
CosNamingFT - A Fault-Tolerant CORBA Naming Service

Lau Cheuk Lung, Joni da Silva Fraga e Jean-Marie Farines
Laboratório de Controle e Microinformática

Univ. Federal de Santa Catarina; Florianópolis - Brazil
lau, fraga, farines@lcmi.ufsc.br

Michael Ogg, Aleta Ricciardi
Information Science Research Center

Bell Laboratories; Murray Hill, NJ - USA
ogg, aleta@research.bell-labs.com

Abstract

This paper describes the design and implementation of
a fault-tolerant CORBA naming service - CosNamingFT.
Every CORBA object is accessed through its
Interoperable Object Reference (IOR), which is registered
with the CORBA name service. The name service
therefore is a critical gateway to all objects in a
distributed system; to avoid having a single point of
failure, the name service should be made fault-tolerant.
CosNamingFT uses the GroupPac package [6], a
CORBA-compliant suite of protocols, to replicate the
name server. GroupPac services are built from Common
Object Services that function as building blocks to
implement fault-tolerant applications. This paper aims to
demonstrate the usefulness of some of these object
services and to demonstrate the importance of open
solutions issues in replicating distributed objects.

Keywords: naming service, fault-tolerant, CORBA,
open systems.

1. Introduction

A name service plays an important role in any
distributed system. Roughly speaking, its primary role is
to facili tate access to the system’s resources; it is a
commonly known “meeting room” for objects, services,
and resources. As defined by the CORBA (Common
Object Request Broker Architecture) specifications, the
name service is a critical gateway for all objects in a
CORBA-based distributed system. All CORBA objects
are registered with the name service, allowing them to be
found and used by any other object in the system. Thus,
each object that participates in a CORBA-based
computation accesses the name service at least one: either

to register itself via its IOR (Interoperable Object
Reference), or to locate other CORBA objects’ IORs. One
of the OMG’s (Object Management Group) Common
Object Services (COSes) is a name service standard,
called CosNaming [9, 10]. The CosNaming specification
takes into account the portabil ity, interoperability and
reusability aspects that are important concepts in open
systems. However, these specifications do not include
requirements of fault tolerance that are very important for
distributed systems.

One possible way to implement a fault-tolerant name
service would to use the COS persistence service [10], a
unique interface for persistent storage services for objects’
states. We decided not to follow a persistence-based
strategy due to concerns over recovery time for
applications requiring more stringent availabilit y; to
recover from a crash, a new name service must be started
and its state loaded from file.

Here, we describe CosNamingFT, a name service
which adheres to the OMG’s CosNaming and uses
primary-backup replication [2] to achieve fault tolerance.
Primary-backup replication can provide continuous
service availability (the degree of fault tolerance depends
on the model of computation assumed), but cannot
guarantee once-and-only-once semantics. Primary-backup
replication has a shorter fail -over time than strategies
based on persistence, and lower overhead than active
replication strategies. We used the GroupPac package [6],
a set of common object services for implementing various
group-based communication models, for the primary-
backup infrastructure. In addition, these service objects
can be combined in different ways allowing the
implementation of different fault tolerance schemes. This
paper demonstrates the usefulness of these services as
well as the possibilit y of obtaining open solutions for
replicating distributed objects.

Proceeding of the 18th International Symposium on Reliable Distributed Systems - SRDS' 99, IEEE
Computer Society. Lausanne, Suiça - Outubro de 1999.

At present, there is no sanctioned COS specification
for fault-tolerant CORBA objects through repli cation and
group-based processing, though this is expected within the
year [11]. Electra [7] was an integration-based approach
to build replicated CORBA objects, building the ORB on
top of a group-communication subsystem, although any
communication substrate could have been used (for
example, an adaptor for TCP was as sensible as the
original adaptor for Isis [1] and a later for Ensemble
(originall y called Horus) [14]). While Electra used Isis’s
active replication model, this was an early implementation
choice; Isis’s coordinator-cohort (passive replication)
model could equally well have been used.

Eternal [8] is an interception-based approach, also
making use of an existing group-communication
subsystem, but in this case intercepting IIOP messages
and mapping them to calls of the group-communication
system. The advantage of this approach is that no
modifications to the ORB are required; neither the ORB
nor the objects need ever be aware of being intercepted.
The shortcomings are that the approach is only possible if
the host operating system permits interception. In both
integration and interception, until there are OMG
specifications for multicast and group communication
semantics, both strategies must be considered
“proprietary” .

The approach taken by the Object Group Service
(OGS) [4] is most similar to ours, in that both adhere to
the common object service model of the OMG. The
primary difference is in how the group service itself is
activated. In OGS the object’s interface explicitly inherits
from the OGS Groupable interface:

interface FOO: mGroupAdmin:Groupable {
 void m0();
};

This makes fault tolerance visible to application
objects since they must be aware of the existence of the
OGS objects to use their services. Application objects
convey their invocations and responses, via the Dynamic
Invocation Interface and the Dynamic Skeleton Interface,
to their associated OGS objects, which then coordinate
with each other to perform the operation on the replicas of
the object and to return the results appropriately.

The GroupPac package [6] is a set of common object
services for implementing various group-based
communication models, for different fault tolerance
strategies. In contrast to OGS, GroupPac does not require
any explicit change to an application’s interface (e.g., it is
not necessary to inherits any group service interface).
Instead, to use GroupPac, the application create a instance
of a portable interceptor (from CORBA spec), which
implements the mechanisms to invoke GroupPac services.
Fault tolerance is not visible to the application.

In Section 2 we present OMG’s CosNaming
specification. Section 3 describes GroupPac and Section 4
describes the implementation of CosNamingFT with
GroupPac. In Section 5 we resent some performance tests
for CosNamingFT and comparisons with related work.

2. Name Service in the CORBA
Specifications

OMG specifications are intended as a set of standards
and concepts for distributed objects in open distributed
environments. The heart of the CORBA standards is the
Object Request Broker (ORB), which allows a remote
object’s methods can be invoked transparently in
heterogeneous distributed environments. Thus, an ORB is
a communication channel for distributed objects.
Interoperabil ity between objects is achieved by specifying
their interfaces with CORBA’s Interface Definition
Language (IDL). Translating IDL specifications a host of
programming languages (including C, C++, Ada,
COBOL, Java) generates the necessary, language-specific
interfaces and auxiliary support for object
implementations.

To help in the development of distributed applications,
OMG specifications included a set of object services that
simplify the application designer’s task. Such COSes de-
fine, for example, how exceptional events should be
transmitted, how objects are located and named, how
security is provided, or the semantics of transactions. In
this way, the COSSes define basic functionality that
frequently appears in many distributed applications.

2.1. The Common Object Name Service

The COS name service, commonly called CosNaming,
defines how to resolve object names in a CORBA
environment. An object is identified by its name and its
object reference (i.e., its IOR). The object’s name
corresponds to a set of characters ideally, but not
necessarily, expressing a quality or a certain feature
associated with it. The IOR is the data necessary to reach
the object in a distributed system; it is a character
sequence, that once properly converted provides the IP
address information of the host, the port, and a local
pointer for the object to be accessed and more control
information related to the IOR itself. In the CosNaming
specification, an association between name and IOR is
called a name binding, which is defined within a naming
context. Each naming context maintains its own set of
name bindings; while names must be unique, a naming
context permits multiple names to be associated with the
same IOR. This multipli city allows one to swap object
instances on the fly, yet retain the same address of a
desired service (in the same way, for example, that a

restaurant retains the same physical address irrespective of
which of its wait-staff or cooks are on duty). We use
NameContext throughout this paper to refer to the object
that implements the functionality of the name service
defined in CosNaming specifications.

Client

Host A

server

NamingContext

Host B

HTTP server
IOR

1

2 3

654

Figure 1. NameContext procedures for the
support of client/server interactions.

Figure 1 presents a temporal diagram delineating the
phases of interactions between the NameContext, and
server and client objects. These phases cover the
NameContext start-up, the installation of a server object’s
IOR at the NameContext (binding procedure) and finally,
the phase in which client object obtains the server object’s
IOR.

A NameContext object in its starting state (step 1 in
Figure 1) places its own IOR in a repository (a file in the
file system), allowing it to be accessible to all CORBA
objects. In our implementation, this repository is a
directory that is accessible through an HTTP server (for
example: http://www.lcmi.ufsc.br/˜lau/i or),
thereby allowing method invocations through the Internet.
Thereafter, other CORBA objects can install their IORs.

public class FooServer {
 public static void main (String args[]) {
 try {
 // obtaining name server IOR
 NameContext ncRef = (NameContext)
ORB.resolve_initial_references(" NameService");

 :

Figure 2. Getting the IOR of the NameContext.

For a server object to install its IOR with the
NameContext, it finds the IOR of the NameContext
through the resolve_initial_reference()
method, which accesses the repository (Figure 1, step 2).

The Java code implementing this step, is presented in
Figure 2.

After getting the IOR of the NameContext, the
application server can invoke this service for installing its
own IOR and become available via CORBA to all objects
in the system (Figure 1, step 3). The code in Figure 3 is
how a server named Foo, of type App installs itself and
binds its name/IOR with the NameContext.

 :
 // ref - Foo object reference
 Foo ref = new FooServant();
 NameComponent path[] =
 { new NameComponent(" Foo", "App") };
 // bind the NameContext reference
 ncRef.bind(path, ref);
}
 catch (Exception e) {
 e.printStackTrace();
}

Figure 3. Installing an IOR in the NameContext.

The client’s actions in invoking a method of the server
are shown in Figure 1, steps 4-6. As with the server, the
client must first obtain the NameContext’s IOR with the
resolve_initial_references() method. In a
CORBA system, a client must know, a priori, the name
and type of the server it wishes to use. Thus, in the next
step, the client invokes the NameContext to resolve this
name. If the name exists in the NameContext, the client is
returned the server’s IOR, and may thereafter invoke the
server’s methods. Figure 4 contain the code fragment for
these steps.

public class Client {
 public static void main(String args[]) {
 try{
 NameContext ncRef = (NameContext)
ORB.resolve_initial_references(" NameService");
 // get Foo object reference from name.
 NameComponent path[] =
 {new NameComponent(" Foo", "App")};
 Foo ref =
 FooHelper.narrow(ncRef.resolve(path));
 // invoke method m0() of Foo
 ref.m0();
 System.exit(0);
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Figure 4. Client interactions for allowing
invocations in the server object.

3. GroupPac Services and CosNamingFT
Architecture

3.1. GroupPac Services

The GroupPac package [6] adheres to the OMG
orientation in that it is a collection of common object
services that provide support building and managing
object repli cation. GroupPac is based on models and
concepts specified by the OMG for common object
services. In this philosophy, GroupPac provides a set of
building blocks – object services – that can be arranged in
different ways to arrive at different fault-tolerant schemes.
All GroupPac object services are orthogonal and their
interfaces are specified using the CORBA IDL.

GroupPac Package The set of objects service of the GroupPac:
� SS: Startup Service;
� STS: State Transfer Service;
�
 MS: Membership Service;

�
 FDS: Failure Detection Service;

�
 GCS: Group Comunication Service.

STS

FDS

MS

GCS

SS

Connectors:
- Horizontal: Interface to commuicate
 objects of the same type;

- Vertical: Interface to communicate
objects of the differents types;

Figure 5. Object services in GroupPac.

Figure 5 depicts the GroupPac Startup Service (SS),
State Transfer Service (STS), Membership Service (MS),
Failure Detection Service (FDS) and Group
Communication Service (GCS). Each one of these object
services has got a horizontal and a vertical interface: The
former allows communications between object services of
the same type; the latter is the way in which the service is
made available to other objects in the system.

The SS object is responsible for creating the other
package service objects. All other GroupPac service
objects are, therefore, dependent on the SS. It is from this
object that the necessary configuration for the support of a
replicated application is built. The STS object provides
functionality for transferring state from one object to
another. Some means for transferring state is common to
most middleware facilitating replication [1, 15]; it is also
common in supporting object migration. The MS object is
responsible for managing changes in composition to
groups of objects. Ideally, membership changes should be
transparent to an application, but there will always be a
trade-off between blocking an application and the

completeness of the membership change propagation. The
FDS object is concerned with detecting the (apparent)
failures of objects in a group; obviously failure per se is
not detected as much as the unresponsiveness of the object
is measured. As expected, the MS object uses the FDS’s
services: FDS suspicions are reported to the MS object,
which then creates a membership list that no longer
contains the suspected object. Finally, the GCS object
supports various group communication primitives, such as
FIFO, causal, or linear order multicasts within a group
using point-to-point communications at the ORB level; it
depends heavily on the MS object.

3.2. CosNamingFT

Our implementation of CosNamingFT follows the
CORBA specifications for name services [10], while
using GroupPac to add primary-backup fault tolerance.
The primary CosNamingFT replica performs all client
requests to the CosNamingFT service. These requests are
not blocking in the sense that the primary updates the
backups after having responded to the client. Of course,
this admits the possibility of state inconsistency between
the primary and its backups. In the worst case, a new
service may have been registered with the primary
CosNaming copy of which the backups are unaware; a
request by a client for a registered service’s IOR is, in
essence, a stateless operation, meaning there will be no
significant state difference between the just-failed primary
and its backups. The case in which the primary
CosNamingFT copy fails before replying to its client is
indistinguishable to blocking or non-blocking
implementations of primary-backup replication.

State Transfer
Group Object

Failure Detection
Group Object

Membership
Group Object

A replica
CosNamingFT

NamingContext
(R0 primary)

SS

STS

MS

FDS

NamingContext
(R1 backup)

ORB

SS

STS

MS

FDS

NamingContext
(R2 backup)

SS

STS

MS

FDS

Figure 6. GroupPac service blocks used in
CosNamingFT.

After processing a request and performing the
corresponding update to replicas, all the correct replicas
that compose the CosNamingFT must keep the same
context.

GroupPac services are incorporated within
CosNamingFT transparently (Figure 6). Each
CosNamingFT replica contains a copy of the SS, STS,
MS, FDS and NameContext objects, all of which are
located in the same Unix process. Each CosNamingFT
replica is linked to the others by the grouping of its
component GroupPac services. For example, in Figure 6,
the MS object of each CosNamingFT replica form a group
that supplies a membership service in the CosNamingFT.

3.2.1. Management Service

Between them, the FDS and MS groups supply
information about the status (correct/faulty) of each
CosNamingFT replica, and control the composition of the
CosNamingFT replica members for the CosNamingFT
service.

The FDS ‘detects’ replica crashes in the following
manner. The FDS assumes non-blocking, reliable point-
to-point communication between pairs in the FDS group;
thus, the absence of an expected message cannot be due to
its loss by the transmission medium, but may instead be
indicative of something wrong with the sender. In Figure
7, each object of the FDS group periodicall y “pings” its
partner (as determined by a virtual ring on the linear
ordering the members of the group). If it does not receive
a response within some tunable timeout period, it suspects
its partner of having crashed and invokes the
leave_group() method of the MS object in the
primary repli ca.

Backup (R2)

Backup (R1)

Primary (R0)

Backup (R3)

T(s)
crash of R2

Figure 7. The failure detection service.

This spurs the membership service into action, which
uses a centralized, two-phase (three-phase in the worst
case) commit protocol reach agreement with the other MS
replicas on a new group composition [12]. The MS object
of the primary CosNamingFT replica is the coordinator
for the group of MS objects. Figure 8 shows a very simple

instance of this protocol. The FDS object of repli ca R3
suspects repli ca R2 and invokes leave_group(R2) of
the primary repli ca. This activates the membership
protocol, whereby the primary MS object attempts to
discover which others remain in the group via the MS-to-
MS method commit(). The response to a commit()
method is a simple acknowledgement. After waiting for a
predefined-defined timeout, the primary updates the list of
active members based on the acknowledgements it
received [14, 12] (which must constitute a majority of the
previous view).

Backup (R2)

Backup (R1)

Primary (R0)

Backup (R3)

Ack

Ack

Commit

Leave_group:
suspect of R2

New view

Figure 8. FDS and MS operation when replica R2
crashes.

When the primary repli ca is suspected of having
‘ failed’, a new primary must be selected; the candidate
preference list follows the order implemented by the
virtual ring. In our scheme, the new primary, once
ascertained, must install its IOR at the HTTP server.
Figure 9 gives a simple example showing how a primary
is replaced. Complete detail s on the reconstruction of the
primary follow the procedure described in [12]. Once a
new primary has been agreed upon, it installs its IOR at
the HTTP server. Since the HTTP repository is unique,
only one replica can have its IOR installed there, ensuring
at most one repli ca is ever acting as the primary (recall
that all activity involving the primary first checks the
HTTP repository).

Backup (R2)

Backup (R1)

Primary (R0)

Backup (R3)
Ack

Commit

leave_group:
suspect R2

New view

HTTP Server
- IOR

leave_group:
suspect R2 and R0

Install the IOR of R1
as a new primary

Looking for
previous primary

Backup (R4)
Ack

Figure 9. Determining a new primary copy.

3.2.2. State Transfer Service

We use the GroupPac State Transfer Service (STS) to
guarantee consistency among CosNamingFT replicas.
Figure 10 illustrates the following steps in check-pointing
states from primary to backups.

1

Filter
2

3

6

NaminhgContext
(primary R0)

STS

NaminhgContext
(backup R1)

ORB

STS

NaminhgContext
(backup R2)

STS

5 7 7

4

1. Upon a client request to the CosNamingFT service,

2. the reply from the primary replica is intercepted and its
IOR is extracted

3. and sent to the STS associated with the primary replica.

4. The intercepted reply takes its natural path, reaching the
client.

5. Using the IOR of the primary NameContext, the STS
invokes get_state() method,

6. and then sends the state to its STS cohorts,

7. which invoke the set_state() method of their
associated NameContext object.

Figure 10. State Transfer Service.

4. CosNamingFT Implementation

Our implementation adheres to COSS/OMG
specifications for the name service (CosNaming); no
extension or modification has been made to the standard
interface (Figure 11). The use of GroupPac services to
implement CosNamingFT did not require any change in
the COSS/OMG specifications. All services of this
package are written in Java and the interfaces specified
according to the IDL/OMG standard. We used Iona’s
OrbixWeb [5], an ORB also written in Java giving us the
benefit of OMG standards and Java portability.

module CosNamingFT {
 typedef string Istring;
 struct NameComponent {
 Istring id;
 Istring kind;
 };
 typedef sequence <NameComponent> Name;
 enum BindingType { nobject, ncontext };
 :
 interface NameContext {
 :
 void bind(in Name n, in Object obj)
 raises(NotFound, CannotProceed,
 InvalidName, AlreadyBound);
 void rebind(in Name n, in Object obj)
 raises(NotFound, CannotProceed,
 InvalidName);
 void bind_context(in Name n,
 in NameContext nc)
 raises(NotFound, CannotProceed,
 InvalidName, AlreadyBound);
 void rebind_context(in Name n,
 in NameContext nc)
 raises(NotFound, CannotProceed,
 InvalidName);
 Object resolve(in Name n)
 raises(NotFound, CannotProceed,
 InvalidName);
 void unbind(in Name n)
 raises(NotFound, CannotProceed,
 InvalidName);
 NameContext new_context();
 NameContext bind_new_context(in Name N)
 raises(NotFound, CannotProceed,
 InvalidName, AlreadyBound);
 void destroy()
 raises(NotEmpty);
 :
};

Figure 11. CosNaming IDL.

Our implementation involves two software
components: NameContextServant.java, which
implements the CosNaming functionality described in the
IDL specification, and NameContextServer.java,
which is responsible for creating and starting the replicas
of CosNamingFT including installing the primary’s IOR
in the HTTP repository and starting GroupPac’s SS
object. The NameContext interface is composed of

operations to connect (bind), to reconnect (rebind) or
to disconnect (unbind) a name to an object, operations
for reaching an object by using its name (resolve), and
operations to create, destroy or list a context of names. In
addition, up-call operations such as get_state() and
set_state() are necessary for data transfers between
the GroupPac services and the name service.

The IDL specifications for GroupPac services are
presented in Figure 12. Each one of these interfaces is
represented by a service object at runtime.

module GroupPac {
 typedef sequence<any> State;
 typedef sequence<string> MembersCrash_seq;
 // Membership service IDL interface
 interface MembershipService {
 struct ServiceRefs {
 Object fd;
 Object st;
 MembershipService ms;
 };
 struct AllServRefs {
 sequence<string> id_seq;
 // FDS Reference
 sequence<Object> fd_seq;
 // STS Reference
 sequence<Object> st_seq;
 // MS Reference
 sequence<MembershipService> ms_seq;
 };
 boolean join_group(in ServiceRefs
 servRefs, out string rank);
 boolean leave_group(in MembersCrash_seq
 membersCrashId);
 void view_change(in short newRank,
 in short new_view_number);
 void commit(in short leaderRank,
 in string leaderId,
 in MembershipService leaderRef);
 boolean ack(in string memberAck);
 };
 // Failure Detector IDL
 interface FailureDetector:
 MembershipService {
 void keep_alive();
 };
 // State Transfer IDL
 interface StateTransfer: MembershipService {
 void get_state(in Object obj,
 in string stg);
 void set_state(in short id,
 in State state);
:

Figure 12. IDL for GroupPac services.

Each GroupPac service is a set of CORBA objects and
as such communication between them is through the
ORB. The IOR for each of these services (i.e., FDS, STS
and SM) is stored in the AllServRefs structure of the
MS. Access to these IORs is local and guaranteed by
inheritance of the Membership Service interface. Thus,
each service object can coordinate with its colleagues in

the other CosNamingFT repli cas by first getting the
appropriate IOR from the remote CosNamingFT replica.

When a new repli ca tries to join to the group, its SS
object creates (i.e., instantiates) the GroupPac service
objects and puts its reference into ServiceRefs
structure (Figure 12). Then, the SS object invokes the
join_group() method of the primary MS object,
sending the ServiceRefs structure. After the
membership protocol has been executed and decided that
the new replica can join the CosNamingFT group, the
primary MS primary object disseminates the updated
AllServRefs (including the ServiceRefs of the
new member) to the other MS objects of the group by
invoking the view_change() method.

The FDS service uses a simple “keep-ali ve” method,
which each FDS group member invoking this method on
its predecessor member of the virtual ring. An FDS
member suspects its predecessor upon receiving a
CORBA exception signaling a communication failure
with the method invocation.

The Context variable is a Java hashtable and
contains all object name-IOR bindings. The Context
variable is the essential state that must be transferred to
new NameContext group members, and that must be
maintained consistently between the primary and its
backups.

The STS methods get_state() and
set_state() translate an object’s state (i.e., the
Context variable) to or from a standard data format
defined for state transfer using the STS. Since a Java
hashtable is not defined within CORBA, we convert it to a
sequence of bytes and treat it as a CORBA Any. In this
way, when the STS object invokes the get_state()
up-call in the NameContext object (Figure 10, step 5), it
separates each binding in the Context variable and
converts them to byte sequences.

To implement the interception shown in Figure 10
(step 2) we used OrbixWeb filters. A filter is a device that
transparently traps the normal flow in a method
invocation; it can be used to add functionalit y or extra
control to a method call. The STS group within
CosNamingFT is invoked using a post-marshalling filter
to obtain the server object reply and extract the IOR of the
primary repli ca.

5. CosNamingFT Performance Analyses

We now give performance measurements for
CosNamingFT. These measurements were taken from the
bind (install) and resolve (obtain) method invocations. We
evaluate performance in scenarios with different degrees
of replication. The execution environment is a local
network (10 Mbps Ethernet) of heterogeneous

components: two Sun Ultra 1 running Solaris 2.5, one
Axil 240 also running Solaris 2.5, one Pentium 100 and
one Pentium 233 MMX, both running Linux and finally,
one Pentium 233 MMX running Windows 95.

The tests consisted of one hundred bind operations and
the same number of resolve operations. Figure 13 plots
the response time as a function of replication degree using
the average of these one hundred invocations for both
operations. The bind operation curve shows a linear
increase in the response time with degree of replication;
the cost is about 7 milliseconds (ms). This occurs because
the bind operation modifies the state of the NameContext
object in the primary replica, making state updates
necessary to each backup replica. As one would expect,
the resolve operation is insensitive to replication degree.

0

10

20

30

40

50

60

1 2 3 4 5 6

Replication degree

R
es

p
o

n
se

 t
im

e
(m

s)

Bind()

Resolve()

 OrbixWeb
 Naming
 Service

Figure 13. CosNamingFT Performance.

The increase in slope between the fifth and sixth
replicas for the bind operation is due to the sixth replica
being run on the slower, Pentium 100 machine. A
replication degree of three is more than likely sufficient
for our purposes; we believe that 21.2 ms response time is
indeed acceptable.

In comparison, the native OrbixWeb name service
without replication executes bind and resolve operations
in 2 ms.

The performance tests reported [7] for Electra’s
replicatedname service were run on five Sparc 10 and four
SparcStation 20 machines on a 10 Mbps Ethernet
network, each running SunOS 4.1.3. Measurements
indicated a per-replica overhead incurred by the bind
operation of about 6 ms using Isis and about 1 ms using
Horus/Ensemble. Well aware of the difficulties in
comparing results given differences in hardware,
operating systems, and so forth, we believe that the
benefits seen in Electra over Ensemble are attributed to
the highly-optimized group communication support
provide by Ensemble underneath the ORB. In
comparison, we implemented CosNamingFT service as a

COSS object, with each GroupPac service object (e.g.,
membership, failure detection, communication) handled
above the ORB. For instance, group communication is
accomplished by CORBA-object to CORBA-object
method invocations, which in OrbixWeb cost
approximately 2 ms each (accessing to the HTTP server
costs nearly 3 ms). This extra overhead is the reason for
the relatively poor performance we observe, and is the
cost of conforming to recommendations for common
services in the CORBA specifications. Obviously,
performance in this model is dependent on the ORB and
could improve or deteriorate.

6. Conclusion

The original work on CosNamingFT was done in
conjunction with the Nile project [3] at the University of
Texas at Austin. Nile is a CORBA-based platform for
integrated distributed processing of highly-parallel
computations. The original model of fault-tolerant
CORBA objects was jettisoned due to the immaturity of
platforms, and a model based on COS persistence was
adopted until more robust object replication strategies
become available[13].

The work presented here aimed to verify the viability
of implementing fault-tolerant mechanisms at the
application level using standards-based middleware, open
system concepts, and common object services. The
implementation of this service may be used at no
restriction on any CORBA platform allowing, for
example, CORBA objects developed in C++ language or
others to use this service.

The fault-tolerant extensions to CosNaming discussed
here require no changes the CosNaming specification and
may be used with no restrictions on any CORBA
platform. The GroupPac services were inserted flexibly
and transparently. The SS object defines which particular
GroupPac object services are required to build the selected
fault tolerance framework. Thus, whether one uses
GroupPac services or not, there is no need to change the
code that implements the name service itself. In addition,
following OMG recommendations, all communication
between object services is through the ORB and based on
IIOP; we have used no communication mechanism that is
not in compliance with this standard. OrbixWeb does
restrict portability or restrict use of other CORBA/Java
platforms. We believe the per-replica cost of our
CosNamingFT implementation is not burden-some,
though it will assuredly vary from ORB to ORB.

References

[1] K. P. Birman and R. van Renesse. Reliable Distributed
Computing with the Isis Toolkit. IEEE Computer Society
Press, 1994.

[2] N. Budhiraja, K. Marzullo, F. B. Schneider, and S.
Toueg. Distributed Systems (2nd Edition). Edited by S.
Mullender, chapter 4. The Primary-Backup Approach.
Adison-Welsey, 1993.

[3] D. G. Cassel and M. Ogg. The Nile Project.
Descriptions, publications, and software available from
www.nile.cornell.edu, 1999.

[4] P. Felber, R. Guerraoui, and A. Schiper. The
Implementation of a CORBA Object Group Service.
Theory and Practice of Object Systems, 4(2):93–106,
1998.

[5] IONA Technologies, Ltd. OrbixWeb Programmer’s
Guide. Available from www.iona.com, 1997.

[6] L. C. Lau, J. S. Fraga, and F. S. de Oliveira. Framework
to Support Implementing Fault Tolerant Applications in
CORBA. In Brasilian Symposium on Fault Tolerance -
SCTF 99. To appear. In Portuguese.

[7] S. Maffeis. A Fault-Tolerant CORBA Name Server. In
15th IEEE Symposium on Reliable Distributed Systems,
pages 188–197, 1996.

[8] L. E. Moser, P. M. P. Melliar-Smith, and P. Narasimhan.
Consistent Object Replication in the Eternal System.
Theory and Practice of Object Systems, 4(2):81–92,
1998.

[9] Object Management Group. The Common Object
Request Broker 2.0/IIOP Specification, Revision 2.0.
OMG Document 96-08-04. Available from
www.omg.org, 1996.

[10] Object Management Group. CORBA Services: Common
Object Services Specification. OMG Document 97-xx-
yy. Available from www.omg.org, 1997.

[11] Object Management Group. Fault-tolerant CORBA
Using Entity Redundancy (RFP). OMG Document 98-
04-01. Available from www.omg.org, 1998.

[12] A. Ricciardi and K. Birman. Using Process Groups to
Implement Failure Detection in Asynchronous
Environments. In Tenth PODC, pages 341–351. ACM,
1991. (also Cornell University TR93-1328).

[13] A. Ricciardi, M. Ogg, and F. Previato. Experience with
Distributed Replicated Objects: The Nile Project. Theory
and Practice of Object Systems, 4(2):107–117, 1998.

[14] R. van Renesse, K. P. Birman, R. Friedman, M. Hayden,
and D. A. Karr. A Framework for Protocol Composition
in Horus. In 14th Principles of Distributed Computing,
pages 80–89. ACM, 1995.

[15] R. van Renesse, K. P. Birman, and S. Maffeis. Horus: A
Flexible Group Communication System.
Communications of the ACM, 39(4):76–83, 1996.

