Procealing o the 18th International Symposium on Rdiable Distributed Systems - SRDS' 99, |IEE

Computer Society. Lausanne, Suiga - Outubro de 1999

CosNamingFT - A Fault-Tolerant CORBA Naming Service

Lau Cheuk Lung, Joni da Silva Fraga eJean-Marie Farines
Laboratério de Controle eMicroinformatica
Univ. Federal de Santa Catarina; Floriandpolis - Brazil
| au, fraga, farines@cm . ufsc.br

Michael Ogg, Aleta Ricciardi
Information Science Research Center
Bell Laboratories; Murray Hill, NJ- USA
0ogg, aleta@esearch. bell-Ilabs.com

Abstract

This paper describes the design and implementation of
a fault-tolerant CORBA naming service - CosNamingFT.
Every CORBA object is accessed through its
Interoperable Object Reference (IOR), which is registered
with the CORBA name service. The name service
therefore is a critical gateway to all objects in a
distributed sysem; to avoid having a single point of
failure, the name service should be made fault-tolerant.
CosNamingFT uses the GroupPac package [6], a
CORBA-compliant suite of protocals, to replicate the
name server. GroupPac services are built from Common
Object Services that function as building blocks to
implement fault-tolerant applications. This paper aims to
demongrate the usefulness of some of these object
services and to demonstrate the importance of open
solutionsissuesin replicating distributed objects.

Keywords. naming service, fault-tolerant, CORBA,
open systems.

1. Introduction

A name service plays an important role in any
distributed system. Roughly speaking, its primary role is
to facilitate access to the system’s resources; it is a
commonly known “meding room” for objects, services,
and resources. As defined by the CORBA (Common
Object Request Broker Architecture) spedfications, the
name service is a critical gateway for al objects in a
CORBA-based dstributed system. All CORBA objects
areregistered with the name service alowing them to be
found and used by any other ohject in the system. Thus,
each obect that participates in a CORBA-based
computation accesses the name service at least one: either

to regiger itsef via its IOR (Interoperable Object
Reference), or to locate other CORBA objeds 10Rs. One
of the OMG's (Object Management Group) Common
Objea Services (COSes) is a name service standard,
called CosNaming [9, 10]. The CosNaming spedfication
takes into acoount the portability, interoperability and
reusability aspeds that are important concepts in open
systems. However, these spedfications do not include
requirements of fault tolerancethat are very important for
distributed systems.

One possble way to implement a fault-tolerant name
service would to use the COS persstence service [10], a
unique interfacefor persistent storage services for objeds
states. We dedded not to follow a persistence-based
strategy due to concens over rewmvery time for
applications requiring more stringent avail ability; to
recover from a crash, a new name service must be started
and its state loaded from file.

Here, we describe CosNamingFT, a name service
which adheres to the OMG's CosNaming and uses
primary-backup replication [2] to achieve fault tolerance
Primary-backup replication can provide continuous
service avail ability (the degreeof fault tolerance depends
on the model of computation assumed), but cannot
guarantee once-and-only-once semantics. Primary-backup
replication has a shorter fail-over time than strategies
based on persstence and lower overhead than active
replication grategies. We used the GroupPac package [6],
a set of common objed services for implementing various
group-based communicaion models, for the primary-
backup infrastructure. In addition, these service objeds
can be w@mbined in dfferent ways alowing the
implementation of different fault tolerance schemes. This
paper demonstrates the usefulness of these services as
well as the posshility of obtaining open solutions for
replicating dstributed objeds.

At present, there is no sanctioned COS spedfication
for fault-tolerant CORBA objeds through replication and
group-based processng, though thisis expeded within the
year [11]. Eledra [7] was an integration-based approach
to huild replicated CORBA objects, building the ORB on
top of a group-communication subsystem, although any
communication substrate culd have been used (for
example, an adaptor for TCP was as sensble as the
original adaptor for Isis [1] and a later for Ensemble
(originally called Horus) [14]). While Eledra used IsS's
active replication modd, this was an ealy implementation
choice Isiss coordinator-cohort (passve replication)
model could equally well have been used.

Eterna [8] is an interception-based approach, also
making use of an exising group-communicétion
subsystem, but in this case intercepting IIOP messages
and mapping them to calls of the group-communicéion
system. The advantage of this approach is that no
modifications to the ORB are required; neither the ORB
nor the oljeds neal ever be aware of being intercepted.
The shortcomings are that the approach is only posshble if
the host operating system permits interception. In bath
integration and interception, until thee ae OMG
spedfications for multicast and group communication
semantics, bath drategies must be onsidered
“proprietary”.

The approach taken by the Object Group Service
(OGS) [4] is most similar to aurs, in that bath adhere to
the @wmmon object service model of the OMG. The
primary difference is in how the group service itsdf is
activated. In OGS the object’s interface eplicitly inherits
from the OGS Groupabl e interface

i nterface FOO nmG oupAdni n: G oupabl e {
voi d nO();

This makes fault tolerance visible to application
objeds snce they must be aware of the eistence of the
OGS objects to use their services. Applicaion objeds
convey their invocations and responses, via the Dynamic
Invocation Interface and the Dynamic Skeleton Interface
to their associated OGS objeds, which then coordinate
with each other to perform the operation on the replicas of
the object and to return the results appropriately.

The GroupPac package [6] is a set of common oljed
savices for implementing various group-based
communication models, for different fault tolerance
strategies. In contrast to OGS, GroupPac does not require
any explicit change to an application’s interface (e.g., it is
not necessry to inherits any group service interface).
Instead, to use GroupPac, the appli cation create a instance
of a portable interceptor (from CORBA speg, which
implements the mechanisms to invoke GroupPac services.
Fault toleranceisnot visible to the appli cation.

In Sedion 2 we present OMGs CosNaming
spedfication. Sedion 3 describes GroupPac and Sedion 4
describes the implementation of CosNamingFT with
GroupPac. In Sedion 5 we resent some performance tests
for CosNamingFT and comparisons with related work.

2. Name Servicein the CORBA
Specifications

OMG spedfications are intended as a set of standards
and concepts for distributed objects in open distributed
environments. The heat of the CORBA standards is the
Objed Request Broker (ORB), which allows a remote
objed’s methods can be invoked transparently in
heterogeneous distributed environments. Thus, an ORB is
a communication channel for distributed objeds.
Interoperabil ity between objects is achieved by specifying
their interfaces with CORBA'’s Interface Definition
Language (IDL). Trandating IDL spedfications a host of
proggamming languages (includng C, C++, Ada,
COBOL, Java) generates the necessary, language-spedfic
interffaces and auxiliary support for object
implementations.

To help in the development of distributed appli cations,
OMG spedfications included a set of object services that
simplify the applicaion designer’s task. Such COSes de-
fine, for example, how exceptional events should be
trangmitted, how objects are located and named, how
seaurity is provided, or the semantics of transactions. In
this way, the COSSs define basic functionality that
frequently appearsin many distributed appli cations.

2.1. The Common Object Name Service

The COS name service, commonly called CosNaming,
defines how to resolve object names in a CORBA
environment. An object is identified by its name and its
object reference (i.e, its IOR). The objed’s name
corresponds to a set of characters idedly, but not
necessxrily, expressng a quality or a certain feature
associated with it. The IOR is the data necessary to reach
the object in a didributed system; it is a daracter
sequence, that once properly converted provides the IP
address information of the host, the port, and a local
pointer for the object to be accessd and more @ntrol
information related to the IOR itself. In the CosNaming
spedfication, an association between name and IOR is
called a name binding, which is defined within a naming
context. Each naming context maintains its own set of
name bindings, while names must be unique, a naming
context permits multiple names to be associated with the
same IOR. This multiplicity allows one to swap object
instances on the fly, yet retain the same address of a
desired service (in the same way, for example, that a

restaurant retains the same physical address irrespective of
which of its wait-staff or cooks are on duty). We use
NameContext throughout this paper to refer to the object
that implements the functionality of the name service
defined in CosNaming specifications.

o VAT
VA

\

\

HTTP server

IOR /
1
NarringContext

/
VAN,

Figure 1. NameContext procedures for the
support of client/server interactions.

Figure 1 presents a tempora diagram delineating the
phases of interactions between the NameContext, and
sarver and client objects. These phases cover the
NameContext start-up, the ingtallation of a server object’s
IOR at the NameContext (binding procedure) and finally,
the phase in which client object obtains the server object’s
IOR.

A NameContext object in its starting state (step 1 in
Figure 1) places its own IOR in arepository (afilein the
file system), alowing it to be accessible to all CORBA
objects. In our implementation, this repository is a
directory that is accessible through an HTTP server (for
example: http://www.lcmi.ufsc.br/ laufi or),
thereby allowing method invocations through the Internet.
Thereafter, other CORBA objects can install their IORs.

public class FooServer {
public static void main (String
try {
/I obtaining name server IOR
NameContext ncRef=(NameContext)
ORB.resolve_initial_references(" NameService");

argsf]) {

Figure 2. Getting the IOR of the NameContext.

For a server object to ingtal its IOR with the
NameContext, it finds the IOR of the NameContext
through the resolve_initial_reference()
method, which accesses the repository (Figure 1, step 2).

The Java code implementing this step, is presented in
Figure 2.

After getting the IOR of the NameContext, the
application server can invoke this service for installing its
own IOR and become available via CORBA to all objects
in the system (Figure 1, step 3). The code in Figure 3 is
how a server named Foo, of type App ingtalls itself and
binds its name/l OR with the NameContext.

Il ref - Foo object reference
Foo ref = new FooServant();
NameComponent path[] =

{new NameComponent(" Foo", "App") };
// bind the NameContext reference
ncRef.bind(path, ref);

catch (Exception e) {
e.printStackTrace();

Figure 3. Installing an IOR in the NameContext.

The client’s actions in invoking a method of the server
are shown in Figure 1, steps 4-6. As with the server, the
client must first obtain the NameContext’s IOR with the
resolve_initial_references() method. In a
CORBA system, a client must know, a priori, the name
and type of the server it wishes to use. Thus, in the next
step, the client invokes the NameContext to resolve this
name. If the name exists in the NameContext, the client is
returned the server’s IOR, and may thereafter invoke the
server's methods. Figure 4 contain the code fragment for
these steps.

public class Client {
public static void main(String
try{

NameContext ncRef=(NameContext)
ORB.resolve_initial_references(" NameService");
/I get Foo object reference from name.

NameComponent path[] =
{new NameComponent(" Foo", "App")};

argsf]) {

Foo ref =

FooHelper.narrow(ncRef.resolve(path));
/I invoke method mO() of Foo
ref.mO();

System.exit(0);

catch (Exception e) {
e.printStackTrace();
}
}
}

Figure 4. Client interactions for allowing
invocations in the server object.

3. GroupPac Services and CosNamingFT
Architecture

3.1. GroupPac Services

The GroupPac package [6] adheres to the OMG
orientation in that it is a ®lledion of common objed
sarvices that provide support building and managing
objed replicaion. GroupPac is based on modds and
concepts pedfied by the OMG for common obed
sarvices. In this philosophy, GroupPac provides a set of
buil ding Hocks — object services — that can be aranged in
different ways to arrive at different fault-tolerant schemes.
All GroupPac object services are orthogona and their
interfaces are spedfied using the CORBA IDL.

GroupPac Package
sts —§ ss —§
TR !

FDS :‘.ll GCs :8 —@ - Horizortal Interface tocammicate

dbjedts of thesame type;
ll ll - Veertical: Interface to carmunicate

abjedts of the differents types;

The set of dhjects senvice of the GroupPac:
SS: Startup Senvice;

STS. State Transfer Senvice;

MS: Membership Service;

FDS: Failure Detection Sarvice;
GCS: Group Carwnication Senvice.

L R R R 4

Figure 5. Object services in GroupPac.

Figure 5 depicts the GroupPac Startup Service (SS),
State Transfer Service (STS), Membership Service (MS),
Failure Detection Service (FDS) and Group
Communication Service (GCS). Each one of these object
services has got a horizontal and a vertical interface: The
former allows communications between object services of
the same type; the latter isthe way in which the service is
made available to other objects in the system.

The SS object is responsible for creating the other
package service objects. All other GroupPac service
objects are, therefore, dependent on the SS. It is from this
object that the necessary configuration for the support of a
replicated application is built. The STS object provides
functionality for transferring state from one object to
another. Some means for transferring state is common to
most middleware facilitating replication [1, 15]; it is also
common in supporting object migration. The MS object is
responsible for managing changes in composition to
groups of objects. Ideally, membership changes should be
transparent to an application, but there will always be a
trade-off between blocking an application and the

completeness of the membership change propagation. The
FDS object is concerned with detecting the (apparent)
failures of objects in a group; obvioudly failure per se is
not detected as much as the unresponsiveness of the object
is measured. As expected, the MS object uses the FDS's
sarvices: FDS suspicions are reported to the MS object,
which then crestes a membership list that no longer
contains the suspected object. Findly, the GCS object
supports various group communication primitives, such as
FIFO, causdl, or linear order multicasts within a group
using point-to-point communications at the ORB levd; it
depends heavily on the MS object.

3.2. CosNamingFT

Our implementation of CosNamingFT follows the
CORBA specifications for name services [10], while
using GroupPac to add primary-backup fault tolerance.
The primary CosNamingFT replica performs al client
requests to the CosNamingFT service. These requests are
not blocking in the sense that the primary updates the
backups after having responded to the client. Of course,
this admits the possibility of state inconsistency between
the primary and its backups. In the worst case, a new
sarvice may have been registered with the primary
CosNaming copy of which the backups are unaware; a
request by a client for a registered service's IOR is, in
essence, a stateless operation, meaning there will be no
significant state difference between the just-failed primary
and its backups. The case in which the primary
CosNamingFT copy fails before replying to its client is
indistinguishable to blocking or non-blocking
implementations of primary-backup replication.

NemingCmtet NemingCmtet NemingCmtet
N (Romrinery) (Ritedep) (Rebedap)
SaeTrade
L SV U S) N S— Gapet
s g5 g5
R e e e Kl
Mabardip
= Mlde el e ge
- - -
“ “ “ FalueDdetian
/Gapajen
-~ -~ -~
(il I . I
B
Arglica
GoeNanirng T

Figure 6. GroupPac service blocks used in
CosNamingFT.

After processing a request and performing the
corresponding update to replicas, dl the wrred replicas
that compose the CosNamingFT must kee the same
context.

GroupPac services are incorporated within
CosNamingFT transparently (Figure 6). Each
CosNamingFT replica contains a wpy of the S§ STS,
MS, FDS and NameContext objeds, all of which are
located in the same Unix process. Each CosNamingFT
replica is linked to the others by the grouping o its
component GroupPac services. For example, in Figure 6,
the MS ohjed of each CosNamingFT replica form a group
that suppli es a membership servicein the CosNamingFT .

3.2.1. Management Service

Between them, the FDS and MS groups suppy
information about the status (corred/faulty) of each
CosNamingFT replica, and control the mmposition of the
CosNamingFT replica members for the CosNamingFT
service

The FDS ‘deteds replica crashes in the following
manner. The FDS asaumes non-blocking, reliable point-
to-point communicéion between pairs in the FDS group;
thus, the absence of an expeded message canot be due to
its loss by the transmisson medium, but may instead ke
indicative of something wrong with the sender. In Figure
7, each object of the FDS group periodically “pings’ its
partner (as determined by a virtual ring on the linea
ordering the members of the group). If it does not recave
aresponse within some tunable timeout period, it suspeds
its partner of having crashed and invokes the
| eave_group() method of the MS object in the
primary replica

Pty () a\ | |
|

Backup (R1)

VA VA
VAR VY,

-
T(s)

Figure 7. The failure detection service.

crash of R2

This spurs the membership service into action, which
uses a centralized, two-phase (threephase in the worst
case) commit protocol reach agreement with the other MS
replicas on anew group composition [12]. The MS ohjed
of the primary CosNamingFT replica is the woardinator
for thegroup of MS objects. Figure 8 shows a very smple

instance of this protocol. The FDS object of replica R3
suspeds replicaR2 and invokes | eave_gr oup(R2) of
the primary replica This activates the membership
protocol, whereby the primary MS object attempts to
discover which others remain in the group via the MS-to-
MS method conmi t (). The response to a conmi t ()
method is a simple acknowledgement. After waiting for a
predefined-defined timeout, the primary updates the list of
active members based on the acknowledgements it
receved [14, 12] (which must constitute a majority of the
previous view).

AR
Backup (R1)
Bad<up(R2)—§7 / V\
Badup (R3)
Leare gap Ak
gt o R2

Figure 8. FDS and MS operation when replica R2
crashes.

When the primary replica is suspeded of having
‘failed’, a new primary must be seleded; the candidate
preference list follows the order implemented by the
virtual ring. In our scheme, the new primary, once
asceartained, must install its IOR at the HTTP server.
Figure 9 gives a smple example showing how a primary
is replaced. Complete detail s on the remnstruction of the
primary follow the procedure described in [12]. Once a
new primary has been agreed upon, it ingalls its IOR at
the HTTP server. Since the HTTP repository is unique,
only one replica can have its IOR ingall ed there, ensuring
at most one replicais ever acting as the primary (recll
that all activity involving the primary first cheds the
HTTP repository).

Loddingfor
pranmspnmzyA Ingll thelORdf RL

Newview sanevpriney

i e\ "\

L

Figure 9. Determining a new primary copy.

Backup (R4)

HTTP Server
-IOR

3.2.2. State Transfer Service

We use the GroupPac State Transfer Service (STS) to
guarantee consistency among CosNamingFT replicas.
Figure 10 illustrates the following steps in check-pointing
states from primary to backups.

1

4 2 (o iy s

imay R
|

3 ?5 7 7

- - -
._:_STSI ._STS ._STS

L] L] L]

L] L] L]

L] L] L]

B

Upon a client request to the CosNamingFT service,
the reply from the primary replica is intercepted and its
IOR is extracted

3. and sent to the STS associ ated with the primary replica.

4. Theintercepted reply takesits naturd peth, reaching the
client.

5. Using the IOR of the primary NameContext, the STS
invokesget _state() method,

6. andthen sendsthe state toits STS cohorts,

7. which invoke the set _state() method of ther
associated NameContext object.

Figure 10. State Transfer Service.

4. CosNamingFT Implementation

Our implementation adheres to COSSOMG
specifications for the name service (CosNaming); no
extension or modification has been made to the standard
interface (Figure 11). The use of GroupPac services to
implement CosNamingFT did not require any change in
the COSS/OMG specifications. All services of this
package are written in Java and the interfaces specified
according to the IDL/OMG standard. We used lonas
OrbixWeb [5], an ORB also written in Java giving us the
benefit of OMG standards and Java portability.

nodul e CosNam ngFT {
typedef string Istring;
struct NameConponent {
Istring id;
I'string kind;

tS/pedef sequence <NaneConponent > Nang;
enum Bi ndi ngType { nobject, ncontext };

i ni erface NameContext {

voi d bind(in Nane n, in Object obj)
rai ses(Not Found, Cannot Proceed,
I nval i dNanme, Al readyBound);
void rebind(in Name n, in Object obj)
rai ses(Not Found, Cannot Proceed,
I nval i dNane) ;
voi d bind_context(in Nane n,
i n NaneCont ext nc)
rai ses(Not Found, Cannot Proceed,
I nval i dNanme, Al readyBound);
voi d rebind_context(in Nane n,
i n NaneCont ext nc)
rai ses(Not Found, Cannot Proceed,
I nval i dNane) ;
bj ect resolve(in Nanme n)
rai ses(Not Found, Cannot Proceed,
I nval i dNane) ;
voi d unbind(in Nanme n)
rai ses(Not Found, Cannot Proceed,
I nval i dNane) ;
NameCont ext new_context ();
NameCont ext bi nd_new context (i n Nane N)
rai ses(Not Found, Cannot Proceed,
I nval i dNanme, Al readyBound);
voi d destroy()
rai ses(Not Enpty);

}
Figure 11. CosNaming IDL.

Our implementation involves two software
components. NanmeCont ext Servant . j ava, which
implements the CosNaming functionality described in the
IDL specification, and NanmeCont ext Server. j ava,
which isresponsible for creating and starting the replicas
of CosNamingFT including ingalling the primary’'s IOR
in the HTTP repository and sarting GroupPac's SS
object. The NameContext interface is composed of

operations to conned (bi nd), to reconned (r ebi nd) or
to disconned (unbi nd) a name to an object, operations
for reaching an object by using its name (r esol ve), and
operations to create, destroy or list a @ntext of names. In
addition, up-cdl operations such as get _state() and
set_state() arenecessary for data transfers between
the GroupPac services and the name service

The IDL spedfications for GroupPac services are
presented in Figure 12. Each one of these interfaces is
represented by a service object at runtime.

modul e GroupPac {
typedef sequence<any> State;
typedef sequence<string> MenbersCrash_seq;
/1 Menmbership service IDL interface
interface Menbershi pService {
struct ServiceRefs {
Obj ect fd;
Obj ect st;
Menber shi pServi ce ms;

b
struct All ServRefs {
sequence<string> i d_seq;
/1 FDS Reference
sequence<Obj ect > fd_seq;
/1 STS Reference
sequence<Obj ect > st _seq;
/1 MS Reference
sequence<Menber shi pServi ce> ns_seq;

bool ean join_group(in ServiceRefs
servRefs, out string rank);
bool ean | eave_group(in MenbersCrash_seq
menber sCrashl d) ;
voi d view_change(in short newRank,
in short new_vi ew nunber);
void commit(in short |eaderRank,
in string | eaderld,
in Menbershi pService | eader Ref);
bool ean ack(in string menmber Ack);

}
/! Failure Detector |DL
interface FailureDetector:
Menber shi pService {
void keep_alive();

}
/1 State Transfer |DL
interface StateTransfer: Menbershi pService {
voi d get_state(in Object obj,
in string stg);
voi d set_state(in short id,
in State state);

Figure 12. IDL for GroupPac services.

Each GroupPac sarviceis a set of CORBA objeds and
as such communication between them is through the
ORB. The IOR for each of these services (i.e., FDS, STS
and SM) is stored in the Al | Ser vRef s structure of the
MS. Access to these IORs is local and guaranteed by
inheritance of the Membership Service interface Thus,
each service objed can coordinate with its colleagues in

the other CosNamingFT replicas by first getting the
appropriate IOR from the remote CosNamingFT replica.

When a new replicatries to join to the group, its SS
objed creates (i.e, instantiates) the GroupPac service
objeds and puts its reference into Servi ceRefs
structure (Figure 12). Then, the SS objed invokes the
join_group() method of the primary MS objed,
sending the ServiceRefs dructure. After the
membership protocol has been exeauted and dedded that
the new replica can join the CosNamingFT group, the
primary MS primary objed disseminates the updated
Al'l ServRefs (including the Servi ceRefs of the
new member) to the other MS objects of the group by
invoking thevi ew_change() method.

The FDS service uses a simple “keegp-alive’ method,
which each FDS group member invoking this method on
its predecessor member of the virtual ring. An FDS
member suspeds its predecessor upon receving a
CORBA exception signaling a ommunicaion failure
with the method invocation.

The Context veriable is a Java hasht abl e and
contains al object name-lOR bindings. The Context
variable is the esential state that must be transferred to
new NameContext group members, and that must be
maintained consistently between the primary and its
backups.

The STS methods get _state() and
set_state() trandate an object's gate (i.e, the
Context variable) to o from a standard data format
defined for state transfer using the STS. Since aJava
hashtable is not defined within CORBA, we mnvert it toa
sequence of bytes and tred it as a CORBA Any. In this
way, when the STS object invokes the get _st at e()
up-call in the NameContext obed (Figure 10, step 5), it
separates each binding in the Context variable and
converts them to byte sequences.

To implement the interception shown in Figure 10
(step 2) we used OrbixWeb filters. A filter isadevicethat
transparently traps the normal flow in a method
invocation; it can be used to add functionality or extra
control to a method cdl. The STS group within
CosNamingFT is invoked using a post-marshalling filter
to oltain the server oljed reply and extract the IOR of the
primary replica

5. CosNamingFT Performance Analyses

We now give performance measurements for
CosNamingFT. These measurements were taken from the
bind (install) and resolve (obtain) method invocations. We
evaluate performance in scenarios with different degrees
of replication. The exeaution environment is a local
network (10 Mbps Ethernet) of heterogeneous

components. two Sun Ultra 1 running Solaris 2.5, one
Axil 240 also running Solaris 2.5, one Pentium 100 and
one Pentium 233 MMX, both running Linux and finaly,
one Pentium 233 MMX running Windows 95.

The tests consisted of one hundred bind operations and
the same number of resolve operations. Figure 13 plots
the response time as a function of replication degree using
the average of these one hundred invocations for both
operations. The bind operation curve shows a linear
increase in the response time with degree of replication;
the cost is about 7 milliseconds (ms). This occurs because
the bind operation modifies the state of the NameContext
object in the primary replica, making state updates
necessary to each backup replica. As one would expect,
the resolve operation is insensitive to replication degree.

—e—Bind()
—— Resolve()

30+

Response time (ms)

1 ObxWwed
Naring
Savice

1 2 3 4 5 6

Replication degree

Figure 13. CosNamingFT Performance.

The increase in slope between the fifth and sixth
replicas for the bind operation is due to the sixth replica
being run on the dower, Pentium 100 machine. A
replication degree of three is more than likely sufficient
for our purposes; we believe that 21.2 msresponse timeis
indeed acceptable.

In comparison, the native OrbixWeb name service
without replication executes bind and resolve operations
in2ms.

The performance tests reported [7] for Electras
replicatedname service were run on five Sparc 10 and four
SparcStation 20 machines on a 10 Mbps Ethernet
network, each running SunOS 4.1.3. Measurements
indicated a per-replica overhead incurred by the bind
operation of about 6 ms using Isis and about 1 ms using
HorusgEnsemble. Well aware of the difficulties in
comparing results given differences in hardware,
operating systems, and so forth, we bdieve that the
benefits seen in Electra over Ensemble are attributed to
the highly-optimized group communication support
provide by Ensemble underneath the ORB. In
comparison, we implemented CosNamingFT service as a

COSS object, with each GroupPac service object (e.g.,
membership, failure detection, communication) handled
above the ORB. For ingtance, group communication is
accomplished by CORBA-object to CORBA-object
method invocations, which in OrbixWeb cost
approximately 2 ms each (accessing to the HTTP server
costs nearly 3 ms). This extra overhead is the reason for
the relatively poor performance we observe, and is the
cost of conforming to recommendations for common
sarvices in the CORBA specifications. Obvioudly,
performance in this mode is dependent on the ORB and
could improve or deteriorate.

6. Conclusion

The original work on CosNamingFT was done in
conjunction with the Nile project [3] a the University of
Texas at Austin. Nile is a CORBA-based platform for
integrated distributed processing of highly-paralle
computations. The original model of fault-tolerant
CORBA objects was jettisoned due to the immaturity of
platforms, and a model based on COS persstence was
adopted until more robust object replication strategies
become available13].

The work presented here aimed to verify the viability
of implementing fault-tolerant mechanisms a the
application level using standards-based middleware, open
system concepts, and common object services. The
implementation of this service may be used a no
restricion on any CORBA platform allowing, for
example, CORBA objects developed in C++ language or
othersto usethis service.

The fault-tolerant extensions to CosNaming discussed
here require no changes the CosNaming specification and
may be used with no restrictions on any CORBA
platform. The GroupPac services were inserted flexibly
and trangparently. The SS object defines which particular
GroupPac object services arerequired to build the selected
fault tolerance framework. Thus, whether one uses
GroupPac services or not, there is no need to change the
code that implements the name service itself. In addition,
following OMG recommendations, al communication
between object services is through the ORB and based on
[1OP; we have used no communication mechanism that is
not in compliance with this standard. OrbixWeb does
restrict portability or restrict use of other CORBA/Java
platforms. We believe the per-replica cost of our
CosNamingFT implementation is not burden-some,
though it will assuredly vary from ORB to ORB.

References

(1]

(2]

(3]

(4]

(9]
(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

[14]

(19]

K. P. Birman and R. van Renesse. Reliable Distributed
Computing with the Isis Toolkit. IEEE Computer Society
Press, 1994.

N. Budhirgia, K. Marzullo, F. B. Schneider, and S.
Toueg. Distributed Systems (2nd Edition). Edited by S
Mullender, chapter 4. The Primary-Backup Approach.
Adison-Welsey, 1993.

D. G Cassel and M. Ogg. The Nile Prgject.
Descriptions, publications, and software available from
www. ni | e. cornel | . edu, 1999.

P. Felber, R. Guerraoui, and A. Schiper. The
Implementation of a CORBA Object Group Service.
Theory and Practice of Object Systems, 4(2):93-106,
1998.

IONA Technologies, Ltd. OrbixWeb Programmer's
Guide. Available from www. i ona. com, 1997.

L. C. Lau, J. S. Fraga, and F. S. de Oliveira Framework
to Support Implementing Fault Tolerant Applications in
CORBA. In Brasilian Symposium on Fault Tolerance -
SCTF 99. To appear. In Portuguese.

S. Maffeis. A Fault-Tolerant CORBA Name Server. In
15" |EEE Symposium on Reliable Distributed Systems,
pages 188-197, 1996.

L. E. Moser, P. M. P. Melliar-Smith, and P. Naras mhan.
Consistent Object Replication in the Eternd System.
Theory and Practice of Object Systems, 4(2):81-92,
1998.

Object Management Group. The Common Object
Request Broker 2.0/1IOP Specification, Revision 2.0.
OMG Document 96-08-04. Available from
WWW. ong. or g, 1996.

Object Management Group. CORBA Services. Common
Object Services Specification. OMG Document 97-xx-
yy. Available from www. ong. or g, 1997.

Object Management Group. Fault-tolerant CORBA
Using Entity Redundancy (RFP). OMG Document 98-
04-01. Available from www. ong. or g, 1998.

A. Ricciardi and K. Birman. Using Process Groups to
Implement Failure Detection in Asynchronous
Environments. In Tenth PODC, pages 341-351. ACM,
1991. (also Corndl University TR93-1328).

A. Ricciardi, M. Ogg, and F. Previato. Experience with
Distributed Replicated Objects: The Nile Project. Theory
and Practice of Object Systems, 4(2):107-117, 1998.

R. van Renessg, K. P. Birman, R. Friedman, M. Hayden,
and D. A. Karr. A Framework for Protocol Composition
in Horus. In 14th Principles of Distributed Computing,
pages 80—89. ACM, 1995.

R. van Renesse, K. P. Birman, and S. Maffeis. Horus: A
Flexible Group Communication System.
Communications of the ACM, 39(4):76-83, 1996.

