
 

CIDR Perspectives 2009 

Harnessing the Deep Web: Present and Future

Jayant Madhavan Loredana Afanasiev Lyublena Antova Alon Halevy
Google Inc. Universiteit van Amsterdam Cornell University Google Inc.

jayant@google.com lafanasi@science.van.nl lantova@cs.cornell.edu halevy@google.com

1. INTRODUCTION
The Deep Web refers to content hidden behind HTML

forms. In order to get to such content, a user has to perform
a form submission with valid input values. The name Deep
Web arises from the fact that such content was thought to
be beyond the reach of search engines. The Deep Web is
also believed to be the biggest source of structured data on
the Web and hence accessing its contents has been a long
standing challenge in the data management community [1,
8, 9, 13, 14, 18, 19].

Over the past few years, we have built a system that ex-
posed content from the Deep Web to web-search users of
Google.com. The results of our surfacing are now shown
in over 1000 web-search queries per-second, and the content
surfaced is in over 45 languages and in hundreds of domains.
The algorithms underlying our system are described in [12].
In this paper we report some of our key observations in
building our system and outline the main challenges we see
in the further exploration and use of deep-web content.

To understand the different efforts on providing access
to deep-web content, we first present the rapidly changing
landscape of different kinds of structured data that exist
on the web and the relationships between them (Section 2).
In fact, there appears to be some confusion about the term
Deep Web – it has often been incorrectly used synonymously
with structured data on the Web. The Deep Web is one
(significant) source of data, much of which is structured,
but not the only one. We describe the different types of
structured data in the context of the varying search tasks
that we can strive to support over them.

Second, we discuss our choice of underlying approach in
exposing deep-web content in a search engine. Most prior
works on the Deep Web have espoused one of two main ap-
proaches. The first, known as virtual integration, follows the
data integration paradigm. Here, we consider each deep-
web site as a source in a data integration system. Users
pose queries over a mediated schema that is exposed to
them as a web form, and queries are routed to the rele-
vant sites. The second, known as surfacing, attempts to

This article is published under a Creative Commons License Agreement
(http://creativecommons.org/licenses/by/3.0/).
You may copy, distribute, display, and perform the work, make derivative
works and make commercial use of the work, but you must attribute the
work to the author and CIDR 2009.
4th Biennial Conference on Innovative Data Systems Research (CIDR)
January 4-7, 2009, Asilomar, California, USA.

pre-compute queries to forms and inserts the resulting pages
into a web-search index. These pages are then treated like
any other page in the index and appear in answers to web-
search queries. We have pursued both approaches in our
work. In Section 3 we explain our experience with both,
and where each approach provides value.

We argue that the value of the virtual integration ap-
proach is in constructing vertical search engines in specific
domains. It is especially useful when it is not enough to
just focus on retrieving data from the underlying sources,
but when users expect a deeper experience with the con-
tent (e.g., making purchases) after they found what they
are looking for. However, the virtual approach does not
scale well when building a single system to seamlessly in-
clude more than a small number of domains, while retaining
a simple keyword querying interface. The challenges to be
addressed include routing, i.e., identifying the (small) subset
of sites that are likely to be relevant to a keyword query, and
reformulation, i.e., translating the keyword query appropri-
ately for each site. We note that the keyword reformulation
problem is different from the query reformulation problem
studied in the context of data integration systems.

In contrast, we argue that the surfacing approach is a
better fit for web search where we are answering keywords
queries that span all possible domains and the expected re-
sults are ranked lists of web pages. We find that the web
pages we surface add significant value to search engine traf-
fic and their impact is especially significant in smaller and
rarer domains and queries. The challenges in surfacing arise
in determining a set of queries for each form. Our results
in [12] have shown that understanding the exact semantics of
forms does not play a significant role in surfacing. However,
we argue (in Section 4) that there is value in inferring some
semantics, such as popular input data types that are preva-
lent across domains (e.g., zipcodes), and the correlations
between inputs within forms (e.g., maxprice and minprice).
Addressing these challenges can significantly improve the
quality of surfacing.

Third, we discuss the challenges in manipulating the con-
tent that is exposed by surfacing (Section 5). We observe
that since surfaced web pages are treated simply as text
documents, the semantics of the underlying content is be-
ing ignored. Of course, losing the semantics of the surfaced
content is a lost opportunity for query answering. Retaining
and utilizing the semantics of exposed content are interest-
ing problems for future research. We also note that it is
interesting to understand the extent to which any surfacing
approach exposes the contents of a deep-web site. This chal-



 

CIDR Perspectives 2009 

lenge of estimating coverage is also relevant in the context of
database exploration [1, 13] and remains an open problem.

Lastly, we note that while accessing individual sources of
structured data on the Web is of great interest, there is also
a significant opportunity to use the aggregate of this vast
quantity of structured data and meta data. In particular,
by analyzing collections of structured data we can obtain
large collections of schemata, values for column labels and
relationships between values. These resources can then be
used to assist information extraction efforts and in the refor-
mulation of web-search queries. We describe (in Section 6)
our initial work on building a semantic server that provides
several services that are built by analyzing large amounts of
structured data on the Web.

2. THE LANDSCAPE OF STRUCTURED DATA
ON THE WEB

As background for our discussion, we begin by describing
the kinds of structured data on the Web today, and place
the Deep Web in that context. One of the important points
we make is that the Deep Web is just one type of struc-
tured data on the Web. (There is often a misconception
that Deep Web and structured data on the web are synony-
mous). However, before we describe the different types, it
is important to first consider the search task we expect to
use the structured data for. Roughly, these structured data
tasks can be classified into one of the following classes (note
that we make no claim that this is a comprehensive list):

Unstructured queries: These tasks are identical to the
popular current mode of searching for information on the
Web. Users pose keyword queries and get a listing of URLs
to web pages as the result. The goal here is to ensure that
web pages that contain structured data get ranked appro-
priately high in result listing. A variation on this task is
the search for structured data collections (i.e., return pages
that contain HTML tables or mashups). Such a search may
be invoked when one is collecting data for a mashup or to
conduct a more detailed study of a phenomenon.

Single-page structured queries: In these tasks we pose
more precise queries to the search engine. We may pose
them using an interface that allows users to submit more
structured queries (e.g., searching for jobs, cars or houses),
or expect the underlying engine to parse a keyword query
and recognize its structure (e.g., identify in the query “france
population” that France is a country and population is a
property of countries). There are two types of answers we
can expect. The first is the precise answer (e.g., the actual
number for the population of France). The second is a page
that contains the precise answer (e.g., the Wikipedia page
on France), but the user needs to read through the page to
find the answer.

Multi-page structured queries: These tasks are more
ambitious than the previous set. Here we expect the search
engine to find answers that are derived by combining (e.g.,
via a join or union) data from multiple structured (or un-
structured) sources on the Web. For example, we would like
to combine data from the Internet Movie Database and web
sites with movie playing times to find local playing times of
movies directed by Woody Allen [10]. Note that the user
need not be aware that the answers were obtained by com-
bining data from multiple pages.

Given these tasks, we consider the structured data we find
on the Web and find that it comes mainly in two forms: one
where the data itself is already structured in the form of
tables, and the second where the query interface to the data
is structured. The first type of data was analyzed by the
WebTables Project [3] that collected all the HTML tables
on the Web, extracted the ones that offer hiqh-quality data,
and offered a search interface over them. That work showed
that there are on the order of 150 million high-quality rela-
tional tables on the Web when restricting ourselves to En-
glish pages. Structure here means that the tables have rows
of data, and in many cases there is a row with names for the
attributes (though in some cases inferring that such a row
exists is non-trivial).

The second kind of structured data is available through
structured query interfaces. HTML-form interfaces enable
users to pose specific (but templated) queries in particu-
lar domains and obtain results embedded in HTML pages.
However, these results are not as structured as the HTML
tables mentioned above. Significant additional effort is re-
quired in order to extract tabular data from these results,
and writing such extractors is often highly dependent on the
specific site being targeted. Hence, information extraction
on a large-scale from this data remains a significant chal-
lenge. The Deep Web is a subset of this second kind of
data. It is only a subset because in many cases there are
HTML links that lead to the same result pages, and there-
fore crawlers can reach them without additional machinery.

Returning to the tasks we mentioned above, deep-web
data is clearly useful for unstructured queries and single-
page structured queries that return web pages as results.
In [12] we describe how we crawled millions of forms by pre-
computing a set of relevant queries for each form. The web
pages we extract from that crawl are inserted into the web
search index and served like any other web page, thereby
fulfilling the first kind of task. To enable single-page struc-
tured queries, one typically needs to restrict the application
to a particular domain and create a repository of forms with
descriptions of what data can be obtained from each one
and then route queries to relevant forms at query time (this
approach is referred to as the virtual-integration approach).
However, providing precise answers from the results of deep-
web content is significantly harder because of the additional
extraction effort that is required and the fact that extraction
is hard to do in a site-independent way for a large numbers
of sites. In Section 3 we explain the merits and limitations
of both of these approaches to accessing the Deep Web.

The WebTables data, on the other hand, has been used for
unstructured queries where the goal is to find structured col-
lections of data, and can be used for finding precise answers
to single-page structured queries. One of the challenges in
doing so is that while the column labels of HTML tables may
be present (or detectable using techniques described in [2]),
the semantics of the table (e.g., the table name) is often em-
bedded in the text surrounding it and therefore harder to
detect. For example, we may have a table with two columns,
Name and Year, but the table can refer to the winners of
the Boston Marathon or winners of the Oscars. We are cur-
rently investigating using the WebTables data for answering
multi-page structured queries.

We note that there are several other kinds of structured
data on the Web. The first is a growing number of mashups
and other interactive visualizations that can now be created



 

CIDR Perspectives 2009 

with several convenient tools. Such mashups display very
valuable data, but the challenge in supporting queries on
them is that they are often hidden behind Javascript code.
Large collections of data created by mass collaboration such
as Freebase, DBPedia, and Google Base are also valuable
resources, though their coverage is much narrower than the
Deep Web. The second kind is semi-structured data such as
blog posts and discussion forums. In these contexts, the ar-
ticles have meta-data associated with them (such as author,
date, thread they are responding to), and this meta-data
can be extracted with some effort. We anticipate that the
tasks for which this structure will be useful are more spe-
cific, such as sentiment analysis and trend analysis on the
blogosphere. Hence, the queries posed over this data will
be highly specific and often embedded in application code.
Finally, some structure is added to content via annotation
schemes for photos (e.g., Flickr), videos (e.g., YouTube) and
bookmarks (e.g., del.icio.us). It is easy to see how such an-
notations can be used to enhance unstructured queries and
for refining the results of queries with larger result sets.

3. VIRTUAL INTEGRATION VERSUS SUR-
FACING

As we described in the previous section, there area two
main approaches to providing access to deep-web content:
virtual integration and surfacing. The virtual-integration
approach has been used in companies and in research typi-
cally under the umbrella of vertical search (e.g., [4, 16, 17]).
We have pursued both approaches. In the past, two of the
authors used the virtual-integration approach to implement
a search engine for classifieds (e.g., used cars, apartments,
personals, etc.) [5]. More recently, we have used the surfac-
ing approach to include deep-web content into web-search
at Google.com. Based on our experiences, in this section we
explain the benefits and limitations of both approaches in
practice.

3.1 The virtual integration approach
The virtual-integration approach is basically a data in-

tegration solution to accessing deep-web content. The ap-
proach is based on constructing mediator systems, poten-
tially one for each domain (e.g., used cars, real-estate, or
books). To create an application with this approach, one
analyzes forms and identifies the domain of their underly-
ing content, and then creates semantic mappings from the
inputs of the form to the elements in the mediated schema
of that domain. The mediated schema for each domain can
either be created manually or by analyzing forms in that do-
main (e.g., [7, 15]). Queries over the mediated schema can
then be reformulated as queries over each of the underlying
forms. Results retrieved from each of the forms can po-
tentially be extracted, combined, and ranked, before being
presented to the user.

Virtual integration is a very attractive option when de-
signing vertical search engines. Vertical search engines focus
on particular (large) domains or on particular types of enti-
ties in a domain (e.g., used car listings, apartment rentals,
real-estate listings, airline reservations). They improve user
experience by enabling richer and more-specific queries, e.g.,
searching for cars by color, price, and year. Such queries are
a better fit for domain-specific advanced search forms rather
than simple keyword queries in search engines. The form-

selection and reformulation problems are more manageable
in such scenarios as well. Likewise, it is easier to write or
infer wrappers that extract individual results for pages of
listings. Thus there are more opportunities to aggregate re-
sults from multiple sources and to let users slice and dice
the retrieved results.

Typically, vertical search engines provide a deeper user ex-
perience in addition to search. For example, users expect to
be able to perform transactions based on the search results
(e.g., book an airline ticket) or see related information (e.g.,
crime rates in certain neighborhoods or product reviews).
Therefore, vertical search engines are only viable when their
domain has high commercial value. For that reason, vir-
tual integration is not suitable in the context of a search
engine. As we show in our earlier work [11], there are at
least tens of millions of potentially useful forms and build-
ing and managing semantic mappings on such a scale can be
very challenging. Further, forms cannot be classified into a
small set of domains. Data on the web is about everything
and boundaries of domains are not clearly definable. Hence,
creating a mediated schema for the web would be an epic
challenge (if at all possible), and would need to be done in
over 100 languages.

In addition to the challenges of creating mediated schemas,
a search engine employing the virtual approach would face
significant challenges at query time. Since search engine
users pose keyword queries, in order to use a virtual integra-
tion approach, at query-time the underlying system would
have to identify the forms that are likely to have results rele-
vant to the keyword query and then reformulate the keyword
query into the most appropriate submissions over the cho-
sen forms. To be effective, for each form, we would have to
build models capable of identifying all possible search en-
gine queries with results in the underlying content and be
able to translate those queries into an appropriate query
over the form. If the models are not precise, then we risk
reformulating too many search engine queries that results in
an unreasonable load on the underlying forms and a disap-
pointing user experience.

3.2 The surfacing approach
The surfacing approach focuses on pre-computing the most

relevant form submissions, i.e., queries, for all interesting
HTML forms. The URLs resulting from these submissions
are generated off-line and indexed in a search engine like any
other HTML page. This approach is especially attractive to
search engines, since it enables leveraging the existing in-
frastructure almost as-is and hence the seamless inclusion of
deep-web pages.

In the surfacing approach, we do not have to solve the
problem of building models that map keyword queries to
corresponding forms. This problem is already solved by the
underlying IR-index that is built by analyzing the contents
of the pages resulting from form submissions. The challenge
we face here is to pre-compute appropriate queries over the
form, which involves two main technical problems. First,
we have to identify values that are suitable for various form
inputs. For select-menus, the values are already known, but
for text inputs they need to be predicted. Second, we have to
minimize the number of queries over each form so as to not
pose an unreasonable load during off-line analysis. Specifi-
cally, a naive strategy like enumerating all possible queries
can be fatal when dealing with forms with more than one



 

CIDR Perspectives 2009 

input. In [12], we present algorithms that address these two
problems. We have found that the number of URLs our algo-
rithms generate is proportional to the size of the underlying
database, rather than the number of possible queries.

It is interesting to point out that while the virtual-integration
approach only answers queries that can be anticipated in
advance, the surfacing approach can provide answers in a
fortuitous manner. To illustrate, suppose you were to query
a search engine for “SIGMOD Innovations Award MIT pro-
fessor”. Hypothetically, suppose that the only web source
with that information is a deep-web site that lets you query
for biographies of MIT professors by their departments. In
a virtual integration system, it is likely that the form will
be identified as one retrieving biographies given department
names. Such a virtual integration system, even when it un-
derstands the form correctly, will not be able to retrieve the
CSAIL department biographies page. However, the surfac-
ing approach will have the CSAIL page indexed and would
retrieve it correctly (based on matching the keywords to the
page content), thereby identifying Mike Stonebraker to be
the MIT professor with the SIGMOD Innovations Award.

The surfacing approach also leads to very reasonable loads
on underlying form sites. User traffic is directed to deep-
web content only when a user clicks on a URL generated
from a form submission. At that point, the user has already
deemed the URL to be relevant, which is a more accurate
determination compared to a routing algorithm of the vir-
tual approach. Note that when the user clicks on the URL,
she will see fresh content. The search-engine web crawler
contributes to some traffic during off-line analysis (before
the pages are indexed) and index refresh (after the pages
are indexed). However, the web-crawler traffic is reasonable
and can be amortized over longer periods of time. Also, note
that once the search-engine’s index is seeded with good can-
didate deep-web URLs from a form-site, the web crawler
will discover more content over time by pursuing links from
deep-web pages. In [12], we show that we only impose light
loads on the underlying sites, but are able to extract large
portions of the underlying database.

While we have been able to show that surfacing can in-
deed make large quantities of deep-web content visible to
search-engine users, it has some limitations. For example,
surfacing cannot be applied to HTML forms that use the
POST method. In a POST form, all form submissions have
the same URL and the user query is embedded in the HTTP
request rather than in the URL as it is done with GET re-
quests. In most cases, the POST method is used when form
submissions result in state changes to a back-end database,
e.g., when buying a product or purchasing a ticket, which is
anyway unsuitable for indexing in a search engine. However,
there are cases where POST forms do include content that
will be useful in a search-engine index.

Since the main goal of the surfacing approach is to pro-
vide users access to more content, an important question
to consider is the impact of the surfaced content on the
query stream, specifically, which types of queries is it re-
ally useful for? It is well known that the distribution of
queries in search engines takes the form of a power law with
a heavy tail, i.e., there are a large number of of rare queries.
Our analysis shows that the impact of deep-web content
is on the long tail of queries, thereby further validating
the need for a domain-independent approach such as ours.
We found that the pages surfaced by our system from the

top 10, 000 forms (ordered by the number of search engine
queries they impacted) accounted for only 50% of deep-web
results on Google.com, while even the top 100, 000 forms
only accounted for 85%. Thus, there are a very large num-
ber of forms that individually contribute to a small number
of queries, but they together account for a large fraction of
the queries. The reason the impact is on the long tail is that
for the most popular queries, e.g., celebrity names or prod-
uct searches, there are already a number of web sites with
relevant content that are on the surface web. Further, the
web sites in such popular domains have already been heavily
optimized by search engine optimization (SEO) companies
to make them easily accessible to search-engine crawlers.
For such domains, the deep-web content provides very little
added value. However, in domains with more rarely searched
content, the surfacing of high-quality form-based sites can
have a huge impact. Prominent examples include govern-
mental and NGO portals. Such sites have structured con-
tent on rules and regulations, survey results, etc., but not
the monetary resources to hire SEOs to make their content
easily accessible.

4. THE ROLE OF SEMANTICS
In our work on surfacing deep-web content, we made very

little use of the semantics of the forms we are crawling and
their specific inputs. In contrast, semantics plays a cru-
cial role in the virtual-integration approach to accessing the
Deep Web. In this section we describe some of the areas
where semantic analysis can play a significant role to ex-
tend the coverage of deep-web surfacing. In doing so, we
raise several research challenges which can also be addressed
outside of a search-engine company.

4.1 Semantics of form inputs
As mentioned earlier, we made very little use of semantics

in deciding which values to enter into inputs of the forms we
are surfacing. Conceivably, we could have designed a me-
diated schema with lists of values associated with different
elements. If we found that a input in a form matches closely
with an element in the mediated schema, the values for the
element can be used to generate the queries we would pose
to the form. To apply such an approach, we need to distin-
guish between two kinds of form inputs: search boxes and
typed text boxes.

We found that the text boxes in a vast majority of forms
have “search” boxes, i.e., they accept any keywords irre-
spective of their domain, and retrieve records that contain
the search terms. To handle such search boxes, we gener-
ate candidate seed keywords by selecting the words that are
most characteristic of the already indexed web pages from
the form site. We then use an iterative probing approach to
identify more keywords before finally selecting the ones that
ensure diversity of result pages. It would have been difficult
to map these search boxes to any specific set of elements
in a mediated schema. Approaches similar to ours have be
used by others in the context of extracting documents from
text databases [1, 13].

The second type of text boxes are “typed” in that they do
not accept arbitrary keywords. For such inputs, we believe
it is more important to understand the data type of the
specific input, because it can yield better coverage of the
content behind the form and prevent us from posing mean-
ingless queries to the form. Examples of such data types



 

CIDR Perspectives 2009 

are US zip codes, city names, dates and prices. The impor-
tant point here is that we do not need to know what the
form is about (i.e., whether it retrieves store locations by
zip-code or used-cars by make and zip-code) to surface con-
tent behind the form. All we need to know is that the text
box accepts zip code values. We further showed that such
common data types appear in large numbers of forms and
can hence contribute significantly to surfacing. Our analysis
indicates that as many as 6.7% of English forms in the US
contain inputs of common types like zip codes, city names,
prices, and dates. Fortunately, we also have preliminary re-
sults (reported in [12]) that suggest that one can identify
such typed inputs with high accuracy.

Expanding on typed inputs, a natural question that arises
is: what is a data type? For example, are names of car makes
a data type? It turns out that form inputs that expect a
value from a relatively small set of possibilities typically use
select menus to guide the user. This creates a better user
experience and simplifies the work of the back-end applica-
tion. Other examples of such smaller domains are names of
US state names, countries, cuisines and job types. Untyped
text boxes are most often used when the space of possible
values in very large (e.g., people names, ISBN values, prod-
uct names).

4.2 Correlated inputs
Most prior approaches targeted at surfacing or extracting

deep-web content have either considered forms with single
input [1, 6, 13] or when considering multiple inputs queried
them only one at a time [18] or ignored any dependencies be-
tween them [14]. However, most useful forms have multiple
inputs and ignoring dependencies between different inputs
can lead to ineffective surfacing results. In this section we
outline two kinds of correlations between inputs that we con-
sider especially important based on our experience – ranges
and database selection.

Ranges: Forms often have pairs of inputs defining a range
over a single numeric property – one input each to restrict
the maximum and minimum values of the property in the
retrieved results. For example, used-car sites allow for re-
stricting listings by the price ranges, mileage ranges and year
ranges. Our analysis indicates that as many as 20% of the
English forms hosted in the US have input pairs that are
likely to be ranges. Not recognizing such input pairs can
lead to wasteful generation of URLs. Consider a form with
two inputs, min-price and max-price, each with 10 values.
Using the techniques described in [12], the two inputs would
be tested independently, and might potentially lead to the
erroneous identification of informative inputs. It it possi-
ble that as many as 120 URLs might be generated, many
of which will be for invalid ranges. However, by identifying
the correlation between the two inputs, we can generate the
10 URLs that each retrieve results in different price ranges.

To identify such correlations, we face two challenges. First,
we must identify pairs of inputs that are very likely to cor-
respond to ranges. Second, we must determine which pairs
of values would be most effective to use for the ranges. Our
initial efforts in this direction lead us to believe that large
collections of forms can be mined to identify patterns (based
on input names, their values, and position) for input pairs
that constitute a range. Once ranges are identified, we have
seen that even simple strategies for picking value pairs can
significantly reduce the total numbers of URLs generated

without a loss in coverage of the underlying content.

Database selection: A second common correlation pat-
tern is database-selection. It consists typically of two inputs
– one text box and one select-menu. The value in the text
box poses keyword queries, while the select-menu identifies
which underlying database the query is targeted at. For
example, there are forms that let users search for movies,
music, software, or games (indicated in the select menu) us-
ing keywords (in the single text box). The problem here
is that the keywords that work well for software, e.g., “mi-
crosoft”, are quite different from keywords for movies, music
and games. In other words the best set of values for the text
box varies with the value in the select menu. Generating dif-
ferent sets of keywords can be easily done, provided we can
reliably identify such patterns in inputs, which is an open
challenge.

We note that the canonical example of correlated inputs,
namely, a pair of inputs that specify the make and model of
cars (where the make restricts the possible models) is typi-
cally handled in a form by Javascript. Hence, by adding a
Javascript emulator to the analysis of forms, one can identify
such correlations easily.

5. ANALYSIS OF SURFACED CONTENT
Two problems areas that we believe are prime candidates

for future deep-web research have to do with the interpreta-
tion of pages resulting from the surfacing.

5.1 Semantics and extraction
When structured data in the Deep Web is surfaced, the

structure and hence the semantics of the data is lost. The
loss in semantics is also a lost opportunity for query an-
swering. For example, contrary to the fortuitous query-
answering example we presented previously, suppose a user
were to search for “used ford focus 1993”. Suppose there is
a surfaced used-car listing page for Honda Civics, which has
a 1993 Honda Civic for sale, but with a remark “has bet-
ter mileage than the Ford Focus”. A simple IR index can
very well consider such a surfaced web page a good result.
Such a scenario can be avoided if the surfaced page had the
annotation that the page was for used-car listings of Honda
Civics and the search engine were able to exploit such anno-
tations. Hence, the challenge here is to find the right kind
of annotation that can be used by the IR-style index most
effectively.

Going a step further, we pose a more ambitious challenge:
is it possible to automatically extract relational data from
surfaced deep-web pages? While there has been work done
on generating wrappers and extracting tables from HTML
pages, they have mostly been in the context of information
extraction from web pages in general, rather than pages that
were known to be generated by deep-web forms. Much of
the work has focused on machine learning, where wrappers
are inferred based on training data that is manually created
by marking up desired structured components on different
web pages on a given site. The huge variability in HTML
layout make it a very challenging task in general. Hence,
the challenge here is to extract rows of data from pages that
were generated from deep-web sites where the inputs that
were filled in order to generate the pages are known.

5.2 Coverage of the surfaced content



 

CIDR Perspectives 2009 

A question that is asked of any surfacing or database-
extraction algorithm is: “what portion of the web site has
been surfaced?” Ideally, we would like to quantify a can-
didate surfacing algorithm, with a statement of the form:
with a probability of M% more than N% of the site’s con-
tent has been exposed. However, this is an open research
problem that does not yet have a satisfying solution. Most
approaches to extracting deep-web content employ greedy
algorithms that try to maximize coverage, but do not pro-
vide any guarantees.

It is important to note that a natural goal for a surfac-
ing algorithm might be to minimize the number of surfaced
pages while maximizing coverage. However, in [12], we ar-
gue that the surfacing goal for a search engine is different.
Specifically, we argue that the web pages we surface must
be good candidates for insertion into a search engine index.
This implies that the pages we extract should neither have
too many results on a single surfaced page nor too few. We
present an algorithm that selects a surfacing scheme that
tries to ensure such an indexability criterion while also min-
imizing the surfaced pages and maximizing coverage.

6. AGGREGATING STRUCTURED DATA ON
THE WEB

The work on structured-data on the Web has focused
mostly on providing users access to the data. However, our
experience has shown that significant value can be obtained
from analyzing collections of meta-data on the Web. Specifi-
cally, from the collections we have been working with (forms
and HTML tables) we can extract several artifacts, such as:
(1) a collection of forms (input names that appear together,
values for select menus associated with input names), (2) a
collection of several million schemata for tables, i.e., sets of
column names that appear together, and (3) a collection of
columns, each having values in the same domain (e.g., city
names, zipcodes, car makes).

One of the challenges we pose is to use these artifacts to
build a set of semantic services that are useful for many
other tasks. Examples of such services include:

• Given an attribute name (and possibly values for its
column or attribute names of surrounding columns)
return a set of names that are often used as synonyms.
In a sense, such a service is a component of a schema
matching system whose goal is to help resolve hetero-
geneity between disparate schemata. A first version of
such a service was described in [3].

• Given a name of an attribute, return a set of values for
its column. An example of where such a service can
be useful is to automatically fill out forms in order to
surface deep-web content.

• Given an entity, return a set of possible properties (i.e,
attributes and relationships) that may be associated
with the entity. Such a service would be useful for
information extraction tasks and for query expansion.

• Given a few attributes in a particular domain, return
other attributes that database designers use for that
domain (akin to a schema auto-complete). A first ver-
sion of such a service was described in [3]. Such a

service would be of general interest for database de-
velopers and in addition would help them choose at-
tribute names that are more common and therefore
avoid additional heterogeneity issues later.

We plan to make our data sets available to the community
to foster research on these and other challenges.

7. REFERENCES
[1] L. Barbosa and J. Freire. Siphoning hidden-web data

through keyword-based interfaces. In SBBD, 2004.

[2] M. J. Cafarella, A. Halevy, Y. Zhang, D. Z. Wang,
and E. Wu. Uncovering the Relational Web. In
WebDB, 2008.

[3] M. J. Cafarella, A. Halevy, Y. Zhang, D. Z. Wang,
and E. Wu. WebTables: Exploring the Power of
Tables on the Web. In VLDB, 2008.

[4] Cazoodle Apartment Search.
http://apartments.cazoodle.com/.

[5] Every Classified. http://www.everyclassified.com/.

[6] L. Gravano, P. G. Ipeirotis, and M. Sahami. QProber:
A system for automatic classification of hidden-web
databases. ACM Transactions on Information
Systems, 21(1):1–41, 2003.

[7] B. He and K. C.-C. Chang. Statistical Schema
Matching across Web Query Interfaces. In SIGMOD,
2003.

[8] B. He, M. Patel, Z. Zhang, and K. C.-C. Chang.
Accessing the Deep Web: A survey. Communications
of the ACM, 50(5):95–101, 2007.

[9] P. G. Ipeirotis and L. Gravano. Distributed Search
over the Hidden Web: Hierarchical Database Sampling
and Selection. In VLDB, 2002.

[10] A. Y. Levy, A. Rajaraman, and J. J. Ordille. Querying
Heterogeneous Information Sources Using Source
Descriptions. In VLDB, 1996.

[11] J. Madhavan, S. Jeffery, S. Cohen, X. Dong, D. Ko,
C. Yu, and A. Halevy. Web-scale Data Integration:
You can only afford to Pay As You Go. In CIDR, 2007.

[12] J. Madhavan, D. Ko, L. Kot, V. Ganapathy,
A. Rasmussen, and A. Halevy. Google’s Deep-Web
Crawl. PVLDB, 1(2):1241–1252, 2008.

[13] A. Ntoulas, P. Zerfos, and J. Cho. Downloading
Textual Hidden Web Content through Keyword
Queries. In JCDL, 2005.

[14] S. Raghavan and H. Garcia-Molina. Crawling the
Hidden Web. In VLDB, 2001.

[15] A. D. Sarma, X. Dong, and A. Halevy. Bootstrapping
pay-as-you-go data integration systems. In SIGMOD,
2008.

[16] M. Stonebraker. Byledge. Personal Communication.

[17] Trulia. http://www.trulia.com/.

[18] P. Wu, J.-R. Wen, H. Liu, and W.-Y. Ma. Query
Selection Techniques for Efficient Crawling of
Structured Web Sources. In ICDE, 2006.

[19] W. Wu, C. Yu, A. Doan, and W. Meng. An Interactive
Clustering-based Approach to Integrating Source
Query Interfaces on the Deep Web. In SIGMOD, 2004.


