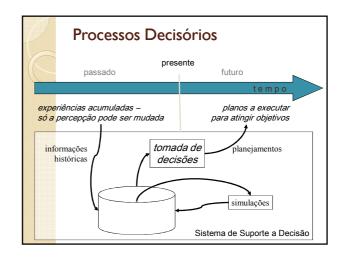


Data Warehouses:

Fundamentos, Ferramentas e Tendências Atuais


Prof. Renato Fileto Departamento de Informática e Estatística (INE) Universidade Federal de Santa Catarina (UFSC)

Tópicos

- Conceitos básicos
 - Sistemas de Suporte à Decisão
 - Data Warehouses (DWs)
 - OLTP vs. OLAP
 - Modelo Dimensional e operadores OLAP (drill-down, roll-up, etc.)
- Planejando, projetando e implementando DWs
 - Diretrizes gerais, fases do desenvolvimento e tarefas envolvidas Estudo de Caso: DWs para a agricultura
- Padrões e ferramentas para a implementação de DWs
- Principais componentes e padrões para DWs
- Ferramentas abertas e proprietárias para DWs
- Alguns temas de pesquisa atuais em DWs
 - DWs com extensões espaciais e temporais
- Semântica em DWs
- Conclusões e referências para estudos adicionais

Tópicos

- Conceitos básicos
 - Sistemas de Suporte à Decisão
 - Data Warehouses (DWs)
 - OLTP vs. OLAP
 - Modelo Dimensional e operadores OLAP (drill-down, roll-up, etc.)
- Planejando, projetando e implementando DWs
 - Diretrizes gerais, fases do desenvolvimento e tarefas e Estudo de Caso: DWs para a agricultura
- Padrões e ferramentas para a implementação de DWs
 - Principais componentes e padrões para DWs
 - Ferramentas abertas e proprietárias para DWs
- Alguns temas de pesquisa atuais em DWs DWs com extensões espaciais e temporais
 - Semântica em DWs
- Conclusões e referências para estudos adicionais

Classes de Sistemas de Informação

• Sistemas Transacionais

- Controlam informações operacionais (por exemplo, vendas, compras, contabilidade, sensoriamento e sistemas
- Operações de manipulação de dados (insert, update, delete), normalmente on-line e em nível detalhado.

Sistemas de Suporte à Decisão

- Extraem informações necessárias para a tomada de decisão, utilizando consultas complexas sobre grandes volumes de dados (por exemplo, determinar a taxa de crescimento do faturamento nos últimos 5 anos).
- Podem usar sistemas transacionais como fontes de dados.

BDs Transacionais vs. Suporte à Decisão

Característica	BD Transacional	BD Suporte à Decisão		
Objetivo	Atividades cotidianas	Análise do negócio		
Uso	Operacional	Informativo		
Processamento	OLTP	OLAP		
Unidade de trabalho	Inclusão, alteração, exclusão	Carga e consulta		
Usuários	Operadores (muitos)	Gerência (poucos)		
Interação dos usuários	Ações pré-definidas	Pré-definida e ad-hoc		
Dados	Operacionais	Analíticos		
Volume	Pode ser alto (MB – GB)	Muito alto (GB – TB)		
Histórico	60 a 90 dias	vários anos		
Granularidade	Detalhada (baixa)	Detalhada e consolidada (alta)		
Redundância	Não ocorre (só p/ eficiência)	Pode ocorrer		
Estrutura	Estática	Variável		
Manutenção	Mínima é o desejável	Constante		
Atualização	Contínua (tempo real)	Periódica (snapshots - retratos)		
Integridade	Transação	Cada atualização		
Acesso a registros	Poucos - por transação	Muitos - para consolidação		
Índices	Poucos/simples	Muitos/complexos		
Função dos índices	Localizar um registro	Agilizar consultas		

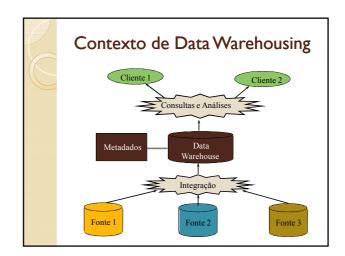
Data Warehouse ("Armazém de Dados")

- Banco de dados voltado para o suporte à tomada de decisão.
- Possivelmente derivado de vários bancos de dados operacionais
- Pode ser usado como base para executar OLAP (On-Line Analytical Processing) e outras tecnologias de análise de informação e extração de conhecimento

Objetivos:

- Satisfazer necessidades de análise de informações
- Monitorar e comparar situações atuais com passadas
- Estimar situações futuras

Definições

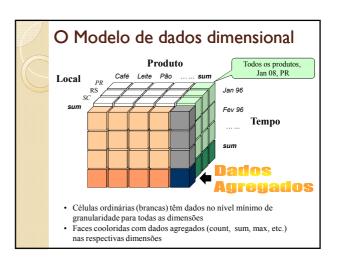

- Data Warehouse DW (W.H.Immon)
- Coleção de dados orientada a assuntos, integrada, com séries temporais e não volátil, voltada para o apoio à tomada de decisão.
- Data Warehousing
 - Processo de construção e uso de DWs.
- Business Intelligence (BI)

Refere-se a coleta, organização, análise, compartilhamento e monitoramento de informações para suporte a gestão de negócios.

 Inclui Data Warehousing (DW,) Data Mining (DM), Customer Relationship Management(CRM).

Características de um DW

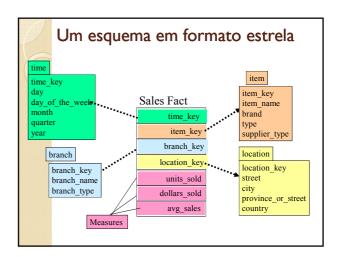
- Orientado a assuntos: por exemplo, vendas de produtos a diferentes tipos de clientes, atendimentos e diagnósticos de pacientes, rendimento de estudantes
- Integrado: diferentes nomenclaturas, formatos e estruturas das fontes de dados precisam ser acomodadas em um único esquema para prover uma visão unificada e consistente da informação
- Séries temporais: o histórico dos dados por um período de tempo superior ao usual em BDs transacionais permite analisar tendências e mudanças
- Não volátil: os dados de uma data warehouse não são modificados como em sistemas transacionais (exceto para correções), mas somente carregados e acessados para leituras, com atualizações apenas periódicas

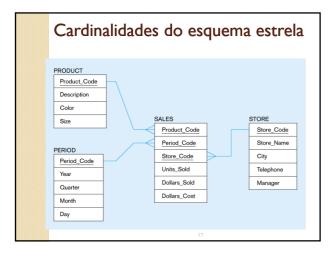

A Tecnologia de Data Warehouses

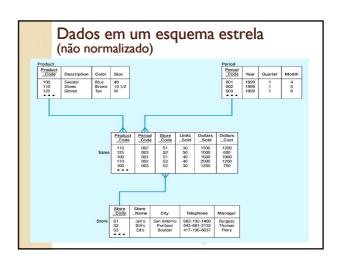
- Ferramentas de ETC (Extração, Transformação e Carga) de grande volumes de dados de diversas fontes no DW com recursos para conversão, validação, correção (data cleansing) e integração dos dados
- Banco de dados com modelagem dimensional voltado para consultas complexas para a obtenção de informação consolidada
- Ferramentas de prospecção e análise de dados baseadas em OLAP (On-Line Analytical Processing)
- Ferramentas de administração e gerenciamento do DW e seus Datamarts (DMs)

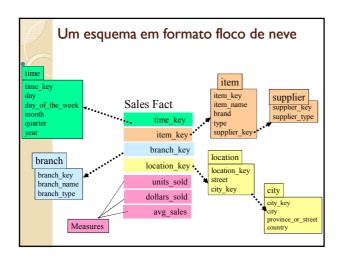
O Modelo de dados dimensional

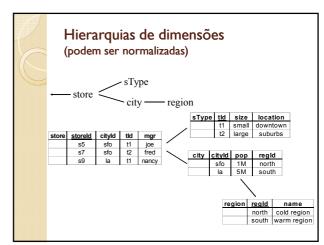
- Modelo específico para processamento analítico de informação (OLAP)
- Medidas organizadas segundo dimensões e suas hierarquias de níveis
 - Exemplos de medidas
 - quantidade vendida
 - · valor vendido
 - · número de habitantes
 - Exemplos de dimensões
 - Local com os níveis país, estado e município
 - Tempo com os níveis ano, mês e dia
 - Produto com os níveis tipo e nome

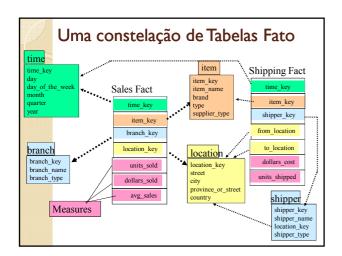


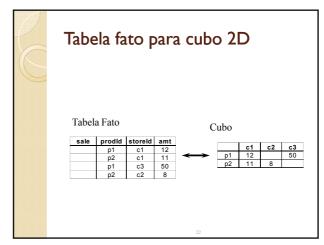

O Esquema de um Data Warehouse

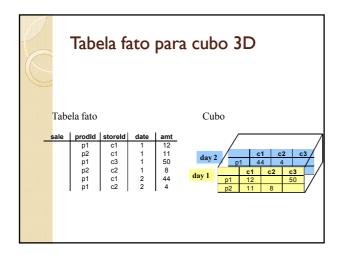

- Tabela(s) fato Dados quantitativos registros de medidas, com dados integrados de várias fontes (muitos registros)
- Dimensões Dados qualitativos organizando conceitos e respectivas instâncias para a seleção e agregação dos dados quantitativos, rotulando esses dados e os resultados (poucos registros)

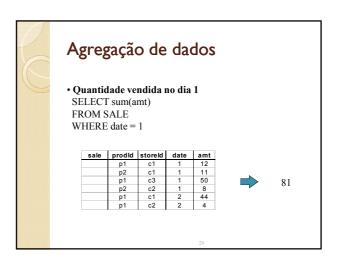

Modelagem de dados em data warehouses:

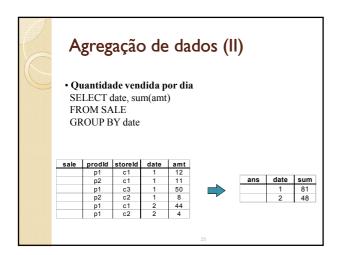

- Star (modelo em formato estrela)
- SnowFlake (formato de floco de neve)
- Hypercube (modelagem em hiper-cubo)

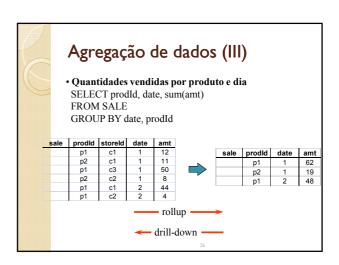


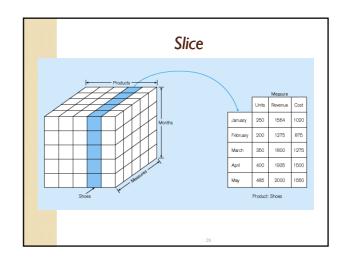


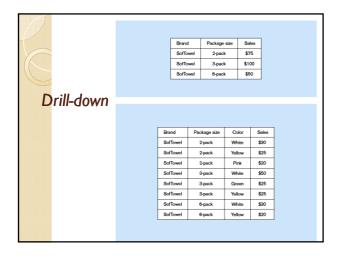


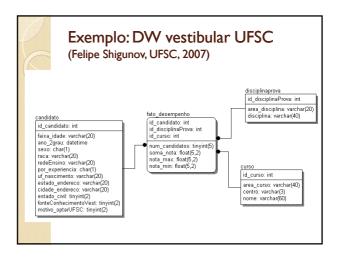


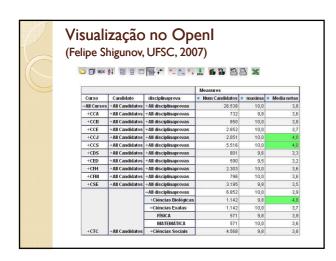











Operadores OLAP

- **Slice**: Projeta valores específicos de uma dimensão (extrai uma fatia do hypercubo)
- Dice: Slices consecutivos (extrai hypercubo menor)
- Roll-up (drill-up): sumariza dados, subindo na hierarquia de uma dimensão
- Drill-down (roll-down): reverso de roll-up, isto é, detalha os dados, descendo na hierarquia de uma dimenção.
- Pivot: muda posição ou orientação da dimensões na projeção bidimensional de dados do hypercubo

Projeto e Implementação de DWs

- Data warehouses podem requerer muito investimento (tempo, dinheiro, trabalho), dificultando sua adoção em instituições de pequeno e médio porte.
- A modelagem é crítica para o sucesso de uma data warehouse e merece atenção.
- Empreendimentos que não considerem as diferenças entre modelagem de bancos de dados convencionais e data warehouses, incluindo questões técnicas e administrativas, podem facilmente fracassar.

Necessidade de critérios para planejamento, projeto e implementação de data warehouses

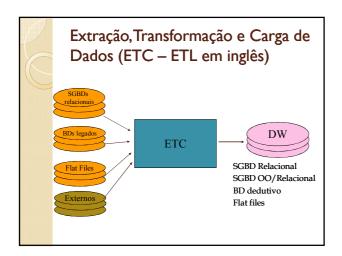
Critérios para projeto de DW

- Determine um escopo pequeno
- · Escolha um departamento
- · Defina com clareza os objetivos
- · Utilize os recursos tecnológicos disponíveis
- Não proponha um projeto coorporativo
- Conceba um projeto escalável

Formas de Desenvolvimento de DWs

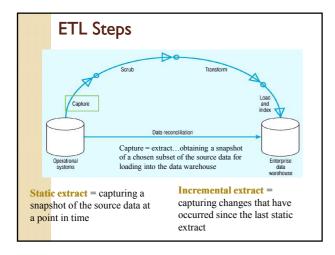
- Top-down: Projeto e implementação do DW completo definindo o esquema integrado, fontes de dados e Datamarts
- Bottom-up: Projeto e implementação de pequenas DWs ou DMs que vão se integrando aos poucos
- Combinada: Mistura desenvolvimento de DWs com várias fontes de dados e com diversos DMs com integração incremental

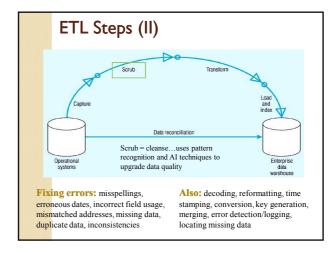
Fases do desenvolvimento de DWs

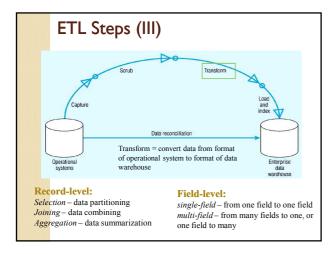

- I. Planejamento
- 2. Levantamento das necessidades e fontes de dados
- 3. Integração de dados
- 4. Modelagem dimensional
- 5. Projeto físico do banco de dados
- 6. Projeto das transformações de dados (ETC)
- 7. Desenvolvimento de aplicações
- 8. Validação e teste
- 9. Treinamento
- 10. Implantação

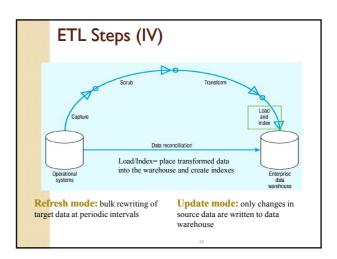
Modelagem Dimensional

- É crítica para o sucesso de uma DW
- É diferente da modelagem de dados convencional
 - A forma como o usuário visualiza e manipula os dados (organização em hipercubo) deve prevalecer
 - A implementação pode ser em SGBDs específicos para DW ou relacionais/convencionais (verificar a forma como são realizadas junções e outras operações)
 - Diagramas em estrela e floco de neve são utilizados para a implementação de bancos de dados em hypercubos sobre o modelo relacional
 - Normalização pode ser dispensada, especialmente nas dimensões, por questões de eficiência
 - Abordagem top-down

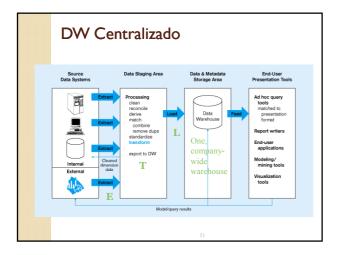

Passos da Modelagem Dimensional

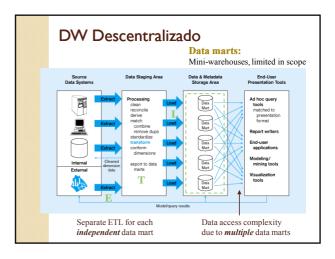

- Definir a área de negócios (prioridades, mercado, custos e benefícios)
- Definir os processos dentro da área de negócios
- 3. Determinar a granularidade desejada (e viável)
- 4. Definir a(s) tabela(s) fato
- 5. Descrever as dimensões
- 6. Definir as métricas para as medidas
 - Aditivas: faz sentido adicionar (e.g., valor)
 - Semi-Aditivas: faz sentido somar em certas dimensões (e.g., qtde. vendida no tempo/espaço, qtde. de chuva só no tempo)
 - **Não Aditivas**: não faz sentido somar (e.g., valor-venda/custo)
- Escolher um DataMart (definido por uma tabela fato e as dimensões associadas, para iniciar o desenvolvimento)

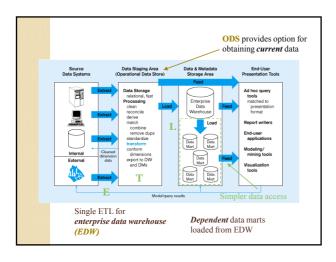


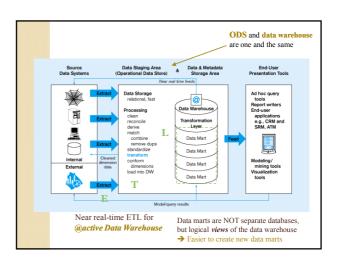

Tarefas de ETC

- Filtragem de dados: para eliminar erros e elementos indesejados
- Integração de dados: correlaciona dados de fontes heterogêneas com os da data warehouse
- Conversão de dados: procedimentos para transformação entre formatos e unidades
- Condensação de dados: para reduzir o volume e/ou agilizar o processamento
- Derivação de dados: define fórmulas para produzir novos valores a partir dos existentes

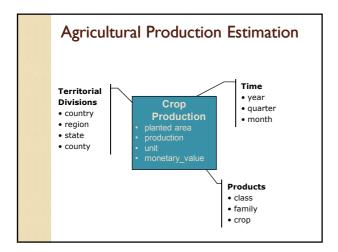


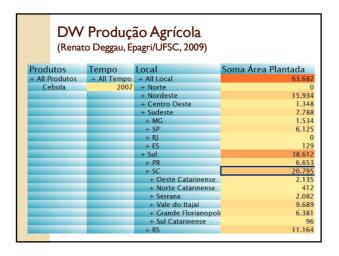

Qualidade de Dados

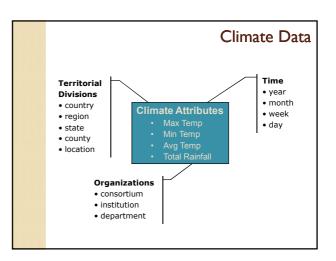

- Precisão: grau de correção (e.g., casas decimais)
- Consistência: grau de coerência entre os dados
- Integridade: não falta pedaços do banco de dados e não há dados corrompidos
- Abrangência: escopo do banco de dados como um todo (e.g., intervalo de tempo, espaço geográfico coberto, gama de produtos)
- Granularidade: escopo mínimo de cada valor de dado (e.g., valores totais, mínimos e/ou máximos para cada hora ou cada dia)

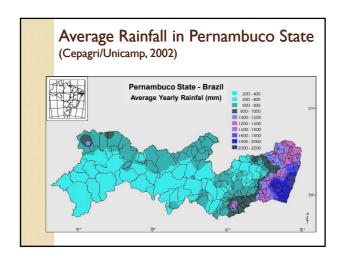

Localização dos dados de um DW

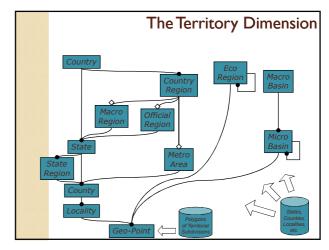
- Repositório centralizado (global): solução muito utilizada, mas com o inconveniente de requerer investimento em um servidor com alta capacidade de processamento e armazenamento.
- Repositórios Independentes: dados armazenados em diferentes locais ou DMs de acordo com áreas de interesse (e.g., financeiro, marketing).
- Níveis de Detalhes: dados altamente consolidados/resumidos em um servidor e dados detalhados em outro.
- Datamarts lógicos: DMs são visões lógicas dos dados integrados no DW.

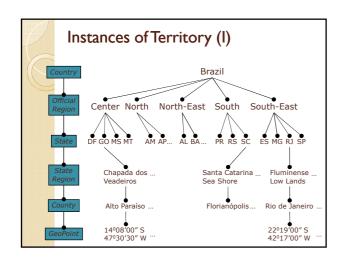


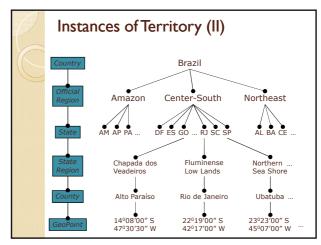

	A equipe de desenvolvimento de um DW						
Função	Responsabilidades						
Gerente da data warehouse	Definição das estratégias, planejamento e gerenciamento						
Arquiteto de dados	Análise dos requitos de dados, modelagem de dado e definição de visões						
Administrador de metadados	Definição dos padrões de metadados e gerenciamento do catálogo de metadados						
Administrador do BD	Criação das estruturas físicas e monitoramento da carga de dados e desempenho das consultas						
Usuário de nível gerencial	Descrição dos dados necessários, especificação das regras do negócio e teste dos resultados						
Analista de suporte à decisão	Desenvolvimento de aplicações de suporte à decisão						
Especialista em aplicações OLTP	Ajuda na localização dos dados e uso dos recursos de consulta (dump) nos sistemas transacionais						
Analista e programador de conversões	Indicação e catalogação das fontes de dados e desenvolvimento de programas para carga de dados						
Especialista em suporte técnico	Atividades técnicas como instalação e configuração de hardware e software						
Instrutor	Treinamento dos usuários para utilização da data warehouse						

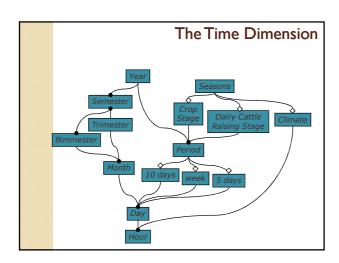

Estudo de Caso: DWs para a Agricultura

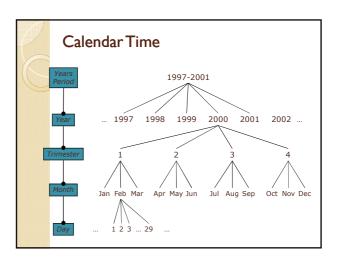

- Projetos realizados junto à Embrapa, Epagri, Unicamp e Georgia Institute of Technology
 - Análise da produção agrícola
 - Agroclimatologia
- Zoneamento Agrícola
- Ilustram aplicações de conceitos e técnicas fundamentais
 - Conceitos básicos
 - Modelagem dimensional (e.g., hierarquias complexas)
 - Operadores de agregação de dados
 - Integração de dados
- Demonstram a necessidade de extensões
 - Espaciais
 - Temporais

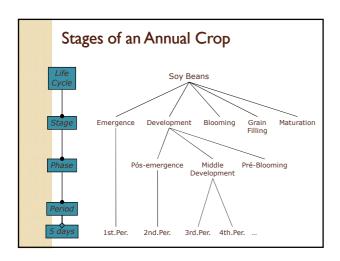


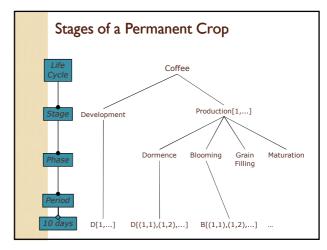

Product		Land	Planted A	Area (ha)	Production		
Product	Local		2001	2002*	2001	2002*	Unity
Orange	Br	azil	825.228	828.437	16.983.436	18.931.919	tons
	П	Center	9.289	9.921	131.289	145.866	
		North	18.280	16.724	252.317	233.539	
		North-East	109.584	111.233	1.530.322	1.731.698	
		South	52.003	49.210	795.326	740.559	
		South-East	636.072	641.349	14.250.578	16.080.257	
		Espírito Santo	2.735	2.752	29.343	29.907	
		Minas Gerais	43.895	43.418	575.590	599.999	
		Rio de Janeiro	7.955	7.121	115.753		
		São Paulo	581.487	588.058	13.529.892	15.345.850	
Banana	Brazil		510.313	523.757	6.177.293	6.455.067	tons
Coconut	Brazil		275.551	273.306	1.420.547	1.811.773	10° fru
Pineaple	Brazil		63.282	64.150	1.468.897	1.450.033	10³ fru
Papaya	Brazil		30.733	31.080	722,986	857.824	tons

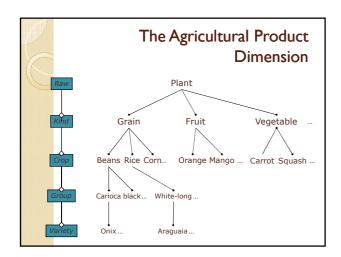


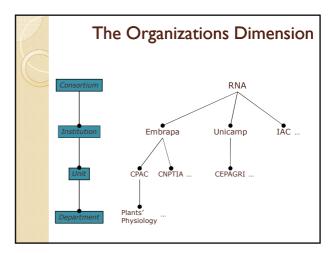


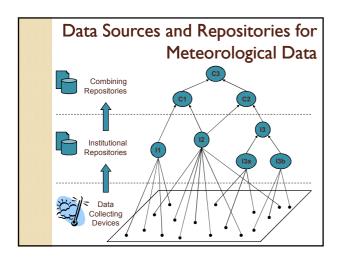


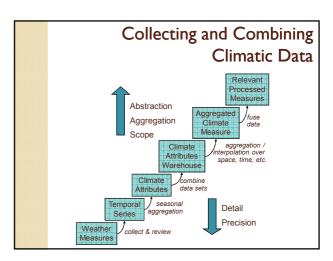


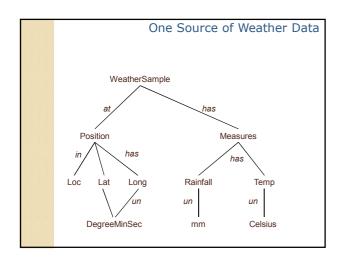


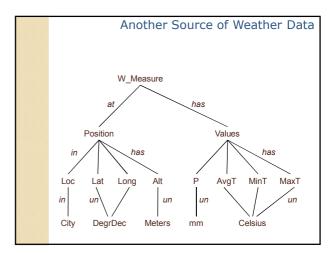


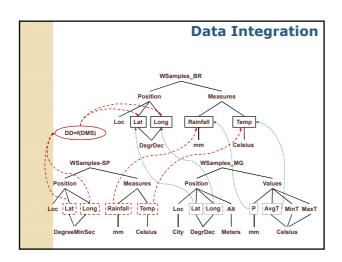


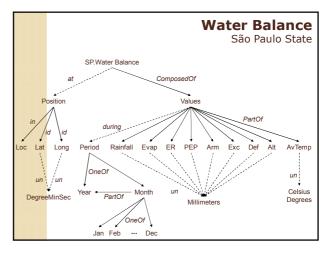


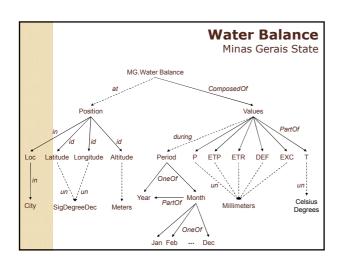


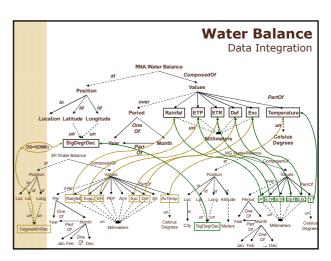


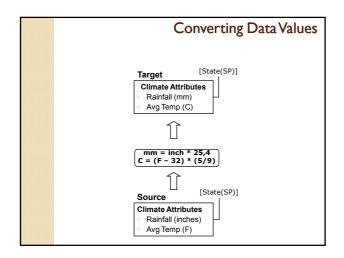


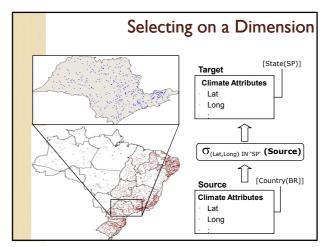


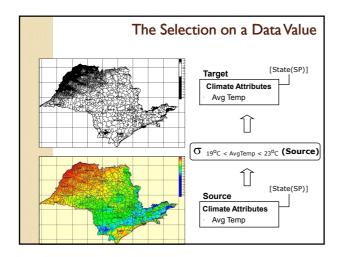


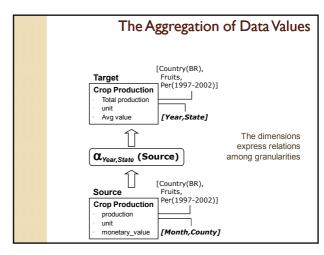


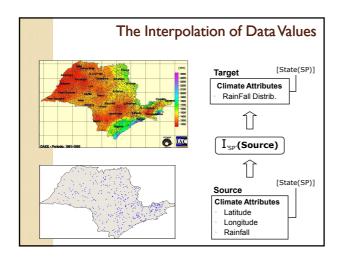


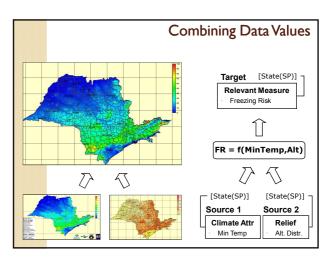


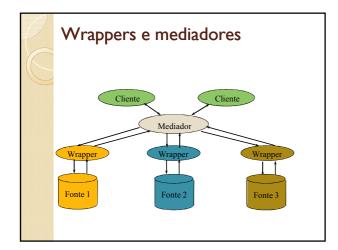










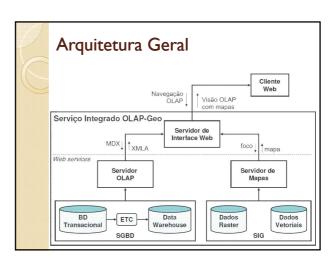


Tópicos

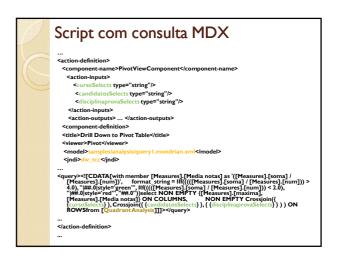
- · Conceitos básicos
 - Sistemas de Suporte à Decisão
 - Data Warehouses (DWs)
 - OLTP vs. OLAP
 - Modelo Dimensional e operadores OLAP (drill-down, roll-up, etc.)
- Planejando, projetando e implementando DWs
 - Diretrizes gerais, fases do desenvolvimento e tarefas envolvidas Estudo de Caso: DWs para a agricultura
- Padrões e ferramentas para a implementação de DWs
 - Principais componentes e padrões para DWs
 - Ferramentas abertas e proprietárias para DWs
- Alguns temas de pesquisa atuais em DWs
 - DWs com extensões espaciais e temporais
 - Semântica em DWs
- · Conclusões e referências para estudos adicionais

Componentes típicos de um DW

- Ferramentas para Extração, Transformação e Carga (ETC) para facilitar a integração e assegurar a qualidade dos dados carregados (e.g., Keetle, GeoKettle)
- Mecanismos de interoperabilidade para fontes de dados heterogêneas (e.g., gateways como ODBC e JDBC, wrappers e mediadores)
- Sistema de gerenciamento de bancos de dados (com bom desempenho e segurança!)
- Catálogo de metadados (necessário para documentar e compreender os dados e suas transformações)
- Gerenciador de DataMarts
- Servidor OLAP (e.g. Mondrian)
- Gerador de interfaces cliente na Web (e.g. Jpivot)



Implementação de OLAP


- ROLAP
 - Relacional
- MOLAP
 - Multidimensional
- HOLAP
 - Hibrido

Padrões abertos para módulos de DWs

- XMLA (XML for Analysis): Padrão baseado em esquema XML para definição da estrutura de cubos, possibilidades de navegação (consultas) sobre o mesmo e comunicação entre cliente e servidor OLAP
- MDX (MultiDimensional Expressions): Linguagem de consulta com sintaxe similar a SQL para especificação de consultas OLAP
- JOLAP (Java OLAP): API para acesso a servidor OLAP a partir de aplicações Java

Especificação de cubo no Mondrian - «Inniversion" 10% - «Cube anues" (guadean Analysis" > - «Cube anues" (guadean Analysis" > - «Table anues" (guadean Analysis") - «Table anues" (guadean Analysis) - «Table anues" (guadean

Comparativo de ferramentas livres (Giovani Caruso McDonald e João Rubik, UFSC, 2007)

Critérios agrupados segundo classes de ferramentas

- Todas as ferramentas
- Ferramentas de ETC
- Servidores OLAP
- Clientes OLAP
- Suites de ferramentas para desenvolvimento de DWs

Critérios Gerais

- Sistema Operacional
- Licença
- Usabilidade
- Linguagem de Desenvolvimento

Ferramentas de ETC

- Implementação (ROLAP, MOLAP, etc)
- Fontes de dados
- Limpeza de dados
- Abrangência dentro do processo

Servidores OLAP

- SGBDs suportados
- Metodo de armazenamento
- Protocolo de conexão
- Linguagem de consulta

Clientes OLAP

- Linguagem de consulta
- Forma de conexão com o servidor
- Gerência de análises

Suites de ferramentas

- Componentes utilizados e compatíveis
- Administração

Licenças

- GNU General Public License (GPL)
- GNU Library General Public License (LGPL)
- Common Public License (CPL)
- Mozilla Public License
- Apache License
- BSD License

Ferramentas livres analisadas

- Mondrian (servidor OLAP)
- Jpivot (geração de interfaces OLAP)
- OpenI (suite)
- SpagoBI (suite)
- PentahoBl (suite)
- BEE Project (suite)

Mondrian

- Busca os dados de um sistema de gerenciamento de banco relacional e apresentando o resultado no formato multidimensional
- Executa consultas a ele submetidas na linguagem MDX.
- O formato de saída é processado por seus clientes OLAP

Mondrian • Arquitetura: JFivot OPent XML/A MDX Result Set Camada de Apresentação Schema File Camada Dimensional Camada Estrela Camada de Armazenamento

Mondrian

- Instalação e configuração
 - Disponível no SourceForge.
 - o Definir o esquema do cubo multidimensional
 - O esquema é descrito por um documento XML

JPivot

- É uma biblioteca JSP para a interação do usuário com servidores OLAP via Web
- O JPivot permite aos usuários submeter consultas a servidores OLAP e explorar a resposta obtida através de uma interface gráfica

JPivot

- Arquitetura
 - Suporta diversos servidores OLAP
 - · Tipos de conexão com servidores:
 - · Acesso através de XMLA
 - · Acesso através de um Driver JDBC
 - Utiliza o pacote WCF (Web Component Framework) para a construção da Interface

JPivot


			Measures		
Curso	disciplinaprova	Candidato	 maxima 	• num	
*All cursos	+All disciplinaprovas	-All Candidatos	10.00	318,468	
		-Bahia	9.49	324	
		ILHEUS	8.84	12	
		JEQUIE	8.75	12	
		PORTO SEGURO	7.30	12	
		SALVADOR	9,49	216	
		 Goias	9.80	1,248	
		+Mato Grosso	10.00	1,548	
		*Mato Grosso do Sul	9.80	2,256	
		+Minas Gerais	9.83	1,704	
		+Parana	10.00	17,208	
		+Rio de Janeiro	9.50	552	
		*Rio Grande do Sul	9.67	10,752	
		+Santa Catarina	10.00	250,128	
		+Sao Paulo	10.00	29,484	

OpenI

- OpenI é suite de BI (Business Intelligence)
 Open Source baseada em tecnologia J2EE para analise OLAP
- Compatível com servidores OLAP que utilizam o protocolo XMLA
- Propósito de ser uma ferramenta fácil e intuitiva para executar operações OLAP.

OpenI

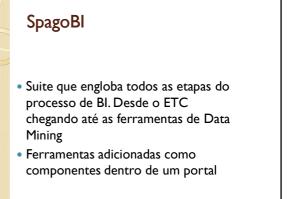
- Arquitetura
 - O componente de conexão
 - O componente de Relatório
 - · Componente de interface
 - O Componente de Segurança

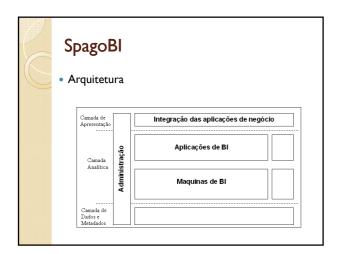
OpenI

- Instalação e Configuração
 - Aplicação Web que funciona em qualquer servidor de aplicação J2EE
 - Segurança do Openl é baseada na segurança do servidor de aplicação J2EE
 - Utiliza o conceito de projetos para definir uma coleção específica de relatórios OLAP

Pentaho

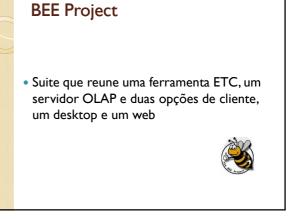
- Objetivo de fornecer soluções para os problemas em BI
- Arquitetura orientada a serviços e centrada em processos
- Engloba componentes responsáveis por relatórios, análises, mineração de dados, ETC, entre outros

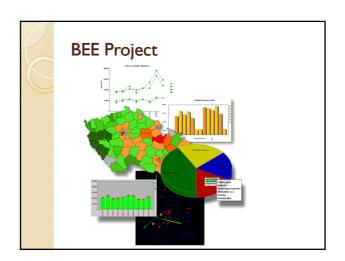

Pentaho


- Arquitetura:
 - · Componentes maduros
 - · Projetos consolidados em código aberto
 - Facilmente substituídos por outros produtos
 - Padrão de servidor web J2EE
 - Repositórios de dados é externo a plataforma Pentaho

Pentaho

- Componentes:
 - Servidor OLAP Mondrian
 - Front-End jPivot Analysis
 - Shark e JaWEWorkflow
 - Kettle Ell e ETL
 - Servidor de aplicação JBoss, Hibernate e Portal
 - Weka Data Mining
 - Eclipse Workbench e BIRT reporting components
 - $^{\circ}$ JOSSO single sign-on and LDAP integration
 - Mozilla Rhino Javascript Processor





BEE Project

 A instalação do BEE Project é a mais complexa entre as ferramentas analisadas, e exige, entre outros, a compilação do código fonte PERL. Além disso a documentação é muito deficiente o que dificulta e toma muito tempo. Por esses motivos esse trabalho analisou o BEE project apenas através da documentação disponível e a instalação não foi realizada.

Comparativo de ferramentas livres (Giovani Caruso McDonald e João Rubik, UFSC)

Ferramenta	Mondrian	OpenI	Jpivot	Pentaho	Bee Project	Spago BI
Categoria	Servidor	Cliente	Cliente	Suite	Suite	Suite
Sistema Operacional	Varias (JVM)	Varias (JVM)	Varias (JVM)	Varias (JVM)	POSIX (Linux/BSD/ UNIX similares), Linux	Varias (JVM)
Ling. de desenv.	Java	Java	Java	Java	C, Perl	Java
Licença	CPL	OPL	CPL	PPL	GPL	GPL
Usabilidade	Pouco Amigavel	Muito Amigavel	Amigável	Muito Amigavel	Pouco Amigável	Amigável
SGBD suportado	JDBC (todos)	Não se Aplica	Não se Aplica	JDBC (todos)	Perl DBI/DBD, MySQL, Oracle, PostgreSQL (pgsql)	JDBC (todos)

Comparativo de ferramentas livres (Giovani Caruso McDonald e João Rubik, UFSC)

				Pentaho	BEE Project	SpagoBI
	Mondrian	JPivot	OpenI			
Método de Armazenam ento	Rolap	Não se Aplica				
Formas de Conexão Disponíveis	XMLA, JDBC	Não se Aplica				
Linguagem de Consulta	MDX	MDX	MDX	Não se Aplica	Não se Aplica	Não se Aplica
Formas de Conexão com Servidor	Não se Aplica	XML/A, JDBC	XML/A, JDBC	Não se Aplica	Não se Aplica	Não se Aplica
Gerencia de análises	Não se Aplica	Sim	Não	Sim	Sim	Sim
Componente Servidor	Não se aplica	Não se aplica	Não se aplica	Mondrian		Mondrian

Ferramentas proprietárias

- Microsoft (SQL Server + Analysis Services)
- Oracle
- IBM
- Informix
- Cartelon
- NCR
- Red Brick
- Sybase
- SAS
- Microstrategy Corporation
- Pentaho versão comercial

Tópicos

- Conceitos básicos
 - Sistemas de Suporte à Decisão
 - Data Warehouses (DWs)
 - OLTP vs. OLAP
 - Modelo Dimensional e operadores OLAP (drill-down, roll-up, etc.)
 - Planejando, projetando e implementando DWs
 - Diretrizes gerais, fases do desenvolvimento e tarefas envolvidas
 - Estudo de Caso: DWs para a agricultura
 - Padrões e ferramentas para a implementação de DWs
 - Principais componentes e padrões para DWs
 - Ferramentas abertas e proprietárias para DWs
 Alguns temas de pesquisa atuais em DWs
 - DWs com extensões espaciais e temporais
 - Semântica em DWs
- Conclusões e referências para estudos adicionais

DWs espaciais

Problemas em aberto:

- Integração do modelo dimensional com algum modelo espacial:
 - Modelagem
 - Operadores
 - Implementação de sistemas integrados
- Integração de dados em aplicações
- Geração de datamarts

Operadores e funções de agregação em DW

- Operadores:
 - Agregação/desagregação: Roll-up, Drill-down, group by
 - Seleção/projeção: Pivot, Slice e Dice
- Funções de agregação:
 - · Distributivas: contagem, mínimo, máximo,
 - Algébricas: média, desvio padrão
 - Holísticas: mediana, maior freqüência, rank

Operadores em SIG

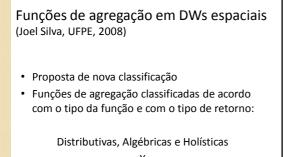
- · Operadores:
- Egenhofer propôs:

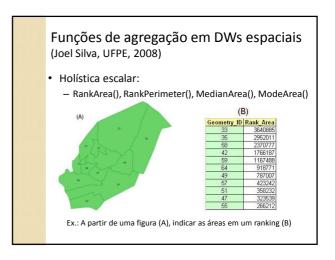
 - "disjunto de ..." "encontram..."
 - "é igual a ..."
 - "dentro de ..."
 - "contém ..." cobre ...'
 - "é coberto por ..."
 - "sobreposição"

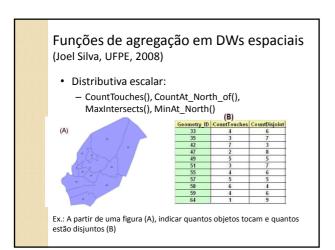
Classificação de Operadores em SIG

- De acordo com o número de operandos:
 - Unários
 - Binários
 - N-ários
- De acordo com o tipo do dado retornado:
 - · Booleano
 - Escalar
 - Espacial

Operadores em SIG


• Unário com resultado espacial:

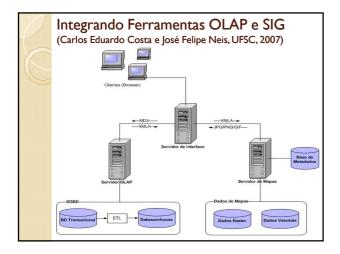

Operadores em SIG

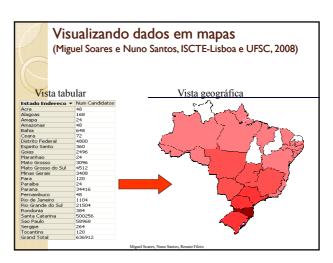

- · Binário com resultado escalar:
 - Distância
 - Área

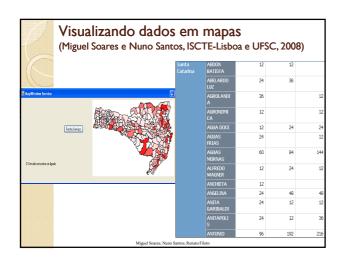
Escalar e Espacial

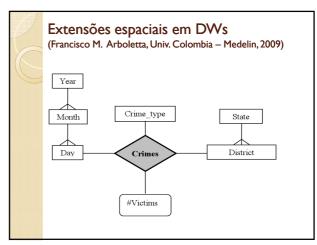
Funções de agregação em DWs espaciais
(Joel Silva, UFPE, 2008)

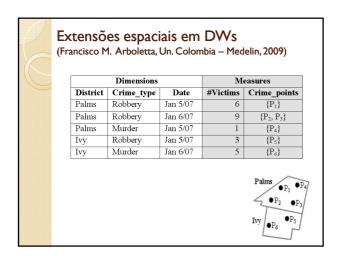
• Distributiva espacial:

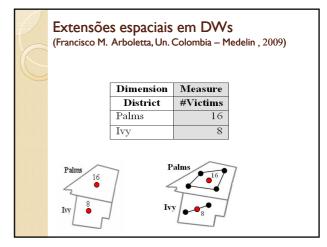

- SumTouches(), SumAt_North_Of(),
 SumAt_North_West_Of(), SumDisjoint()

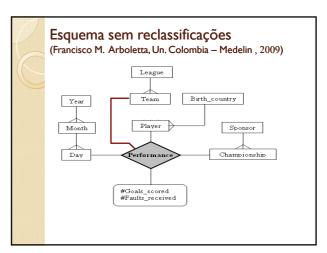

• Algébrica escalar:

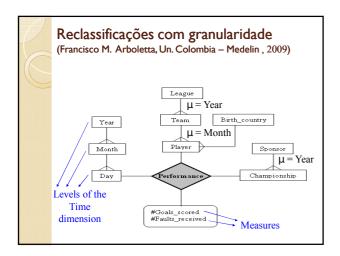

- AvgArea(), StdvPerimeter(), MaxNArea()

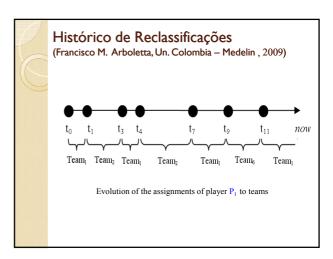

• Algébrica espacial:


- MaxNAt_North_Of(), MaxNAt_South_Of()
:









Consultas Temporada (Season Queries)

(Francisco M. Arboletta, Un. Colombia - Medelin, 2009)

- What was the total number of goals scored by P₁ in his first and last seasons in Team₁? In his first three seasons in Team₁? In his last two seasons in Team₁?
- Which was the season (dates, number of season, and team), where the total number of goals scored by P₁ was the highest?
- What was the total and average number of goals scored by each player in each season for each team?

Tópicos

- Conceitos básicos
 - Sistemas de Suporte à Decisão
 - Data Warehouses (DWs)
 - OLTP vs. OLAP
 - Modelo Dimensional e operadores OLAP (drill-down, roll-up, etc.)
- Planejando, projetando e implementando DWs
 - o Diretrizes gerais, fases do desenvolvimento e tarefas envolvida
 - Estudo de Caso: DWs para a agricultura
- Padrões e ferramentas para a implementação de DWs
 - Principais componentes e padrões para DWs
 Ferramentas abertas e proprietárias para DWs
- Alguns temas de pesquisa atuais em DWs
- DWs com extensões espaciais e temporais
- Semântica em DWs
 Conclusões e referências

Conclusões

- DWs permitem a integração de dados e a execução de análises detalhadas e dinâmicas (OLAP) da informação, na forma de tabelas, gráficos e mapas para apoio à tomada de decisão
- A disponibilidade de ferramentas livres ou de baixo custo para a implementação de DWs abre oportunidades para a aplicação desta tecnologia em pequenos e médios empreendimentos
- Aconselha-se o desenvolvimento de DWs de forma gradual, ao invés de tentar alcançar todos os objetivos de uma única vez

Conclusões (II)

- Padrões de sistemas abertos possibilitam a interoperabilidade de componentes na Web (SGBDs, servidores OLAP, servidores e interfaces para tabelas, gráficos e mapas, etc.)
- Diversas aplicações requerem tratamento especial das dimensões espaço e tempo, gerando desafios na integração com GIS e uso de técnicas de BDs temporais
- Semântica pode auxiliar na integração de dados e projeto de aplicações de DWs (e.g., geração de DMs)

Links úteis

- Suítes de ferramentas para DWs
 - http://www.pentaho.org/
 - http://spagobi.objectweb.org/
 - http://www.microsoft.com/sqlserver/2008/en/us/default.aspx
 - http://www.microsoft.com/sqlserver/2008/en/us/wp-sql-2008analysis-services.aspx
 - http://openi.sourceforge.net

Links úteis (II)

- Outras ferramentas (algumas embutidas em suítes)
 - http://mondrian.sourceforge.net
 - http://jpivot.sourceforge.net/
 - http://sourceforge.net/projects/bee/ (MySQL)
 - http://www.r-project.org/
 - http://www.eclipse.org/birt/phoenix/
 - http://rubik.sourceforge.net/jrubik/intro.html
 - http://www.jfree.org/jfreechart/ (gráficos)
 - http://jasperreports.sourceforge.net/
 - http://www.palo.net/
 - http://kettle.pentaho.org/

Links úteis (III)

• Padrões para conexão com servidores OLAP

MDX

- http://www.xmlforanalysis.com/mdx.htm
- http://www.databasejournal.com/features/mssql/article.php/1495511

XMLA

- http://www.xmla.org
- http://www.xmlforanalysis.com/
- $^{\circ}\ http://msdn2.microsoft.com/en-us/library/ms187178.aspx$

Referências bibliográficas

- Inmon, W.H. Tech Topic: What is a Data Warehouse? Prism Solutions. Volume 1. 1995.
- Kimball. The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling (Second Edition)", Wiley, 2002.
- Kimball, et al. The Data Warehouse Lifecycle Toolkit, Wiley, 1998.
- Kimball and Caserta. The Data Warehouse ETL Toolkit, Wiley. 2004.
- Bernard Lupin. Try OLAP! 2007.
- Daniel Lemire. Data Warehousing and OLAP A Research-Oriented Bibliography, 2007.
- Gray, Jim; Bosworth, Adam; Layman, Andrew; Priahesh, Hamid. Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals. Proceedings of the 12th International Conference on Data Engineering. IEEE., 1995. 152-159.
- Gartner Reveals Five Business Intelligence Predictions for 2009 and Beyond. http://www.gartner.com/it/page.jsp?id=856714.