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a b s t r a c t

Petroleum exploration is an economical activity where many billions of dollars are invested every year.
Despite these enormous investments, it is still considered a classical example of decision-making under
uncertainty. In this paper, a new hybrid fuzzy-probabilistic methodology is proposed and the implemen-
tation of a software tool for assessing the risk of petroleum prospects is described. The methodology is
based in a fuzzy-probabilistic representation of uncertain geological knowledge where the risk can be
seen as a stochastic variable whose probability distribution counts on a codified geological argumenta-
tion. The risk of each geological factor is calculated as a fuzzy set through a fuzzy system and then asso-
ciated with a probability interval. Then the risk of the whole prospect is calculated using simulation and
fitted to a beta probability distribution. Finally, historical and direct hydrocarbon indicators data are
incorporated in the model. The methodology is implemented in a prototype software tool called RCSUEX
(‘‘Certainty Representation of the Exploratory Success”). The results show that the method can be applied
in systematizing the arguing and measuring the probability of success of a petroleum accumulation
discovery.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Petroleum exploration is an economic activity plenty of deci-
sion problems involving risk and uncertainty. As economical and
technological resources are limited, managers of petroleum com-
panies frequently face important decisions regarding the best allo-
cation these scarce resources among exploratory ventures that are
characterized by substantial financial risk and geological uncer-
tainty. Few years ago, many petroleum companies improved their
exploration performance by using principles of risk analysis and
portfolio management. According to Rose (2001), in present days,
the adoption of standardized risk analysis methods are essential
to portfolio management, in order to optimize the allocation of
exploration capital.

There are a lot of activities involved in modern petroleum
exploration business. Tasks range from modeling geologic theories
and data acquisition to econometrics simulations and selection of
reservoir, drilling and completion technologies. In this work, we fo-
cus our attention to the problem of estimating the chance of suc-
cess of finding hydrocarbon on a given prospect. That is once an
appropriate geological model has been established and an explora-
tion area has been selected, the next step in petroleum exploration
is the identification of drilling prospect by geoscientists. This pro-

cess is critical and requires geotechnical expertise and creativity.
After the prospect has been identified, estimating the chance that
a producible hydrocarbon accumulation is present, is one of the
most important tasks in order to determine the prospect’s value.

For many decades of petroleum exploration ventures has been
dealt with probability theory as the formal tool to handle and rep-
resent uncertainty quantities (da Silva, 2000). Such representation
are usually expressed as a probability value, known as ‘‘probability
of success” (geological or economical), found by the combination of
other probabilities that represent, the assessment of geological fac-
tors as source rock, trap, reservoir and seal, considered individually
and combined by traditional and numerical methods as Monte
Carlo Simulation (Behrenbruch, Turner, & Backhouse, 1985;
Newendorp & Schuyler, 2000; Rose, 1992).

Despite the great progress in economical risk analysis and port-
folio management, the ‘‘probability of geological success”, i.e., the
discovery of a hydrocarbon accumulation in a given exploratory
prospect, is still a new and very hard area of research.

Uncertainty is intrinsically involved in all petroleum venture
predictions, and particularly in chance of discovery (Rose, 2001).
The problem is how to express the technical uncertainties realisti-
cally, and in a form that can be used in economic equations in order
to estimate the economical risk (Rose, 2001). Geologist suffer in
trying to reduce very complex and uncertain knowledge in just a
single few numbers that represent the exploratory chance of
success.
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There are extensive attempts in systematizing the process of
correctly estimate chance of success of finding hydrocarbon on a
given prospect (MacKay, 1996; Newendorp & Schuyler, 2000; Otis
& Schneidermann, 1997; Rose, 2001). But, as this process is done
by different geoscientists, in different geologic areas and under a
very competitive scenario, it frequently leads to optimistic or pes-
simistic bias in the prospectors estimative (Rose, 2001).

The bias is a very important problem in prospect risk assess-
ment. If the prospect chance of discovery or economic value are
contaminated with biased estimates, the exploration company’s
decision investments will lead to suboptimal economic perfor-
mance (Rose, 2001). The more relevant type of bias that affect
judgment under uncertainty are Overconfidence – predictive
ranges are too narrow, indicating that estimators are much less
accurate than they think they are; Overoptimism – prospectors
exaggerate magnitude of reserves or chance of success in order
to sell the deal; and Representativeness – analog based on small
sample size may not be statistically significant (Rose, 2001).

The fuzzy set theory has been used to represent and solve prob-
lems of petroleum evaluation. Chen and Fang (1993), Chen,
Osadetz, Embry, and Hannigan (2002) and Tounsi (2005) use fuzzy
logic and approximate reasoning to asses petroleum field in differ-
ent regions. In most of these studies, the geological factors are cou-
pled with multiple-criteria decision-making theory. However, this
approach has some inconveniences: the incorporation of a posteri-
ori knowledge as historical and direct hydrocarbon indicators data
cannot be easily incorporated in the system, and the difficulty to
incorporate qualitative expressions like ‘‘excellent”, ‘‘fair” or
‘‘poor” in the economical evaluation formulas.

In this paper, we present a new fuzzy-probabilistic methodol-
ogy capable to represent uncertain geological knowledge and the
prototype software tool called RCSUEX (”Certainty Representation
of the Exploratory Success”) that implements the methodology
(Schoeninger, 2003). The main purpose of this work is to provide
a method to deal with the problem of systematizing the process
of correctly estimate chance of success of find hydrocarbon on a gi-
ven prospect and to facilitate and to standardize the geologist
argumentation task. This fuzzy-probabilistic methodology is
founded in the following assumptions: risk can be qualified by
set of questions and answers concerning the decision problem
(Hardman & Ayton, 1997); when expressions like ‘‘moderate”
and ‘‘severe” are significant for the domain expert, then fuzzy sets
are more suitable for knowledge representation than ‘‘classical” or
crisp sets (Terano, Asai, & Sugeno, 1994); fuzzy logic is adequate to
represent uncertainty in petroleum geology (Chen & Fang, 1993;
Fang & Chen, 1990); the beta probability distribution is pertinent
to represent the certainty of success of a random variable in a
Bayesian approach (Groot, 1970).

The paper is organized as follows: in Section 2, describes how
risk analysis can be applied in the petroleum exploration process
focusing in the elements of the hydrocarbon system and estimating
the chance that a subsurface trap exist and if it is capable to store
and accumulate hydrocarbons. Section 3 presents how fuzzy rea-
soning can be used as a very efficient mechanism to deal with
incomplete and imprecise data, and knowledge expressed in vague
and linguistic terms that characterize the petroleum risk evalua-
tion problem. In this section, fuzzification, rule evaluation and
defuzzification are described separately and particularities specific
for the problem are discussed. Section 4 describes the process per-
formed in our system (RCSUEX) to map from a subjective fuzzy do-
main to a objective probabilistic domain. Section 5 explains the
importance and the methodology to incorporate historical data
and Direct Hydrocarbon indicators in order to improve risk assess-
ment. This section proposes a mathematical model that put to-
gether the objective perspective with the subjective one. Section
6 shows the application of the proposed method for a simple pros-

pect risk assessment. Section 7 gives conclusions and brief discus-
sion on the proposed methodology.

2. Risk analysis in the petroleum exploration process

The petroleum exploration process is highly coupled with geo-
logical models that explain the occurrence of hydrocarbon accu-
mulations. Geologists, geophysicists and seismologists apply high
levels of expertise to answers questions such as: what is the chance
of finding an accumulation in the prospect? What is the volume of
the accumulation? Which method should be used to recover the
petroleum from the field? Capturing this knowledge and repre-
senting it in a formal model is a permanent aim for knowledge
management in petroleum companies (Tounsi, 2005).

For many decades petroleum companies have assessed risky
projects involving uncertainties about positive monetary results
– predicting the distribution of financial gains or losses that may
result from the drilling of an exploration well through objective
procedures and principles of statistics, probability and utility the-
ories (Harbaugh, Davis, & Wendebourg, 1995). In this study, we fo-
cus our attention, evaluating geological factors (subjective data)
incorporated with statistical information (objective data). The
information used in this evaluation came from usual seismic data,
analogies and geological theories. Probability-analysis methods
have been developed which make use of widely available forms
of exploration information. Geophysical data, subsurface informa-
tion derived from well logs, and production data can be analyzed
by statistical methods to yield objective forecasts expressed as
probabilities (Harbaugh, Doveton, & Davis, 1977).

According to Otis and Schneidermann (1997) in 1989, Chevron
Overseas Petroleum Inc. developed a process to allow management
to compare a wide variety of global exploration opportunities on a
uniform and consistent basis. The final product was a continuous
process that integrates geologic risk assessment, probabilistic dis-
tribution of prospect hydrocarbon volumes, engineering develop-
ment planning, and prospect economics. The process was based
on the concepts of the play and hydrocarbon system. Our work is
also based in the play and hydrocarbon system concepts, but we
focus mainly in obtaining the probability of geologic success i.e.,
if a stabilized flow of hydrocarbons is obtained on test of a explor-
atory well.

The hydrocarbon system concept can be used as an investigat-
ing model for hydrocarbon discoveries as it describes the geologic
relationship between elements and processes since the play source
rocks, reservoir, and seal until the result as oil or gas accumula-
tions. Essential geologic elements of the hydrocarbon system are

� play source rock;
� reservoir rock and
� seal rock.

While the geologic processes of the hydrocarbon system are

� trap formation;
� genesis-migration and
� timing-synchronicity.

Information and data from each of these factors are collected
and analyzed by geoscientist and engineers that then consider
the ‘‘favorability” or the probability of success of each of these six
elements of the play concept. Multiplication of these probabilities
yields the probability of geologic success of the prospect (Otis &
Schneidermann, 1997). Obviously, this mapping from the qualita-
tive thought into a probabilistic number is a very hard task to geo-
scientists since all argumentation is subjective.
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According to Alexander and Lohr (1998), even considering
known facts and past experience, explorationists tend to be conser-
vative or optimistic when estimating chance of success. Projects
that have a moderate estimative (25–65%) chance of success are of-
ten successful about 35–75% of the time. While ‘‘high-risk” projects
that have a less than 20% estimated chance of success have found
oil in less then 5% of the time.

Taking into account only geologic reasoning and neglect the ob-
served frequency of success, means to ignore historic data from the
area concerning the geologic concept being studied. The same way,
it is a great mistake to observe only historical data and ignore col-
lected information as seismic, geologic argumentation and hydro-
carbon indicators.

The incorporation of a posteriori knowledge as historical and di-
rect hydrocarbon indicators data into the probability of geologic
success of the prospect brings the explorationists estimative closer
to the real chance of success.

3. Fuzzy expert systems

Risk assessment in petroleum exploration prospects is a process
that takes into account different geological and statistical informa-
tion, imprecise and incomplete by nature. Analyzing the expert
reasoning mechanism, we observe that the decision involves
aggregation of imprecision and incomplete variables through the
use of linguistic terms in a process called approximate reasoning
(Dubois & Prade, 1984).

Traditional symbolic expert systems fail to model this approxi-
mate reasoning and to deal with incomplete and imprecise data.

The fuzzy set theory and the fuzzy logic introduced by Gaines,
Zadeh, and Zimmerman (1984), Zadeh (1965), Zadeh (1971) and
Zadeh et al. (1975) seems to be the appropriate approach to model
human experts reasoning process much better than conventional
expert systems (Nafarieh & Keller, 1991). Among many advantages
of fuzzy set theory we can evidence: the ability to deal with ill de-
fined class boundaries; the ability to model approximate reasoning
decisions based in fuzzy linguistic variables (low, good, and high)
using fuzzy set operators (and, or); and the possibility of making
useable non-numeric (e.g. qualitative) information (Tounsi,
2005). All these evidences make the fuzzy approach a very efficient
mechanism to deal with an incomplete and imprecise data, and
knowledge expressed in vague and linguistic terms that character-
ize the petroleum evaluation problem.

In our system, we developed a Fuzzy Expert System to evaluate
the ‘‘favorability” or the probability of success of each of the six ele-
ments of the play concept. Each element (play source rock, reservoir
rock, seal rock, trap formation, genesis-migration and timing-synchro-
nicity) is evaluated individually by a series of fuzzy rules extracted
from a group of domain experts in a process described in the fol-
lowing subsections.

The Fuzzy Expert System uses fuzzy reasoning (also known as
approximate reasoning) as the inference process of formulating
the mapping from a given input to an output using a set of fuzzy
if–then rules (Jang & Sun, 1995). The mapping then provides a basis
from which decisions can be made. The process of fuzzy inference
involves in general three operations:

� Fuzzification: Translation from real world values to fuzzy values.
� Rule evaluation: Computing rule strengths based on rules and

inputs.
� Defuzzification: Translate results back to the real world values.

Mamdani’s fuzzy inference method is the most commonly seen
fuzzy methodology. Mamdani’s method was among the first con-
trol systems built using fuzzy set theory. It was proposed in 1975

by Ebrahim Mamdani (Mamdani, 1976). Mamdani-type inference
expects the output membership functions to be fuzzy sets. After
the aggregation process of rule evaluation operation, there is a fuz-
zy set for each output variable that needs defuzzification.

3.1. The fuzzification

Fuzzy set theory permits the gradual assessment of the mem-
bership of elements in a set and so offers a formalism to describe
such linguistic variables in the form of fuzzy sets. The concept of
grades of membership or the concept of possibility values of mem-
bership is used (Zadeh, Fu, Tanaka, & Shimura, 1975; Zadeh, 1989)
to represent the shades of meaning of such linguistic terms. The
membership defines how each point in the input space is mapped
to a given set. Membership value (or degree of membership) is
usually a real number between 0 (non membership) and 1 (full
membership). We write l(x) to represent the membership of some
object x from the universe of discourse X in the fuzzy set A, thus:

lAðxÞ : X ! ½0;1� ð1Þ

Any fuzzy set may be described by a continuous mathematical func-
tion or discretely by a set of pairs of values (numeric values of lin-
guistic variable, and corresponding grades of membership) (Tounsi,
2005) as

FA ¼ fðx;lAðxÞÞ j x 2 Xg ð2Þ

where lAðxÞ defines a grade of membership of variable x in the fuz-
zy set A.

The first operation in the Fuzzy Expert System is fuzzification,
which converts each piece of input data to degrees of membership
by a lookup in one or several membership functions. The fuzzifica-
tion operation thus matches the input data with the conditions of
the rules to determine how well the condition of each rule matches
that particular input. There is a degree of membership for each lin-
guistic term that applies to that input variable (Bogenberger &
Keller, 2001). In short, fuzzification makes the translation from real
world values to fuzzy world values using membership functions.

In petroleum evaluation it is often not easy to fix the input ele-
ments that determine the condition of the output variable, and in
many cases, the boundary between different classes of values of
an input element is very hard or even impossible to determine.
In such cases, fuzzy set theory can be applied to deal with the
uncertainty of the classification given by the explorationist. For
example, when asked to classify a qualitative variable, like”kind
of trap”, the geologist enters with the class of trap he thinks exists
in trap formation and with the certainty or confidence he has in
that response.

In order to deal with these non quantifiable input variables that
determine geological elements and processes of the hydrocarbon
system during the fuzzification operation, we classify the input
variables as categorical (nominal), ordinal and interval (or quanti-
tative). For each kind of variable we apply a slightly different fuzz-
ification operation.

3.1.1. Fuzzification of categorical variables
A categorical variable (sometimes called a nominal variable) is

one that has two or more categories, but there is no intrinsic order-
ing to the categories. For example, gender is a categorical variable
having two categories (male and female) and there is no intrinsic
ordering to the categories.

Some input variables in the hydrocarbon system concept mod-
eling are categorical in nature. For example, the kind of closure
used to determine the trap element can be classified as strati-
graphic, structural or combination trap. The different categories
of this categorical variable does not keep any ordered relation be-
tween each other and could be considered as independent singular
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variables (or singletons) and not fuzzy sets. But in many cases the
geologist does not have absolute certainty of its categorization. So,
in RCSUEX, when the geologist answer the class of a categorical
variable, he also supplies his level of confidence in the response
as a number between 0% and 100%. This confidence level becomes
the input for fuzzification of the variable. In cases of 100% confi-
dence in response, the degree of membership to the class is 100%
(full membership). For other confidence levels, the degree of mem-
bership to the class is given by the confidence level itself, but the
remainder is equally distributed among the other classes of the
variable. The justification for this decision is to allow the evalua-
tion of inference rules involving the other classes of the variable
(Schoeninger, 2003). In Fig. 1 shows the fuzzification of kind of clo-
sure where the geologist assess that a structural closure is involv-
ing the reservoir objective and of minimal adequate area with a
confidence level of 50% resulting in a 0.5 membership value. Note
that remainder of confidence is equally distributed between the
other two kind of closures.

3.1.2. Fuzzification of ordinal variables
An ordinal variable is similar to a categorical variable. The dif-

ference between the two is that there is a clear ordering of the vari-
ables even in the absence in many cases of a unit of measure to that

variable. Moreover, the spacing between the values may not be the
same across the levels of the variables. For example, the path vis-
ibility when assessing the migration factor is an ordinal variable
that can be categorized as poor, not-so-good, good and very good.
Despite we order the categories, there is not a unit of measure to
precisely quantify quality of the path visibility in the prospect
migration factor.

In the input interface of RCSUEX, if the variable is classified as
ordinal, the geologist uses a sliding-bar component, representing
real numbers between 0 and 100, to enter the ‘‘value” of the ordi-
nal variable. After that, the fuzzification is done based in this value
as shown in Fig. 2.

3.1.3. Fuzzification of rational variables
A rational or quantitative or numerical variable is similar to an

ordinal variable, except that we can associate an unit of measure to
the variable and the intervals between the values are equally
spaced. For example, the depth where we expect to find the source
rock can be categorized as shallow, medium or deep, but there are
a unit of measure (meters or feet) and a numerical value to associ-
ate with the variable. In this case, this numerical value is used to
calculate the membership value to the linguistic categories in the
usual way as shown in Fig. 3.
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Fig. 1. Fuzzification of a categorical variable with confidence level.
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3.2. Rule evaluation

The rules, also known as the knowledge base, are the core ele-
ment of the fuzzy expert system. Rules can be obtained based on
expert opinions and system knowledge. Generally, a fuzzy rule fol-
lows an IF <premise> THEN <consequent> format, including the
possibility to combine several premises with logical operators in
the form IF <premise 1> AND/OR <premise 2> AND/OR <premise
3>. . .THEN <consequent>.

Rule evaluation, based on fuzzy set theory, uses fuzzy operators
to perform logical operations such as the complement, intersec-
tion, and union of sets.

With the fuzzification of inputs, we can know the degree to
which the antecedent has been satisfied for each rule. In cases
where the antecedent of a given rule has more than one premise,
the fuzzy operator is applied to obtain one number that represents
the result of the antecedent for that rule. The fuzzy operator per-
form logical operations such as the complement, intersection,
and union of sets. In the RCSUEX system they are defined as
follows:

� Complement or logical NOT that corresponds to the degree of
truth of the membership to the complement of the set is defined
as

lAðxÞ ¼ 1� lAðxÞ ð3Þ

� Intersection is analogous to the logical AND operator and is
defined as the smaller of the memberships in the sets

lcombination ¼ MINðlA;lB;lC ; . . .Þ ð4Þ

where lA;lB;lC are the fuzzy membership value for premises A, B,
C and so on.
� Union or logical OR operator is defined as the larger of the mem-

berships in the sets.

lcombination ¼ MAXðlA;lB;lC ; . . .Þ ð5Þ

where lA;lB;lC are the fuzzy membership value for premises A, B,
C and so on.

The result of the logical operators is a number to be applied to
the output variable. If two different rules produce similar outputs a
further reduction method is necessary. The maximum method of
rule deduction takes the maximum degree of membership for the
output, since this corresponds to the union of two output sets.

3.3. Defuzzification

In most applications, crisp results are required instead of fuzzy
ones. So, usually the last operation in a Fuzzy Expert System is the
defuzzification, used to transform the fuzzy inference results into a
crisp output.

According to Jiang and Li (1996), defuzzification can be mathe-
matically interpreted as a mapping strategy, implemented by a
decision-making algorithm, from a fuzzy set F on an universe of
discourse X into a designated crisp value from the space X. It is ex-
pected that the crisp value is significant with respect to A, i.e., that
it best represents the fuzzy set A as

F�1ðAÞ : flAðxÞ j A 2 FðXÞ; x 2 Xg ! X: ð6Þ

Runkler (1997) assumed that the significant element can be deter-
mined from a fuzzy result by a human user, although multiple pos-
sibilities may exist. Applications usually work with the centroid
algorithm whose calculation is

F�1
COGðAÞ ¼

R
X lAðxÞ � xdxR

X lAðxÞdx
ð7Þ

As in our application each element of the petroleum system is as-
sessed in order to supply the success rate of occurrence of the ele-
ment, it seems appealing to interpret such probability with fuzzy
theory. Despite some confusion can be present in the way the def-
initions are understood, it is very important to distinguish fuzzy
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Fig. 3. Rational variable membership function.
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models from statistical models since they represent rather different
kinds of information (Dubois & Prade, 1993).

In the same way, Dubois and Prade (1993) stated that some
interpretations of fuzzy sets are in agreement with probability cal-
culus. There are many studies and different proposals of such inter-
pretations: Cheng and Agterberg (1999), in their paper defined
‘fuzzy probability’ in terms of fuzzy membership values and used
it to derive ‘fuzzy posterior probability’ of mineral deposits. The
model, as much probabilistic as fuzzy, uses a data-driven approach
for calculating fuzzy membership values.

Gettings and Bultman (1993) applied the fuzzy set theory for
quantification of favorableness for a mineral resource appraisal.
The possibility of each condition necessary for the formation of
the deposit was represented as fuzzy sets. The intersection of the
fuzzy sets measure the degree of simultaneous occurrences of
the necessary factors and provides a fuzzy favorability map of
the deposit occurrence. Carranza and Hale (2001) used a similar
technique to generate fuzzy predictive maps of gold mineralization
potential combining fuzzy sets of favorable distances to geological
features and favorable lithologic formations with a fuzzy logic
inference engine.

Porwal (2006) also used a data-driven approach in which the
theory of probability was used to calculate weights of evidence
for deriving fuzzy membership values. However, the fuzzy values
calculated do not represent probability of mineral occurrence but
only indicate favorability in a relative sense. The described model
then combines multi-class predictor maps and generate mineral
potential maps based on a Bayesian probability framework.

Chen and Fang (1993) attribute the following linguistic values
to an exploratory prospect as a whole, in terms of its favorability:
‘‘excellent”, ‘‘very good”, ‘‘good”, ‘‘fair” and ‘‘poor”. In RCSUEX imple-
mentation, there are a fuzzy inference system to evaluate the con-
dition of occurrence of each geological factor of the exploratory
prospect, regarding its possibility of occurrence or favorability.
The output variable of each inference system is interpreted as
favorability and is composed by the following linguistic expres-
sions: ‘‘favorable”, ‘‘encouraging”, ‘‘neutral”, ‘‘questionable” and

‘‘unfavorable”. Like probability, the variable range is between [0
and 1]. The defuzzification process uses the centroid method to
convert the possibility distribution associated with the defuzzified
output value with a probability distribution satisfying some condi-
tions and can be interpreted as a ‘fuzzy a priori probability’ or ‘fuzzy
subjective probability’. Fig. 4 shows the favorability fuzzy sets de-
fined for each geological factor.

As the favorability map is generated using the centroid of area
method by a knowledge-driven inference that depends on the
quality of the available data and the proper geologic modeling
for each factor, the favorability representation of each factor as a
probability distribution is much more appropriate to represent
the imprecisions and uncertainties of the process and to connect
to the data-driven step where historical data are incorporated into
the model. The process to transform the favorability map into a
probability distribution is explained in the next section.

4. Mapping from subjective favorability to probabilistic
distribution

In this section, we describe the process performed in our system
to map from a subjective fuzzy domain to a objective probabilistic
domain. This process in compound by three steps: the generation
of a uniform probability distribution associated with the favorabil-
ity of each geological factor; the combination of these probability
distributions through a Monte Carlo simulation to generate the
prospect probability as a whole; and finally the adjustment of
the simulated samples to a Beta probability distribution.

4.1. First step: generating a uniform probability distribution

The first step in this process corresponds to map the favorability
value of each geological factor obtained by the fuzzy inference en-
gine to an uniform probability distribution. The idea here is calcu-
late the probability distribution associated with the fuzzy subjective
probability interpretation. The uniform distribution was adopted as
an ad hoc alternative in order to simplify the computation of the
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Fig. 4. Favorability membership function for each geological factor.
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interval, but other probability distributions could be examined. In
our system, as we used symmetric trapezoidal membership func-
tion for each favorability fuzzy set described as

FðxÞ ¼

L ðaL�xÞ
a if x 2 ½aL � a; aL�

1 if x 2 ½aL; aR�
R ðx�aRÞ

a if x 2 ½aR; aR þ a�
0 if otherwise

8>>>><
>>>>:

ð8Þ

where ½aL; aR� is the core of F, and ðaL � aÞ; ðaR þ aÞ is the support of
F.

By this way, we map this favorability value to a uniform distri-
bution into the ½aL � a; aR þ a� interval, were the defuzzified output
value corresponds to the mean value of the interval. When the
favorability value belongs to two favorability fuzzy sets, an inter-
polation is necessary in order to generate the probability distribu-
tion interval as shown by Eq. (9) and Fig. 5

g ¼
x� a1Rþa1L

2

� �
a2Rþa2L

2

� �
� a1Rþa1L

2

� � ð9Þ

where x is the favorability value, ½aiL; aiR� is the core of each favor-
ability fuzzy set and g is the proportionality constant used to calcu-
late the interpolated uniform probability distribution interval ½l;u�
as follows:

l ¼ ða1L � a1Þ þ g½ða2L � a2Þ � ða1L � a1Þ�
u ¼ ða1R þ a1Þ þ g½ða2R þ a2Þ � ða1R þ a1Þ�

ð10Þ

In the following example, this calculation is shown for an hypothet-
ical case illustrated in Fig. 5. Suppose that a favorability value of
x ¼ 0:55 was obtained from the defuzzification step of the fuzzy
inference system and that the ‘‘neutral” and ‘‘encouraging” trapezoi-
dal fuzzy sets are defined as follows:

neutral ¼
a1L ¼ 0:45
a1R ¼ 0:55
a1 ¼ 0:15

8><
>:

encouraging ¼
a2L ¼ 0:65
a2R ¼ 0:75
a2 ¼ 0:15

8><
>:

then g is

g ¼
0:55� 0:55þ0:45

2

� �
0:75þ0:65

2

� �
� 0:55þ0:45

2

� � ¼ 0:25

Now we can calculate the interpolated uniform probability distribu-
tion interval ½l;u� as

l ¼ ð0:45� 0:15Þ þ 0:25½ð0:65� 0:15Þ � ð0:45� 0:15Þ� ¼ 0:35
u ¼ ð0:55þ 0:15Þ þ 0:25½ð0:75þ 0:15Þ � ð0:55þ 0:15Þ� ¼ 0:75

4.2. Second step: sampling generation and Monte Carlo simulation

Bearing in mind that a prospect will be a success if and only if
all the geologic factors will be successful, we combine the geologic
chance factors of the prospect as usually made by the petroleum
industry (Rose, 1992), using the Monte Carlo simulation technique
in order to get the joint probability of success. Doing so, we get a
non-parametric distribution of all possible chance of success mea-
sures in the evaluated prospect.

In the implementation of this step in RCSUEX we generate 1000
pseudo-random numbers with uniform probability distribution in
the ½l; u� interval determined by the previous step for each geologic
factor. Running a Monte Carlo simulation with these samples of
success for each geological factor and plotting the result as a histo-
gram we can observe the success probability distribution for the
prospect as a whole as shown in Fig. 6.
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Fig. 5. Generating a uniform probability distribution.
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4.3. Third step: adjusting to a Beta probability distribution

In order to get a parametric probability distribution from the
data simulated in the previous step, we decided to adjust the
non-parametric distribution to a Beta probability distribution that
models the favorability of the previous steps to an a priori probabi-
listic interval.

We state that this model is formally valid because the favorabil-
ity interval ½u; l� is a uniform probability distribution that is a par-
ticular case of the Beta distribution with a ¼ b ¼ 1 in Eq. (11) as
shown by Rohatgi (1976).

The Beta probability distribution is defined as

Bða;bÞ ¼
Z 1�

0þ
ta�1ð1� tb�1Þdt ð11Þ

and the probability density function (pdf) is

f ðxÞ ¼ ðx� aÞa�1ðb� xÞb�1

Bða;bÞðb� aÞaþb�1 a 6 x 6 b; a;b > 0 ð12Þ

where a and b are the shape parameters, a and b are the lower and
upper bounds, respectively, of the distribution.

The a and b parameters are estimated from the result of the
Monte Carlo simulation using the Maximum Likelihood Estimation
method by solving the following set of equations

wðâÞ � wðâþ b̂Þ ¼ 1
n

Xn

i¼1

log
Yi � a
b� a

� �
ð13Þ

wðb̂Þ � wðâþ b̂Þ ¼ 1
n

Xn

i¼1

log
b� Yi

b� a

� �
ð14Þ

5. Incorporating historical data and direct hydrocarbon
indicators

5.1. Historical data

Frequently oil exploration companies invest in perforation of
wildcat wells that are supported by analogous geologic concep-
tions, either in petroliferous basin-scale, as in system or play scale.
When this happens, it is usual to use the historical observed fre-
quencies of success of pioneering wells as good estimate in the rep-

resentation of the certainty of the success of a prospect that has
similar conception. However, this classical (frequencist) statistics
representation implies the assumption that all relevant informa-
tion is contained in the past history of analogous drilled wells. Such
assumption would only be valid when assessing the value of con-
ceptual prospects or in the petroliferous play-scale, which is not
this case, as we are evaluating the perforation of a pioneering well
in a specific position in the prospect.

Conversely, to affirm that all relevant information is repre-
sented only in the subjectivity of the geologic argumentation that
support the prospect, implies to assume that the observed frequen-
cies of success does not have any value. Such assumption would
only be valid when assessing a completely new geologic concep-
tion where no historical information is available.

These two previously described situations show the objective
(frequencist or a posteriori) approach and the subjective (a priori)
approach.

In RCSUEX we implemented a mathematical model that put to-
gether the objective perspective with the subjective one. da Silva
(2000) suggests to use a Bayesian model, where Beta distribution
is the conjugate prior of the Bernoulli distribution. The reason
why one would consider using the Beta distribution as the prior
is because the Beta distribution and the Bernoulli distribution form
a conjugate pair, so that the posterior distribution is still a Beta.
The considered model is supported by the following theorem
(Groot, 1970):

Theorem 1. Let W1; . . . ;Wn be observations from a Bernoulli distri-
bution unknown success probability H. Also suppose that a Beta
distribution with parameters a and b is prior distribution for the
unknown parameter H with a > 0 and b > 0. Then, the posterior
distribution of H when Wi ¼ wiði ¼ 1; . . . ;nÞ is still a Beta with
parameters ðaþ dÞ and ðbþ n� dÞ, where d ¼

Pn
i¼1wi.

In our application:

� w1; . . . ;wn correspond to the historical observations of n pio-
neering wells that supposedly would have been drilled on the
basis of analogous geologic conceptions, with d equal to the
number of successes (discovered), representing the objective
knowledge (frequencist approach) about certainty of discover-
ies; wi ¼ 1, in case of a successful discovery; wi ¼ 0, when we
have a dry well (or a not economic discovery);
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Fig. 6. Success probability distribution after the Monte Carlo simulation.
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� the H parameter is the probability of a pioneer, to be drilled
with analogous geologic conditions of already drilled wells, to
discover an oil field, representing the knowledge about the cer-
tainty of the discovery;

� the prior Beta distribution of H represents the subjective (a pri-
ori) knowledge (geologic and fuzzy) about the certainty of the
discovery; and

� the posterior Beta distribution of H represents the subjective
knowledge compound with objective (a posteriori) knowledge,
according with Theorem 1.

The greater and significant the historical data, the bigger the
weight of objective information in posterior representation. Con-
versely, in new exploratory areas or when using new geologic
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Fig. 7. Success probability distributions when incorporating historical observations.
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Fig. 8. Success probability distributions when incorporating DHI information.
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models, with few historical data, greater will be the weight of prior
(subjective) representation.

The following figure shows a brief example of this model imple-
mented in RCSUEX. In Fig. 7a we can see the histogram of the suc-
cess probability distribution for the prospect as result of subjective
risk evaluation with fuzzy reasoning. Fig. 7b shows the posterior
distribution obtained when the subjective model is conjugated
with historical observations from 10 geologic analogous pioneering
wells of which 4 was successful. In this case, we can observe that
the average success rate grows up from 0.06 to 0.099. Fig. 7c shows
the posterior distribution obtained when the same subjective mod-
el is conjugated with historical observations from 100 geologic
analogous pioneering wells of which 40 was successful. In this
case, we can observe that the average success rate grows up from
0.06 to 0.25, demonstrating the weight of the sample size in objec-
tive information.

5.2. Direct hydrocarbon indicators

Exploratory technologies and advances in seismic reflection
imaging for direct identification of hydrocarbons, known as DHI
– Direct Hydrocarbon Indicators, have becoming widely applied
by petroleum industry as one of the most important elements in
allowing companies to explore deepwater, since they often reduce
geological risk to acceptable levels. They are based in geochemical
principles (Belt & Rice, 2000) and mainly in geophysical analysis as

the amplitude-versus-offset (AVO) (Rudolph, Fahmy, & Stober,
1998).

The same model described in previous subsection can be used
to incorporate knowledge from DHI technologies as objective
information to obtain the Beta posterior distribution of certainty
of discovery. The weight of historical information is replaced by
the weight of DHI information in the Bayesian model.

The weight of DHI is defined by the sequence of observations of
Bernoulli samples w1; . . . ;wn related with observation of n pioneer-
ing wells that hypothetically would be drilled based in DHI with
the same intensity I and with d occurrence of success. wi ¼ 1, in
case of a successful discovery; wi ¼ 0, when we have a dry well
(or a not economic discovery).

Here, I is defined as the linguistic expression that defines the
geologic judgment about the DHI support for the prospect. In
RCSUEX, we consider the following relationship between intensity
I of DHI and the number of successful occurrence d in the sequence
of n ¼ 100 hypothetical observations:

� I ¼ very weak) d ¼ 18
� I ¼ weak) d ¼ 36
� I ¼moderate) d ¼ 54
� I ¼ strong) d ¼ 72
� I ¼ very strong) d ¼ 90

The following figure shows a brief example of incorporation of
DHI implemented in RCSUEX. In Fig. 8a we can see the histogram
of the success probability distribution for the prospect as result

Table 1
Input variables, linguistic terms and system elements in the simple uncertainty model

Input variable Linguistic terms Geologic
factor

Geothermal gradient Low, good, high Source rock
Coverage Small, ideal, big
Organic content Poor, ideal, too much
Maturity Low, ideal, high
Distance to a nearby producing

well
Very near, near, middle, far,
very far

Net-to-gross ratio values Low, moderate, high Reservoir
rockBurial depth Small, good, very good

Control wells Few, moderate, a lot
Porosity Poor, not-so-good, good, very

good
Reservoir continuity Low, moderate, high
Distance to a nearby producing

well
Very near, near, middle, far,
very far

Effective thickness Low, moderate, high Seal rock
Predicted reservoir pressure Low, moderate, high
Seal continuity Low, moderate, high
Seismic control of seal Yes, no
Distance to a nearby producing

well
Very near, near, middle, far,
very far

Path visibility Low, good, very good Migration
Pod distance Near, moderate, far
Distance to a nearby producing

well
Very near, near, middle, far,
very far

Quality of seismic grid Poor, good, very good Trap
Kind of trap Structural, stratigraphic, mix,

hydrodynamic
Control of velocity model Poor, good, very good
Sensitivity to depth conversion Poor, good, very good
Distance to a nearby producing

well
Very near, near, middle, far,
very far

Geochemical modeling Yes, no Synchronicity
Confidence level in established

lithology and age
Low, moderate, high

Critical moment Yes, no
Hydrocarbon in similar age traps Few, moderate, many
Distance to a nearby producing

well
Very near, near, middle, far,
very far

Table 2
Hypothetical prospect input variables and favorability evaluation

Input variable Value Evaluation

Geothermal gradient 150 �C
Coverage 4300 m Source rock
Organic content 10% Encouraging
Maturity 450 �C [57.54–

93.77]
Distance to a nearby producing well 4.5 km

Net-to-gross ratio values 85%
Burial depth 3700 m Reservoir

rock
Control wells 3 Encouraging
Porosity 22 [56.58–

93.29]
Reservoir continuity 0–100 level = 70
Distance to a nearby producing well 4.5 km

Effective thickness 100 m
Predicted reservoir pressure 4300 psi Seal rock
Seal continuity 0–100 level = 80 Neutral
Seismic control of seal No [39.43–

79.43]
Distance to a nearby producing well 4.5 km

Path visibility 0–100 level = 95 Migration
Pod distance 1.5 km Favorable
Distance to a nearby producing well 4.5 km [58.47–

94.23]

Quality of seismic grid 200 m
Kind of trap Structural (confidence

level = 100%)
Trap

Control of velocity model 0–100 level = 70 Neutral
Sensitivity to depth conversion 0–100 level = 50 [37.5–77.5]
Distance to a nearby producing well 4.5 km

Geochemical modeling Yes
Confidence level in established

lithology and age
0–100 level = 90 Synchronicity

Critical moment Yes Encouraging
Hydrocarbon in similar age traps 15 [57.05–

93.52]
Distance to a nearby producing well 4.5 km
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of subjective risk evaluation with fuzzy reasoning. Fig. 8b shows
the posterior distribution obtained when the subjective model is
conjugated with a very weak DHI indication. In this case, we can
observe that the average success rate grows up from 0.06 to
0.127. Fig. 8c shows the posterior distribution obtained when the
same subjective model is conjugated with a moderate DHI indica-
tion. In this case, we can observe that the average success rate
grows up from 0.06 to 0.329, demonstrating the weight of the
DHI intensity in objective information.

6. An illustration of RCSUEX for a simple prospect risk
assessment

6.1. Structure of RCSUEX

A risk analysis with RCSUEX is separated into three stages,
namely:

(1) Defining variables, fuzzy sets and rules for each one of the
six geologic factors and processes of the hydrocarbon system
(source rock, reservoir rock, seal rock, trap, migration and
synchronicity) according to the petroliferous model con-
ceived by the domain experts;

(2) Evaluate the subjective probability perspective by assigning
a value for each variable that composes the petroliferous
model;

(3) Evaluate the posterior probability, by incorporation of his-
torical data and DHI information.

These stages are selected through the menu bar in the user
interface. The first stage is available only to users with privileged
access rights, usually a team of company domain experts, that

are responsible by generating the uncertainty petroliferous model
that express geologic knowledge about the play system. Once the
uncertainty model has been defined, explorationist users can select
the petroliferous model and execute the other two stages, as well
as visualize and print the systems variables, rules, outputs and
reports.

6.2. The uncertainty petroliferous model

In this simple prospect example, a highly experienced geologist
modeled the knowledge of a hypothetical play system. In order to
accomplish this task, the modeler defined linguistic variables he
believes are determinant in the reasoning process about the favor-
ability of each element of the petroleum system. The linguistic
variables are groups of fuzzy sets with partially overlapping mem-
bership functions. For each linguistic variable, the expert also de-
fined linguistic terms. Linguistic terms are subjective categories
for the linguistic variable. For example, for linguistic variable
porosity, the domain set T (porosity) may be defined as follows
(Tounsi, 2005):

T ðporosityÞ ¼ fvery good; good;not so good;poorg

The linguistic input variables that supposedly influence each of sys-
tem elements and their set of linguistic terms in its domain set are
shown in Table 1.

The linguistic variables and fuzzy sets for each input variable
was defined by the expert according with his knowledge about
the most representative factors in petroleum evaluation. Note that
some of these variables can be expressed by numeric values and
are classified as interval variables (e.g. Geothermal Gradient). Other
variables are just qualitative ordered variables and there is not a
unit of measure to value them (e.g. Path Visibility). Some variables
are ‘crispy’ in the sense that have a well defined value, as is the
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Fig. 9. Success probability distributions generated by RCSUEX for an hypothetical prospect with historical data and DHI information incorporation.
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case of presence or absence of Geochemical Modeling when evalu-
ating the Synchronicity Element.

Just after having defined the linguistic variables, the linguistic
terms and its membership functions, the exploration expert de-
fines a set of fuzzy inference rules for each geologic factor. In this
example, he builded a preliminary set of 29 rules for the Source
Rock Element, 31 rules for the Reservoir Rock, 21 rules for Seal
and Trap, 13 rules for Migration and 18 rules for Synchronicity.
In order to help tuning the system, each rule has a weight that con-
sider its importance and coverage in determining the favorability
of each element. Some examples of rules used in our system:

IF Organic Content IS Poor AND Distance to a nearby producing
well IS Far THEN Source Rock IS Questionable (W = 1.0);

IF Geothermal Gradient IS Good AND Coverage IS Ideal AND Or-
ganic Content IS Ideal AND Distance to a nearby producing well IS
Very near THEN Source Rock IS Favorable (W = 1.0);

IF Coverage IS Small THEN Source Rock IS Unfavorable (W = 0.5).
As previously shown, the output variable of each inference sys-

tem is interpreted as favorability and is composed by the following
linguistic expressions: ‘‘favorable”, ‘‘encouraging”, ‘‘neutral”,
‘‘questionable” and ‘‘unfavorable”, whose membership function
has been presented in Fig. 4.

In Table 2 we show the values taken by the input variables
when evaluating each Geologic Factor in a hypothetical prospect
submitted to RCSUEX. The third column gives the favorability eval-
uation in terms of most adequate linguistic expression and uniform
probability interval.

The chance factors of Geologic Factors of the prospect are com-
bined using the Monte Carlo simulation technique in order to get
the prior joint probability of success. In Fig. 9a we present the his-
togram of success probability distribution for the hypothetical
prospect as a whole. In this case, we have a 11.09% prior Beta mean
probability of success. Supposing that for this hypothetical pros-
pect we have 6 pioneering wells in the same play area, 2 of each
have discovered accumulations, Fig. 9b shows the posterior Beta
probability distribution with average success rate of 13.36%. When
incorporating DHI information to this evaluation, if we consider a
weak DHI support for the prospect, with d ¼ 18 for n ¼ 100, we
can observe in Fig. 9c that the average success rate grows up to
27.64%.

When this evaluation was presented to a team of experienced
explorationists of the company, their opinion is that feel comfort-
able with the variables and the rules that express the qualitative
knowledge about prospect appraisal and that the result obtained
by the system was very near with their own judgment about the
favorability of the hypothetical prospect.

7. Conclusions

In this paper, we have presented a new fuzzy-probabilistic rep-
resentation of uncertain geological knowledge where the risk can
be seen as a stochastic variable whose probability distribution
counts on a codified geological argumentation. The risk of each
geological factor is calculated as a fuzzy set through a fuzzy system
and then associated with a probability interval. Then the risk of the
whole prospect is calculated using simulation and fitted to a beta
probability distribution. Finally, historical and direct hydrocarbon
indicators data are incorporated in the model.

The hybrid fuzzy-probabilistic approach provides a strong mod-
eling framework for a consistent and systematic utilization in
argumentation of prospect appraisal. The fuzzy approach can deal
with incomplete data and imprecise information typical in the
exploratory domain. Observed frequencies of success coming from
historical observations and direct hydrocarbon indicators are
incorporated in the model.

The application of the theory of fuzzy sets to model the explor-
atory reasoning using linguistic terms allows to better understand
the decisions and uncertainty concerned with the prediction of
hydrocarbon accumulations. The process of definition of input
variables and elaboration of rules permits knowledge and expertise
aggregation by many company specialists and favors the treatment
of more critical uncertainties.

We proposed that considering the fuzzy expert system output
as favorability risk for each geological factor and associating it with
probability intervals allows the connection between the fuzzy geo-
logic interpretation and the probabilistic approach. With favorabil-
ity of success now in the probabilistic domain, we showed how to
use Bayesian probability theory in order to put together the objec-
tive perspective with the subjective one using the Bayesian model
of Bernoulli distribution conjugated with Beta distribution, so it
can be calibrated by comparisons with portfolio outcomes.

The system was applied in a simple hypothetical prospect
example in order to evaluate the application of methodology.
The proposed system is geologically sound and first results agreed
with expected probability assessed by company experts. As
chance is expressed numerically it can be directly used by corpo-
rate systems into economic analysis of exploration ventures. In
the future we expect to apply the system on real petroleum
prospects.
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