
11/11/2010

1

1

Construindo Aplicações na Web Semântica

Serviços Web Semânticos

Renato Fileto
fileto@inf.ufsc.br

Programa de Pós-graduação em Ciência da Computação – PPGCC

Departamento de Informática e Estatística – INE

Centro Tecnológico – CTC

Universidade Federal de Santa Catarina – UFSC

Topics

 Introduction

 Web Services (WS)‏

 Semantic Web Services (SWS)‏

 Some Major Efforts towards SWS

 WSDL-S

 OWL-S‏

 SWSF (SWSO + SWSL)‏

 WSMO (WSMO + WSML + WSMX)‏

 Software Tools: WSMT, WSMX, IRS-III, ...

 Case study: Travelling to SBBD

Introduction

Web Services Technology
(discovery, selection, composition, and web-based

execution of services)

+

Semantic Web
(ontologies and machine supported data

interpretation)

=

Semantic Web Services
(integrated solution for realizing the vision of the next

generation of the Web)

The Web

 The Web was initially designed for application to
human interactions

 Served very well its purpose:

 Information sharing: a distributed content library.

 Enabled B2C e-commerce.

 Non-automated B2B interactions.

 How did it happen?

 Built on standards: HTTP, HTML, URI, ...

 Very few assumptions made about computing platforms.

 Ubiquity.

What’s next?

 The Web is everywhere. There is a lot more we
can do!

 E-marketplaces.

 Open, automated B2B e-commerce.

 Business process integration on the Web.

 Resource sharing, distributed computing.

 Current approach is ad-hoc on top of existing

standards.

 e.g., application-to-application interactions with HTML

forms.

 Goal: enabling systematic and automated

application-to-application interaction on the Web.

W3C´s Protocol Working Group

“...the Web can grow significantly in power

and scope if it is extended to support

[automated] communication between

applications, from one program to another.”

W3C's Protocol Woking Group

11/11/2010

2

Topics

 Introduction

Web Services (WS)‏

 Semantic Web Services (SWS)‏

 Some Major Efforts towards SWS

 WSDL-S

 OWL-S‏

 SWSF (SWSO + SWSL)‏

 WSMO (WSMO + WSML + WSMX)‏

 Software Tools: WSMT, WSMX, IRS-III, ...

 Case study: Travelling to SBBD

Web Services

 Encapsulated,‏loosely‏coupled‏Web‏“components”‏
that can bind dynamically to each other.

 Services are programmatically accessible over

standard Internet protocols

A Web Service

 Identified by an URI

 Self-describing and openly accessible

 Can be remotely invoked through a well-defined

interface ‏

 Exchanges data in XML format

 Interacts with applications and other services via

messages exchange (HTTP/SMTP)‏

 Independent from other services and

applications, but can cooperate with them

Web Service Architecture

Based on the Service Oriented Architecture (SOA)‏

Example

Web

browser

Business

Company

Credit Card

Company

Verify card

Result

 Obviously, there are other technologies for doing this

 Web services standardize connections, enabling “plug and

play” on the Web.

S1 S2

Web Service Objectives

 Universal interoperability

 Exploit ubiquity of the Web

 Enable dynamic binding

 Efficiently support open environment (Web) and

more restrict environments if necessary

 Minimize incompatibility costs

 programming languages,

 operating systems,

 network protocols.

 An effort towards building a distributed
computing platform on the Web.

11/11/2010

3

Why Web Services?

 Based on generally accepted standards

 Require little additional infrastructure

 Loose coupling

 Focus in messages and documents, not APIs

 Easy to use

 Complement existing technologies

 Interoperability

 Everybody use, have plans to use or is forced

to use

Technology Evolution

Web Services Framework

 What goes “on the wire”:

Formats and protocols.

 What describes what goes on the wire:

Description languages.

 How to find the services we need:

Discovery and selection of services.

 How to assemble and control the execution
of services in processes on the Web:

Composition of services.

Current Web Services Technologies

 Standards for publication, invocation & search

 Unicode, URI + namespaces

 XML (eXtensible Markup Language) + XML-Schema

 SOAP (f.k.a. Simple Object Access Protocol)‏

 WSDL (Web Services Definition Language)‏

 UDDI (Unified Data Description and Interchange)‏

 Implementation technologies

 .NET (Microsoft)‏

 Java Technology for Web Services (SUN)‏

 ... and many others.

Web Service Interaction Current Web Services Standards

XML + XML-Schema

SOAP

WSDL

Semantic Web Services

URI + NameSpaces

Cooperative Processes

Internet Protocols (HTTP)‏

A
c
c
e
s
s
 C

o
n

tr
o

l
&

S
e
c
u

ri
ty

 P
o

li
c
ie

s

Character Encoding (Unicode)‏

UDDI

11/11/2010

4

URI (Uniform Resource Identifier)‏

An URI identifies an abstract or physical

resource

URNs (Uniform Resource Names)‏

URLs (Uniform Resource Locators)‏

Examples:

ftp://ftp.is.co.za/rfc/rfc1808.txt

http://www.ietf.org/rfc/rfc2396.txt

mailto:John.Doe@example.com

news:comp.infosystems.www.servers.unix

ldap://[2001:db8::7]/c=GB?objectClass?one

telnet://192.0.2.16:80/

tel: +1-816-555-1212

urn:oasis:names:specification:docbook:dtd:xml:4.1.2

URI

URL
URN

XML – eXtensible Makup Language

<?xml version=”1.0”?> <!DOCTYPE people SYSTEM

”http://www.wsmo.org/workinggroup.dtd”>
<!−− This XML document gives information about working group members of the

WSMO working group −−>
<people xmlns=”http://www.wsmo.org/namespace”>
< title >WSMO working group members</title>

<member chair=”yes”>
<firstname>Dieter</firstname><lastname>Fensel</lastname>

< affiliation >DERI International</ affiliation >
</member>

<member chair=”yes”>
<firstname>John</firstname><lastname>Domingue</lastname>
< affiliation >Open University</ affiliation >

</member>
<member>

<firstname>Axel</firstname><lastname>Polleres</lastname>
< affiliation >Univ. Rey Juan Carlos</ affiliation >

</member>
:

</people>

DTD

<!DOCTYPE people [
<!ELEMENT people (title,member+)>

<!ELEMENT member (firstname,lastname,affiliation+)>
<!ATTLIST member chair (yes|no) ”no”>

<!ELEMENT title (#PCDATA)>

<!ELEMENT firstname (\#PCDATA)>
<!ELEMENT lastname (\#PCDATA)>

<!ELEMENT affiliation (\#PCDATA)>
]>

XML-Schema (example)‏

<XML version =”1.0” encoding=”UTF−8”?>

<xs:schema
xmlns=”http://www.wsmo.org/namespace”

xmlns:xs=”http://www.w3.org/2001/XMLSchema”
elementFormDefault=”qualified” attributeFormDefault=”qualified”
targetNamespace=”http://www.wsmo.org/namespace” >

<xs:element name=”people”>
<xs:complexType>

<xs:sequence>
<xs:element name=”title” type=”xs:string” maxOccurs=”1”/>

<xs:element name=”member” type=”person” maxOccurs=”unbounded”/>
</xs:sequence>

</xs:complexType>

</xs:element>

:
</xs:schema>

XML-Schema (example cont)‏

<xs:complexType name=”person”>
<xs:sequence>

<xs:element name=”firstname” type=”namestring” minOccurs=”1” maxOccurs=”2”/>
<xs:element name=”lastname” type=”namestring” minOccurs=”1” maxOccurs=”2”/>
<xs:element name=”affiliation” type=”namestring” maxOccurs=”unbounded”/>

</xs:sequence>
< xs:attribute name=”chair” default=”no”>

<xs:simpleType>
< xs:restriction base=” xs:string ”>

<xs:enumeration value=”yes”/>
<xs:enumeration value=”no”/>

</ xs:restriction >

</xs:simpleType>
</ xs:attribute >

</xs:complexType>

XML-Schema (example cont)‏

<xs:simpleType name=”namestring”>
< xs:restriction base=” xs:string”>

<!−− This pattern says that names are strings
starting with an uppercase letter −−>

<xs:pattern value=”\{p}\{Lu\}.\∗”/>

</ xs:restriction >
</xs:simpleType>

11/11/2010

5

SOAP

SOAP Envelope

Header

Body

Payload

Fault

SOAP

 Request example

<?xml version="1.0" encoding="UTF-8"?>

<S:Envelope

xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

<S:Header/>

<S:Body

xmlns:ns1="http://ufsc.br/previsao">

<ns1:getMinTemperature>
<location>Florianópolis<location>

</ns1:getMinTemperature>

</S:Body>

</S:Envelope>

SOAP

 Return example

<?xml version="1.0" encoding="UTF-8"?>

<S:Envelope
xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

<S:Body>

<ns1:getMinTemperatureResponse
xmlns:ns1="http://ufsc.br/previsao">

<return>13.2</return>

</ns1:getMinTemperatureResponse>

</S:Body>

</S:Envelope>

SOAP + attachments

MIME-Version: 1.0

Content-Type: Multipart/Related; boundary=MIME_boundary;

type=text/xml;

start="<soapmsg.xml@example.com>“

--MIME_boundary

Content-Type: text/xml; charset=UTF-8

Content-Transfer-Encoding: 8bit

Content-ID: soapmsg.xml@example.com

<SOAP-ENV:Envelope xmlns:SOAP-ENV=“http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Body>

..

<Person>

<Picture‏href=“http://example.com/myPict.jpg”‏/>

</Person>

..

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

--MIME_boundary--

WSDL - Web Services

Description Language

 Language for describing Web services

 W3C Standard

 XML based

 Describes the interface of a Web service

 Equivalent to Corba IDL description

 Platform independent description

 Extensible language

 A de facto industry standard.

Using WSDL

 Allows tools to generate compatible client and
server stubs.

 Allows industries to define standardized

service interfaces.

 Allows advertisement of service descriptions,

enabling dynamic discovery and binding of

compatible services.

 Provides a normalized description of

heterogeneous applications.

http://schemas.xmlsoap.org/soap/envelope/
http://example.com/myPict.jpg

11/11/2010

6

WSDL Structure

 portType

 Abstract definition of a

service (set of operations)‏

 Multiple bindings per

portType:

 How to access it

 SOAP, JMS, direct call

 Ports

 Where to access it

Service

Port
(e.g. http://host/svc)‏

Binding
(e.g. SOAP)‏

Abstract interface

portType

operation(s)‏

inMesage outMessage

Port

Binding

WSDL elements

 Types: type definitions using XML-Schema

 Messages: describes what goes on the data flows, using
the the types defined using XML-Schema

 Port types: colections of related operations, using
messages to exchange arguments and results

 Bindings: associate port types with protocolos (e.g.,
HTTP GET/POST) and data formats

 Ports: associate bindings with network addresses

 Services: collection of related ports

Example: Shopping Cart

Port Type

Faults

WSDL definitions

<definitions name="ShoppingCartDefinitions"

targetNamespace="http://example.com/ShoppingCart.wsdl"

xmlns:tns="http://example.com/ShoppingCart.wsdl"

xmlns:xsd1="http://example.com/ShoppingCart.xsd"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns="http://schemas.xmlsoap.org/wsdl/>

A WSDL document

<definitions‏name=“ShoppingCartDefinitions”

xmlns=“http://schemas/xmlsoap.org/wsdl”‏

targetNamespace=“http://example.com/ShoppingCart.wsdl”‏…‏>

<types>‏…‏</types>

<message‏name=“AddItemInput”>‏…‏</message>

<message‏name=“AddItemOutput”>‏…‏</message>

<portType‏name=“ShoppingCart”>‏…‏</portType>

<binding‏name=“CartHTTPXMLBinding”‏type=“tns:ShoppingCart”>…

<binding‏name=“CartSOAPBinding”‏type=“tns:ShoppingCart”>…

<service‏name=“ShoppingCartService”>

<port‏name=“HTTPXMLCart”‏binding=“tns:CartHTTPXMLBinding”>

…

<port‏name=“SOAPCart”‏binding=“tns:CartSOAPBinding”>‏…

</service>

<import‏namespace=“…”‏location=“…”>

</definitions>

Types

<types>

<schema

targetNamespace=“http://myservice.net/carttypes”

xmlns=“http://www.w3.org/2000/10/XMLSchema”>

<complexType‏name=“item”><all>

<element‏name=“description”‏type=“xsd:string”/>

<element‏name=“quantity”‏type=“xsd:integer”/>

<element‏name=“price”‏type=“xsd:float”/>

</all></complexType>

</schema>

</types>

http://myservice.net/carttypes
http://myservice.net/carttypes
http://www.w3.org/2000/10/XMLSchema
http://www.w3.org/2000/10/XMLSchema
http://www.w3.org/2000/10/XMLSchema
http://www.w3.org/2000/10/XMLSchema
http://www.w3.org/2000/10/XMLSchema
http://www.w3.org/2000/10/XMLSchema
http://www.w3.org/2000/10/XMLSchema

11/11/2010

7

Messages

<message‏name=“AddItemInput”>

<part‏name=“cart-id”‏type=“xsd:string”/>

<part‏name=“item”‏type=“carttypes:item”/>

<part‏name=“image”‏type=“xsd:base64Binary”/>

</message>

Port Types

<portType‏name=“ShoppingCart”>

<operation‏name=“AddItem”>

<input‏message=“tns:AddItemInput”/>

<output‏message=“tns:ACK”/>

<fault‏name=“BadCartID”‏message=“tns:BadCartID”/>

<fault‏name=“ServiceDown”‏message=“tns:ServiceDown”/>

</operation>

<operation name=“RemoveItem”>‏…‏</operation>

<operation name=“ListItems”>‏…‏</operation>

</portType>

SOAP Binding

<binding‏name=“CartHTTPSOAPBinding”‏ type=“tns:ShoppingCart”>

<soap:binding‏style=“RPC”‏transport=“http://schemas.xmlsoap.org/soap/http”/>

<operation‏name=“AddItem”>

<soap:operation‏soapAction=“http://myservice.net/cart/AddItem”/>

<input>

<soap:body‏use=“encoded”‏namespace=“http://myservice.net/cart”

encodingStyle=“http://schemas.xmlsoap.org/soap/encoding”/>

</input>

<output>

<soap:body‏use=“encoded”‏namespace=“http://myservice.net/cart”

encodingStyle=“http://schemas.xmlsoap.org/soap/encoding”/>

</output>

<fault‏name=“BadCartID”>‏<soap:body‏use=“encoded”‏namespace=‏…‏/></fault>

<fault‏name=“ServiceDown”>‏<soap:body‏use=‏</‏…‏</fault>

</operation>‏…

</binding>

HTTP Binding

<binding‏name=“CartHTTPPostBinding”‏type=“tns:ShoppingCart”>

<http:binding‏verb=“POST”/>

<operation‏name=“AddItem”>

<http:operation‏location=“/AddItem”/>

<input>

<mime:content type="application/x-www-form-urlencoded”/>

</input>

<output>

<mime:content type="application/x-www-form-urlencoded”/>

</output>

<fault‏name=“BadCartID”>‏<mime:mimeXML/>‏</fault>

<fault‏name=“ServiceDown”>‏<mime‏</‏…‏</fault>

</operation>‏…

</binding>

Ports

<port‏name=“SOAPCart”‏binding=“tns:SOAPCartBinding”>

<soap:address‏location=“http://myservice.net/soap/cart”/>

</port>

<port‏name=“HTTPPostCart”‏binding=“tns:HTTPPostCartBinding”>

<http:address‏location=“http://myservice.net/cart”/>

</port>

Services

<service‏name=“ShoppingCartService”>

<documentation>A Shopping Cart for the Web</documentation>

<port‏name=“HTTPPostCart”‏binding=“tns:HTTPPostCartBinding”>

<http:address‏location=“http://myservice.net/cart”/>

</port>

<port‏name=“SOAPCart”‏binding=“tns:SOAPCartBinding”>

<soap:address‏location=“http://myservice.net/soap/cart”/>

</port>

</service>

11/11/2010

8

UDDI

 Defines the operation of a service registry:

 Data structures for registering

 Businesses

 Technical specifications: tModel is a keyed reference
to a technical specification.

 Service and service endpoints: referencing the
supported tModels

 SOAP Access API

 Rules for the operation of a global registry

 “private” UDDI nodes are likely to appear, though.

UDDI Basic Structure

References to Taxonomies API SOAP para o UDDI

API de consulta

 Busca
 find_business

 find_service

 find_binding

 find_tModel

 Consulta a detalhes
 get_businessDetail

 get_serviceDetail

 get_bindingDetail

 get_tModelDetail

API de publicação

 Adição
 save_business

 save_service

 save_binding

 save_tModel

 Remoção
 delete_business

 delete_service

 delete_binding

 delete_tModel

 Segurança
 get_authToken

 discard_authToken

Mapeamento WSDL - UDDI Major Challenges in Web Services

Discovery: find available resource in the Web to

meet specific needs

Selection: choose the most suitable resources, by

several criteria (e.g., cost, matching interfaces)‏

Composition: design, enact and synchronize

(“choreograph”) distributed processes on the Web,

using Web services as basic building blocks

11/11/2010

9

Topics

 Introduction

 Web Services (WS)‏

Semantic Web (SW)‏

 Semantic Web Services (SWS)‏

 Some Major Efforts towards SWS

 WSDL-S

 OWL-S‏

 SWSF (SWSO + SWSL)‏

 WSMO (WSMO + WSML + WSMX)‏

 Software Tools: WSMT, WSMX, IRS-III, ...

 Case study: Travelling to SBBD

WS standards lack of semantics!

Problem: No way to describe services and data semantics

for machine processing in order to support automated

service discovery, selection, composition, ...

Syntax only!

60

Deficiencies of WS Technology

• Only syntactical information descriptions and

syntactic support for discovery, composition

and execution

=> Web Service reuse and integration

needs to be done manually

• No semantic markup for contents / services

=> Current Web Service Technology Stack
failed to realize the promise of Web
Services

Topics

 Introduction

 Web Services (WS)‏

 Semantic Web (SW)‏

Semantic Web Services (SWS)‏

 Some Major Efforts towards SWS

 WSDL-S

 OWL-S‏

 SWSF (SWSO + SWSL)‏

 WSMO (WSMO + WSML + WSMX)‏

 Software Tools: WSMT, WSMX, IRS-III, ...

 Case study: Travelling to SBBD

Semantic Web & Web Services

XML

RDFS

OWL

Unified Logic

SOAP + ...

WSDL + ...

SWS

Proof

Character Encoding + URI

Processes

Semantic Web Web Services

Trust

D
ig

it
a
l
S

ig
n

a
tu

re

A
c
c
c
e
s
s
 C

o
n

tr
o

l
&

S
e
c
u

ri
ty

 P
o

li
c
ie

s

RDF

SPARQL

Rules

Reuse

63

 Huge in terms of users
and information
available

 Ubiquitous

The SWS Vision

WWW
URI, HTML, HTTP

Static

Syntactic

11/11/2010

10

64

Deficiencies in Automated

Information Processing

• finding

• extraction

• representation

• interpretation

• maintenance

The SWS Vision

WWW
URI, HTML, HTTP

Semantic Web
RDF, RDF(S), OWL

Static

Syntactic Semantic
65

The SWS Vision

Enable Computing
over the Web

WWW
URI, HTML, HTTP

Semantic Web
RDF, RDF(S), OWL

Dynamic
Web Services
UDDI, WSDL, SOAP

Static

Syntactic Semantic

WWW
URI, HTML, HTTP

Automated Web services using

Bringing the Web to its full potential

Semantic Web
RDF, RDF(S), OWL

Dynamic
Web Services
UDDI, WSDL, SOAP

Static

Semantic Web

Services

Syntactic Semantic

The SWS Vision Semantic description of Web Services

 Should describe all information necessary to

enable automated discovery, composition,

execution, etc.

 Semantically enhanced repositories

 Tools and platforms that:

 semantically enrich current Web content

 facilitate discovery, composition and execution

68

Semantic Web Services

 define exhaustive description frameworks for
describing Web Services and related aspects
(Web Service Description Ontologies)

 support ontologies as underlying data model to

allow machine supported Web data interpretation

(Semantic Web aspect)

 define semantically driven technologies for

automation of the Web Service usage process

(Web Service aspect)

What (partial) automation should

SWS provide?

 Publication: Make available the description of the capability of a
service

 Discovery: Locate different services suitable for a given task

 Selection: Choose the most appropriate services among the
available ones

 Composition: Combine services to achieve a goal

 Mediation: Solve mismatches (data, protocol, process) among the
combined

 Execution: Invoke services following programmatic conventions

 Monitoring: Control the execution process

 Compensation: Provide transactional support and undo or mitigate
unwanted effects

 Replacement: Facilitate the substitution of services by equivalent
ones

11/11/2010

11

Topics

 Introduction

 Web Services (WS)‏

 Semantic Web Services (SWS)‏

Some Major Efforts towards SWS
 WSDL-S

 OWL-S‏

 SWSF (SWSO + SWSL)‏

 WSMO (WSMO + WSML + WSMX)‏

 Software Tools: WSMT, WSMX, IRS-III, ...

 Case study: Travelling to SBBD

Some Major SWS Proposals

 WSDL-S: extends WS technology with
semantic descriptions

 OWL-S‏: extends OWL for semantically

describing WS

 SWSF (SWSO + SWSL): roots in OWL-S and

the PSL (Process Specification Language)‏

 WSMO (WSMO + WSML + WSMX)‏:

ontologies, Web services, goals, and mediators

WSDL-S

 Rather minimalist and lightweight approach that
extends WSDL service descriptions with semantics

 Roots on METEOR-S project, from Amit Sheth at LSDIS,
Athens, Georgia

 The semantic model is outside WSDL-S, making it
impartial to ontology representation language

 Builds upon and stays close to existing industry
standards, promoting an upwardly compatible
mechanism for adding semantics to Web services

 Support for XML Schema datatype annotations needs to
be added to XML-Schema

 Originates of SAWSDL (Semantic Annotations for
WSDL), W3C's recommendation with IBM

WSDL-S

OWL-S

 OWL-S is an OWL ontology to describe Web services

 OWL-S leverages on OWL to
 Support capability based discovery of Web services

 Support automatic composition of Web Services

 Support automatic invocation of Web services

"Complete do not compete"
 OWL-S does not aim to replace the Web services standards

rather OWL-S attempts to provide a semantic layer

• OWL-S relies on WSDL for Web service invocation (see
Grounding)‏

• OWL-s Expands UDDI for Web service discovery (OWL-S/UDDI
mapping)‏

OWL-S Upper Ontology

• Mapping to WSDL

• communication‏protocol‏‏(RPC,‏HTTP,‏…)‏

• marshalling/serialization

• transformation to and from XSD to OWL

• Control flow of the service

•Black/Grey/Glass Box view

• Protocol Specification

• Abstract Messages

•Capability specification

•General features of the Service

• Quality of Service

• Classification in Service

taxonomies

11/11/2010

12

Service Profiles

Service Profile

 Presented by a service.

 Represents

what the service provides

 Two main uses:

1. Advertisements of Web Services
capabilities (non-functional
properties, QoS, Description,
classification, etc.)‏

2. Request of Web services with a
given set of capabilities

•Profile does not specify use/invocation!

OWL-S Service Profile

Capability Description

 Preconditions

 Set of conditions that should hold prior to service invocation

 Inputs

 Set of necessary inputs that the requester should provide to invoke the

service

 Outputs

 Results that the requester should expect after interaction with the

service provider is completed

 Effects

 Set of statements that should hold true if the service is invoked

successfully.

 Service type

 What kind of service is provided (eg selling vs distribution)‏

 Product

 Product associated with the service (eg travel vs books vs auto parts)‏

Process Model

 Process Model
 Describes how a service works:

internal processes of the service

 Specifies service interaction
protocol

 Specifies abstract messages:
ontological type of information
transmitted

 Facilitates
 Web service invocation

 Composition of Web services

 Monitoring of interaction

Definition of Process

 A Process represents a transformation (function).

It is characterized by four parameters

 Inputs: the inputs that the process requires

 Preconditions: the conditions that are required for the

process to run correctly

 Outputs: the information that results from (and is

returned from) the execution of the process

 Results: a process may have different outcomes

depending on some condition

• Condition: under what condition the result occurs

• Constraints on Outputs

• Effects: real world changes resulting from the execution of

the process

Example of an atomic Process

<process:AtomicProcess rdf:ID="LogIn">
<process:hasInput rdf:resource="#AcctName"/>
<process:hasInput rdf:resource="#Password"/>
<process:hasOutput rdf:resource="#Ack"/>
<process:hasPrecondition isMember(AccName)/>
<process:hasResult>

<process:Result>
<process:inCondition>

<expr:SWRL-Condition>
correctLoginInfo(AccName,Password)‏

</expr:SWRL-Condition>
</process:inCondition>
<process:withOutput rdf:resource=“#Ack“>

<valueType rdr:resource=“#LoginAcceptMsg”>
</process:withOutput>
<process:hasEffect>

<expr:SWRL-Condition>
loggedIn(AccName,Password)‏

</expr:SWRL-Condition>
</process:hasEffect>

</process:Result>
</process:hasResult>

</process:AtomicProcess>

Inputs / Outputs

Result

Condition

Effect

Output

Constraints

Precondition

Ontology of Processes

Process

Atomic

Simple

Composite
Provides abstraction,

encapsulation etc.

Defines a workflow

composed of process

performs

Invokable

bound to grounding

11/11/2010

13

Process Model Organization

 Process Model is described as a tree structure

 Composite processes are internal nodes

 Simple and Atomic Processes are the leaves

 Simple processes represent an abstraction

 Placeholders of processes that aren‟t specified

 Or that may be expressed in many different ways

 Atomic Processes correspond to the basic actions that

the Web service performs

 Hide the details of how the process is implemented

 Correspond to WSDL operations

~ related Process Definition Languages a la BPEL

Composite Processes

Composite Processes specify how processes work

together to compute a complex function

Composite processes define

1.Control Flow

Specify the temporal relations between the

executions of the different sub-processes

(sequence, choice, etc.)‏

2.Data Flow

Specify how the data produced by one process

is transferred to another process

Service Grounding

 Service Grounding

 Provides a specification of service
access information.

 Service Model + Grounding give
everything needed for using the
service

 Builds upon WSDL to define message
structure and physical binding layer

 Specifies:

 communication protocols, transport
mechanisms, communication
languages, etc.

Mapping OWL-S / WSDL 1.1

 Operations
correspond to Atomic

Processes

 Input/Output

messages correspond

to Inputs/Outputs of

processes

Result of using the Grounding

 Invocation mechanism for OWL-S

 Invocation based on WSDL

 Different types of invocation supported by WSDL can be used
with OWL-S

 Clear separation between service description and
invocation/implementation

 Service description is needed to reason about the service

• Decide how to use it

• Decide what information to send and what to expect

 Service implementation may be based on SOAP an XSD types

 The crucial point is that the information that travels on the
wires and the information used in the ontologies is the same

 Allows any web service to be represented using OWL-S

SWSF – Semantic Web Services

Framework (SWSO + SWSL)‏

 Based on OWL-S and PSL (Process Specification
Language)‏

 Richer behavioural process model based on PSL

 Two major components:
 conceptual model to specify ontologies, called SWSO, and

 a richer language, called SWSL

 Two variants of SWSL:
 SWSL-FOL, based on FLOWS (First-order Logic Ontology

for Web Services),

 SWSL-Rules, based on ROWS (Rule Ontology for Web

Services)‏

 Submitted to W3C in 2005

 Standardized by ISO 18269

11/11/2010

14

FLOWS Extensions based on PSL

PSL
Outer Core

FLOWS Core

Ordering
constraints

Exceptions

State
constraints

Occurrence
constraints

Control
constraints

WSMO

 WSMO is an ontology and conceptual framework to describe Web
services and related aspects

 Based Web Service Modeling Framework (WSMF)‏

 WSMO is a SDK-Cluster Working Group

A Conceptual

Model for SWS

A Formal Language

for WSMO

Execution

Environment for

WSMO

The WSMO approach for SWS WSMO Principles

 Web Compliance

 XML, URI (IRI), namespaces, but not necessarily RDF/S, OWL, ...

 Ontology-based & Role Separation

 Users exist in different contexts

 Strict Decoupling & Strong Mediation

 Autonomous components with mediators for interoperability

 Interface vs. Implementation

 distinguish interface (= description) from implementation (=program)‏

 WSML

 Execution Semantics

 WSMX‏

 Services vs Web Services

 A Web service is a computational entity which is able to achieve a

user‟s goal by invocation (e.g., sell books, sell air tickets)‏

 A service is the actual value provided by this invocation

WSMO model in MOF WSMO Top Level Concepts

Objectives that a client may have

when consulting a Web Service

Provide the
formally specified
terminology

of the information
used by all other
components

Semantic
description of Web
Services

Connectors between components
with mediation facilities for
handling heterogeneities

11/11/2010

15

Non-Functional Properties

• Every WSMO elements is described by properties that contain
relevant, non-functional aspects of the item

• used for management and element overall description

• Core Properties:

- Dublin Core Metadata Element Set plus version

(evolution support)‏

- W3C-recommendations for description type

• Web Service Specific Properties:

- quality aspects and other non-functional information of Web

Services

- used for Service Selection

Non-Functional Properties

ontology _"http://www.example.org/ontologies/example"

nfp

dc#title hasValue "WSML example ontology"

dc#subject hasValue "family"

dc#description hasValue "fragments of a family ontology to provide WSML examples"

dc#contributor hasValue { _"http://homepage.uibk.ac.at/~c703240/foaf.rdf",

_"http://homepage.uibk.ac.at/~csaa5569/",

_"http://homepage.uibk.ac.at/~c703239/foaf.rdf",

_"http://homepage.uibk.ac.at/homepage/~c703319/foaf.rdf" }

dc#date hasValue _date("2004-11-22")‏

dc#format hasValue "text/plain"

dc#language hasValue "en-US"

dc#rights hasValue _"http://www.deri.org/privacy.html"

wsml#version hasValue "$Revision: 1.13 $"

endnfp

WSMO Ontologies

Provide the formally
specified terminology
of the information
used by all other
components

Semantic description of
Web Services

Objectives that a client may have
when consulting a Web Service

Connectors between components with
mediation facilities for handling
heterogeneities

Ontology Example

Ontology class

Class ontology
hasNonFunctionalProperty type nonFunctionalProperty

importsOntology type ontology
usesMediator type ooMediator

hasConcept type concept

hasRelation type relation
hasFunction type function

hasInstance type instance
hasAxiom type axiom

Ontology header

wsmlVariant _"http://www.wsmo.org/wsml/wsml-syntax/wsml-flight"

namespace {

_"http://www.inf.ufsc.br/~frank/travel/domainOntology#",

dc _"http://purl.org/dc/elements/1.1#",

wsml _"http://www.wsmo.org/wsml/wsml-syntax#" }

ontology _"http://www.inf.ufsc.br/~frank/travel/domainOntology.wsml"

nonFunctionalProperties

dc#date hasValue _date(2008,10,8)‏

dc#format hasValue "text/plain"

dc#contributor hasValue {"Frank Siqueira", "Adina Sirbu",

"Renato Fileto"}

dc#title hasValue {"SBBD Travel Ontology", "Travel Ontology"}

dc#language hasValue "en-US"

endNonFunctionalProperties

11/11/2010

16

Concepts and relations

concept Country subConceptOf Region

name ofType _string

capital impliesType (0 1) City

concept City subConceptOf Region

name ofType _string

country ofType Country

concept BrazilCity subConceptOf City

concept Ticket

from ofType Region

to ofType Region

vehicle ofType Vehicle

Concepts and relations (cont.)‏

concept Place

isInCity impliesType (0 1) City

concept Airport subConceptOf Place

concept BusStation subConceptOf Place

concept TrainStation subConceptOf Place

concept PersonsHome subConceptOf Place

concept UniversityCampus subConceptOf Place

Instances

instance Brazil memberOf Country

name hasValue "Brazil"

capital hasValue Brasilia

instance SP memberOf BrazilState

name hasValue "São Paulo"

country hasValue Brazil

instance Brasilia memberOf BrazilCity

name hasValue "Brasília"

country hasValue Brazil

Instances (cont.)‏

instance UNICAMP-BaraoGeraldo memberOf UniversityCampus

isInCity hasValue Campinas

instance UFSC_Trindade memberOf UniversityCampus

isInCity hasValue Florianopolis

instance HercilioLuz memberOf Airport

isInCity hasValue Florianopolis

instance Viracopos memberOf Airport

isInCity hasValue Campinas

instance Congonhas memberOf Airport

isInCity hasValue SaoPaulo

instance FrancoMontoro memberOf Airport

isInCity hasValue Guarulhos

Axioms

axiom UKCityDef

definedBy

?city memberOf UKCity

implies

?city[country hasValue UK]

axiom BrazilCityDef

definedBy

?city memberOf BrazilCity

implies

?city[country hasValue Brazil]

WSMO Goals

Provide the formally
specified terminology
of the information
used by all other
components

Semantic description of
Web Services:
- Capability (functional)‏
- Interfaces (usage)

Objectives that a client may have
when consulting a Web Service

Connectors between components with
mediation facilities for handling
heterogeneities

11/11/2010

17

Goal class

Class goal
hasNonFunctionalProperty type nonFunctionalProperty

importsOntology type ontology
usesMediator type {ooMediator, ggMediator}

requestsCapability type capability multiplicity = single−valued

requestsInterface type interface

Goals

 De-coupling of Request and Service

Goal-driven Approach, derived from AI rational agent approach

- Requester formulates objective independent / without regard to services

for resolution

- „Intelligent‟ mechanisms detect suitable services for solving the Goal

- Allows re-use of Goals

 Usage of Goals within Semantic Web Services

 A Requester, that is an agent (human or machine), defines a Goal to be

resolved

 Web Service Discovery detects suitable Web Services for solving the

Goal automatically

 Goal Resolution Management is realized in implementations

Goal Example

wsmlVariant _"http://www.wsmo.org/wsml/wsml-syntax/wsml-flight"

namespace

{_"http://www.inf.ufsc.br/~frank/travel/goalFloripaCampinasSBBD2008#",

dO _"http://www.inf.ufsc.br/~frank/travel/domainOntology#",

dc _"http://purl.org/dc/elements/1.1#"}

/* Test Goal */

goal

_"http://www.inf.ufsc.br/~frank/travel/goalFloripaCampinasSBBD2008.wsml"

nfp

dc#title hasValue "Goal"

dc#contributor hasValue "Frank Siqueira, Renato Fileto"

dc#description hasValue "Buying a ticket from Floripa to Campinas"

endnfp

importsOntology _"http://www.inf.ufsc.br/~frank/travel/domainOntology.wsml"

Goal Example (cont)‏

capability goalCapability

postcondition

definedBy

?ticket[

dO#from hasValue ?from,

dO#to hasValue ?to,

dO#vehicle hasValue ?vehicle

] memberOf dO#Ticket and

?from = dO#Florianopolis and

?to = dO#Campinas.

WSMO Web Services

Provide the formally
specified terminology
of the information
used by all other
components

Semantic description of
Web Services:
- Capability (functional)‏
- Interfaces (usage)

Objectives that a client may have
when consulting a Web Service

Connectors between components with
mediation facilities for handling
heterogeneities

WSMO Service

Class service
hasNonFunctionalProperty type nonFunctionalProperty

importsOntology type ontology
usesMediator type {ooMediator, wwMediator}

hasCapability type capability multiplicity = single−valued

hasInterface type interface

11/11/2010

18

WSMO Web Service WSMO Web Service - Interfaces

Web Service
Implementation

(not of interest in Web

Service Description)

Choreography --- Interfaces ---

Capability

functional description

WS

WS

- Advertising of Web Service

- Support for WS Discovery

Interaction Interface

for consuming WS

- Messages

- External Visible

Behavior

- „Grounding‟

Realization of

WS by using

other Web

Services

- Functional

decomposition

- WS

Composition

Non-functional Properties

Core + WS-specific

- complete item description

- quality aspects

- Web Service Management

WS

Orchestration

Web Service specific Properties

 non-functional information of Web Services:

Accuracy Robustness

Availability Scalability

Financial Security

Network-related QoS Transactional

Performance Trust

Reliability

Web Service Example

wsmlVariant _"http://www.wsmo.org/wsml/wsml-syntax/wsml-flight"

namespace { _"http://www.inf.ufsc.br/~frank/travel/webServiceBrazilAir#",

dO _"http://www.inf.ufsc.br/~frank/travel/domainOntology#",

dc _"http://purl.org/dc/elements/1.1#"}

webService _"http://www.inf.ufsc.br/~frank/travel/webServiceBrazilAir.wsml"

nonFunctionalProperties

dc#description hasValue "Booking plane tickets within Brazil"

dc#contributor hasValue "Frank Siqueira"

dc#title hasValue "Brazil Air"

endNonFunctionalProperties

importsOntology

_"http://www.inf.ufsc.br/~frank/travel/domainOntology.wsml"

Web Service Example (cont.)‏

capability webServiceBrazilAirCapability

postcondition

definedBy

?ticket[

dO#from hasValue ?from,

dO#to hasValue ?to,

dO#vehicle hasValue ?vehicle

] memberOf dO#Ticket and

?from memberOf dO#BrazilCity and

?to memberOf dO#BrazilCity and

?vehicle memberOf dO#Airplane

Goal-Services Matchmaking

 Service: provision of value for some domain

 Abstract service: collection of services offered by

a provider

 Goal: specification of the client needs

 E.g.: Booking air tickets from Floripa to Campinas and

booking a room in a hotel in Campinas without carpet

 Concrete services: what the provide requires for

accessing its services

 E.g. Persons' name, features of the flight, features of the

hotel room (maybe a picture)‏

 Web service: entity using standard interfaces that

allow clients to interact with a provider, in order to

explore and consume concrete services

11/11/2010

19

Heuristic Classification Services Discovery Process

Possible kinds of matching Ontological Coverage
(Fileto et al. 2003)‏

Consortium(RNA)‏

Unit(CEPAGRI)‏Unit(CNPTIA)‏Unit(CPAC)‏

Institution(Embrapa)‏ Institution(Unicamp)‏ …

… …

…

State(RJ)‏State(MG)‏ State(SP)‏

Region(SE)‏Region(NE)‏ Region(S)‏

County(Ubatuba)‏County(Valença)‏

Country(Brazil)‏

…

[Cons(RNA).Inst(Embrapa),

Plant.Fruit.Orange,

Country(Brazil).Region(SE)]

…

…

Grain

PeraRobusta Arabica

Variety(tupi)‏ Variety(IAC-2000)‏… …

OrangeMangoBeansCoffee

Fruit

Rice… …

…

Product

…

…

… …

…

Relating Ontological Coverages for
Web Services Discovering

Services providing data about

the production of coffee

in the Brazilian South-East?

[Plant.Grain.Coffee,

Country(Brazil).Region(SE)]

[Plant,
Country(Brazil)]

Web Service 1

[Plant.Fruit,
Country(Brazil)]

Web Service 2

[Plant.Grain.Coffee),

Country(Brazil).State(RJ)]

Web Service 3

[Plant.Grain,
Country(Brazil).State(SP)]

Web Service 4 Web Service 5

[Plant,
Country(Brazil).Region(NE)]

…

Formal Relationships between
Ontological Coverages

Let OC = [t1, t2, tn], OC‟ = [t‟1, t‟2, t‟n] be ontological

coverages, where ti , t‟j are terms from the same ontology

 Overlapping (reflexive, symmetric, transitive)‏

 For all t in OC there exists t’ in OC’ such that

t encompass t’ OR t’ encompass t

 For all t’ in OC’ there exists t in OC such that

t encompass t’ OR t’ encompass t

 Encompassing (reflexive, transitive)‏

 For all t in OC there exists t’ in OC’ such that t encompass t’

 For all t’ in OC’ there exists t in OC such that t encompass t’

 Equivalence (reflexive, symmetric, transitive)‏

 For all t in OC there exists t’ in OC’ such that t encompass t’

 For all t’ in OC’ there exists t in OC such that t’ encompass t

11/11/2010

20

WSMO Capabilities/Interfaces

Provide the formally
specified terminology
of the information
used by all other
components

Semantic description of
Web Services:

Objectives that a client may have
when consulting a Web Service

Connectors between components with
mediation facilities for handling
heterogeneities

Requested/provided:

• Capability (functional)‏

• Interfaces (usage)

Capability Specification

 Non functional properties

 Imported Ontologies

 Used mediators
 OO Mediator: importing ontologies as terminology definition

 WG Mediator: link to a Goal that is solved by the Web Service

 Pre-conditions
What a web service expects in order to be able to

provide its service. They define conditions over the input.

 Assumptions
Conditions on the state of the world that has to hold before

the Web Service can be executed and work correctly, but not
necessarily checked/checkable.

 Post-conditions

describes the result of the Web Service in relation to the input,

and conditions on it.

 Effects

Conditions on the state of the world that hold after execution of the
Web Service (i.e. changes in the state of the world)

Orchestration

Composition

Web Service Interfaces

Choreography

invocation

connection choice

contract of purchase

payment & delivery

request:

buyer information, itinerary

set of valid itineraries

itinerary

input not valid

no valid connection

purchase proposition

option selection OR

accept OR not accept

payment information

request payment information

payment information incorrect

internal

connection choice TimeTable

Payment

Delivery

P

P

successful purchase

payment & delivery

Choreography in WSMO

“Interface of Web Service for client-service interaction when

consuming the Web Service”

 External Visible Behavior

 those aspects of the workflow of a Web Service where User

Interaction is required

 described by process / workflow constructs

 Communication Structure

 messages sent and received

 their order (messages are related to activities)

Choreography in WSMO (2)‏

 Grounding

 concrete communication technology for interaction

 choreography related errors (e.g. input wrong, message

timeout, etc.)

 Formal Model

 allow operations / mediation on Choreographies

 Formal Basis: Abstract State Machines (ASM)‏

 Very generic description of a transition system over evolving

ontologies:

“Achieve Web Service Functionality by aggregation of other
Web Services”

Decomposition of the Web Service functionality into sub functionalities

Proxies: Goals as placeholders for used Web Services

 Orchestration Language

 decomposition of Web Service functionality

 control structure for aggregation of Web Services

 Web Service Composition

 Combine Web Services into higher-level functionality

 Resolve mismatches occurring between composed Web Services

 Proxy Technology

 Placeholders for used Web Services or goals, linked via Mediators.

 Facility for applying the Choreography of used Web Services, service templates

for composed services

WSMO Orchestration

11/11/2010

21

Choreography & orchestration

 Example:

WSMO Mediators

Provide the formally
specified terminology
of the information
used by all other
components

Semantic description of
Web Services:
- Capability (functional)‏
- Interfaces (usage)

Objectives that a client may have
when consulting a Web Service

Mediators

Connectors between components
with mediation facilities for
handling heterogeneities

Mediation

 Heterogeneity …

 Mismatches on structural / semantic / conceptual / level

 Occur between different components that shall interoperate

 Especially in distributed & open environments like the Internet

 Concept of Mediation (Wiederhold, 94):

 Mediators as components that resolve mismatches

 Declarative Approach:

• Semantic description of resources

• „Intelligent‟ mechanisms that resolve mismatches independent
of content

 Mediation cannot be fully automated (integration decision)

 Levels of Mediation within Semantic Web Services (WSMF):

– Data Level: mediate heterogeneous Data Sources

– Protocol Level: mediate heterogeneous Communication Patterns

– Process Level: mediate heterogeneous Business Processes

Mediation

Mediator Usage Mediators as services

WSMO Mediator

uses a Mediation Service via

Source

Component

Source

Component

Target

Component 1 .. n
1

Mediation

Services

- as a Goal

- directly

- optionally incl. Mediation

11/11/2010

22

Process Mediation Patterns Example of Process Mediation

WSMO Perspective

 WSMO provides a conceptual model for Web Services and
related aspects

 WSMO separates the different language specifications
layers (MOF style)‏

• Language for defining WSMO is the meta – meta - model in MOF

• WSMO and WSML are the meta - models in MOF

• Actual goals, web services, etc. are the model layer in MOF

• Actual data described by ontologies and exchanged is the
information layer in MOF

 Stress on solving the integration problem
• Mediation as a key element

 Languages to cover wide range of scenarios and improve
interoperability

 Relation to industry WS standards

 All the way from conceptual modelling to usable
implementation (WSML, WSMX)‏

 Language: WSML: human radable syntax, XML exchange
syntax, RDF/XML exchange syntax under consideration

WSML

Key features:

 One syntactic framework for a set of layered

languages

 Normative, human-readable syntax

 Separation of conceptual and logical modeling

 Semantics based on well-known formalisms

 WWW language

 Frame-based syntax

WSML vs OWL

 The relation between WSML and OWL+SWRL is still to be

completely worked out:

• WSML-Core is a subset of OWL Lite (DL Å Datalog)‏

• WSML-DL is equivalent to OWL DL

• WSML-Flight (refers to "F-Logic" and "Light" ;-) and

extends to the LP variant of F-Logic)‏but for other

languages the relation is still unknown.

WSML Variants

DataLog Horn

F-Logic

Without EXISTSWithout NAF

11/11/2010

23

WSML Layering
Relation to Web Services

Technology

Grounding

Orchestration +
choreography

Web Services
(capability)‏

WSMO

WSDL/SOAP
Grounding+
WSDL/SOAP

Invocation

How to invoke

BPEL4WSProcess Model
Choreography

How is done

UDDI APIProfile
Discovery

What it does

Web Services

Infrastructure
OWL-S

 OWL-S and WSMO map to UDDI API adding semantic annotation

 OWL-S and WSMO share a default WSDL/SOAP Grounding

 BPEL4WS could be mapped into WSMO orchestration and choreography

 Mapping still unclear at the level of choreography/orchestration

 In OWL-S, multi-party interaction is obtained through automatic
composition and invocation of multiple parties

 BPEL allows hardcoded representation of many Web services in the
same specification.

 Trade-off: OWL-S support substitution of Web services at run time,
such substitution is virtually impossible in BPEL.

Conclusion: How WSMO Addresses WS problems

 Discovery

 Provide formal representation of capabilities and goal

 Conceptual model for service discovery

 Different approaches to web service discovery

 Composition

 Provide formal representation of capabilities and choreographies

 Invocation

 Support any type of WS invocation mechanism

 Clear separation between WS description and implementation

 Mediation and Interoperation

 Mediators as a key conceptual element

 Mediation mechanism not dictated

 (Multiple) formal choreographies + mediation enable interoperation

 Guaranteeing Security and Policies

 No explicit policy and security specification yet

 Proposed solution will interoperate with WS standards

 The solutions are envisioned maintaining a strong relation with existing WS

standards

Topics

 Introduction

 Web Services (WS)‏

 Semantic Web (SW)‏

 Semantic Web Services (SWS)‏

 Some Major Efforts towards SWS

 WSDL-S

 OWL-S‏

 SWSF (SWSO + SWSL)‏

 WSMO (WSMO + WSML + WSMX)‏

Software Tools: WSMT, WSMX, IRS-III, ...

 Case study: Travelling to SBBD

Software Tools for SWS

 Design Tools

WSMT (Eclipse, WSMO API, WSMO-Studio,

WSMT, DOME)‏

 Execution Environments

WSMX

 Reasoners

WSML-2 Reasoner

IRS-III

WSMT

11/11/2010

24

WSMX Architecture WSMX Execution Environment

IRS-III Server Architecture WSML2REasoner Framework

11/11/2010

25

Topics

 Introduction

 Web Services (WS)‏

 Semantic Web (SW)‏

 Semantic Web Services (SWS)‏

 Some Major Efforts towards SWS

 WSDL-S

 OWL-S‏

 SWSF (SWSO + SWSL)‏

 WSMO (WSMO + WSML + WSMX)‏

 Software Tools: WSMT, WSMX, IRS-III, ...

Case study: Travelling to SBBD

Case Study: Virtual Travel Agency

SBBD Travelling Ontology Queries

 ?city[country hasValue Brasil]

 ?city memberOf BrazilCity

 ?country[capital hasValue ?capital]

 ?country[capital hasValue ?capital] and
?capital memberOf EUCity

 ?country[capital hasValue ?capital] and
?city[country hasValue ?country] and
?capital != ?city

Query execution

11/11/2010

26

WSMT Perspectives and Navigator Other Travel Ontologies I

Other Travel Ontologies II Other Travel Ontologies III

Mediation Services

11/11/2010

27

Web Service BrazilAir‏

capability webServiceBrazilAirCapability

postcondition

definedBy

?ticket[

dO#from hasValue ?from,

dO#to hasValue ?to,

dO#vehicle hasValue ?vehicle

] memberOf dO#Ticket and

?from memberOf dO#BrazilCity and

?to memberOf dO#BrazilCity and

?vehicle memberOf dO#Airplane

Goal FLP-CPS

Goal Florianópolis-Campinas

capability goalCapability

postcondition

definedBy

?ticket[

dO#from hasValue ?from,

dO#to hasValue ?to,

dO#vehicle hasValue ?vehicle

] memberOf dO#Ticket and

?from = dO#Florianopolis and

?to = dO#Campinas.

Discovered Web Services FLP-CPS

Problem!

Current WSMO version does not properly support

inference on instances?

Goal BrazilAir

capability goalCapability

postcondition

definedBy

?ticket[

dO#from hasValue ?from,

dO#to hasValue ?to,

dO#vehicle hasValue ?vehicle

] memberOf dO#Ticket and

?from memberOf dO#BrazilCity and

?to memberOf dO#BrazilCity

?vehicle memberOf dO#Airplane

Discovered Web Services BrazilAir

11/11/2010

28

Goal EUAir‏

capability goalCapability

postcondition

definedBy

?ticket[

dO#from hasValue ?from,

dO#to hasValue ?to,

dO#vehicle hasValue ?vehicle

] memberOf dO#Ticket and

?from memberOf dO#EUCity and

?to memberOf dO#EUCity

Discovered Web Services EUAir

Conclusions

 SWS reasearch mixes lots of theory and technology

 Current Web services technology (WSDL, SOAP, UDDI, ...)‏

 Semantic Web technology

 Sophisticated knowledge representation and reasoning

 Process/workflow technology (orchestration and

choreography)‏

 Some R&D opportunities/challenges in SWS

 Automated composition of SWS

 Domain specific issues

 Software tools for SWS

References – SWS in general

 McIlraith, S. A., Son, T. C., Zeng, H. Semantic Web Services. IEEE
Intelligent Systems, 16(2):46--53, 2001.

 Davies, J., Studer, R., Warren, P. (Eds.) Semantic Web

Technologies: trends and research in ontology-based

Systems. John Wiley & Sons, 2006.

 Studer, R., Grimm, S., Abecker, A. (Eds.)‏. Semantic Web Services

- Concepts, Technologies, and Applications. Springer, 2007.

 Fensel, D., Lausen, H., Polleres, A., Bruijn, J., Stollberg, M., Roman,

D., Domingue, J. (Eds.). Enabling Semantic Web Services.

Springer, 2007.

 Martin, D., Domingue (Eds.). Semantic Web Services. IEEE

Intelligent Systems, sep-oct (part 1), nov-dec (part 2), 2007.

 Bruijn, J., Fensel, D., Kerrigan, M., Keller, U., Lausen, H., Scicluna,

J.Modeling Semantic Web Services - The Web Service Modeling

Language. 2008. 192 p.

References – SWS major approaches

 Sheth, A. P., Gomadam, K., Ranabahu, A. Semantics enhanced
Services: METEOR-S, SAWSDL and SA-REST. Data Engineering
Bulletin, 31(3), September, 2008.

 Martin, D., Burstein, M., McDermott, McIlraith, S. A., Paolucci, M.,

Sycara, K., MacGuinness, D. L., Sirin, E., Srinivasan, N. Bringing

Semantics to Web Services with OWL-S. In: WWW, 10, 2007.

 Sycara, K., Vaculín, R.. Process Mediation, Execution Monitoring

and Recovery for Semantic Web Services. Data Engineering

Bulletin, 31(3), September, 2008.

 Gruninger, M., Hull, R., McIlraith, S. A Short Overview of FLOWS:

A First-Order Logic Ontology for Web Services. Data

Engineering Bulletin, 31(3), September, 2008.

References - SWS Composition

 Medjahed, B., Bouguettaya, A., Elmagarmid, A. K. Composing Web
services on the Semantic Web. VLDB Journal, 12(4), 2003,
pp.333-351.

 Fileto, R., LIU, L, PU, C., ASSAD, E. D., MEDEIROS, C. B. POESIA:

An Ontological Workflow Approach for Composing Web

Services in Agriculture. VLDB Journal, 12(4), 2003, pp.352-367.

 Hull, R., Su, J. Special Tools for Composite Web Services: A

Short Overview. SIGMOD Record, 34(2), September, 2005.

 Alamri, A., Eid, M., Saddik, A. Classification of the state-of-the-

art dynamic Web services composition Techniques. Int. J. Web

and Grid Services, 2(2), 2006.

 Medjahed, B., Bouguettaya, A., Elmagarmid, A. K. (Eds.) Special

Issue on Semantic Web Services: Composition and Analysis.

Data Engineering Bulletin, 31(3), September, 2008.

11/11/2010

29

Questions?

Suggestions?

Comments?

Complaints?

Thanks all folks!

