Crawling the Hidden Web

Sriram Raghavan, Hector Garcia-Molina
Computer Science Department, Stanford University
Stanford, CA 94305, USA
{rsram, hectdr@cs.stanford.edu

Abstract

Current-day crawlers retrieve content only from the publicly indexable Web, i.e., the set of web pages reachable
purely by following hypertext links, ignoring search forms and pages that require authorization or prior regis-
tration. In particular, they ignore the tremendous amount of high quality content “hidden” behind search forms,
in large searchable electronic databases. In this paper, we provide a framework for addressing the problem of
extracting content from this hidden Web. At Stanford, we have built a task-specific hidden Web crawler called
the Hidden Web Exposer (HIWE). We describe the architecture of HIWE and present a number of novel tech-
niques that went into its design and implementation. We also present results from experiments we conducted to
test and validate our techniques.

Keywords: Crawling, Hidden Web, Content extraction, HTML Forms

1 Introduction

A number of recent studies [4, 19, 20] have noted that a tremendous amount of content on thedyvigmic

This dynamism takes a number of different forms (see Section 2). For instance, web pages can be dynamically
generated, i.e., a server-side program creates agftayahe request for the page is received from a client. Simi-

larly, pages can be dynamic because they include code that executes on the client machine to retrieve content from
remote servers (e.g., a page with an embedded applet that retrieves and displays the latest stock information).

Based on studies conducted in 1997, Lawrence and Giles [19] estimated that close to 80% of the content on the
Web is dynamically generated, and that this number is continuing to increase. As major software vendors come up
with new technologies [2, 17, 26] to make such dynamic page generation simpler and more efficient, this trend is
likely to continue.

However, little of this dynamic content is being crawled and indexed. Current-day search and categorization
services cover only a portion of the Web called plublicly indexable Wef9]. This refers to the set of web pages
reachable purely by following hypertext links, ignoring search forms and pages that require authorization or prior
registration.

In this paper, we address the problem of crawling a subset of the currently uncrawled dynamic Web content.
In particular, we concentrate on extracting content from the portion of the Web that is hidden behind search forms
in large searchable databases (the so cafleitlen Web [11]). The hidden Web is particularly important, as
organizations with large amounts ligh-quality information (e.g., the Census Bureau, Patents and Trademarks

1The termDeep Welhas been used in reference [4] to refer to the same portion of the Web.

Office, News media companies) are placing their content online. This is typically achieved by building a Web
guery front-end to the database using standard HTML form elements [12]. As a result, the content from these
databases is accessible only through dynamically generated pages, delivered in response to user queries.

Crawling the hidden Web is a very challenging problem for two fundamental reasons. Firstis the issue of scale;
a recent study [4] estimates that the size of the content available through such searchable online databases is about
400 to 500 times larger than the size of the “static Web.” As a result, it does not seem to be prudent to attempt
comprehensiveoverage of the hidden Web. Second, access to these databases is provided only through restricted
search interfaces, intended for use by humans. Hence, “training” a crawler to use this restricted interface to extract
relevant content, is a non-trivial problem.

To address these challenges, we propasslaspecific, human-assistagproach to crawling the hidden Web.
Specifically, we aim to selectively crawl portions of the hidden Web, extracting content based on the requirements
of a particular application, domain, or user profiles. In addition, we provide a framework that allows the human
expert to customize and assist the crawler in its activity.

Task-specificity helps us counter the issue of scale. For example, a marketing analyst may be interested in
news articles and press releases pertaining to the semiconductor industry. Similarly, a military analyst may be
interested in political information about certain countries. The analysts can use existing search services to obtain
URLSs for sites likely to contain relevant information, and can then instruct the crawler to focus on those sites. In
this paper we do not directly address this resource discovery problem per se; see Section 7 for citations to relevant
work. Rather, our work addresses the issue of how best to automate content retrieval, given the location of potential
sources.

Human-assistance is critical to enable the crawler to submit queries on the hidden Web that are relevant to
the application/task. For example, the marketing analyst may provide lists of products and companies that are of
interest, so that when the crawler encounters a form requiring that a “company” or a “product” be filled-in, the
crawler can automatically fill in many such forms. Of course, the analyst could have filled out the forms manually,
but this process would be very laborious. By encoding the analyst's knowledge for the crawler, we can speed up
the process dramatically. Furthermore, as we will see, our crawler will be able to “learn” about other potential
company and product names as it visits pages, so what the analyst provides is simply an initial seed set.

As the crawler submits forms and collects “hidden pages,” it saves them in a repository (together with the
gueries that generated the pages). The repository also holds static pages crawled in a conventional fashion. An
index can then be built on these pages. Searches on this index can now reveal both hidden and static content, at
least for the targeted application. The repository can also be used as a cache. This use is especially important
in military or intelligence applications, where direct Web access may not be desirable or possible. For instance,
during a crisis we may want to hide our interest in a particular set of pages. Similarly, copies of the cache could be
placed at sites that have intermittent net access, e.g., a submerged submarine. Thus, an analyst on the submarine
could still access important “hidden” pages while access is cut off, without a need to submit queries to the original
sources.

At Stanford, we have built a prototype hidden Web crawler caHé®/E (HiddenWeb Exposer). Using our
experience in designing and implementing HIWE, we make the following contributions in this paper:

e We first present a systematic classification of dynamic content along two dimensions that are most relevant
to crawling; thetype of dynamismand thegenerative mechanisnThis helps place our work in the overall
context of crawling the Web. (Section 2)

e We propose model of forms and form fill-outs that succinctly captures the actions that the crawler must
perform, to successfully extract content. This helps cast the content extraction problem as one of identifying
thedomainsof form elements and gathering suitablduesfor these domains. (Section 3)

e We describe the architecture of the HIWE crawler and describe various strategies for b(dlalingin, list
of values)pairs. We also propose novel techniques to handle the actual mechanics of crawling the hidden
Web (such as analyzing forms and deducing the domains of form elements). (Sections 4 and 5)

¢ Finally, we present proof-of-concept experiments to demonstrate the effectiveness of our approach and tech-
nigues. (Section 6)

Note that crawling dynamic pages from a database becomes significantly easier if the site hosting the database is
cooperative For instance, a crawler might be used by an organization to gather and index pages and databases
on it’s local intranet. In this case, the web servers running on the internal network can be configured to recognize
requests from the crawler and in response, export the entire database in some predefined format. This approach is
already employed by some e-commerce sites, which recognize requests from the crawlers of major search engine
companies and in response, export their entire catalog/database for indexing.

In this paper, we consider the more general case of a crawler visiting sites on the public Internet where such
cooperation does not exist. The big advantage is that no special agreements with visited sites are required. This
advantage is especially important when a “competitor's” or a “unfriendly country’s” sites are being studied. Of
course, the drawback is that that the crawling procegshisrently imprecise That is, an automatic crawler may
miss some pages or may fill our some forms incorrectly (as we will discuss). But in many cases, it will be better to
index or cache a useful subset of hidden pages, rather than having nothing.

2 Classifying Dynamic Web Content

Before attempting to classify dynamic content, it is important to have a well-defined notion of a dynamic page. We
shall adopt the following definition in this paper:

A pageP is said to be dynamic if some or all of its content is generated at run-timedgter,the
request forP is received at the server) by a program executing either on the server or on the client.
This is in contrast to a static pad¥®, where the entire content éf already exists on the server, ready

to be transmitted to the client whenever a request is received.

Since our aim is to crawl and index dynamic content, our definition only encompasses dynamism in content, not
dynamism in appearance or user interaction. For example, a page with static content, but codliaimtirside
scripts and DHTML tags that dynamically modify the appearance and visibility of objects on the page, does not

satisfy our definition. Below, we categorize dynamic Web content along two important dimensions: the type of
dynamism, and the mechanism used to implement the dynamism.

2.1 Categorization based on type of dynamism

There are three common reasons for making Web content dynamic: time-sensitive information, user customization,
and user input. This in turn, leads to the following three types of dynamism:

Temporal dynamism: A page containing time-sensitive dynamic content exhibits temporal dynamism. For

example, a page displaying stock tickers or a list of the latest world news headlines might fall under this category.

By definition, requests for a temporally dynamic page at two different points in time may return different ontent.
Current-day crawlers do crawl temporally dynamic pages. The key issue in crawling such pagsisnisss

[7], i.e., a measure of how up to date the crawled collection is, when compared with the latest content on the web

sites. The analyses and crawling strategies presented by Cho et. al. [6, 7], to maximize freshness, are applicable in

this context.

Client-based dynamism: A page containing content that is custom generated for a particular client (or user)
exhibits client-based dynamism. The most common use of client-based dynamisnpédonalization Web

sites customize their pages (in terms of look, feel, behavior, and content) to suit a particular user or community
of users. This entails generating pages on the fly, using information from client-side cookies or explicit logins, to
identify a particular user.

Since pages with client-based dynamism have customized content, crawling such pages may not be useful for
applications that target a heterogeneous user population (e.g., a crawler used by a generic Web search engine).
However, for certain applications restricted crawle? can be equipped with the necessary cookies or login infor-
mation (i.e., usernames and passwords) to allow it to crawl a fixed set of sites.

Input dynamism: Pages whose content depends on the input received from the user exhibit input dynamism.
The prototypical example of such pages are the responses generated by a web server in response to form sub-
missions. For example, a query on an online searchable database through a form generates one or more pages
containing the search results. All these result pages fall under the category of input dynamism. In general, all
pages in thénidden Wekexhibit input dynamism. In this paper, our focus will be on crawling such pages.

Note that many dynamic pages exhibit a combination of the above three classes of dynamism. For instance,
the welcome page on the Amazon web site [1] exhibits both client-based (e.g., book recommendations based on
the user profile and interests) and temporal dynamism (e.g., latest bestseller list).

In addition, there are other miscellaneous sources of dynamism that do not fall into any of the above categories.
For example, tools for web site creation and maintenance [10, 22] often allow the content to be stored on the server

2Note that simply modifying the content of a static page on the web server does not constitute temporal dynamism since our definition
requires that a dynamic page be generated by a program at run-time.
3We use the term restricted crawler to refer to a crawler that limits it's crawling activity to a specific set of sites.

Content Dynamic

Generative Tvpe Static
Mechanism Temporal Client-based Input

Stored files

Inapplicable

Server-side programs

Embedded code
(server-side execution
Embedded code
{client-side execution)

Inapplicable

—
iy e [%
B Gesanen T o existing crawers

-

Figure 1: Classifying Web content based on impact on crawlers

in native databases and text files. These tools provide programs to generate HTML-formatted pages at run-time
from the raw content, allowing for clean separation between content and presentation. In this scenario, even though
pages are dynamically generated, the content is intrinsically static.

2.2 Categorization based on generative mechanism

There are a number of mechanisms and technologies that assist in the creation of dynamic Web content. These
mechanisms can be divided into the following three categories:

e Server-side programstn this technique, a program executes on the server to generate a complete HTML
page which is then transmitted to the client. This is the oldest and most commonly used method for generat-
ing web pages on the fly. A variety of specifications are available (e.g., Common Gateway Interface (CGl),
Java servlets [26]) to control the interactions between the web server and the program generating the page.
Such server-side programs are most often used to process and generate responses to form submissions (i.e.,
to implement input dynamism).

Embedded code with server-side executiém:this technique, dynamic web pages on the server contain

both static HTML text and embedded code snippets. When a request for this page is received, the code
shippets execute on the server and generate output that replaces the actual code in the page. Unlike server-
side programs which produce a complete HTML page as output, these code snippets generate only portions
of the page. Different scripting languages can be used to implement the code snippets [2, 17, 25].

Embedded code with client-side executiés:in the previous case, web pages contain both HTML text and
embedded code (or references to wherever the code is available). However, the code is now downloaded and
executed on the client machine, typically in a controlled environment provided by the browser. Java applets
and ActiveX controls are examples of technologies that support this mechanism.

E EI——_——

File Edt View Go Communicator

Help |

[$3 doa 20

2 = £

Search News Archive

Document Type: Aricles

1
Label(E,) = "Document Type"
| » D, ={Ardicles, Press Releases,
Reports}

Company Name: |:

E2
— ™ Label(E,) = "Company Name"

D, ={s| sis a tex string}
~Entertainment
~Information Technolagy E3
~Autematila L Label(E,) = "Sector"
D, = {Entertainment, Automobile,

~Construction
Information Technology,
Construction}

Sector:

=]

S T o e |

Figure 2: Sample labeled form

Pages that employ server-side programs or embedded code with server-side execution do not pose any special
challenges to a crawler, once the page has been received. In both cases, the crawler merely receives HTML pages
that it can process in the same way that it processes static content. However, pages that use client-side execution
to pull in content from the server, require special environments (e.g., a Java virtual machine) in which to execute
the embedded code. Equipping a crawler with the necessary environment(s) greatly complicates it's design and
implementation. Since pages in the hidden Web are usually generated using the first two techniques, we do not
address the third technique any further in this paper.

Figure 1 summarizes the classification that we have presented in this section. The vertical axis lists the different
generative mechanisms and the horizontal axis, the different types of content. Various portions of the Web (and
their corresponding crawlers) have been represented as regions in this 2-dimensional grid.

3 Modeling Forms and Form Submissions

The fundamental difference between the actions of a hidden Web crawler, such as HIWE, and a traditional crawler
is in the way they treat pages containing forms. In this section, we describe how we model forms and form
submissions. Later sections will describe how HIWE uses this model to extract hidden content.

3.1 Modeling Forms

A form, F, is modeled as a set 6élement, domain) pairs; F = {(E1, D1), (E2, D2), ... (Eyn, Dy)} where the

E;’s are the elements and tlig’s are the domains. A form element can be any one of the standard input objects:
selection lists, text boxes, text areas, checkboxes, or radio bdtfbhns.domain of an element is the set of values
which can be associated with the corresponding form element. Some elemeriisitedemainswhere the set of

valid values are already embedded in the page. For examdle,isfa selection list (indicated by theS§ELECT>

HTML element), thenD; is the corresponding set of values that are contained in the list. Other elements such as

“Note that submit and reset buttons are not included, as they are only used to manipulate forms, not provide input.

<H3>Search News Archive</H3>
<FORM method="POST" action="http://my.webserver.com/cgi-bin/form-process.pl">
<TABLE>
<TR>
<TD align="right" width="150">Document Type: </TD>
<TD><SELECT NAME=what>
<OPTION VALUE=art SELECTED>Articles
<OPTION VALUE-=rel>Press Releases
<OPTION VALUE=rep>Reports
</SELECT>
</TD>
</TR>
<TR><TD>

</TD></TR>
<TR>
<TD align="right">Company Name: </TD>
<TD><INPUT NAME=name size=45 maxlength=200 VALUE=""></TD>
</TR>
<TR><TD>

</TD></TR>
<TR>
<TD align="right">Sector: </TD>
<TD>
<INPUT TYPE="radio" NAME="sector" VALUE="ent">Entertainment

<INPUT TYPE="radio” NAME="sector" VALUE="it">Information Technology

<INPUT TYPE="radio" NAME="sector" VALUE="au">Automobile

<INPUT TYPE="radio" NAME="sector" VALUE="constr">Construction

</TD>
</TR>
</TABLE>
</[FORM>

Figure 3: HTML markup for the sample form of Figure 2

text boxes hav@nfinite domainge.g., set of all text strings) from which their values can be chosen. In addition,
many form elements are usually associated with some descriptive text to help the user understand the semantics
of the element. We shall refer to such descriptive informatiomabsls and shall uséabel(E;) to denote the
label associated with thé" form element. Figure 2 shows a form with three elements and the corresponding
representation using our notation. Figure 3 is the piece of HTML markup that was used to generate this form.

We wish to emphasize that our notion of labels and domain values is quite distinct from the internaldabels
value$ used within the form. For instance, referring to Figures 2 and 3, notédbd{(£,) is “Document Type”,
and not the internal label (“what”) of the(SELECT>element. SimilarlyD is the se{ Articles, PressArticles,
Reports} and not the set of internal identifiefart, rel, rep}. These internal identifiers are used only during form
submission. They are not visible when the form is displayed. As such, they are not meant for human consumption
and are often very cryptic with very little indication of their true semantic meaning.

3.2 Modeling Value Sets

A user “fills out” a form by associating a value or piece of text with each element of the form. A crawler must
perform a similavalue assignmerity selecting suitable values from the domain of each form element. The choice
of a “suitable value” is dependent on the semantics of the form element, as well as on the application/task being
performed by the crawler. For elements with small finite domains, one can potentially try one value after another
exhaustively. For example, since domdi in Figure 2 has only three elements, the crawler can first retrieve
all relevant articles, then all relevant press releases, and finally all relevant reports. However, for infinite domain
elements, the crawler must decide what values from the domain would be semantically meaningful and relevant to
the particular application. For example, to fill out eleméhtin Figure 2, the crawler must somehow have access
to a list of company names.

In general, we assume that each application/task requires the crawler to have access to a finite set of concepts or

SSpecified using thalAMEattribute of the<INPUT> or <SELECT>elements
®Specified using the VALUE>attribute of the<INPUT> element

categories, with their associated values. In Section 5.5, we describe various data sources (including humans) from
which the crawler can obtain such values. In addition, we also show how the crawler can use its own crawling
experience to add to these lists of values. However, not all data sources are eglisdlg. For instance, the
crawler has more confidence in the usefulness of human-supplied values than it has, in the values it gathers based
on it’'s crawling experience.

To model values and their confidence, inputs from all these sources are organized in a table chbdxtlthe
Value Set (LVSable. Each entry (or row) in the LVS table is of the fofi, V'), whereL is a label and/ = {v;,
v, ... vy} is afuzzy/graded sdi4] of values belonging to that label. Fuzzy $&tas an associatedembership
function My, that assigns weights/grades, in the raf@€d], to each member of the set. Intuitively, eagh
represents a value that could potentially be assigned to an eldiriefibel (E) “matches”L. My (v;) represents
the crawler’s estimate of how useful/correct, the assignmeni tof £, is likely to be.

The LVS table also supports the notionlalbel aliasing i.e., two or more labels are allowed to share the same
fuzzy value set. This helps us handle aliases and synonyms representing the same concept (e.g., “Company” and
“Organization”).

3.3 Generating Value Assignments

Given a formF = {(Ey, Dy), (E2,D3), ... (E,, Dy)}, the crawler generates value assignments by textually
matching element labels with labels in the LVS table. Specifically, for égclve generate a fuzzy set of values
V; as follows:

e If E;is an infinite domain element ar{d,, V') denotes the LVS entry whose lakelmost closely matches
label(E;) (see Section 5.3 for detail§thenV; =V and My. = My, .

e If E; is a finite domain element, théf) = D; and My, (z) =1, Yz e V;.

Then,ValAssign(F, LV S) =V; x V5 x ...V, denotes the set of all possible value assignments for foygiven
the current content of the LVS table.

Let S,,q denote the maximum number of times a crawler is allowed to submit a given®f@gnimposing
an upper bound on the number of submissions per form, we ensure that the crawler does not spend all it's time
at a single form and instead, extracts the most relevant content from all the databases that it visits. In particular,
the crawler chooses the “bestiin{ Syaz, | V1| X ... |V,|} value assignments to generate form submissions. The
notion of the “best” value assignment is based on ranking all the value assignméntg Assign(F, LV S).
We experimented with three different ranking functions (belpwepresents the ranking function afé; <
v1,..., By < v, } denotes a value assignment that associates vadliewith element;):

Fuzzy Conjunction: The rank of a value assignment is the minimum of the weight/grade of each of the constituent
values. This is equivalent to treating the value assignment as a standard Boolean conjunction of the individual
fuzzy sets [14].

"With approximate matching, each element label could be matched with a set of labels in the LVS table. For now, we assume that only

the “best” match is used.
8This value is a parameter that we pass to the crawler at startup.

8

HIWE

Choose URL
Retrieve page

| Extract links & add to queue |

Traditional Crawler

Choose URL

| Extract links & add to queue |

Form Analysis
Mo /Dwone with =)

form?
Walue-assignment
and submission
Response Analysis
Response Mavigation

Figure 4: Comparing the basic execution loop of a traditional crawler and HIWE

pruz({E1 < vi,..., Ep < vy}) = min My, (v;)

i=1..n

Average: The rank of a value assignment is the average of the weights of the constituent values.

1
pavg{El vty By Un}) = E Z MVi(Ui)

i=1...n

Probabilistic: This ranking function treats weights as probabilities. Heffe (v;) is the likelihood that the
choice ofv; is useful andl — My, (v;) is the likelihood that it is not. Then, the likelihood of a value
assignment being useful is computed as:

ppros({BL = o1, By = oa}) = 1=] (1 - My;(v))
i=1..n
Note thatp, . is very conservative in assigning ranks. It assigns a high rank for a value assignment only if each
individual weight is high. The average is less conservative, always assigning a rank which is at least as great as the
rank of the fuzzy conjunction for the same value assignment. In contragt,tiés more aggressive and assigns
a low rank to a value assignment only if all individual weights are very low. Section 6 presents more detailed
experiments comparing these ranking functions.

4 HIWE: Hidden Web Exposer

The basic actions of a hidden Web crawler, such as HIWE, are similar to those of other traditional crawlers [5, 8].
In Figure 4, the flowchart on the left indicates the typical crawler loop, consisting of URL selection, page retrieval,
and page processing to extract links. Note that traditional crawlers do not distinguish between pages with and

Label Value Set (LVS) Table

URL List

WWW
Crawl Manager /

Form Analyzer

Label |Value Set

LVS Manager

Form
submission

mmmmnd Form Processor

= - T

Data sources

Response

|

Response Analyzer

Figure 5: HIWE Architecture

without forms. However, as shown in the flowchart on the right, HIWE’s execution sequence contains additional
steps for pages on which forms are detected. Specifically, HIWE performs the following sequence of actions for
each form on a page:

1. Form Analysis:Parse and process the form to build an internal representation, based on the model outlined
in Section 3.1.

2. Value assignment and submissioBenerate the best (untried) value assignment and submit a completed
from using that assignment.

3. Response Analysiginalyze the response page to check if the submission yielded valid search results or if
there were no matches. This feedback could be used to tune the value assignments in step 2.

4. Response Navigatiorif the response page contains hypertext links, these are followed immediately (except
for links that have already been visited or added to the queue) and recursively, to some pre-specified depth.
Note that we could as well have added the links in the response page to the URL queue. However, for ease
of implementation, in HIWE, we chose to navigate the response pages immediately, and that too, only upto
a depth ofl.

Steps 2, 3, and 4 are executed repeatedly, using different value assignments during each iteration. The sequence of
value assignments are generated using the model described in Section 3.3.

4.1 HIWE Architecture

Figure 5 illustrates the complete architecture of the HIWE crawler. It includes six basic functional modules and
two internal crawler data structures. The basic crawler data structurelifRhé.ist It contains all the URLSs that
the crawler has discovered so far. When starting up the crawledRhel istis initialized to a seed set of URLSs.

The Crawl Managercontrols the entire crawling process. It decides which link to visit next, and makes the
network connection to retrieve the page from the Web. In our implementation, the crawler was configured to stay

10

- List of Elements

b ~ Submission Info \
N peN
DOM B I Internal Form

Parser '| Representation | /Representahon

Page | %%, - Labels

o

- Domain values

Figure 6: Actions of the Form Analysis Module

within a pre-determined set of target sites (provided to the Crawl Manager at startup), not following links that
pointed to other sites.

The Crawl Manager hands the downloaded page over tBdargermodule. In turn, the Parser extracts hyper-
text links from the page and adds them to the URL List structure. This sequence of operations is repeated until
some termination condition (typically, after some number of hours have elapsed) is satisfied. We refer the reader
to existing crawling literature [6, 8] for more details on the design of the Crawl Manager module.

To process forms and extract hidden content, HIWE employs four additional modules dandtAable The
Form Analyzer Form ProcessgrandResponse Analyzenodules, together implement the iterative sequence of
steps outlined in the previous sectidn.

ThelLVS Manageis responsible for managing additions and accesses to the LVS table. It provides an interface

for various application-specific data sources to supply new entries to the table. We shall discuss how this happens
in Section 5.5.

5 Design Issues and Techniques

5.1 Form Analysis
HIWE's representation of a form includes the following information:
e Alist of all the elements (e.g., selection lists, text boxes) in the form
e Alabel for each element
e For every element with a finite domain, a list of all the values that constitute that domain

e Submission information (such as the submission method (GET or POST) and the submission URL) to be
used when submitting completed forms

To collect all this information, the Form Analyzer executes the sequence of steps indicated in Figure 6. It begins
by constructing a logical tree representation of the structure of the HTML page, based on the Document Object
Model (DOM) specification [9]. Next, it uses the DOM API to obtain the list of form elements as well as the

necessary submission information. We refer the reader to the DOM specification [9] for details on how this can

®The Form Processor is responsible for the Response Navigation step.

11

be done. Then, the Form Analyzer uses the technique described in the remainder of this section to extract labels
and domain values. Finally, it normalizes the extracted information (see Section 5.2) and integrates it with the
information from the DOM API to produce the internal form representation.

Label and Domain value extraction: Accurately extracting labels and domain values proves to be a hard prob-
lem, since their nesting relationships with respect to the form elements is not fixed. For instance, in Figure 3, as is
commonly the case, the entire form is laid out within a table. The pieces of text representing the labels (e.g., the
word “Sector”), the domain values (e.g., the word “Automobile”), and the form control elements (e.glNthe
PUT>and<SELECT>elements) are interleaved arbitrarily with the tags used in the table markup. In this particular
example, the layout is such that each label occurs in the first column and the actual form element widget appears
in the second column of the table. However, for different forms, the nature and type of the layout markup will be
different. In some cases, instead of tables, explicit spaces and line breaks may be used to control the alignment of
labels and form widgets. As a result, the structural representation based on the DOM does not directly yield the
labels and domain valués.

To address this problem, we adoptegaatial page layouttechnique. The key to this technique is to realize
that the only restriction on the relative locations of the labels, domain values, and form elements, is that when
rendered by the browser, the relationships between these various entities must be obvious to the user. In other
words, irrespective of how they are formatted, the phrase “Company Name” in Figure 2 nvisidlly adjacent
to the textbox widget. Similarly, the word “Automobile” must be visually adjacent to the corresponding radio
button widget.

Thus, we first lay out the form and it's associated labels, similar to the way a browser would lay out the page
prior to physical rendering. Then, we use the following heuristic for identifying the label of a given form element
(an analogous heuristic is used for domain values):

¢ Identify the pieces of text, if any, that are visually adjacent to the form element, in the horizontal and vertical
directions. For this, based on the layout, we compute actual pixel distances between the centers of the form
widgets and the centers of the text pieces. This step yields a list of at most four possible caf#lidates.

e If there are candidates to the left and/or above the element, then the candidates to the right and below are
dropped?

e If there are still two candidates remaining, ties are broken in favor of the one rendered in bold or using a
larger font size.

e If the tie is still not resolved, then one of the two candidates is picked at random.

10Note that for selection lists alone, extracting domain values is straightforward, since these values have to be directly nested within the
<SELECT>element.

"Note that text pieces containing more than a few wotd ur default crawler configuration) are ignored, as most labels are either
short words or short phrases.

2Wwe observed that most forms place labels either to the left or above the form widget.

12

Figure 7: Pruning before partial layout

Note that to calculate visual adjacency, it is not hecessary to completely layout the page. The location of
the form with respect to the rest of the page is not relevant. Hence, we first prune the original page and isolate
only those elements that directly influence the layout of the form elements and the labels. For instance, consider
Figure 7, which shows the tree-structured representation of two different pages, one in which the FORM is directly
embedded in the main body and another in which it is embedded within a table. The pruned tree is constructed
by using only the subtree below the FORM element and the nodes on the path from the FORM to the root. In
addition, the layout need not be ‘perfect’; in fact, our implementation uses a simple custom layout engine that
discards images, ignores font sizes, uses a default font, ignores styling information such as bold or italics (except
to break up ties as mentioned above), and ignores any associated style sheets.

Our experiments in Section 6 indicate that visual adjacency is a very robust and effective strategy for extracting
labels and domain values. Incidentally, in [18] we study and evaluate other techniques for matching labels to input
elements. The techniques of [18] were developed in a different context than ours, for displaying forms on small
hand-held devices.

5.2 Normalization

When generating a value assignment, pieces of text (i.e., the labels and domain values) extracted from a HTML

page must be matched with other pieces of text stored in the LVS table. To ensure that spurious differences do not
result in missed matches, all these text pieces are subjected to a normalization process. The Form Analyzer normal-
izes the extracted labels and values whereas the LVS manager normalizes entries in the LVS table. Normalization
consists of the following sequence of steps:

e To counter possible errors during extraction, the extracted pieces of text are searched for HTML tags and
HTML entity references. Any such tags and entity references are removed.

e Next, all characters other than alphanumeric characters are replaced by a space character.
e Uppercase characters, if any, are converted to their lower case equivalents.

e Stop words [13], if any, are removed.

13

e Finally, each word in the resulting text is stemmed, using the standard Potter suffix-stripping algorithm [13].

5.3 Form Processing

There are two main issues in the design of Hoem Processomodule in Figure 5: choosing an algorithm for
matching element labels with labels in the LVS table, and deciding whether or not a form must be processed.

Matching labels: Recall that once a label is found in a form, we must obtain “reasonable” values to fill-in the
corresponding input element, so that we can submit a completed form. For example, if we find a label “Enter
State,” we want to search our LVS table for some domain whose name is ‘similar,” e.g., “State.” Once we find a
good domain in the LVS table, we can use the values associated with it (e.g., “Arizona”, “California”, etc.) to fill-in
the element labeled “Enter State.”

To match form labels to labels in the LVS table, we employ an approximate string matching algorithm. There
is a large body of work in the design and analysis of such string matching algorithms. Our choice was based on
the ability of the algorithm to account for two things: typing errors and word reorderings. Typing errors can be
captured by the standard string matching notioredif distance which measures the minimum number of inser-
tions, deletions, and character replacements required to transform one string to another (e.g., edit-distance(house,
hose) = 1). However, word reorderings requires a new distance measure so that two labels such as “Company Type”
and “Type of Company” (these become “company type” and “type company” after normalization) are identified as
being very ‘close’ to each other.

Theblock edit modelproposed in [21], succinctly represent both typing errors and word reorderings. These
models define the concept bfock edit distancea generalization of the traditional notion of edit distances to
handle block/word movements. We used one of a family of algorithms from [21] to implement our label matching
system based on the block edit model.

We match a form elemet to an LVS entry by minimizing the block edit distance between their labels, subject
to a threshold. Specifically, letl,(A, B) denote the block edit distance between stridgend B; let o be a thresh-
old block edit distance beyond which matches are discarded; adiigl;, = min, v vs {eds(label (E), L)}
represent the minimum block edit distance. Thefutch(E), the matching LVS entry is computed as follows:

Match(E) = nil,if disty, > o
= (L',V") such thated,(label(E), L") = dist iy, otherwise.

Ignoring forms: As the crawler processes one page after another, it is likely to encounter forms which are not
directly relevant to the task of extracting content from databases (e.g., a form for local site search). In addition, if
the crawler’'s LVS table does not contain matching labels, even relevant forms may have to be ignored. HIWE uses
the following policy to decide whether a form must be ignored or submitted:

14

Aform F = {(Ey, Dy), (E2, D3), ... (Ey,, Dy,)} is submitted iff

n > «a,and

(i) for eachi such thatD; is infinite, M atch(E;) is non-nil (i.e., there is a matching LVS entry).
Here,« is a configurable parameter that represents the smallest form size that the crawler will process. For instance,
if « > 1, the crawler will ignore single element forms (e.g., a form with just a simple search box).

Note that we ignore a form if we are unable to associate a matching LVS engydoyinfinite domain element
in the form. However, forms may not always require all inputs to be provided. For example, a form that searches
a ‘book catalog’ may allow the user to enter either an author, a title, or both. We do not consider such partial form
inputs in our model.

5.4 Response Analysis

The aim of response analysis is to automatically distinguish between a responsgtipaipeontains search results
and one that contains an error message, reporting that no matches were found for the submitted query. The idea is
to use this information to tune the crawler’s value assignment strategy.

Response analysis turns out to be a very challenging problem, for a number of reasons:

e The absence of a ‘standard’ or commonly accepted format for reporting such errors means that each web site
is free to use a custom error notification message (e.g., “No matching results,” “0 results found,” etc.).

e Error pages often include a variety of other textual content (such as site maps, titles, headers, footers, code
shippets, etc.) besides the actual error message. Therefore, even if the text of the error message were known,
simply searching the page for matching text could lead to false drops.

¢ Finally, many forms are often associated with multiple types of error messages, with the web server choosing
between them based on some pre-programmed logic.

To tackle these challenges, HIWE's response module uses a technique based on identifying the ‘significant portion’
of the response page (i.e., the portion of the page obtained after discarding headers, footers, side bars, site maps,
menus, etc.) To identify the significant portion, we use the heuristic that when the page is laid out, the significant
portion will be visually in the middle of the page. Two cases arise:

e If the response page is formatted using frames, we use information about the frame sizes to layout the page
and identify the center-most frame. Then, we retrieve the center-most frame’s contents, and treat that content
as the significant portion of the response page.

¢ If the response page does not use frames, we use our custom layout engine (Section 5.1) to first identify the
HTML elementF that is visually laid out at the center of the page. We also parse the page to construct it's
DOM representation and locate E in the DOM tree. If E is present in the subtre€T#BLE>element, we
treat the entire table and its contents as the significant portion of the pagés ot present within a table,
then we treat the entire page content as being significant.

3Response page is the page received in response to a form submission.

15

Using the significant portion of the response page, HIWE uses two techniques to identify error pages. The
first technique searches the significant portion of the page for occurrences of any one of a pre-defined list of error
messages (e.g., “No results”, “No matches”, etc.). The second technique is based on hashing the contents of the
significant portion. After each form submission, the response analysis module computes the hash of the significant
portion and maintains a list of such hashes for each form. If a particular hash value occurs very often (i.e., more
than a specified threshold), we assume that all future response pages which generate the same hash value are
error pages. Initial experiments using these techniques indicates that the response analysis module is reasonably
successful in distinguishing between pages with search results and pages with error messages.

Tuning value assignment: We are currently investigating possible approaches for modifying the value assign-
ment strategy of the crawler at run-time, based on feedback from the response analysis module. Specifically, if the
response analysis module indicates that an error page was received in response to a particular value assignment,
the crawler attempts to isolate the particular form element(s) whose input(s) were incorrect and therefore led to the
error.

5.5 Populating the LVS Table

The HIWE crawler supports four mechanisms for populating the LVS table:

e Explicit Initialization: HIWE can be supplied with labels and associated value sets at startup time. These
are loaded into the LVS table during crawler initialization. Explicit initialization is particularly useful to
equip the crawler with values for the labels that the crawler is most likely to encounter. For example, when
configuring HIWE for the ‘semiconductor news’ task described in Section 1, we supplied HIWE with a
list of relevant company names and associated that list with labels such as “Company”, “Company Name”,
“Organization”, etc.

e Built-in categories:HIWE has built-in entries in the LVS table for certain commonly used categories, such
as dates, times, names of months, days of the week, etc., which are likely to be useful across applications.

e Wrapped data sourceg:he LVS Manager (Figure 5) can communicate and receive entries for the LVS table
by querying various data sources through a well-defined inteffacghis interface includes two kinds of
queries, one or both of which can be supported by a give data source:

— Type 1: Given a label, return a fuzzy value set that can be associated with that label.
— Type 2: Given a value, return other values that belong to the same value set.

In Section 5.5.1, we describe how we built a wrapper program to use the online Yahoo directory [27] as a
data source for the LVS table.

e Crawling experienceFForm elements with finite domains are a useful sourc@aifel, value) pairs. When
processing a form, the crawler can glean such pairs from a finite domain element and add them to the LVS

f necessary, the data sources must be wrapped by programs to export this interface.

16

Set of sites to crawl

Set of data sources, wrapped if necessary
Label matching thresholds}

Maximum number of submissions per forii (..)
Minimum form size)

N o o WON P

Value assignment ranking function to be used

Table 1: Configuring a crawler

table, so that they may be used when visiting a different fotiihis is particularly useful if the same label

is associated with a finite domain element in one form and with an infinite domain element in another. For
example, we noticed that when experimenting with the crawling task described in Section 6, some forms
contained a pre-defined set of subject categories (as a select list) dealing with semiconductor technology.
Other forms had a text box with the label “Categories”, expecting the user to come up with the category
names on their own. By using the above technique, the crawler was able to use values from the first set of
forms to more effectively fill out the second set of forms.

5.5.1 Directories and topic hierarchies as data sources

We discovered that online categorization services, such as the Yahoo directory [27] and the Open Directory Project
[24], which structure their information as directories/topic hierarchies, could be effectively used as data sources to
populate the LVS table. Specifically, these directories were very useful in expanding value sets, given one or more
examples of values belonging to that set.

For example, consider a row in the LVS entry with a value{g€&alifornia”’, “Nevada”, “Texas”, “Utah’}.
When the LVS manager presents this value set to the wrapper program associated with the Yahoo data source,
the wrapper submits four separate search queries using each of the values in the set. For each query, the Yahoo
directory returns lists of categories (in its hierarchy) pertaining to the query. The wrapper constructs the intersection
of the four category lists and identifi€egional::US Stateas the name of the Yahoo category common to all four
valuest® Finally, the wrapper retrieves the list of all the entries that Yahoo lists under that particular category,
which in this case, turns out to be a list of US states. If the list of entries in a category turns out to be too large, the
wrapper returns just the top 50 entries.

Thus, starting with a small set of example values, the crawler, in conjunction with the wrapper, is able to use
an existing topic hierarchy to expand the value set.

5.5.2 Integrating new values into the LVS table

Since value sets are modeled as fuzzy sets (Section 3.2), whenever a new value is added to the LVS table, it must
be assigned a suitable weight. Typically, values obtained through explicit initialization and in-built categories have

Note that we can even ugkibel, value) pairs extracted from forms that are processed but not submitted (because they failed to satisfy
the criteria listed in Section 5.3).
18I multiple categories result after the intersection, the wrapper chooses one randomly.

17

a weight ofl, representing maximum confidence (since these values are directly supplied by a human). Weights
for values received from data sources are computed by the corresponding wrapper. However, the most interesting
case is when computing weights for values gathered by the crawler.

Suppose a crawler encounters a form elem@mith an associated finite domai = {vy,...,v,}. Even
thoughD is a (crisp) set, it can be treated as a fuzzy set with membership funetiprsuch thatMp(z) = 1 if
ze{vi,...,vp}, andMp(z) = 0, otherwise. The following cases arise, when incorporafnigto the LVS table:

e Case 1:If the crawler successfully extractabel (£) and computes\atch(E) = (L,V'), we replace the
(L, V) entry in the LVS table by the entfy., V'), whereV’' =V U D. Here,U is the standard fuzzy set union
operator [14] which defines membership functibhy as My~ (x) = max(My (z), Mp(x)). Intuitively, D
not only provides new elements to the value set but also ‘boosts’ the weights/confidence of existing elements.

e Case 2:If the crawler successfully extractgbel (F) but Match(E) is nil, a new row/entrylgbel (E), D)
is created in the LVS table, with membership functitfy defined byMp(z) = 1if z € {v1,...,v,}, and
Mp(z) = 0, otherwise

e Case 3:In the final case, the crawler is unable to extradicl(F), either because the label is absent, or
because there is a problem in label extraction. Therefore, we identify an entry in the LVS table whose value
set already contains most of the valuedln Once such an entry is located, we shall add the valud$ in
to the value set of that entry. Formally, for each erfty V') in the table, we compute a scdredefined
by the expressioﬁw. Intuitively, the numerator of the score measures how much o already
contained inV and the denominator normalizes the score by the siZ2.dfiext, we identify the entry with
the maximum score (say;, V;)) and also the value of the maximum score (sgy,). Let fuzzy setD’ be
derived fromD by using the membership functid p () = e Mp () (NOtE: $pey IS less tharl). We
replace entry{L;, V;) by the entry(L;,V; U D).

5.6 Configuring HIWE

In this section, we described different aspects of HIWE that require explicit customization or tuning to meet the
needs of a particular application. In addition, we also introduced a few configurable parameters that control the
actions of the crawler. Table 1 summarizes all the inputs that the user must provide to the crawler, before initiating
the crawling activity.

6 Experiments

We performed a number of experiments to study and validate the overall architecture as well as the various tech-
niques that we have employed. In this section, we summarize some of the more significant results from these
experiments.

_ |Dnv|

YIn fuzzy set terminology, this score is thegree of subsethoaf D in V, defined byS(D, V) I

18

Total number of forms 70
Number of sites from which forms were picked 45
Total number of elements 315
Total number of finite domain elements 140
Average number of elements per form 4.5
Minimum number of elements per form 1

Maximum number of elements per form 12

Table 2: Statistics pertaining to the forms used in testing label and domain value extraction technique

6.1 Testing label and domain value extraction

Recall that as part of form analysis (Section 5.1), the crawler extracts labels (for all elements, whenever one
is available) and domain values (for finite domain elements su