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Abstract—A major challenge of computer systems is making
these more robust, reliable and secure. In recent years, it
has been found that the state machine replication is one of
the most common techniques for designing systems that need
high reliability. This paper introduces a new architecture for
replication of Byzantine fault tolerant service, based on the tuple
space model. The proposed model requires only 2f + 1 replicas
for one service, and is generic enough to accommodate a different
set of services at the same execution infrastructure. Use of tuple
space supports communication and coordination, as well as a
storage medium for sharing of data between service replicas. In
addition, the paper also presents an experimental evaluation of
some protocols for replication of Byzantine fault tolerant systems
for practical purposes.

I. INTRODUCTION

An interesting feature on designing distributed systems is
its inherent support for redundancy, one of the fundamental
principles of fault tolerance. On the other hand, implementing
fault-tolerant distributed applications using redundancy tech-
niques has been investigated for more than twenty-five years
[1], [2]. Redundancy is implemented through abstractions of
State Machine Replication (SMR) [1], [2], this technique is
very attractive because it allows implementing services, which
are capable of meet reliability, integrity and availability re-
quirements, which are essential regarding to the trustworthiness
of the computing system [3]. The SMR approach was first
defined as a mechanism to provide survivability against crash
faults [2], being later extended to the class of Byzantine faults
[4].

On the other hand, the evolution of network and commu-
nication technologies have stimulated the emergence of new
models of distributed systems. As a result, the community has
been consolidating efforts to propose alternatives to messages-
passing model, in order to simplify the programming task of
reliable services for these models [5]. Moreover, the greatest
difficulty in implementing reliable distributed systems lies in
the relevant aspects to the coordination of the entities (e.g.
communication, synchronization, etc.). Thus, recent studies
have shown that the use of coordination services [6], [7],
[8] greatly simplify one of the hardest parts of implementing
distributed applications.

Before the rise of PBFT [4], proposals for Byzantine fault
tolerant algorithms were dependent on very strong assumptions
of complex cryptographic mechanisms, making the efficiency

of these solutions to be put to the test. However, it is notewor-
thy that in recent years many studies have produced practical
solutions for SMR replication focusing on Byzantine fault
tolerance [4], [9], [10], [11], in order to make the applications
resistant to malicious attacks against the system (intrusions),
and thereby making the services intrusion-tolerant [12]. Some
of these researches have shown, also, the feasibility of using
these solutions to increase real service’s reliability [4], [9],
[10], [11]. Due to theoretical restrictions imposed by the
Byzantine agreement problem [1], the solutions usually pro-
posed in the literature [2], [4] involve a high cost of hardware
and software. To tolerate f faulty entities, the algorithms
usually require at least 3f + 1 entities. Given this fact, new
approaches for Byzantine fault tolerance were proposed aiming
at reducing the number of communication steps [10], as well as
the number of system entities [9], [13]. For this purpose, these
solutions assume more realistic synchronism assumptions and,
in some cases, use safe components. Particularly, the solution
presented in [9] is quite interesting because it allows reducing
the cost of Byzantine fault-tolerant replication to 2f + 1, in
the case of the service/application replicas.

This paper presents the REPEATS (Replication over Policy-
Enforced Augmented Tuple Space), the proposed architecture
for Byzantine fault tolerant SMR based on an abstraction
of tuples, more precisely to extent the approach known in
the literature as PEATS (Policy-Enforced Augmented Tuple
Space) [14]. Thus, following the principle defined in [9], using
the tuple space allows us to separate the entities responsible
for the agreement, implemented on the tuple space, from those
responsible for execution of requests sent by clients, with the
advantage of having modular and much simpler replication
algorithms. Our model requires only 2f + 1 replicas for one
service, and is generic enough to accommodate a set of services
running distinct applications sharing the same communication
and coordination support, while the particulars of services do
not interfere each other. The REPEATS is, to the best of
our knowledge, the first study to propose the use of higher
level abstractions, in this case a tuple space, for implementing
replicated services.

II. RELATED WORKS

Recent works in BFT have produced solutions based on
Byzantine fault tolerant SMR, aiming to provide more secure



and reliable services. Typically, the algorithmic solutions for
BFT assume that at most f ≤ bn−1

3 c members of a set |S| = n
may arbitrarily deviate from their specifications simultaneously
during a window of vulnerability of the system (e.g. a period).
The PBFT protocol [4] is one of the most successful works in
the field of practical Byzantine fault tolerance systems, due to
the set of optimizations implemented in it. Moreover, most of
the solutions for Byzantine faults replication such as [9], [10]
are PBFT based on.

Due to the cost of PBFT from theoretical restrictions of
Byzantine agreement [1], as well as the computational cost
of its algorithms in terms of message complexity, two later
studies have proposed alternatives to improve the limitations of
PBFT both in terms of theoretical restrictions [9] by reducing
the number of replicas, and of message’s complexity under
favorable conditions [10]. The first of them [9] introduced
an architecture for state machine replication, where authors
encourage a separation of the tasks performed by the PBFT
in two distinct layers. The stimulus to separate these tasks,
which are respectively ”agreement and execution”, occurred
based on the finding that 2f + 1 replicas are enough for
masking Byzantine faults [2], in spite of the 3f + 1 entities
required to reach the Byzantine agreement [1]. Based on these
assumptions, there is a possibility of building Byzantine fault
tolerant services by means of two sets of servers; one for
executing the Byzantine agreement protocol and, therefore,
requiring 3f + 1 replicas; and another with 2f + 1 replicas
for implementing the replicated service.

Moreover, in order to reduce the message complexity and the
number of communication steps it was proposed the protocol
Zyzzya [10], which introduced the concept of ”speculative”
execution in the context of Byzantine faults. The notion of
speculation is linked to the ability to execute a request in a
replicated service, without the need for an explicit agreement
between the replicas. The idea behind Zyzzyva is the design
of an optimistic ordering protocol (because the PBFT is rather
pessimistic), since in practice it is observed that in most cases
the executions are favorable (free of failures).

III. CONCEPTS ON TUPLE SPACE

Conceptually, a tuple space can be seen as a shared memory
abstraction, having the purpose of facilitating the interaction
activities between distributed processes [15]. The origin of the
tuple space occurred in the context of the language LINDA,
from the definition of a model called generative coordina-
tion model [15]. In this model the tuple space is used as
coordination and communication support to the participants of
the system processes, where an interface to access the space
is provided, so as to enable storage and retrieval (insertion,
reading and removal) of generic data structures in the form
of tuples. One tuple t = 〈f1, f2, ..., fn〉 consists of the
composition of a sequence of fields, where each field fi can
have representations: a defined value, a formal (variable) “?”,
or still a special symbol “*”. A formal field is used to extract
contents of individual fields from a tuple, while the special
symbol is used to represent a field with no value, or a defined

type. A tuple t where all fields have defined values is called
entry. However, one tuple whose composition admits some
formal field “?” and/or a special field “*” is called template,
and is represented by t̄. The space only allows the storage
of tuples and never of templates, as the latter are used as
arguments for over space reading operations. Reading and/or
removal of tuples is performed based on the combination of the
templates with the respective tuple space. Thus, we say that
a template t̄ matches with an entry t if they have the same
number of fields and all fields with defined values of t̄ contain
the same values of the corresponding fields in t.

The manipulations of the tuple space are carried out by the
invocation of three operations [15]: out(t) to insert a tuple t
in the tuple space; in(t̄) to remove the tuple t that matches
with the template t̄, from tuple space; and rd(t̄) for reading
the tuple t (that matches with t̄) without removing it from
space. Reading and removal operations are non-deterministic,
and therefore, if there is a set of tuples that matches with the
specified template, any of them can be chosen as response
to the operation. Also it should be noted that the operations
in and rd are blocking, and if there is no tuple t that
matches with the template t̄ in the space, the process will
remains blocked until a tuple matching with the template
is inserted so that the operation is completed. However, a
typical extension of the model provides non-blocking variants
of reading and removal operations, usually called inp and
rdp. It is worth mentioning, that the classical model of tuple-
space coordination does not provide mechanisms to deal with
malicious processes accessing the tuple space. This problem
was solved with the introduction of the PEATS (Policy-
Enforced Augmented Tuple Space) [14], which consists of
a tuple space where the interactions between processes are
governed by fine-granularity access policies.

IV. THE ARCHITECTURE REPEATS
A. An Overview of the REPEATS

An aspect of fundamental importance for the understanding
of our contribution stems from the fact that all existing
solutions for BFT (including those presented in section II),
are based on the communication by message passing model,
adopted in traditional distributed systems. However, the ability
to solve fundamental problems of fault tolerance in distributed
systems is inherently linked to the specification of a proper
system model.

In our proposal, the PEATS provides a decoupled commu-
nication support for the interactions between the clients and the
replicas of a service, in addition to a stable and secure storage
environment for the information shared between replicas. In
the Figure 1, clients issue their requests in the form of tuples
in the PEATS (step 1) and the service replicas being accessed
read these tuples from the PEATS to obtain the requests to
be executed (step 2). Then, the replicated services process the
requests and send the results, also in the form of tuples, to the
PEATS (step 3), so that clients can get the response (step 4).

Obviously, the same assumptions and requirements applied
to the SMR (replica determinism [2]), apply for the system



Fig. 1. Execution model of REPEATS

REPEATS, since it is a SMR realization in tuple space. In a
system where the replicas implement a deterministic service,
this property is implemented through the use of total order
broadcast [16], ensuring that all submitted transactions are
processed by all replicas (agreement) in the same order (total
order). Thereafter, each replica performs the operation, updates
its state (when necessary) and sends the result to the client. The
client accepts the result of the operation as soon as it receives
f +1 identical responses from different replicas, considering f
the maximum number of servers which may suffer Byzantine
faults.

B. System Model

We assume a system model that consists of an asyn-
chronous computing environment provided by the tuple space,
where there are two sets of processes: C = {c1, c2, ..., cn},
which represents clients who interact with the service, and
Se = {se1, se2, ..., sen} representing the servers that imple-
ment the service replicas1. However, for the implementation
of the tuple space we assume the existence of the set Sts =
{sts1, sts2, ..., stsn} representing the servers that implement
the reliable space.

In the case of faults, the model assumed is the Byzantine,
where an arbitrary number of clients and up to f ≤ bn−1

2 c
servers may arbitrarily fail in their specifications, and thus stop,
omit sending or delivery of messages, send incorrect answers,
among others. Despite the faults, the independence of faults is
assumed through the use of diversity in the various components
that make up the architecture (hardware, operating systems,
virtual machines, etc.) [17]. In the underlying communication
system, e.g. the support system for the tuple space of no more
than f ≤ bn−1

3 c replicas may fail in maintaining corrected
the coordination and communication environment. Thus, it is
assumed that the tuple space is reliable, and therefore it is not
susceptible to failures. This strong assumption is substantiated
in practice by the use of a Byzantine fault tolerant tuple space,
like the DEPSPACE [7], used in this work.

1Although the system supports multiple replicated services sharing the same
infrastructure coordination, for simplicity of the algorithms, we assume only
a single service replicated in this paper.

The system maintains the correction properties in the asyn-
chronous interaction model (unknown time). However, to en-
sure the liveness (including the underlying communication),
it is assumed an eventually synchronous system [18]. Thus,
during the implementation of the computations and commu-
nications the time (which is unknown) does not increases
indefinitely, and there are periods of stability that result in
terminally synchronous computations and communications.

Finally, it is assumed that all communications occur through
reliable point-to-point channels (even in the underlying level of
communication with the tuple space abstraction) and authen-
ticated. A pragmatic approach for these channels is the use of
the TCP protocol with MACs [19] (Message Authentication
Codes), using retransmission and reconnection mechanisms
when appropriated. Moreover, all processes are equipped with
local clocks that are not necessarily synchronized, whose sole
premise is the progress.

C. Properties

Usually, the algorithms in a distributed systems are specified
considering the notions of correctness (or safety) and termi-
nation (or liveness). For this work, some properties must be
satisfied in order to allow the system to be successful and
correct, they are:

• Total order (safety): the requests are performed with total
order by all correct replicas of system;

• Lock freedom (liveness): in any system execution, if a
correct process sends a request to run where there are
pending requests, some request will be executed.

The first property concerns to correctness (safety), while
the second is regarding to progress (liveness). Besides these
properties, a service replicated using the REPEATS behaves
equivalent to its implementation in a non-replicated system,
satisfying the consistency model known as linearizability [20].

D. Access Control

A fundamental mechanism for the algorithms from RE-
PEATS to tolerate malicious behavior of processes, is the
access control provided by the fine-granularity policies sup-
ported by the PEATS [14]. This control takes place through
the implementation of security policies associated with the
tuple space. When an operation is invoked in the PEATS,
the rules specified in these policies are checked based on
the identification of process that invokes the operation, the
operation which is being invoked (and its arguments) and the
current state of the tuple space to deny or allow the operation.

E. Algorithm Ordering Requests

In this section we present the replication algorithm RE-
PEATS. This algorithm, as well as the others that support this
architecture, are executed on a PEATS, having as foundation
the access control policies that prevent malicious processes
of interfere with the correctness of our replication scheme.
Briefly, the ordering protocol is supported by a persistent
messages queue (built on the tuple space), analogously to
the proposed group communication protocol for the system



SINFONIA [21]. This message queue, together with the ap-
propriate access policy, ensures: (i) messages delivered in the
same order to all processes (correct or faulty), (ii) persistence
of messages while necessary.

As already discussed, the total order broadcast is a fun-
damental requirement for the state machine replication to be
ensured that the properties concerning the determinism of the
replicas. Since all communications take place via PEATS, the
messages deposited in the space are available at the same
time for all processes having access to the space. Thus, the
total order of the requests is made from a message sequencing
algorithm implemented on the tuple space. In this algorithm,
the requests are inserted in the space with a sequence number
only in tuples. These sequence numbers establish the order
in which these requests must be executed by all replicas of
a service. The message queues used in the REPEATS are
essentially very similar to the characteristics of the group
communication protocols [22], having its difference in how
the order of messages delivery is determined. In the REPEATS
this order is determined and controlled exclusively by the state
of the application/replica, and not by means of views exchange
as usually occurs in the group communication protocols. The
persistence capacity of the messages provided by the messages
queue of the REPEATS permits, above all, to implement
a more efficient logging recovery mechanism. Thus, in the
case of failure and subsequent recovery of a replica, it is not
necessary to make an explicit agreement between the replicas
(to recover and determine the execution sequence of messages
that are not yet stable), since all system messages are persistent
and are available in the queue.

The formalization of REPEATS ordering protocol is pre-
sented in the Algorithm 1. It is important to note that the
correctness of the said protocol requires the following assump-
tions:

1) The clients requests are listed, where each one have a
unique and growing identifier;

2) A client only sends a request after receiving response
from a previous request2;

3) For every request sent, the client associates a timer, and
if it expires before the response has been obtained, the
client re-sends the request;

4) Each replica has a results retention mechanism [23] that
stores the response for last request (or last k requests)
for each client, this response buffer is used to prevent
reprocessing of requests that are sent by chance, besides
allowing the status restoration of a replica, that eventu-
ally have remained behind the others.

The algorithm operation executed by the client (lines 4-8)
is quite simple. When the client has to send a request to the
service (command C), he tries to place a REQUEST tuple in
the space with a sequence number one unit higher than its last
sequence number (initially 0 - line 3). This insertion is done
by invoking the operation cas , which checks if there is a tuple

2Note that this limitation can be relaxed to k requests if the servers have
the ability to store the last k answers of each client.

Algorithm 1 Ordering Requests (client pi and server si).
Shared variables:
1: ts = ∅ {tuple space}

{Client Side}

Local variables:
2: seqno = 0 {indicates the last position in the queue}
3: reqid = 0 {number of last sent request}

procedure execute(C)

4: reqid← reqid+ 1
5: repeat
6: seqno← find tail() + 1
7: until ts.cas(〈REQUEST, seqno, ∗, ∗, ∗〉,

〈REQUEST, seqno, pi, reqid, C〉)
8: return wait response(reqid)

{Server Side} Local variables:
9: seqno = 0 {last position in the queue}

10: data buffer = ∅ {buffer to hold results}
11: req ckpt =⊥ {number of the greatest request in the last checkpoint}
main task
12: loop
13: if req ckpt > seqno then
14: ts.rd(〈CKPT, ?ckptno, ?tail, ?state, ?buffer〉)
15: local state← state
16: data buffer ← buffer
17: seqno← tail
18: end if
19: seqno← seqno+ 1
20: ts.rd(〈REQUEST, seqno, ?clienti, ?reqid, ?command〉)
21: if @clienti ∈ client data then
22: response← local execute(command)
23: else
24: 〈reply, last reqid〉 ← get data(data buffer, clienti)
25: case reqid do
26: (last reqid+ 1):

response← local execute(command)
27: (last reqid): response← reply
28: default: continue
29: end case
30: end if
31: update data(data buffer , 〈clienti , reqid , response〉)
32: send response(clienti, response)
33: end loop

REQUEST with the sequence number in the space in question,
and if isn’t, it issues the required tuple (line 7).

When it is not successful in this insertion, the client adds
the sequence number and try again (lines 5-7). Upon successful
insertion of the tuple, the client is blocked on line 8, where will
wait for f+1 identical responses coming from distinct servers.
The find tail function (line 6) serves to prevent a client who
has started the execution after having already a large number
of requests in the space to have to iterate many times through
the loop of lines 5-7 (increasingly invoking an operation on
the tuple space).

This function implements a strategy that inspects the tuple
space and tries to find a sequence number closer to that last
request inserted in this space. The existence of this function
does not affect the correctness of the algorithm, but greatly
improves the performance of “delayed” clients. One possible
strategy for the implementation of this function would be to
check what is the newest checkpoint of the system and return



the number of last request in this checkpoint. Other possible
strategies for implementing this function can be used by
taking advantage of special functionalities which a particular
implementation of the PEATS can implement.

Similarly to what happens in the clients’ algorithm, the
servers’ algorithm (lines 9-33) is also quite simple. Initially the
algorithm starts the recovery position of the requests’ message
queue to 0 (line 9). The first step executed in the algorithm
is to check against the current state of the replica (line 13),
when it is checked if the concerned replica has an out of date
status in relation to other replicas, and being so, it updates its
state from last valid checkpoint. This verification is important
to ensure that the delayed replicas are not indefinitely blocked
waiting for requests that are no longer contained in the ordered
queue. Further, the replica processes the commands contained
in the tuples REQUEST in ascending order firstly obtaining
the tuple with sequence number higher than the last executed
request (lines 19-20), and then checks if the request is the
first one from the client, and being so, the replicas execute
the command in the tuple/request through local execute (line
22), insert the command response in the results table (line
31) and send the response to the client, indicated in the tuple
REQUEST, by the function send response (line 32).

For performance reasons, this function sends a message with
the response directly to the client, without using the PEATS.
In the case of the request not being the first one from the
client, the information regarding the last processed request for
this client are retrieved from the results table (line 24). Then,
the replicas check if the request identifier is one unit higher
than the last processed request or it’s equal to the request in
the table. In the first case, the replicas process normally the
command from the request (line 26) and proceed to the end
of the algorithm. In the latter, the answer stored in the table
is returned to the client, because it’s a retransmission. If the
request is not in appropriate circumstances, it is discarded (line
28).

V. IMPLEMENTATION, EVALUATION AND RESULTS

We choose the experimental way because, as we said, the
REPEATS uses a shared memory abstraction to coordinate
the algorithms’ activities, which is different from other BFT
solutions that coordinate their activities by message passing.
It is noteworthy that the means to measure complexity of
distributed algorithms based on message passing are different
from shared memory based algorithms [24]. Thus, we did
our implementations in Java. The reliable and authenticated
communication channels (according to system model) were
made by using socket channels from NIO API, using TCP
with MACs (Message Authentication Codes).

The evaluation was performed on an environment composed
by some Dell Optiplex 755 machines, every one with the
same settings of hardware and software. Each machine had:
1 Intel R©CoreTM2 Duo 2.33GHz processor, 2GB of RAM, one
Ethernet Gigabit Intel 82566DM-2 interface, and SUSE Linux
SLES 10 O.S. (Kernel 2.6.16.21-0.8-smp x86-64) equipped
with a JVM-JIT IBM 1.6.0. The number of machines utilized

for each experiment changed accordingly to the number of
allowed faults (e.g. f parameter).

For evaluation, we adopted latency and throughput metrics
because they allow a simplified verification of the system’s effi-
ciency [25]. The results were obtained from micro-benchmarks
and macro-benchmarks in several load conditions, where la-
tency were obtained from some round-trips and throughput
were gotten from processing capacity of requests by time
unit. We evaluated the systems from micro-benchmarks to the
possibility of cost analysis (in time units) of ordering algo-
rithms, without any application/service’s influence. Moreover,
it’s noteworthy that for this micro-benchmark we evaluated
protocols for systems using a stateless service with null oper-
ations, ranging requests and answers messages sizes in 0KB
and 4KB.

A. Performance Evaluation in Normal and Faulty Scenarios

The first experiment was designed to evaluate executions
of protocols in normal conditions without any faults. In both
experiments from Fig. 2 we executed 10000 operations from
30 different concurrent clients disregarding 1% of the highly
deviated values as observed from the executions. The results
for latency measurement are reported in Fig. 2(a). They were
obtained from executions with distinct load conditions, vary-
ing requests and responses size. The reported values include
average time of request processing as observed by means of ex-
ecutions. The results (Fig. 2(a)) demonstrate that REPEATS’s
operations latency is the biggest of all, but still very similar
to separating agreement’s architecture from [9]. We must
emphasize that these results were expected because REPEATS
and [9] architecture systems share the same functional features.
It is noteworthy that PBFT [4] and Yin’s protocol [9] used in
evaluation are own implementations.

The reason about the results reported for both REPEATS
and [9] systems are too close to each other is because the
DEPSPACE [7] is based on Byzantine PAXOS replication
algorithm, which is very similar to PBFT [4] that is employed
as an agreement layer in [9]. Moreover, latency of REPEATS
is worse than [9] due to additional cost from tuple space access.

An evaluation of throughput for BFT protocols is presented
in Fig. 2(b). The result shows that REPEATS has smaller
performance in relation to other evaluated protocols, however,
being the results close to those reported to the ’separating
agreement from execution’ architecture. On the other hand,
analyzing throughput in relation to the requests size and
answers we can that REPEATS presents acceptable scalability
if we consider that the decreasing number of operation/second
is small when there is increase on the request and answers size.
These results also show that the system has reasonable scal-
ability when the number of request and answers is increased,
because the increase in latency is less than twice. The particular
case of 4096 bytes requests and answers is reasonable; since
the adopted model requires one communication step further
to send the ordained request to the execution servers, and
that leads to a burden on the system when message’s size is
considerably large.



(a) Latency in normal operation.

(b) Throughput in normal operation.

Fig. 2. Performance evaluation in normal case operations.

Likewise, in order to evaluate faulty behavior for BFT
protocols we performed the same earlier experiments with
injection of faults. Then, the faults were introduced in PBFT
and Zyzzyva, also in separating agreement’s architecture and in
REPEATS. More precisely, the simulations injecting faults in
replicas playing the leader role (because it describes the worst
case!) to don’t induce protocols to achieve the agreement on
the first round of execution – e.g. causing a delay due to the
change of the leader. For that, in case of the REPEATS and
separating agreement’s architecture we injected faults in the
agreement layer since faults in execution layer hold almost no
influence on system’s performance due to masking them.

At first, we have evaluated the latency from execution of
null operations on protocols. The results are similar to the
earlier experiments such that both REPEATS and separating
agreement’s architecture presented a higher latency related to
other BFT protocols. For values reported in Figure 3(a) we
added the execution time from agreement protocol (PAXOS
and BFT), and the time needed to send ordered messages to
the execution servers. As shown in Fig. 3(a), in spite of our
solution performs (e.g. it isn’t the best), at this point REPEATS
is slightly less than architecture of [9]. This happens due
to additional access control of the tuple spaces that inhibits
malicious behavior of Byzantine processes accessing the space.
From results related to throughput (Fig. 3(b)) we can see that
all protocols had their performance compromised on fault’s
situations since each protocol must execute other services and
routines to restore the normal conditions, so assuring system
liveness.

(a) Latency in faulty operations.

(b) Throughput in faulty operations.

Fig. 3. Performance evaluation in faulty operations.

B. Case Study: An Evaluation on a BFT NFS Service

As quoted before, micro-benchmarks are useful to make
a simple analysis on the protocol’s impact over a replicated
service. On the other hand, a macro-benchmark becomes
essential when we want to evaluate how a real application
performs. In this sense, we evaluated a replicated NFS Service
implementation based on each evaluated BFT replicated state
machine protocol. We did this evaluation based on the same
patterns of the related works [4], [9], [10]. So, our imple-
mentation was inspired on Web NFS specifications [26], [27],
in which both are extensions of NFS specifications allowing
some facilities on remote objects access (files, directories and
links). With the WebNFS an application got access to remote
objects with no need for the operation system interaction - e.g.
it’s not necessary to mount the remote files system on each
client’s operating system’s Virtual File System. The access
to the objects happens through an API instantiated by client
application.

The results gotten from macro-benchmark are obtained from
NFS services implementation for each one of the evaluated
protocols, along with a non-replicated NFS. The experiments
cover the regular file operations execution to allow for la-
tency verification for each operation. For NFS operations we
analyzed: (1) files and directories creation (Figure 4(a)), (2)
files and directories elimination (Figure 4(b)), (3) listing the
contents of directories with one hundred recursive objects
(Figure 4(c)), (4) writing on remote files varying size of data
on 2k, 4k, 8k, 16k and 32k (Figure 4(d)), and (5) reading
data from remote files with 2k, 4k, 8k, 16k and 32k of size



(a) files creation. (b) files elimination.

(c) directories listing.

(d) files reading. (e) files writing.

Fig. 4. Latency results for operations on a NFS service: Native NFS (java.io API + NFS Linux client), REPEATS, Separating Agreement, Zyzzyva e PBFT.

(Figure 4(e)). For this evaluation we ran each operation 10000
times, in which latency result took average time for operation
execution, excluding 1% values with larger deviate.

From Figures 4(a) and 4(b), we observed what were already
expected that is, both REPEATS and ”separating agreement’s”
architecture presented the worst results. However, once again
it is noteworthy that it happened because of the adopted
replication model, which requires one more communication
step. From another point of view (disregarding related works),
we can verify that additional costs from the use of system
REPEATS incurs between 30 to 60% compared with a non-
replicated NFS service (e.g. non-tolerating Byzantine faults).
This additional cost is basically due to latency for accessing
the tuple space during the execution of agreement protocol
(or ordering), more precisely due to the access control for
accessing the space – a requirement to tolerate Byzantine
faults in REPEATS. We believe that it is a moderate cost
because there are some benefits considering the reliability and
security covered by REPEATS. It is also noteworthy that the
latency presents a slight increase when the size of request and
response grows. This result is because of replies were sent

directly to clients and thus, bypassing the tuple spaces (e.g. an
optimization).

C. Analytical Evaluation on Byzantine Fault-Tolerant Proto-
cols’ Properties

This evaluation highlights three aspects that BFT replication
protocols must stick to in order to make their algorithmic
solutions more practical (of easy implementation), which
are: replicas number’s cost; a number of enough replicas to
maintain the service, in spite of the minimum required in
applications with Byzantine faults (2f + 1 [2]); number of
services operating over one single agreement layer.

TABLE I
COMPARISON ON EVALUATED PROTOCOLS’ PROPERTIES.

Properties Evaluated Protocols
and Characteristics REPEATS Agreement/Execution PBFT Zyzzyva

Number of replicas 2fe + 1 + |Sts| (3fa + 1) + (2fe + 1) 3f + 1 3f + 1
Replicas of service 2fe + 1 2fe + 1 3f + 1 3f + 1
Services / Agreement Layer N N∗ 1 1

The data from Table I reflects a perspective on solutions
adoption for evaluated BFTs, looking at total replication cost.



The first line in the table refers to the number of machines
required in order to build a system tolerant to f Byzantine
faults in each one of evaluated systems. The importance in
replicas number reduction is crucial for building a service,
once this implies also on system operational costs (storage,
disk, etc). On this item, REPEATS stands out from all the
others because it requires the fewest number of replicas on
reliable service’s implementation, even though Sts replicas
are necessary in tuple spaces that can be shared by different
replicated services and other applications. A second evaluation
is applied based on the number of required replicas to keep
the application status, also taking into account the value
established on [2]. This number indicates that both systems
REPEATS and [9]’s architecture stand out for they share the
same optimization, which consists on separate agreement layer
from execution of services. This optimization doesn’t apply
to original PBFT protocols implementation neither Zyzzyva’s,
since on these ones same replicas execute both contract and
application. Lastly, the last line in chart shows that both system
REPEATS and [9]’s architecture permit the same according
service use in order to implement several reliable applications,
regardless of all works that does not provide that kind of
optimization.

VI. FINAL REMARKS

In this work we presented an architecture’s specification and
implementation to support replication of those Byzantine fault
tolerant systems based on tuple space. Moreover, an extensive
evaluation from model and architecture proposed in relation to
some protocols to fault Byzantine replication already known
in literature was carried out, in order to verify the feasibility
of the present proposal when planning applications tolerant to
Byzantine fault. From the present work we could verify that in
spite of presented performance, the extensive tuple spaces use
is interesting from practical point of view, because its reduced
operations set allows to specify and to implement, in fairly
simple way, reliable and safe distributed system, in spite of
the complexity verified to traditional message passing model.

Although the performance evaluation showed us that tuples
space’s use increases the replication cost, more precisely on
latency terms, in relation to all evaluated works, this abstrac-
tion’s use becomes attractive when we consider the increase on
the number of faults supported for a service (e.g. f parameter).
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