UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE INFORMÁTICA E ESTATÍSTICA

INE5633 – SISTEMAS INTELIGENTES – TURMA B - 2011/2 PROF. LUIS OTAVIO ALVARES

TRABALHO PRÁTICO 3 (individual)

Fazer um programa que implemente um algoritmo genético simples para o problema do caixeiro viajante com 10 cidades: 0,1,2,3,4,5,6,7,8,9

Parâmetros ou constantes definidas no inicio do código:

Tamanho da população: TP Probabilidade de mutação: PM

Taxa de substituição da população: TS

Número de gerações:NG

Considere as seguintes características:

Indivíduo: uma sequência das cidades População inicial: definida aleatoriamente

avaliação: soma das distâncias

Seleção: por torneio entre 3 indivíduos escolhidos aleatoriamente.

Reprodução: crossover de 1 ponto (lembre que cada cidade deve ocorrer exatamente

uma vez no indivíduo)

Mutação: troca de posição entre duas cidades escolhidas ao acaso

Elitismo: garantir na próxima geração os indivíduos com menor avaliação (os melhores até então)

O algoritmo:

- 1- inicie uma população
- 2- enquanto não atingiu o número de gerações faça
 - 2.1 calcule a função de aptidão (avaliação) para cada indivíduo
 - 2.3 gere_uma_nova_população
- 3- apresente como resultado o melhor indivíduo e sua avaliação

Gere_uma_nova_população:

- coloque na nova população os (1-TS)*TP melhores indivíduos
- até completar a nova população faça
 - selecione 2 indivíduos por torneio
 - faça a reprodução destes indivíduos
 - adicione estes indivíduos à nova população

Dados de entrada do programa: um arquivo .txt com as distâncias entre as cidades no formato (c1,c2,distância).

Exemplo:

0,1,100

0,2,34

0,3,89

•••

1- Executar o programa e preencher a tabela:

TP	PM	TS	NG	Tempo	resultado
				execução	
10	0,01	0,5	100		
10	0,01	0,5	1000		
10	0,01	0,5	1000		
50	0,01	0,5	20		
50	0,01	0,5	200		
50	0,05	0,5	200		
100	0,01	0,5	10		
100	0,01	0,5	100		
100	0,05	0,5	100		

- 2- Executar também o programa com outras configurações de parâmetros para procurar a melhor solução para o problema. Informar a configuração e o resultado.
- 3- Comentar sobre a influência dos parâmetros no resultado.