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1 Introduction

Designing autonomous systems is still a challenge to various disciplines involving engi-
neering, computer science, artificial intelligence, control theory, learning theory and neu-
roscience. Natural and artificial agents share the problem that not all situations can be
foreseen. Therefore, learning combined with built-in knowledge should give best results.
Learning should be performed on-line, i.e. adaptation should be possible during the whole
agent’s lifetime. Very successful autonomous systems are biological beings. Since tradi-
tional Al did not reach its goals in the area of robotics, especially concerning the link to
the world (sampled by sensors), more attention has been paid to "natural” information
processing. Artificial neural networks are used in order to provide an adaptive coupling
between sensors and actuators (”perception—action cycle”). In most cases however, neural
networks are simulated sequentially on digital computers and the advantage of parallelism
is lost. Also, biologically implausible learning rules like backpropagation are implemented,
propagating signals in both directions.

The underlying structure of learning in natural systems seems to be different from
commonly used neural networks. We propose here to emphasize the link between neu-
robiology and analog neural networks. Both, the natural nervous system and analog
networks underly the same constraints: Keeping the wiring cost low and using connec-
tions unidirectionally. However, not all details of a solution have to be learned. At least an
assessment function must be provided, if a system is to enhance its performance. Feature
extraction and some behaviors may be fixed to reduce the amount of learning time.

This paper describes neural networks based on biological findings and, as an example,
the application to tasks of a mobile robot. Some examples are tested in simulations
others in physical systems. The aim is to develop neural networks suitable for hardware
implementations and real-world problems. The notion "analog” is used here for continuous
valued neurons. Spikes are not considered.

*In: Proc. Workshop "Kognitive Robotik’, B. Krieg-Briickner and Ch. Herwig (eds.), ZKW Bericht
3/95, Zentrum fiir Kognitionswissenschaften, Universitat Bremen, Marz 1995.



In the first part of this paper the motivation of analog neural networks is described
and implementations of this approach are presented. We will then discuss a possible ap-
plication area: the (semi-) autonomous wheelchair. Finally, we outline an implementation
of interactive object selection and tracking. All approaches presented in this paper share
the property of being at the signal level. No explicit model of the world is used.

2 Background

2.1 Analog neural networks

Carver Mead (1989) proposed the notion of neuromorphic information processing, i.e. to
study the structure of natural networks and to transform it to VLSI hardware imple-
mentation. Sensor signals are directly fed to electronic components (resistors, capacitors,
transistors etc.) and are processed due to their physical properties. By this, otherwise
complex calculations become very simple. One example of this approach is the ”Silicon
Retina”.

However, for learning systems it is not easy to follow this approach straightforward.
Especially, the storage of weights is difficult. One possibility to store a weight (load)
are floating gate transistors, a technology used in EEPROMs (Electrically Erasable Pro-
grammable Read Only Memories). However, the number of write cycles is limited; the
floating gates are aging. Another disadvantage is a limited accuracy, which depends on
the implementation. Backpropagation networks can not be easily implemented in analog
hardware, because these networks need an accuracy of about 10 bit and the weights are
used bidirectionally. Therefore, a deeper understanding of how natural systems adapt
behavior should be considered to develop neuromorphic learning hardware. The aim is
to connect only few cheap chips to sensors and actors of a robot system and to obtain a
very fast performance.

The main advantages of this approach may be summarized:

e True coincidence of signals is possible.

e Real-time performance is inherent. Response delays do not depend on the number
of incoming signals (e.g., senors, weighted outputs of other neurons).

e Physical properties of electronic components can be exploited to perform otherwise
expensive computations (e.g. exponential function, short-term memory).

e Higher robustness against electro-magnetic noise compared to a standard software
solution is achieved.

e Similar restrictions as in natural systems provide a better link to neuroscience.

Disadvantages of an analog parallel implementation compared to digital sequential
computation are:

o lower flexibility,

e lower accuracy (depending on the implementation) and



e a pure analog technique is difficult to miniaturize (e.g. capacitors).

It seems most promising to combine both approaches. Therefore, many implementa-
tions use AD and DA converters and standard RAM (e.g. off-chip) for weight storage.
Learning systems often need a short-term-memory. This can be simply achieved using
low-pass filters (resistor-capacitor combination) and has been used in experiments re-
ported in section 3.1. However, in a VLSI design only very small capacitors are available.
Therefore, an early hybrid approach at the STM-level might be more appropriate and is
currently investigated in collaboration with Dortmund University.

2.2 Behavior and instinct-based robotics

Brooks (1986, see also Brooks & Stein, 1993) introduced the approach of behavior based
robotics. Sensor signals are transformed into motor signals by behavior modules, each
of which serves a specific task. Several behavior modules are connected hierarchically.
As in neural networks, the signal-level is not left. However, the basic approach did not
include adaptivity. Mahadevan and Connell (1991) and Mataric (see, e.g., Mataric, 1994)
and others later combined Brook’s approach with reinforcement learning and Nehmzow
et al. (1989) proposed a related architecture based on instincts to combine predefined
knowledge and learning.
The advantages of behavior based robotics may be summarized:

e No explicit world-model is required.

e Fast response time is obtained by direct, parallel asynchronous, sensor-to-motor
coupling

e Robust and opportunistic performance.

o Lower levels remain unchanged, if more complex behaviors are added.
Advantages of classical approaches:

e An explicit world model is a good user interface.

e Explicit rules enable the fulfillment of safety requirements.

Since in neural networks and behavior based robot controllers no explicit representa-
tion is required, both can be combined easily. One example how biologically plausible
learning and built-in knowledge can be combined is conditioning.

3 Applying neuromorphic control

3.1 Conditioning

Conditioning is one principle of animal learning, which is well understood and has been
applied to mobile robot control several times (see Biihlmeier & Manteuffel, 1995).



One basic paradigm is classical conditioning. An unconditioned response (UR), like
closing the eye-lid when an air puff (unconditioned stimulus US) occurs can be associated
to a conditioned stimulus (CS), which did not cause any response before. This can be
achieved by presenting repeatedly the CS-signal (e.g. a tone), before the US. After a
couple of trials, the response, like closing the eye-lid, can be triggered by the conditioned
stimulus alone, the effect of the unconditioned stimulus is anticipated.

Introducing two conditioned stimuli other effects can be observed. If a stimulus (C'S4)
was associated by classical conditioning and is then presented simultaneously with another
stimulus (C'Sg), the second CS may not become associated, it can be blocked. Many
effects have been reported, some of which can be attached to specific brain regions. One
important brain region is the hippocampus. It is involved in attentional effects, e.g.
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Figure 1: Schmajuck and DiCarlo’s (1991) approach to hippocampal function. Repre-
sentations of stimuli compete among each other by lateral inhibition. Adaptive synapses
("77) mediate positive feedback of sensory representations.

A model of attentional effects (Schmajuck & DiCarlo, 1991) was extended and tested
in a mobile robot. In the network, shown in Fig. 1, learning takes place at two different
sites. Classical conditioning is performed by ”V” synapses and competition of sensory
representation is mediated by "7Z” weights.

The robot’s reflexes were implemented for safety reasons, the robot retreated to the
left when it hit something on the right and vice versa. These collisions were indicated
by tactile sensors, which formed US-signals, the retreat movements can be regarded as
unconditioned responses. (The reflexes can be interpreted as very basic behaviors mod-
ules.) The robot, shown in Fig. 2 was also equipped with a small camera containing six
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Figure 2: The mobile robot is constructed from ”Fisher-Technik” parts.

photoreceptors. The visual information was preprocessed using edge detection and ele-
mentary movement detectors. Proprioception was also provided to the robot’s network.
Visual information and proprioception served as CS-signals, however, the naive robot did
not know how to use them.

After some collisions (about 30 sec.) the robot had learned to avoid obstacles by
anticipating the reflex-like retreat movements. A combination of visual and proprioceptive
signals was successfully associated to response neurons (labeled "R” in Fig. 1).

It was of special interest whether the attentional mechanism (adaptation of ”7Z”
synapses) did enhance the robot’s performance. Therefore, a simple test was constructed.
The robot was placed in two different positions in front of the obstacle. When the robot
had performed a turn of 90 degrees or passed the obstacle, it was stopped and set to the
other starting position. The performance was assessed computing the ratio between the
time the robot followed a target direction and the time collisions occurred.

The result of 16 runs of 100 seconds each demonstrated, that learning to pay more
attention to significant stimuli enhances the robot’s performance by 30 % in this setup.
The network in this case was simulated by a PC (Biihlmeier, 1994a-c).



To test the basic principle of association, we implemented a similar experiment with
hardware neurons and a wheelchair. Figure 7 displays the wheelchair; in the background
the hardware neurons can be seen. These neurons were mainly designed for teaching
(Manteuffel, 1992), but will be miniaturized for other applications in collaboration with
Dortmund University.

Again, tactile senors are mounted on the front. Instead of a "camera” we used sonar.
A signal was given, when an echo delay was beneath a threshold (an obstacle was in a
certain range). The reflex was now to decrease velocity to zero, if a collision, indicated
by tactile sensors, occurred. After some collisions the sonar signal was associated and
sufficient to decrease velocity.

In artificial physical systems, protections are always implemented. These can be re-
garded as unchanging knowledge. Triggering protective actions can be anticipated by
the principle of conditioning. Classical conditioning may be used in more complete ar-
chitectures as a basis. The example of the adaptive short-term memory demonstrated
how plastic preprocessing can be achieved, driven rather by actions than by sensor sig-
nals. Many extensions of the network are possible, one of which is the inclusion of hidden
inhibitory neurons (Bihlmeier, 1995).

3.2 Adaptive self-localization

Animals use different modalities to estimate their location in an environment. This is
performed by exploration and learning. However, associations to places may not be un-
equivocal. Therefore, it is necessary to possess a system being able to merge associations
to different locations into a single vote (Wan et al., 1994). Since rats with impaired hip-
pocampus are able to perform simple route-following, it is assumed that for some tasks
other brain structures are sufficient. Navigation with and without a map might be two
interacting strategies (Burgess et al., 1995).

The aim of the work presented here is to enable a robot to adaptively use different
sensor modalities to estimate its current position, which may serve as a basis for path-
planning.

Figure 3 depicts a simple version of the proposed network. A central part of the
model is the lateral inhibition layer ("F”, fusion layer) consisting of many neurons each
of which represents a part of the environment. After some learning occurred, sensory
associations activate different locations on the "F” layer. The combination of different
modalities generally contains less error than a single one. After having calculated its
activation, this layer undergoes a lateral inhibition process, similar to Amari’s networks
(Amari, 1980). By this, activations close to each other are merged to a weighted average
location and estimations with a large distance to a cluster do not influence the result.
After fluctuations of activations due to the lateral inhibition process are below a limit,
the associative weights are updated and the odometer is reset, i.e. further integration is
added to the current estimation. By this, occasional odometer errors can be compensated
(Bihlmeier & Herrling, 1995). Moreover, the difference between odometer based position
estimation and the result of the fusion may be used to adapt, e.g., an odometer gain.

Figure 4 shows a simulated robot on a one-dimensional track limited by two walls.
The robot moves from one wall to the other; it changes its direction after having sensed
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Figure 3: Proposed neural network for self-localization.

a collision by its tactile sensors. We assumed different odometer errors in each direction
in this example. The robot underestimates the path to the left and has correct odometry
moving to the right wall. (The error might occur when a robot moves on a carpet.) After
the first wall approach (scene (1) in Fig. 4) the error equals the odometry error when
moving to the left. Since the tactile sensor is touched at the wall, it becomes associated
to the location, which was activated by the odometry. Forming the association is depicted
by the thick line. In the next part (2) the agent locates at the right wall. The odometer
is assumed to be without error in this direction. However, the error of the first scene is
still present. Here, the second tactile sensor becomes associated. Scene (3) shows a more
interesting case: odometry and associations activate the fusion layer at different locations.
By lateral inhibition, the activations merge and the resulting location’s node strengthens
its associations to the tactile sensors and is used for further path integration. Scenes (5)
and (6) display the procedure for the right wall. The error never reaches zero, but step
by step the error increments are decreased and we did not assume which sensors might
deliver faulty signals and which work correctly. Without using associations and the fusion
process, the error would accumulate (multiplied with approaches).

The properties of the network proposed here were verified in simulations and in a
physical robot. First of all we simulated the setup described in the previous section. A
chain of 100 neurons was used to simulate the fusion layer. Figure 5 shows the robot’s
self-localization error over wall contacts. The error’s peaks correspond to the left side,
since the error is accumulated when moving left. When the odometer layer is reset, the
difference between the position estimated by the "F”-layer and the odometer information
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Figure 4: Six scenes of a robot on a one-dimensional track. The first line depicts the robot,
its real position (left line) and its two tactile sensors (right part). Position estimations by
odomter and fusion layer are shown below (see text for more details).

can be used to adapt a gain parameter. Here, we used different gains for left and right
movement. Adapting the gains by gradient descent, the average error is cut in half. Of
course, the error might be reduced to zero, but this would imply assumptions about which
sensor delivers more correct information, which is not adequate in many situations. This
approach has also been tested successfully using the 3D robot simulator SimRobot (see

Fig. 6).

4 The semi-autonomous wheelchair

To focus some of the research activities in our doctoral study programme (see Krieg-
Briickner, 1994), we considered the task of an (semi-)autonomous wheelchair. Meanwhile,
the (semi-)autonomous wheelchair has become a central part of the studentship project
SAUS (Sensomotorik AUtonomer Systeme). Experiments are conducted on a normal
wheelchair, on which we added odometer, tactile and sonar sensors (see Fig. 7). Sensor
data acquisition and preprocessing is implemented in CAN-bus nodes (CAN =Controller
Area Network).

Applying "intelligent control” to a non-holonomic vehicle is a great challenge but it
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Figure 5: The Robot’s self-localization error on a linear track. Without using associa-
tions and the fusing procedure, the accumulated error would equal 40 units after 20 wall
approaches in this example.

is very time consuming to integrate sensors and computers. Therefore, a proposal was
submitted to purchase a "plug and play” platform, like, for example the RWI B21 mobile
robot of Real World Interface, Inc. By this, we hope to obtain verifications of theoretical
work and simulations much faster. Results on the RWI platform might be implemented
later on the wheelchair. Nevertheless, the wheelchair is actually used by SAUS-project
students and for testing hardware neurons.

With the background of the wheelchair we are able to discuss the relevance of research
results more concretely. By this, we may be able to demonstrate some capabilities of
intelligent systems that might help handicapped persons to enhance their independence.
Of course, many tasks and problems are the same in this particular application and other
areas and can be transfered from one to another. The wheelchair is one example of a
service robot.

Experiments are conducted in both, simulations (see Fig. 6) and hardware (see Fig.
7). Neural networks are implemented in software and hardware. We plan to add a robot
arm to reach a high degree of functionality as discussed in the next section.

4.1 Aimed functionality
The functionality we wish to reach is threefold:

o Task-driven navigation: the user selects tasks (e.g. "wash hands”), the wheel chair
plans appropriate movements and executes them.

o Task-driven manipulation: the user interactively selects objects on a screen (e.g. a
book on a bookshelf) and the object is made accessible by an arm mounted on the
wheelchair (elaborated upon below).
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can be applied to the wheelchair, is given by (Krieg-Briickner, 1994).

Figure 6: Simulating a wheelchair with SimRobot (Siems, Herwig, Rofer; 1994).

o Autonomous task execution, combining navigation and manipulation: door opening,
putting paper in a printer, automatic runaway (fire-alarm).

A summary of all research activities in the graduate study programme, many of which

This research

includes the consideration of risk in reinforcement learning (Heger, 1994), modularization
of neural networks, neural networks for control applications (Peinemann, 1994), computer
vision (Herwig & Carmesin, 1994; Henkel 1994a, 1994b) and navigation (Wittmann 1994).
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Figure 7: Wheelchair experimental setup. Hardware implementation of analog neural

networks can be seen in the background.

4.2 Visual preprocessing for task driven manipulation
4.2.1 Motivation and approach

Aside from navigation, the task—driven manipulation plays an equally important role
for the autonomous "every day survival” in man made environments. For this purpose,
wheelchairs may be equipped with multijoint robot arms which enable the handicapped
to enlarge their action radius. Research in tight collaboration with the handicapped is
underway! in order to evaluate the needs of the user in conjunction with the technological
possibilities. In the following, we elaborate upon a computer vision approach to support
the coarse positioning of the robot arm relative to user selected objects. It is characterized
by real time and data reduction capability. We emphasize the

e interactive man machine interface and the

e model-free object selection.

Fig. 8 provides a box diagram of the approach, which may be cross referenced during the
following explanation.

!Forschungsinstitut Technologie — Behindertenhilfe (FTB) der Ev. Stiftung Volmarstein.
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Scenario. The wheelchair is equipped with a multijoint robot arm such as the MANUS?
version. A camera will be mounted close to the manipulator such that at least three
degrees of freedom (DOF) are available for positioning the camera in the 3D workspace
of the manipulator. The user views the camera image on a monitor mounted onto the
wheelchair.

Interactive Object Selection. Depending on the abilities, the user must be enabled to
select objects of choice on the screen. The output of the selection process is a highlighted
contour around the object. This coarse object information is input to a refined object
selection routine based on active contour models (see below): The system proposes an
exact contour around the prospective object. The user may then revise the selection
and the interaction continues until the user is satisfied with the choice. This interaction
process exhibits several desirable features:

e The user is an integral part of the process.

e Initial contour selection can be tailored to the abilities of the handicapped, e.g.
positioning of (variable size) box frames, touch screen input, forehead laser pointer
input.

e User deficiencies in object selection are compensated through an automated improv-
ing of object outlining via active contours.

e Algorithmic maloperation, as is common in many real-world computer vison appli-
cations, is compensated through the interaction process.

Coarse Positioning. After interactive object selection, the arm begins to move towards
the desired object. During movement, the contour is active and continuously locks onto
the desired object which can be constantly centered in the cameras view. The module
finishes after positioning the camera and the manipulator close to the object.

4.2.2 Active contour model

The core of the object selection process constitutes the system object outline proposal
routine. Based on an initial contour in the image provided by the user, its task is to modify
the contour such that it "moves” to the outline of the desired object. The algorithmic
method of choice here is the active contour energy minimization.

Active contours (Kass et al., 1988) are energy minimizing curves which move by in-
ternal and image forces towards image features such as lines and edges. Traditionally,
they have been used for tracking deformable objects such as biological cells in micro-
scopic images since any ridgid body assumptions fail for these cases. Recently, they have
become more popular in the robotic visual tracking domains (Blake et al., 1992) (Denzler
& Niemann, 1994). Here they allow model free 3D object tracking in real time.

An active contour is parametrically described as

v(s) = (z(s),y(s)),s € {0,.... N — 1}

?Trademark Exact Dynamics (Zevenaar / Niederlande)
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where s denotes a discrete metric 1D location along the contour and (z,y) specifies a 2D
location within the image plane. The static energy equation

E(v) = Eini(v) + Eim(v)

is composed of internal and image forces. The internal forces are typically specified as

N-1

Eiu(v) = 3 5 (a(s)luy(s)[[2 + B(s)l[ws(s)]]?) ds

DO | =

Two parameters characterize the energy term: « controls the contour elongation and
equal distance of neighboring contour points. If it is set to zero, discontinuities in terms
of image plane locations are permitted and not punished with high energy values. [
controls the contour shape. If it is set to zero, the contour is permitted to turn sharply
at edges, whereas otherwise it attempts smooth curvature.

The image energy is important as a link to the underlying data. It specifies the affinity
of the contour towards image features. Here we give two common examples: the strive

towards bright (-) or dark (+) image regions:

Eim(v) = 20_3 te(s) (Gy % I(z,y)) ds

where [(x,y) denotes the image intensity, * denotes the convolution operator and G,
specifies the gaussian function for low pass filtering, and towards high intensity variations,

i.e. edges:
N-1

Z NV (G, * [(z,y))|ds

where V = (81‘7 ay)
The energy may be minimized by various strategies, including variational calculus

(Kass et al., 1988), dynamic programming (Amini et al., 1990), finite element techniques
(Cohen & Cohen, 1991) or straightforward greedy techniques (Williams & Shah, 1990).

T denotes a spatial derivative operator.

4.2.3 Experiments

A prototypical operational example is to take a book off a shelf. The goal of the modules
proposed here is to position the manipulator close to the desired book. The energy
minimization was programmed according to the greedy algorithm (Williams & Shah, 1990).
Fig. 9a shows the image of a bookshelf and in Fig. 9b the image force energy function
(inverse of edge detection on low pass filtered image) is displayed. Fig. 9c¢ shows the
discrete initial contour (possibly a sampled version of one provided by the user) and in
Fig. 9d the dynamic minimization process is visualized. The final contour outlines the
selected book.

One of the problems with the approach is the dependence upon good initialization
(Denzler & Niemann, 1994). Our interactive object selection process however guarantees
good initialization depending upon user capabilities. The mentioned energy function
leads to convergence towards intensity discontinuities. Often, these features are not equal

14



(b) The energy landscape.

¢) The image with the initial active con- (d) Time integrated image of the energy
g
tour. minimization process.

Figure 9: Example application of active contour minimization.
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to object boundaries, which poses a problem for our application. It has been an issue
in computer vision ever since to attempt to bridge the representational gap in order to
recognize the distinction and achieve a fusion. The straightforward way to tailor the
algorithm towards specific applications is to modify the energy function. We propose
here to include depth information (provided for example from image sequence flow field
modules (Herwig & Carmesin, 1995) or by high resolution and registered range devices)
as an energy term in order to better distinguish object boundaries from simple intensity
or texture changes. This constitutes an area of future research.

5 Future work and conclusion

This paper sketched different work in the context of the semi-autonomous wheelchair.
Future work will include the VLSI-design of analog neural networks and the integration
of local and global navigation and path-planning. The aspect of module interaction will
deserve special attention. We will investigate how knowledge gathered by one module can
be transfered to another. We further plan to equip the wheelchair with active color cam-
eras for navigational tasks. Functional aspects for the near future will be the autonomous
steering through a door. The intention is to use less a priori knowledge than usual. As in
the adaptive obstacle avoidance example, we will implement only unchanging knowledge,
i.e., protections and a global signal for the assessment of the current situation. Which
sensors are to be used to solve the problem is to be learned. We think this approach
can be transfered more easily to different implementations compared to single and fixed
programmed solutions. However, more complex tasks like tracking an object need more
a-priori knowledge. The approach of active contours is one example how preprocessing
may achieve a drastic reduction of sensor data, which may then be more easily combined
with learning. Since the active contours do not need an explicit model, they fit into
the framework of behavior based robotics and (analog) neural networks. The problem
of scaling up to more sophisticated tasks is an important aspect in the area of neural
networks and robotics and we intend to investigate this problem in the context of mobile
manipulation.
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