
COMMUNICATIONS OF THE ACM October 2000/Vol. 43, No. 10 31

F
or more than a decade ven-
dors have hyped and under
delivered the promises of
object modeling and com-
ponent technologies. As a
result, object modeling

tools are in disrepute in many devel-
opment organizations, and the
semantics of the term “component-
based” have been diluted to an extent
reminiscent of what occurred to the
expression “object-oriented” in the
previous software generation.

However, if we put aside our
skepticism and evaluate recent
advances in these technologies, we
find encouraging signs that they are
catching up with some of their
hyperbole. Many object modeling
tools can now generate production-
quality skeleton code from structural
models, and some of them can also
derive useful methods from behav-
ioral models. While they still fall far
short of the ambitious goals of full
“round-trip engineering,” their
improvements mark significant
progress toward automating the soft-
ware development process.

Likewise, the leading component
standards have evolved from nascent
definitions of simple architectures to
mature specifications of complete
runtime environments. For example,

Sun Microsystem’s JavaBeans defini-
tion has developed into the Enter-
prise JavaBeans (EJB) specification,
which supports both transaction and
persistence services for enterprise
applications [4]. Similarly, Microsoft’s
COM definition has evolved into the
DCOM and COM+ specifications,
and supports the Microsoft Transac-
tion Server (MTS) for enterprise
applications [3].

While analyzing the evolution of
these technologies it is important to
note that strong synergies exist
between them. The coarse granularity
of components in relation to classes
promotes the modularity and reuse
goals of object modeling. Conversely,
the rigorous specification discipline of
object modeling supports the inter-
face-based design and replaceability
aims of components. Consequently, it
is not surprising that component
Integrated Development Environ-
ments (IDEs) are converging with
visual object modeling tools, a trend
that is likely to continue.

This article explores some of the
synergies between object modeling
and components by examining how
the de facto object modeling lan-
guage standard, the Unified Model-
ing Language (UML), supports the
leading enterprise component archi-

Modeling Components
and Frameworks

with UML

�
Cris

kobryn
�

As localized

objects evolve

into distributed

components,

developers are

asking that UML

provide better

support for

component-based

development

using EJB and

COM+.

�
F

tecture standards—EJB and
COM+/MTS (or COM+ for
short). It is presumed the reader
is generally familiar with how
UML is used to specify software
systems; the central focus here
is UML component-modeling
capabilities.

Components in UML 1.3
The current UML specification,
UML 1.3, defines a component
as follows:

component: A physical,
replaceable part of a system that
packages implementation and
provides the realization of a set
of interfaces. A component rep-
resents a physical piece of
implementation of a system,
including software code
(source, binary or executable)
or equivalents such as scripts or
command files [9].

It is important to note that
this definition tends to be
restrictive and emphasizes the
use of components for imple-
mentation modeling (compare
this with analysis and design
modeling). This point will be
addressed later in this article.

The UML notation for com-
ponents is summarized in Fig-
ure 1. In this diagram a
ShoppingCart component for
an e-business application is
shown as a rectangle with two
smaller rectangles protruding
from its side. At the top of the
diagram the component is
shown with attributes, opera-
tions, and the interfaces Calcu-
late and ChangeOrder, which are drawn using
longhand interface notation (rectangles that contain
an operations compartment). At the bottom of the
diagram the component is shown in a more compact
representation where the attributes and operations
are elided and the interfaces are drawn using short-
hand (“lollipop”) interface notation.

Although UML components may be shown in
any structural modeling diagram, they are typically

found in implementation model diagrams, such as
component diagrams and deployment diagrams. A
component diagram shows the organization and
dependencies of components, and a deployment
diagram shows how component and class instances
are deployed on computational nodes. An example
of a deployment diagram that uses components is
shown in Figure 2.

The example shows a simple failover scenario for

32 October 2000/Vol. 43, No. 10 COMMUNICATIONS OF THE ACM

Figure 1. Component and interface notation.

Calculate

Component and interface notations showing details

Component and interface notations hiding details

Shorthand
("lollipop")
notation for
interface

ChangeOrder

Longhand
notation for
interface showing
operations

Component
showing
attributes and
operations

Realize relationship

ShoppingCart

+calcWeight()
+calcShipping()
+calcTotal()
...

+calcWeight()
+calcShipping()
...
+addItem(item:OrderItem)
+deleteItem()
...

«interface»
Calculate

+addItem(item:Item)
+deleteItem()
+saveItem()
...

«interface»
ChangeOrder

+Weight
+Shipping
...
 +orderItems
...

ShoppingCart

Figure 2. Deployment diagram example.

backupServer:appServer

«call»

«copy»«copy» «copy»

«become»

«become»

«call»

«database»

A computational
node, in this case
an application
server

In a failover
scenario, the
backupBroker
becomes the
primaryBroker
and vice versa

Indicates
replication

backupBroker
:StockBroker

backupDB:
AccountsDB

primaryServer:appServer

«call»
«call»

«database»

primaryQuoter:
QuoteService

primaryBroker
:StockBroker

PrimaryDB:
AccountsDB

backupQuoter:
QuoteService

an online stockbroker system, where several compo-
nents deployed on an instance of the primary appli-
cation server node (primaryServer) are replicated on
the backup application server node (backupServer).
On the primaryServer the primaryBroker, an instance
of the component StockBroker, calls the interfaces of
the primaryQuoter (an instance of the QuoteService
component) and the primaryDB (an instance of the
AccountsDB component). Component replication
and migration are shown by «copy» and «become»
dependency flows, which are part of standard UML.

Semantic Overlap: Components, Classes,
and Subsystems
The fact that UML is a general-purpose modeling
language is both a strength and a weakness. Although
software developers find they can use UML to model
most software problems in a variety of ways, they are
frequently overwhelmed by their options. The prob-
lem is exacerbated by the dearth of pragmatic exam-
ples and the lack of tools that support advanced
constructs. Many of the examples in UML modeling
books tend to be trivial or academic, and frequently
do not address the practical problems faced by devel-
opers. As for modeling tools, the author knows of none
that fully implements the UML 1.1 semantics and
notation (adopted three years ago), let alone one that
completely or correctly implements the current UML
1.3 specification (which was adopted a year ago).

Consequently, many modelers find the modeling
of components, which is sometimes considered an

advanced UML modeling topic,
problematic. One of the most
common problems modelers
encounter is the semantic overlap
between components and related
classifiers, such as classes and sub-
systems, which are defined as fol-
lows:

class: A description of a set of
objects that share the same
attributes, operations, methods,
relationships, and semantics. A
class may use a set of interfaces
to specify collections of opera-
tions it provides to its environ-
ment [9].
subsystem: A grouping of model
elements that represents a behav-
ioral unit in a physical system. A
subsystem offers interfaces and
has operations. In addition, the
model elements of a subsystem

can be partitioned into specification and realization
elements [9].

The semantics of components, subsystems, and
classes are compared in Table 1. The table shows that
all three classifiers can have operations and inter-
faces, may be associated with other classifiers, can be
nested, and may create instances. Components are
similar to subsystems and differ from classes in that
they cannot have threads of control and they repre-
sent units in physical systems. Components differ
from subsystems and classes because they are not a
grouping construct; they alone can contain the
implementation of model elements, and their
instances typically reside on computational nodes.
Only subsystems can import or access other model
elements.

It is important to note that, while all three classi-
fiers may conform to a set of interfaces, interfaces are
usually most closely associated with components.
Although it is relatively common to see a class with-
out an interface during analysis, and subsystems may
use model elements other than interfaces for specifi-
cation (for example, use cases and statecharts), a
component without an interface may be technically
well-formed but suspect. This reflects the longstand-
ing and intimate relationship between component-
based development and interface-based design.
For example, both COM+ and the CORBA Com-
ponent Model (CCM) are closely associated with
Interface Definition Languages (IDLs). In addition,

COMMUNICATIONS OF THE ACM October 2000/Vol. 43, No. 10 33

Is a classifier?

Can have operations?

Can have methods?

Can have attributes?

Can have interfaces?

Can be associated?

Can have thread of

control?

Can be nested?

Is a grouping construct?

Can import/access?

Represents a unit in a

physical system?

Contains implementation

of model elements?

Can create instances?

Instances typically reside

on nodes?

+

+

–

+

+

+

–

+

–

–

+

+

+

+

+

+

–

–

+

+

–

+

+

+

+

–

+ (optional)

–

+

+

+

+

+

+

+

+

+

–

–

–

+

–

COMPONENT SUBSYSTEM CLASS

Table 1. Semantic comparison of components,
subsystem, and classes.

both the Java and EJB specifi-
cations emphasize interface-
based design.

When choosing among these
related classifiers modelers may
also find it useful to consider
some usage heuristics. Although
the UML is a modeling lan-
guage and not a software
method, the specification does
provide some usage notes
regarding how some constructs
can be used during various
phases in the software life cycle.
Other heuristics may be gleaned
from component methods, spec-
ifications, and applications.
With the caveat that these are
basic guidelines and not rules,
Table 2 summarizes some
heuristics for applying the classi-
fiers in question.

In general, components and
subsystems tend to be more
coarse-grained than classes.
Indeed, it is common for a com-
ponent to implement multiple
design classes. Similarly, it is
typical for a subsystem to model
the specification and realization
of a set of model elements,
which may include both specifi-
cation types and implementa-
tion classes. Components are
further distinguished from both subsystems and
classes in that they are typically modeled during the
implementation phase (compare analysis and design
phases). It is important to note, however, that the
classes and/or subsystems specifying components
and frameworks may be modeled during an earlier
life-cycle phase, such as analysis or design.

Modeling Component Frameworks
Components are quintessential software building
blocks that can be recursively composed to build sys-
tems of increasing size and complexity. Just as the
hardware industry has used integrated circuits to
recursively build larger and more complex hardware
components, the software industry now endeavors
to do something similar with software components.
Component frameworks are important mechanisms
being used to accomplish this.

A framework is a generic term for a powerful
object-oriented reuse technique that typically

emphasizes the reuse of design patterns and archi-
tectures. One common definition is that “a frame-
work is a reusable design of all or part of a system
represented by a set of abstract classes and the way
their instances interact.” Another frequently used
definition is that “a framework is the skeleton of an
application that can be customized by an applica-
tion developer” [5]. These definitions are comple-
mentary, not conflicting, since the former describes
a framework from a design perspective, whereas the
latter describes it from a functional viewpoint.
However, the differences between the two defini-
tions point out the variety of ways in which the
term is used.

Although the UML definition of a framework is
more restrictive than the preceding definitions, it is
compatible with them:

framework: 1) A stereotyped package consisting
mostly of patterns. 2) An architectural pattern that

34 October 2000/Vol. 43, No. 10 COMMUNICATIONS OF THE ACM

Tend to be coarse-

grained?

Typically modeled

during analysis?

Typically modeled

during design?

Typical modeled

during implementation?

+

–

–

+

+

+

+

–

–

+

+

+

COMPONENT SUBSYSTEM CLASS

Table 2. Usage heuristics for components, subsystem, and classes.

Figure 3. Enterprise component framework pattern.

Enterprise Component Framework

Client

RemoteProxy

FactoryProxy

Context

Persistence
Service

Container

Component

«call» «call»

«call»
Remote

original

original

Remote

Factory

Factory

«call»

«call»
{xor}

«call»

«call»

client

client

proxy

proxy

Either the Container
or the Component
manages the
PersistenceService

The Proxy pattern used here is defined
in [1]. Note that the pattern is used
twice.

Proxy

Proxy

provides an extensible template for applications
within a specific domain.

The first definition is less than illuminating, since
it explains the concept in terms of the UML con-
struct (the «framework» stereotype of Package) with
sparse additional semantics. The second definition is
more informative and reinforces the associations
between frameworks, patterns, and architectures.

As one might intuit, component frameworks are
frameworks typically designed, constructed, and
extended using components. Since a comprehen-
sive discussion of component frameworks is
beyond the scope of this article, readers are referred
to [5] for more information about them. The
remainder of this section focuses on two compo-
nent frameworks that are industry standards for
building enterprise applications: Enterprise Java-
Beans and COM+.

Defining a common pattern. The architectures
of Enterprise JavaBeans and COM+ are based on a
common architectural pattern that we call the Enter-
prise Component Framework. The purpose of this
pattern is to describe the basic mechanisms for a
component runtime environment that supports dis-
tributed services for interprocess communication,
transactions, and persistence.

For the purposes of this article a pattern is defined
as a common solution to a recurring problem in a
particular context. UML 1.3 prescribes that the
structure of patterns should be modeled using para-
meterized collaborations, but does not prescribe the
modeling of non-structural aspects, such as behavior

and heuristics for apply-
ing patterns. As was the
case for the framework
concept, there are diverse
opinions regarding the
definition and use of pat-
terns. In consideration of
this and the scope of this
article, we will restrict our
modeling of patterns to
UML parameterized col-
laborations.

The structure of the
Enterprise Component
Framework pattern is
modeled as a parameter-
ized collaboration in
Figure 3, where the col-
laboration is shown as a
dashed ellipse. This pat-
tern contains seven classi-

fier roles that participate in the collaboration, which
are depicted as rectangles: Client, FactoryProxy,
RemoteProxy, Context, Component, Container, and
PersistenceService. The Client represents an entity
that requests a service from a Component in the
framework.

An important aspect of this pattern is that the
Client does not call the Component directly. Rather
it communicates indirectly via a pair of proxy roles
(FactoryProxy and RemoteProxy) that delegate
(relay) calls from the Client to the Component. This
level of indirection supports two important
functions:

• Location transparency: At a lower level of
abstraction the proxies may be realized by stub-
skeleton pairs, such as those used by CORBA,
Java RMI, and COM+.

• Message interception: The use of proxies allows
the component’s runtime environment (the Con-
tainer) to intercept method calls and insert ser-
vices based on a set of attributes defined at
deployment time.

The roles of FactoryProxy and the RemoteProxy
as surrogates are made explicit by the use of two
Proxy sub-patterns in the main pattern. These sub-
patterns are shown as dashed ellipses, but their clas-
sifier roles are elided to reduce distracting detail.
Readers interested in details about the structure and
behavior of the Proxy pattern are referred to [1] and
[6]. The bindings of the roles of the Proxy pattern
described in [1] to their counterparts in the main

COMMUNICATIONS OF THE ACM October 2000/Vol. 43, No. 10 35

Figure 4. Application of pattern to EJB.

ArtStoreClient

HomeObject

ShoppingCart

RemoteObject

«EJBContextObject»
ContextObject

«EJBEntityClass»
ShoppingCartimpl

javax.ejb.EntityContext

«call» «call»

«database»
ArtStore«call»

ShoppingCartHome

ShoppingCart

«call»

context

client

remoteProxy

factoryProxy

container

component

persistenceService

«call»

Specification Elements RealizationElements

Indicates a
Subsystem

In the case of EJB
either the Bean or
Container can
manage persistence

Enterprise Component Framework

create(...)
findByPrimaryKey(...)
...

«EJBHomeInterface»
ShoppingCartHome

getItemCount()
setItemCount(...)
getTotal()
setTotal(...)
...

«EJBRemoteInterface»
ShoppingCart

Collaboration
representing the
pattern structure

pattern are shown by dashed lines that are labeled
with role names. For example, the roles client, proxy,
and original from the Proxy pattern shown in the
top left of the diagram are bound to the classifier
roles Client, FactoryProxy, and Component in the
main pattern. Likewise, the roles client, proxy, and
original from the Proxy, pattern shown in the lower
left of the diagram are bound to the classifier roles
Client, RemoteProxy, and Component in the main
pattern.

The FactoryProxy and RemoteProxy surrogates
perform distinctive roles in the pattern. The former
proxy handles object factory operations such as cre-
ate and find, while the latter proxy handles business
operations specific to the Component (for example,
getItemCount, setTotal). The separation of concerns
between the proxies is consistent with UML’s classi-
fier-instance dichotomy: the FactoryProxy facilitates
class methods, while the RemoteProxy facilitates
instance methods.

The Component and both proxy roles are held in
a component Container, where the containment is
shown by aggregation relationships (lines with
unfilled diamonds at the aggregation end) between
the Container and its contents. The Container rep-
resents the framework’s runtime environment,
which supports various distributed processing ser-
vices, such as interprocess communication, security,
transactions, and persistence. The Container also
includes a Context entity for each Component that
maintains specific context information, such as the
states of transactions, persistence, security, and
deployment.

Persistence services for the Component (for

example, database storage and
retrieval) can be coordinated
directly by the Component or
can be delegated to the Con-
tainer. This choice is shown by
the {xor} constraint on the two
calls to the PersistenceService in
the diagram. We will return to
this point in the next section,
where we will use it to illustrate
an important difference between
the EJB and COM+ architec-
tures.

Applying the pattern. The
common solution the Enterprise
Component Framework pattern
provides for distributed compo-
nent architectures can be
demonstrated by applying it to
model EJB and COM+ exam-

ples. We first apply it to an EJB example in Figure 4,
which shows a ShoppingCart component for an e-
business application modeled as a UML subsystem.
The pattern being applied is shown as a dashed
ellipse in the lower right of the diagram, and the
classifiers to which the pattern roles are being
applied are shown above the pattern.

It is noteworthy that the names of several of the
classifiers in the collaboration are preceded by UML
keywords, which are marked by guillemet delimiters
(for example, «EJBEntityClass»). The keywords here
indicate that these classifiers are UML stereotypes
(that is, user-customized extensions to the language)
defined external to the model and not part of stan-
dard UML. These stereotypes highlight areas where
UML needs to be customized to meet the specific
needs of particular component architectures, such as
EJB or COM+. For example, Java and EJB inter-
faces are defined as stereotypes of the UML meta-
class Class, since Java and EJB interfaces may declare
constants, whereas UML standard interfaces cannot.

The dashed lines between the pattern and the
classifiers are labeled with the roles that the classi-
fiers play in the collaboration: client, context,
remoteProxy, factoryProxy, container, component,
and persistenceService. These roles are respectively
bound to the following EJB classifiers: ArtStore-
Client, «EJBContextObject» ContextObject,
RemoteObject, HomeObject, ShoppingCart,
«EJBEntityClass» ShoppingCartImpl, and «data-
base» ArtStoreDB.

In the EJB example, the subsystem calls the Art-
StoreDB directly for persistence services (for exam-
ple, database stores and retrievals), indicating that

36 October 2000/Vol. 43, No. 10 COMMUNICATIONS OF THE ACM

Figure 5. Application of pattern to COM+.

ArtStoreClient

FactoryWrapper

ShoppingCart

ObjectWrapper

«COMContextObject»
ContextObject

«COMClass»
ShoppingCartimpl

IObjectContext

«call» «call»

«call» «database»
ArtStoreDB

«call»

IClassFactory

IShoppingCart

«call»

context

client

remoteProxy

factoryProxy

container
component

persistenceService

«call»

«COMInterface»
IClassFactory

«COMInterface»
IShoppingCart

Specification Elements RealizationElements

createinstance(...)
lockServer(...)
...

getItemCount()
setItemCount(...)
getTotal()
setTotal(...)
...

Enterprise Component Framework

the container will manage this at runtime.
In order to facilitate comparison between the two

component architectures, the Enterprise Compo-
nent Framework pattern is also applied to a COM+
example in Figure 5. As was the case when applying
the pattern to the EJB example, the pattern roles
map to classifiers in a straightforward manner.
Although this confirms that there are strong struc-
tural similarities between the two component archi-
tectures, we note the following differences:

• Stereotypes usage. The different stereotypes used
in the two examples indicate areas where the two
architectures are likely to vary. Although an analy-
sis of these detailed differences is beyond the
scope of this article, readers are encouraged to
perform this comparison.

• Persistence services. Whereas in the case of EJB,
either the component or the container may coor-
dinate persistence services, in the case of COM+
only the component can coordinate persistence
services. This is a significant architectural differ-
ence between the two frameworks.

Alert readers will notice the UML component
construct was not used to specify either application
of the framework pattern. This points out the rather
limited semantics and restricted use of the current

component construct, which is mostly used in
implementation model diagrams. Since the pattern
application examples are design models and not
implementation models, they do not show the use of
the UML component construct.

However, in both cases it is relatively straightfor-
ward to generate implementation models that use
the UML component construct. For example, the
«EJBEntityClass» ShoppingCartImpl in Figure 4
might be implemented on a «EJBEntity» component
that executes in an «EJBContainer» component run-

ning on an application server node in a deployment
diagram. Similarly, the «COMClass» Shopping-
CartImpl in Figure 5 might be implemented on a
«COMObject» component that executes in an
«MTS Executive» component running on an appli-
cation server node in a deployment diagram.

Issues and Recommendations
Although the preceding examples show that the
UML 1.3 specification can effectively model many
aspects of components and frameworks, they have
also identified some significant issues. In addition,
users and vendors have identified many other prob-
lems as they apply standard UML and custom pro-
files to specify large and complex component
applications. Some of these issues, along with rec-
ommendations to resolve them, are discussed here.

Increase clarity and reduce overlap. The current
semantics for the component construct are vague and,
as pointed out previously, overlap the semantics of
related classifiers, such as class and subsystem. In
order to fully support component-based develop-
ment, the semantics of components should be refined
and the overlap with related constructs should be
reduced.

Support components at an earlier phase of the
software life cycle. The semantics for component
are dated and emphasize implementation diagrams,

which typically occur at the tail end
of the modeling process. These
semantics should be updated so that
modelers can specify components
earlier in the software life cycle (for
example, during design).

Define model management con-
structs that support large compo-
nent systems and frameworks. As
component applications grow and
proliferate, so will the need for
abstractions to manage their size and
complexity. Consequently, UML
model management constructs
should be refined, extended, or aug-

mented to support large component systems and
frameworks. These constructs include, but are not
limited to, containers, frameworks, and subsystems.

Clarify how components and interfaces are
“wired.” When combining components with various
entities that realize or implement interfaces (classes,
implementation classes, and subsystems) it is not
always clear how to connect them correctly, especially
when they are heterogeneously nested. The specifica-
tion should include better guidelines and examples
for mixing and matching these constructs.

COMMUNICATIONS OF THE ACM October 2000/Vol. 43, No. 10 37

Component modeling

issues are being given

a high priority by both

the UML Revision Task

Force and the

UML 2.0 Working Group.

Provide standard UML profiles for specific
component technologies. Standard UML profiles
should be defined for specific component technolo-
gies, such as EJB, COM+, and CCM.

Component modeling issues are being given a
high priority by both the UML Revision Task Force
(UML RTF) and the UML 2.0 Working Group. The
UML RTF will make clarifications and corrections
within the scope of a minor revision in their recom-
mendations for UML 1.4, which they expect to be
finalized and adopted later this year. Larger issues
that are outside the scope of a minor revision will be
deferred to the UML 2.0 Request for Proposals,
which is scheduled to be issued later this year.
Improvements to support the modeling of EJB com-
ponents and frameworks may be further facilitated
by the informal liaison between the OMG UML
RTF and the Java Community Processes expert
group for the UML/EJB Mapping Specification [8].

Conclusion and Future
The current UML 1.3 specification provides basic
support for modeling components and component
frameworks. Users can specify components in vari-
ous ways, including those outlined by software
methods that support component-based develop-
ment [2, 7]. In addition, tool vendors can customize
UML profiles that support the round-trip engineer-
ing of EJB and COM+ components.

However, there are also substantive issues related
to modeling components with the current UML 1.3
specification. These range from restrictive yet over-
lapping semantics to the lack of robust model man-
agement constructs and component technology
profiles. We hope the OMG UML Revision Task
Force and the UML 2.0 Working Group will address
these issues in an effective and timely manner.

As we await these improvements we should keep

in mind that component technology is still at the
beginning of its adoption curve. As it enters more
into mainstream business computing we can expect
it to have a dramatic impact on how we design, con-
struct, and deploy software systems. We have every
reason to believe that UML will evolve along with
components to meet their special needs, and will not
be surprised if future modelers think of UML as a
component-based, rather than an object-oriented,
modeling language.

References
1. Buschmann, F., et al. Pattern-Oriented Software Architecture: A System of

Patterns. Wiley, NY, 1996.
2. D’Souza, D. and Wills, A.C. Objects, Components and Frameworks with

UML: The Catalysis Approach. Addison-Wesley, Reading, MA, 1999.
3. Eddon, G. and Eddon, H. Inside COM+ Base Services. Microsoft Press,

1999.
4. Enterprise Java Beans Specification, v. 2.0. Public draft, Sun Microsys-

tems, May 2000.
5. Fayad, M., et al. Building Application Frameworks. Wiley, NY, 1999.
6. Gamma, E., et al. Design Patterns: Elements of Reusable Object-Oriented

Software. Addison-Wesley, Reading, MA, 1995.
7. Jacobson, I., et al. The Unified Software Development Process. Addison-

Wesley, Reading, MA, 1999.
8. UML/EJB Mapping Specification, Java Specification Request ID#

000026, Java Community Process, Sun Microsystems, July 1999.
9. UML Revision Task Force, OMG Unified Modeling Language Specifi-

cation, v. 1.3, document ad/99-06-08. Object Management Group,
June 1999.

Cris Kobryn (ckobryn@acm.org) is the chief scientist and a
senior director at InLine Software (www.inline-software.com). He is
the co-chair of the UML Revision Task Force and the co-chair of
the Analysis and Design Platform Task Force at the OMG.

Permission to make digital or hard copies of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

© 2000 ACM 0002-0782/00/1000 $5.00

c

38 October 2000/Vol. 43, No. 10 COMMUNICATIONS OF THE ACM

W E B R E F E R E N C E S

www.celigent.com/omg/umlrtf is the OMG UML Revision Task Force home page. Contains UML
specification artifacts, including the latest UML specification and drafts of works-in-progress. Also
includes a link to the UML 2.0 Working Group page.

java.sun.com/products/ejb/ is the Enterprise JavaBeans home page. Contains links to diverse
resources related to EJB, including specifications, white papers, and tutorials.

java.sun.com/aboutJava/communityprocess/ is the Java Community Process home page. Contains
information about the JCP process, specification proposals, calls for experts, and specification drafts.

www.microsoft.com/com/tech/complus.asp is the COM+ home page. Contains links to a wide range
of resources related to COM+, including white papers, presentations, and books.

