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As a provider of broadcast planning software for television stations, we have to cre-

ate highly customized software while maintaining the quality standards of an off-

the-shelf product. Framework technology plays a strategic role in our business, because

there are many similarities in the complex broadcast planning processes of different sta-

tions, yet a standard product would satisfy only 70% to 80% of the needs of a typical sta-

tion. Thanks to frameworks, customers can be offered a standard product that is easily

customizable by a small team of software engineers in a cost-effective way. Moreover, the

adaptive nature of frameworks provides

another advantage; like any other business,

television stations need to respond to new

and rapidly changing market opportuni-

ties. They are faced with rapidly evolving hardware (e.g., digital video broadcasting, dis-

tributed video production) and rapid evolution of their products (e.g., interactive TV,

electronic program guides). These changes require more malleable software. For broad-

casters, the ability to cope with change more efficiently than from similar off-the-shelf

applications results in a competitive advantage.

Because customizing real-world applications is a 
genuinely complex operation, developers must look 

beyond the seductive appeal of filling in 
hot spots in frameworks.
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After several years of incrementally building our
framework one project at a time, customizing it for
several television stations across Europe, we had con-
siderable experience with framework technology at a
technical as well as a managerial level [1]. While the
decision to use framework technology is mainly eval-
uated positively, our experience shows that for many
companies like ours, success depends on considera-
tions beyond what can be found in the literature on
framework technology. Our goal is not to build frame-
works but to provide solutions to
customers more efficiently and
with higher quality. The details
of using a framework as a strate-
gic weapon in attacking a vertical
market are largely neglected in
the literature; so are the difficul-
ties in evolving a custom applica-
tion into a framework capturing
the domain knowledge of a team
of software engineers and domain
specialists.

Our use of framework tech-
nology goes beyond the idea of
selling, buying, and instantiat-
ing general-purpose application
frameworks. We challenge the
state of the art in framework
technology. While adhering to
the traditional dichotomy
between framework engineering
and application engineering [3],
we take a more evolutionary
approach by interleaving both
activities, thereby requiring
close interaction between framework developers and
application engineers. Moreover, we challenge the
idea that application building boils down to simply
filling in the hot spots of a framework (see Schmid
in this issue); in many real-world applications, like
ours, customization is far more complex. Here we
report on the problems that can be encountered
when incrementally building a framework, includ-
ing the lack of good reuse documentation, version
proliferation, poor effort estimation, delta analysis,
architectural drift, and overfeaturing. We also point
out possible solutions for the future.

History, Goals, Objectives

The initial broadcast planning application 
was the result of a project for a new Belgian
television broadcast station to automate its

entire suite of broadcast planning activities. Broad-
cast planning is a complex process involving many

departments (e.g., planning, contract and program,
and tape). The resulting groupware application
closely reflected the particular interdepartmental
work flow and was tightly integrated with existing
hardware and software. Although designed and
implemented by a six-person team of software engi-
neers lacking experience in broadcast planning, the
project remained within budget and on schedule,
and ultimately, the users were satisfied. Moreover,
due to the use of OO technology, we already deliv-

ered a certain degree of adaptabil-
ity in the application (at the end of
the project when the customer
changed some basic requirements).

Due to this success and demand
from other stations, we began plan-
ning to commercialize the applica-
tion. However, we quickly realized
that a standard off-the-shelf prod-
uct would not satisfy this market,
so we formulated the following
product goal: Offer a broadcast
planning solution that is highly and
efficiently customizable to the
needs of different television stations
and that gives the customer the
feeling of a custom system with the
qualities of a standard product.
Therefore, the system cannot have
unnecessary features, it must be
adapted to the customer’s work
process, and it must be integrated
with existing hardware and soft-
ware. Moreover, it should offer the
stability and the possibility for

future upgrades typically associated with off-the-
shelf products.

We also recognized that this goal was not easy to
achieve. To install the software at a second broadcast
station, the original application was adapted toward
the specific needs and infrastructure of that station.
After a while, however, the architectures of both
applications drifted apart, resulting in severe mainte-
nance problems for our small development team. We
also realized that these problems would only become
worse. Achieving a higher level of reuse would require
a more systematic approach, so we decided to look
into framework technology as a possible solution.

Challenging the State of the Art

Aframework is usually defined as a skeleton
program defining a reusable software archi-
tecture in terms of collaboration contracts

between (abstract) classes and a set of variation
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points, or hot spots. The hot spots define where the
framework can be customized; collaboration con-
tracts define the rules the customizations must obey.
Framework-based development combines two devel-
opment process models: product development, in
the sense that a product (the framework) is offered,
and project development, because customers are
involved in customizing the product to their specific
needs. This duality must be reflected in the process
model. More precisely, two activities—framework
engineering and application engineering—can be
distinguished and require different skills. Frame-
work engineers are responsible for the design and
implementation of the framework; application engi-
neers concentrate on the customization
of the framework.

A model for framework engineering
often described in the literature requires
framework development to involve an
extensive domain analysis prior to the
framework design. In this model, the
ultimate goal of framework develop-
ment is to build—through a small num-
ber of iterations—a software
architecture that can be turned into a
custom application by simply filling in
the hot spots. In the context of broadcast
planning—and in many other situa-
tions—simply filling in hot spots is a
delusion. For real-world applications,
only a limited number of frameworks can
be customized by just filling in the hot spots. In most
cases, the customization process is much more com-
plex, sometimes even violating part of the framework
architecture. Moreover, the idea of constructing an
immutable framework after a limited number of iter-
ations is not realistic. On the one hand, the large up-
front investment in the domain analysis and building
(mostly) prototype applications for establishing the
framework architecture is in most cases not finan-
cially justifiable. This analysis is cost-effective only
for frameworks that can be sold in a relatively broad
market and that have a relatively well-known and
stable problem domain (e.g., generic application
frameworks). On the other hand, framework develop-
ers are confronted by constant changes in the market.
As the business evolves, so must the framework. It is
simply not possible to conceive a framework that
anticipates all future evolutions. A framework is
never finished.

A framework’s objective is to consolidate the
domain knowledge acquired during earlier projects so
it can be reused in future projects to realize a product
goal. A framework thus constitutes an ever-evolving

representation in terms of variations and commonali-
ties of our knowledge of the domain at a given point
in time.

In our experience, evolution is called for during any
of the following situations:

• New insights in the domain. As more customiza-
tions are made, some site-specific concepts may
become general concepts and must be incorpo-
rated into the framework. 

• Complexity of classes. As the framework evolves,
classes tend to become more complex. To reduce
this complexity, the framework developer has to
consider a redesign of the framework that can

range from introducing new
abstractions (e.g., new abstract
classes and the factorization of
complex classes) to such
advanced refactorings as design
patterns [2, 7]. 

• New design insights. Some
design issues are neglected—or
even forgotten—in the frame-
work’s initial design phase. These
issues often turn into problems,
possibly affecting performance,
during customization of the
framework. And the framework

often has to be redesigned to solve
these problems (e.g., by improv-
ing an algorithm).

Challenges

Therefore, the framework is developed through
a stepwise (iterative) construction as we pro-
ceed with the customization projects at dif-

ferent television stations. But this method poses the
following additional problems concerning evolution
and iterative development. 

Reuse documentation. In practice, when the goal
is reuse of a component or customization of part of a
framework, informal “hallway discussions” are
needed between the reusers and the original design-
ers to clarify design issues that cannot be extracted
from the traditional documentation.

Consider the following simple example. Figure 1
shows a class TapeLibrary representing a televi-
sion station’s tape library. The class includes behavior
for adding a single tape (addTape) and for adding
sets of tapes (addTapes). Suppose that for a new
station OOTV, the tape management department has
to be notified each time a tape is added to the library.
This notification can be accomplished by subclassing

TapeLibrary



addTape (Tape)

addTapes (Set of Tape)

OOTVTapeLibrary



addTape (Tape)

notifyTapeManagement

 (Tape)

Figure 1. The TapeLibrary
class hierarchy



the TapeLibrary class with OOTVTapeLi-
brary. In order to decide which methods need to
be overridden, we need information about which
methods depend on which other methods. For exam-
ple, if we know that addTapes depends on
addTape for its implementation, it is enough to
override the method addTape to account for noti-
fication. If addTapes does not rely on addTape,
both methods need to be overridden. The OMT class
diagram does not provide sufficient
information for this analysis, as it does
not state the dependencies between the
method implementations. In light of
the simplicity of this example, code
inspection would work fine. But in
practice, inspecting the code to reuse a
class is undesirable; this kind of analy-
sis should be feasible at the design
level.

The long life span and the strategic
role of frameworks means that good
design information is essential. Design
documentation for frameworks should
offer more than what is traditionally
offered by OOA/OOD notations. Code inspection is
not an option, since it is error prone and time con-
suming and can lead to customizations that depend
too much on the framework’s implementation details.
Therefore, an intermediate level of description is
desirable.

Version proliferation. After each customization,
redesign of the framework is considered by the
framework engineers. Even after the initial itera-
tions, modifications to the framework still occur.
Although these changes are less and less frequent,
their consequences are the most difficult to assess.
Most such changes have a large impact on the rest of
the system and are often incompatible with previous
customizations. The scope of the impact makes man-
aging the consistency of the different customizations
and the maintenance of the framework itself
extremely difficult.

For example, suppose a number of customers com-
plain about the performance of the tape library. A per-
formance profile reveals that the problems are due to
the fact that each time a set of tapes is added, a sepa-
rate database transaction is opened for each tape in the
set. Performance could be improved significantly by
storing all tapes with a single database transaction.
Since the framework designer wants every customer to
benefit from the performance gain, the TapeLi-
brary class has to be redesigned. In the example, it
is sufficient to modify the method addTapes so it

no longer invokes addTape. This modification leads
to inconsistent behavior in OOTVTapeLibrary
when the customizer decides to upgrade to the new
version of the framework, as the tape management
department will not be notified of groupwise-added
tapes. Using the terminology of Kiczales and Lamp-
ing [5], we conclude that addTapes and addTape
have become inconsistent methods (see Figure 2).

Although in the example this inconsistency can be

derived from the code, in practice it should be possi-
ble to detect these problems without code inspection.
In order to estimate the impact of a class modification
on its inheritors, more information is needed about
the way inheritors reuse their superclasses. Without
reuse information on how a customization relies on
the framework, it is very difficult to estimate the
effort needed to update a customization to a new ver-
sion of the framework.

Managing the propagation of changes made to a
framework so (re-)users of that framework are not
adversely affected remains an essential problem in the
development of frameworks. Today, code inspection is
the only available strategy for estimating the impact
of a class modification. The result is that subtle con-
flicts with significant consequences are often detected
only during the testing phase, if at all.

Delta analysis and effort estimation. Instead of
performing an analysis from scratch, application
engineers perform a delta analysis. One way to do
this is to browse through a prototype with the cus-
tomer and carefully write down where existing func-
tionality covers the customer’s needs, where new
functionality is required, and where variations on
already existing functionality are necessary. In prac-
tice, variations are not always covered by hot spots in
the framework. This lack of coverage makes it diffi-
cult to assess what parts of the framework can be
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TapeLibrary



addTape (Tape)

addTapes (Set of Tape)

OOTVTapeLibrary



addTape (Tape)

notifyTapeManagement

 (Tape)

TapeLibrary



addTape (Tape)

addTapes (Set of Tape)

OOTVTapeLibrary



addTape (Tape)

notifyTapeManagement

 (Tape)

Figure 2. Inconsistent methods



reused, what parts need to be adapted before reuse,
and how much effort is required by the adaptation.
Without proper documentation, the application
engineer is compelled to retrieve the needed infor-
mation from the framework engineer through infor-
mal communications. But such communications
create a large overhead. Our
experience is that application
engineers are often forced to
inspect the source code, thereby
short-cutting the framework
developer. Short-cutting is a
serious impediment to the iter-
ative development process. The
framework developer needs
insight into how the framework
is actually reused to be able to
improve the reusability of the
framework. A more formal
notation allowing application
developers to express how the
framework needs to be cus-
tomized for a particular cus-
tomer. How it is actually
customized remains a major challenge.

Architectural drift. Defining a mature framework
architecture is one achievement; actually enforcing
its use is another. Ignorance, deadline pressure, and
the not-invented-here syndrome (see Schmidt and
Fayad in this issue) often result in solutions that are
either reinventions of designs already present in the
framework or solutions that needlessly break the
framework architecture. Enforcing the architecture
of a framework without overconstraining the cus-
tomizer is a necessity.

Reuse documentation in the form of cookbooks is
too constraining, because it documents only a limited
set of predefined ways of reusing a framework. When
reuse documentation is too limited, opportunities for
reuse in many cases are not spotted, because reusers

have no notion of what is available for reuse
and how a component can be reused. Current
OOA/OOD notations do not solve the prob-
lem either; they are not equipped to document
how a class can be reused or even to express
how to reuse a framework in a disciplined fash-
ion—without violating its architectural
design. The lack of documentation for disci-
plined reuse has implications for the quality of
the resulting software. Improper reuse of a

component often results in bugs or incompatibilities
at a later stage of software development.

Overfeaturing. Developers tend to migrate features
to the framework kernel in order to reduce cus-
tomization efforts. Migrating features results in
overfeaturing, so applications containing features
not relevant for a particular user are still part of the
“standard package.” Overfeaturing makes the frame-

work more expensive, more
complicated, and less reusable
for future customers. Great care
must be taken when deciding
which features to add to the
framework. Walking the thin
line between standard product
development and project-based
development, we set up a User
Advisory Board that acts as a
discussion forum for our strate-
gic customers, helping decide
which features are to be inte-
grated into the framework.

Reuse Contracts

The key to successful soft-
ware development with
frameworks is good

cooperation between framework engineers and appli-
cation engineers. Framework engineers have the
important advisory role of giving application engi-
neers techniques for increasing the generic aspects of
their designs and code, advice on how to avoid archi-
tectural drift during the customization process, and
advice on how to reuse the framework. Application
engineers have to give feedback about framework
customization so it can be improved. We conclude
that this cooperation should be based on an explicit
reuse contract [8] (see Figure 3). 

Since framework reuse boils down to the reuse of
single (abstract) classes and the reuse of the interaction
between classes, reuse contracts have been defined for
these two forms of reuse. Single-class reuse contracts
are based on Lamping’s notion of specialization inter-
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rules for change propagation

Figure 3. Contract between framework 
and application engineers

TapeLibrary



addTape (Tape)

addTapes (Set of Tape) [addTape]

OOTVTapeLibrary



addTape (Tape) [notifyTape-

    Management]

notifyTapeManagement (Tape)

[]

[]

Extension

    notifyTapeManagement []

Refinement

    addTape [+ notifyTape-

    Management]

Figure 4. Reuse contract notation for 
refinement of a class



faces [8]. Multiclass reuse contracts are based on
Helm and Holland’s contracts [4]. Reuse contracts
focus on how exactly to apply these ideas in practice,
as shown in Figure 3.

Here we focus on single-class reuse contracts (see
Figure 4). For each class the reuse contract lists the
method signatures of the methods that are relevant to
the design of the framework, the associated special-
ization clauses (in italics in Figure 4), and an annota-
tion for abstract methods (with an “abstract”

keyword not in Figure 4 because all the methods in
it are concrete). The specialization clauses [6] list the
names of the methods invoked through self-sends.
Although specialization clauses provide only static
information (information corresponding directly to
the source code), our experience reveals that in prac-
tice this information is enough to determine which
methods can be inherited and which methods must
be overridden.

Reuse operators document how classes are 
derived through 
inheritance. Reuse
operators provide
more information
than plain class inheri-
tance by encoding the
various ways a class is
reused (see the annota-
tions next to the trian-
gle in Figure 4).
Refinement, exten-
sion, and concretiza-
tion are design-
preserving operators.
The i r  r e spective
inverses—coarsening,
cancellation, abstrac-
tion—are design-
breaching operators.
Refinement refines the
design of methods by
extending the special-
ization clause; exten-
sion adds new
methods; and con-
cretization makes
abstract methods con-
crete. Although these
are not the only oper-
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TapeLibrary



addTape (Tape)

addTapes (Set of Tape) [addTape]

OOTVTapeLibrary



addTape (Tape) [notifyTape-

  Management]

  notifyVisioning (Tape)

[]

[]

Extension

    notifyTapeManagement [] 

Refinement

    addTape [+ notifyTapeManagement]

TapeLibrary



addTape (Tape)

addTapes (Set of Tape) 

OOTVTapeLibrary



addTape (Tape) [notifyTape-

  Management]

  notifyTapeManagement (Tape)

[]

Extension

    notifyTapeManagement []

Refinement

    addTape [+ notifyTape-

    Management]

Coarsening

    addTapes   [– addTape] []

Refinement  m[n]: Add an invocation of n to the specialization clause of m.

Extension n: Add a new method n to the client interface.

Coarsening m[–n]: Remove an invocation of n from the specialization clause of m.

Cancellation n: Remove an existing method n from the client interface.




Signature collision: Both reuse operators introduce or remove the same method signature.

Specialization clause conflict: Both reuse operators change the specialization clause of the same method.

Dangling reference: One reuse operator refers to a method while the other one removes it.

Method capture: One reuse operator changes the specialization clause of a method under the assumption

that the method is not involved, while the other reuse operator adds the method invocation.

Inconsistent methods: One reuse operator changes the specialization clause of a method under the

assumption that the method is invoked, while the other reuse operator removes the method invocation.

Reuse operators

Conflicts

Extension

n


refinement

n[…]


refinement

m[n]


cancellation

n


coarsening

n[…]


coarsening

m[–n]

extension

n

signature

collision

specialization

clause conflict

specialization

clause conflict

method

capture

dangling

reference
dangling


reference
signature

collision

specialization

clause conflict

specialization

clause conflict

method

capture
dangling


reference
specialization

clause conflict

specialization

clause conflict

dangling

reference

inconsistent

methods

inconsistent

methods

–– –– –– –– ––

refinement

n[…]

refinement

m[n]

cancellation

n

coarsening

n[…]

coarsening

m[–n]

O1

O2




method 

capture
dangling


reference
dangling


reference
dangling


reference
dangling


reference

specialization

clause conflict

specialization

clause conflict

inconsistent

methods

inconsistent

methods

method 

capture

Figure 5. Conflict detection based on reuse operators

Table 1. Correlating reuse operators O1 and O2 for conflicts



ations imaginable, they do coincide with the typical ways
abstract classes are reused.

Single-class reuse contracts document how a class
can be reused. Specialization clauses help determine
which methods need to be overridden. For example,
the application engineer for OOTV decided that over-
riding the method addTape was enough to achieve
the desired behavior based on the specialization clause
of addTapes (see Figure 4). 

Reuse operators document how a class is actually
reused. In the TapeLibrary example, the inheritance
association for the OOTVTapeLibrary is anno-
tated with an extension and a refinement reuse opera-
tor to express that the notifyTapeManagement
method was added and that the design of the addTape
method is refined (notifyTapeManagement is
added to the specialization clause). Besides document-
ing how a class is reused by inheritors, reuse operators
can also be used to document the evolution of a parent
class (see top of Figure 5). Conflict detection and effort
estimation can then be performed automatically by
correlating the reuse contracts that document the evo-
lution of a parent class with the reuse contracts that
document inheritors. 

Table 1 shows the conflicts that can occur in an
inheritor derived by a reuse operator O2 when the par-
ent class is changed by applying a reuse operator O1.

In the redesign of the TapeLibrary class in
Figure 2, the fact that addTape and addTapes
have become inconsistent in class OOTVTapeLi-
brary can now be derived directly from the reuse
contracts. OOTVTapeLibrary refines a method
that has been removed from the specialization clause
through a coarsening when changing from the old
parent class to the new parent class.

Simple formal rules were defined to signal possible
conflicts in existing inheritors when changes are made
to their parent classes [8]. Most of the possible con-
flicts can be expressed in terms of reuse contracts and
reuse operators rather than at the level of interfaces
and calling structures. This level of expression allows
developers to reason about change in more intuitive
terms and on a higher level. Moreover, these rules are
the basis for developing tools that can automatically
assess the impact of changes made to the framework,
forecast which conflicts might occur and when, and
guide application developers in understanding both
where testing is needed and how to fix the conflict.

Conclusions

The issues in constructing frameworks for
developing applications in a well-known and
stable problem domain (justifying an up-

front investment in light of a large potential market)

are relatively well documented. However, in many
other cases, like those in which framework technol-
ogy provides more quality to the customer, current
technology is insufficient. In particular, the prob-
lems related to evolutionary development, such as
architectural drift and version proliferation, remain a
challenge. Moreover, the prevalent model of applica-
tion building (filling in hot spots) is too naive for
most real-world applications. Better support is
needed to document how to reuse frameworks and
how to perform effort estimation. We point to the
reuse contracts we developed in a joint research pro-
ject as an indication of how existing notations can be
enhanced for this purpose.
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