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Abstract

We study the effectiveness of cooperative behavior in a society of interacting agents. After reviewing the problem and
defining the concept of swarm intelligence, we examine collective behavior of many-body active clusters through a task to
gather pucks in the field. In this study, we used a robot with a simple structure which has a driving system and the simplest
interacting means; a light and some sensors. The effectiveness of group behavior was studied under various (homogeneous,
localized) puck distributions with real experiment, simulation, and analysis. To evaluate the efficiency of group behavior,
we examined the scaling relation between the task completion time and the number of robots, and the relation between the
interaction period and the efficiency of group. We found that a cooperation between agents by a simple interaction is very
efficient in enhancing the performance of the group compared with independent individuals.

Keywords: Cooperative behavior; Multi-robots; Swarm intelligence

1. Introduction

Many kinds of fish and birds live in a group [1].
Social insects such as ants and bees establish well-
ordered societies even in the absence of particular in-
telligence of the individuals [2]. Multi-cellular living
beings are founded on cooperations of cells. In these
cases, each element does a simple task by respond-
ing to local conditions without any central control.
But the whole system exhibits complex functions. It
is interesting to study the mechanism that a cooper-
ation by many simple elements creates qualitatively
new behaviors. Many researchers have studied such
systems, e.g. the collective behavior of ants [3-6]
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and the collective motions of animal clusters [7,8]
have been explained by mathematical models. Exper-
imental studies have also been performed to realize
such systems artificially by using a distributed robotic
system.

Since Walter [9] showed the complex behavior of
two robots which had a simple interaction, some ex-
perimental studies have been made by using a group
of autonomous robots [10-12]. It was discussed that
even a robot which was composed of simple interac-
tions between each part and the external coped with the
environment just like having an intelligence [13,14].
But there are few researchers to understand their be-
haviors quantitatively. The purpose of our study is to
investigate the collective behavior and the efficiency
of active elements which have the simple architecture
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when they act as a group. To investigate the effective-
ness of swarm, we picked up a task to collect pucks
distributed in the field by interacting robots. This task
looks like the foraging behavior of ants, but the move-
ment and interaction of elements are more simplified
than ants. It is known that ants follows instantaneous
pheromone gradient (osmotorotaxis). The fundamen-
tal osmotorotaxic information is measured by the dif-
ference in pheromone concentration between the two
antennae. This sensor information is translated to a
response in motion. In our experiment, each robot
usually moves straight in a finite field. When a robot
encounters a puck, it emits light to broadcast its loca-
tion to other robots and carries a puck to their home.
The other robots follow the gradient of the light field.
This simplification enables us to analyze their behav-
ior quantitatively.

In Section 2, we define the effectiveness of
cooperative behavior. It is called swarm intelligence.
The efficiency of interacting elements is confirmed
by both experiment and computer simulation in
Sections 3 and 4, and their behavior is studied ana-
lytically in Section 5.

2. Collective behavior and swarm intelligence

Collective behavior and effectiveness of distributed
autonomous elements have been studied in many
different disciplines: behavioral ecology [3.4], nonlin-
ear science [5,6], artificial intelligence, and robotics
[11,12]. The behavior that emerges by interacting
elements is called “swarm intelligence” [15,16]. The
system is composed of N autonomous units that act
asynchronously in an environment. Beni claimed that
the swarm intelligence is a function which emerges
from interactions among N units only when N ex-
ceeds a critical number N.. The definition of swarm
intelligence by Beni is represented in Fig. 1(a). The
relation between the number of elements N and the
amount of useful work W has a nonlinear feature due
to the presence of a critical number in N. Here it
is possible to generalize this definition. In case that
the relation between N and W (N-W characteris-
tics) is nonlinear, the system should be included as
“swarm intelligent systems”. Let W(N) denote the

The amount of effective work W

The number of agents N

Fig. 1. Concept of swarm intelligence. (a) Beni’s definition. The
system composed of N units emerges a function only when N
exceeds a critical number M. (b) Generalized definition. Emer-
gence of swarm intelligence is defined as W(N) > Wp(N).
Here W(N) denotes the amount of work achieved by N in-
teracting agents, and Wo(N) denotes the work achieved by N
independent agents.

amount of work achieved by N interacting agents, and
Wo(N) denote the work achieved by N independent
agents. Emergence of swarm intelligence is defined
as W(N) > Wy(N), ie., the work performed by a
system of N interacting agents is larger than the plain
sum of N individuals without interaction. So the pos-
sible relation between the number of elements and the
amount of work drawn such as in Fig. 1(b) would also
be considered as the swarm intelligence. For many
kinds of tasks, Wo(N) is simply proportional to N.
The swarm intelligent system should have nonlinear
characteristic in W(N). In the case of Fig. 1(a), the
presence of the critical number in N may come from
nonlinear bifurcation or from phase transition-like
phenomena. In such a case an assembly of inde-
pendent elements does not exhibit effective works
(order), implying Wy(N) = 0 for all N. Therefore we
insist that in both cases nonlinearity in N-W charac-
teristics is essential for the effectiveness of collective
behavior.

3. Experiment

In this study, we assumed a simple interaction be-
tween each robot, and performed experiments with
real robots. The shape of robot that was used in this ex-
periment is shown in Fig. 2. Its size was 9.6 cm width
x 6cm length x15cm height. It is driven by a pair
of DC motors. It has two fixed arms and mechanical
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PHOTO
REFLECTOR
PUCK DETECTOR {at the bottom)
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DC MOTORS

IR SENSOR (at the bottom)

Fig. 2. The figure of the robot used in this study: above: Photograph of robot; bottom: schematic drawing of the robot.

switches equipped at the tip of each arm. They are left switch touches something, the right motor rotates
used as touch sensors to avoid colliding with boundary in reverse. The period that the motor rotates in reverse
walls and other robots. When the switch is turned on, is constant and the robot turns about 60° for this pe-

the motor on the opposite side rotates in reverse: if the riod. As a result, the robot can avoid colliding with
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Fig. 3. Example of movement. A robot which meets a puck radiates light for a short period. After that, it moves to home which

radiates IR. Another robot which has no puck reacts to the light.

boundary walls and other robots. A light on the top is
used to indicate its place with regard to other robots.
The robot has a pair of photo sensors and a pair of IR
sensors. The photo sensors are used to find out other
robots and the IR sensors are used to lead the robot
to the center of the field [17]. A photo reflector at the
bottom is used to recognize the color of the field.

Each robot has two modes: searching mode and
homing mode. In searching mode, each robot moves
straight unless it meets a puck, other robots and wall.
When the robot encounters a puck, robot stays there
and turns on its light for a short period. We call this
“interaction period”. Other robots which have no puck
react to this light and turn their directions toward the
light by using a pair of photo sensors. Thus the robot
follows the gradient of light field.

After the interaction period, the robot which has a
puck turns off its light and changes its mode to homing
mode. In homing mode, the robot moves toward the
IR-LED array at the center of the field using their two
IR sensors. When it knows that it has arrived home
by using the photo reflector, it changes the direction
randomly, and again searches for pucks. Fig. 3 shows
an example of their movement.

The field for this experiment was 190 x 190cm
and its surface was black. The boundary had a wall.
There was a white square and IR-LED array at the
center of the field. We will call this square “Home”.
The total amount of pucks used in this experiment

was 32. The size of a puck was 4 x 4 x 4 cm. Various
kinds of distribution are possible. We chose two types
of distribution in this experiment: the homogeneous
field and the localized field (Fig. 4). The interaction
periods were O's (no interaction) and 30 s. Fig. 5 shows
a photograph of the experiment.

At the start of experiment, the robots were placed
in the center of the field, each pointing to a different
direction. The experiment continued until all pucks
were collected to the home. Fig. 6 shows a temporal
evolution of collected pucks. Each plot is the average
of three trials. In case that pucks were distributed ho-
mogeneously, it takes much time to complete the task
when there is an interaction (Fig. 6(a)). On the other
hand, in case that pucks were distributed locally, all
pucks were collected faster when there is an interac-
tion (Figs. 6(b) and (c)) also show that increasing the
number of robots was effective.

4. Simulation

To confirm the effectiveness of the collective behav-
ior of robots in various situations, we simulated their
movements by a computer simulation.

The state variables of a robot are the position vec-
tor r, and its heading direction 6. The internal states
of a robot are classified into two main states: search-
ing and homing mode; and two substates: avoiding
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Fig. 4. The distribution of pucks which were used in this experiment: a homogeneous field and a localized field. Total amount of
pucks were 32.

Fig. 5. The photograph of experiment. There is a home at the center of field. It always radiates IR. As robots recognize their
existences by lights, the experiments were made in the dark room.
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Fig. 6. Temporal evolution of collected pucks for experiments. In
case that pucks were distributed homogeneously, no interaction
is more effective. But in case that the distribution was localized,
robots collect pucks effectively under the interaction.

and following state. The transitions between different
states are initiated by sensor inputs. Therefore the next
state of the robot is determined by its present state
and sensor inputs. Each robot moves in its heading
direction with a constant speed unless it is changing
heading directions. Heading changes occur only in the
beginning of each state.

On computer simulation, we assumed three types
of distributions of pucks: homogeneous, localized in
25% area of the field and localized in 1% area of
the field (Fig. 7). The total amount of pucks was 60.
As an initial condition, the robots were placed in the
center of the field, each pointing to a different di-
rection. It was assumed that the shape of robot was
circular and its diameter was 10cm. When it col-
lided with other robots and walls, it turned about 60°
like a real robot. We took into account noise of sen-
sory input and the environment in real experiment.
Thus the heading dynamics is defined as, 8,1 =
6, £ 60 + A8, where A9 is a random variable uni-
formly distributed within (-5, +5) degrees. The sign
of the second term in the left hand side is uniquely
determined by whether the left or right sensor de-
tected signal. Fig. 8 shows the trajectories of robots.
It shows the trajectories by five robots until 90% of
all pucks were collected. In field 1, we know that the
work without interaction was finished faster because
the density of plots are low (Fig. 8(a)). In case that
there are interactions, we observe many circular pat-
terns (Fig. 8(b)). This is because the robots which
have no puck were attracted and went round a robot
which encountered a puck. In field 3, the density of
plots are high under no interaction (Fig. 8(c)). The
probability to meet pucks was low because the pucks
were placed locally. So it took much time until the
task was finished. On the other hand, we know that
the futile movements were reduced by the interactions
(Fig. 8(d)).

Fig. 9 shows the temporal evolution of puck collec-
tion in the case of five robots. Each plots are the av-
erage of 20 trials. The interaction periods were 0 and
100s. We know that the interaction is not effective in
field 1, but is effective in fields 2 and 3. These results
are essentially the same as the experiment. We know
that the temporal evolution of puck collection is well
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Fig. 7. The fields which were used in computer simulation. Field 1: homogeneous; field 2: localized in 25% area of the field; field

3: localized in 1% area of the field.

fitted by an exponential function in field 1, while by
a linear function in fields 2 and 3.

We measure the task completion time from these
figures. But the dispersion of the task completion
time is large in each case. We define the completion
time T such that 90% of all pucks were collected to
home in this study. Fig. 10 shows the relation between
the number of robots N and the task completion
time 7.

Fig. 10(a) shows the task completion time 7 as a
function of N in log—log plot for robots without inter-
action and Fig. 10(b) shows the case with interaction.
Note that the task completion time 7 and the number
of robots N have power law relation in this figure:

T ~ N*.

The exponent 8 depends on the interaction period. The
relation between interaction period and exponent 8 is
shown in Fig. 11. 8 = —1 (dashed line in this figure)
means that the completion time and the number of
robots are inversely proportional which is expected if
each robot works independently. If the exponent 8 is
less than —1, it implies that the group is more effective
for the task.

Here, we chose a specific initial condition of robots.
We also simulated the case that the robots were placed
randomly in space. Also it was confirmed that the task
completion time and the number of robots have power
law relation. In this case, the exponent S was almost
same but the coefficient was different.

5. Discussion

We showed the relation between the number of
robots and the efficiency of group through the task
to gather pucks in the field. If there is no interaction
between each robot, their working ability is in propor-
tion to a number of robots. But if there are interac-
tions, their efficiency as a group depends on the puck
distribution. In case of the field which is extremely lo-
calized, robots can improve their working ability due
to their interactions.

If we assume the amount of work per unit time,
i.e,, 1/T, we obtain the relation shown in Fig. 12.
This figure implies that our system emerges the swarm
intelligence which is generalized in this study.

Fig. 11 shows the power law exponents change
from —1 to —1.8 as a function of the interaction
period. We evaluate these results by an analytic ap-
proach. The rate equation for the task accomplishment
can be written as

3_1: _ | —{finding rate} x {transporting rate}, (1)
3t | —f(P,N)N, (2)

where P is the total amount of the pucks that re-
mained in the field, and N is the number of robots.
The rate of change in P is a multiple of two fac-
tors: the rate of finding pucks in the searching mode,
f(P,N), and the transporting rate of pucks under
the homing mode. f(P, N) is a function of P, N,
and the spatial distribution of pucks. The transporting
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Fig. 8. The trajectories of five robots: (a) the case of no interaction in field I; (b) the case of 100 interaction in field 1; (c) the case
of no interaction in field 3; (d) the case of 100s interaction in field 3.

rate is proportional to the number of robots N as a
first approximation providing that each robot takes
the same time for homing without interfering with
others. If the interference between homing robots is
not negligible, the transporting rate becomes N (1 —
aN) where ¢ is'a constant describing the interference
effect.

We assume that the trajectory of each robot is er-
godic in the field in the searching mode. This assump-

tion is approximately satisfied by the chaotic billiard
like motion of robots by collision processes.

5.1. In case that there is no interaction between
each robot

When the pucks are distributed uniformly in the
field, the probability that a robot finds a puck is propor-
tional to the density of pucks, thus f(P, N) = P/S,
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Fig. 9. Temporal evolution of collected pucks for computer
simulation. Each plot is the average of 20 trials. The results are
same as the experiment essentially.
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Fig. 10. Relation between the number of robots and the task
completion time: (a) the result for robots without interaction;
(b) the result for the case with interaction.

where S is the area of the field. The rate equation be-
comes
opP NP
E =—-cC T’ 3)
where ¢ is a constant independent of P and N. The
solution of Eq. (3) is P = Ppexp(—c(N/S)t), where
Py is the initial amount of pucks. The vertical axis of
Figs. 4-7 should be compared with Py — P

For the localized distribution, we assume that the
field is divided into many small subspaces with area
a and all pucks are located in one of the subspaces.
The probability that a robot finds a puck is f(P, N) =
a/S. It reads

P
= —Cc' —,

Frimiallr: 4
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Fig. 11. The relation between interaction period and exponent
of the power law. In this figure, exponent —1 means that the
completion time and the number of machines are inversely
proportional. The case that the exponent is less than —1 implies
that the group is more effective for the task.

where ¢’ is a constant determined by a and c. The so-
lution is P = Py — ¢/(N/S)t. In this case, the amount
of pucks decreases linearly in time. In both cases,
the completion time 7 is inversely proportional to N.
These analytical estimates agree well with the exper-
iments and numerical simulations.

5.2. In case that there is an interaction between
each robot

For the homogeneous distribution, the efficiency of
group is worse because the attraction by the other robot
interferes with searching. Therefore the finding rate
can be written as f(P/N) = P/S — yN as a first
approximation, where y is a constant. In this case the
interaction makes worse the efficiency.

For the localized distribution, once a robot finds a
puck all robots find the position of pucks. As a result,
N pucks are found at once. Therefore the finding rate
is f(P, N) =a(N/S). The rate equation is
P , N?

5 ="~ o)

The amount of remaining pucks decreases linearly in
time as in Eq. (4). However, the completion time T
decreases much faster than the independent case as N
increases.
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Fig. 12. The relation between the number of robots and the
amount of work per unit time: (a) in case of field 1; (b) in case
of field 3.

It is shown that the interaction between robots im-
proves the group efficiency if the pucks are localized in
the field. From Eq. (4), the exponent 8 is —1 when the
robots are independent, on the other hand from Eq. (5),
B is —2 when they interact idealistically. Therefore we
expect that the exponent 8 takes a value between —1
and —2 in the real experiments depending on the de-
tailed interacting process such as the interaction range
and period.

5.3. Phase transition like behavior

In Sections 3 and 4, we showed the example of
swarm intelligence defined generally. This system
did not have the critical number which was defined
by Beni. Here, we also show an example where this
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Fig. 13. The field used in Section 5.3. Pucks were placed locally
and the number of pucks was infinite.

system would have a critical number under a simple

assumption:

(1) the sensitivity of photo sensors is finite. It means
that the distance at which the robots would catch
the other robots’ signals is finite.

(2) the field is sufficiently large. This assumption im-
plies the collision of robots would be ignored.

The condition of simulation was as follows: The
field used in this simulation was 100 x 100 (Fig. 13).
Infinite pucks were placed locally. A completion time
T was defined as the time in which 500 pucks were
collected to the home. The behavior of each robot was
almost the same as described in Section 4, but the
velocity of each robot was 10 times faster and their
collisions were ignored. The intensity of light on each
robot was 1 and it decayed by the inverse power law of
the distance. P denoted the sensitivity of each robot.
If the intensity of light caught by a robot exceeded P,
the robot could recognize and move to the light. Here
the interaction distance is finite, instead of infinite as
was in Sections 3 and 4.

The result is shown in Fig. 14. Fig. 14(a) shows
the relation between the number of robots and the
reciprocal number of T. Fig. 14(b) shows the relation
between the number of robots and the work load per
robot. We notice that there is a critical number of
robots. Strictly, the critical value is not the number of

— 0.05
3 !
(72 E
< ood p=|ioi00 e
- -3 0.04 S
ks 0.
5 0.03 ‘AD'.' .
o ‘o‘,o’D‘
§ o 8
2 002 050
© 0,02."!3
3 001 o0 2
53 ) o ee
2 R
o
robots
(a)
0.0002 5
o 0.02frbots | 5T 00
3 ® 0.03/robots | - % 0p.
o) o 0.04/robots o
S 0.00015 0.0 ® g0 1
3 e
c , S 8en. g
g *s -
> 0.0001 iy
= 1o : ;
ﬂ N B
g 510 i
.ﬂ .pd
100
robots
(b)

Fig. 14. The result for the case that there was a finite interaction
distance between robots. Here T was defined as the time in
which 500 pucks were collected to the home. (a) The relation
between the number of robots and the amount of work per
unit time. (b) The relation between the number of robots and
workability per a robot.

robots, but the density of robots. Increasing the density
causes a phase transition on the effectiveness of puck
collection.

6. Conclusion

We studied the swarm intelligence through the
task to gather pucks in the field. In this study, the
definition of swarm intelligence was generalized
at first and it was confirmed by real robot system
and simulation. If there is no interaction between
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each robot, their working ability is in proportion
to a number of robots. In other words (completion
time) - (number of robots) = constant. But if there is
the interaction, the efficiency of group depends on
both the distribution of pucks and interaction time. In
case of homogeneous field, the longer the interaction
period is, the worse the efficiency of group is. When
pucks are localized, there is an optimum interaction
duration. Here we can find out the swarm intelligence
emerged by their interactions. However, a long inter-
action period lowers the effectiveness. It is because
the interaction period prevents robots to carry pucks.

We evaluated the efficiency of the group quantita-
tively. The power law exponent for task completion
time as a function of number of robots changes from
—1 to —1.8 by changing the interaction period. Ana-
lytically, we can obtain that it changes from —1 to —2.

We also showed phase transition-like behavior in
this system by assuming a finite interaction between
robots, where the workability of the group increased
drastically when the density of robots exceeded the
critical value.

This phenomenon corresponds to swarm intelli-
gence as defined by Beni, showing that generalized
swarm intelligence emerges in this collecting sys-
tem. Simple interaction improves the efficiency of the
whole society drastically as the number of elements
is increased, and as a result, we can realize a swarm
intelligence in such a simple system.
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