
  

Integrating the ROMIOP and ETF Specifications for 
Atomic Multicast in CORBA* 

Daniel Borusch1, Lau Cheuk Lung1, Alysson Neves Bessani2, Joni da Silva Fraga2 

1Graduate Program in Applied Computer Science  
Pontifical Catholic University of Paraná 

Curitiba - PR - Brazil 
{dborusch, lau}@ppgia.pucpr.br 

2DAS – Departamento de Automação e Sistemas 
UFSC – Universidade Federal de Santa Catarina 

Florianópolis - SC - Brazil 
{neves, fraga}@das.ufsc.br 

Abstract. OMG published a draft specification for a reliable ordered multicast 
inter-ORB protocol to be used by distributed applications developed in 
CORBA (ROMIOP). This specification was made to attend the demand of ap-
plications that needed more restrictive guarantees on reliability and ordering, 
since there already has a specification without these resources (UMIOP). This 
paper presents how ROMIOP was implemented, as well as modifications that 
were made on the specification to make possible to implement it according to 
the ETF (Extensible Transport Framework) specification. Performance meas-
ures were made comparing ROMIOP with others protocols, like UMIOP, to 
show its characteristics and its cost.  

1   Introduction 

The CORBA (Common Object Request Broker Architecture) [15] architecture, stan-
dardized by OMG (Object Management Group), has the ORB (Object Request Bro-
ker) as its main component. It makes possible that objects receive and make invoca-
tions in a transparent way in distributed systems, being considered the base for the 
interoperability between applications on heterogeneous environments. To accomplish 
the exchange of messages between ORBs, there is an element that specifies a default 
transfer syntax besides a set of messages formats known as GIOP (General Inter-
ORB Protocol). The implementation of GIOP to the TCP/IP protocol is known as 
IIOP (Internet Inter-ORB Protocol), which uses point-to-point communication as 
base, ideal for client/server applications. However, several different application areas 
need to disseminate the same message to an infinity of hosts. One of the ways to do 
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this is using multicast IP, which contains a set of extensions to the IP protocol that 
make possible to realize multipoint communications [4]. 

Since there was not a specification that described a way to use multipoint commu-
nication in CORBA architecture, in 2001 OMG published the UMIOP (Unreliable 
Multicast Inter-ORB Protocol) [18, 1] specification. UMIOP was proposed to provide 
a common mechanism to deliver requisitions by multicast, without offering deliver 
guarantees (reliable multicast) and even less total ordering. The standard transport 
protocol defined for UMIOP was multicast IP over UDP/IP, that differently than 
TCP/IP, is not connection guided. With UMIOP only one-way (without answer) 
invocations can be accomplished. Not having any kind of guarantee, UMIOP can be 
characterized as being of high performance, making it ideal for applications like 
audio and video streaming, where the loss of some packets can be tolerated. How-
ever, several applications cannot tolerate packet losses, needing more restrictive 
guarantees like agreement and ordering. Because of that, and since OMG had not 
published until that moment a specification that came with a solution, our research 
group proposed the ReMIOP (Reliable Multicast Inter-ORB Protocol) [3] protocol to 
supply that demand. 

However, at the end of 2002, OMG published a draft specification, planned to be 
standardized on 2005. The specification introduced a solution using a multipoint 
communication protocol with deliver guarantee and total order (in other words, 
atomic multicast [5]). This specification was named ROMIOP (Reliable, Ordered, 
Multicast Inter-ORB Protocol) [17, 14]. ROMIOP, just like UMIOP, also uses multi-
cast IP over UDP/IP, however invocations with return of answer (two-way) are sup-
ported. Making a detailed study of ROMIOP it is possible to verify that the specifica-
tion only provides a series of IDL interfaces some of them still confused, giving a 
large space for interpretations. In other words, the specification does not supply 
details about how the interfaces must be implemented or which ordering algorithm 
should be used [5]. 

Besides this specifications, OMG recently published the ETF (Extensible Trans-
port Framework) [16] specification, which defines a framework that allows anyone to 
project and implement additional transport protocol plug-ins of GIOP messages on 
ORB. This specification, which is already implemented in the majority of available 
ORBs, makes possible the extension of an ORB/CORBA with the addition of new 
transport protocols without having to make any significant modification in its struc-
ture. However, ETF was conceived aiming only point-to-point transport protocols. 
For multipoint transport, extensions in the specification are necessary. 

This paper proposes, as its main contribution, a set of extensions to effectively in-
tegrate the ROMIOP and ETF specifications, including architectural and conceptual 
aspects besides some project decisions. The proposed solution is completely interop-
erable, without the use of proprietary interfaces, and totally in accordance with the 
OMG specifications. With this, we can consider it close enough to what could be a 
definite solution in terms of group communication with total order in CORBA. We 
also defined an atomic multicast algorithm to be implemented inside ROMIOP as a 
way to validate the proposed architecture, and finally we did some measures showing 
the cost of total ordering inside ORB. 



  

This paper is organized in the following way: on section 2 some related works are 
shown. On section 3, the MJaco architecture and a set of extensions to the ROMIOP 
and ETF specifications are presented. On section 4, the used algorithm of total order 
is introduced. The section 5 presents some considerations regarding the implementa-
tion. Some results obtained with ROMIOP can be seen on section 6. Finally, section 
7 presents the conclusions of this work. 

2   Related Works 

Group communication in CORBA was and still is a very interesting subject. The first 
works regarding this issue used proprietary tools of group communication. These 
works can be classified in the literature into three basic solutions: the approach on 
integration [10], on service [6, 7] and on interception [11, 12].  

The integration approach consists in the construction or modification of an exis-
tent ORB, adding ways to make group processing. The main idea in this approach is 
that the group processing should be supported by a group communication underneath 
the ORB core. On the other hand, the approach that uses service objects is to provide 
the support for objects groups as a set of services on top of the ORB, and not as a 
part of the ORB. Finally, the interception approach forecasts that messages sent to 
the servers' objects must be captured and mapped into a group communication sys-
tem, in a transparent way to the application. 

In [2] it is proposed an implementation of atomic multicast over MJaco. This im-
plementation uses the MIOP and IIOP protocols in the development of a state ma-
chine replication system [19] optimal in several aspects. A negative point about this 
work, in comparison with ROMIOP, is that it depends on the FT-CORBA infrastruc-
ture [13, 8], implemented through the GroupPac system. 

This proposal has the virtue of having available the last OMG specifications re-
lated with multicast in CORBA. The use of these allowed us to achieve a complete 
interoperability and portability on ORB, fundamental requirements of any OMG 
specification. 

3   MJaco Architecture 

MJaco [1] is a CORBA middleware with group communication support based on the 
UMIOP [18] specifications, standardized by OMG. This middleware allows the mul-
ticast of messages in a non-reliable way, in accordance with the UMIOP standard, or 
reliable, implemented by the ReMIOP [3] and ROMIOP protocols, all three being 
based on the UDP/multicast IP stack. The integration model allows all protocols to 
be added to the ORB without changing the properties of portability and interopera-
bility. 

In figure 1, we have the ORB with two protocol stacks: one for point-to-point 
communication, based on IIOP, utilizing the TCP/IP services, and the other for mul-



  

tipoint communication, made by MIOP, ReMIOP and ROMIOP, utilizing 
UDP/multicast IP. The integration model presents several elements defined in the 
specification that composes the support for the two communication models. 

The first stage of the MJaco project was the integration and implementation of 
UMIOP in the ORB. The next step on this project was the implementation of the 
ReMIOP protocol, which extends the UMIOP specifications with the property of 
reliable multicast, providing a "best effort" guarantee that all sent messages will be 
delivered by all correct processes of a group. Finally, ROMIOP was added to the set 
of protocols, being the only one that, besides having reliable multicast, provides total 
order message delivery, in other words, all correct members deliver all messages in 
the same order. 
 

 

Figure 1. MJaco architecture. 

It is important to note the way ROMIOP was introduced in MJaco. Instead of put-
ting it on top of ReMIOP, or even in the same level as ReMIOP using MIOP as base, 
it was developed from the bottom. This, as will be shown later on, was made due to 
considerable differences on the format of the specifications of these protocols, being 
preferable to start its implementation without using almost anything from MIOP. It 
is also important to clarify that the ETF specification does not easily allows stacking 
protocols. 

3.1   ETF Specification 

ETF [16] is a specification of a platform that enables third parties to project and 
implement messages transports plug-ins. With it, several middleware that implement 
CORBA become much more flexible. This happens because there is in the specifica-
tion all interfaces and methods that must (or may, on the optional ones) be imple-
mented and which functionality each one must have, making unnecessary to modify 
the ORB code. This ensures the proprieties of portability and interoperability of the 
ORB. 



  

The biggest problem of this specification is that it only defines how to add point-
to-point transport plug-ins, which makes it deficient to multipoint protocols, like 
ROMIOP. Due to this fact, the chosen middleware had to be slightly modified, add-
ing the functionality of sending messages to groups. 

Basically, the specification defines four mandatory interfaces: connection, profile, 
listener and factories. The first one splits the message layer (GIOP) of the ETF layer, 
creating an interaction channel between messages and connections (both from clients 
and servers). The second one stores all the information related to the protocol, in-
cluding methods to send (marshalling) and receive information through the IOR. 
The third one provides the initiative to “be connected” to a requisition made by a 
client, directing this requisition to a server. The forth and last interface is responsible 
to create instances of clients, making the connection of the ORB with the plug-in 
(the figure 5, on section 5, presents the ROMIOP implementation as an ETF plug-
in). 

A sequence of steps showing the interaction of a plug-in and an ORB can be seen 
in the figure 2 bellow: 
 

 

Figure 2. Interaction steps between the ORB with the plug-in. 

At first there must be an instance of the server running that stays waiting the crea-
tion of client connections (line 1). All these steps are made by the ORB, starting with 
the invocation of the method create_listener provided by the factories 
interface (line 2). It creates an object that implements the listener interface and 
it is returned to the ORB. In the next two lines (3 and 4) the ORB uses the return of 
line 2 to invoke the methods set_handle and listen. The first one simply al-
lows the plug-in to callback the ORB whenever it is necessary while the last effec-
tively allows this instance to receive requests. Lines 5 and 16 indicate that at any 
time the profile of this transport can be marshaled (be serialized). 



  

The next stage to make a communication is the creation of a connection requested 
by the client (line 6). All these steps are made by the ORB, starting with the invoca-
tion of the method unmarshal provided by the object that implements the facto-
ries interface (line 7). This happens just after the protocol being used is identified 
by the information contained in the received IOR. This invocation returns an object 
that implements the profile interface, that is used by the next line of code (line 8) 
to verify if it does not already exists an equal profile created before, meaning that the 
connection has already been opened before. If the connection does not exist, then 
both following instructions (lines 9 and 10) will be called. The first one, provided by 
factories interface, creates a connection, while the second uses the return of the 
first one to effectively enable the connection. 

The third stage is the creation of the server side of the connection, which always 
happens when a client requests a new connection (line 11). There are two distinct 
possibilities to accomplish this function: by “callback” and by “polling”. The first 
option (line 12) is initiated by the plug-in that calls the method add_input of the 
handle interface that was received as parameter on line 3. On the other hand, the 
second option (line 13) is initiated by the ORB invoking the method accept, which 
stops the thread until there is a connection. 

The last stage shows the receipt of a request message by the server side (line 14). 
After the establishment of the connection in the last stage, the listener instance 
can signal to the ORB that there are new data available, calling the method 
data_available of the handle interface (line 15). Next, the ORB can read 
these data through a read method (line 16) of the connection interface. 

3.2   ROMIOP Specification 

ROMIOP (actually a draft [17, 14]) defines a set of interfaces to provide a multi-
point communication with deliver guarantee and total order for every non-faulty 
members of a group of objects. It supports both requests that need replies (two-way 
requests/replies) and the ones that do not need (one-way requests). This specification 
was projected so that the protocols that implement it could coexist with IIOP, MIOP 
and any other multicast communication protocol, not being able to interfere in the 
functioning of them. 

The specification defines an interface that configures the several available meth-
ods to consolidate replies and the quality of the ordering service. Regarding the first 
factor, there are two distinct ways to accomplish the consolidation: simple voting, 
where there are three possibilities to determine the reply (first received, last received 
and the first that satisfy the parameter of data consistency); quorum voting, where 
there are two possibilities to determine the reply (number of members that send the 
same reply and percentage of members that send the same reply), both dependent of 
the consistency parameter. 

The data consistency parameter settle three possibilities: all the replies must be 
the same; all the replies must be different (apparently without any utility); and the 
standard, in which the majority of the same replies prevail. It is interesting to note 



  

that with this last option it is possible to provide a limited support to fault tolerance, 
using the idea of state machine replication [19]. Beside that, there is an additional 
parameter related to the reply consolidation that ends up overcoming all the others. It 
is possible to configure a timeout to the receipt of the replies. With this enabled, even 
if the chosen option has not yet being accomplished, the consolidation process is 
forced with the already obtained results. 

The specification also defines how the consolidation and notification of replies 
must work: to each request message sent to the objects group there must be created 
an instance of a class responsible for the receipt of its replies. This instance is re-
sponsible for determining if the reply is a success, if a timeout happened, if there is 
no sufficient quorum, if the voting was inconsistent or if a key member was missing. 

Another foreseen interface in the specification is the group service that provides 
basic operations like add and removal of members, besides the creation of groups. 

To finish, speaking about the communication protocol, ROMIOP defines only for-
mats for several types of messages. These formats consist in a header that has a fixed 
size and brings information related with the data contained in the packet (like it is 
type, number of identification, position of the packet inside a set of messages, etc.) 
and an area of data. The defined types of packets are Request, Reply, ACK, NAK, 
KeepAlive, Cancel and MemberChange. Each type has a different structure in 
the data area, following the semantic of the packet. Between several fields we can 
quote: to which member the packet is directed, address of ACK/NAK, ID of the 
already received packet, status of a member, etc. 

Each one of the packets described above always come after a standard packet 
header (structure PacketHeader) that inform, besides the type of the following 
packet, complementary information, like if there is the need to send an ACK after 
the receipt of the same, the size of the packet unique identifier, version of the proto-
col, etc. Figure 3 shows the definition described above. 
 

module ROMIOP { 
typedef  octet    PacketType; 
const  PacketType   Request = 0; 
const  PacketType   Reply = 1; 
const  PacketType   ACK = 2; 
const  PacketType   NAK = 3; 
const  PacketType   KeepAlive = 4; 
const  PacketType   Cancel = 5; 
const  PacketType   MemberChange = 6; 
const  PacketType   MsgOrder = 7; 
struct PacketHeader_1_0 { 

          char    magic[4]; 
          octet    version; 
          octet    flags; 
          short    packet_type; 
          unsigned long  packet_size; 
};  }; 

Figure 3. ROMIOP packet definition. 



  

3.3   Proposed Extensions for Integrating ROMIOP and ETF 

Since, until the moment, the ROMIOP specification is still not finished, several 
considerations had to be taken and added so that the implementation of this specifi-
cation became achievable. The most important one was the creation of a new type of 
message, the one who carries the messages orders sent by the leader server (MsgOr-
der). Its definition is very simple: there is an identification of who sent the message 
and a list with a structure, which was also created, that contains the identification of 
the message and the identification of the member who sent the message. 

The message order to be delivered is exactly the same of the list. It is necessary to 
send both the message identification and the member who sent it, because in the 
cases were there are messages with the same identification, the member who has the 
lesser identification will have its message delivered first. 

Another crucial point is related to the reply consolidation. It is only said which 
models must be implemented (simple or quorum voting), however it is not informed 
where the consolidation must occur (in the sender or receivers). In this implementa-
tion, the consolidation algorithm is processed in the client who has made the request, 
taking out of the servers this extra load of processing. This issue could be considered 
the most laborious to be developed. 

Since the fact that there is not any module related with the reply consolidation in 
the ETF specification, as well as a lack of related work, the entire model had to be 
developed to solve the problem. Several approaches where analyzed, implemented 
and tested before reaching the definitive method that attended the incomplete 
ROMIOP specification. Because of this fact that the protocol did not use as base any 
other existent protocol (see figure 1 at section 3). The control of the received replies 
is not of the protocol. The middleware is the only one who defines which process 
(client) owns the reply. This approach had to be detoured, since with this, only the 
first reply would always be used, getting rid of all the others (this fact would always 
occur in the existence of more than one server). The chosen solution was to created a 
“deviation” of this information to the ROMIOP protocol, after the one being sent to 
the middleware, attending this way both specifications (ETF and ROMIOP). 

Although it may look a slow method (the same information passes through the 
protocol twice) the tests that were made (see section 6) prove that the performance 
loss was insignificant. Beside that, this method has the advantage of modularizing 
the functions: messages that have to be consolidated go through this process, while 
the ones that do not need, follow a direct path. With this, each client process the 
consolidation of its requests while the servers stay with the task of replying the re-
quests and defining the order of the messages to be delivered. 

Exactly because of the need to consolidate the replies that were implemented a 
member service (membership) with more functionality than the one already existent 
in MJaco. The protocol needed to know exactly the quantity of functional members 
so that the client knows how many replies it must wait for. This entire module was 
projected without any kind of specification. Since the protocol needs to keep an up-
dated list with the members, and it must also be capable of handling omission faults, 
crash faults and problems with the physical network (like a cut network cable or a 



  

badly configured router), it was implemented an algorithm that is executed by the 
leader server. With it, at each pre-determined time interval, a message is sent to 
every member of the group asking if they are still alive. All the members that do not 
send an ACK to this message will be removed from the group, in other words, it is 
assumed the perfect detector abstraction. 

Finally, the specification in its current state does not define the total ordering al-
gorithm to be used. With this, it was defined an algorithm based on the fixed se-
quencer [5], presented in section 4, so that it became possible to verify the potentiali-
ties of the proposed architecture. 

4   Atomic Multicast Algorithm 

A total order algorithm with reliable multicast is the one that guarantee that all non-
faulty members of a group will deliver the same set of messages in the same order 
[5]. This type of algorithm is also called of atomic multicast, because the deliver of a 
message happens as an indivisible primitive: the message is either delivered to eve-
ryone or to no one, and if delivered, all the other messages will be ordered either 
before or after this one. 

This type of ordering makes easy the maintenance of a consistent global state be-
tween several processes, being used as a base to the implementation of fault tolerant 
through the active replication (the current state is replicated) [19]. 

It is important to note the way that the packet unique identifier that each member 
puts in every message sent to the group is used. This ID is nothing more than a local 
counter that is started with the number zero. Every sent packet increments this 
counter. Also, every packet that any member receives, even if is not directed to him, 
the ID is analyzed. If it is bigger than its local counter, than this value becomes its 
local counter number. If it is the same or less, nothing is done. With this it is possi-
ble to use the classic algorithm of events ordering of [9], which allows the identifica-
tion of the order in local messages (the message with the lesser identifier will always 
be delivered before the message with the bigger identifier). 

4.1   Assumptions and System Model 

Regarding the process failures, we assume a crash fault model. The group service 
module tolerates processes faults since it keeps an updated list of members. 

We assume reliable channel, this semantic is implemented by the periodic re-
transmission of messages until every receiver processes acknowledge the receipt of 
the message (through an ACK message). Duplicated messages are detected by its 
identification and are discarded, however ACKs to these messages are sent before the 
discard occurs, since its receiver may lose the ACK. 

Assumptions regarding time had to be made to implement the ROMIOP protocol. 
To determine the re-send of the messages because of the non-receipt of enough 
ACKs was adopted that the sum of the times of computing and communication are 



  

synchronous, in other words, there is an upper limit known so that both occur. An-
other presumption taken regarding time was of a perfect failure detector. If the time 
taken to the reply of the message asking if it is alive (KeepAlive) arrives after a 
certain value (or never arrives), that process will be considered as being with prob-
lem and will be excluded from the group. 

If any process locks and do not return (crash) there will be no problem, since the 
membership module keeps a list of the quantity of members updated. Another possi-
bility is the lock of a process and its return after a period of time. In this case, de-
pending of the time it stays without answering it may be removed from the group, 
however it will be re-included in the group members when it returns. The only prob-
lem related to this last possibility is that the receivers will discard any reply, from the 
excluded member, originated from a requisition delivered before the lock happened. 

Finally, it was implemented a leader election algorithm in which the first process 
that enters the group is considered the leader. This functionality was implemented by 
simply sending a message to the group and waiting for an answer by a determined 
period of time. If no one replies, it considers itself as the leader and starts to warn 
every other process that enters the group of the existence of a leader. Notice that 
every timeout parameter, related to these times, are configurable so that the protocol 
can work in the best possible way in each network environment. 

4.2   Algorithm 

The ROMIOP adopted protocol for atomic multicast is based on the fixed sequencer 
paradigm [5]. Basically, the protocol works in the following manner: the emitter 
casts a message requesting the members of the group to enter this group. Next, it can 
send message requests to the group address and it stays waiting for a quantity of 
ACKs equal to the quantity of receivers in the group. If the quantity of ACKs is 
lesser than the expected, the request is re-send to the group. The ROMIOP simplified 
algorithm is shown in figure 4. 

Initially, all buffers are initialized with empty values (line 1 to 5). To multicast a 
message to the group (line 6) they need first to be stored (line 8) in a local buffer 
(excluding the ACK type of message). After the message is stored, a timer is created 
(line 9). Just after both these steps that the message is sent (line 10). This is needed 
because the messages have to receive confirmations (ACKs) that it effectively 
reached its destination. If an enough number of confirmations do not come, the mes-
sage is re-send after the finish of the timer. Upon the receipt of ACKs (line 41), if 
they are sufficient (line 42), the timer to that message is stopped (line 43) and the 
buffer that stored the message is deleted (line 44). 

Every received message has a different type of processing (line 15). The requests 
(line 16), only received by servers, are stored in a local temporary buffer (line 17). 
These requests are only delivered upon the reach of the message with the order of the 
messages (line 33). After the receipt of the order, the servers compare its identifica-
tions with the ones that they have stored in its local buffer of already received mes-
sages (line 35). All messages that it has, starting from the first one and going se-



  

quentially to the last, will be delivered (line 36). If, by any reason, the server does 
not have one of the messages contained in the order, all the subsequent messages will 
not be delivered until the missing one is received. 
 

 

Figure 4. ROMIOP simplified algorithm. 

The leader server sends the message with the order of the messages (MsgOrder 
type). Always after receiving a request message, a configurable timer is started. After 



  

the end of this timer, it is sent to the other servers belonging to the group the order 
message, containing the identification of all received requests messages during that 
time. 

Just after the processing of the request message by the server, if it needs a reply, a 
reply message type will be sent to the group address (line 6). The emitter client who 
sends the request message stays waiting for a certain number of reply messages, 
depending on how the consolidation was configured (line 19 and 20). 

Finally, every time an object wants to enter the group, it sends a message of type 
MemberChange with the status added. All participants of the group that receive 
this kind of message (line 23) add the member who sent the message to its local list. 
After the member receives the confirmation that he entered the group, it sends an-
other MemberChange type of message, but with the online status. When the 
members receive this message (line 29) they reply sending its local list of members. 

5   Implementing ROMIOP below ETF 

To better present the protocol and the way it was adopted to be implemented, in 
order to satisfy the requirements of the ETF specification, follows the figure 5. It is a 
class diagram showing only the extremely essential methods and attributes, besides 
representing only the most important relationships between classes. 

The section 3.1 already describes the steps to create the ClientROMIOPCon-
nection and ServerROMIOPConnection classes. Both are derived from the 
ROMIOPConnection class, being the first one created by the ROMIOPFacto-
ries while the second one by ROMIOPListener. 

Basically, at the reception of any packet message, through the ROMIOPConnec-
tion class, the fragment, after several verifications, is added to an object of the 
FragmentedMessage class. When a message is considered complete it is then 
delivered to the ROMIOP algorithm, where it will be ordered. 

For messages that need reply, the ReplyConsolidatorImpl and Notifi-
cationImpl classes are used, being the second controlled by the first, and this 
controlled by the ROMIOPStrategy class. The ReplyConsolidatorImpl 
effectively consolidates the reply and it is activated in the creation of the request 
message that needs the reply or in the receipt of any of its replies. The Notifica-
tionImpl class is only used to notify the ORB of the chosen reply. 

Finally, the ROMIOPStrategy class keeps all the remaining necessary processes 
for the correct functioning of the protocol, being for this considered the most com-
plex class and the one with more functionality. Between some of its functions are the 
send of ACKs, the membership control and the send of the message order. 

Almost every protocol class use both MulticastUtil and ROMIOPProfile 
classes. Each one of them is responsible for storing specific information. The first 
one is related with the whole protocol, storing protocol configurations, like the con-
solidation method and the time limits. The second one is connected uniquely with a 
connection, being responsible for storing information of it, like the group address. 



  

+connect() : void

ClientROMIOPConnection

+connect() : void

ServerROMIOPConnection

+read() : void
+write() : void

ROMIOPConnection

+marshal() : void
+is_match() : bool

ROMIOPProfile

+addLast() : void
+deliverMessage() : void
+removeFirst() : object
+groupSize() : int
+sendACK() : void
+sendMsgOrder() : void
+sendMemberChange() : void
+sendCancel() : void
+sendKeepAlive() : void

-consolidator : ReplyConsolidatorImpl
-leader : bool

ROMIOPStrategy

+getMemberId() : object

-DataConsistency : int
-member_id : object
-ReplyQuorumVoting : int
-ReplyQuorumVotingNumber : int
-RequestTimeout : int
-SimpleVoting : int

MulticastUtil

+process_new_reply() : void
+consolidate() : void

-SimpleVotingMode : bool
-transport_reply_callback : NotificationImpl

ReplyConsolidatorImpl

+addFragment() : void
+buildMessage() : byte
+isComplete() : bool

FragmentedMessage

+addGroupConnection() : void
+accept() : ROMIOPConnection
+set_handle() : void

ROMIOPListener

+reply_consolidated() : int

-client : object
-connection : object

NotificationImpl

+create_connection() : ClientROMIOPConnection
+create_listener() : ROMIOPListener
+demarshal_profile() : ROMIOPProfile

-listener : ROMIOPListener

ROMIOPFactories

 

Figure 5. ROMIOP plug-in simplified class diagram. 

6   Performance Evaluation 

With the purpose of analyze the MJaco performance with the ROMIOP, as well as 
the choices made in the implementation of it, there were made several tests. The 
environment in which the tests were done was a set of machines running Windows 
XP as operational system. The client was executed in an Athlon 2600+ machine, 
with 512MB of RAM memory. The leader server was executed in a Pentium 4 at 
2.6GHz with 1,5GB of RAM memory. The other two servers were executed in Ath-
lon machines at 1.47GHz with 248MB RAM memory each. 

The first test had the objective to analyze the scalability as well as the velocity of 
the algorithm. The principle is simple: a message with a variable size is sent and it 
stays waiting for a reply (an integer of 4 bytes). The final reply (the one that the 
client will actually use) is only consolidated after the receipt of all replies of each 
server (atomic type of consolidation). In figure 6 the result can be seen. 

The result was exactly like the expected one. As much as the number of servers 
grown, the time that the client takes to consolidate the replies becomes bigger. An-
other point of interest is the low increase of cost with the insertion of more servers, 
proving that the adopted protocol is relatively scalable. It is important to say that the 
time the leader server takes to send the message order was configured to 10ms. Fi-
nally, it can be easily seen a risen in the time taken to accomplish the consolidation 



  

from 1 to 2 or 3 servers. This happens because the message order is not send with 
only one server. 
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Figure 6. Test result of the atomic consolidation. 

The following test was made to analyze the consolidation algorithm, where the 
atomic option was compared with the first reply option. The figure 7 shows the re-
sults for 2 and for 3 servers. 
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Figure 7. Comparative with two types of consolidation methods with 2 and 3 servers. 

The analysis of the graphics brings, besides the expected that the time taken to 
consolidate only the first reply is smaller than the one with all (atomic), the fact that 
for small messages (approximately until 3000 bytes) there is practically no perform-
ance improvement, being for this cases considered more advantageous to use the 
atomic consolidation, since it brings more security. With this result, it can be seen 
that for large types of messages it is crucial the choice of the consolidation method. If 
the application needs to support Byzantine faults or if you only desire to be sure of 
the obtained reply (like life support systems or military applications) there will be a 
considerable cost. Notice that even with the increase of the number of servers (from 2 
to 3), the time to obtain the reply from the first reply consolidation method practi-
cally does not increase. 



  

Next it was made a test to analyze one more consolidation option that ROMIOP 
implement. It was tested the percentage of members quorum system. The chosen 
value configured to make the consolidation was of 51% of members (figure 8). 
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Figure 8. Result of the consolidation by quorum test. 

The analysis of the obtained graphic shows that for this type of consolidation the 
cost for 2 servers is bigger than for 3, since with only 2 servers, all 2 have to give a 
reply so that the consensus can be done. With 3 servers, only 2 of them (66%) have 
to give the answer so that the consensus can be done (if the answers given by both 
are the same). A very important thing to be noted is that the time to consolidate the 
reply with 1 and 3 servers is practically the same, proving that the chosen algorithm 
is fast and efficient. 

The next test shows the time that the protocol took to only send a message of vari-
able size without waiting for a reply (one-way). Figure 9 shows the obtained results. 

With this result it can be analyzed the cost of not having been used any kind of 
flow control in the algorithm. Messages with a considerable size (approximately 
bigger than 40000 bytes) start to bring a loss of packets (UDP does not have any kind 
of flow control like TCP), being necessary to re-send some of the messages. The 
solution to this type of problem is relatively easy, since the ReMIOP protocol already 
addresses this issue. It is interesting to note that the quantity of serves practically 
does not influence in the time taken to send the message, which is perfectly correct, 
since the message is sent only once to all of them, via broadcast. 

The following tests were done to compare the ROMIOP with the UMIOP, demon-
strating the cost of implementing reliable multicast and total ordering. The first of 
these tests show the most important reason to the loss of performance, which is the 
total ordering. It was done by comparing the costs of invocation of a method with 
reply in a ROMIOP group with the same invocation being done in a normal object 
(without replication) accessed via IIOP. Figure 10 presents the results. 
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Figure 9. Result of test without reply. 

0

500

1000

1500

2000

0 20000 40000 60000

Size of Message (Bytes)

Ti
m

e 
(m

s) ROMIOP (1ms)

ROMIOP (10ms)

ROMIOP (50ms)

IIOP

 
Figure 10. Comparative of the total ordering cost. 

All servers must execute the request in the same order and the messages origi-
nated form older ones must be executed only after the one who generated it. To ac-
complish this, the servers must wait a time before sending the order of the messages 
to be sure that no older message will reach the servers, creating an erroneous order. 
This time is configurable in ROMIOP and it basically defines the protocol perform-
ance in requests where a reply is needed (two-way). 

The result graph above compares the time taken to a system with only one server 
using a protocol that only provides point-to-point reliability and FIFO ordering 
(IIOP, which is the protocol that UMIOP [18, 1] uses for request that need reply) and 
the ROMIOP, with different times to send the message order. It is clear that any 
value above 10ms will slow down considerably the time taken to send the reply (look 
at the result with 100ms in the graph). Values bellow 10ms (look at the result with 
1ms in the graph) brings very little benefits in terms of speed. This happens because 
the limiting factor starts to be not more the sent of the order message but the cost to 
accomplish the reliable multicast, creating the considerable difference to the IIOP. 



  

Finally, the last test compares the performance of ROMIOP with MIOP [1] in re-
quests without reply. Figure 11 shows the results obtained with 1 and 3 servers. 
 

0

10

20

30

40

50

0 5000 10000 15000 20000

Size of Message (Bytes)

T
im

e 
(m

s)

MIOP ROMIOP

 

0

10

20

30

40

50

0 5000 10000 15000 20000

Size of Message (Bytes)

T
im

e 
(m

s)
MIOP ROMIOP

 

Figure 11. Comparative of protocols with request without reply with 1 and 3 servers. 

The result obtained with this test revealed that for messages with small size (bel-
low approximately 5000 bytes) the performance of ROMIOP is really close to the 
MIOP [1]. Larger messages requires re-sending of some packets, making the differ-
ence grows (it is easier to visualize it with 3 servers). 

7   Conclusion 

This paper presented a study about the implementation of the ROMIOP draft specifi-
cation using the principles of the ETF specification. The first specification aim to 
standardize interfaces and message formats for message multicast with total ordering 
and reliable multicast guarantees, while the second one defines methods for integrat-
ing new protocols into already existent systems. 

One of the biggest problems we faced was the fact that the ETF specification does 
not support multicast communication and that it also does not easily allows to stack 
protocols, making the implementation of ROMIOP much more difficult and with the 
need to create several small extensions. 

With the conclusion of this specification, we finally will have interoperable 
mechanisms for group communication in open (standardized) middleware. With 
ROMIOP now finished, it is possible to analyze each module in a detailed way, 
searching for a better performance, making the implementation more efficient and 
with more functionality. 

More information related with the performance tests, the developed algorithm, as 
well as the source code can be found in the Internet, inside the web page of the de-
velopers group (http://grouppac.sourceforge.net).  
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