
Object-oriented application frameworks are a
promising technology for reifying proven software
designs and implementations in order to reduce the
cost and improve the quality of software. A framework
is a reusable, “semi-complete’’ application that can be
specialized to produce custom applications [7, 10]. In
contrast to earlier OO reuse techniques based on class
libraries, frameworks are targeted for particular busi-
ness units (such as data processing or cellular commu-
nications) and application domains (such as user
interfaces or real-time avionics) [11]. Frameworks like
MacApp, ET++, Interviews, ACE, Microsoft’s MFC
and DCOM, JavaSoft’s RMI, and implementations of
OMG’s CORBA play an increasingly important role
in contemporary software development.

The primary benefits of OO application frame-
works stem from the modularity, reusability, extensi-
bility, and inversion of control they provide to
developers.

Frameworks enhance modularity by encapsulating
volatile implementation details behind stable inter-
faces. Framework modularity helps improve software
quality by localizing the impact of design and imple-
mentation changes, which reduces the effort required

Mohamed E. Fayad and
Douglas C. Schmidt, Guest Editors

VI
C

TO
R

 S
A

D
O

W
SK

I

Object-Oriented

Application

Frameworks
Computing power and network bandwidth have increased dramatically over

the past decade, yet the design and implementation of complex software remain

expensive and error-prone. Much of the cost and effort stems from the continuous

rediscovery and reinvention of core concepts and components across the software

industry. In particular, the growing heterogeneity of hardware architectures and

diversity of operating system and communication platforms make it difficult to

build correct, portable, efficient, and inexpensive applications from scratch.

32 October 1997/Vol. 40, No. 10 COMMUNICATIONS OF THE ACM

COMMUNICATIONS OF THE ACM October 1997/Vol. 40, No. 10 33

to understand and maintain existing software.
The stable interfaces provided by frameworks

enhance reusability by defining generic components
that can be reapplied to create new applications.
Framework reusability leverages the domain knowl-
edge and prior effort of experienced developers in
order to avoid re-creating and revalidating common
solutions to recurring application requirements and
software design challenges. Reuse of framework com-
ponents can yield substantial improvements in pro-
grammer productivity, as well as enhancing the
quality, performance, reliability
and interoperability of software.

A framework enhances exten-
sibility by providing explicit
hook methods [8] that allow
applications to extend its stable
interfaces. Hook methods sys-
tematically decouple the stable
interfaces and behaviors of an
application domain from the
variations required by instantia-
tions of an application in a par-
ticular context. Framework
extensibility is essential to ensure
timely customization of new
application services and features.

The run-time architecture of a
framework is characterized by an
inversion of control. This archi-
tecture enables canonical appli-
cation processing steps to be
customized by event handler
objects that are invoked via the
framework’s reactive dispatching
mechanism. When events occur, the framework’s dis-
patcher reacts by invoking hook methods on pre-reg-
istered handler objects, which perform
application-specific processing on the events. Inver-
sion of control allows the framework (rather than
each application) to determine which set of applica-
tion-specific methods to invoke in response to exter-
nal events (such as window messages arriving from
end users or packets arriving on particular communi-
cation ports).

Overview of Widely Used Frameworks

Developers in certain domains have success-
fully applied OO application frameworks
for many years. Early object-oriented

frameworks (such as MacApp and Interviews) origi-
nated in the domain of graphical user interfaces.
The Microsoft Foundation Classes (MFC) is a con-
temporary GUI framework that has become the de

facto industry standard for creating graphical appli-
cations on PC platforms. Although MFC has limi-
tations (such as lack of portability to non-PC
platforms), its widespread adoption demonstrates
the productivity benefits of reusing common frame-
works to develop graphical business applications.

Application developers in more complex domains
(such as telecommunications, distributed medical
imaging, and real-time avionics) have traditionally
lacked standard “off-the-shelf” frameworks. As a
result, developers in these domains largely build, val-

idate, and maintain software sys-
tems from scratch. In an era of
deregulation and global competi-
tion, however, it has become pro-
hibitively expensive and extremely
time-consuming to develop appli-
cations entirely in-house.

Fortunately, the next generation
of OO application frameworks are
targeting complex business and
application domains. At the heart
of this effort are Object Request
Broker (ORB) frameworks, which
facilitate communication between
local and remote objects. ORB
frameworks eliminate many
tedious, error-prone, and non-
portable aspects of creating and
managing distributed applications
and reusable service components.
This enables programmers to
develop and deploy complex appli-
cations rapidly and robustly, rather
than wrestling endlessly with low-

level infrastructure concerns.

Classifying Application Frameworks

Although the benefits and design principles
underlying frameworks are largely indepen-
dent of the domains to which they are

applied, we’ve found it useful to classify frameworks
by their scope, as follows:

System infrastructure frameworks simplify the devel-
opment of portable and efficient system infrastruc-
ture such as operating system [2] and communication
frameworks [9], and frameworks for user interfaces
and language processing tools. System infrastructure
frameworks are primarily used internally within a
software organization and are not sold to customers
directly.

Middleware integration frameworks are commonly
used to integrate distributed applications and com-
ponents. Middleware integration frameworks are

34 October 1997/Vol. 40, No. 10 COMMUNICATIONS OF THE ACM

The benefits

of object-oriented

application

frameworks stem

from the modularity,

reusability, extensibility,

and inversion of control

they provide to

developers.

COMMUNICATIONS OF THE ACM October 1997/Vol. 40, No. 10 35

designed to enhance the ability of software develop-
ers to modularize, reuse, and extend their software
infrastructure to work seamlessly in a distributed
environment. Middleware integration frameworks
represent a thriving market, and are rapidly becom-
ing commodities. Common examples include ORB
frameworks, message-oriented middleware, and
transactional databases.

Enterprise application frameworks address broad
application domains (such as telecommunications,
avionics, manufacturing, and financial engineering
[1, 10, 11]) and are the cornerstone of enterprise
business activities [3]. Relative to system infrastruc-
ture and middleware integration frameworks, enter-
prise frameworks are expensive to develop and/or
purchase. However, enterprise frameworks can pro-
vide a substantial return on investment since they
support the development of end-user applications
and products directly. In contrast, system infrastruc-
ture and middleware integration frameworks focus
largely on internal software development concerns.
Although these frameworks are essential to create
high-quality software rapidly, they typically do not
generate substantial revenue for large enterprises. As
a result, it is often more cost-effective to buy system
infrastructure and middleware integration frame-
works rather than build them in-house [3, 4, 11].

Regardless of their scope, frameworks can also be
classified by the techniques used to extend them,
which range along a continuum from white-box
frameworks to black-box frameworks. White-box
frameworks rely heavily on OO language features like
inheritance and dynamic binding in order to achieve
extensibility. Existing functionality is reused and
extended by (1) inheriting from framework base
classes and (2) overriding pre-defined hook methods
using patterns like the Template Method [5]. Black-
box frameworks support extensibility by defining
interfaces for components that can be plugged into
the framework via object composition. Existing func-
tionality is reused by (1) defining components that
conform to a particular interface and (2) integrating
these components into the framework using patterns
like Strategy [5] and Functor.

White-box frameworks require application devel-
opers to have intimate knowledge of each frame-
work’s internal structure. Although white-box
frameworks are widely used, they tend to produce
systems that are tightly coupled to the specific details
of the framework’s inheritance hierarchies. In con-
trast, black-box frameworks are structured using
object composition and delegation rather than inher-
itance. As a result, black-box frameworks are gener-
ally easier to use and extend than white-box

frameworks. However, black-box frameworks are
more difficult to develop since they require frame-
work developers to define interfaces and hooks that
anticipate a wider range of potential use cases [6].

Strengths and Weaknesses of
Application Frameworks

When used in conjunction with patterns,
class libraries, and components, OO
application frameworks can signifi-

cantly increase software quality and reduce develop-
ment effort. However, a number of challenges must
be addressed in order to employ frameworks effec-
tively. Companies attempting to build or use large-
scale reusable frameworks often fail unless they
recognize and resolve challenges such as develop-
ment effort, learning curve, integrability, maintain-
ability, validation and defect removal, efficiency,
and lack of standards [10].

• While developing complex software is difficult
enough, developing high quality, extensible, and
reusable frameworks for complex application
domains is even harder. The skills required to
produce frameworks successfully often remain
locked in the heads of expert developers. One of
the goals of this special section is to demystify
the software process and design principles associ-
ated with developing and using frameworks.

• Learning to use an OO application framework
effectively requires considerable investment of
effort. For instance, it often takes 6–12 months
to become highly productive with a GUI frame-
work like MFC or MacApp, depending on the
experience of the developers. Typically, hands-on
mentoring and training courses are required to
teach application developers how to use such a
framework effectively. Unless the effort required
to learn a framework can be amortized over many
projects, this investment may not be cost-effec-
tive. Moreover, the suitability of a framework for
a particular application may not be apparent
until the learning curve has flattened.

• Application development will be increasingly
based on the integration of multiple frameworks
(e.g., GUIs, communication systems, databases)
together with class libraries, legacy systems, and
existing components. However, many earlier gen-
eration frameworks were designed for internal
extension rather than for integration with other
frameworks developed externally. Integration
problems arise at several levels of abstraction,
ranging from documentation issues [3, 4], to the
concurrency/distribution architecture, to the

event dispatching model. For instance, while
inversion of control is an essential feature of a
framework, integrating frameworks with event
loops that are not designed to interoperate with
other frameworks is hard.

• Application requirements change frequently.
Therefore, the requirements of frameworks often
change as well. As frameworks evolve, the appli-
cations that use them must evolve with them.

• Framework maintenance activities include modi-
fication and adaptation of the framework. Both
modification and adaptation may occur on the
functional level (i.e., certain framework function-
ality does not fully meet developers’ require-
ments), as well as on the non-functional level
(which includes more qualitative aspects such as
portability or reusability).

• Framework maintenance may take different
forms, such as adding functionality, removing
functionality, and generalization. A deep under-
standing of the framework components and their
interrelationships is essential to perform this task
successfully. In some cases, the application devel-
opers and/or the end-users must rely entirely on
framework developers to maintain the frame-
work.

• Although a well-designed modular framework can
localize the impact of software defects, validating
and debugging applications built using frame-
works can be tricky for the following reasons:

• Generic components are harder to validate in the
abstract. A well-designed framework component

typically avoids application-specific details,
which are provided via subclassing, object com-
position, or template parameterization. While
this improves the flexibility and extensibility of
the framework, it greatly complicates module
testing since the components cannot be validated
in isolation from their specific instantiations. It
is usually hard to distinguish bugs in the frame-
work from bugs in the application code. As with
any software development, bugs are introduced
into a framework from many possible sources,
such as failure to understand the requirements,
overly coupled design, or an incorrect implemen-
tation. When customizing the components in a
framework to a particular application, the num-
ber of possible error sources will increase.

• Inversion of control and lack of explicit control
flow. Applications written with frameworks can
be hard to debug since the framework’s
“inverted’’ flow of control oscillates between the
application-independent framework infrastruc-
ture and the application-specific method call-
backs. This increases the difficulty of
“single-stepping’’ through the run-time behavior
of a framework within a debugger since the con-
trol flow of the application is driven implicitly
by callbacks and developers may not understand
or have access to the framework code. This is
similar to the problems encountered trying to
debug a compiler lexical analyzer and parser
written with LEX and YACC. In these applica-
tions, debugging is straightforward when the

36 October 1997/Vol. 40, No. 10 COMMUNICATIONS OF THE ACM

Over the next several years, we expect the following frame-

work-related topics will receive considerable attention from

researchers and developers:

Reducing framework development effort. Traditionally,

reusable frameworks have been developed by generalizing from

existing systems and applications. Unfortunately, this incremental

process of organic development is often slow and unpredictable

since core framework design principles and patterns must be discov-

ered from the “bottom-up.’’ However, since many good framework

examples now exist, we expect that the next generation of develop-

ers will leverage this collective knowledge to conceive, design, and

implement higher-quality frameworks more rapidly [11].

Greater focus on domain-specific enterprise frame-

works. Existing frameworks have focused largely on system infra-

structure and middleware integration domains (such as user

interfaces [5, 8] and OS/communication systems [2, 6, 9, 11]). In

contrast, there are relatively few widely documented examples of

enterprise frameworks for key business domains such as manufac-

turing, banking, insurance, and medical systems [4, 11]. As more

experience is gained developing frameworks for these business

domains, however, we expect that the collective knowledge of

frameworks will be expanded to cover an increasingly wide range of

domain-specific topics and an increasing number of enterprise appli-

cation frameworks will be produced [3, 4]. As a result, benefits of

frameworks will become more immediate to application program-

mers as well as to infrastructure developers.

Black-box frameworks. Many framework experts [7, 10]

favor black-box frameworks over white-box frameworks since

black-box frameworks emphasize dynamic object relationships (via

patterns like Bridge and Strategy [5]) rather than static class rela-

tionships. Thus, it is easier to extend and reconfigure black-box

frameworks dynamically. As developers become more familiar with

techniques and patterns for factoring out common interfaces and

components, we expect that an increasing percentage of black-box

frameworks will be produced.

Framework documentation. Accurate and comprehensible

documentation is crucial to the success of large-scale frameworks.

Future Trends

COMMUNICATIONS OF THE ACM October 1997/Vol. 40, No. 10 37

thread of control is in the
user-defined action routines.
Once the thread of control
returns to the generated DFA
skeleton, however, it is hard
to trace the program’s logic.

Frameworks enhance extensi-
bility by employing additional
levels of indirection. For instance,
dynamic binding is commonly
used to allow developers to sub-
class and customize existing
interfaces. However, the resulting
generality and flexibility often
reduce efficiency. For instance, in
languages like C++ and Java, the
use of dynamic binding makes it
impractical to support Concrete
Data Types (CDTs), which are
often required for time-critical
software. The lack of CDTs yields
(1) an increase in storage layout
(due to embedded pointers to vir-
tual tables), (2) performance degradation (due to the
additional overhead of invoking a dynamically bound
method and the inability to inline small methods),
and (3) a lack of flexibility (due to the inability to
place objects in shared memory).

Currently, there are no widely accepted standards
for designing, implementing, documenting, and
adapting frameworks. Moreover, emerging industry

standard frameworks (such as
CORBA, DCOM, and Java RMI)
currently lack the semantics, fea-
tures and interoperability to be
truly effective across multiple
application domains. Often, ven-
dors use industry standards to sell
proprietary software under the
guise of open systems. Therefore, it
is essential for companies and devel-
opers to work with standards orga-
nizations and middleware vendors
to ensure that the emerging specifi-
cations support true interoperabil-
ity and define features that meet
their software needs.

The Articles

The articles in this section
describe how OO applica-
tion frameworks provide a

powerful vehicle for reuse, as well
as a way to capture the essence of
successful patterns, architectures,

components, policies, services, and programming
mechanisms. We begin with an overview of the
topic by Ralph Johnson. “Frameworks = (Compo-
nents + Patterns)” compares and contrasts frame-
works with other object-oriented reuse
techniques—patterns and components.

“An Adaptive Framework for Developing Multi-
media Software Components” by Posnak, Lavender,

However, documenting frameworks is a costly activity and contem-

porary tools often focus on low-level method-oriented documenta-

tion, which fails to capture the strategic roles and collaborations

among framework components. We expect that the advent of tools

for reverse-engineering the structure of classes and objects in com-

plex frameworks will help to improve the accuracy and utility of

framework documentation. Likewise, we expect to see an increase

in the current trend [4, 6, 9] of using design patterns to provide

higher-level descriptions of frameworks.

Processes for managing framework development. Frame-

works are inherently abstract since they generalize from a solution to

a particular application challenge to provide a family of solutions. This

level of abstraction makes it difficult to engineer their quality and man-

age their production. Therefore, it is essential to capture and articu-

late development processes that can ensure the successful

development and use of frameworks. We believe that extensive pro-

totyping and phased introduction of framework technology into orga-

nizations is crucial to reducing risk and helping to ensure successful

adoption [4, 10].

Framework economics. The economics of developing frame-

works include activities [4, 10] such as the following:

• Determining effective framework cost metrics, which measure the

savings of reusing framework components vs. building applications

from scratch;

• Cost estimation, which involves accurately forecasting the cost

of buying, building, or adapting a particular framework; and

• Investment analysis and justification, which determines the bene-

fits of applying frameworks in terms of return on investment.

We expect that the focus on framework economics will help to

bridge the gap among the technical, managerial, and financial aspects

of making, buying, or adapting frameworks [4].

Framework standards. In order to develop, document, inte-

grate, and adapt long-lived application frameworks, standards are a

must. As application frameworks become more complex and more

widely accepted, standards become invaluable and increasingly

essential. Standards assure consistency, and form a base to justify

the framework cost and protect the investment. We believe that

several standards will emerge, such as framework development,

framework adaptation, framework interoperability and integration

standards [10].

The articles

appearing here

reinforce our belief

that object-oriented

application

frameworks will be

at the core of

leading-edge software

technology in the

twenty-first century.

38 October 1997/Vol. 40, No. 10 COMMUNICATIONS OF THE ACM

and Vin describes a framework that simplifies the
development of dynamically adaptive multimedia
software components by promoting the reuse of code,
design patterns, and domain expertise. Hans
Albrecht Schmid’s article “Systematic Framework
Design by Generalization” presents a systematic
method for designing frameworks based on identify-
ing “hot spots,” which capture key sources of varia-
tion in an application domain.

“Framework Development for Large Systems’’ by
Bäumer et al. draws upon the authors’ experience
developing large-scale industrial banking projects to
present concepts and techniques for domain parti-
tioning, framework layering, and framework con-
struction.

Demeyer, Meijler, Nierstrasz, and Steyaert also
focus on hot spots in their article “Design Guidelines
for ‘Tailorable’ Frameworks,” which presents design
guidelines for developing frameworks for open sys-
tems. “The Framework Life Span” by Brugali,
Menga, and Aarsten highlights the relationships
between application frameworks, patterns, and pat-
tern languages in the domain of manufacturing sys-
tems. “From Custom Applications to Domain-
Specific Frameworks” by Codenie et al. discusses
solutions to common framework development chal-
lenges such as avoiding the proliferation of versions,
estimating effort and alleviating the tendency toward
architectural drift.

Adele Goldberg, Steven Abell, and David Leibs
describe LearningWorks—a framework for exploring
ideas about computing and software system construc-
tion—in a succinct contribution to this section.
Another short article, “SEMATECH’s Experiences
with the CIM Framework,” by Doscher and Hodges,
describes the structure of a framework for computer-
integrated manufacturing of semiconductors.

We conclude the section with a brief consideration
of lessons learned from our varied experiences apply-
ing frameworks to real-world business situations.

The articles appearing here reinforce our belief
that object-oriented application frameworks will be
at the core of leading-edge software technology in the
twenty-first century. The extensive focus on applica-
tion frameworks in the object-oriented community
offers software developers an important vehicle for
reuse and a means to capture the essence of successful
patterns, architectures, components, and program-
ming mechanisms.

It is significant that frameworks are becoming
mainstream and that developers at all levels are
increasingly adopting and succeeding with frame-
work technologies. However, OO application frame-
works are ultimately only as good as the people who

build and use them. Creating robust, efficient, and
reusable application frameworks requires develop-
ment teams with a wide range of skills. We need
expert analysts and designers who have mastered pat-
terns, software architectures, and protocols in order to
alleviate the inherent and accidental complexities of
complex software. Likewise, we need expert middle-
ware developers who can implement these patterns,
architectures, and protocols within reusable frame-
works. In addition, we need application programmers
who have the motivation, skills, and training to learn
how to use these frameworks effectively. We encour-
age you to get involved with others working on
frameworks by attending conferences, participating
in online mailing lists and newsgroups, and con-
tributing your insights and experiences. More infor-
mation can be found about this subject at
http://www.cs.unr.edu/~fayad/frameworks.

References

1. Birrer, E.T. Frameworks in the financial engineering domain: An expe-
rience report. In Proceedings of ECOOP ‘93 Proceedings, Lecture Notes in
Computer Science nr. 707, Springer-Verlag, 1993.

2. Campbell, R.H. and Islam, N. A technique for documenting the
framework of an object-oriented system. Computing Systems 6, 4 (Fall
1993).

3. Fayad, M.E. and Hamu, D.S. Object-oriented enterprise frameworks:
Make vs. buy decisions and guidelines for selection. Commun. ACM,
submitted for publication.

4. Fayad, M.E. and Hamu, D.S. Object-Oriented Enterprise Frameworks.
Wiley, NY, 1997, to appear.

5. Gamma, E, Helm, R., Johnson, R. and Vlissides, J. Design Patterns:
Elements of Reusable Software Architecture. Addison-Wesley, Reading,
Mass., 1995.

6. Hueni, H., Johnson, R., and Engel, R. A framework for network pro-
tocol software. In Proceedings of OOPSLA’95, (Austin, Texas, Oct.
1995).

7. Johnson, R.E. and Foote, B. Designing reusable classes. J. Object-Ori-
ented Programming 1, 5 (June/July 1988), 22–35.

8. Pree, W. Design Patterns for Object-Oriented Software Development. Addi-
son-Wesley, Reading, Mass. 1994.

9. Schmidt, D.C. Applying design patterns and frameworks to develop
object-oriented communication software. In P. Salus, Ed., Handbook of
Programming Languages, Volume I, MacMillan Computer Publishing,
1997.

10. Fayad, M.E., Schmidt, D.C., and Johnson, R.E. Object-Oriented Applica-
tion Frameworks: Problems and Perspectives. Wiley, NY, 1997, to appear.

11. Fayad, M.E., Schmidt, D.C., and Johnson, R.E. Object-Oriented Applica-
tion Frameworks: Implementation and Experience. Wiley, NY, 1997, to
appear.

Mohamed Fayad (fayad@cs.unr.edu) is an associate professor in
the College of Engineering at the University of Nevada-Reno.
Douglas C. Schmidt (schmidt@cs.wustl.edu) is an assistant
professor in the Department of Computer Science at Washington
University in St. Louis, Missouri.

Permission to make digital/hard copy of part or all of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage; the copyright notice, the title of the publication, and
its date appear; and notice is given that copying is by permission of ACM, Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists requires prior spe-
cific permission and/or a fee.

© ACM 0002-0782/97/1000 $3.50

c

