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Abstract

Embodied Evolution is a research area in Evolutionary
Robotics in which the evolutionary algorithm is entirely de-
centralized among a population of robots. Evaluation, se-
lection and reproduction are carried out by and between
the robots, without any need for human intervention. This
paper describes a new Evolutionary Control System (ECS)
able to control a population of mobile robots. The ECS
is based on a Genetic Programming algorithm and has
two main modules. The first one, called EMSS (Execu-
tion, Management and Supervision System), is the system
responsible for managing all the evolutionary process in
each robot. The second module, called DGP (Distributed
Genetic Programming), is an extension of classical Genetic
Programming algorithm to support the robot control sys-
tem evolution. To test the DGP’s performance a simulation
experiment, with the collision-free navigation task, was ac-
complished and its results are presented.

1. Introduction

Evolutionary Robotics (ER) [15] [16] aims at the deve-
lopment of adaptable control systems, based on Evolutiona-
ry Computation (EC) [2] techniques [3]. In ER the selection
and genetic operator execution is performed in a centralized
manner.

Embodied Evolution (EE) was introduced by
Watson[12] and uses a population of robots that au-
tonomously reproduce with one another while situated in
their task environment. In EE the evolutionary process

– evaluation, selection and reproduction – is carried out
by and between the robots, without any need for human
intervention.

One of the evolutionary algorithms used in ER is Ge-
netic Programming (GP) [7]. GP is a technique that aims
at automatically generating computer programs. The main
goal of GP is teaching computers to program themselves,
i.e., from specified primary behaviors, the computer must
be able to generate a program that satisfies some conditions
that aim at the solution of some task or problem.

Control systems for mobile robots are considered as
hierarchical structures of basic behavior. For this reason, us-
ing GP to develop control systems for mobile robots repre-
sents one advantage. In GP the handled structures, func-
tions and terminals, are high level and its generated pro-
grams are hierarchical associations between them.

Most works in EE, such as those described in [5], [14]
and [18], are based on the use of Genetic Algorithm to op-
timaze the weights of a Neural Network controller that se-
lects the low-level motor actions of the robot. There are
some works that propose the use of GP to evolve the mobile
robot control system, e.g. [1] and [11], but these works are
not applied in EE.

The main contribution of the work described in this pa-
per is an Evolutionary Control System (ECS) entirely based
on GP to be applied on EE. The ECS have two main mod-
ules. The first one, called EMSS (Execution, Management
and Supervision System), is responsible for executing and
managing the second module, called DGP (Distributed Ge-
netic Programming). The DGP is an extension of the clas-
sical GP algorithm [7].

To validate the DGP we accomplished one experiment
with a population of five mobile robots using the Khepera

Fourth International Conference on Autonomic and Autonomous Systems

0-7695-3093-1/08 $25.00 © 2008 IEEE
DOI 10.1109/ICAS.2008.31

118

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 18, 2009 at 05:25 from IEEE Xplore.  Restrictions apply.



Simulator. The objective of each robot was to navigate
through an unknown environment avoiding obstacles.

This paper is organized in the following way: Section
2 describes the Evolutionary Control System and the Dis-
tributed Genetic Programming algorithm, respectively. Sec-
tion 3 describes the experiment setup. Results with DGP’s
performance are presented in Section 4. Section 5 presents
conclusions and future works.

2. Evolutionary Control System

The ECS has two main modules. The first one, called
EMSS (Execution, Management and Supervision System)
is responsible for executing and managing the algorithm re-
sponsible for all evolutionary process. The second module,
called DGP (Distributed Genetic Programming) is the al-
gorithm responsible for all the evolutionary process of the
robots control system.

Figure 1 illustrates, generically, the functioning of the
ECS.
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Figure 1. Schematic Representation of ECS.

In each robot, the EMSS is executed. Each robot has a
local population, a set of programs that may solve a problem
(a task that the robot should execute), that interacts with the
other robots local population. The goal is to build, by using
only GP, a control system for a population of mobile robots
in which the robots interact among them to execute some
task.

Sections 2.1 and 2.2 describe in details how EMSS and
DGP work, respectively.

2.1. Execution, Management and Supervi-
sion System - EMSS

The EMSS (Execution, Management and Supervision
System) is the system responsible for managing the evolu-

tionary process that takes place in an embedded fashion in
each robot. Figure 2 illustrates the EMSS components and
the relationships among them.
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Figure 2. Basic Structure of EMSS.

Below is the complete description of each component of
the EMSS and the connection among them (when there is
one).

Evolutionary Control (EC): it is the main component in
the EMSS. The EC is responsible for creating, randomly, a
local population of individual programs using the functions
and terminals library. In each new generation, the gener-
ated individuals are tested and executed by the EC. The
ADF’s (Automatically Defined Functions) are also man-
aged by this component.

Memory: the memory stores the representation of the
most adapted individuals in each generation. These indi-
viduals can be used in a reinitialization process, in the case
the EC fails, or to optimize tasks that involve more than one
competence, such as avoiding obstacles and moving an ob-
ject from one place to another. In this case, the memory
works as a kind of system snapshot, which can be reused
to speed up the learning process through experiences taken
place in the past.

Communication Manager (CM): it is the component
responsible for sending and receiving the messages ex-
changed by the robots. In the message sending process, the
EC sends to CM the sequence of functions and terminals
and the fitness value that will be sent to the other robots.
The CM creates a message containing this information and
sends it to the other robots. In receiving, the CM receives
the messages sent by the other robots and sends their con-
tents to the EC.

Library Manager (LM): this component manages the
sets of terminals and functions in each robot. In this com-
ponent all the functions and terminals are identified through
an unique identifier, an even number for the functions and
an odd number for the terminals, so they can be sent to other
robots through the CM. At any time, it is possible to add or

119

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 18, 2009 at 05:25 from IEEE Xplore.  Restrictions apply.



remove functions or terminals without having the need to
redefine the control system.

Supervisor: it is responsible for evaluating and attri-
buting a fitness value to each individual, using a punishment
and reward method. For this method to work properly, for
each task is assigned to the robot, one must define how and
when reward and punishment take place.

System Monitor: it is the component responsible for
evaluating the system execution. In the case the system is
inactive, i.e., the robot stays still for a long period of time,
the monitor activates an EC reinitialization process. When
the EC is reinitialized, the images of the best individuals,
which are stored in memory, are retrieved and the evolu-
tionary process initiates from these individuals, that is, the
local population is completed through the use of parts of
these individual programs, instead of starting from a ran-
dom population, as it happens in the original GP algorithm.

2.2. Distributed Genetic Programming -
DGP

The DGP is the algorithm responsible for all the evolu-
tionary process of the robots control system. The DGP is
an extension of the classical GP algorithm to support the
control system evolution for the robots that are part of the
mobile robots population.

The DGP is based on Microbial GA [6], a GA variation.
Its functioning is similar to the genetic combination (infec-
tion) that takes place in bacteria, where DNA segments are
transferred between two members of the population.

In DGP two population sets are considered. The first,
called local set or PlocalRi

, refers to the local population of
each robot Ri, i.e., the set of individuals or solutions that
are embedded in the robot. Each x ∈ PlocalRi

represents a
candidate solution to a problem. The second set, called total
set or Ptotal, is made of the union of all the local popula-
tions in each robot, where: Ptotal = PlocalR1

∪ PlocalR2
∪

· · ·∪PlocalRn
. The evolutionary process takes place always

considering the total population, that is, parts of a local in-
dividual of a certain robot may be considered in another
robot’s local population evolutionary process.

Differently from other approaches in EE, such as [5], [8],
and [13], in DGP the evolutionary process is asynchronous,
that is, it is not necessary that two robots are synchronized
to reproduce.

In DGP, parts of a more adapted individual are sent to all
the other robots. The step sequence in DGP is the following:

1. Randomly create a program population;

2. Iteratively execute the following steps until some halt
criterion is satisfied:

(a) Evaluate each population program through a
heuristic function (fitness) that expresses its fit-
ness, that is, how well the program solves the
robot task;

(b) Receive1 parts of a remote2 individual sent by
another robot;

(c) Select the t best individuals in the local popula-
tion, using the tournament selection method;

(d) Randomly select a part of the best (more adapted)
local individual and broadcast it to the other
robots;

(e) Compare whether the worst locally selected indi-
vidual fitness is lower than the remote individu-
al fitness. If so, execute the mutation operator,
replacing parts of the individual by the parts re-
ceived from a remote individual;

(f) Execute the crossover and mutation operators;

3. Return the best program found.

The selection method used in the DGP is tournament se-
lection with the parent preservation after the crossing. The
remotely received parts are added to the worst individual
structure, from the t selected best, following equation 1:

M(A) =
{

Muta(A) if FitnessR > FitnessL
A if FitnessR ≤ FitnessL

}
(1)

where M(A) is the remote mutation operator that happens
all time when a part of remote individual is received. Fit-
nessR is the value of the remote individual’s fitness, which
sent a part of its structure. FitnessL is the value of the lo-
cal individual’s fitness. A is the local individual’s structure,
and Muta(A) is the mutation function, where a part of the A
structure is randomly chosen to be replaced by the received
part of the remote individual program.

The messages passing between the robots must contain
the fitness and a part of the best local population individual
program. For such, all the functions and terminals receive
an unique numerical identification, an even number for each
function and an odd number to each terminal.

It is important to emphasize that for a correct functioning
of DGP all robots must contain the same sets of functions
and terminals, or at least they must use the same functions
and terminals for a particular problem.

DGP assures the continuity of the control system of the
evolutionary process, even when there is a problem with the

1In each execution cycle the DGP considers only one received message.
Each new message, containing parts of a remote individual, is stored in
the local buffer. The buffer is overwritten every time a new message is
received.

2A remote individual is a program that is part of the local population of
another robot.
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other robots that are part of the robot population. This is
possible because each robot has a local population of pro-
grams, that guarantees the continuity of the evolutionary
process.

3. Experimental Setup

With the purpose of evaluating the DGP algorithm we
defined a simulation environment in which a set of five mo-
bile robots must navigate along an unknown environment
avoiding obstacles. The simulation was accomplished in
the Khepera Simulator version 2.0 [9]. This version of
the Khepera Simulator can operate with a group of mobile
robots instead of a single robot.

Figure 3 illustrates the main interface of the Khepera
Simulator. In the figure there are five robots dispersed in
random positions along the environment and a set of rectan-
gles that represents obstacles.

Figure 3. Khepera Simulator Screenshot.

Each Khepera Robot has eight (8) infrared sensors for
proximity measurements, eight (8) light sensors for ambient
light measurement and two motor-drive wheels for move-
ment. Each infrared sensor returns a value ranging [0 -
1023]. Where 0 means that no object is perceived and 1023
means that an object is very close to the sensor. The light
sensors can measure the level of ambient light around the
sensor and return a value ranging [0 - 525]. Where 0 means
a maximum brightness and 525 a maximum darkness.

The goal of each robot is to navigate along the envi-
ronment avoiding obstacles, walls and other robots. This
task is called in the robot literature collision-free naviga-
tion. According to [5] this task is trivial for tradicional
robots techniques but provides a non-trivial search space for
an evolutionary system.

Table 1 describes the function and terminal sets used in
the experiment.

In Table 1 the Id. column represents the identification
of functions and terminals according to the identification

Table 1. Functions and Terminals sets.
Functions

Name Arity Id. Definition

Prog1 1 2 Perform one branch of the tree.

Prog2 2 4 Perform two branches of the tree.

Prog3 3 6 Perform three branches of the tree.

Terminals

TurnRight 0 1 Turn right (15 degrees).

TurnLeft 0 3 Turn left (15 degrees).

GoForward 0 5 Go forward (300 ms).

Return 0 7 Return (300ms).

rule of DGP, an even number for each function and an odd
number for each terminal.

The parameters used in the experiment are described be-
low:

• Number of robots: 5

• Number of generations: 500

• Population size: 10 individuals

• Vector size: 50 positions

• Crossover probability: 60%

• Mutation probability: 10%

• Selection method: tournament selection with tourna-
ment size of 6

• Number of executions: 10

• Fitness function: punishment and reward method. if
BUMPED; fitness -= 3; else fitness
+= 2

The fitness function is very simple. Basically when a
robot hit in an obstacle, the punishment method is activated
and its fitness value is decrease in 3 points. Otherwise, when
a robot is navigating in the environment without hit any ob-
ject, the reward method is activated and its fitness value is
increase in 2 points.

It is important to emphasize that for this experiment no
limit was imposed on the fitness value. That is, the fitness
could be any negative or positive value. The highest the
value corresponds to the best individual in the population.

The DGP algorithm was developed in C with a linear
representation method [10]. Each population individual
(program) is represented by one fixed size vector. Each
vector position only contains the identification number of
a function or a terminal.
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4. Experimental Results

At each execution time, the robots are dispersed in ran-
dom positions of the simulation environment. The graphs
in figures 4 and 5 illustrate, respectively, the average fitness
value and the fitness value of the best individual of the pop-
ulation at each generation for each robot during 500 gener-
ations.
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Figure 4. Average population fitness at each
generation for each robot.

The graph (Figure 4) shows that the average population
fitness, with exception of Robot number 2, increase for all
robots. The effect of the remote mutation, caused by DGP
functioning when a message from the other robots is re-
ceived and accepted, produce a genetic variation in each
robot local population.

Differently from the other robots, robot number 2 had
not a good performance, because it stayed away for a long
period of time in a corner of the environment.
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Figure 5. Fitness value of the best individual
at each generation for each robot.

The performance graph of the best individual at each

generation for each robot is illustrated in Figure 5. The fit-
ness value of the best individual increases faster because
a genetic variation occurs any time a message from other
robots is received and accepted to mutate one individual
(from the t selected best) in the local population, according
to DGP rules.

4 4 6 3 1 5 6 3 3 1 4 5 4 4 6 5 7 1 6 3 5 7 2 6 5 2 6 1 6 5 6 6 7 7 3 6 5 1 5 6 6 7 3 5 7 3 1 7 7

Figure 6. The best individual structure at the
last generation of the robot 4.

Figure 6 is an example of how DGP represents each in-
dividual in the population. This Figure represents the best
individual structure at the last generation (500) of the robot
number 4. The numbers represent a function or a terminal
identification, according to Id. column in Table 1.

The advantage of using a linear representation is that the
genetic operators are applied to a vector containing only
numbers, instead of to tree structure as is usual in traditional
GP algorithm applications [7]. This characteristic helps to
improve the DGP’s performance.

The experimental results show that it is possible to build
a control system to be applied on EE using only a GP al-
gorithm. After a few generations the group of five robots
learned how to navigate along an unknown environment
avoiding obstacles.

A disadvantage of GP, common to other EC [3] tech-
niques, is that the definition process of the terminals and es-
pecially of the functions requires more attention and experi-
ence from the programmer. Functions and terminals develo-
ped for a particular problem may not apply to other kinds of
problems.

The set of functions and terminals must be designed to
be as comprehensive as possible, that is, with few modifi-
cations or even none, in such a way that it is possible to
use the same functions and terminals in many kinds of pro-
blems, only redefining the evaluation function.

5. Conclusions

In this paper was described an Evolutionary Control Sys-
tem (ECS) able to control a population of mobile robots.
The ECS has two main modules: the first one, called EMSS
(Execution, Management and Supervision System), is the
system responsible for managing all the evolutionary pro-
cess that takes place in an embedded fashion in each robot.
The second module, called DGP (Distributed Genetic Pro-
gramming), is an extension of classical Genetic Program-
ming algorithm to support the control system evolution for
the robots that are part of the mobile robots population.
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To test DGP algorithm one experiment using the Khep-
era Simulator was accomplished. The experiment was a
collision-free navigation task, in which a group of five mo-
bile robots must navigate through an unknown environment
avoiding obstacles, walls and other robots. The results show
that the remote mutation, caused by program transfer from
robot to robot, helps to increase the variability of the local
population at each robot. All robots learned how to navigate
along the environment avoiding obstacles.

In the experiment described in this paper, a population
of mobile robots autonomously reproduce with one another
while situated in their task environment. Its results show
that is possible to build a control system to be applied on
EE using only a GP algorithm.

Future works include experiments with ECS in other
problems in mobile robotics, such that, box pushing, and
predator and prey. With these experiments we intend to
evaluate how easy it is to change the task of the robots wi-
thout reprogramming the whole control system. These ex-
periments will be accomplished using a simulator and real
robots. The Eyebot [17] robots will be used for the exper-
iments. Eyebot is a kind of mobile robot developed to be
used in robot soccer.
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