learning can attenuate potential biases present
in the initial model and increase rule accuracy and coverage.
Contributions and Outline. Our main contributions are summa-
rized as follows:

•We propose a new algorithm for automatically deriving detection
rules for structured Web objects. Relying only on positive exam-

Vocabulary 

Translation 

Input  

Sentences 

Rule 

Augmentation 

Object 

Detection 

Web 

Pages 

Relevant 

Pages 

Online learning 

Inference 

Translated  

Sentences 

PTA  
Pruning 

PTA 

 Construction 

Rule 

Derivation 

Pruned 

Tree  

Candidate 

Sentences 

Detection 

Rules 

Figure 3: System architecture.

ples, the algorithm uses statistical methods to derive rules that are
both general and accurate (Section 2). We show how these rules
can be used to determine whether a page contains a desired object
as well as to locate the object in the page (Section 3);

•We discuss how online learning can be used to automatically im-
prove the detection rules (Section 4);

•We present experiments which demonstrate that our approach is
effective and outperforms state-of-the-art text classification tech-
niques (Section 5).

2. LATENT STRUCTURE INFERENCE
Given a set of sentences S that represent instances of objects or

object fragments in a domain of interest D, the inference process
must identify patterns and generate rules that recognize these pat-
terns. These rules, in turn, can be used to classify sentences as
belonging to D. As illustrated in Figure 3, the inference process of
LSOD consists of four steps. During Vocabulary Translation, input
sentences from S are translated using a more abstract and restricted
vocabulary to capture strong patterns. In PTA Construction, the
translated sentences are merged into a prefix tree acceptor (PTA).
Because the PTA can be over-specialized with respect to the input
set of sentences, Pruning eliminates some of the PTA branches to
make it more general. In the final step, Rule Derivation, rules are
extracted from the pruned tree to be used in the Object Detection.

2.1 Vocabulary Translation
Given the high variability in the vocabulary used in sentences

of latent-structured objects (LSOs), to capture strong patterns, we
adopt a more abstract representation for these sentences. We define
a Vocabulary Translation Function (VTF) which maps the words
present in the input sentences to a more restricted vocabulary, V T F :
V 7→V ′, where V is the set of words extracted from the training sen-
tences (after stemming and stopword removal) and V ′ is the set of
words in the restricted vocabulary.

Definition 1: [Restricted Vocabulary V ′] The vocabulary V ′ con-
sists of a pre-defined set of types T and the set of k words with the
highest document frequencies (d fk). The pre-defined types are:

• UPPER: words whose first letter is capitalized;
• LOWER: words whose first letter is in lower case;
• N-DIGIT: token composed of n digits where;
• ALPHANUM: token composed of digits/non-digits.

Example 1: Let S be the set of input sentences in the original
vocabulary V (after stopword removal and stemming):
S1 = 1 cup water
S2 = 10 cup wine
Assuming that “cup” is a word with high frequency, translating S1
and S2 to V ′ = {T,cup} we have:
S1 = 1-DIGIT cup LOWER
S2 = 2-DIGIT cup LOWER

Note that, because the restricted vocabulary contains frequent
words present in the input sentences, it is domain-dependent. An
important benefit of using domain-specific words is that they cap-
ture specific information (both from the content and structure) of
the domain objects.



1-DIGIT 

cup tsp 

3-DIGIT 

. 

. 

. 

. 

. 

. 

491 

62 38 

206 

flour 

9 

1-DIGIT 

cup tsp 

3-DIGIT 
salt 

sugar 
. 

. 

. 

. 

. 

. 

491 

62 

2 

38 

7 206 

1-DIGIT 

cup tsp 

3-DIGIT 

sugar 
. 

. 

. 

. 

. 

. 

491 

62 

2 

38 

206 

flour 

9 

1st pruning 2nd pruning 

Figure 4: Example of the pruning process from the initial PTA to the
resulting pruned tree.

2.2 PTA Construction and Pruning
After vocabulary translation, the inference process derives object

detection rules that achieve a balance between recall and precision.
To discover common patterns in the set of translated sentences, we
build a prefix tree (aka trie). In a prefix tree, the root node corre-
sponds to the empty string and all descendants of a node share the
same prefix. Each node in the tree is annotated with its frequency
in the set of input sentences. As this tree accepts all the input sen-
tences, we call it Prefix Tree Acceptor (PTA) (see Figure 4).

To avoid the creation of PTAs that are too large and specialized
with respect to the input sentences, the inference process removes
branches that are not significant by hypothesis testing [16]. The
null hypothesis H0 is that the observed instances of a prefix Γ were
generated by chance. H0 is rejected if the probability (p-value) of
observation O given H0 (the probability of Γ having been created by
chance) is extremely low, in which case Γ is considered statistically
significant. To determine whether the p-value is small enough, we
compare it to a significance value α.

Similar to [11], to calculate the p-value, we assume that adding a
word w to an already significant prefix Γ by chance has a binomial
distribution. The binomial distribution approaches a normal distri-
bution N(µ,σ), with mean µ and variance σ, for a large number n of
observations with µ = np and σ2 = np(1− p). Given a new word w,
with probability of occurrence p = count(w)/∑

t
i=0 count(wi), the

probability of choosing w to be the next token to the prefix Γ, with
t occurrences in k of these prefixes, is the cumulative probability of
observing at least x events: P(k≥ x) =

R
∞

x ϕµ,σ2(u)du, where ϕµ,σ2

is the probability density function of the normal distribution with
mean µ and variance σ.

Using this framework, we perform two pruning steps. The first
one checks whether each node is statistically significant. The prun-
ing starts from the prefixes in the first level of the PTA. If a prefix
is not statistically significant (according to the hypothesis test de-
scribed above), all of its descendants are removed. This pruning
is applied in a breadth-first fashion until the leaves of the PTA are
reached.

Example 2: Let p1 be the root of the initial PTA. We want to
check whether the specialization of p1 , p2 = “salt”, is significant
(see Figure 4). Given that the frequency of p1 is 704 (n=704), the
probability of token “salt” is 0.01 (p=0.01), the frequency of p2 is 7
(k=7) and the α value is 0.05. Assuming N(µ = 7.04,σ = 2.64), the
cumulative probability of at least 7 events being observed is 0.51,
and it is higher than α = 0.05. As a result, p2 is considered not
statistically significant and, therefore, removed from the tree.

We apply a second pruning step which verifies whether special-
izations (children) of the prefix are significant. More specifically,
instead of checking whether the frequency of a given prefix is sta-
tistically significant as in the first pruning step, the second step ver-
ifies whether the number of sentences covered by the prefix minus
the number of sentences covered by its children is significant. For
instance, in the example of Figure 4, the specializations “flour” and
“sugar” of “1-DIGIT cup” were considered non-significant and as
result they were pruned.

The tree generated by the pruning process is significantly more
concise than the initial PTA. This tree is used to derive the detection

rules. As a final step, rules are eliminated if they have only one
element, or if they contain only terms from the generic vocabulary
(e.g., UPPER, LOWER). Such rules contain patterns that are likely
to occur in many different kinds of objects (negative examples),
resulting in low precision.

2.3 Capturing Deep Patterns
The inference process described in the previous subsections is

effective if the relevant patterns are concentrated close to the root
of the tree. However, when these patterns occur deeper in the tree,
they are harder to identify due to fragmentation, i.e., the presence
of terms with low frequency deep in the branches of the PTA. Frag-
mentation leads to the derivation of rules that are too generic and
thus, have low precision.

Example 3: Let S1, S2 and S3 be sentences in the restricted vo-
cabulary V ′ = {T,con f erence,data,using}:
S1 = UPPER UPPER conference 4-DIGIT
S2 = UPPER UPPER conference using 4-DIGIT
S3 = UPPER UPPER conference data 4-DIGIT
The inference process would derive the rule “UPPER UPPER con-
ference”, which might be too generic. However, if the low fre-
quency words (“using” and “data”) were removed, a more precise
rule would be inferred “UPPER UPPER conference 4-DIGIT”.

A naïve way of avoiding fragmentation would be to select only
a few of the most frequent words in the vocabulary. For example,
if the words “using” and “data” are not among the top-k selected
words, they would be eliminated from the sentences. However,
fragmentation can also be caused by the pre-defined types in the
restricted vocabulary V ′ (Definition 2.1). A more robust approach,
and the one we adopt, is to consider in the sentences only the bi-
grams with high-frequency—the top-k bigrams. Since our goal is
to keep words that appear co-occur frequently, we consider every
word pair in a sentence as bigrams, so-called bigrams at a distance.

Definition 2: [Bigram at a Distance] Let S = {w1,w2, ...,wn} be
a sentence. The bigrams at a distance that can be derived from S
are all “wiw j" ∈ S where i < j.

After computing the bigrams at a distance for all sentences, the
bigram removal algorithm works as follows. It starts from the first
word in the sentence and verifies whether the bigram “word1word2”
belongs to the list of frequent bigrams. If so, word2 is kept and
then the next bigram “word2word3” is tested. If not, the algorithm
checks the bigram “word1word3”, and so on.

Example 4: From the sentences in previous example, we have
the following bigrams: (UPPER UPPER,3); (UPPER conference,3);
(conference 4-DIGIT,3); (conference using,1); (using 4-DIGIT,1);
(conference data,1); (data 4-DIGIT,1]). Assuming the frequent bi-
grams as those whose frequency is higher than 1, the resulting sen-
tences after the bigram removal are:
S1 = UPPER UPPER conference 4-DIGIT
S2 = UPPER UPPER conference 4-DIGIT
S3 = UPPER UPPER conference 4-DIGIT
Now, the more precise rule “UPPER UPPER conference 4-DIGIT”
can be inferred from these sentences.

To determine a suitable value of k, we execute the inference pro-
cess with different values and select the output that contains rules
with larger average sizes. Our assumption is that larger rules result
in higher precision. If there are multiple rule sets with high average
size, we pick the set with a larger number of rules since it has a
higher probability of obtaining better recall.

3. LSO DETECTION
To apply the rules derived by the inference process, we must first

segment the page and identify the sentences where the rules can be



applied. Segmentation is critical for matching. Notably, it must
avoid breaking sentences into pieces that cannot be recognized by
the rules and combining sentences that contain pieces of multiple
instances of an object.

We use the layout of a Web page to guide the segmentation pro-
cess. The tokenizer breaks a document based on the HTML tags
that correspond to the newline characters: “p”,“dt”,“dd”,“tr”,“li”,
“br” and all header tags (“h1”,“h2”, etc). After removing all of the
HTML tags, pieces of text located between these special tokens are
considered to be sentences. A potential problem with this approach
is that, sometimes, there are line breaks within a sentence, e.g.,
search engine results pages often split an object (i.e., a result) into
multiple lines. In these cases, as the sample sentences provided to
the inference process also follow this pattern, the rules generated
capture sub-structures present in each line.

After segmenting a page into sentences, we apply the object de-
tection rules. A rule matches a sentence if the first two words in the
sentence match the first two elements in the rule, and the remain-
ing elements appear in the sentence in the same order, regardless of
their absolute position. If any sentence in a page p matches a rule
that describes an object in D, we assume p ∈ D.

Example 5: Given the vocabulary V ′ = {T,con f erence} (see
Definition 2.1), suppose we want to verify whether rule R=“UPPER
UPPER conference 4-DIGIT” matches the sentence S=“John John-
son, Grammar Inference, In Grammar Conference, 2004”. We first
remove stopwords, map S into V ′ generating S′=“UPPER UPPER
UPPER UPPER UPPER UPPER conference 4-DIGIT”. S′ matches
R since s1 = r1 and s2 = r2, and s8 = r3 and s9 = r4.

4. AUTOMATIC RULE AUGMENTATION
Because LSOs from different sites are often diverse, construct-

ing a representative training set is challenging and time consuming.
LSOD attenuates this problem by applying online learning: it au-
tomatically augments the derived rules using information obtained
from newly extracted sentences discovered in the classification pro-
cess. In particular, we leverage the fact that multiple sentences (cor-
responding to multiple objects or fragments of an object) appear in
a single page. When a page is classified as belonging to the target
domain by the LSO detection, the rule augmentation process (RAP)
extracts candidate sentences which are co-located with the relevant
sentences and add them to the training set. The augmented training
set is then used to derive a new set of rules. Note that RAP is only
effective if the sentences detected by the initial rules co-occur in the
same document with sentences whose patterns were not covered by
the initial rules.

To identify candidate sentences, RAP performs segmentation.
More specifically, RAP looks at the DOM tree for the sentences
that share the same parent node with the sentences considered as
relevant by the rules. Although it is not always the case that all can-
didate sentences in the document share the same parent and it can
happen that non-relevant sentences are siblings of relevant ones, as
our results in Section 5 show, this simple strategy is effective in
practice. Even when just a subset of the candidate sentences are
siblings, they are often sufficient to increase the number of rules
and consequently improve their performance.

5. EXPERIMENTS
Structured Domains. For our experimental evaluation, we se-
lected and crawled sites in 4 different domains that contain ob-
jects with a latent structure. Three of the domains are commercial
(recipes, digital cameras and movies) and one is academic (biblio-
graphic references). As Table 1 shows, the number of sites crawled

Test data (# Pages)
Domain Avg Sent. Size # Sites Relevant Non-relevant
Recipe 3.8 233 654 488
Bibliography 8.3 550 200 453
Digital camera 4.3 38 226 296
Movie 3.4 40 190 183

Table 1: Details about the data used in each domain.

per domain varied from 40 to 233, and roughly 3000 pages were re-
trieved. Among these, 1270 were relevant and contained the target
objects. Table 1 also shows the average sentence size for each do-
main (total number of words after stopword elimination). Note that
sentences in bibliographic references are much longer than those in
other domains, and thus more likely to contain deeper patterns.
Baseline and Training Setup. We compared the following ap-
proaches:

•One-class SVM [14]: One-class SVM creates a classifier using
only positive examples. We used the LIBSMV tool [2] and the posi-
tive examples were the same used by LSOD. Note that the examples
provided consist of entire pages, not only the LSO sentences;
• SVM [9]: We used Weka [17] to build an SVM text classifier
from 70 positive (same set as provided to LSOD) and 70 negative
examples randomly selected from the crawl data. For each domain,
we varied training parameters (type of kernel and C value) and se-
lected the ones with the lowest 10-fold cross-validation error. Note
that since SVM [9] requires both positive and negative examples,
it should not be directly compared to LSOD, which relies only on
positive examples. We use this configuration as a baseline for the
best performance using labeled data and the state-of-the-art method
for text classification;
• LSOD and LSOD +RAP: LSOD corresponds to our approach us-
ing sentences from 70 positive example; and LSOD +RAP, uses
rules derived by the inference process applied to the input sen-
tences and the sentences extracted by the Rule Augmentation Pro-
cess (RAP) in one iteration.

Effectiveness of Derived Rules. As Table 2 shows, LSOD and
LSOD +RAP obtained high values of F-measure (between 0.83 and
0.92), indicating that our approach is very effective for these do-
mains. The high-precision of the derived rules suggests that they
can be used to build high-quality repositories of pages that contain
the target objects.

An interesting observation about the domains that had the lowest
precision (bibliographic reference and movies) is that in these do-
mains, there are pages that contain different concepts with similar
structure. For instance, in the movie specification domain (preci-
sion=0.88), some of the derived rules also matched specifications
of CD albums. A similar behavior was also observed in the bibli-
ographic reference domain (precision=0.91), where Web pages for
faculty members contain objects that have structure similar to pub-
lications, including talks and grants.

The LSOD configuration outperforms the One-class SVM clas-
sifier by a great margin: the F-measure values are between 2.3
(Movie) and 6.8 times (Camera) the ones for the One-class SVM
classifier. In most domains, LSOD also outperforms SVM. The
only exception was recipes, where the F-measure for LSOD is a
bit lower (0.91 versus 0.92 for SVM). Note however that LSOD
obtained perfect precision (precision=1). Although the differences
between LSOD and SVM are relatively small, a much greater effort
is needed to construct the SVM classifier, since it requires nega-
tive examples in addition to positive ones. Besides being easier to
configure, our approach is able to identify the actual objects in the
page. This in contrast to the SVM classifier which views a page
as a bag-of-words and would require an additional step to identify



Bibliographic Reference Camera Specification Movie Specification Recipe
Technique Recall Prec. F-meas. Recall Prec. F-meas. Recall Prec. F-meas. Recall Prec. F-meas.

One-class SVM 0.22 0.16 0.19 0.08 0.75 0.14 0.35 0.42 0.38 0.68 0.26 0.38
SVM 0.82 0.71 0.76 0.85 0.97 0.91 0.80 0.86 0.83 0.92 0.92 0.92
LSOD 0.85 0.81 0.83 0.87 0.98 0.92 0.81 0.88 0.85 0.84 1 0.91

LSOD +RAP 0.81 0.88 0.84 0.94 0.98 0.96 0.93 0.87 0.89 0.90 0.99 0.94

Table 2: Recall, precision and F-measure of all approaches over different domains.

and extract the relevant data. Another advantage of our approach
is the fact that the derived rules are simple and easy-to-understand
by users. Some examples of rules include: “1-DIGIT clove garlic"
for recipe and “UPPER UPPER workshop 4-DIGIT" for bibliogra-
phies.
Dealing with Fragmentation. As we discussed in Section 2.3,
fragmentation leads to weak patterns. In bibliographic references,
for instance, without removing any bigram and varying the top-n
words in the vocabulary V ′ from 1 to 100, rules are only derived
when n is lower than 5. For n greater than 5, the patterns gen-
erated are not statistically significant and therefore are removed
by the pruning process. But even when rules are generated ( 1 <
n < 5 ), the derived rules are too generic and do not contain suffi-
cient domain-specific information, as a result they have low preci-
sion. For instance, when the vocabulary V ′ contains only the top-4
words, the precision obtained is only 0.41, while the recall 0.925.

We then selected the top-100 most frequent words and varied
the threshold for bigram removal. Figure 5(a) presents the average
size of the rules and Figure 5(b) the total number of rules created
with the frequent words for different values for the minimum bi-
gram frequencies. With no bigram removal (minimum frequency
= 0), no rules are derived. As the minimum bigram frequency in-
creases, the average size of the rules increases since noisy bigrams
are removed. When the minimum frequency reaches 100, the num-
ber of rules reaches a peak and then starts to decrease until a point
where no rules are generated, after all the ‘important’ bigrams are
removed (bigram > 180). As expected, the number rules derived
decreases as the minimum bigram frequency increases. Figure 5(c)
shows impact of bigram removal process on the performance of the
rules. Initially, as there are many rules, the recall is high and preci-
sion is low. As the minimum bigram size increases, many bigrams
that cause fragmentation are removed. As a result, the recall goes
down and precision increases because fewer and bigger rules are
derived (see Figure 5(c)). When the minimum bigram frequency is
100, precision and recall reach their highest and lowest values (re-
spectively). After this point, important bigrams start to be removed
and the rules become more generic (recall increasing and precision
decreasing) until the point when no rules can be generated (bigram
frequency > 180).

The behavior of the recall and precision curves are reflected in
the F-measure curve. As the values of precision and recall are sim-
ilar around minimum bigram frequency 60 and 80, the F-measure
reaches its peak (0.83). These results show that for domains which
contain patterns deep in sentences, appropriately handling frag-
mentation is required in order to obtain effective rules.

Note that for the three commercial domains, since strong pat-
terns are located close to beginning of the sentence, fragmentation
is not an issue. In practice, one can always assume that there is
fragmentation and perform the process described in Section 2.3. If
no rules are generated when the minimum bigram frequency is in-
creased, then it means that there are not many bigrams which cause
fragmentation. In which case, bigrams need not be removed.
Rule Augmentation. To assess the effectiveness of the Rule Aug-
mentation Process (RAP) (Section 4), we ran it over the test data to
verify whether it was able to learn new patterns and improve rule
quality. Table 2 gives the recall, precision and F-measure obtained

by the LSOD +RAP configuration for the 4 domains, and shows that
the system is able to learn new patterns and refine existing patterns,
and as a result, derive rules that have higher recall and precision.
In the commercial domains, the improvement in the F-measure val-
ues are mainly due to the increase in recall: from 0.81 to 0.93 for
movie specifications; from 0.84 to 0.9 for recipe; and from 0.87
to 0.94 for camera specification. For these domains, the recall in-
creased because new rules were discovered by RAP and added to
the initial rule set. Note that this also led to a slight decrease in
precision, but not enough to harm F-measure.

The opposite effect was observed for bibliographic references:
the precision increased from 0.81 to 0.88 and recall decreased from
0.85 to 0.81. Since this domain contains deep patterns, more spe-
cialized rules were generated. Whereas the average rule size of
LSOD was 4.2, for LSOD +RAP the value was 4.5. For example,
the rule “UPPER UPPER confer 4-DIGIT" was specialized to “UP-
PER UPPER confer 2-DIGIT 4-DIGIT”. It is important to point out
that in this domain, the pages are often manually created. This is in
contrast to the pages in commercial domains, which are often gen-
erated from fixed templates. As a result, pages that contain biblio-
graphic references are harder to segment. But as the numbers show,
the improvement of F-measure confirms that the segmentation pro-
cess performed by the RAP is able to identify relevant sentences
surrounding the ones matched by the rules and learn new relevant
patterns.

6. RELATED WORK
Although our solution to classify pages containing objects using

their latent-structured objects is related to information extraction
techniques, there are key differences. We view objects as blobs and
ignore the details of their internal structure, and our goal is differ-
ent: we want to simply detect whether a pattern that represents a
Web object is present in a page. This is in contrast to information
extraction techniques which aim to extract the object and its inter-
nal fields (e.g., a street address field contains a number followed by
the street name).

Similar to LSOD, Web wrapper induction techniques also as-
sume that Web objects follow a template [10, 4]. These techniques,
however, explore the HTML structure of pages (or subsets of pages)
in a Web site to infer a template and extract data records. Road-
Runner [4], for example, exploits similarities among Web pages to
induce a grammar for extracting objects that occur in these pages.
The extraction rules need to be precise and fine-grained so that in-
dividual attributes of an object can be identified and extracted. As a
result, rules must be derived for a page collection with a fairly reg-
ular HTML structure, and they are unlikely to work for other pages
that contain even slight variations in the structure. In contrast, since
our goal is just to identify objects, our rules can be more general
and applied to objects on different sites and with heterogeneous
structure.

Also related to our work are pattern learning techniques [7, 11]
that learn a grammar from a set of example strings, and DTD/XSD
inference approaches [1, 6] that try to infer a DTD from a collec-
tion of XML documents. Similar to LSOD, these techniques re-
quire only positive examples. But whereas their main goal is to



min bigram size Avg. rule sizeNumber of rulesRecall Precision F-measure

0 0 0 0 0 0 0 0

20 3.07 14 0.935 0.4146341 0.5745008 187 264

40 3.66 15 0.92 0.575 0.7076923 184 136

60 4.14 7 0.85 0.8133971 0.8312958 170 39

80 4.2 5 0.83 0.817734 0.8238213 166 37

100 4.3 3 0.645 0.8958333 0.75 129 15

120 4 3 0.895 0.5646688 0.6924565 179 138

140 4 3 0.895 0.5646688 0.6924565 179 138

160 4 2 0.945 0.4457547 0.6057692 189 235

180 0 0 0 0 0 0 0

0!

0.5!

1!

1.5!

2!

2.5!

3!

3.5!

4!

4.5!

5!

0! 20! 40! 60! 80! 100! 120! 140! 160! 180!

A
v
er

ag
e 

ru
le

 s
iz

e!

Minimum bigram frequency!

(a) The average rule size as a function of
the minimum bigram frequency.

(b) The total of rules as a function of the
minimum bigram frequency.

0!

0.1!

0.2!

0.3!

0.4!

0.5!

0.6!

0.7!

0.8!

0.9!

1!

0! 20! 40! 60! 80! 100! 120! 140! 160! 180!
Minimum bigram frequency!

Recall!

Precision!

F-measure!

(c) Recall, precision and F-measure as
a function of the minimum bigram fre-
quency.

Figure 5: Bibliographic references and fragmentation

build regular expressions to fully describe the input sentences, we
are not interested in a full representation of an object, instead we
aim to derive rules that capture strong patterns in these sentences
to perform classification. Last, but not least, an important feature
of our approach that is not present in previous pattern learning ap-
proaches is the use of online learning to improve rule quality.

Lerman et al. [11] proposed DataProg, an algorithm that learns
content-based rules for identifying structural patterns in data fields,
and apply it to the problem of wrapper maintenance: using these
rules, they can verify whether a wrapper is broken. Although Dat-
aProg also uses a word-based representation and captures statisti-
cally significant patterns, it does not consider patterns that occur
deep in a sentence. As we discussed in Section 5, the ability to cap-
ture deep patterns is crucial for domains which contain fragmented
objects. Moreover, since their primary goal is wrapper verification,
in their experiments, Lerman et al. only applied the learned rules
to pages that follow the same template (and in many cases, that
contain the same data). Because DataProg learns patterns for indi-
vidual fields of an object and it assumes that the different fields can
be distinguished, it is unlikely the derived rules can be effectively
applied to complex objects whose structure varies from site to site.

7. CONCLUSION
In this paper, we presented LSOD, a new approach for identify-

ing Web objects that have a latent-structure. By taking only posi-
tive examples into account, LSOD identifies statistically significant
patterns and uses these to derive object detection rules. LSOD au-
tomatically improves the derived rules through online learning: it
extracts candidate sentences which are close to sentences identified
by the initial rules and uses these as additional (positive) exam-
ples. Our experimental evaluation, using a significant number of
pages in different domains, shows that LSOD outperforms state-of-
the-art text classification techniques. There are several directions
we intend to pursue in future work. While our rule derivation pro-
cess works regardless of a specific domain and does not rely on
pre-defined types, the availability of dictionaries and descriptions
of common types (e.g., people’s names, phone numbers, dates) is
likely to improve rule accuracy. We plan to extend our approach to
leverage this information when available.
Acknowledgments. Our research has been funded by the National
Science Foundation grants IIS-0905385, IIS-0844546, IIS-0746500,
CNS-0751152, IIS-0713637, the Department of Energy, and an
IBM Faculty Award.

8. REFERENCES
[1] G. J. Bex, W. Gelade, F. Neven, and S. Vansummeren.

Learning deterministic regular expressions for the inference
of schemas from xml data. In WWW, pages 825–834, 2008.

[2] C.-C. Chang and C.-J. Lin. LIBSVM: a library for support
vector machines, 2001.

[3] K. C.-C. Chang, B. He, and Z. Zhang. Toward Large-Scale
Integration: Building a MetaQuerier over Databases on the
Web. In CIDR, pages 44–55, 2005.

[4] V. Crescenzi and G. Mecca. Automatic information
extraction from large websites. J. ACM, 51(5):731–779,
2004.

[5] P. DeRose, W. Shen, F. Chen, Y. Lee, D. Burdick, A. Doan,
and R. Ramakrishnan. Dblife: A community information
management platform for the database research community
(demo). In CIDR, pages 169–172, 2007.

[6] M. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, and
K. Shim. XTRACT: learning document type descriptors from
XML document collections. Data mining and knowledge
discovery, 7(1):23–56, 2003.

[7] T. Goan, N. Benson, and O. Etzioni. A grammar inference
algorithm for the World Wide Web. In AAAI Spring
Symposium on Machine Learning in Information Access,
1996.

[8] Google Base. http://base.google.com/.
[9] T. Joachims. Text categorization with support vector

machines: learning with many relevant features. In ECML,
pages 137–142, 1998.

[10] A. H. F. Laender, B. A. Ribeiro-Neto, A. S. da Silva, and
J. S. Teixeira. A brief survey of web data extraction tools.
SIGMOD Record, 31(2):84–93, 2002.

[11] K. Lerman, S. Minton, and C. Knoblock. Wrapper
maintenance: A machine learning approach. Journal of
Artificial Intelligence Research, 18:149–181, 2003.

[12] B. Liu. Web Data Mining. Exploring Hyperlinks, Contents,
and Usage Data. Springer, 2007.

[13] J. Madhavan, S. Cohen, X. L. Dong, A. Y. Halevy, S. R.
Jeffery, D. Ko, and C. Yu. Web-scale data integration: You
can afford to pay as you go. In CIDR, pages 342–350, 2007.

[14] L. M. Manevitz, M. Yousef, N. Cristianini, J. Shawe-taylor,
and B. Williamson. One-class svms for document
classification. Journal of Machine Learning Research,
2:139–154, 2001.

[15] Z. Nie, J.-R. Wen, and W.-Y. Ma. Object-level vertical
search. In CIDR, pages 235–246, 2007.

[16] A. Papoulis. Probability & Statistics. Prentice Hall, 1990.
[17] I. H. Witten and E. Frank. Data Mining: Practical machine

learning tools and techniques. Morgan Kaufmann, 2005.


