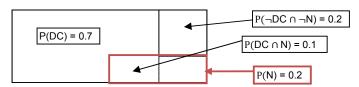
Adaptado parcialmente por PSSB (from S. Camey et al.)

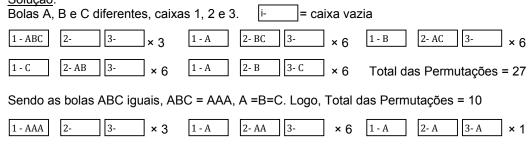
1. A probabilidade de que uma pessoa leia o DC é 0.7; de que leia ambos o DC e A Notícia é 0.1, e de que não leia nenhum dos dois jornais é 0.2. Qual a probabilidade de que ela leia A Notícia? Trace um diagrama de Venn para ilustrar o raciocínio.

Solução:

P(DC)=0.7 P(DC ∩ N)=0.1 P(¬DC ∩ ¬N)=0.2 → 1 − P(DC ∪ N) ∴ P(DC ∪ N) = 0.8 P(DC ∪ N) = P(DC) + P(N) - P(DC ∩ N) → 0.8 = 0.7 + P(N) – 0.1 ∴ P(N) = 0.2



2. Liste todas as 27 formas pelas quais 3 bolas diferentes A, B e C podem ser distribuídas em 3 caixas. Mostre que, se as bolas forem iguais, o número de maneiras fica reduzido para 10. Se neste segundo caso cada bola é colocada em uma caixa escolhida ao acaso, qual a probabilidade de cada uma das 10 maneiras possíveis de arrumação das bolas nas 3 caixas? Solução:



Bolas iguais colocadas ao acaso nas caixas 1, 2 e 3:

- (a) P(Todas na mesma caixa; demais vazias) = $3 \times 1/3 \times 1/3 \times 1/3 = 1/9$ ($\frac{1}{27} \times 3$ maneiras)
- (b) P(Duas na mesma caixa; última em uma das 2 restantes) = $3\times6\times1/3\times1/3\times1/3=6/9$ (1/9 × 6)
- (c) P(Cada bola em uma caixa diferente) = $6 \times 1/3 \times 1/3 \times 1/3 = 2/9$ (2/9 × 1)
- 3. Três pessoas (A, B e C) lançam uma moeda honesta na ordem ABCABCA..., e o primeiro a obter uma CARA ganha a partida. Qual a probabilidade de que A ganhe logo no primeiro lançamento? De que ganhe no segundo? Quais as chances de cada pessoa de vencer a partida? Solução:

Pessoa A: P(Vencer no 1°.) = $\frac{1}{2}$; P(Vencer no 2°.) = $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{16}$... etc

Pessoa B: P(Vencer no 1°.)= $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$ P(Vencer no 2°.)= $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$

Pessoa C: P(Vencer no 1°.)= 1/2×1/2×1/2=1/8 P(Vencer no 2°.)= 1/2×1/2×1/2×1/2×1/2×1/2×1/2=1/64 ... etc

A probabilidade de cada pessoa vencer a partida é dada pela soma dos termos de uma Progressão Geométrica, sendo os respectivos 1° .s termos (a1) = P(Vencer no 1° .) e a razão = 1/8 (r <1).

A soma de todos os termos de uma PG= a1/(1-r), para r<1. Logo,

 $P(A \text{ Vencer}) = \frac{4}{7}$; $P(B \text{ Vencer}) = \frac{2}{7}$; $P(C \text{ Vencer}) = \frac{1}{7}$

4. Um garoto tem 10 balas de hortelã e 5 balas de limão no bolso. Supondo que as balas são do mesmo formato e tamanho, qual a probabilidade de o garoto tirar duas balas de hortelã consecutivamente em 2 tentativas?

Solução: 10/15 × 9/14 = 3/7

- 5. Uma escola tem 100 alunos que ficaram em exame final. Desses, 40 ficaram em exame de Matemática e 70 ficaram em exame de Português. Qual a probabilidade de, sorteando um aluno ao acaso, termos 1 aluno que ficou em exame em apenas uma matéria?
 Solução: {Exame em matemática ∪ Exame em Português} = 100; {Exame em matemática}=40; {Exame em Português}=70; ∴ {Exame em matemática ∩ Exame em Português}=10; Logo, P([Exame em matemat. ∩ ¬Exame em Portug.] ∪ [Exame em Portug. ∩¬Exame em matemat.]) =(60+30)/100=0.90
- 6. Um jogador foi o primeiro a receber 3 cartas de um baralho de 52 cartas (13 de espadas, 13 de ouros, 13 de copas e 13 de paus). Qual a probabilidade de esse jogador receber 3 cartas de ouros? Solução: 13/52 ×12/51 ×11/50 = 11/850
- 7. Um conjunto de 6 lâmpadas ruins foi misturado com outras 15 lâmpadas boas. Escolhidas ao acaso, sem reposição, 4 lâmpadas, qual a probabilidade de que (a) as quatro sejam ruins? (b) Uma boa e três ruins? (c) Duas boas e duas ruins? (d) Três boas e uma ruim?

 Solução (parcial): (a) 6/21 ×5/20 ×4/19 ×3/18 = 1/399; (b) 6/21 ×5/20 ×4/19 ×15/18 ×4=20/399
- 8. Um apresentador de televisão tem três portas: Atrás de cada porta existe um prêmio que só será revelado no final do programa. Sabe-se que atrás de uma delas existe uma viagem ao redor do mundo, atrás de outra existe um automóvel e atrás da porta restante existe um ratinho. Um candidato escolhe uma das portas. Se, antes do apresentador abrir a porta escolhida pelo candidato, abrisse uma porta que não foi a escolhida e não aparece o ratinho e permitisse ao candidato trocar para a outra porta ainda fechada, o candidato deveria aceitar ou não? Justifique.

 Solução: Não, pois a probabilidade de o ratinho estar na outra porta não-escolhida é 2/3.
- 9. Prove que:
 - a. Se A e B são eventos disjuntos (mutuamente exclusivos) então não são independentes.
 - b. Se A e B são independentes então A^c e B^c também são independentes.
- 10. Suponha que você tem duas moedas. Uma dá cara com probabilidade p e coroa com probabilidade q. A outra tem probabilidades p' e q'. Se cada moeda é rotulada com 1 no lado cara e com 2 no lado coroa, então, ao serem lançadas juntas resultará em um total entre 2 e 4. Seja X a variável aleatória que corresponde a esse total.
 - (a) Em termos de p, q, p' e q', ache P(X = 2), P(X = 3), e P(X = 4).
 - (b) Mostre que a moeda pode ser "trabalhada" (i.e., p e p' podem ser ajustados) de forma que P(X = 2) = P(X = 4) = a para algum $a \neq \frac{1}{4}$.
 - (c) É possível ajustar p e p' tal que P(X = 2) = P(X = 3) = P(X = 4)? Solução:
 - (a) $P(X=2) = p \times p'$ $P(X=3) = p \times q' + q \times p'$ $P(X=4) = q \times q'$
 - (b) $p \times p' = q \times q' \rightarrow p \times p' = (1-p) \times (1-p') \rightarrow p \times p' = 1 p p' + p \times p' \rightarrow p + p' = 1$; Logo, para qualquer p=1-p', a relação P(X = 2) = P(X = 4) = a é satisfeita.
 - (c) Conforme (b), para que se tenha P(X = 2) = P(X = 4, é necessário que p=1-p', o que implica em que q'=p e q=p'. Entretanto, P(X = 3)= p×q' + q×p'. Substituindo, P(X = 3)=p² +(1-p)² =2p² 2p+1. Como P(X=2) = p×p', para que seja igual a P(X=3), deve-se ter p-p²=2p² 2p+1 →3p2-3p+1=0, equação que tem raízes complexas, com p fora dos reais, o que é uma impossibilidade.
- 11. Uma certa moeda tem probabilidade p=1/2 ou p=1/3 de dar cara, mas não se sabe qual. Pensa-se em lançar a moeda n vezes e verificar se o número Sn de vezes em que sai cara é maior ou menor do que um certo valor alvo k. Encontre o menor valor possível de n tal que, para algum k, se p = $\frac{1}{2}$, então P(Sn > k) > 0.95, e, se p = $\frac{1}{3}$, então P(Sn < k) > 0.95.

Solução: (Requer conhecimento da aproximação da Distribuição Binomial pela Normal) Sabe-se que uma distribuição binomial pode ser razoavelmente aproximada pela Normal se np>10 e se p e q não forem muito pequenos. Uma Normal aproxima a binomial com μ =np e σ^2 =npq. Para este problema p pode ser ½ ou 1/3 alternativamente. Logo, há duas aproximações possíveis para a binomial que modela o número de caras (Sn) em n lançamentos da moeda, corespondentes às Normais com μ_1 =n×1/3; σ^2_1 =n×2/9 e μ_2 =n×1/2; σ^2_2 =n×1/4. A solução consiste em encontrar um n inteiro mínimo tal que satisfaça o enunciado. Resumidamente, deve-se resolver a equação $1.644 \times \sqrt{n \times \frac{1}{2} \times \frac{2}{2}} + 1.644 \times \sqrt{n \times \frac{1}{2} \times \frac{1}{2}} = n \times \left(\frac{1}{2} - \frac{1}{2}\right)$. Fazendo as correções de continuidade para n

 $1.644 \times \sqrt{n \times \frac{1}{3} \times \frac{2}{3}} + 1.644 \times \sqrt{n \times \frac{1}{2} \times \frac{1}{2}} = n \times \left(\frac{1}{2} - \frac{1}{3}\right)$. Fazendo as correções de continuidade para n e k, encontrou-se os valores n=111 e k=46.

Solução: (Reguer conhecimento de Cadeias de Markov)

A razão para tal é que essa moeda tem um comportamento que pode ser modelado por uma cadeia de Markov, com uma matriz ergódica. R: P(cara)=2/3. Este assunto não é do programa de INE5108.

13. Suponha que V. tenha duas moedas, uma delas comum e outra uma ama-caras do Harry Potter, mas V. não sabe distingui-las. Haverá números como n e k no exercício 11 que lhe permitam determinar a identidade de cada moeda com probabilidade de 95%? Explique. Solução: Sim, pois ao selcionar-se uma das moedas, esta terá uma probabilidade de ½ ou 1/3 de dar coroa. Portanto, pode-se discriminar (95%) com n=111 e k=46 como limiar de decisão.

Teorema de Bayes

14. Em Joinville, as linhas de ônibus 58 e 17 passam ambas pela Avenida Universitária. A cada hora, a linha 58 passa 6 vezes e a linha 17 passa 10 vezes. 10% dos ônibus da linha 58 são longos (articulados) e os outros 90% são comuns. Os percentuais correspondentes para a linha 17 são 25% e 75%. Se um ônibus longo é visto à distância, qual a probabilidade de que ele seja da linha 58?

Solução: Em cada hora, passam ao todo 16 ônibus. Logo a P(Bus58)=6/16 e P(Bus17)=10/16. Ainda, P(58longo)=0.10 e P(17longo)=0.25. Então, P(Bus58|longo)=P(Bus58∩longo)/P(longo). P(Bus58∩longo)=0.10×6/16= 3/80; P(longo)=0.10×6/16+0.25×10/16=0.19375. R: 0.1935

15. Em 1654, Pascal foi abordado pelo Chevalièr de Méré, um notório jogador, que lhe disse: "Se V. apostar que, lançando um dado (honesto) 4 vezes V. obtém pelo menos uma face 6, V. ganha na média (com muitas repetições da aposta). Mas se V. apostar em obter pelo menos um duplo-6 lançando ao mesmo tempo 2 dados, na média V. perde". O Chevalièr de Méré estava certo? Demonstre porque.

Solução: A probabilidade de obter pelo menos uma face 6 em 4 lançamentos de um dado é P(FaceSeis≥1)=1- P(FaceSeis=0)=1-(5/6)⁴=0.517747. A probabilidade de obter pelo menos um duplo-seis em 4 lances de dois dados é P(DuploSeis≥1)=1- P(DuploSeis=0)=1-(35/36)⁴=0.106567.

- 16. Uma família tem 3 crianças. Liste todas as possíveis configurações familiares na ordem de nascimento (p. ex. MFM, etc M=masc e F= femin). Assumindo que os nascimentos M e F são igualmente prováveis, qual a probabilidade de que a família tenha pelo menos um menino? Sabendo-se que ela tem pelo menos um menino, qual a probabilidade de que seja exatamente um? Solução: MMM; MMF; MFM; FMM; FFF; FFM; FMF; MFF. P(M≥1)=7/8. P(M=1)=1×(3/8)/(7/8).
- 17. A tabela a seguir fornece as freqüências de famílias com 0, 1, 2, ..., 7 meninos nos primeiros sete filhos(as) de um conjunto de 1334 pastores Luteranos da Suécia. Estime p, a probabilidade de um nascimento masculino, com base na proporção média de nascimentos de meninos em todas as 1334 famílias. A seguir, calcule um conjunto de freqüências esperadas de nascimentos masculinos, assumindo que estes seguem uma seqüência de Bernoulli, de sorte que o número de meninos segue uma distribuição Binomial. Comente sobre a adequabilidade do modelo para descrever a situação.

Número de meninos na família	0	1	2	3	4	5	6	7
Número de famílias (F)	6	57	206	362	365	256	69	13

Solução: (Reguer conhecimento da Distribuição Binomial)

Número total de meninos=0×6+ 1×57+ 2×206+ 3×362+ 4×365+ 5×256+ 6×69+ 7×13= 4800 Número total de nascimentos= 1334×7=9338. Proporção de meninos =p= 4800/9338= 0.514029 Freqüências esperadas de meninos em 7 nascimentos:

Número de meninos / família (M)	0	1	2	3	4	5	6	7
Freqüência Esperada P(M)	0.006401	0.047397	0.1504	0.265138	0.280446	0.177983	0.062753	0.009482
Freqüência Real (F/1334)	0.004498	0.042729	0.154423	0.271364	0.273613	0.191904	0.051724	0.009745
Desvio (%) F. Real. × Freq. Esper.	-29.74	-9.85	2.67	2.35	-2.44	7.82	-17.57	2.77
Dif. Abs. F. Real Freq. Esper.	-0.0019	-0.00467	0.004023	0.006226	-0.00683	0.013922	-0.01103	0.000263

O modelo Binomial é adequado, pois como se vê pelas duas últimas linhas da tabela, as diferenças entre os valores reais observados e os valores do modelo são muito pequenas.

18. O número X de xícaras de café que o Prof. bebe por dia segue uma distribuição de probabilidade dada pela função

Χ	1	3	4	6
$P_X(x)$	$\frac{4}{14}$	$\frac{4}{14}$	$\frac{5}{14}$	1/14

- (a) Calcule E(X) e Var(X).
- (b) Em cada xícara de café o Prof. sempre usa 3 tabletes de açúcar, além de comer mais dois outros tabletes por dia. Determine a função PY(y), correspondente ao consume diário Y de açúcar (em tabletes) do Prof. Ache também a média e o desvio-padrão de Y.

Solução

- $\overline{\text{(a) E(X)}} = 1 \times (4/14) + 3 \times (4/14) + 4 \times (5/14) + 6 \times (1/14) = 3$
- (b) Calcula-se $E(X2) = 1^2 \times (4/14) + 3^2 \times (4/14) + 4^2 \times (5/14) + 6^2 \times (1/14) = 11.14286$; $[E(X)]^2 = 9$ $Var(X) = E(X^2) - [E(X)]^2 = 2.142857$ ou, igualmente, $Var(X) = [(1-3)^2 \times 4 + (3-3)^2 \times 4 + (4-3)^2 \times 5 + (6-3)^2 \times 1] / 14 = 2.142857$

© pssb 2004-2007