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Abstract. OMG has published an unreliable multicast specification for
distributed applications developed in CORBA (UMIOP). This mecha-
nism can be implemented based on IP Multicast, a best-effort proto-
col, which provides no guarantees about the message delivery. However,
many fault-tolerant or groupware applications demand more restrictive
agreement and ordering guarantees (for instance, reliable multicast with
FIFO, causal or total ordering) from the available support for group
communication. OMG has not yet provided any specification for sup-
porting those requirements. This paper presents an important contribu-
tion towards this direction. We proposed the ReMIOP, an extension to
the UMIOP/OMG protocol, for the conception of a reliable multicast
mechanism in CORBA middleware. Performance measures comparing
ReMIOP, UMIOP and UDP sockets for IP multicast communication are
presented in order to evidence the costs for adding reliable and unreliable
multicast in middleware level.

1 Introduction

When CORBA architecture (Common Object Request Broker) [20] was intro-
duced by OMG (Object Management Group), only point-to-point communica-
tions (using static or dynamic invocation) was available through the ORB (Ob-
ject Request Broker). The messages that pass through this channel obey a proper
transference syntax defined by the GIOP (General Inter-ORB Protocol). This
syntax makes the messages involved in the communications independent from
ORBs implementations and the consequences of an heterogeneous environment.
The mapping of GIOP over TCP/IP transport layer is made by IIOP (Internet
Inter-ORB Protocol) protocol. The IIOP and TCP/IP combination is a good so-
lution for distributed objects communications in the client/server model, since
it considers aspects like error control, FIFO ordering, etc.
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Point-to-point communications have shown, in general, effective in dis-
tributed applications supported by CORBA. However, many of these applica-
tions would have a better performance, concerning time, memory and message
complexity, if they could use multi-point communication mechanisms. Usually,
these applications depend on abstractions like groups of objects or the need
to disseminate data over several hosts of a network. Therefore, group oriented
applications could have greater benefits from the network low-level services.

In an attempt to supply the need of multi-point communications in CORBA
middleware-level, OMG published the UMIOP (Unreliable multicast Inter-ORB
Protocol) specifications [19] in 2001. The UMIOP is a set of specification for an
unreliable multicast service to be included as part of the ORB. The protocol
defined in these specifications, the MIOP (Multicast Inter-ORB Protocol), is re-
sponsible by GIOP mapping over UDP/IP multicast stack. IP multicast is a set
of IP protocol extensions that enables it to establish multi-point communications
[7, 6]. This protocol is characterized by absence of guarantees and high perfor-
mance, mainly in local networks. Many applications use IP multicast, especially
those for distributed multimedia systems.

The unreliable multicast service defined by UMIOP, the less restrictive group
communication model, can be used for some distributed applications, for exam-
ple, video conference, in which the loss of some frames do not represent the
degradation of transmitted information. However, fault-tolerant applications,
groupware applications, among others, usually demand more restrictive guar-
antees concerning group communication supports reliability and ordering (for
example FIFO, causal, total, etc). OMG has not yet provided any specifica-
tion concerning these requirements. This problem is being treated by OMG in
stages. The first step, therefore, was the publication of UMIOP specifications.
We believe that initiative motivates OMG to publish another RFP (Request for
Proposal), towards a Reliable and Ordered Multicast Inter-ORB Protocol. Initial
submissions to this RFP has been already done [21].

The integration and implementation of UMIOP in an ORB were presented
in [1, 3]. As a step forward, this paper presents our contributions in the concep-
tion of a “best-effort” reliable multicast support in the ORB, based on UMIOP
specifications. The proposed model, called ReMIOP, is CORBA and UMIOP
specifications compliant - the proposed extension does not change any interfaces
of the current specification. Actually, we indicate how to integrate reliable mul-
ticast protocols into ORB without any change of the CORBA specifications.
The inclusion of a reliable multicast protocol on top of the MIOP layer is im-
plemented as a plugin mechanism. Some performance measures of the ReMIOP
(the ReMIOP/MIOP/UDP/IP multicast stack), UMIOP (MIOP/UDP/IP mul-
ticast stack) and UDP sockets (UDP/IP multicast stack) are presented to show
the costs of including reliable and unreliable multicast in middleware level.

This work is part of the GroupPac project [16, 2], which is a set of object
services based on FT-CORBA specification (chapter 23 of [20]) and developed
to make easier the implementation of fault-tolerant distributed applications.



This paper is organized as follow: section 2 presents the OMG initiatives
for group communication introduction in CORBA. The MJaco is presented in
section 3. In section 4, the ReMIOP protocol is presented as a MIOP extension
for reliable multicast. Some implementation issues are described in section 5.
In section 6, some experiments with our multicast ORB are presented. Finally,
section 7 cites some related works, and in section 8 presents some final remarks
of this research.

2 Group Communication in CORBA

Two significant initiatives were taken into account by OMG concerning the in-
troduction of group communication mechanisms in CORBA. The first of them
use the group abstraction to support fault-tolerant applications in object level
(FT-CORBA [20, 9]), and the other considers to use the ORB as a high perfor-
mance group communication mechanism without reliability (UMIOP [19]). So,
these two specifications can be considered complementary and indicate a trend in
OMG, the attempt to specify a standardized group communication mechanism
with differentiated guarantee levels for different applications.

The FT-CORBA standard, which introduced the concept of objects group
in CORBA architecture, defines a set of object services that offer functionalities
such as group management (membership), state transfer, fault detection and
notification. One kind of support assumed by FT-CORBA, but not standardized
by OMG, is the group communication service [25]. That specification defines that
this service must support some communication properties in order to provide
the underlying mechanisms for implementing active replication technique [27];
however, these specifications do not define the service semantics and protocols
that must be implemented.

The UMIOP specifications, on the other hand, define an unreliable multicast
service based on IP multicast. It can be considered as a basis for creating of a in-
teroperable group communication mechanism standardized by OMG. Extensions
for these specifications to define stronger properties for ordering and reliability
would be appropriate for FT-CORBA standard.

2.1 UMIOP

In 1999, the OMG started a specification process for an unreliable multicast pro-
tocol based on IP multicast and objects group model to support this protocol in
CORBA ORBs. This process culminated in UMIOP specifications release. This
standard aims to support a multi-point communication mechanism in CORBA
architecture, without any delivery guarantee. The protocol used by UMIOP is
the MIOP. This protocol maps GIOP messages into UDP/IP multicast. The ba-
sic function of MIOP protocol is to segment and encapsulate GIOP messages,
sent to the group, into packets. These packets contain a header (defined in the
specifications) with a set of fields that allows the original message to be reassem-
bled in the receiver side. Once the packets are properly arranged, the multicast



of message is made through UDP protocol, which provides an almost direct in-
terface for IP services or in this case, for IP multicast. IP multicast defines a set
of extensions to IP protocol enabling one-to-many communication (multicast).
The main characteristics of this protocol are open groups (it is not necessary to
be a member of the group to multicast a message to it), no membership (list
of members), no reliability (such as IP) and accessibility through class D IP
addresses (from 224.0.0.0 to 239.255.255.255).

The use of MIOP, and IP multicast in a subjacent level, make it possible to
transmit the GIOP messages between two different ORBs. However, the con-
ventional CORBA object model, which specifies that one object reference must
correspond to only one object implementation, is not appropriate for object
group. In despite of that, the semantics of CORBA point-to-point invocation is
reliable concerning messages delivery, and the order is defined by sender, which
can be configured with or without reply, unlike the MIOP definition. Therefore, a
new object model representing groups had to be defined in UMIOP. This model
does not define an object identifier, but a group identifier that can be associated
with multiple object ids used by the POA (Portable Object Adapter) to activate
the corresponding servants [19]. The semantics of messages delivery and ordering
in UMIOP has no guarantees, and the MIOP supports only messages with no
replies.

An objects group in UMIOP is composed by group identifier, and information
about how to reach it in the communication network (class D IP address and
a port). These information are contained into UMIOP group references detailed
bellow.

2.2 UMIOP Group Reference

A reference or IOR (Interoperable Object Reference) is used to identify a single
object in CORBA. Each IOR contains one or more profiles which allow the
ORB to locate a servant object through any network transport mechanism. For
example, IIOP profiles contain in its fields the server ORB address (usually, an
IP address and a port) and an object identifier in the server ORB (object key),
used to access implementations through TCP/IP.

In order to support groups, the UMIOP specifications define a group IOR
that addresses a set of zero or more objects. A group IOR uses a different type of
profile to send messages through UDP/IP multicast. This UIPMC profile, defined
in the specification, contains all necessary information to access a multicast group
(a class D IP address and a port) in transport level. Another structure, with the
logical group identifier, is used for identifying members at ORB level. The group
IOR can also hold two IIOP profiles: one for requests that demand reply and
another that specifies a gateway to multicast requests when the client is unable
to do that.

The figure 1 presents the complete group IOR format defined by OMG as part
of UMIOP specifications. The composing of a group IOR must be made through
the specification of information about the group and the IORs for group IIOP
object and gateway. This creation is made with these information specification
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Fig. 1. Representation of the Group IOR.

in a “corbaloc” URL, or through MGM (Multicast Group Manager) methods,
an optional object service that provides operations for groups management.

3 MJaco

From the UMIOP specification study we developed an ORB to fulfill these spec-
ification. This ORB was called MJaco [1, 3], which is an extension of JacORB,
a high-performance and open source CORBA ORB that implements CORBA
2.3 specifications (http://www.jacorb.org). The MJaco architecture was de-
fined to allow the compatibility of two protocol stacks (IIOP/TCP/IP and
MIOP/UDP/IP multicast) in the same ORB, contributing for better interop-
erability and portability.

Figure 2 illustrates the UMIOP and MJaco ORB integration architecture.
In this figure the ORB is presented with the two protocol stacks: one for point-
to-point communication based on IIOP using TCP/IP services, and other for
multi-point communication based on MIOP, using UDP/IP multicast as trans-
port mechanism. Our integration model presents some elements defined in the
specification that compose the support for theses two models of communication.
Other components and extensions, not defined in that specification, has also
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Fig. 2. MJaco Architecture.

been added. Their purpose is to facilitate the integration of the different stacks
and to improve its efficiency.

The Multicast Adapter is a fundamental part of our integration model. It
is responsible for managing the multicast sockets used in the reception of the
MIOP packets and for the delivery of group messages to the POAs in the ORB.

The POA and the Delegate are the main components of the ORB to be modi-
fied to add the UMIOP. The modifications on Delegate are made in some points
to support multicast GIOP message to groups, since it is the first ORB internal
component to be activated when a stub method call is executed. Four new meth-
ods for handling objects group, described in the OMG specifications, are added
to the POA. In addition, the POA has to be modified in order to process requests
addressed to groups. For every group upcoming request, a search in the active
groups table is made in order to obtain the group member implementations to
which the request is addressed in each POA.

4 ReMIOP - Reliable MIOP

As mentioned before, the MIOP is unreliable, thus inadequate for many kinds of
applications, like fault-tolerant or groupware systems, which do not allow mes-
sage losses. We propose a set of extensions in the MIOP, called ReMIOP (Reliable
Multicast Inter-ORB Protocol), which provides high probability in the message
delivery guarantee. Basically, the ReMIOP protocol is a receiver-initiated “best-
effort” reliable multicast protocol (it uses NACKs to ask for lost message [14,
24]) such as SRM [10], LRMP [15] and TRM [26]. The ReMIOP may be seen as a



minimal reliable multicast protocol in the sense that it uses only two very weak
mechanisms - lost message recovery and flow control - in order to implement
“best-effort” reliability.

The premise of ReMIOP reliability properties assume a communication sup-
port with asynchronous systems characteristics, therefore, with no time limits
guarantees for message transmission and remote operations execution. The fault
model considers only crash faults for hosts, and omission faults in the communi-
cation system. Another fundamental assumption concerning the consistency of
the ReMIOP is the statement: after Od+1 multicast of the same message, there
is no correct host which did not receive this message (see section 4.1).

The ReMIOP operates as the following: messages (MIOP packets) are multi-
cast by the sender to all receivers. The sender has no knowledge about the group
members identity. The receivers detect lost packets by gaps in the sequence of
received messages3. When a member detects a missing packet, it multicast a
control message (NACK) to the group, asking for the lost packets. Any member
that receives this message, either the sender or any other receiver that owns
the required packet, can multicast it to the group. This protocol also includes
session messages that are multicast by the receivers to report to the senders its
buffers state, allowing a dynamic adjustment of transmission rate through the
flow control algorithm. The algorithm presented in the figure 3 describes the
executed procedures to multicast and to receive messages through ReMIOP.

Before describing the algorithm of the figure 3 we shall explain some primi-
tives used in it:

– calculate delay(): This primitive is used to calculate the schedule time to
the next multicast according to the flow control algorithm;

– schedule multicast(time,message): It is used to schedule the multicast of
a message at a specified local clock time;

– cancel scheduled(message id): Cancels the multicast of a message with
specified id;

– cancel scheduled nack for(message ids): Cancels the multicast of a NACK
for specified messages. The message ids is a set of message ids;

– missing messages(buffer): This function searches in the specified buffer
for gaps in messages sequence and return a set with all the ids for these
missing messages;

– random(limit): This primitive chooses a random integer value between 0
and a specified limit;

– nack(message ids): Builds and returns a NACK requesting the messages
with the specified ids;

– update send rate(states): Applies the flow control rule to define the new
send rate.

Besides these primitives, the algorithm for messages reception executes se-
quentially, and uses a scheduler that obeys the specified time schedule with
3 For the first message of each sender, the receiver creates a buffer for controlling

sender messages.



procedure R-multicast(m):
Td ← calculate delay() // Sender flow control
schedule multicast(Td, m) // Message multicast scheduled

To R-deliver(m) do:
U-receive(m)
if m.type = DATA then // m.type: type of the message m

cancel scheduled(m.id) // Cancels m multicast, if scheduled
if m /∈ bufferm.sender then // m.sender: sender of m

bufferm.sender ← buffer ∪ {m}
R-deliver(m)
missing ← missing messages(buffer)
if missing 6= ∅ then

schedule multicast(random(Tnack), nack(missing))
end if

end if
else if m.type = NACK then

cancel scheduled nack for(m.nacked)
for all buffers do // m.nacked: required messages list

for all mr ∈ buffers : mr.id ∈ m.nacked
if nacksmr ≤ Od then

schedule multicast(random(Trepair),mr) // Repair
nacksmr ← nacksmr + 1

end if
end for

end for
else if m.type = STATE then

update send rate(m.states)
end if

Fig. 3. Simplified ReMIOP algorithm.

minor deviations from this. The R-multicast(m) procedure, defined in figure 3,
implements message transmission in two steps: the computation of the wait time
to multicast the message (this calculation follows the flow control algorithm);
and the unreliable multicast scheduling. The reception and delivery of messages
is also illustrated in the figure 3. For reliable message delivery, we first receive it
in an unreliable way using the U-receive(m) primitive. Only after that, the al-
gorithm treats each of the three types of messages defined by ReMIOP protocol
in a differentiated manner:

– If the incoming message is a data message (a GIOP message fragment) it is
verified if this message was already received before (m /∈ bufferm.sender); if
it is true, no action is taken. If the message was received for the first time,
it is added in the reception buffer of this sender and then delivered to the



application. After that, receivers verify if there are missing messages and
multicast NACKs on the group for error recovering;

– If the received message is a NACK, then the NACK suppression mechanism is
activated (cancelling NACKs that was already received). For each requested
message id in the NACK a repair message is prepared (when the receiver
is capable to repair it). The retransmission of this message is scheduled
for a posterior time randomly defined, which avoids an explosion of repair
messages. Note that a repair message multicast is conditioned to the Od
limitations (see next subsection);

– Finally, if the message is a state notification from a group receiver (buffers
state), the system takes this state into account to update the transmission
rate of the protocol.

The mechanisms used to add reliability to ReMIOP are detailed in the next
subsections.
A Note on Garbage Collection: As already mentioned, the ReMIOP implements
probabilistic reliability mainly because, in real systems, it can not maintains the
received messages into the buffer indefinitely. The buffers used in the algorithm
of figure 3 (represented as a set) are not infinite. They have a predefined fixed
size and when this limit is reached, the older messages are thrown away. The
subsection 4.2 discuss some more issues related to the buffers of the ReMIOP.

4.1 Lost Message Recoveries

As the possibility of message loss exists and may be substantial, specially in large
scale systems, the ReMIOP includes a kind of control message to allow requests
for retransmitting lost messages: NACK messages. This message contains the
identifiers of lost MIOP packets, so that host, which receives the message, is
able to multicast the asked packets. Despite this mechanism, characterized for
being initiated by receiver, some improvements had been added to the protocol
in order to prevent, as possible, flooding of NACKs and repair messages. Among
these modifications it can be mentioned the use of a RINA (Receiver Initiated
Nack Avoidance) mechanism [24] and repair delay. These two improvements
cause a delay on the diffusion of NACKs and repairs for random periods of time
in the expectation that another group member does the retransmission.

Moreover, the omission degree parameter (Od) was introduced as an optional
improvement. In this case, the sender and the receivers involved in the group
interactions can retransmit the same message again until the limit defined by
Od+1 is reached. In communication supports with omission faults it is acceptable
to consider that no more than Od retransmissions of one single packet is lost in
a reference period of time. Tests can be executed in real networks to determine
Od in any degree of probability [28]. If a receiver does not receive a packet after
Od+1 transmissions from a sender, then it is possible to assume that the receiver
is faulty (crash). Note that Od is only one parameter that can be used in the
protocol, even when the system assumed to be asynchronous. If Od is a too
high value, then the protocol will execute like those ones which assume reliable



channels [12]. For this environment (since it is asynchronous, bursts of messages
may be over-delayed, instead of lost) this artificial hypothesis (omission degree)
can make a too slow process (or slowly connected) be treated as a crashed one.
This hypothesis can be considered acceptable because it allows progress of the
protocol, however this method is subject to inconsistencies if failures are not
correctly detected. Therefore, this parameter is useful only for practical ends.
As mentioned earlier, the omission degree is an optional improvement, so, if it
is not used, then, in our algorithm, the Od variable is set to ∞.

4.2 Flow Control

Flow control is a fundamental mechanism for any reliable multicast service. The
absence of membership information in ReMIOP environment makes impossible
the use of more refined flow control algorithms like those defined in [5]. Therefore,
we use a simple mechanism, inspired in LRMP flow control [15], that provides
packets loss prevention in hosts, and the consequent NACKs explosion.

The mechanism applied to implement the flow control in the ReMIOP proto-
col uses information provided by NACKs (that contain lost messages indication)
and state messages (that contain the reception buffers state of the members)
received4. Through these information the sender can estimate the speed of its
receivers and can apply a rate update function according to the receivers capac-
ity. This mechanism uses two types of buffers: one for senders and another for
receivers.

jj−1...

... i−1 i

sender buffer

receiver buffer

gap
messagelast stable

message
last sent

message

Fig. 4. ReMIOP flow control.

In figure 4, the sender buffer is used to store sent messages as well as messages
to be sent. The size of this buffer determines how many old messages can be re-
sent by this host in case of a NACK reception. In the receiver, the buffer stores
the received messages. The difference between the sequence number of the last
message sent by the sender (i in sender buffer) and the last received stable
message (j in receiver buffer) is the parameter used to adjust the sending rate.

Let the difference δ = i − j be such that: the bigger is δ, the lower must be
the sending rate so that slow receivers (whose j is much lesser that i) are able to
consume the sender messages. The main objective of this algorithm is to provide
4 Each receiver has a reception buffer for each sender.



transmissions adjusting the sending rate in a manner that all group members,
including the ones that are in congested areas of the network, can receive the
messages.

The transmission rate of the senders always varies between the interval
[Rmin, Rmax]. Where Rmin and Rmax are defined by the application. The initial
rate is defined as R0 = (Rmin + Rmax)/2. We consider the adjustment band
as Rmax − Rmin = L in which, with a discretization we assume ten levels of
transmission rate: Rmax −Rmin = 10(0.1L). For each size/10 packets sent, the
sender adjusts the transmission rate R according to the following rule (where
size is the fixed size of the sender buffer, i.e. its maximum capacity):

Ri =

{
Rmin if δ > size

2

Ri−1 + (−1)d
δ− size

5
size e0.1L otherwise

(1)

In the equation 1, Ri defines a new sending rate based: (i) on the current
rate (Ri−1), (ii) on the greater δ collected in the period and (iii) on the size of
the sender buffer (size). This adjustment rule states that the sending rate will
always be determined by slowest receiver.

Through this flow control algorithm and the (informal) assumption that the
system operates most of the time in normal conditions (without congestions and
omission faults), it is possible to guarantee that all the messages sent will be
delivered to the group members.

5 ReMIOP Implementation

In order to implement ReMIOP as a communication service of MJaco, we have
to consider three important issues: control messages definition, ReMIOP/MIOP
interoperability and where in the protocol stack we will implement the ReMIOP
algorithm (presented in figure 3). This section considers these and others issues.

5.1 Control Messages Definition

As mentioned before, the ReMIOP reliability is supported by two important
mechanisms: message recovery and flow control. Each of these mechanisms re-
quires some type control messages, that are defined in the figure 5.

In this IDL two types of messages are defined: NACK and STATE. These
two kinds of messages are defined by the MessageType enumeration. The
ReMIOPControl structure defines the fields of the control messages used by pro-
tocol. The first field of this structure defines the type of message, following this,
the senderId field contains the IP address of the control message sender. The
last field of the structure, the messages field, have different purposes depending
the type of the message: if it is NACK, then this field contains an array of ids
of messages (represented by the MessageId structure) identifying the required
messages that this host has lost. Otherwise, if it is a session message, then this
field contains the maximum stable message for each sender of the group.



module ReMIOP {
enum MessageType {

NACK, STATE;
};
struct MessageId {

string senderId;
unsigned long long sequenceNumber;

};
typedef sequence<MessageIds> MessageIds;
struct ReMIOPControl {

MessageType type;
string senderId;
MessageIds messages;

};
};

Fig. 5. Extension on UMIOP: ReMIOP Messages.

Independently of what type of the control message defined in the
ReMIOPControl structure, it will be serialized such as any other IDL definition
and encapsulated in MIOP packets as stated in the next subsection.

5.2 ReMIOP/MIOP Integration

To ensure the interoperability requirement, the data packets sent by ReMIOP
are exactly the same as the ones sent by MIOP. So the data sent by ReMIOP
can be received by MIOP receivers as well.

Each ReMIOP control message is encapsulated in one MIOP packet and
transmitted to the IP multicast group just like a data packet. However, MIOP
receivers do not process these control packets, they are ignored. That means that
basic issues must be considered when fulfilling the MIOP packets header fields
to ensure they are discarded.

The filling of MIOP packets header containing ReMIOP control messages
obeys some basic rules:

1. the packet id must have the same value, and this value cannot be used by
data messages;

2. the packet number field of the header is always set to 0 value;
3. the field defining the number of packets that are part of this message is

always set to 2 value;
4. a bit is marked in the field flags indicating that the packet is a ReMIOP

control message.

The rest of the fields of the MIOP packet are filled in conventional way
according to the MIOP protocol specification.



If the MIOP header fields are set as indicated above, the receivers of ReMIOP
packets capable to process it will detect flag pointed in the flags field and will
treat them adequately (as a ReMIOP control packet). The receivers that do
not implement ReMIOP will process the packet as the first element of a size 2
collection of packets. As the second packet of this collection do never arrives, it
is never released to the ORB upper layers, and will be discarded after a timeout,
just as defined by UMIOP specifications [19].

5.3 Plugable Strategies for MJaco

In order to make available a reliable multicast service provided by ReMIOP
in MJaco, a plugin mechanism was implemented. This mechanism allows the
integration of reliability strategies capable to extend the ORB multicast stack.
So, many other protocols, with distinct features, could be implemented over
this unreliable multicast service. The figure 6 illustrates the architecture of this
mechanism.
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In figure 6, we have the reliability strategy loaded as a multicast stack layer.
This layer, which can be plugged, is in between two other layers (segmentation
and MIOP) which characterizes the MIOP implementation. In a lower level layer
we have the MIOP encapsulating data blocks in MIOP packets and transmitting
them using UDP/IP multicast. The layer above the plugin is a segmentation
layer, responsible for disassembling (marshalling) long messages in collections of
MIOP packets and reassembling (unmarshalling) them on the receivers.



6 Results

In order to verify the performance of our reliable multicast service in a CORBA
ORB, we executed a set of simple comparative tests concerning the use of MJaco
with the ReMIOP strategy, pure MIOP, and using multicast sockets. These tests
had been accomplished in four equally configured machines5 in a LAN with mini-
mal external network load. The test objective was to validate our implementation
measuring the MJaco+ReMIOP performance, so more complex network archi-
tectures were not considered. The test program measured the time needed by a
group member to multicast a variable size message and receive the reply message
from all group members (including itself). It is called round trip time6.
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Fig. 7. MJaco performance.

Several experiments were executed with different values for Rmax (see section
4.2). Rmax defines the maximum transmission rate (in bits per second) of the
ORB to multicast messages to a group. The larger Rmax is, the faster is the
transmission, and greater is the possibility of message losses. Experiments with
MJaco using pure MIOP and with multicast sockets were also run to find out
the costs of reliable multicast in middleware level. The graph of figure 7 presents
these experiments results in a logarithmic scale.
5 Pentium IV 1.6GHz, 256 Mbytes of RAM memory, Mandrake Linux 9 Operating

System (kernel 2,4) and 100Mbps Ethernet network card.
6 All communication (message and replies) are done via the tested multicast protocol:

ReMIOP, MIOP and UDP/IP multicast.



Figure 7 shows that the higher the value of Rmax the closer is the behavior of
ReMIOP to the original MIOP. The behavior described by the curves with lower
Rmax values (10Kbps, 50Kbps and 100Kbps) is extremely reliable, so, in our
experiments, no packet was lost, and therefore, no NACK was multicast to the
group. However, the round-trip times obtained are much larger than when using
MIOP since each sender waits much longer to transmit each packet. In fact,
the perceived round-trip overhead is a direct consequence of the value of Rmax

and the number of data packets7 (message size). The ReMIOP layer overhead
(compared with MIOP) is about 5ms per round-trip for small messages (one
data packet) and large values of Rmax, as can be seen in figure 7.

In curves with bigger values of Rmax, the round trip time is lower, and the
amount of lost packets, NACKs and transmissions is higher. In the curve with
Rmax = 1000Kbps, the round trip time is equal or higher than that of the curve
Rmax = 500Kbps for long messages (≥ 75K). This result is caused by the great
amount of lost packets (NACKs also) and repairs.

The graph of figure 7 also describes curves with the behavior of the MIOP
and multicast sockets to round trip time. These curves describes messages of at
most 50 Kbytes, because for longer messages the packet losses disable the use of
our test program since the round-trip cannot be completed.

7 Related Work

There are some works aiming to incorporate group communication in CORBA
architecture [17, 8, 18]. These works, in general, focuses in integrating existing
group communication systems and protocols in CORBA middleware without
concerning interoperability issues8. However, only recently, with the publication
of UMIOP specifications, the possibility of implementing interoperable group
communication mechanisms based on IP multicast had been opened. A sim-
ilar study of ours is the RMIOP protocol [23] that proposes an extension of
MIOP for reliability purposes. This protocol uses a NACK-based approach and
ACKs messages to signal the acknowledgement of each received GIOP message
(each receiver sends an ACK to the sender after receiving all the packets from
a collection). This type of policy needs membership information, so the sender
has to know who are the members of the group in order to collect the ACKs.
The use of membership protocols increases the complexity of the RMIOP and
degrades the performance in highly dynamic groups (where processes join and
leave groups all the time). The approach presented in this work does not need
membership, and in our conception, this type of service must be implemented
at object level, using the FT-CORBA facilities (like ObjectGroupManager in-
terface) [20]. Moreover, in [23] mechanisms of flow control are not used (or not
reported). The RMIOP implementation was made in C++ on ORBacus 3.1, a
7 According to the flow control algorithm, some packets must wait some time before

being sent.
8 An excellent review of some of these efforts for fault-tolerance is the paper by Felber

and Narasimhan [9].



proprietary ORB that provides sufficiently generic plugin mechanism for inte-
grating new transport protocols. We used an open-source ORB because of the
possibility of unrestricted extensions implementation.

In [11] it is described another approach integrating reliable multicast in a
CORBA ORB that was developed by the same group that idealized the RMIOP.
In that work the reliable multicast is provided through a LRMP library inte-
grated to the ORBacus as a plugin. Therefore, it is not a standardized and
interoperable solution. It is important to remember that although it represents
a simple solution, this work precedes the publication of UMIOP specifications
and it brought some ideas that were included later in that specification.

The literature for “best effort” reliable multicast protocols is broad [14].
These protocols are characterized by the absence of acknowledgements message
and scalability. As some of the protocols of this type we can mention the SRM
[10] and TRM [26] and LRMP [15], this last one has great influence on the
ReMIOP conception. Despite the mentioned successful protocols, the IETF (In-
ternet Engineering Task Force) did not adopt any of them as the standard multi-
point reliable transport protocol for the Internet. Instead, they defined a series
of mechanisms that compose a reliable protocol so that different applications,
with distinct requirements, can build a variety of protocols from standardized
mechanisms [13, 29].

Two OMG specifications are related with our work in different aspects. The
already mentioned ROMIOP (Reliable and Ordered Multicast Inter-ORB Proto-
col) upcoming specifications [21] may have an important role as it evolves, since
it defines formats for various types of control messages used in multicast proto-
cols (e.g. ACKs, NACKs and order enforcement). Another OMG specification of
great interest is the ETF (Extensible Transport Framework) [22]. These spec-
ifications define a framework to integrate new transport protocols in CORBA
ORBs. Unfortunately this framework assumes that the protocol to be integrated
is reliable, point-to-point and connection-oriented. These assumptions make it
difficult to implement group communication protocols as ETF plugins. The work
presented in [4] is an initial attempt to integrate these two specifications devising
an interoperable total order multicast protocol. This kind of protocol satisfies
more restrictive properties and consequently is much heavier than ReMIOP.

8 Conclusions

The main objective of this paper was to propose extensions to standardized
MIOP specification to obtain a reliable multicast support. The resulting protocol
is better suited to implement more restrictive ordering and agreement guarantees
and is developed as part of a CORBA ORB. The integration model, which
uses the plugins mechanisms, is very flexible and do not compromise the ORB
interoperability and portability aspects. The ORB is capable to make invocations
using ReMIOP, MIOP or IIOP.

The ReMIOP implementation makes possible the development of other
CORBA architecture group communication solutions (such as [2, 4]). These solu-



tions are being used in GroupPac project [16, 2], which implements the Fault-
Tolerant CORBA specification.

Despite of that, it was also presented some ReMIOP implementation perfor-
mance measures, comparing it to MIOP and IP sockets multicast to verify the
costs related to this service quality available on middleware level. These devel-
opments, which were based on the proposed integration model, were built on
JacORB. These implementations can be obtained on the web in the following
address: http://grouppac.sourceforge.net/.
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