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Abstract. A significant and ever-increasing amount of data is accessible
only by filling out HTML forms to query an underlying Web data source.
While this is most welcome from a user perspective (queries are relatively
easy and precise) and from a data management perspective (static pages
need not be maintained and databases can be accessed directly), auto-
mated agents must face the challenge of obtaining the data behind forms.
In principle an agent can obtain all the data behind a form by multiple
submissions of the form filled out in all possible ways, but efficiency con-
cerns lead us to consider alternatives. We investigate these alternatives
and show that we can estimate the amount of remaining data (if any)
after a small number of submissions and that we can heuristically select
a reasonably minimal number of submissions to maximize the coverage
of the data. Experimental results show that these statistical predictions
are appropriate and useful.

1 Introduction

To help consumers and providers manage the huge quantities of information on
the World Wide Web, it is becoming increasingly common to use databases to
generate Web pages dynamically. Unlike ordinary Web pages mapped to stan-
dard URLs, information in this “deep Web” [1] or “hidden Web” [6,15] is not
accessible through regular HTTP GET requests by merely specifying a URL
and receiving a referenced page in response. Most commonly, data in the hidden
Web is stored in a database and is accessible by issuing queries guided by HTML
forms.

Automated extraction of data behind form interfaces is desirable when we
wish to have automated agents search for desired information, when we wish to
wrap a site for higher level queries, and when we wish to extract and integrate
information from different sites. How can we automatically access this informa-
tion? We began to answer this question in an earlier paper where we outlined
our approach to automated form filling [10]. As our contribution in this paper we
statistically streamline the process to make the information gathering process
efficient, and improve our analysis of returned results. In the broader context
of our project [7,5], information gathered during form processing will later be
handed to a downstream data extraction process.
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1.1 Related Work

Others have also studied the problem of automatically filling out Web forms.
Most common are tools designed to make it easier for an end user to fill out
a form. Commercial services exist, for example, to provide information from
a limited portfolio of user-specified information such as name, address, contact
information, and credit card information [3,4,12]. These services, such as the Mi-
crosoft Passport and Wallet system, encrypt a user’s personal information and
then automatically fill in Web forms when fields can be recognized. Since many
forms share common attributes (especially in the domain of e-commerce trans-
actions), these tools can reliably assist users in entering personal information
into Web forms.

One of the earliest efforts at automated form filling was the ShopBot project
[2], which uses domain-specific heuristics to fill out forms for the purpose of
comparison shopping. The ShopBot project, however, did not propose a general-
purpose mechanism for filling in forms for non-shopping domains.

The most closely related work to our own is the Hidden Web Exposer (HiWE)
project at Stanford [14,15]. HiWE provides a way to extend crawlers beyond the
publicly indexable Web by giving them the capability to fill out Web forms
automatically. Because of the formidable challenges to a fully automatic pro-
cess, HiWE assumes that crawls will be domain specific and human assisted (we
also rely on human assistance at key points, but we do not use domain specific
information in retrieving data from a particular site). Although HiWE must
start with a user-provided description of the search task, HiWE learns from suc-
cessfully extracted information and updates the task description database as it
crawls. Besides an operational model of a hidden Web crawler, a significant con-
tribution of this work is the label matching approach used to identify elements
in a form based on layout position, rather than proximity within the underlying
HTML code. These researchers also present the details of several ranking heuris-
tics together with metrics and experimental results that help evaluate the quality
of the proposed process. The independently-developed details of our approach
are complementary to HiWE. For example, we consider the task of duplicate
record elimination and we use a statistics-based sampling approach to efficiently
decide when a particular source has been sufficiently extracted.

1.2 Overview

In the remainder of the paper we describe the details of our contribution. We
have created a prototype tool that automatically retrieves the data behind a
particular HTML form. We refer the reader to [10] and [9] for details on our tool
and approach. After briefly summarizing our approach, we discuss our form-
submission plan in Section 2. In particular, we discuss the use of statistical
procedures as a means to intelligently cover the search space and to determine
how much of the available data has likely been retrieved and how close we are
to completion. Section 3 presents the results of experiments we conducted to
verify our approach to automatically extracting data behind Web forms. We
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summarize, report on our implementation status, and give plans for future work
in Section 4

1.3 Summary of Our Approach

As described in [10], our approach to automated form filling starts with parsing
the HTML page containing the target form. Next we construct an HTTP request
that is equivalent to “filling in the form manually.” This request is issued to the
host Web server, and our tool analyzes the result page. If the result page contains
links to other pages of results (e.g. the result displays, say, records 1–10 of 53),
the tool follows the required links to retrieve all the result records. Often, it is
the case that the default query (which consists of using the form’s default values
for all fields) returns all the records in the underlying database. But in most
cases, we have to submit a variety of different queries in order to retrieve all the
records. The same underlying records might be returned in response to different
queries. So each time we add the results of a query to the accumulated extracted
data, we first eliminate any duplicate records. The tool also deals intelligently
with error pages and unexpected results.

2 Form Submission Plan

Our goal is to retrieve all the data within the scope of a particular Web form.
One way to do this is to fill in the form in all possible ways. Ignoring the issue of
fields with unbounded domains (i.e., text boxes), there are still two problems with
this strategy. First, the process may be time consuming. Second, we may have
retrieved all (or at least a significant percentage) of the data before submitting
all the queries. Many forms have a default query that obtains all data available
from the site. If the default query does not yield all data, it is still likely that
we can extract a sufficient percentage of the data without exhaustively trying
all possible queries.

Our strategy involves several phases: (1) issue the default query, (2) sam-
ple the site to determine whether the default query response is likely to be
comprehensive, and (3) exhaustively query until we reach a limiting threshold.
In the exhaustive phase, we can often save considerable effort by using limiting
thresholds. For example, we can estimate the size of the database behind a form,
and then continue issuing queries until we have reached a certain percentage of
completeness. The user can specify several thresholds:

– Percentage of data retrieved : What percentage of the estimated data has
actually been retrieved so far? Typical values for this threshold might be
80%, 90%, 95%, or 99%. This threshold controls the quality of the crawl.

– Number of queries issued : How many total queries have been issued to this
site? It may be prudent to limit the burden placed on individual sites by
terminating a crawl after a particular number of queries. This threshold
controls the burden placed on crawled sites.
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– Number of bytes retrieved : How many bytes of unique data have been re-
trieved so far?

– Amount of time spent : How much total time has been spent crawling this
site? This threshold and the previous one control the resources required on
the crawler side to support the crawl.

– Number of consecutive empty queries: How many consecutive queries have
returned no new data? The probability of encountering new data goes down
significantly as the number of consecutive empty queries goes up.

Each of these thresholds constitutes a sequential stopping rule that can terminate
the crawl before trying all possible queries (by “all” we mean all combinations
of choices for fields with bounded domains — we exclude fields with unbounded
domains in this study).

2.1 Sampling Phase

Earlier we described the method for determining and issuing the default query.
We now discuss the sampling procedure used to determine whether the default
query is likely to have returned all the data behind a particular form.

There are several parameters of interest to us. First, we characterize each
form field as a “factor” in our search space. Let f1, f2, ...fn be the n factors
corresponding to fields with bounded domains, and let |fi| represent the number
of choices for the ith factor. Then the total number of possible combinations N
for this form is:

N =
n∏

i=1

|fi|.

We are also interested in the cardinality c of the largest factor: c = max(|f1|,
|f2|, ..., |fn|).

Next, we define C to be the size of a sampling batch. We want each sampling
batch to be large enough to cover the margins of our sample space — that is, we
want to have fair coverage over all the factors. So we let C = max(c, �log2 N�).
This accounts for the case where there are many factors of small cardinality. For
example, if there were 16 factors each of cardinality 2, then N = 216 = 65536,
but c = 2. We want c to be representative of the size of our search space, so
we require that it be at least log2 N , which is a statistically reasonable number
to use when sampling populations of known size (consider, for example, the 2k

factorial experiments method [16,11]).
Our decision rule for determining whether the default query returned all the

data available from a particular site is based on a sample of C queries. If all
C queries return no additional data (i.e. after duplicates have been eliminated),
then we assume the default query did indeed retrieve all available data.

However, we need to be careful about how we choose the C queries. Suppose
the form of interest contains two bounded fields with choices of 7 and 4 possibil-
ities respectively. Then we have N = 7× 4 and C = max(max(4, 7), �log2 28�) =
max(7, 5) = 7. If we simply choose C random queries, we might end up with



406 Stephen W. Liddle et al.

a sample set like the one shown in Table 1. This table shows a two-way lay-
out [16,8,11,13] that helps us use a two-factor method [16,11,13] to choose a
query sample. Notice that a6, a7, and b3 were not considered in any of the
sample queries, while b1 is oversampled.

One solution is to keep track of how many times we have sampled each factor,
and spread the samples evenly, as Table 2 shows. This approach for constructing
a sampling search pattern yields “maximal coverage.”

In Table 2 we use a regular pattern to cover both factors as broadly as
possible. The sample consists of the sequence (a1, b1), (a2, b2), (a3, b3), (a4, b4),
(a5, b1), (a6, b2), (a7, b3). If we were to continue, the next query we would choose
would be (a1, b4). The algorithm chooses a next sample that is as far away from
all previous samples as possible. Since we have categorical, not quantitative, data
each of the ai choices for factor A is equally distant from all others. Thus, our
distance function simply measures the number of coordinates that are different.
For example, the distance between (a1, b1) and (a2, b2) is 2, while the distance
between (a1, b1) and (a7, b1) is 1.

To ensure that a regular pattern does not bias our results, we introduced a
stochastic element by randomly choosing next samples from the list of all those
that are equally furthest from the set selected so far. This yields a layout like
the one in Table 3. Note that our technique is general for n dimensions, n ≥ 2.

Table 1. Two-Way Layout with Random Sampling

Factor A
a1 a2 a3 a4 a5 a6 a7

b1 x x x
Factor B b2 x x

b3
b4 x x

Table 2. Regular Sampling with Maximal Coverage

Factor A
a1 a2 a3 a4 a5 a6 a7

b1 x x
Factor B b2 x x

b3 x x
b4 x

Table 3. Random Sampling with Maximal Coverage

Factor A
a1 a2 a3 a4 a5 a6 a7

b1 x x
Factor B b2 x x

b3 x
b4 x x

After issuing C queries stochastically in a maximally covering fashion, if we
have received no new data we judge the default query to be sufficient and halt,
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claiming that we have successfully retrieved all data. In practice, this rule has
been highly successful (as judged by human operators manually verifying the
decision). Although this rule never reported that all data had been retrieved
when it had not, we did encounter sites where our rule was too strict. (The
copy detection system reported new bytes in subsequent queries, but there were
not really any new records; this can be the result of personalized advertising
information or other dynamic variations in Web pages).

Our decision rule for determining whether a query yields “new” data is based
on a size heuristic. First we strip a returned page of its HTML tags, leaving on
the special sentence boundary tags (<s.>) described in [10]. Then we use the
copy detection system to remove duplicate sentences, and count the number of
bytes U remaining. If U is at least 1000, we assume we have received new data.
If U is less than 1000, we use order analysis to prune small results. We first
find the minimum size M returned by the previous C queries. If U is greater
than M then we assume we have received new data. We have also tested a
percentage threshold, comparing U to the total number of bytes returned in the
page (excluding HTML tags). Both heuristics perform reasonably well. Since
we are using a statistical approach, some noise in the system is acceptable, and
indeed some even cancels itself out.

Another way to test for uniqueness of data would be to call on our down-
stream record extraction process to actually extract and structure the records
from this page. Then we could perform database-level record comparisons to de-
termine when we have found unique records. However, this makes the Web-form
retrieval less general by tying it to a specific domain ontology. In the future we
will investigate more fully the ramifications of this alternate approach.

2.2 Exhaustive Phase

If the C sample queries yield new data, we proceed by sampling additional
batches of C queries at a time, until we reach one of the user-specified thresholds
or we exhaust all the possible combinations. Sampling proceeds according to the
maximal covering algorithm discussed earlier — each new query is guaranteed to
be as far away from previous queries as possible, thus maximizing our coverage
of the factors.

However, before proceeding, we first estimate and report the maximum possi-
ble space needed for storing the results and the maximum remaining time needed
to finish the process. We also give the user the choice of specifying the various
thresholds for completeness of retrieved data, maximum number of queries to be
issued, maximum storage space to use, and maximum time to take. Addition-
ally, the user can decide to stop and use only the information already obtained.
(All this information can also be specified ahead of time so the process can run
unattended.)

We estimate the maximum space requirement S by multiplying the total
number of queries N by the average of the space needed for data retrieved from
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Fig. 1. Completeness Measures for Automobile Ads Web Site
(www.slc-classifieds.com, Form 1)

m sample queries:

S =
(

N

m

) m∑
i=1

bi

where bi is the size in bytes of the ith sample query, and typically m = C. We
estimate the remaining time required T similarly:

T =
(

N

m

) m∑
i=1

ti −
m∑

i=1

ti =
(

N − m

m

) m∑
i=1

ti

where ti is the total duration of the ith sample query. Note that we subtract
the time already spent in the initial sampling phase. Also observe that since
we follow “next” links, what we are calling a “query” could actually involve a
fair number of HTTP GET requests. For larger sites, this can take a significant
amount of time.

After establishing the user’s preferences, we proceed to process additional
batches of C query samples. At the end of each sample batch, we test the thresh-
olds to see if it would be productive to continue processing. Note that each batch
provides maximal coverage of the various factors, using unique combinations that
have not yet been tried.

Figure 1 illustrates how we measure our progress with respect to the per-
centage of information retrieved so far. The “Observed” line indicates how many
actual unique bytes we have seen after each query cycle. The “Estimate” line
shows our estimate of the number of unique bytes we would encounter if we were
to exhaustively crawl this Web site (trying all possible combinations of queries).
The “95% Limit” line uses the standard deviation of our prediction estimate for
the probability of finding additional data to determine the level at which we can
claim 95% confidence about our estimate. That is, based on what we have seen
so far, we are 95% confident that the real number is less than the “95% Limit”
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number. In this example, we cross the 80% completeness threshold in cycle 14
(out of 36 total). After 22 cycles we estimate that we are 90% complete. We
reach 95% in cycle 25, and 99% in cycle 31. Only after all 36 cycles have been
exhaustively attempted would we determine that we are 100% complete. In this
example, N = 2124 and C = 59. Thus, if 80% completeness is sufficient for the
user, we prune 1297 out of 2124 queries (61%) from the list.

The formula for estimating the database size Di after i queries is shown in
Equation 1:

Di = Oi

(
1 +

N − i

i
pi

)
(1)

where Oi is the number of unique bytes observed after i queries, and pi is the
estimate of the probability of finding new data in query i + 1. The only random
variable in Equation 1 is pi, which is defined as the number of queries that
returned new data divided by i. Thus, pi is a cumulative probability estimate
reflecting the ratio of successful queries to total queries. We compute Di by
predicting that in the remaining N − i queries the proportion that return new
data will be approximately pi. Further, we estimate that on average successful
queries will return approximately Oi

i new bytes. We can compute D̂i, that is,
Di with 95% confidence by including in pi a measure of the standard deviation
of pi over the previous two query cycles, σi, as shown in Equation 2:

D̂i = Oi

(
1 +

N − i

i
(pi + 1.645σi)

)
(2)

Rather than using a cumulative estimate of database size, we could instead
use a window to ignore older data points. For example, Figure 2 compares a
cumulative estimate of Di with a windowed estimate, where the probability
pi is only computed using the last two query cycles. One might think that a
windowed probability estimate should be more accurate because it reflects more
recent experience. But in practice the more stable cumulative estimate appears
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Fig. 3. A Contrasting Automobile Search (www.slc-classifieds.com, Form 2)

to give better performance among the sites we have examined. Both converge
relatively quickly and show nicely declining variance over time.

3 Experimental Results

A considerable amount of our work was done by simulation, crawling a site once
and then playing with different sampling scenarios to understand the ramifica-
tions of various approaches. However, we also tried our tool on 15 different Web
sites from several different application domains to evaluate its performance em-
pirically. In all cases, we manually verified the decision reported by the system
regarding whether the default query retrieved all data. In six of the cases, the
default query did indeed return all the data.

In our testing, processing a single HTTP request took anywhere from 2 to 25
seconds on average, depending on the Web site. A single query, which includes
following “next” links, averaged between 5 seconds and 14 minutes. Some pages
had no “next” links, but others had as many as 140 such links! Thus, the sampling
phase could take anywhere from a few dozen seconds to several hours. Storage
requirements were modest by modern standards, requiring anywhere from several
megabytes to hundreds of megabytes per tested site.

We encountered two typical data patterns. First is the relatively sparse be-
havior exhibited by the site crawled in Figure 1. The second is fairly dense, as
typified by Figure 3. Both of these data sets come from the same Web site, but
through different forms to different sub-portions of the site. In this second exam-
ple, there are only 8 query cycles of 23 queries each (8 choices for one bounded
field, 23 for another), for a total of N = 184. However, it is not until the end
of cycle 6 (query 138) that we estimate we have retrieved 80% of the available
data. And even then, there is still an estimated 42% probability of obtaining
additional data with another query. Thus, we can only save a small portion of
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the 184 queries (25% or fewer). Even in such cases, however, the 15-25% savings
can be significant.
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4 Conclusion

In this paper we have described our domain-independent approach for auto-
matically retrieving the data behind a given Web form. We have prototyped a
synergistic tool that brings the user into the process when an automatic deci-
sion is hard to make. We use a two-phase approach to gathering data: first we
sample the responses from the Web site of interest, and then, if necessary, we
methodically try all possible queries until either we believe we have arrived at a
fixpoint of retrieved data, or we have reached some other stopping threshold, or
we have exhausted all possible queries.

We have created a prototype (mostly in Java, but also using JavaScript, PHP,
and Perl) to test our ideas, and the initial results are encouraging. We have been
successful with a number of Web sites, and we are continuing to study ways to
improve our tool.

One improvement that seems particularly promising is to perform an analysis
of the productivity of various factors in order to emphasize those that yield more
data earlier in the search process. For example, Figure 4 shows that choices 1,
4, and 28 of Factor A have been significantly more productive than average in
the first two query cycles. Similarly, choices 4 and 6 of Factor B, and choices 1
and 3 of Factor C are highly productive. A straightforward two-way interaction
analysis indicates which pairs of choices for various factors are most productive.
There are challenging issues with determining how best to partition the search
space, but we are studying how a directed search algorithm might perform.

Our research group is generally working in the broader context of ontology-
based data extraction and information integration. If we combine the hidden
Web retrieval problem with the tool of domain-specific ontologies, we could au-
tomatically fill in text boxes with values from the ontologies. While this makes
the retrieval process task-specific, it also increases the likelihood of being able to
extract just the relevant subset of data at a particular Web site. (Our assump-
tion in this paper has been that the user wants to retrieve all or most of the
data at a given site.) Also, it is likely that we could avoid a fair amount of the
manual intervention in our current process if we use ontologies.

Users need and want better access to the hidden Web. We believe this will
be an increasingly important and fertile area to explore. This paper represents
a step in that direction, but a great deal remains to be done. We look forward
to continuing this promising line of research.
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